Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.M.; Vargas, A.; von Loebbecke, A.
2010-01-01
A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed surfaces are represented by grids consisting of unstructured triangular elements; while the flow is computed on non-uniform Cartesian grids. The paper describes the salient features of the methodology with special emphasis on the immersed boundary treatment for stationary and moving boundaries. Simulations of a number of canonical two- and three-dimensional flows are used to verify the accuracy and fidelity of the solver over a range of Reynolds numbers. Flow past suddenly accelerated bodies are used to validate the solver for moving boundary problems. Finally two cases inspired from biology with highly complex three-dimensional bodies are simulated in order to demonstrate the versatility of the method. PMID:20216919
Li, Bo; Zhao, Yanxiang
2013-01-01
Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.
Hill, Mary C.
1988-01-01
Simulated results of the coupled freshwater-saltwater sharp interface and convective-dispersive numerical models are compared by using steady-state cross-sectional simulations. The results indicate that in some aquifers the calculated sharp interface is located further landward than would be expected.
Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures
2015-03-30
for the structural of the atomically sharp interface between hBN and Bi2Te3. Finally, we have developed unprecedentedly clean graphene supercoductor...crystals by MBE method. We also use transmission electron microscopy (TEM) analysis for the structural of the atomically sharp interface between hBN and...by MBE method. We also use transmission electron microscopy (TEM) analysis for the structural of the atomically sharp interface between hBN and Bi2Te3
Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion
NASA Astrophysics Data System (ADS)
Choquet, C.; Diédhiou, M. M.; Rosier, C.
2015-10-01
We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.
Versatility and Invariance in the Evolution of Homologous Heteromeric Interfaces
Andreani, Jessica; Faure, Guilhem; Guerois, Raphaël
2012-01-01
Evolutionary pressures act on protein complex interfaces so that they preserve their complementarity. Nonetheless, the elementary interactions which compose the interface are highly versatile throughout evolution. Understanding and characterizing interface plasticity across evolution is a fundamental issue which could provide new insights into protein-protein interaction prediction. Using a database of 1,024 couples of close and remote heteromeric structural interologs, we studied protein-protein interactions from a structural and evolutionary point of view. We systematically and quantitatively analyzed the conservation of different types of interface contacts. Our study highlights astonishing plasticity regarding polar contacts at complex interfaces. It also reveals that up to a quarter of the residues switch out of the interface when comparing two homologous complexes. Despite such versatility, we identify two important interface descriptors which correlate with an increased conservation in the evolution of interfaces: apolar patches and contacts surrounding anchor residues. These observations hold true even when restricting the dataset to transiently formed complexes. We show that a combination of six features related either to sequence or to geometric properties of interfaces can be used to rank positions likely to share similar contacts between two interologs. Altogether, our analysis provides important tracks for extracting meaningful information from multiple sequence alignments of conserved binding partners and for discriminating near-native interfaces using evolutionary information. PMID:22952442
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Persson, Ingemar; Nilsson, Daniel
A high mobility of 2250 cm{sup 2}/V·s of a two-dimensional electron gas (2DEG) in a metalorganic chemical vapor deposition-grown AlGaN/GaN heterostructure was demonstrated. The mobility enhancement was a result of better electron confinement due to a sharp AlGaN/GaN interface, as confirmed by scanning transmission electron microscopy analysis, not owing to the formation of a traditional thin AlN exclusion layer. Moreover, we found that the electron mobility in the sharp-interface heterostructures can sustain above 2000 cm{sup 2}/V·s for a wide range of 2DEG densities. Finally, it is promising that the sharp-interface AlGaN/GaN heterostructure would enable low contact resistance fabrication, less impurity-related scattering, andmore » trapping than the AlGaN/AlN/GaN heterostructure, as the high-impurity-contained AlN is removed.« less
Reilly, T.E.; Frimpter, M.H.; LeBlanc, D.R.; Goodman, A.S.
1987-01-01
Sharp interface methods have been used successfully to describe the physics of upconing. A finite-element model is developed to simulate a sharp interface for determination of the steady-state position of the interface and maximum permissible well discharges. The model developed is compared to previous published electric-analog model results of Bennett and others (1968). -from Authors
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; White, Susan; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff
2016-11-01
Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the upper airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The ultimate goal of this research is the development of a versatile numerical tool for simulation of air-tissue interactions in the patient specific upper airway geometry. This tool is expected to capture several phenomena, including flow-induced vibration (snoring) and large deformations during airway collapse of the complex airway geometry in respiratory flow conditions. Here, we present our ongoing progress toward this goal. To avoid mesh regeneration, for flow model, a sharp-interface embedded boundary method is used on Cartesian grids for resolving the fluid-structure interface, while for the structural model, a cut-cell finite element method is used. Also, to properly resolve large displacements, non-linear elasticity model is used. The fluid and structure solvers are connected with the strongly coupled iterative algorithm. The parallel computation is achieved with the numerical library PETSc. Some two- and three- dimensional preliminary results are shown to demonstrate the ability of this tool.
Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change
NASA Astrophysics Data System (ADS)
Anumolu, C. R. Lakshman; Trujillo, Mario F.
2016-11-01
A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.
Essaid, Hedeff I.
1990-01-01
A quasi three-dimensional, finite difference model, that simulates freshwater and saltwater flow separated by a sharp interface, has been developed to study layered coastal aquifer systems. The model allows for regional simulation of coastal groundwater conditions, including the effects of saltwater dynamics on the freshwater system. Vertically integrated freshwater and saltwater flow equations incorporating the interface boundary condition are solved within each aquifer. Leakage through confining layers is calculated by Darcy's law, accounting for density differences across the layer. The locations of the interface tip and toe, within grid blocks, are tracked by linearly extrapolating the position of the interface. The model has been verified using available analytical solutions and experimental results. Application of the model to the Soquel-Aptos basin, Santa Cruz County, California, illustrates the use of the quasi three-dimensional, sharp interface approach for the examination of freshwater-saltwater dynamics in regional systems. Simulation suggests that the interface, today, is still responding to long-term Pleistocene sea level fluctuations and has not achieved equilibrium with present day sea level conditions.
Cosentino, S; Mio, A M; Barbagiovanni, E G; Raciti, R; Bahariqushchi, R; Miritello, M; Nicotra, G; Aydinli, A; Spinella, C; Terrasi, A; Mirabella, S
2015-07-14
Quantum confinement (QC) typically assumes a sharp interface between a nanostructure and its environment, leading to an abrupt change in the potential for confined electrons and holes. When the interface is not ideally sharp and clean, significant deviations from the QC rule appear and other parameters beyond the nanostructure size play a considerable role. In this work we elucidate the role of the interface on QC in Ge quantum dots (QDs) synthesized by rf-magnetron sputtering or plasma enhanced chemical vapor deposition (PECVD). Through a detailed electron energy loss spectroscopy (EELS) analysis we investigated the structural and chemical properties of QD interfaces. PECVD QDs exhibit a sharper interface compared to sputter ones, which also evidences a larger contribution of mixed Ge-oxide states. Such a difference strongly modifies the QC strength, as experimentally verified by light absorption spectroscopy. A large size-tuning of the optical bandgap and an increase in the oscillator strength occur when the interface is sharp. A spatially dependent effective mass (SPDEM) model is employed to account for the interface difference between Ge QDs, pointing out a larger reduction in the exciton effective mass in the sharper interface case. These results add new insights into the role of interfaces on confined systems, and open the route for reliable exploitation of QC effects.
Seo, Jung Hee; Mittal, Rajat
2010-01-01
A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de
The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less
Towards a sharp-interface volume-of-fluid methodology for modeling evaporation
NASA Astrophysics Data System (ADS)
Pathak, Ashish; Raessi, Mehdi
2017-11-01
In modeling evaporation, the diffuse-interface (one-domain) formulation yields inaccurate results. Recent efforts approaching the problem via a sharp-interface (two-domain) formulation have shown significant improvements. The reasons behind their better performance are discussed in the present work. All available sharp-interface methods, however, exclusively employ the level-set. In the present work, we develop a sharp-interface evaporation model in a volume-of-fluid (VOF) framework in order to leverage its mass-conserving property as well as its ability to handle large topographical changes. We start with a critical review of the assumptions underlying the mathematical equations governing evaporation. For example, it is shown that the assumption of incompressibility can only be applied in special circumstances. The famous D2 law used for benchmarking is valid exclusively to steady-state test problems. Transient is present over significant lifetime of a micron-size droplet. Therefore, a 1D spherical fully transient model is developed to provide a benchmark transient solution. Finally, a 3D Cartesian Navier-Stokes evaporation solver is developed. Some preliminary validation test-cases are presented for static and moving drop evaporation. This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy and the Department of Defense, Tank and Automotive Research, Development, and Engineering Center, under Award Number DEEE0007292.
Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis
2013-01-01
We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position. PMID:23833331
A Rigorous Sharp Interface Limit of a Diffuse Interface Model Related to Tumor Growth
NASA Astrophysics Data System (ADS)
Rocca, Elisabetta; Scala, Riccardo
2017-06-01
In this paper, we study the rigorous sharp interface limit of a diffuse interface model related to the dynamics of tumor growth, when a parameter ɛ, representing the interface thickness between the tumorous and non-tumorous cells, tends to zero. More in particular, we analyze here a gradient-flow-type model arising from a modification of the recently introduced model for tumor growth dynamics in Hawkins-Daruud et al. (Int J Numer Math Biomed Eng 28:3-24, 2011) (cf. also Hilhorst et al. Math Models Methods Appl Sci 25:1011-1043, 2015). Exploiting the techniques related to both gradient flows and gamma convergence, we recover a condition on the interface Γ relating the chemical and double-well potentials, the mean curvature, and the normal velocity.
Knowledge Base Editor (SharpKBE)
NASA Technical Reports Server (NTRS)
Tikidjian, Raffi; James, Mark; Mackey, Ryan
2007-01-01
The SharpKBE software provides a graphical user interface environment for domain experts to build and manage knowledge base systems. Knowledge bases can be exported/translated to various target languages automatically, including customizable target languages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de
In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less
Enhancements to the SHARP Build System and NEK5000 Coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaskey, Alex; Bennett, Andrew R.; Billings, Jay Jay
The SHARP project for the Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program provides a multiphysics framework for coupled simulations of advanced nuclear reactor designs. It provides an overall coupling environment that utilizes custom interfaces to couple existing physics codes through a common spatial decomposition and unique solution transfer component. As of this writing, SHARP couples neutronics, thermal hydraulics, and structural mechanics using PROTEUS, Nek5000, and Diablo respectively. This report details two primary SHARP improvements regarding the Nek5000 and Diablo individual physics codes: (1) an improved Nek5000 coupling interface that lets SHARP achieve a vast increase inmore » overall solution accuracy by manipulating the structure of the internal Nek5000 spatial mesh, and (2) the capability to seamlessly couple structural mechanics calculations into the framework through improvements to the SHARP build system. The Nek5000 coupling interface now uses a barycentric Lagrange interpolation method that takes the vertex-based power and density computed from the PROTEUS neutronics solver and maps it to the user-specified, general-order Nek5000 spectral element mesh. Before this work, SHARP handled this vertex-based solution transfer in an averaging-based manner. SHARP users can now achieve higher levels of accuracy by specifying any arbitrary Nek5000 spectral mesh order. This improvement takes the average percentage error between the PROTEUS power solution and the Nek5000 interpolated result down drastically from over 23 % to just above 2 %, and maintains the correct power profile. We have integrated Diablo into the SHARP build system to facilitate the future coupling of structural mechanics calculations into SHARP. Previously, simulations involving Diablo were done in an iterative manner, requiring a large amount manual work, and left only as a task for advanced users. This report will detail a new Diablo build system that was implemented using GNU Autotools, mirroring much of the current SHARP build system, and easing the use of structural mechanics calculations for end-users of the SHARP multiphysics framework. It lets users easily build and use Diablo as a stand-alone simulation, as well as fully couple with the other SHARP physics modules. The top-level SHARP build system was modified to allow Diablo to hook in directly. New dependency handlers were implemented to let SHARP users easily build the framework with these new simulation capabilities. The remainder of this report will describe this work in full, with a detailed discussion of the overall design philosophy of SHARP, the new solution interpolation method introduced, and the Diablo integration work. We will conclude with a discussion of possible future SHARP improvements that will serve to increase solution accuracy and framework capability.« less
DTK C/Fortran Interface Development for NEAMS FSI Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slattery, Stuart R.; Lebrun-Grandie, Damien T.
This report documents the development of DataTransferKit (DTK) C and Fortran interfaces for fluid-structure-interaction (FSI) simulations in NEAMS. In these simulations, the codes Nek5000 and Diablo are being coupled within the SHARP framework to study flow-induced vibration (FIV) in reactor steam generators. We will review the current Nek5000/Diablo coupling algorithm in SHARP and the current state of the solution transfer scheme used in this implementation. We will then present existing DTK algorithms which may be used instead to provide an improvement in both flexibility and scalability of the current SHARP implementation. We will show how these can be used withinmore » the current FSI scheme using a new set of interfaces to the algorithms developed by this work. These new interfaces currently expose the mesh-free solution transfer algorithms in DTK, a C++ library, and are written in C and Fortran to enable coupling of both Nek5000 and Diablo in their native Fortran language. They have been compiled and tested on Cooley, the test-bed machine for Mira at ALCF.« less
A Hele-Shaw-Cahn-Hilliard Model for Incompressible Two-Phase Flows with Different Densities
NASA Astrophysics Data System (ADS)
Dedè, Luca; Garcke, Harald; Lam, Kei Fong
2017-07-01
Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn-Hilliard-Navier-Stokes model introduced by Abels et al. (Math Models Methods Appl Sci 22(3):1150013, 2012), which uses a volume-averaged velocity, we derive a diffuse interface model in a Hele-Shaw geometry, which in the case of non-matched densities, simplifies an earlier model of Lee et al. (Phys Fluids 14(2):514-545, 2002). We recover the classical Hele-Shaw model as a sharp interface limit of the diffuse interface model. Furthermore, we show the existence of weak solutions and present several numerical computations including situations with rising bubbles and fingering instabilities.
Sharp chemical interface in epitaxial Fe{sub 3}O{sub 4} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gálvez, S.; Rubio-Zuazo, J., E-mail: rubio@esrf.fr; Salas-Colera, E.
Chemically sharp interface was obtained on single phase single oriented Fe{sub 3}O{sub 4} (001) thin film (7 nm) grown on NiO (001) substrate using oxygen assisted molecular beam epitaxy. Refinement of the atomic structure, stoichiometry, and oxygen vacancies were determined by soft and hard x-ray photoelectron spectroscopy, low energy electron diffraction and synchrotron based X-ray reflectivity, and X-ray diffraction. Our results demonstrate an epitaxial growth of the magnetite layer, perfect iron stoichiometry, absence of oxygen vacancies, and the existence of an intermixing free interface. Consistent magnetic and electrical characterizations are also shown.
Direct handling of sharp interfacial energy for microstructural evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence
In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.
Direct handling of sharp interfacial energy for microstructural evolution
Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence; ...
2014-08-24
In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.
NASA Astrophysics Data System (ADS)
Tůma, K.; Stupkiewicz, S.; Petryk, H.
2016-10-01
A finite-strain phase field model for martensitic phase transformation and twinning in shape memory alloys is developed and confronted with the corresponding sharp-interface approach extended to interfacial energy effects. The model is set in the energy framework so that the kinetic equations and conditions of mechanical equilibrium are fully defined by specifying the free energy and dissipation potentials. The free energy density involves the bulk and interfacial energy contributions, the latter describing the energy of diffuse interfaces in a manner typical for phase-field approaches. To ensure volume preservation during martensite reorientation at finite deformation within a diffuse interface, it is proposed to apply linear mixing of the logarithmic transformation strains. The physically different nature of phase interfaces and twin boundaries in the martensitic phase is reflected by introducing two order-parameters in a hierarchical manner, one as the reference volume fraction of austenite, and thus of the whole martensite, and the second as the volume fraction of one variant of martensite in the martensitic phase only. The microstructure evolution problem is given a variational formulation in terms of incremental fields of displacement and order parameters, with unilateral constraints on volume fractions explicitly enforced by applying the augmented Lagrangian method. As an application, size-dependent microstructures with diffuse interfaces are calculated for the cubic-to-orthorhombic transformation in a CuAlNi shape memory alloy and compared with the sharp-interface microstructures with interfacial energy effects.
DLR MiroSurge: a versatile system for research in endoscopic telesurgery.
Hagn, Ulrich; Konietschke, R; Tobergte, A; Nickl, M; Jörg, S; Kübler, B; Passig, G; Gröger, M; Fröhlich, F; Seibold, U; Le-Tien, L; Albu-Schäffer, A; Nothhelfer, A; Hacker, F; Grebenstein, M; Hirzinger, G
2010-03-01
Research on surgical robotics demands systems for evaluating scientific approaches. Such systems can be divided into dedicated and versatile systems. Dedicated systems are designed for a single surgical task or technique, whereas versatile systems are designed to be expandable and useful in multiple surgical applications. Versatile systems are often based on industrial robots, though, and because of this, are hardly suitable for close contact with humans. To achieve a high degree of versatility the Miro robotic surgery platform (MRSP) consists of versatile components, dedicated front-ends towards surgery and configurable interfaces for the surgeon. This paper presents MiroSurge, a configuration of the MRSP that allows for bimanual endoscopic telesurgery with force feedback. While the components of the MiroSurge system are shown to fulfil the rigid design requirements for robotic telesurgery with force feedback, the system remains versatile, which is supposed to be a key issue for the further development and optimisation.
Epitaxial ferromagnetic oxide thin films on silicon with atomically sharp interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coux, P. de; CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse Cedex 4; Bachelet, R.
A bottleneck in the integration of functional oxides with silicon, either directly grown or using a buffer, is the usual formation of an amorphous interfacial layer. Here, we demonstrate that ferromagnetic CoFe{sub 2}O{sub 4} films can be grown epitaxially on Si(111) using a Y{sub 2}O{sub 3} buffer layer, and remarkably the Y{sub 2}O{sub 3}/Si(111) interface is stable and remains atomically sharp. CoFe{sub 2}O{sub 4} films present high crystal quality and high saturation magnetization.
Robb, Paul D; Finnie, Michael; Craven, Alan J
2012-07-01
High angle annular dark field (HAADF) image simulations were performed on a series of AlAs/GaAs interfacial models using the frozen-phonon multislice method. Three general types of models were considered-perfect, vicinal/sawtooth and diffusion. These were chosen to demonstrate how HAADF image measurements are influenced by different interfacial structures in the technologically important III-V semiconductor system. For each model, interfacial sharpness was calculated as a function of depth and compared to aberration-corrected HAADF experiments of two types of AlAs/GaAs interfaces. The results show that the sharpness measured from HAADF imaging changes in a complicated manner with thickness for complex interfacial structures. For vicinal structures, it was revealed that the type of material that the probe projects through first of all has a significant effect on the measured sharpness. An increase in the vicinal angle was also shown to generate a wider interface in the random step model. The Moison diffusion model produced an increase in the interface width with depth which closely matched the experimental results of the AlAs-on-GaAs interface. In contrast, the interface width decreased as a function of depth in the linear diffusion model. Only in the case of the perfect model was it possible to ascertain the underlying structure directly from HAADF image analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
Klein tunneling in the α -T3 model
NASA Astrophysics Data System (ADS)
Illes, E.; Nicol, E. J.
2017-06-01
We investigate Klein tunneling for the α -T3 model, which interpolates between graphene and the dice lattice via parameter α . We study transmission across two types of electrostatic interfaces: sharp potential steps and sharp potential barriers. We find both interfaces to be perfectly transparent for normal incidence for the full range of the parameter α for both interfaces. For other angles of incidence, we find that transmission is enhanced with increasing α . For the dice lattice, we find perfect, all-angle transmission across a potential step for incoming electrons with energy equal to half of the height of the potential step. This is analogous to the "super", all-angle transmission reported for the dice lattice for Klein tunneling across a potential barrier.
Shittu, O B; Sotunmbi, P T
2015-06-01
Urethroplasty is often required for long urethral strictures or urethral strictures that have recurred after repeated urethral dilatations or urethrotomy. The transvers penile skin pedicled flap is very versatile for the reconstruction of long urethral stricture. However the meticulous sharp dissection required to develop it takes a long time to do and may be associated with button hole injuries to the vascular pedicle and the penile skin. We describe a simplified technique of raising the flap which does not require sharp dissection and is very quick to accomplish. Technique involves using a circumcising distal penile shaft skin incision to de-glove the penis by blunt dissection. The skin substitute, adequate to give appropriate urethra calibre is similarly dissected bluntly along with its vascular pedicle from the proximal penile skin. The techniques used to facilitate successful blunt dissection are described. In 9 adults with long, multiple urethral strictures, the average time to develop the flap was 15 minutes and complication have been limited to temporary urethro-cutaneous fistula at the ventral part of the circular skin closure. These fistulae closed on conservative treatment. No patient suffered button-hole injuries to either the vascular pedicle or the penile skin. This modification to the standard sharp dissection is very quick to accomplish. It also avoids the creation of button-hole injuries to either the vascular pedicle or the penile skin. It should make the use of this versatile flap more attractive in the reconstruction of long urethral strictures in those who may wish to use this option for reconstruction of long urethral strictures.
Moving graphene devices from lab to market: advanced graphene-coated nanoprobes
NASA Astrophysics Data System (ADS)
Hui, Fei; Vajha, Pujashree; Shi, Yuanyuan; Ji, Yanfeng; Duan, Huiling; Padovani, Andrea; Larcher, Luca; Li, Xiao Rong; Xu, Jing Juan; Lanza, Mario
2016-04-01
After more than a decade working with graphene there is still a preoccupying lack of commercial devices based on this wonder material. Here we report the use of high-quality solution-processed graphene sheets to fabricate ultra-sharp probes with superior performance. Nanoprobes are versatile tools used in many fields of science, but they can wear fast after some experiments, reducing the quality and increasing the cost of the research. As the market of nanoprobes is huge, providing a solution for this problem should be a priority for the nanotechnology industry. Our graphene-coated nanoprobes not only show enhanced lifetime, but also additional unique properties of graphene, such as hydrophobicity. Moreover, we have functionalized the surface of graphene to provide piezoelectric capability, and have fabricated a nano relay. The simplicity and low cost of this method, which can be used to coat any kind of sharp tip, make it suitable for the industry, allowing production on demand.After more than a decade working with graphene there is still a preoccupying lack of commercial devices based on this wonder material. Here we report the use of high-quality solution-processed graphene sheets to fabricate ultra-sharp probes with superior performance. Nanoprobes are versatile tools used in many fields of science, but they can wear fast after some experiments, reducing the quality and increasing the cost of the research. As the market of nanoprobes is huge, providing a solution for this problem should be a priority for the nanotechnology industry. Our graphene-coated nanoprobes not only show enhanced lifetime, but also additional unique properties of graphene, such as hydrophobicity. Moreover, we have functionalized the surface of graphene to provide piezoelectric capability, and have fabricated a nano relay. The simplicity and low cost of this method, which can be used to coat any kind of sharp tip, make it suitable for the industry, allowing production on demand. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06235g
Versatile clinical information system design for emergency departments.
Amouh, Teh; Gemo, Monica; Macq, Benoît; Vanderdonckt, Jean; El Gariani, Abdul Wahed; Reynaert, Marc S; Stamatakis, Lambert; Thys, Frédéric
2005-06-01
Compared to other hospital units, the emergency department presents some distinguishing characteristics of its own. Emergency health-care delivery is a collaborative process involving the contribution of several individuals who accomplish their tasks while working autonomously under pressure and sometimes with limited resources. Effective computerization of the emergency department information system presents a real challenge due to the complexity of the scenario. Current computerized support suffers from several problems, including inadequate data models, clumsy user interfaces, and poor integration with other clinical information systems. To tackle such complexity, we propose an approach combining three points of view, namely the transactions (in and out of the department), the (mono and multi) user interfaces and data management. Unlike current systems, we pay particular attention to the user-friendliness and versatility of our system. This means that intuitive user interfaces have been conceived and specific software modeling methodologies have been applied to provide our system with the flexibility and adaptability necessary for the individual and group coordinated tasks. Our approach has been implemented by prototyping a web-based, multiplatform, multiuser, and versatile clinical information system built upon multitier software architecture, using the Java programming language.
NASA Astrophysics Data System (ADS)
Tóth, Gábor; Keppens, Rony
2012-07-01
The Versatile Advection Code (VAC) is a freely available general hydrodynamic and magnetohydrodynamic simulation software that works in 1, 2 or 3 dimensions on Cartesian and logically Cartesian grids. VAC runs on any Unix/Linux system with a Fortran 90 (or 77) compiler and Perl interpreter. VAC can run on parallel machines using either the Message Passing Interface (MPI) library or a High Performance Fortran (HPF) compiler.
Organic antireflective coatings for 193-nm lithography
NASA Astrophysics Data System (ADS)
Trefonas, Peter, III; Blacksmith, Robert F.; Szmanda, Charles R.; Kavanagh, Robert J.; Adams, Timothy G.; Taylor, Gary N.; Coley, Suzanne; Pohlers, Gerd
1999-06-01
Organic anti-reflective coatings (ARCs) continue to play an important role in semiconductor manufacturing. These materials provide a convenient means of greatly reducing the resist photospeed swing and reflective notching. In this paper, we describe a novel class of ARC materials optimized for lithographic applications using 193 nm exposure tools. These ARCs are based upon polymers containing hydroxyl-alkyl methacrylate monomers for crosslinkable sites, styrene for a chromophore at 193 nm, and additional alkyl-methacrylate monomers as property modifiers. A glycouril crosslinker and a thermally-activated acidic catalyst provide a route to forming an impervious crosslinked film activate data high bake temperatures. ARC compositions can be adjusted to optimize the film's real and imaginary refractive indices. Selection of optimal target indices for 193 nm lithographic processing through simulations is described. Potential chromophores for 193 nm were explored using ZNDO modeling. We show how these theoretical studies were combined with material selection criteria to yield a versatile organic anti-reflectant film, Shipley 193 G0 ARC. Lithographic process data indicates the materials is capable of supporting high resolution patterning, with the line features displaying a sharp resist/ARC interface with low line edge roughness. The resist Eo swing is successfully reduced from 43 percent to 6 percent.
On the stress calculation within phase-field approaches: a model for finite deformations
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schwab, Felix; Schoof, Ephraim; Reiter, Andreas; Herrmann, Christoph; Selzer, Michael; Böhlke, Thomas; Nestler, Britta
2017-08-01
Numerical simulations based on phase-field methods are indispensable in order to investigate interesting and important phenomena in the evolution of microstructures. Microscopic phase transitions are highly affected by mechanical driving forces and therefore the accurate calculation of the stresses in the transition region is essential. We present a method for stress calculations within the phase-field framework, which satisfies the mechanical jump conditions corresponding to sharp interfaces, although the sharp interface is represented as a volumetric region using the phase-field approach. This model is formulated for finite deformations, is independent of constitutive laws, and allows using any type of phase inherent inelastic strains.
Update 0.2 to "pysimm: A python package for simulation of molecular systems"
NASA Astrophysics Data System (ADS)
Demidov, Alexander G.; Fortunato, Michael E.; Colina, Coray M.
2018-01-01
An update to the pysimm Python molecular simulation API is presented. A major part of the update is the implementation of a new interface with CASSANDRA - a modern, versatile Monte Carlo molecular simulation program. Several significant improvements in the LAMMPS communication module that allow better and more versatile simulation setup are reported as well. An example of an application implementing iterative CASSANDRA-LAMMPS interaction is illustrated.
NASA Astrophysics Data System (ADS)
Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan
2017-02-01
We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.
Surfactant-Mediated Growth of Ge/Si(001) Interface Studied by XPD
NASA Astrophysics Data System (ADS)
Gunnella, R.; Castrucci, P.; Pinto, N.; Cucculelli, P.; Davoli, I.; Sébilleau, D.; de Crescenzi, M.
The influence of Sb as a surfactant on the formation of Si/Ge interface is studied by means of XPD (X-ray photoelectron diffraction) and AED (Auger electron diffraction) from Ge and Si core levels. The technique employed is particularly suitable for checking the film tetragonal distortion, the growth morphology and the sharpness of the interface. We found a layer by layer growth mode for 3 ML of Ge on Si(001) and related values of strain of the film close to the value predicted by the elastic theory which enforces the use of such a surfactant to obtain high quality and sharp heterostructures. In addition, studying the influence of 3 ML of the Si cap layer on the 3 ML Ge, we obtain no indication of Ge segregation into the Si cap layer. Finally, evidences of quality degradation after high temperature (T > 600°C) annealing are shown.
NASA Astrophysics Data System (ADS)
Singh, Anil Kumar; Gupta, Anjan K.
2018-05-01
Evolution of electronic inhomogeneities with back-gate voltage in graphene on SiO2 was studied using room temperature scanning tunneling microscopy and spectroscopy. Reversal of contrast in some places in the conductance maps and sharp changes in cross correlations between topographic and conductance maps, when graphene Fermi energy approaches its Dirac point, are attributed to the change in charge state of interface defects. The spatial correlations in the conductance maps, described by two length scales, and their growth during approach to Dirac point, show a qualitative agreement with the predictions of the screening theory of graphene. Thus a sharp change in the two length scales close to the Dirac point, seen in our experiments, is interpreted in terms of the change in charge state of some of the interface defects. A systematic understanding and control of the charge state of defects can help in memory applications of graphene.
Experimental study of an isochorically heated heterogeneous interface. A progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Juan Carlos
2015-08-20
Outline of the presentation: Studying possible mix / interface motion between heterogeneous low/high Z interfaces driven by 2-fluid or kinetic plasma effects (Heated to few eV, Sharp (sub µm) interface); Isochoric heating to initialize interface done with Al quasimonoenergetic ion beams on Trident; Have measured isochoric heating in individual materials intended for compound targets; Fielded experiments on Trident to measure interface motion (Gold-diamond, tin-aluminium); Measured heated-sample temperature with streaked optical pyrometry (SOP) (UT Austin led (research contract), SOP tests → heating uniformity Vs thickness on Al foils. Results are being analyzed.
Diffuse-Interface Methods in Fluid Mechanics
NASA Technical Reports Server (NTRS)
Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.
1997-01-01
The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.
A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows
NASA Astrophysics Data System (ADS)
Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.
2017-09-01
A Cartesian grid-based sharp interface method is presented for viscous simulations of shocked particle-laden flows. The moving solid-fluid interfaces are represented using level sets. A moving least-squares reconstruction is developed to apply the no-slip boundary condition at solid-fluid interfaces and to supply viscous stresses to the fluid. The algorithms developed in this paper are benchmarked against similarity solutions for the boundary layer over a fixed flat plate and against numerical solutions for moving interface problems such as shock-induced lift-off of a cylinder in a channel. The framework is extended to 3D and applied to calculate low Reynolds number steady supersonic flow over a sphere. Viscous simulation of the interaction of a particle cloud with an incident planar shock is demonstrated; the average drag on the particles and the vorticity field in the cloud are compared to the inviscid case to elucidate the effects of viscosity on momentum transfer between the particle and fluid phases. The methods developed will be useful for obtaining accurate momentum and heat transfer closure models for macro-scale shocked particulate flow applications such as blast waves and dust explosions.
A computational method for sharp interface advection.
Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje
2016-11-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face-interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM ® extension and is published as open source.
Sharp Interface Tracking in Rotating Microflows of Solvent Extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glimm, James; Almeida, Valmor de; Jiao, Xiangmin
2013-01-08
The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters andmore » insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite critical tension in cavitating liquids« less
Dominici, Nadia; Keller, Urs; Vallery, Heike; Friedli, Lucia; van den Brand, Rubia; Starkey, Michelle L; Musienko, Pavel; Riener, Robert; Courtine, Grégoire
2012-07-01
Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and balance independently during natural walking behaviors in rats. In evaluation mode, the robotic interface affords detailed assessments of pattern generation and dynamic equilibrium after spinal cord injury (SCI) and stroke. In enabling mode,the robot acts as a propulsive or postural neuroprosthesis that instantly promotes unexpected locomotor capacities including overground walking after complete SCI, stair climbing following partial SCI and precise paw placement shortly after stroke. In training mode, robot-enabled rehabilitation, epidural electrical stimulation and monoamine agonists reestablish weight-supported locomotion, coordinated steering and balance in rats with a paralyzing SCI. This new robotic technology and associated concepts have broad implications for both assessing and restoring motor functions after CNS disorders, both in animals and in humans.
Philosophical Challenges for Researchers at the Interface between Neuroscience and Education
ERIC Educational Resources Information Center
Howard-Jones, Paul
2008-01-01
This article examines how discussions around the new interdisciplinary research area combining neuroscience and education have brought into sharp relief differences in the philosophies of learning in these two areas. It considers the difficulties faced by those working at the interface between these two areas and, in particular, it focuses on the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grote, D. P.
Forthon generates links between Fortran and Python. Python is a high level, object oriented, interactive and scripting language that allows a flexible and versatile interface to computational tools. The Forthon package generates the necessary wrapping code which allows access to the Fortran database and to the Fortran subroutines and functions. This provides a development package where the computationally intensive parts of a code can be written in efficient Fortran, and the high level controlling code can be written in the much more versatile Python language.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fakhari, Abbas, E-mail: afakhari@nd.edu; Geier, Martin; Lee, Taehun
2016-06-15
A mass-conserving lattice Boltzmann method (LBM) for multiphase flows is presented in this paper. The proposed LBM improves a previous model (Lee and Liu, 2010 [21]) in terms of mass conservation, speed-up, and efficiency, and also extends its capabilities for implementation on non-uniform grids. The presented model consists of a phase-field lattice Boltzmann equation (LBE) for tracking the interface between different fluids and a pressure-evolution LBM for recovering the hydrodynamic properties. In addition to the mass conservation property and the simplicity of the algorithm, the advantages of the current phase-field LBE are that it is an order of magnitude fastermore » than the previous interface tracking LBE proposed by Lee and Liu (2010) [21] and it requires less memory resources for data storage. Meanwhile, the pressure-evolution LBM is equipped with a multi-relaxation-time (MRT) collision operator to facilitate attainability of small relaxation rates thereby allowing simulation of multiphase flows at higher Reynolds numbers. Additionally, we reformulate the presented MRT-LBM on nonuniform grids within an adaptive mesh refinement (AMR) framework. Various benchmark studies such as a rising bubble and a falling drop under buoyancy, droplet splashing on a wet surface, and droplet coalescence onto a fluid interface are conducted to examine the accuracy and versatility of the proposed AMR-LBM. The proposed model is further validated by comparing the results with other LB models on uniform grids. A factor of about 20 in savings of computational resources is achieved by using the proposed AMR-LBM. As a more demanding application, the Kelvin–Helmholtz instability (KHI) of a shear-layer flow is investigated for both density-matched and density-stratified binary fluids. The KHI results of the density-matched fluids are shown to be in good agreement with the benchmark AMR results based on the sharp-interface approach. When a density contrast between the two fluids exists, a typical chaotic structure in the flow field is observed at a Reynolds number of 10000, which indicates that the proposed model is a promising tool for direct numerical simulation of two-phase flows.« less
Versatile and declarative dynamic programming using pair algebras.
Steffen, Peter; Giegerich, Robert
2005-09-12
Dynamic programming is a widely used programming technique in bioinformatics. In sharp contrast to the simplicity of textbook examples, implementing a dynamic programming algorithm for a novel and non-trivial application is a tedious and error prone task. The algebraic dynamic programming approach seeks to alleviate this situation by clearly separating the dynamic programming recurrences and scoring schemes. Based on this programming style, we introduce a generic product operation of scoring schemes. This leads to a remarkable variety of applications, allowing us to achieve optimizations under multiple objective functions, alternative solutions and backtracing, holistic search space analysis, ambiguity checking, and more, without additional programming effort. We demonstrate the method on several applications for RNA secondary structure prediction. The product operation as introduced here adds a significant amount of flexibility to dynamic programming. It provides a versatile testbed for the development of new algorithmic ideas, which can immediately be put to practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartels, Ludwig; Ernst, Karl-Heinz; Gao, Hong-Jun
Supramolecular self-assembly at surfaces is one of the most exciting and active fields in Surface Science today. Applications can take advantage of two key properties: (i) versatile pattern formation over a broad length scale and (ii) tunability of electronic structure and transport properties, as well as frontier orbital alignment. It provides a new frontier for Chemical Physics as it uniquely combines the versatility of Organic Synthesis and the Physics of Interfaces. The Journal of Chemical Physics is pleased to publish this Special Topic Issue, showcasing recent advances and new directions.
Scalar conservation and boundedness in simulations of compressible flow
NASA Astrophysics Data System (ADS)
Subbareddy, Pramod K.; Kartha, Anand; Candler, Graham V.
2017-11-01
With the proper combination of high-order, low-dissipation numerical methods, physics-based subgrid-scale models, and boundary conditions it is becoming possible to simulate many combustion flows at relevant conditions. However, non-premixed flows are a particular challenge because the thickness of the fuel/oxidizer interface scales inversely with Reynolds number. Sharp interfaces can also be present in the initial or boundary conditions. When higher-order numerical methods are used, there are often aphysical undershoots and overshoots in the scalar variables (e.g. passive scalars, species mass fractions or progress variable). These numerical issues are especially prominent when low-dissipation methods are used, since sharp jumps in flow variables are not always coincident with regions of strong variation in the scalar fields: consequently, special detection mechanisms and dissipative fluxes are needed. Most numerical methods diffuse the interface, resulting in artificial mixing and spurious reactions. In this paper, we propose a numerical method that mitigates this issue. We present methods for passive and active scalars, and demonstrate their effectiveness with several examples.
Direct numerical simulation of incompressible multiphase flow with phase change
NASA Astrophysics Data System (ADS)
Lee, Moon Soo; Riaz, Amir; Aute, Vikrant
2017-09-01
Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subbareddy, Pramod K.; Kartha, Anand; Candler, Graham V.
With the proper combination of high-order, low-dissipation numerical methods, physics-based subgrid-scale models, and boundary conditions it is becoming possible to simulate many combustion flows at relevant conditions. However, non-premixed flows are a particular challenge because the thickness of the fuel/oxidizer interface scales inversely with Reynolds number. Sharp interfaces can also be present in the initial or boundary conditions. When higher-order numerical methods are used, there are often aphysical undershoots and overshoots in the scalar variables (e.g.passive scalars, species mass fractions or progress variable). These numerical issues are especially prominent when low-dissipation methods are used, since sharp jumps in flow variablesmore » are not always coincident with regions of strong variation in the scalar fields: consequently, special detection mechanisms and dissipative fluxes are needed. Most numerical methods diffuse the interface, resulting in artificial mixing and spurious reactions. In this paper, we propose a numerical method that mitigates this issue. As a result, we present methods for passive and active scalars, and demonstrate their effectiveness with several examples.« less
NASA Astrophysics Data System (ADS)
Kim, Jisung; Kim, Saehan; Lee, Keekeun
2017-06-01
For the first time, a wireless and chipless neuron stimulator was developed by utilizing a surface acoustic wave (SAW) delay line, a diode-capacitor interface, a sharp metal tip, and antennas for the stimulation of neurons in the brain. The SAW delay line supersedes presently existing complex wireless transmission systems composed of a few thousands of transistors, enabling the fabrication of wireless and chipless transceiver systems. The diode-capacitor interface was used to convert AC signals to DC signals and induce stimulus pulses at a sharp metal probe. A 400 MHz RF energy was wirelessly radiated from antennas and then stimulation pulses were observed at a sharp gold probe. A ˜5 m reading distance was obtained using a 1 mW power from a network analyzer. The cycles of electromagnetic (EM) radiation from an antenna were controlled by shielding the antenna with an EM absorber. Stimulation pulses with different amplitudes and durations were successfully observed at the probe. The obtained pulses were ˜0.08 mV in amplitude and 3-10 Hz in frequency. Coupling-of-mode (COM) and SPICE modeling simulations were also used to determine the optimal structural parameters for SAW delay line and the values of passive elements. On the basis of the extracted parameters, the entire system was experimentally implemented and characterized.
A computational method for sharp interface advection
Bredmose, Henrik; Jasak, Hrvoje
2016-01-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face–interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM® extension and is published as open source. PMID:28018619
Edge Sharpness Assessment by Parametric Modeling: Application to Magnetic Resonance Imaging.
Ahmad, R; Ding, Y; Simonetti, O P
2015-05-01
In biomedical imaging, edge sharpness is an important yet often overlooked image quality metric. In this work, a semi-automatic method to quantify edge sharpness in the presence of significant noise is presented with application to magnetic resonance imaging (MRI). The method is based on parametric modeling of image edges. First, an edge map is automatically generated and one or more edges-of-interest (EOI) are manually selected using graphical user interface. Multiple exclusion criteria are then enforced to eliminate edge pixels that are potentially not suitable for sharpness assessment. Second, at each pixel of the EOI, an image intensity profile is read along a small line segment that runs locally normal to the EOI. Third, the profiles corresponding to all EOI pixels are individually fitted with a sigmoid function characterized by four parameters, including one that represents edge sharpness. Last, the distribution of the sharpness parameter is used to quantify edge sharpness. For validation, the method is applied to simulated data as well as MRI data from both phantom imaging and cine imaging experiments. This method allows for fast, quantitative evaluation of edge sharpness even in images with poor signal-to-noise ratio. Although the utility of this method is demonstrated for MRI, it can be adapted for other medical imaging applications.
S-HARP: A parallel dynamic spectral partitioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, A.; Simon, H.
1998-01-01
Computational science problems with adaptive meshes involve dynamic load balancing when implemented on parallel machines. This dynamic load balancing requires fast partitioning of computational meshes at run time. The authors present in this report a fast parallel dynamic partitioner, called S-HARP. The underlying principles of S-HARP are the fast feature of inertial partitioning and the quality feature of spectral partitioning. S-HARP partitions a graph from scratch, requiring no partition information from previous iterations. Two types of parallelism have been exploited in S-HARP, fine grain loop level parallelism and coarse grain recursive parallelism. The parallel partitioner has been implemented in Messagemore » Passing Interface on Cray T3E and IBM SP2 for portability. Experimental results indicate that S-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.2 seconds on a 64 processor Cray T3E. S-HARP is much more scalable than other dynamic partitioners, giving over 15 fold speedup on 64 processors while ParaMeTiS1.0 gives a few fold speedup. Experimental results demonstrate that S-HARP is three to 10 times faster than the dynamic partitioners ParaMeTiS and Jostle on six computational meshes of size over 100,000 vertices.« less
NASA Technical Reports Server (NTRS)
McFadden, G. B.; Wheeler, A. A.; Anderson, D. M.
1999-01-01
Karma and Rapped recently developed a new sharp interface asymptotic analysis of the phase-field equations that is especially appropriate for modeling dendritic growth at low undercoolings. Their approach relieves a stringent restriction on the interface thickness that applies in the conventional asymptotic analysis, and has the added advantage that interfacial kinetic effects can also be eliminated. However, their analysis focussed on the case of equal thermal conductivities in the solid and liquid phases; when applied to a standard phase-field model with unequal conductivities, anomalous terms arise in the limiting forms of the boundary conditions for the interfacial temperature that are not present in conventional sharp-interface solidification models, as discussed further by Almgren. In this paper we apply their asymptotic methodology to a generalized phase-field model which is derived using a thermodynamically consistent approach that is based on independent entropy and internal energy gradient functionals that include double wells in both the entropy and internal energy densities. The additional degrees of freedom associated with the generalized phased-field equations can be chosen to eliminate the anomalous terms that arise for unequal conductivities.
Shin, Yeong Jae; Kim, Yoonkoo; Kang, Sung-Jin; Nahm, Ho-Hyun; Murugavel, Pattukkannu; Kim, Jeong Rae; Cho, Myung Rae; Wang, Lingfei; Yang, Sang Mo; Yoon, Jong-Gul; Chung, Jin-Seok; Kim, Miyoung; Zhou, Hua; Chang, Seo Hyoung; Noh, Tae Won
2017-05-01
The atomic-scale synthesis of artificial oxide heterostructures offers new opportunities to create novel states that do not occur in nature. The main challenge related to synthesizing these structures is obtaining atomically sharp interfaces with designed termination sequences. In this study, it is demonstrated that the oxygen pressure (PO2) during growth plays an important role in controlling the interfacial terminations of SrRuO 3 /BaTiO 3 /SrRuO 3 (SRO/BTO/SRO) ferroelectric (FE) capacitors. The SRO/BTO/SRO heterostructures are grown by a pulsed laser deposition method. The top SRO/BTO interface, grown at high PO2 (around 150 mTorr), usually exhibits a mixture of RuO 2 -BaO and SrO-TiO 2 terminations. By reducing PO2, the authors obtain atomically sharp SRO/BTO top interfaces with uniform SrO-TiO 2 termination. Using capacitor devices with symmetric and uniform interfacial termination, it is demonstrated for the first time that the FE critical thickness can reach the theoretical limit of 3.5 unit cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shin, Yeong Jae; Kim, Yoonkoo; Kang, Sung -Jin; ...
2017-03-03
Here, the atomic-scale synthesis of artificial oxide heterostructures offers new opportunities to create novel states that do not occur in nature. The main challenge related to synthesizing these structures is obtaining atomically sharp interfaces with designed termination sequences. In this study, it is demonstrated that the oxygen pressure (P O2) during growth plays an important role in controlling the interfacial terminations of SrRuO 3/BaTiO 3/SrRuO 3 (SRO/BTO/SRO) ferroelectric (FE) capacitors. The SRO/BTO/SRO heterostructures are grown by a pulsed laser deposition method. The top SRO/BTO interface, grown at high P O2 (around 150 mTorr), usually exhibits a mixture of RuO 2-BaOmore » and SrO-TiO 2 terminations. By reducing P O2, the authors obtain atomically sharp SRO/BTO top interfaces with uniform SrO-TiO 2 termination. Using capacitor devices with symmetric and uniform interfacial termination, it is demonstrated for the first time that the FE critical thickness can reach the theoretical limit of 3.5 unit cells.« less
Guner, Huseyin; Close, Patrick L; Cai, Wenxuan; Zhang, Han; Peng, Ying; Gregorich, Zachery R; Ge, Ying
2014-03-01
The rapid advancements in mass spectrometry (MS) instrumentation, particularly in Fourier transform (FT) MS, have made the acquisition of high-resolution and high-accuracy mass measurements routine. However, the software tools for the interpretation of high-resolution MS data are underdeveloped. Although several algorithms for the automatic processing of high-resolution MS data are available, there is still an urgent need for a user-friendly interface with functions that allow users to visualize and validate the computational output. Therefore, we have developed MASH Suite, a user-friendly and versatile software interface for processing high-resolution MS data. MASH Suite contains a wide range of features that allow users to easily navigate through data analysis, visualize complex high-resolution MS data, and manually validate automatically processed results. Furthermore, it provides easy, fast, and reliable interpretation of top-down, middle-down, and bottom-up MS data. MASH Suite is convenient, easily operated, and freely available. It can greatly facilitate the comprehensive interpretation and validation of high-resolution MS data with high accuracy and reliability.
Surface-Wave Pulse Routing around Sharp Right Angles
NASA Astrophysics Data System (ADS)
Gao, Z.; Xu, H.; Gao, F.; Zhang, Y.; Luo, Y.; Zhang, B.
2018-04-01
Surface-plasmon polaritons (SPPs), or localized electromagnetic surface waves propagating on a metal-dielectric interface, are deemed promising information carriers for future subwavelength terahertz and optical photonic circuitry. However, surface waves fundamentally suffer from scattering loss when encountering sharp corners in routing and interconnection of photonic signals. Previous approaches enabling scattering-free surface-wave guidance around sharp corners are limited to either volumetric waveguide environments or extremely narrow bandwidth, being unable to guide a surface-wave pulse (SPP wave packet) on an on-chip platform. Here, in a surface-wave band-gap crystal implemented on a single metal surface, we demonstrate in time-domain routing a surface-wave pulse around multiple sharp right angles without perceptible scattering. Our work not only offers a solution to on-chip surface-wave pulse routing along an arbitrary path, but it also provides spatiotemporal information on the interplay between surface-wave pulses and sharp corners, both of which are desirable in developing high-performance large-scale integrated photonic circuits.
Microbial community profiles and microbial carbon cycling in Orca Basin
NASA Astrophysics Data System (ADS)
Hyde, A.; Teske, A.; Joye, S. B.; Montoya, J. P.; Nigro, L.
2016-12-01
Orca Basin is the largest seafloor brine pools in the world, covering over 400 km2 and reaching brine layer depths of 200 m. The brine pool contains water 8 times denser than the overlying seawater and is separated from the overlying water column by a sharp pycnocline that prevents vertical mixing. The transition from ambient seawater to brine occurs over 100 m [2150 to 2250 m] and is characterized by distinct changes in temperature, salinity, chemical conditions, oxygen, and organic matter concentration. The sharp brine-seawater interface results in a sharp pycnocline, which serves as a particle trap for sinking marine organic matter. Previous studies have used lipids to show that this organic-rich interface is host to an active microbial community which is potentially involved in deep-sea carbon remineralization and metal-cycling. Additionally, previous work on methane, ethane, and propane concentrations and 13C-isotopic signatures has also implicated the brine pool, as well as the interface, as sources for biogenic low-molecular weight hydrocarbons, resulting from the high concentration of suspended organic matter above and within the brine pool. Here we investigate the profiles of microbial community composition and metabolic potential in Orca Basin, ranging from seawater through the Orca Basin chemocline and into the deep Orca Basin brine. To characterize the microbial community and stratification, we used high-throughput bacterial and archaeal 16S rRNA gene sequencing of filtered water above, within, and below the Orca Basin chemocline. Our sequence data shows that three distinct and unique communities exist in the Orca Basin water column. We also use thermodynamic modeling of hydrocarbon degradation to investigate the favorability of C1-C3 hydrocarbon oxidation at the brine-seawater interface and the potential for Orca Basin to serve as a deep-sea hydrocarbon sink.
Optical-nanofiber-based interface for single molecules
NASA Astrophysics Data System (ADS)
Skoff, Sarah M.; Papencordt, David; Schauffert, Hardy; Bayer, Bernhard C.; Rauschenbeutel, Arno
2018-04-01
Optical interfaces for quantum emitters are a prerequisite for implementing quantum networks. Here, we couple single molecules to the guided modes of an optical nanofiber. The molecules are embedded within a crystal that provides photostability and, due to the inhomogeneous broadening, a means to spectrally address single molecules. Single molecules are excited and detected solely via the nanofiber interface without the requirement of additional optical access. In this way, we realize a fully fiber-integrated system that is scalable and may become a versatile constituent for quantum hybrid systems.
Rapid Prototyping of Polymeric Nanopillars by 3D Direct Laser Writing for Controlling Cell Behavior.
Buch-Månson, Nina; Spangenberg, Arnaud; Gomez, Laura Piedad Chia; Malval, Jean-Pierre; Soppera, Olivier; Martinez, Karen L
2017-08-23
Mammalian cells have been widely shown to respond to nano- and microtopography that mimics the extracellular matrix. Synthetic nano- and micron-sized structures are therefore of great interest in the field of tissue engineering, where polymers are particularly attractive due to excellent biocompatibility and versatile fabrication methods. Ordered arrays of polymeric pillars provide a controlled topographical environment to study and manipulate cells, but processing methods are typically either optimized for the nano- or microscale. Here, we demonstrate polymeric nanopillar (NP) fabrication using 3D direct laser writing (3D DLW), which offers a rapid prototyping across both size regimes. The NPs are interfaced with NIH3T3 cells and the effect of tuning geometrical parameters of the NP array is investigated. Cells are found to adhere on a wide range of geometries, but the interface depends on NP density and length. The Cell Interface with Nanostructure Arrays (CINA) model is successfully extended to predict the type of interface formed on different NP geometries, which is found to correlate with the efficiency of cell alignment along the NPs. The combination of the CINA model with the highly versatile 3D DLW fabrication thus holds the promise of improved design of polymeric NP arrays for controlling cell growth.
Development of deployable structures for large space platform systems, part 1
NASA Technical Reports Server (NTRS)
Cox, R. L.; Nelson, R. A.
1982-01-01
Eight deployable platform design objectives were established: autodeploy/retract; fully integrated utilities; configuration variability; versatile payload and subsystem interfaces; structural and packing efficiency; 1986 technology readiness; minimum EVA/RMS; and Shuttle operational compatibility.
Design of a ``Digital Atlas Vme Electronics'' (DAVE) module
NASA Astrophysics Data System (ADS)
Goodrick, M.; Robinson, D.; Shaw, R.; Postranecky, M.; Warren, M.
2012-01-01
ATLAS-SCT has developed a new ATLAS trigger card, 'Digital Atlas Vme Electronics' (``DAVE''). The unit is designed to provide a versatile array of interface and logic resources, including a large FPGA. It interfaces to both VME bus and USB hosts. DAVE aims to provide exact ATLAS CTP (ATLAS Central Trigger Processor) functionality, with random trigger, simple and complex deadtime, ECR (Event Counter Reset), BCR (Bunch Counter Reset) etc. being generated to give exactly the same conditions in standalone running as experienced in combined runs. DAVE provides additional hardware and a large amount of free firmware resource to allow users to add or change functionality. The combination of the large number of individually programmable inputs and outputs in various formats, with very large external RAM and other components all connected to the FPGA, also makes DAVE a powerful and versatile FPGA utility card.
Material Parameter Sensitivity of Predicted Injury in the Lower Leg
2015-06-01
in a region of the structure that experienced the largest strains due to geometric or structural features, e.g., a sharp curve or point. The specific...Annals of Biomedical Engineering. 2012;40(12):2519–2531. 23. Iwamoto M, Omori K, Kimpara H, Nakahira Y, Tamura A, Watanabe I, Miki K, Hasegawa J...cortical layer; the void space between the inner scaled bone and the original outer bone was considered the cortical shell. Thus, a sharp interface exists
Preface: special topic on supramolecular self-assembly at surfaces.
Bartels, Ludwig; Ernst, Karl-Heinz; Gao, Hong-Jun; Thiel, Patricia A
2015-03-14
Supramolecular self-assembly at surfaces is one of the most exciting and active fields in Surface Science today. Applications can take advantage of two key properties: (i) versatile pattern formation over a broad length scale and (ii) tunability of electronic structure and transport properties, as well as frontier orbital alignment. It provides a new frontier for Chemical Physics as it uniquely combines the versatility of Organic Synthesis and the Physics of Interfaces. The Journal of Chemical Physics is pleased to publish this Special Topic Issue, showcasing recent advances and new directions.
Kontis, Angelo L.
1999-01-01
The seaward limit of the fresh ground-water system underlying Kings and Queens Counties on Long Island, N.Y., is at the freshwater-saltwater transition zone. This zone has been conceptualized in transient-state, three-dimensional models of the aquifer system as a sharp interface between freshwater and saltwater, and represented as a stationary, zero lateral-flow boundary. In this study, a pair of two-dimensional, four-layer ground-water flow models representing a generalized vertical section in Kings County and one in adjacent Queens County were developed to evaluate the validity of the boundary condition used in three-dimensional models of the aquifer system. The two-dimensional simulations used a model code that can simulate the movement of a sharp interface in response to transient stress. Sensitivity of interface movement to four factors was analyzed; these were (1) the method of simulating vertical leakage between freshwater and saltwater; (2) recharge at the normal rate, at 50-percent of the normal rate, and at zero for a prolonged (3-year) period; (3) high, medium, and low pumping rates; and (4) pumping from a hypothetical cluster of wells at two locations. Results indicate that the response of the interfaces to the magnitude and duration of pumping and the location of the hypothetical wells is probably sufficiently slow that the interfaces in three-dimensional models can reasonably be approximated as stationary, zero-lateral- flow boundaries.
Zheng, X; Xue, Q; Mittal, R; Beilamowicz, S
2010-11-01
A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.
NASA Astrophysics Data System (ADS)
Mittelstaedt, E.; Garcia, M. O.
2006-12-01
Lavas from the early episodes of the Pu`u `O`O eruption (1983-85) of Kilauea Volcano on the island of Hawai'i display rapid compositional variation over short periods for some episodes, especially from the well sampled episode 30 with ~2 wt% MgO variation in <4 hours. Little chemical variation is observed within the episode 30 lavas before or after this abrupt change suggesting a sharp compositional interface within the Pu`u `O`o dike-like shallow reservoir. The change in lava composition throughout the eruption is due to changes in cooling within the dike-like shallow reservoir of Pu`u `O`o. Potential explanations for a sharp interface, such as a reservoir of changing width and changing country rock thermal properties, are evaluated using a simple thermal model of a dike-like body with spatially variable thermal conductivity. The model that best reproduces the compositional data involves a change in thermal conductivity from 2.7 to 11 W m-1 C-1. which is consistent with deep drill hole data in the east rift zone. The change in thermal conductivity may indicate that fluid flow in the east rift zone is restricted at depth possibly by increasing numbers of dikes acting as acuacludes or decreasing pore space due to formation of secondary minerals. Results suggest that country rock thermal gradients can strongly influence magma chemistry in shallow reservoirs.
Modeling the sharp compositional interface in the Pùu ̀Ṑō magma reservoir, Kīlauea volcano, Hawaìi
NASA Astrophysics Data System (ADS)
Mittelstaedt, Eric; Garcia, Michael O.
2007-05-01
Lavas from the early episodes of the Pu`u `Ō`ō eruption (1983-1985) of Kīlauea Volcano on the island of Hawai`i display rapid compositional variation over short periods for some episodes, especially the well-sampled episode 30 with ˜2 wt% MgO variation in <4 hours. Little chemical variation is observed within the episode 30 lavas before or after this abrupt change, suggesting a sharp compositional interface within the Pu`u `Ō`ō dike-like shallow reservoir. Cooling-induced crystal fractionation in this reservoir is thought to be the main control on intraepisode compositional variation. Potential explanations for a sharp interface, such as changing reservoir width and wall rock thermal properties, are evaluated using a simple thermal model of a dike-like body surrounded by wall rock with spatially variable thermal conductivity. The model that best reproduces the compositional data involves a change in wall rock thermal conductivity from 2.7 to 9 W m-1 C-1, which is consistent with deep drill hole data in the east rift zone. The change in thermal conductivity may indicate that fluid flow in the east rift zone is restricted to shallow depths possibly by increasing numbers of dikes acting as aquicludes and/or decreasing pore space due to formation of secondary minerals. Results suggest that wall rock thermal gradients can strongly influence magma chemistry in shallow reservoirs.
Interface shapes during vertical Bridgman growth of (Pb, Sn)Te crystals
NASA Technical Reports Server (NTRS)
Huang, YU; Debnam, William J.; Fripp, Archibald L.
1990-01-01
Melt-solid interfaces obtained during vertical Bridgman growth of (Pb, Sn)Te crystals were investigated with a quenching technique. The shapes of these interfaces, revealed by etching longitudinally cut sections, were correlated with the composition variations determined by EMPA. These experiments demonstrated that the interface shape can be changed from concave to convex by moving its location from the edge of the cold zone into the hot zone. The metallography and microsegregation near the melt-solid interface were analyzed in detail. A sharp change in composition above the interface indicated the existence of a diffusion boundary layer 40-90 microns thick. This small diffusion boundary layer is consistent with strong convective mixing in the (Pb, Sn)Te melt.
Graphical programming interface: A development environment for MRI methods.
Zwart, Nicholas R; Pipe, James G
2015-11-01
To introduce a multiplatform, Python language-based, development environment called graphical programming interface for prototyping MRI techniques. The interface allows developers to interact with their scientific algorithm prototypes visually in an event-driven environment making tasks such as parameterization, algorithm testing, data manipulation, and visualization an integrated part of the work-flow. Algorithm developers extend the built-in functionality through simple code interfaces designed to facilitate rapid implementation. This article shows several examples of algorithms developed in graphical programming interface including the non-Cartesian MR reconstruction algorithms for PROPELLER and spiral as well as spin simulation and trajectory visualization of a FLORET example. The graphical programming interface framework is shown to be a versatile prototyping environment for developing numeric algorithms used in the latest MR techniques. © 2014 Wiley Periodicals, Inc.
Bi-directional phase transition of Cu/6H-SiC(0 0 0 1) system discovered by positron beam study
NASA Astrophysics Data System (ADS)
Zhang, J. D.; Weng, H. M.; Shan, Y. Y.; Ching, H. M.; Beling, C. D.; Fung, S.; Ling, C. C.
2002-06-01
The slow positron beam facility at the University of Hong Kong has been used to study the Cu/6H-SiC(0 0 0 1) system. The S- E data show the presence of the Cu/SiC interface buried at a depth of 30 nm. Keeping the beam energy fixed and sweeping the sample temperature, sharp discontinuities are noted in the S-parameter at both ˜17 and ˜250 K. The S-parameter transitions, which are in opposite directions, are indicative of sharp free volume changes that come as a result of the sudden changes in the structure at the Cu/SiC interface accompanying some phase transition. Energy dispersive X-ray spectroscopy (EDXS) room temperature scans reveal the presence of O in addition to Cu, C, Si at the interface, and thus copper oxide phases should be considered in interpreting this new phenomenon. It is suggested that TEM investigation together with temperature dependent X-ray diffraction spectroscopy may be able to shed further light on the nature of this interesting bi-directional phase transition.
NASA Astrophysics Data System (ADS)
Zhou, Jianmei; Wang, Jianxun; Shang, Qinglong; Wang, Hongnian; Yin, Changchun
2014-04-01
We present an algorithm for inverting controlled source audio-frequency magnetotelluric (CSAMT) data in horizontally layered transversely isotropic (TI) media. The popular inversion method parameterizes the media into a large number of layers which have fixed thickness and only reconstruct the conductivities (e.g. Occam's inversion), which does not enable the recovery of the sharp interfaces between layers. In this paper, we simultaneously reconstruct all the model parameters, including both the horizontal and vertical conductivities and layer depths. Applying the perturbation principle and the dyadic Green's function in TI media, we derive the analytic expression of Fréchet derivatives of CSAMT responses with respect to all the model parameters in the form of Sommerfeld integrals. A regularized iterative inversion method is established to simultaneously reconstruct all the model parameters. Numerical results show that the inverse algorithm, including the depths of the layer interfaces, can significantly improve the inverse results. It can not only reconstruct the sharp interfaces between layers, but also can obtain conductivities close to the true value.
NASA Astrophysics Data System (ADS)
Wang, Jun; Tang, Jian-Ming; Larson, Amanda M.; Miller, Glen P.; Pohl, Karsten
2013-12-01
Controlling the molecular structure of the donor-acceptor interface is essential to overcoming the efficiency bottleneck in organic photovoltaics. We present a study of self-assembled fullerene (C60) molecular chains on perfectly ordered 6,13-dichloropentacene (DCP) monolayers forming on a vicinal Au(788) surface using scanning tunneling microscopy in conjunction with density functional theory calculations. DCP is a novel pentacene derivative optimized for photovoltaic applications. The molecules form a brick-wall patterned centered rectangular lattice with the long axis parallel to the monatomic steps that separate the 3.9 nm wide Au(111) terraces. The strong interaction between the C60 molecules and the gold substrate is well screened by the DCP monolayer. At submonolayer C60 coverage, the fullerene molecules form long parallel chains, 1.1 nm apart, with a rectangular arrangement instead of the expected close-packed configuration along the upper step edges. The perfectly ordered DCP structure is unaffected by the C60 chain formation. The controlled sharp highly-ordered organic interface has the potential to improve the conversion efficiency in organic photovoltaics.
Scalar conservation and boundedness in simulations of compressible flow
Subbareddy, Pramod K.; Kartha, Anand; Candler, Graham V.
2017-08-07
With the proper combination of high-order, low-dissipation numerical methods, physics-based subgrid-scale models, and boundary conditions it is becoming possible to simulate many combustion flows at relevant conditions. However, non-premixed flows are a particular challenge because the thickness of the fuel/oxidizer interface scales inversely with Reynolds number. Sharp interfaces can also be present in the initial or boundary conditions. When higher-order numerical methods are used, there are often aphysical undershoots and overshoots in the scalar variables (e.g.passive scalars, species mass fractions or progress variable). These numerical issues are especially prominent when low-dissipation methods are used, since sharp jumps in flow variablesmore » are not always coincident with regions of strong variation in the scalar fields: consequently, special detection mechanisms and dissipative fluxes are needed. Most numerical methods diffuse the interface, resulting in artificial mixing and spurious reactions. In this paper, we propose a numerical method that mitigates this issue. As a result, we present methods for passive and active scalars, and demonstrate their effectiveness with several examples.« less
Effect of asymmetric concentration profile on thermal conductivity in Ge/SiGe superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Konstanze R., E-mail: konstanze.hahn@dsf.unica.it; Cecchi, Stefano; Colombo, Luciano
2016-05-16
The effect of the chemical composition in Si/Ge-based superlattices on their thermal conductivity has been investigated using molecular dynamics simulations. Simulation cells of Ge/SiGe superlattices have been generated with different concentration profiles such that the Si concentration follows a step-like, a tooth-saw, a Gaussian, and a gamma-type function in direction of the heat flux. The step-like and tooth-saw profiles mimic ideally sharp interfaces, whereas Gaussian and gamma-type profiles are smooth functions imitating atomic diffusion at the interface as obtained experimentally. Symmetry effects have been investigated comparing the symmetric profiles of the step-like and the Gaussian function to the asymmetric profilesmore » of the tooth-saw and the gamma-type function. At longer sample length and similar degree of interdiffusion, the thermal conductivity is found to be lower in asymmetric profiles. Furthermore, it is found that with smooth concentration profiles where atomic diffusion at the interface takes place the thermal conductivity is higher compared to systems with atomically sharp concentration profiles.« less
SKITTER/implement mechanical interface
NASA Technical Reports Server (NTRS)
Cash, John Wilson, III; Cone, Alan E.; Garolera, Frank J.; German, David; Lindabury, David Peter; Luckado, Marshall Cleveland; Murphey, Craig; Rowell, John Bryan; Wilkinson, Brad
1988-01-01
SKITTER (Spacial Kinematic Inertial Translatory Tripod Extremity Robot) is a three-legged transport vehicle designed to perform under the unique environment of the moon. The objective of this project was to design a mechanical interface for SKITTER. This mechanical latching interface will allow SKITTER to use a series of implements such as drills, cranes, etc., and perform different tasks on the moon. The design emphasized versatility and detachability; that is, the interface design is the same for all implements, and connection and detachment is simple. After consideration of many alternatives, a system of three identical latches at each of the three interface points was chosen. The latching mechanism satisfies the design constraints because it facilitates connection and detachment. Also, the moving parts are protected from the dusty environment by housing plates.
Li, B O; Liu, Yuan
A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.
Automation Hooks Architecture for Flexible Test Orchestration - Concept Development and Validation
NASA Technical Reports Server (NTRS)
Lansdowne, C. A.; Maclean, John R.; Winton, Chris; McCartney, Pat
2011-01-01
The Automation Hooks Architecture Trade Study for Flexible Test Orchestration sought a standardized data-driven alternative to conventional automated test programming interfaces. The study recommended composing the interface using multicast DNS (mDNS/SD) service discovery, Representational State Transfer (Restful) Web Services, and Automatic Test Markup Language (ATML). We describe additional efforts to rapidly mature the Automation Hooks Architecture candidate interface definition by validating it in a broad spectrum of applications. These activities have allowed us to further refine our concepts and provide observations directed toward objectives of economy, scalability, versatility, performance, severability, maintainability, scriptability and others.
Myokit: A simple interface to cardiac cellular electrophysiology.
Clerx, Michael; Collins, Pieter; de Lange, Enno; Volders, Paul G A
2016-01-01
Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular action potential to find that current tools do not cater specifically to model development and that there is a gap between easy-to-use but limited software and powerful tools that require strong programming skills from their users. We then describe Myokit's capabilities, focusing on its model description language, simulation engines and import/export facilities in detail. Using three examples, we show how Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap between performance, versatility and user-friendliness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Versatile synchronized real-time MEG hardware controller for large-scale fast data acquisition.
Sun, Limin; Han, Menglai; Pratt, Kevin; Paulson, Douglas; Dinh, Christoph; Esch, Lorenz; Okada, Yoshio; Hämäläinen, Matti
2017-05-01
Versatile controllers for accurate, fast, and real-time synchronized acquisition of large-scale data are useful in many areas of science, engineering, and technology. Here, we describe the development of a controller software based on a technique called queued state machine for controlling the data acquisition (DAQ) hardware, continuously acquiring a large amount of data synchronized across a large number of channels (>400) at a fast rate (up to 20 kHz/channel) in real time, and interfacing with applications for real-time data analysis and display of electrophysiological data. This DAQ controller was developed specifically for a 384-channel pediatric whole-head magnetoencephalography (MEG) system, but its architecture is useful for wide applications. This controller running in a LabVIEW environment interfaces with microprocessors in the MEG sensor electronics to control their real-time operation. It also interfaces with a real-time MEG analysis software via transmission control protocol/internet protocol, to control the synchronous acquisition and transfer of the data in real time from >400 channels to acquisition and analysis workstations. The successful implementation of this controller for an MEG system with a large number of channels demonstrates the feasibility of employing the present architecture in several other applications.
Versatile synchronized real-time MEG hardware controller for large-scale fast data acquisition
NASA Astrophysics Data System (ADS)
Sun, Limin; Han, Menglai; Pratt, Kevin; Paulson, Douglas; Dinh, Christoph; Esch, Lorenz; Okada, Yoshio; Hämäläinen, Matti
2017-05-01
Versatile controllers for accurate, fast, and real-time synchronized acquisition of large-scale data are useful in many areas of science, engineering, and technology. Here, we describe the development of a controller software based on a technique called queued state machine for controlling the data acquisition (DAQ) hardware, continuously acquiring a large amount of data synchronized across a large number of channels (>400) at a fast rate (up to 20 kHz/channel) in real time, and interfacing with applications for real-time data analysis and display of electrophysiological data. This DAQ controller was developed specifically for a 384-channel pediatric whole-head magnetoencephalography (MEG) system, but its architecture is useful for wide applications. This controller running in a LabVIEW environment interfaces with microprocessors in the MEG sensor electronics to control their real-time operation. It also interfaces with a real-time MEG analysis software via transmission control protocol/internet protocol, to control the synchronous acquisition and transfer of the data in real time from >400 channels to acquisition and analysis workstations. The successful implementation of this controller for an MEG system with a large number of channels demonstrates the feasibility of employing the present architecture in several other applications.
Qin, Fei; Meng, Zi-Ming; Zhong, Xiao-Lan; Liu, Ye; Li, Zhi-Yuan
2012-06-04
We present a versatile technique based on nano-imprint lithography to fabricate high-quality semiconductor-polymer compound nonlinear photonic crystal (NPC) slabs. The approach allows one to infiltrate uniformly polystyrene materials that possess large Kerr nonlinearity and ultrafast nonlinear response into the cylindrical air holes with diameter of hundred nanometers that are perforated in silicon membranes. Both the structural characterization via the cross-sectional scanning electron microscopy images and the optical characterization via the transmission spectrum measurement undoubtedly show that the fabricated compound NPC samples have uniform and dense polymer infiltration and are of high quality in optical properties. The compound NPC samples exhibit sharp transmission band edges and nondegraded high quality factor of microcavities compared with those in the bare silicon PC. The versatile method can be expanded to make general semiconductor-polymer hybrid optical nanostructures, and thus it may pave the way for reliable and efficient fabrication of ultrafast and ultralow power all-optical tunable integrated photonic devices and circuits.
Capillary Assembly of Colloids: Interactions on Planar and Curved Interfaces
NASA Astrophysics Data System (ADS)
Liu, Iris B.; Sharifi-Mood, Nima; Stebe, Kathleen J.
2018-03-01
In directed assembly, small building blocks are assembled into an organized structure under the influence of guiding fields. Capillary interactions provide a versatile route for structure formation. Colloids adsorbed on fluid interfaces distort the interface, which creates an associated energy field. When neighboring distortions overlap, colloids interact to minimize interfacial area. Contact line pinning, particle shape, and surface chemistry play important roles in structure formation. Interface curvature acts like an external field; particles migrate and assemble in patterns dictated by curvature gradients. We review basic analysis and recent findings in this rapidly evolving literature. Understanding the roles of assembly is essential for tuning the mechanical, physical, and optical properties of the structure.
Li, Ming-Yang; Shi, Yumeng; Cheng, Chia-Chin; Lu, Li-Syuan; Lin, Yung-Chang; Tang, Hao-Lin; Tsai, Meng-Lin; Chu, Chih-Wei; Wei, Kung-Hwa; He, Jr-Hau; Chang, Wen-Hao; Suenaga, Kazu; Li, Lain-Jong
2015-07-31
Two-dimensional transition metal dichalcogenides (TMDCs) such as molybdenum sulfide MoS2 and tungsten sulfide WSe2 have potential applications in electronics because they exhibit high on-off current ratios and distinctive electro-optical properties. Spatially connected TMDC lateral heterojunctions are key components for constructing monolayer p-n rectifying diodes, light-emitting diodes, photovoltaic devices, and bipolar junction transistors. However, such structures are not readily prepared via the layer-stacking techniques, and direct growth favors the thermodynamically preferred TMDC alloys. We report the two-step epitaxial growth of lateral WSe2-MoS2 heterojunction, where the edge of WSe2 induces the epitaxial MoS2 growth despite a large lattice mismatch. The epitaxial growth process offers a controllable method to obtain lateral heterojunction with an atomically sharp interface. Copyright © 2015, American Association for the Advancement of Science.
Interface Engineering for Nanoelectronics.
Hacker, C A; Bruce, R C; Pookpanratana, S J
2017-01-01
Innovation in the electronics industry is tied to interface engineering as devices increasingly incorporate new materials and shrink. Molecular layers offer a versatile means of tuning interfacial electronic, chemical, physical, and magnetic properties enabled by a wide variety of molecules available. This paper will describe three instances where we manipulate molecular interfaces with a specific focus on the nanometer scale characterization and the impact on the resulting performance. The three primary themes include, 1-designer interfaces, 2-electronic junction formation, and 3-advancing metrology for nanoelectronics. We show the ability to engineer interfaces through a variety of techniques and demonstrate the impact on technologies such as molecular memory and spin injection for organic electronics. Underpinning the successful modification of interfaces is the ability to accurately characterize the chemical and electronic properties and we will highlight some measurement advances key to our understanding of the interface engineering for nanoelectronics.
Interface Engineering for Nanoelectronics
Hacker, C. A.; Bruce, R. C.; Pookpanratana, S. J.
2017-01-01
Innovation in the electronics industry is tied to interface engineering as devices increasingly incorporate new materials and shrink. Molecular layers offer a versatile means of tuning interfacial electronic, chemical, physical, and magnetic properties enabled by a wide variety of molecules available. This paper will describe three instances where we manipulate molecular interfaces with a specific focus on the nanometer scale characterization and the impact on the resulting performance. The three primary themes include, 1-designer interfaces, 2-electronic junction formation, and 3-advancing metrology for nanoelectronics. We show the ability to engineer interfaces through a variety of techniques and demonstrate the impact on technologies such as molecular memory and spin injection for organic electronics. Underpinning the successful modification of interfaces is the ability to accurately characterize the chemical and electronic properties and we will highlight some measurement advances key to our understanding of the interface engineering for nanoelectronics. PMID:29276553
Boiler for generating high quality vapor
NASA Technical Reports Server (NTRS)
Gray, V. H.; Marto, P. J.; Joslyn, A. W.
1972-01-01
Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.
NASA Astrophysics Data System (ADS)
Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Hollender, Fabrice; Bard, Pierre-Yves; Priolo, Enrico; Klin, Peter; de Martin, Florent; Zhang, Zhenguo; Zhang, Wei; Chen, Xiaofei
2015-04-01
Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from the complex realistic 3-D model of the Mygdonian basin. Sediments atop an elastic bedrock are modelled in the 1D-sharp and 1D-smooth models using three homogeneous layers and smooth velocity distribution, respectively. The 2D-sharp and 2D-smooth models are extensions of the 1-D models to an asymmetric sedimentary valley. In all cases, 3-D wavefields include strongly dispersive surface waves in the sediments. We compared simulations by the Fourier pseudo-spectral method (FPSM), the Legendre spectral-element method (SEM) and two formulations of the finite-difference method (FDM-S and FDM-C) up to 4 Hz. The accuracy of individual solutions and level of agreement between solutions vary with type of seismic waves and depend on the smoothness of the velocity model. The level of accuracy is high for the body waves in all solutions. However, it strongly depends on the discrete representation of the material interfaces (at which material parameters change discontinuously) for the surface waves in the sharp models. An improper discrete representation of the interfaces can cause inaccurate numerical modelling of surface waves. For all the numerical methods considered, except SEM with mesh of elements following the interfaces, a proper implementation of interfaces requires definition of an effective medium consistent with the interface boundary conditions. An orthorhombic effective medium is shown to significantly improve accuracy and preserve the computational efficiency of modelling. The conclusions drawn from the analysis of the results of the canonical cases greatly help to explain differences between numerical predictions of ground motion in realistic models of the Mygdonian basin. We recommend that any numerical method and code that is intended for numerical prediction of earthquake ground motion should be verified through stringent models that would make it possible to test the most important aspects of accuracy.
Geometries for roughness shapes in laminar flow
NASA Technical Reports Server (NTRS)
Holmes, Bruce J. (Inventor); Martin, Glenn L. (Inventor); Domack, Christopher S. (Inventor); Obara, Clifford J. (Inventor); Hassan, Ahmed A. (Inventor)
1986-01-01
A passive interface mechanism between upper and lower skin structures, and a leading edge structure of a laminar flow airfoil is described. The interface mechanism takes many shapes. All are designed to be different than the sharp orthogonal arrangement prevalent in the prior art. The shapes of the interface structures are generally of two types: steps away from the centerline of the airfoil with a sloping surface directed toward the trailing edge and, the other design has a gap before the sloping surface. By properly shaping the step, the critical step height is increased by more than 50% over the orthogonal edged step.
RosettaRemodel: A Generalized Framework for Flexible Backbone Protein Design
Huang, Po-Ssu; Ban, Yih-En Andrew; Richter, Florian; Andre, Ingemar; Vernon, Robert; Schief, William R.; Baker, David
2011-01-01
We describe RosettaRemodel, a generalized framework for flexible protein design that provides a versatile and convenient interface to the Rosetta modeling suite. RosettaRemodel employs a unified interface, called a blueprint, which allows detailed control over many aspects of flexible backbone protein design calculations. RosettaRemodel allows the construction and elaboration of customized protocols for a wide range of design problems ranging from loop insertion and deletion, disulfide engineering, domain assembly, loop remodeling, motif grafting, symmetrical units, to de novo structure modeling. PMID:21909381
Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration
NASA Astrophysics Data System (ADS)
Lee, Hyeong-Gi; Lowengrub, J. S.; Goodman, J.
2002-02-01
This is the first paper in a two-part series in which we analyze two model systems to study pinchoff and reconnection in binary fluid flow in a Hele-Shaw cell with arbitrary density and viscosity contrast between the components. The systems stem from a simplification of a general system of equations governing the motion of a binary fluid (NSCH model [Lowengrub and Truskinovsky, Proc. R. Soc. London, Ser. A 454, 2617 (1998)]) to flow in a Hele-Shaw cell. The system takes into account the chemical diffusivity between different components of a fluid mixture and the reactive stresses induced by inhomogeneity. In one of the systems we consider (HSCH), the binary fluid may be compressible due to diffusion. In the other system (BHSCH), a Boussinesq approximation is used and the fluid is incompressible. In this paper, we motivate, present and calibrate the HSCH/BHSCH equations so as to yield the classical sharp interface model as a limiting case. We then analyze their equilibria, one dimensional evolution and linear stability. In the second paper [paper II, Phys. Fluids 14, 514 (2002)], we analyze the behavior of the models in the fully nonlinear regime. In the BHSCH system, the equilibrium concentration profile is obtained using the classical Maxwell construction [Rowlinson and Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1979)] and does not depend on the orientation of the gravitational field. We find that the equilibria in the HSCH model are somewhat surprising as the gravitational field actually affects the internal structure of an isolated interface by driving additional stratification of light and heavy fluids over that predicted in the Boussinesq case. A comparison of the linear growth rates indicates that the HSCH system is slightly more diffusive than the BHSCH system. In both, linear convergence to the sharp interface growth rates is observed in a parameter controlling the interface thickness. In addition, we identify the effect that each of the parameters, in the HSCH/BHSCH models, has on the linear growth rates. We then show how this analysis may be used to suggest a set of modified parameters which, when used in the HSCH/BHSCH systems, yield improved agreement with the sharp interface model at a finite interface thickness. Evidence of this improved agreement may be found in paper II.
Exploring 'new' bioactivities of polymers at the nano-bio interface.
Wang, Chunming; Dong, Lei
2015-01-01
A biological system is essentially an elegant assembly of polymeric nanostructures. The polymers in the body, biomacromolecules, are both building blocks and versatile messengers. We propose that non-biologically derived polymers can be potential therapeutic candidates with unique advantages. Emerging findings about polycations, polysaccharides, immobilised multivalent ligands, and biomolecular coronas provide evidence that polymers are activated at the nano-bio interface, while emphasising the current theoretical and practical challenges. Our increasing understanding of the nano-bio interface and evolving approaches to establish the therapeutic potential of polymers enable the development of polymer drugs with high specificities for broad applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ma, Ji; Liu, Chunting; Chen, Kezheng
2016-01-01
In this work, a facile and versatile solution route was used to fabricate room-temperature ferromagnetic fish bone-like, pteridophyte-like, poplar flower-like, cotton-like Cu@Cu2O architectures and golfball-like Cu@ZnO architecture. The ferromagnetic origins in these architectures were found to be around metal-semiconductor interfaces and defects, and the root cause for their ferromagnetism lay in charge transfer processes from metal Cu to semiconductors Cu2O and ZnO. Owing to different metallization at their interfaces, these architectures exhibited different ferromagnetic behaviors, including coercivity, saturation magnetization as well as magnetic interactions. PMID:27680286
Shock wave refraction enhancing conditions on an extended interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markhotok, A.; Popovic, S.
2013-04-15
We determined the law of shock wave refraction for a class of extended interfaces with continuously variable gradients. When the interface is extended or when the gas parameters vary fast enough, the interface cannot be considered as sharp or smooth and the existing calculation methods cannot be applied. The expressions we derived are general enough to cover all three types of the interface and are valid for any law of continuously varying parameters. We apply the equations to the case of exponentially increasing temperature on the boundary and compare the results for all three types of interfaces. We have demonstratedmore » that the type of interface can increase or inhibit the shock wave refraction. Our findings can be helpful in understanding the results obtained in energy deposition experiments as well as for controlling the shock-plasma interaction in other settings.« less
Lommen, Arjen
2009-04-15
Hyphenated full-scan MS technology creates large amounts of data. A versatile easy to handle automation tool aiding in the data analysis is very important in handling such a data stream. MetAlign softwareas described in this manuscripthandles a broad range of accurate mass and nominal mass GC/MS and LC/MS data. It is capable of automatic format conversions, accurate mass calculations, baseline corrections, peak-picking, saturation and mass-peak artifact filtering, as well as alignment of up to 1000 data sets. A 100 to 1000-fold data reduction is achieved. MetAlign software output is compatible with most multivariate statistics programs.
Chemical copatterning strategies using azlactone-based block copolymers
Masigol, Mohammadali; Barua, Niloy; Retterer, Scott T.; ...
2017-09-01
Interfaces can be modified with azlactone-functional polymers in order to manipulate the chemical surface reactivity. Azlactone groups are highly reactive toward amine, thiol, and alcohol nucleophiles, providing a versatile coupling chemistry for secondary surface modification. Azlactone-based surface polymers have been explored in numerous applications, including chemical and biological capture, sensing, and cell culture. These applications often require that the polymer is copatterned within a chemically or biologically inert background; however, common fabrication methods degrade azlactone groups during processing steps or result in polymer films with poorly controlled thicknesses. Here, the authors develop fabrication strategies using parylene lift-off and interface-directed assemblymore » methods to generate microscale patterns of azlactone-based block copolymer in chemically or biologically inert backgrounds. The functionality of azlactone groups was preserved during fabrication, and patterned films appeared as uniform, 80–120nm brushlike films. The authors also develop a patterning approach that uses a novel microcontact stamping method to generate cross-linked, three-dimensional structures of azlactone-based polymers with controllable, microscale thicknesses. The authors identify the benefits of each approach and expect these polymers and patterning strategies to provide a versatile toolbox for developing synthetic interfaces with tuned chemical and physical features for sensing, cell culture, or material capture applications.« less
Chemical copatterning strategies using azlactone-based block copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masigol, Mohammadali; Barua, Niloy; Retterer, Scott T.
Interfaces can be modified with azlactone-functional polymers in order to manipulate the chemical surface reactivity. Azlactone groups are highly reactive toward amine, thiol, and alcohol nucleophiles, providing a versatile coupling chemistry for secondary surface modification. Azlactone-based surface polymers have been explored in numerous applications, including chemical and biological capture, sensing, and cell culture. These applications often require that the polymer is copatterned within a chemically or biologically inert background; however, common fabrication methods degrade azlactone groups during processing steps or result in polymer films with poorly controlled thicknesses. Here, the authors develop fabrication strategies using parylene lift-off and interface-directed assemblymore » methods to generate microscale patterns of azlactone-based block copolymer in chemically or biologically inert backgrounds. The functionality of azlactone groups was preserved during fabrication, and patterned films appeared as uniform, 80–120nm brushlike films. The authors also develop a patterning approach that uses a novel microcontact stamping method to generate cross-linked, three-dimensional structures of azlactone-based polymers with controllable, microscale thicknesses. The authors identify the benefits of each approach and expect these polymers and patterning strategies to provide a versatile toolbox for developing synthetic interfaces with tuned chemical and physical features for sensing, cell culture, or material capture applications.« less
VERSATILE, HIGH-RESOLUTION ANTEROGRADE LABELING OF VAGAL EFFERENT PROJECTIONS WITH DEXTRAN AMINES
Walter, Gary C.; Phillips, Robert J.; Baronowsky, Elizabeth A.; Powley, Terry L.
2009-01-01
None of the anterograde tracers used to label and investigate vagal preganglionic neurons projecting to the viscera has proved optimal for routine and extensive labeling of autonomic terminal fields. To identify an alternative tracer protocol, the present experiment evaluated whether dextran conjugates, which have produced superior results in the CNS, might yield widespread and effective labeling of long, fine-caliber vagal efferents in the peripheral nervous system. The dextran conjugates that were evaluated proved reliable and versatile for labeling the motor neuron pool in its entirety, for single- and multiple-labeling protocols, for both conventional and confocal fluorescence microscopy, and for permanent labeling protocols for brightfield microscopy of the projections to the gastrointestinal (GI) tract. Using a standard ABC kit followed by visualization with DAB as the chromagen, Golgi-like labeling of the vagal efferent terminal fields in the GI wall was achieved with the biotinylated dextrans. The definition of individual terminal varicosities was so sharp and detailed that it was routinely practical to examine the relationship of putative vagal efferent contacts (by the criteria of high magnification light microscopy) with the dendritic and somatic architecture of counterstained neurons in the myenteric plexus. Overall, dextran conjugates provide high-definition labeling of an extensive vagal motor pool in the GI tract, and offer considerable versatility when multiple-staining protocols are needed to elucidate the complexities of the innervation of the gut. PMID:19056424
Fraeman, A A; Ehlmann, B L; Arvidson, R E; Edwards, C S; Grotzinger, J P; Milliken, R E; Quinn, D P; Rice, M S
2016-09-01
We have developed a refined geologic map and stratigraphy for lower Mount Sharp using coordinated analyses of new spectral, thermophysical, and morphologic orbital data products. The Mount Sharp group consists of seven relatively planar units delineated by differences in texture, mineralogy, and thermophysical properties. These units are (1-3) three spatially adjacent units in the Murray formation which contain a variety of secondary phases and are distinguishable by thermal inertia and albedo differences, (4) a phyllosilicate-bearing unit, (5) a hematite-capped ridge unit, (6) a unit associated with material having a strongly sloped spectral signature at visible near-infrared wavelengths, and (7) a layered sulfate unit. The Siccar Point group consists of the Stimson formation and two additional units that unconformably overlie the Mount Sharp group. All Siccar Point group units are distinguished by higher thermal inertia values and record a period of substantial deposition and exhumation that followed the deposition and exhumation of the Mount Sharp group. Several spatially extensive silica deposits associated with veins and fractures show that late-stage silica enrichment within lower Mount Sharp was pervasive. At least two laterally extensive hematitic deposits are present at different stratigraphic intervals, and both are geometrically conformable with lower Mount Sharp strata. The occurrence of hematite at multiple stratigraphic horizons suggests redox interfaces were widespread in space and/or in time, and future measurements by the Mars Science Laboratory Curiosity rover will provide further insights into the depositional settings of these and other mineral phases.
NASA Astrophysics Data System (ADS)
Tarasenko, S. V.; Shavrov, V. G.
2017-07-01
A pseudochiral mechanism of the formation of non-Tamm quasistationary surface polariton states, as well as surface polariton waves inside the light cone, has been proposed for an isolated interface between spatially uniform transparent dielectric media. The resonance excitation of these states by a quasimonochromatic plane wave incident from vacuum results in a sharp change in the group delay time of the reflected pulse. The effect is enhanced in the presence of an electromagnetic metasurface.
NASA Astrophysics Data System (ADS)
Sato, Yutaka S.; Kokawa, Hiroyuki; Fujii, Hiromichi T.; Yano, Yasuhide; Sekio, Yoshihiro
2015-12-01
Dissimilar joints between ferritic and austenitic steels are of interest for selected applications in next generation fast reactors. In this study, dissimilar friction-stir welding of an 11 pct Cr ferritic/martensitic steel to a 316 austenitic stainless steel was attempted and the mechanical properties and microstructure of the resulting welds were examined. Friction-stir welding produces a stir zone without macroscopic weld-defects, but the two dissimilar steels are not intermixed. The two dissimilar steels are interleaved along a sharp zigzagging interface in the stir zone. During small-sized tensile testing of the stir zone, this sharp interface did not act as a fracture site. Furthermore, the microstructure of the stir zone was refined in both the ferritic/martensitic steel and the 316 stainless steel resulting in improved mechanical properties over the adjacent base material regions. This study demonstrates that friction-stir welding can produce welds between dissimilar steels that contain no macroscopic weld-defects and display suitable mechanical properties.
Amini, Abbas; Cheng, Chun
2013-01-01
Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips. PMID:23963305
Roles of interfacial reaction on mechanical properties of solder interfaces
NASA Astrophysics Data System (ADS)
Liu, Pilin
This study investigated roles of interfacial reaction in fracture and fatigue of solder interconnects. The interfacial reaction phases in the as-reflowed and after aging were examined by cross-sectional transmission electron microscopy (TEM) while interfacial mechanical properties were determined from a flexural peel fracture mechanics technique. Because of their widespread uses in microelectronic packaging, SnPb solder interfaces, and Bi-containing Pb-free solder interfaces were chosen as the subjects of this study. In the interfacial reaction study, we observed a complicated micro structural evolution during solid-state aging of electroless-Ni(P)/SnPb solder interconnects. In as-reflowed condition, the interfacial reaction produced Ni3Sn 4 and P-rich layers. Following overaging, the interfacial microstructure degenerated into a complex multilayer structure consisting of multiple layers of Ni-Sn compounds and transformed Ni-P phases. In SnPb solder interfacial system, fatigue study showed that the overaging of the high P electroless Ni-P/SnPb interconnects resulted in a sharp reduction in the fatigue resistance of the interface in the high crack growth rate regime. Fracture mechanism analysis indicated that the sharp drop in fatigue resistance was triggered by the brittle fracture of the Ni3Sn2 intermetallic phase developed at the overaged interface. The fatigue behavior was strongly dependent on P concentration in electroless Ni. Kirkendall voids were found in the interfacial region after aging, but they did not cause premature fracture of the solder interfaces. In Bi-containing solder interfacial system, we found that Bi segregated to the Cu-intermetallic interface during aging in SnBi/Cu interconnect. This caused serious embrittlement of Sn-Bi/Cu interface. Further aging induced numerous voids along the Cu3Sn/Cu interface. These interfacial voids were different from Kirkendall voids. Their formation was explained on basis of vacancy condensation at the interface as the Bi segregants reduced the number of effective Cu vacancy sink sites and enhanced void nucleation at the interface. The Bi segregation was avoided by replacing the Cu metallization with Ni. It was found that Bi developed a concentration gradient in the Ni 3Sn4 during interfacial reaction, with the Bi concentration falling off to zero as the Ni/IMC interface was approached. Therefore, the inhibition of Bi segregation by Ni was due to the inability of Bi to reach Ni/IMC interface.
Diffuse-interface model for rapid phase transformations in nonequilibrium systems.
Galenko, Peter; Jou, David
2005-04-01
A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe transformations within the diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase within the width of the diffuse interface. Governing equations of the phase-field model are derived for the hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with existing sharp-interface and diffuse-interface versions of the model is given.
Multiphase Fluid Dynamics for Spacecraft Applications
NASA Astrophysics Data System (ADS)
Shyy, W.; Sim, J.
2011-09-01
Multiphase flows involving moving interfaces between different fluids/phases are observed in nature as well as in a wide range of engineering applications. With the recent development of high fidelity computational techniques, a number of challenging multiphase flow problems can now be computed. We introduce the basic notion of the main categories of multiphase flow computation; Lagrangian, Eulerian, and Eulerian-Lagrangian techniques to represent and follow interface, and sharp and continuous interface methods to model interfacial dynamics. The marker-based adaptive Eulerian-Lagrangian method, which is one of the most popular methods, is highlighted with microgravity and space applications including droplet collision and spacecraft liquid fuel tank surface stability.
Tian, Wei; Han, Xu; Zuo, Wangda; ...
2018-01-31
This paper presents a comprehensive review of the open literature on motivations, methods and applications of linking stratified airflow simulation to building energy simulation (BES). First, we reviewed the motivations for coupling prediction models for building energy and indoor environment. This review classified various exchanged data in different applications as interface data and state data, and found that choosing different data sets may lead to varying performance of stability, convergence, and speed for the co-simulation. Second, our review shows that an external coupling scheme is substantially more popular in implementations of co-simulation than an internal coupling scheme. The external couplingmore » is shown to be generally faster in computational speed, as well as easier to implement, maintain and expand than the internal coupling. Third, the external coupling can be carried out in different data synchronization schemes, including static coupling and dynamic coupling. In comparison, the static coupling that performs data exchange only once is computationally faster and more stable than the dynamic coupling. However, concerning accuracy, the dynamic coupling that requires multiple times of data exchange is more accurate than the static coupling. Furthermore, the review identified that the implementation of the external coupling can be achieved through customized interfaces, middleware, and standard interfaces. The customized interface is straightforward but may be limited to a specific coupling application. The middleware is versatile and user-friendly but usually limited in data synchronization schemes. The standard interface is versatile and promising, but may be difficult to implement. Current applications of the co-simulation are mainly energy performance evaluation and control studies. Finally, we discussed the limitations of the current research and provided an overview for future research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Wei; Han, Xu; Zuo, Wangda
This paper presents a comprehensive review of the open literature on motivations, methods and applications of linking stratified airflow simulation to building energy simulation (BES). First, we reviewed the motivations for coupling prediction models for building energy and indoor environment. This review classified various exchanged data in different applications as interface data and state data, and found that choosing different data sets may lead to varying performance of stability, convergence, and speed for the co-simulation. Second, our review shows that an external coupling scheme is substantially more popular in implementations of co-simulation than an internal coupling scheme. The external couplingmore » is shown to be generally faster in computational speed, as well as easier to implement, maintain and expand than the internal coupling. Third, the external coupling can be carried out in different data synchronization schemes, including static coupling and dynamic coupling. In comparison, the static coupling that performs data exchange only once is computationally faster and more stable than the dynamic coupling. However, concerning accuracy, the dynamic coupling that requires multiple times of data exchange is more accurate than the static coupling. Furthermore, the review identified that the implementation of the external coupling can be achieved through customized interfaces, middleware, and standard interfaces. The customized interface is straightforward but may be limited to a specific coupling application. The middleware is versatile and user-friendly but usually limited in data synchronization schemes. The standard interface is versatile and promising, but may be difficult to implement. Current applications of the co-simulation are mainly energy performance evaluation and control studies. Finally, we discussed the limitations of the current research and provided an overview for future research.« less
NASA Astrophysics Data System (ADS)
Shao, Qing; Hu, Zhen; Xu, Xirong; Yu, Long; Zhang, Dayu; Huang, Yudong
2018-05-01
The composites with interfacial self-healing ability are smart and promising materials in the future. Although some approaches have been used to heal the micro-cracks in composite materials, it is still a great challenge to develop a versatile strategy to fabricate multifunctional interface for self-healing. Here, boron nitride nanosheets (BN) are immobilized onto PBO fibers by facile polydopamine (PDA) chemistry. Benefiting from the photothermal effect of BN-PDA, the obtained surface layer displays interfacial self-healing properties under Xenon light irradiation.
Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks.
Hyun, Dong Choon; Levinson, Nathanael S; Jeong, Unyong; Xia, Younan
2014-04-07
The nebulous term phase-change material (PCM) simply refers to any substance that has a large heat of fusion and a sharp melting point. PCMs have been used for many years in commercial applications, mainly for heat management purposes. However, these fascinating materials have recently been rediscovered and applied to a broad range of technologies, such as smart drug delivery, information storage, barcoding, and detection. With the hope of kindling interest in this incredibly versatile range of materials, this Review presents an array of aspects related to the compositions, preparations, and emerging applications of PCMs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical mixing at “Al on Fe” and “Fe on Al” interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Süle, P.; Horváth, Z. E.; Kaptás, D.
2015-10-07
The chemical mixing at the “Al on Fe” and “Fe on Al” interfaces was studied by molecular dynamics simulations of the layer growth and by {sup 57}Fe Mössbauer spectroscopy. The concentration distribution along the layer growth direction was calculated for different crystallographic orientations, and atomically sharp “Al on Fe” interfaces were found when Al grows over (001) and (110) oriented Fe layers. The Al/Fe(111) interface is also narrow as compared to the intermixing found at the “Fe on Al” interfaces for any orientation. Conversion electron Mössbauer measurements of trilayers—Al/{sup 57}Fe/Al and Al/{sup 57}Fe/Ag grown simultaneously over Si(111) substrate by vacuummore » evaporation—support the results of the molecular dynamics calculations.« less
Facet‐Engineered Surface and Interface Design of Photocatalytic Materials
Wang, Lili; Li, Zhengquan
2016-01-01
The facet‐engineered surface and interface design for photocatalytic materials has been proven as a versatile approach to enhance their photocatalytic performance. This review article encompasses some recent advances in the facet engineering that has been performed to control the surface of mono‐component semiconductor systems and to design the surface and interface structures of multi‐component heterostructures toward photocatalytic applications. The review begins with some key points which should receive attention in the facet engineering on photocatalytic materials. We then discuss the synthetic approaches to achieve the facet control associated with the surface and interface design. In the following section, the facet‐engineered surface design on mono‐component photocatalytic materials is introduced, which forms a basis for the discussion on more complex systems. Subsequently, we elucidate the facet‐engineered surface and interface design of multi‐component photocatalytic materials. Finally, the existing challenges and future prospects are discussed. PMID:28105398
NASA Astrophysics Data System (ADS)
Teichert, Gregory H.; Rudraraju, Shiva; Garikipati, Krishna
2017-02-01
We present a unified variational treatment of evolving configurations in crystalline solids with microstructure. The crux of our treatment lies in the introduction of a vector configurational field. This field lies in the material, or configurational, manifold, in contrast with the traditional displacement field, which we regard as lying in the spatial manifold. We identify two distinct cases which describe (a) problems in which the configurational field's evolution is localized to a mathematically sharp interface, and (b) those in which the configurational field's evolution can extend throughout the volume. The first case is suitable for describing incoherent phase interfaces in polycrystalline solids, and the latter is useful for describing smooth changes in crystal structure and naturally incorporates coherent (diffuse) phase interfaces. These descriptions also lead to parameterizations of the free energies for the two cases, from which variational treatments can be developed and equilibrium conditions obtained. For sharp interfaces that are out-of-equilibrium, the second law of thermodynamics furnishes restrictions on the kinetic law for the interface velocity. The class of problems in which the material undergoes configurational changes between distinct, stable crystal structures are characterized by free energy density functions that are non-convex with respect to configurational strain. For physically meaningful solutions and mathematical well-posedness, it becomes necessary to incorporate interfacial energy. This we have done by introducing a configurational strain gradient dependence in the free energy density function following ideas laid out by Toupin (1962, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal., 11, 385-414). The variational treatment leads to a system of partial differential equations governing the configuration that is coupled with the traditional equations of nonlinear elasticity. The coupled system of equations governs the configurational change in crystal structure, and elastic deformation driven by elastic, Eshelbian, and configurational stresses. Numerical examples are presented to demonstrate interface motion as well as evolving microstructures of crystal structures.
Teichert, Gregory H.; Rudraraju, Shiva; Garikipati, Krishna
2016-11-20
We present a unified variational treatment of evolving configurations in crystalline solids with microstructure. The crux of our treatment lies in the introduction of a vector configurational field. This field lies in the material, or configurational, manifold, in contrast with the traditional displacement field, which we regard as lying in the spatial manifold. We identify two distinct cases which describe (a) problems in which the configurational field's evolution is localized to a mathematically sharp interface, and (b) those in which the configurational field's evolution can extend throughout the volume. The first case is suitable for describing incoherent phase interfaces inmore » polycrystalline solids, and the latter is useful for describing smooth changes in crystal structure and naturally incorporates coherent (diffuse) phase interfaces. These descriptions also lead to parameterizations of the free energies for the two cases, from which variational treatments can be developed and equilibrium conditions obtained. For sharp interfaces that are out-of-equilibrium, the second law of thermodynamics furnishes restrictions on the kinetic law for the interface velocity. The class of problems in which the material undergoes configurational changes between distinct, stable crystal structures are characterized by free energy density functions that are non-convex with respect to configurational strain. For physically meaningful solutions and mathematical well-posedness, it becomes necessary to incorporate interfacial energy. This we have done by introducing a configurational strain gradient dependence in the free energy density function following ideas laid out by Toupin (Arch. Rat. Mech. Anal., 11, 1962, 385-414). The variational treatment leads to a system of partial differential equations governing the configuration that is coupled with the traditional equations of nonlinear elasticity. The coupled system of equations governs the configurational change in crystal structure, and elastic deformation driven by elastic, Eshelbian, and configurational stresses. As a result, numerical examples are presented to demonstrate interface motion as well as evolving microstructures of crystal structures.« less
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.
Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-08-06
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems
Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-01-01
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250
NASA Astrophysics Data System (ADS)
Greene, Patrick; Nourgaliev, Robert; Schofield, Sam
2015-11-01
A new sharp high-order interface tracking method for multi-material flow problems on unstructured meshes is presented. The method combines the marker-tracking algorithm with a discontinuous Galerkin (DG) level set method to implicitly track interfaces. DG projection is used to provide a mapping from the Lagrangian marker field to the Eulerian level set field. For the level set re-distancing, we developed a novel marching method that takes advantage of the unique features of the DG representation of the level set. The method efficiently marches outward from the zero level set with values in the new cells being computed solely from cell neighbors. Results are presented for a number of different interface geometries including ones with sharp corners and multiple hierarchical level sets. The method can robustly handle the level set discontinuities without explicit utilization of solution limiters. Results show that the expected high order (3rd and higher) of convergence for the DG representation of the level set is obtained for smooth solutions on unstructured meshes. High-order re-distancing on irregular meshes is a must for applications were the interfacial curvature is important for underlying physics, such as surface tension, wetting and detonation shock dynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-675636.
Crystal Phase Quantum Well Emission with Digital Control.
Assali, S; Lähnemann, J; Vu, T T T; Jöns, K D; Gagliano, L; Verheijen, M A; Akopian, N; Bakkers, E P A M; Haverkort, J E M
2017-10-11
One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.
Notes on Experiments: A Versatile Light-Emitter-Detector Arrangement for Use with a Microcomputer.
ERIC Educational Resources Information Center
Kirkup, Les
1987-01-01
Describes efforts of members of the biology and physics departments of Paisley College (Scotland) to develop a simple light-emitter-detector arrangement adapted as a colorimeter interfaced with a microcomputer for use by undergraduate students. Discusses the setup and provides a computer program in BASIC to run it. (CW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strobl, M.; Kreuzer, M.; Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin
2011-05-15
BioRef is a versatile novel time-of-flight reflectometer featuring a sample environment for in situ infrared spectroscopy at the reactor neutron source BER II of the Helmholtz Zentrum Berlin fuer Materialien und Energie (HZB). After two years of design and construction phase the instrument has recently undergone commissioning and is now available for specular and off-specular neutron reflectivity measurements. BioRef is especially dedicated to the investigation of soft matter systems and studies at the solid-liquid interface. Due to flexible resolution modes and variable addressable wavelength bands that allow for focusing onto a selected scattering vector range, BioRef enables a broad rangemore » of surface and interface investigations and even kinetic studies with subsecond time resolution. The instrumental settings can be tailored to the specific requirements of a wide range of applications. The performance is demonstrated by several reference measurements, and the unique option of in situ on-board infrared spectroscopy is illustrated by the example of a phase transition study in a lipid multilayer film.« less
Ehlmann, B. L.; Arvidson, R. E.; Edwards, C. S.; Grotzinger, J. P.; Milliken, R. E.; Quinn, D. P.; Rice, M. S.
2016-01-01
Abstract We have developed a refined geologic map and stratigraphy for lower Mount Sharp using coordinated analyses of new spectral, thermophysical, and morphologic orbital data products. The Mount Sharp group consists of seven relatively planar units delineated by differences in texture, mineralogy, and thermophysical properties. These units are (1–3) three spatially adjacent units in the Murray formation which contain a variety of secondary phases and are distinguishable by thermal inertia and albedo differences, (4) a phyllosilicate‐bearing unit, (5) a hematite‐capped ridge unit, (6) a unit associated with material having a strongly sloped spectral signature at visible near‐infrared wavelengths, and (7) a layered sulfate unit. The Siccar Point group consists of the Stimson formation and two additional units that unconformably overlie the Mount Sharp group. All Siccar Point group units are distinguished by higher thermal inertia values and record a period of substantial deposition and exhumation that followed the deposition and exhumation of the Mount Sharp group. Several spatially extensive silica deposits associated with veins and fractures show that late‐stage silica enrichment within lower Mount Sharp was pervasive. At least two laterally extensive hematitic deposits are present at different stratigraphic intervals, and both are geometrically conformable with lower Mount Sharp strata. The occurrence of hematite at multiple stratigraphic horizons suggests redox interfaces were widespread in space and/or in time, and future measurements by the Mars Science Laboratory Curiosity rover will provide further insights into the depositional settings of these and other mineral phases. PMID:27867788
Novel highly ordered core–shell nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Sonal; Hossain, Mohammad D.; Mayanovic, Robert A.
2016-10-26
Core–shell nanoparticles have potential for a wide range of applications due to the tunability of their magnetic, catalytic, electronic, optical, and other physicochemical properties. A frequent drawback in the design of core–shell nanoparticles and nanocrystals is the lack of control over an extensive, disordered, and compositionally distinct interface that occurs due to the dissimilarity of structural and compositional phases of the core and shell. In this work, we demonstrate a new hydrothermal nanophase epitaxy (HNE) technique to synthesize highly structurally ordered α-Cr 2O 3@α-Co 0.38Cr 1.62O 2.92 inverted core–shell nanoparticles (CSNs) with evidence for the nanoscale growth of corundum structuremore » beginning from the core and extending completely into the shell of the CSNs with minimal defects at the interface. The high-resolution TEM results show a sharp interface exhibiting epitaxial atomic registry of shell atoms over highly ordered core atoms. The XPS and Co K-edge XANES analyses indicate the +2 oxidation state of cobalt is incorporated in the shell of the CSNs. Our XPS and EXAFS results are consistent with oxygen vacancy formation in order to maintain charge neutrality upon substitution of the Co 2+ ion for the Cr 3+ ion in the α-Co 0.38Cr 1.62O 2.92 shell. Furthermore, the CSNs exhibit the magnetic exchange bias effect, which is attributed to the exchange anisotropy at the interface made possible by the nanophase epitaxial growth of the α-Co 0.38Cr 1.62O 2.92 shell on the α-Cr 2O 3 core of the nanoparticles. The combination of a well-structured, sharp interface and novel nanophase characteristics is highly desirable for nanostructures having enhanced magnetic properties.« less
A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods
Chung, Bong Geun; Park, Jeong Won; Hu, Jia Sheng; Huang, Carlos; Monuki, Edwin S; Jeon, Noo Li
2007-01-01
Background Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories. Results We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient. Conclusion This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols. PMID:17883868
A versatile small form factor twisted-pair TFC FMC for MTCA AMCs
NASA Astrophysics Data System (ADS)
Meder, L.; Lebedev, J.; Becker, J.
2017-03-01
In continuous readout systems of particle physics experiments, the provision of a common clock and time reference and the distribution of critical low latency messages to the processing and fronted layers of the readout are crucial tasks. In the context of the Compressed Baryonic Matter (CBM) experiment, a versatile small form factor Timing and Fast-Control (TFC) interfacing FPGA Mezzanine Card (FMC) was developed, offering bidirectional twisted-pair (TP) links for the communication between TFC nodes. Also a versatile clocking including voltage controlled oscillators and a connection to the telecommunication clock lines of mTCA crates are available. Being designed for both TFC Master and Slaves, the card allows rapid system developments without additional Slave hardware circuits. Measurements show that it is possible to transmit over cable lengths of 25 m at a rate of 240 Mbit/s for all data channels simultaneously. A TFC Master-Slave system using two of these cards can be synchronized with a precision of ±10 ps to an user-defined phase setpoint.
Interface magnetic anisotropy for monatomic layer-controlled Co/Ni epitaxial multilayers
NASA Astrophysics Data System (ADS)
Shioda, A.; Seki, T.; Shimada, J.; Takanashi, K.
2015-05-01
The magnetic properties for monatomic layer (ML)-controlled Co/Ni epitaxial multilayers were investigated in order to evaluate the interface magnetic anisotropy energy (Ks) between Ni and Co layers. The Co/Ni epitaxial multilayers were prepared on an Al2O3 (11-20) substrate with V/Au buffer layers. The value of Ks was definitely larger than that for the textured Co/Ni grown on a thermally oxidized Si substrate. We consider that the sharp interface for the epitaxial Co/Ni played a role to increase the value of Ks, which also enabled us to obtain perpendicular magnetization even for the 1 ML-Co/1 ML-Ni multilayer.
Partitioning a macroscopic system into independent subsystems
NASA Astrophysics Data System (ADS)
Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten
2017-08-01
We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.
Surface conservation laws at microscopically diffuse interfaces.
Chu, Kevin T; Bazant, Martin Z
2007-11-01
In studies of interfaces with dynamic chemical composition, bulk and interfacial quantities are often coupled via surface conservation laws of excess surface quantities. While this approach is easily justified for microscopically sharp interfaces, its applicability in the context of microscopically diffuse interfaces is less theoretically well-established. Furthermore, surface conservation laws (and interfacial models in general) are often derived phenomenologically rather than systematically. In this article, we first provide a mathematically rigorous justification for surface conservation laws at diffuse interfaces based on an asymptotic analysis of transport processes in the boundary layer and derive general formulae for the surface and normal fluxes that appear in surface conservation laws. Next, we use nonequilibrium thermodynamics to formulate surface conservation laws in terms of chemical potentials and provide a method for systematically deriving the structure of the interfacial layer. Finally, we derive surface conservation laws for a few examples from diffusive and electrochemical transport.
Salt-water-freshwater transient upconing - An implicit boundary-element solution
Kemblowski, M.
1985-01-01
The boundary-element method is used to solve the set of partial differential equations describing the flow of salt water and fresh water separated by a sharp interface in the vertical plane. In order to improve the accuracy and stability of the numerical solution, a new implicit scheme was developed for calculating the motion of the interface. The performance of this scheme was tested by means of numerical simulation. The numerical results are compared to experimental results for a salt-water upconing under a drain problem. ?? 1985.
The Design of an Interactive Data Retrieval System for Casual Users.
ERIC Educational Resources Information Center
Radhakrishnan, T.; And Others
1982-01-01
Describes an interactive data retrieval system which was designed and implemented for casual users and which incorporates a user-friendly interface, aids to train beginners in use of the system, versatility in output, and error recovery protocols. A 14-item reference list and two figures illustrating system operation and output are included. (JL)
User's manual for the model interface and plugboard cabinets in the 14- by 22-foot subsonic tunnel
NASA Technical Reports Server (NTRS)
Askew, Robert B.; Quinto, P. Frank
1994-01-01
The primary method of connection between the wind tunnel model instrumentation and the data acquisition system in the 14- by 22-Foot Subsonic Tunnel is through the Model Interface (MIF) and Plugboard cabinets. The MIF and Plugboard cabinets allow versatility in the connection of the instrumentation to the different data systems in the facility. The User's Manual describes the components inside the MIF cabinet, the input and output of the MIF, and the MIF patchboard, and the Plugboard cabinets. There are examples of standard connections for most of the instrumentation used in the facility.
Sensitivity of Heterointerfaces on Emission Wavelength in Quantum Cascade Lasers
2016-08-18
sharp satellite peaks and highly resolved thickness interference fringes. The full-width at 4 half-maximum of the n=0 peak is nominally similar... Watanabe , M. Sugiyama, and Y. Nakano, "Effect of hetero-interfaces on in situ wafer curvature behavior in InGaAs/GaAsP strain-balanced MQWs
Sensitivity of Heterointerfaces on Emission Wavelength in Quantum Cascade Lasers
2016-10-31
as expected, and all scans exhibit sharp satellite peaks and highly resolved thickness interference fringes. The full- width at half-maximum of the n...K. Watanabe , M. Sugiyama, and Y. Nakano, "Effect of hetero-interfaces on in situ wafer curvature behavior in InGaAs/GaAsP strain-balanced MQWs
Luo, Haoxiang; Mittal, Rajat; Zheng, Xudong; Bielamowicz, Steven A.; Walsh, Raymond J.; Hahn, James K.
2008-01-01
A new numerical approach for modeling a class of flow–structure interaction problems typically encountered in biological systems is presented. In this approach, a previously developed, sharp-interface, immersed-boundary method for incompressible flows is used to model the fluid flow and a new, sharp-interface Cartesian grid, immersed boundary method is devised to solve the equations of linear viscoelasticity that governs the solid. The two solvers are coupled to model flow–structure interaction. This coupled solver has the advantage of simple grid generation and efficient computation on simple, single-block structured grids. The accuracy of the solid-mechanics solver is examined by applying it to a canonical problem. The solution methodology is then applied to the problem of laryngeal aerodynamics and vocal fold vibration during human phonation. This includes a three-dimensional eigen analysis for a multi-layered vocal fold prototype as well as two-dimensional, flow-induced vocal fold vibration in a modeled larynx. Several salient features of the aerodynamics as well as vocal-fold dynamics are presented. PMID:19936017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei, E-mail: wang_wei_310@163.com; Lu, Yonghao, E-mail: lu_yonghao@mater.ustb.edu.cn; Ding, Xianfei, E-mail: xfding@ustb.edu.cn
Microstructures and microhardness at fusion boundary of a weld joint were investigated in a 316 stainless steel/Inconel 182 dissimilar weldment. The results showed that there were two alternately distributed typical fusion boundaries, a narrow random boundary (possessed 15% in length) with a clear sharp interface and an epitaxial fusion one with (100){sub BM}//(100){sub WM} at the joint interface. The composition transition, microstructure and hardness across the fusion boundary strongly depended on the type of the fusion boundary. For the random boundary, there was a clear sharp interface and the composition transition with a width of 100 μm took place symmetricallymore » across the grain boundary. For the epitaxial fusion one, however, there were Type-I and Type-II grain boundaries perpendicular and parallel to the epitaxial fusion boundary, respectively. The composition transition took place in the Inconel 182 weld side. Σ3 boundaries in the HAZ of 316SS side and Σ5 grain boundaries in weld metal were usually observed, despite the type of fusion boundary, however the former was much more in epitaxial fusion boundary. Microhardness was continuously decreased across the random fusion boundary from the side of Inconel 182 to 316SS, but a hardening phenomenon appeared in the epitaxial fusion boundary zone because of its fine cellular microstructure. - Highlights: • Two typical fusion boundaries alternately distributed in the fusion interface • The microstructure, composition and hardness across fusion boundary depended on its type. • Different regions in welded joint have different special CSL value boundaries. • Hardening phenomenon only appeared in the epitaxial fusion boundary.« less
The Next Generation of Ground Operations Command and Control; Scripting in C Sharp and Visual Basic
NASA Technical Reports Server (NTRS)
Ritter, George; Pedoto, Ramon
2010-01-01
This slide presentation reviews the use of scripting languages in Ground Operations Command and Control. It describes the use of scripting languages in a historical context, the advantages and disadvantages of scripts. It describes the Enhanced and Redesigned Scripting (ERS) language, that was designed to combine the features of a scripting language and the graphical and IDE richness of a programming language with the utility of scripting languages. ERS uses the Microsoft Visual Studio programming environment and offers custom controls that enable an ERS developer to extend the Visual Basic and C sharp language interface with the Payload Operations Integration Center (POIC) telemetry and command system.
Ren, Tingting; He, Junhui
2017-10-04
Robust antireflective and superhydrophobic coatings are highly desired in wide applications, such as optical devices, solar cell panels, architectural and automotive glasses, lab-on chip systems, and windows for electronic devices. Meanwhile, simple, low-cost, and substrate-versatile fabrication is also essential toward real applications of such coatings. Herein, we developed a substrate-versatile strategy to fabricate robust antireflective and superhydrophobic coatings with excellent self-cleaning property in varied environments, including air and oil and after oil contamination. A mixed ethanol suspension, which consists of 1H,1H,2H,2H-perfluorooctyltriethoxysilane modified dual-sized silica nanoparticles and acid-catalyzed silica precursor, was first synthesized. The acid-catalyzed silica precursor could help to form a highly cross-linked silica network by connecting the silica nanoparticles, thus significantly enhancing the robustness of coatings. The as-prepared coatings were able to withstand a water drop impact test, sand abrasion test, tape adhesion test, and knife and pencil scratching tests. More importantly, it was also found that the wettability and self-cleaning property of coatings after oil contamination were surprisingly different from those in air and oil. These observations are explainable by the alteration of interface; i.e., the alteration of interface has significant effects on the functional properties of coatings. Additionally, the mixed suspension could be sprayed onto various hard and soft substrates including glass, polyethylene terephthalate (PET), polycarbonate (PC), and poly(methyl methacrylate) (PMMA), opening up a feasible route toward varied practical applications in solar cell panels, optical devices, architectural and automotive glasses, droplet manipulators, and fluid control.
Interfacial sharpness and intermixing in a Ge-SiGe multiple quantum well structure
NASA Astrophysics Data System (ADS)
Bashir, A.; Gallacher, K.; Millar, R. W.; Paul, D. J.; Ballabio, A.; Frigerio, J.; Isella, G.; Kriegner, D.; Ortolani, M.; Barthel, J.; MacLaren, I.
2018-01-01
A Ge-SiGe multiple quantum well structure created by low energy plasma enhanced chemical vapour deposition, with nominal well thickness of 5.4 nm separated by 3.6 nm SiGe spacers, is analysed quantitatively using scanning transmission electron microscopy. Both high angle annular dark field imaging and electron energy loss spectroscopy show that the interfaces are not completely sharp, suggesting that there is some intermixing of Si and Ge at each interface. Two methods are compared for the quantification of the spectroscopy datasets: a self-consistent approach that calculates binary substitutional trends without requiring experimental or computational k-factors from elsewhere and a standards-based cross sectional calculation. Whilst the cross section approach is shown to be ultimately more reliable, the self-consistent approach provides surprisingly good results. It is found that the Ge quantum wells are actually about 95% Ge and that the spacers, whilst apparently peaking at about 35% Si, contain significant interdiffused Ge at each side. This result is shown to be not just an artefact of electron beam spreading in the sample, but mostly arising from a real chemical interdiffusion resulting from the growth. Similar results are found by use of X-ray diffraction from a similar area of the sample. Putting the results together suggests a real interdiffusion with a standard deviation of about 0.87 nm, or put another way—a true width defined from 10%-90% of the compositional gradient of about 2.9 nm. This suggests an intrinsic limit on how sharp such interfaces can be grown by this method and, whilst 95% Ge quantum wells (QWs) still behave well enough to have good properties, any attempt to grow thinner QWs would require modifications to the growth procedure to reduce this interdiffusion, in order to maintain a composition of ≥95% Ge.
NASA Astrophysics Data System (ADS)
Rotzoll, K.; Izuka, S. K.; Nishikawa, T.; Fienen, M. N.; El-Kadi, A. I.
2016-12-01
Some of the volcanic-rock aquifers of the islands of Hawaii are substantially developed, leading to concerns related to the effects of groundwater withdrawals on saltwater intrusion and stream base-flow reduction. A numerical modeling analysis using recent available information (e.g., recharge, withdrawals, hydrogeologic framework, and conceptual models of groundwater flow) advances current understanding of groundwater flow and provides insight into the effects of human activity and climate change on Hawaii's water resources. Three island-wide groundwater-flow models (Kauai, Oahu, and Maui) were constructed using MODFLOW 2005 coupled with the Seawater-Intrusion Package (SWI2), which simulates the transition between saltwater and freshwater in the aquifer as a sharp interface. This approach allowed coarse vertical discretization (maximum of two layers) without ignoring the freshwater-saltwater system at the regional scale. Model construction (FloPy3), parameter estimation (PEST), and analysis of results were streamlined using Python scripts. Model simulations included pre-development (1870) and recent (average of 2001-10) scenarios for each island. Additionally, scenarios for future withdrawals and climate change were simulated for Oahu. We present our streamlined approach and results showing estimated effects of human activity on the groundwater resource by quantifying decline in water levels, rise of the freshwater-saltwater interface, and reduction in stream base flow. Water-resource managers can use this information to evaluate consequences of groundwater development that can constrain future groundwater availability.
Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi
2017-08-04
A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.
Hoekstra, Alfons G; Alowayyed, Saad; Lorenz, Eric; Melnikova, Natalia; Mountrakis, Lampros; van Rooij, Britt; Svitenkov, Andrew; Závodszky, Gábor; Zun, Pavel
2016-11-13
This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Authors.
Adaptive Phase Delay Generator
NASA Technical Reports Server (NTRS)
Greer, Lawrence
2013-01-01
There are several experimental setups involving rotating machinery that require some form of synchronization. The adaptive phase delay generator (APDG) the Bencic-1000 is a flexible instrument that allows the user to generate pulses synchronized to the rising edge of a tachometer signal from any piece of rotating machinery. These synchronized pulses can vary by the delay angle, pulse width, number of pulses per period, number of skipped pulses, and total number of pulses. Due to the design of the pulse generator, any and all of these parameters can be changed independently, yielding an unparalleled level of versatility. There are two user interfaces to the APDG. The first is a LabVIEW program that has the advantage of displaying all of the pulse parameters and input signal data within one neatly organized window on the PC monitor. Furthermore, the LabVIEW interface plots the rpm of the two input signal channels in real time. The second user interface is a handheld portable device that goes anywhere a computer is not accessible. It consists of a liquid-crystal display and keypad, which enable the user to control the unit by scrolling through a host of command menus and parameter listings. The APDG combines all of the desired synchronization control into one unit. The experimenter can adjust the delay, pulse width, pulse count, number of skipped pulses, and produce a specified number of pulses per revolution. Each of these parameters can be changed independently, providing an unparalleled level of versatility when synchronizing hardware to a host of rotating machinery. The APDG allows experimenters to set up quickly and generate a host of synchronizing configurations using a simple user interface, which hopefully leads to faster results.
Assessment of saltwater intrusion in southern coastal Broward County, Florida
Merritt, M.L.
1996-01-01
Of the counties in southeastern Florida, Broward County has experienced some of the most severe effects of saltwater intrusion into the surficial Biscayne aquifer because, before 1950, most public water-supply well fields in the county were constructed near the principal early population centers located less than 5 miles from the Atlantic Ocean. The construction of major regional drainage canals in the early 20th century caused a lowering of the water table and a gradual inland movement of the saltwater front toward the well fields. The U.S. Geological Survey began field investigations of saltwater intrusion in the Biscayne aquifer of southeastern Broward County in 1939. As part of the present study, the positions of the saltwater front in 1945, 1969, and 1993 were estimated using chloride concentrations of water samples collected between 1939 and 1994 from various monitoring and exploratory wells. The data indicate that, between 1945 and 1993, the saltwater front has moved as much as 0.5 mile inland in parts of the study area. The position and movement of the saltwater front were simulated numerically to help determine which of the various hydrologic factors and water-management features characterizing the coastal subsurface environment and its alteration by man are of significance in increasing or decreasing the degree of saltwater intrusion. Two representational methods were applied by the selection and use of appropriate model codes. The SHARP code simulates the position of the saltwater front as a sharp interface, which implies that no transition zone (a zone in which a gradational change between freshwater and saltwater occurs) separates freshwater and saltwater. The Subsurface Waste Injection Program (SWIP) code simulates a two-fluid, variable-density system using a convective-diffusion approach that includes a representation of the transition zone that occurs between the freshwater and saltwater bodies. The models were applied to: (1) approximately replicate predevelopment and current positions of the interface in the study area; and (2) study the relative importance of various factors affecting the interface position. The model analyses assumed a conceptual model of uniform easterly flow in the aquifer toward points of offshore discharge to tidewater. Measurements of water-table altitude and the depth to the interface in the study area exhibit an interrelation that differes substantially from the classical Ghyben-Herzberg relation. However, both model codes simulated water-table altitudes and interface positions that were generally consistent with the Ghyben-Herzberg relation but differed substantially from observed data. The simulate interface positions were inland of the known positions, and simulate water-table altitudes were higher than measured ones. The SHARP and SWIP simulations were in general agreement with each other when a low value of longitudinal dispersivity was specified in the SWIP simulation and also for higher values of longitudinal dispersivity when modified dispersion algorithms were used in SWIP that greatly reduced the simulated degree of vertical dispersion. Sensitivity analyses performed using the SHARP code indicated simulation results to be relatively insensitive to a substantial change in the specified slope of the base of the aquifer and moderately sensitive to a 150-percent change in net atmospheric recharge to the aquifer (rainfall minus evapotranspiration). Representing well-field pumping by the City of hallandale had only a minor, localized influence on the simulated regional interface position. Using various cross-sectional grid designs in applications of the SWIP code, near convergence of all lines of equal concentrations in the transition zone was achieved within a simulation time of 10 years. The simulated equilibrium interface location was sensitive to substantial spatial variations in the specified hydraulic conductivity values, but was relatively insensitive to seasonal varying
A Gas-Kinetic Method for Hyperbolic-Elliptic Equations and Its Application in Two-Phase Fluid Flow
NASA Technical Reports Server (NTRS)
Xu, Kun
1999-01-01
A gas-kinetic method for the hyperbolic-elliptic equations is presented in this paper. In the mixed type system, the co-existence and the phase transition between liquid and gas are described by the van der Waals-type equation of state (EOS). Due to the unstable mechanism for a fluid in the elliptic region, interface between the liquid and gas can be kept sharp through the condensation and evaporation process to remove the "averaged" numerical fluid away from the elliptic region, and the interface thickness depends on the numerical diffusion and stiffness of the phase change. A few examples are presented in this paper for both phase transition and multifluid interface problems.
Irradiation-induced formation of a spinel phase at the FeCr/MgO interface
Xu, Yun; Yadav, Satyesh Kumar; Aguiar, Jeffery A.; ...
2015-04-27
Oxide dispersion strengthened ferritic/martensitic alloys have attracted significant attention for their potential uses in future nuclear reactors and storage vessels, as the metal/oxide interfaces act as stable high-strength sinks for point defects while also dispersing helium. Here, in order to unravel the evolution and interplay of interface structure and chemistry upon irradiation in these types of materials, an atomically sharp FeCr/MgO interface was synthesized at 500 °C and separately annealed and irradiated with Ni 3+ ions at 500 °C. After annealing, a slight enrichment of Cr atoms was observed at the interface, but no other structural changes were found. However,more » under irradiation, sufficient Cr diffuses across the interface into the MgO to form a Cr-enriched transition layer that contains spinel precipitates. First-principles calculations indicate that it is energetically favorable to incorporate Cr, but not Fe, substitutionally into MgO. Furthermore, our results indicate that irradiation can be used to form new phases and complexions at interfaces, which may have different radiation tolerance than the pristine structures.« less
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems
Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; ...
2014-06-30
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in ordermore » to reduce the overall numerical uncertainty while leveraging available computational resources. Finally, the coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.« less
3D near-surface soil response from H/V ambient-noise ratios
Wollery, E.W.; Street, R.
2002-01-01
The applicability of the horizontal-to-vertical (H/V) ambient-noise spectral ratio for characterizing earthquake site effects caused by nearsurface topography and velocity structures was evaluated at sites underlain by thick (i.e. >100 m) sediment deposits near the southern-end of the New Madrid seismic zone in the central United States. Three-component ambient-noise and velocity models derived from seismic (shearwave) refraction/reflection surveys showed that a relatively horizontal, sharp shear-wave velocity interface in the soil column resulted in an H/V spectral ratio with a single well-defined peak. Observations at sites with more than one sharp shear-wave velocity contrast and horizontally arranged soil layers resulted in at least two well-defined H/V spectral ratio peaks. Furthermore, at sites where there were sharp shear-wave velocity contrasts in nonhorizontal, near-surface soil layers, the H/V spectra exhibited a broad-bandwidth, relatively low amplitude signal instead of a single well-defined peak. ?? 2002 Elsevier Science Ltd. All rights reserved.
Audio distribution and Monitoring Circuit
NASA Technical Reports Server (NTRS)
Kirkland, J. M.
1983-01-01
Versatile circuit accepts and distributes TV audio signals. Three-meter audio distribution and monitoring circuit provides flexibility in monitoring, mixing, and distributing audio inputs and outputs at various signal and impedance levels. Program material is simultaneously monitored on three channels, or single-channel version built to monitor transmitted or received signal levels, drive speakers, interface to building communications, and drive long-line circuits.
Closed-form solution of decomposable stochastic models
NASA Technical Reports Server (NTRS)
Sjogren, Jon A.
1990-01-01
Markov and semi-Markov processes are increasingly being used in the modeling of complex reconfigurable systems (fault tolerant computers). The estimation of the reliability (or some measure of performance) of the system reduces to solving the process for its state probabilities. Such a model may exhibit numerous states and complicated transition distributions, contributing to an expensive and numerically delicate solution procedure. Thus, when a system exhibits a decomposition property, either structurally (autonomous subsystems), or behaviorally (component failure versus reconfiguration), it is desirable to exploit this decomposition in the reliability calculation. In interesting cases there can be failure states which arise from non-failure states of the subsystems. Equations are presented which allow the computation of failure probabilities of the total (combined) model without requiring a complete solution of the combined model. This material is presented within the context of closed-form functional representation of probabilities as utilized in the Symbolic Hierarchical Automated Reliability and Performance Evaluator (SHARPE) tool. The techniques adopted enable one to compute such probability functions for a much wider class of systems at a reduced computational cost. Several examples show how the method is used, especially in enhancing the versatility of the SHARPE tool.
X-Ray and Energy-Loss Spectroscopy | Materials Science | NREL
, we see sharp peaks corresponding to the characteristic X-rays emitted by the atoms of the different ionization edges at high-energy losses, whose onset position is characteristic of the different types of flat c-Si/a-Si interface (see next). A graph with red, green, and blue curves shows different
A versatile system for the rapid collection, handling and graphics analysis of multidimensional data
NASA Astrophysics Data System (ADS)
O'Brien, P. M.; Moloney, G.; O'Connor, A.; Legge, G. J. F.
1993-05-01
The aim of this work was to provide a versatile system for handling multiparameter data that may arise from a variety of experiments — nuclear, AMS, microprobe elemental analysis, 3D microtomography etc. Some of the most demanding requirements arise in the application of microprobes to quantitative elemental mapping and to microtomography. A system to handle data from such experiments had been under continuous development and use at MARC for the past 15 years. It has now been made adaptable to the needs of multiparameter (or single parameter) experiments in general. The original system has been rewritten, greatly expanded and made much more powerful and faster, by use of modern computer technology — a VME bus computer with a real time operating system and a RISC workstation running Unix and the X Window system. This provides the necessary (i) power, speed and versatility, (ii) expansion and updating capabilities (iii) standardisation and adaptability, (iv) coherent modular programming structures, (v) ability to interface to other programs and (vi) transparent operation with several levels, involving the use of menus, programmed function keys and powerful macro programming facilities.
Development at the wildland-urban interface and the mitigation of forest-fire risk.
Spyratos, Vassilis; Bourgeron, Patrick S; Ghil, Michael
2007-09-04
This work addresses the impacts of development at the wildland-urban interface on forest fires that spread to human habitats. Catastrophic fires in the western United States and elsewhere make these impacts a matter of urgency for decision makers, scientists, and the general public. Using a simple fire-spread model, along with housing and vegetation data, we show that fire size probability distributions can be strongly modified by the density and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability and house density. Many actual fire landscapes in the United States appear to have spreading properties close to this transition. Thus, the density and flammability of buildings should be taken into account when assessing fire risk at the wildland-urban interface. Moreover, our results highlight ways for regulation at this interface to help mitigate fire risk.
Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates
NASA Astrophysics Data System (ADS)
Mousavi, S. A. A. Akbari; Zareie, H. R.
2011-01-01
The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.
Bonding and electronics of the MoTe2/Ge interface under strain
NASA Astrophysics Data System (ADS)
Szary, Maciej J.; Michalewicz, Marek T.; Radny, Marian W.
2017-05-01
Understanding the interface formation of a conventional semiconductor with a monolayer of transition-metal dichalcogenides provides a necessary platform for the anticipated applications of dichalcogenides in electronics and optoelectronics. We report here, based on the density functional theory, that under in-plane tensile strain, a 2H semiconducting phase of the molybdenum ditelluride (MoTe2) monolayer undergoes a semiconductor-to-metal transition and in this form bonds covalently to bilayers of Ge stacked in the [111] crystal direction. This gives rise to the stable bonding configuration of the MoTe2/Ge interface with the ±K valley metallic, electronic interface states exclusively of a Mo 4 d character. The atomically sharp Mo layer represents therefore an electrically active (conductive) subsurface δ -like two-dimensional profile that can exhibit a valley-Hall effect. Such system can develop into a key element of advanced semiconductor technology or a novel device concept.
Instabilities in a staircase stratified shear flow
NASA Astrophysics Data System (ADS)
Ponetti, G.; Balmforth, N. J.; Eaves, T. S.
2018-01-01
We study stratified shear flow instability where the density profile takes the form of a staircase of interfaces separating uniform layers. Internal gravity waves riding on density interfaces can resonantly interact due to a background shear flow, resulting in the Taylor-Caulfield instability. The many steps of the density profile permit a multitude of interactions between different interfaces, and a rich variety of Taylor-Caulfield instabilities. We analyse the linear instability of a staircase with piecewise-constant density profile embedded in a background linear shear flow, locating all the unstable modes and identifying the strongest. The interaction between nearest-neighbour interfaces leads to the most unstable modes. The nonlinear dynamics of the instabilities are explored in the long-wavelength, weakly stratified limit (the defect approximation). Unstable modes on adjacent interfaces saturate by rolling up the intervening layer into a distinctive billow. These nonlinear structures coexist when stacked vertically and are bordered by the sharp density gradients that are the remnants of the steps of the original staircase. Horizontal averages remain layer-like.
Analyzing microtomography data with Python and the scikit-image library.
Gouillart, Emmanuelle; Nunez-Iglesias, Juan; van der Walt, Stéfan
2017-01-01
The exploration and processing of images is a vital aspect of the scientific workflows of many X-ray imaging modalities. Users require tools that combine interactivity, versatility, and performance. scikit-image is an open-source image processing toolkit for the Python language that supports a large variety of file formats and is compatible with 2D and 3D images. The toolkit exposes a simple programming interface, with thematic modules grouping functions according to their purpose, such as image restoration, segmentation, and measurements. scikit-image users benefit from a rich scientific Python ecosystem that contains many powerful libraries for tasks such as visualization or machine learning. scikit-image combines a gentle learning curve, versatile image processing capabilities, and the scalable performance required for the high-throughput analysis of X-ray imaging data.
A versatile localization system for microscopic multiparametric analysis of cells.
Thaw, H H; Rundquist, I; Johansson, U; Svensson, I; Collins, V P
1983-03-01
A new, simple and relatively inexpensive electronic digital position readout (DPRO) system which can be applied to the rapid localization and recovery of microscopic material is described. It is based upon a commercially available digital position readout system which is routinely utilized by industry for small machine tools and measuring equipment. This has been mounted onto the stage of various microscopic instrumentation to provide X and Y coordinates relative to an arbitrary reference point. The integration of small computers interfaced to scanning interferometric, microdensitometric and fluorescence microscopes were used to demonstrate the reliability, versatility and ease of application of this system to problems of multiparametric measurements and analysis of cultured cells. The system may be expanded and applied to clinical material to obtain automatized, multiparametric measurements of cells in haematology and clinical cytology.
Atomic scale study of nanocontacts
NASA Astrophysics Data System (ADS)
Buldum, A.; Ciraci, S.; Batra, Inder P.; Fong, C. Y.
1998-03-01
Nanocontact and subsequent pulling off a sharp Ni(111) tip on a Cu(110) surface are investigated by using molecular dynamics method with embedded atom model. As the contact is formed, the sharp tip experiences multiple jump to contact in the attractive force range. The contact interface develops discontinuously mainly due to disorder-order transformations which lead to disappearance of a layer and hence abrupt changes in the normal force variation. Atom exchange occurs in the repulsive range. The connective neck is reduced also discontinuously by pulling off the tip. The novel atomic structure of the neck under the tensile force is analyzed. We also presented a comperative study for the contact by a Si(111) tip on Si(111)-(2x1) surface.
Arieti, Fabiana; Gabus, Caroline; Tambalo, Margherita; Huet, Tiphaine; Round, Adam; Thore, Stéphane
2014-06-01
The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs-the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3-RRM4 block is the main platform mediating the stable association with the H12-H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP-RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Edaq530: A Transparent, Open-End and Open-Source Measurement Solution in Natural Science Education
ERIC Educational Resources Information Center
Kopasz, Katalin; Makra, Peter; Gingl, Zoltan
2011-01-01
We present Edaq530, a low-cost, compact and easy-to-use digital measurement solution consisting of a thumb-sized USB-to-sensor interface and measurement software. The solution is fully open-source, our aim being to provide a viable alternative to professional solutions. Our main focus in designing Edaq530 has been versatility and transparency. In…
Interface formation in monolayer graphene-boron nitride heterostructures.
Sutter, P; Cortes, R; Lahiri, J; Sutter, E
2012-09-12
The ability to control the formation of interfaces between different materials has become one of the foundations of modern materials science. With the advent of two-dimensional (2D) crystals, low-dimensional equivalents of conventional interfaces can be envisioned: line boundaries separating different materials integrated in a single 2D sheet. Graphene and hexagonal boron nitride offer an attractive system from which to build such 2D heterostructures. They are isostructural, nearly lattice-matched, and isoelectronic, yet their different band structures promise interesting functional properties arising from their integration. Here, we use a combination of in situ microscopy techniques to study the growth and interface formation of monolayer graphene-boron nitride heterostructures on ruthenium. In a sequential chemical vapor deposition process, boron nitride grows preferentially at the edges of existing monolayer graphene domains, which can be exploited for synthesizing continuous 2D membranes of graphene embedded in boron nitride. High-temperature growth leads to intermixing near the interface, similar to interfacial alloying in conventional heterostructures. Using real-time microscopy, we identify processes that eliminate this intermixing and thus pave the way to graphene-boron nitride heterostructures with atomically sharp interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, S. L., E-mail: sobolev@icp.ac.ru
An analytical model has been developed to describe the influence of solute trapping during rapid alloy solidification on the components of the Gibbs free energy change at the phase interface with emphasis on the solute drag energy. For relatively low interface velocity V < V{sub D}, where V{sub D} is the characteristic diffusion velocity, all the components, namely mixing part, local nonequilibrium part, and solute drag, significantly depend on solute diffusion and partitioning. When V ≥ V{sub D}, the local nonequilibrium effects lead to a sharp transition to diffusionless solidification. The transition is accompanied by complete solute trapping and vanishingmore » solute drag energy, i.e. partitionless and “dragless” solidification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, H. L.; Mei, Z. X.; Zhang, Q. H.
2011-05-30
High-quality wurtzite MgZnO film was deposited on Si(111) substrate via a delicate interface engineering using BeO, by which solar-blind ultraviolet photodetectors were fabricated on the n-MgZnO(0001)/p-Si(111) heterojunction. A thin Be layer was deposited on clean Si surface with subsequent in situ oxidation processes, which provides an excellent template for high-Mg-content MgZnO growth. The interface controlling significantly improves the device performance, as the photodetector demonstrates a sharp cutoff wavelength at 280 nm, consistent with the optical band gap of the epilayer. Our experimental results promise potential applications of this technique in integration of solar-blind ultraviolet optoelectronic device with Si microelectronic technologies.
LaF3 insulators for MIS structures
NASA Technical Reports Server (NTRS)
Sher, A.; Tsuo, Y. H.; Moriarty, J. A.; Miller, W. E.; Crouch, R. K.; Seiber, B. A.
1979-01-01
Thin films of LaF3 deposited on Si or GaAs substrates have been observed to form blocking contacts with very high capacitances. This results in comparatively hysteresis-free and sharp C-V (capacitance-voltage) characteristics for MIS structures. Such structures have been used to study the interface states of GaAs with increased resolution and to construct improved photocapacitive infrared detectors.
Toward more versatile and intuitive cortical brain-machine interfaces.
Andersen, Richard A; Kellis, Spencer; Klaes, Christian; Aflalo, Tyson
2014-09-22
Brain-machine interfaces have great potential for the development of neuroprosthetic applications to assist patients suffering from brain injury or neurodegenerative disease. One type of brain-machine interface is a cortical motor prosthetic, which is used to assist paralyzed subjects. Motor prosthetics to date have typically used the motor cortex as a source of neural signals for controlling external devices. The review will focus on several new topics in the arena of cortical prosthetics. These include using: recordings from cortical areas outside motor cortex; local field potentials as a source of recorded signals; somatosensory feedback for more dexterous control of robotics; and new decoding methods that work in concert to form an ecology of decode algorithms. These new advances promise to greatly accelerate the applicability and ease of operation of motor prosthetics. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mazi, K.; Koussis, A. D.; Destouni, G.
2014-05-01
We investigate seawater intrusion in three prominent Mediterranean aquifers that are subject to intensive exploitation and modified hydrologic regimes by human activities: the Nile Delta, Israel Coastal and Cyprus Akrotiri aquifers. Using a generalized analytical sharp interface model, we review the salinization history and current status of these aquifers, and quantify their resilience/vulnerability to current and future seawater intrusion forcings. We identify two different critical limits of seawater intrusion under groundwater exploitation and/or climatic stress: a limit of well intrusion, at which intruded seawater reaches key locations of groundwater pumping, and a tipping point of complete seawater intrusion up to the prevailing groundwater divide of a coastal aquifer. Either limit can be reached, and ultimately crossed, under intensive aquifer exploitation and/or climate-driven change. We show that seawater intrusion vulnerability for different aquifer cases can be directly compared in terms of normalized intrusion performance curves. The site-specific assessments show that (a) the intruding seawater currently seriously threatens the Nile Delta aquifer, (b) in the Israel Coastal aquifer the sharp interface toe approaches the well location and (c) the Cyprus Akrotiri aquifer is currently somewhat less threatened by increased seawater intrusion.
Daschner De Tercero, Maren; Abbott, Nicholas L.
2013-01-01
Recent studies have reported that full monolayers of L-α-dilaurylphosphatidylcholine (L-DLPC) and D-α-dipalmitoylphosphatidylcholine (D-DPPC) formed at interfaces between thermotropic liquid crystals (LCs) and aqueous phases lead to homeotropic (perpendicular) orientations of nematic LCs and that specific binding of proteins to these interfaces (such as phospholipase A2 binding to D-DPPC) can trigger orientational ordering transitions in the liquid crystals. We report on the nonspecific interactions of proteins with aqueous-LC interfaces decorated with partial monolayer coverage of L-DLPC. Whereas nonspecific interactions of four proteins (cytochrome c, bovine serum albumin,immunoglobulins, and neutravidin) do not perturb the ordering of the LC when a full monolayer of L-DLPC is assembled at the aqueous-LC interface, we observe patterned orientational transitions in the LC that reflect penetration of proteins into the interface of the LC with partial monolayer coverage of L-DLPC. The spatial patterns formed by the proteins and lipids at the interface are surprisingly complex, and in some cases the protein domains are found to compartmentalize lipid within the interfaces. These results suggest that phospholipid-decorated interfaces between thermotropic liquid crystals and aqueous phases offer the basis of a simple and versatile tool to study the spatial organization and dynamics ofprotein networks formed at mobile, lipid-decorated interfaces. PMID:23671353
Nedelkoski, Zlatko; Kuerbanjiang, Balati; Glover, Stephanie E.; Sanchez, Ana M.; Kepaptsoglou, Demie; Ghasemi, Arsham; Burrows, Christopher W.; Yamada, Shinya; Hamaya, Kohei; Ramasse, Quentin M.; Hasnip, Philip J.; Hase, Thomas; Bell, Gavin R.; Hirohata, Atsufumi; Lazarov, Vlado K.
2016-01-01
Halfmetal-semiconductor interfaces are crucial for hybrid spintronic devices. Atomically sharp interfaces with high spin polarisation are required for efficient spin injection. In this work we show that thin film of half-metallic full Heusler alloy Co2FeSi0.5Al0.5 with uniform thickness and B2 ordering can form structurally abrupt interface with Ge(111). Atomic resolution energy dispersive X-ray spectroscopy reveals that there is a small outdiffusion of Ge into specific atomic planes of the Co2FeSi0.5Al0.5 film, limited to a very narrow 1 nm interface region. First-principles calculations show that this selective outdiffusion along the Fe-Si/Al atomic planes does not change the magnetic moment of the film up to the very interface. Polarized neutron reflectivity, x-ray reflectivity and aberration-corrected electron microscopy confirm that this interface is both magnetically and structurally abrupt. Finally, using first-principles calculations we show that this experimentally realised interface structure, terminated by Co-Ge bonds, preserves the high spin polarization at the Co2FeSi0.5Al0.5/Ge interface, hence can be used as a model to study spin injection from half-metals into semiconductors. PMID:27869132
Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankara Rama Krishnan, P. S.; Munroe, Paul; Nagarajan, V.
Cation intermixing at functional oxide interfaces remains a highly controversial area directly relevant to interface-driven nanoelectronic device properties. Here, we systematically explore the cation intermixing in epitaxial (001) oriented multiferroic bismuth ferrite (BFO) grown on a (001) lanthanum aluminate (LAO) substrate. Aberration corrected dedicated scanning transmission electron microscopy and electron energy loss spectroscopy reveal that the interface is not chemically sharp, but with an intermixing of ∼2 nm. The driving force for this process is identified as misfit-driven elastic strain. Landau-Ginzburg-Devonshire-based phenomenological theory was combined with the Sheldon and Shenoy formula in order to understand the influence of boundary conditions andmore » depolarizing fields arising from misfit strain between the LAO substrate and BFO film. The theory predicts the presence of a strong potential gradient at the interface, which decays on moving into the bulk of the film. This potential gradient is significant enough to drive the cation migration across the interface, thereby mitigating the misfit strain. Our results offer new insights on how chemical roughening at oxide interfaces can be effective in stabilizing the structural integrity of the interface without the need for misfit dislocations. These findings offer a general formalism for understanding cation intermixing at highly strained oxide interfaces that are used in nanoelectronic devices.« less
Theory of extrinsic and intrinsic heterojunctions in thermal equilibrium
NASA Technical Reports Server (NTRS)
Von Ross, O.
1980-01-01
A careful analysis of an abrupt heterojunction consisting of two distinct semiconductors either intrinsic or extrinsic is presented. The calculations apply to a one-dimensional, nondegenerate structure. Taking into account all appropriate boundary conditions, it is shown that the intrinsic Fermi level shows a discontinuity at the interface between the two materials which leads to a discontinuity of the valence band edge equal to the difference in the band gap energies of the two materials. The conduction band edge stays continuous however. This result is independent of possible charged interface states and in sharp contrast to the Anderson model. The reasons for this discrepancy are discussed.
A Programmable Plug & Play Sensor Interface for WSN Applications
Vera, Sergio D.; Bayo, Alberto; Medrano, Nicolás; Calvo, Belén; Celma, Santiago
2011-01-01
Cost reduction in wireless sensor networks (WSN) becomes a priority when extending their application to fields where a great number of sensors is needed, such as habitat monitoring, precision agriculture or diffuse greenhouse emission measurement. In these cases, the use of smart sensors is expensive, consequently requiring the use of low-cost sensors. The solution to convert such generic low-cost sensors into intelligent ones leads to the implementation of a versatile system with enhanced processing and storage capabilities to attain a plug and play electronic interface able to adapt to all the sensors used. This paper focuses on this issue and presents a low-voltage plug & play reprogrammable interface capable of adapting to different sensor types and achieving an optimum reading performance for every sensor. The proposed interface, which includes both electronic and software elements so that it can be easily integrated in WSN nodes, is described and experimental test results to validate its performance are given. PMID:22164118
Phase-field model of vapor-liquid-solid nanowire growth
NASA Astrophysics Data System (ADS)
Wang, Nan; Upmanyu, Moneesh; Karma, Alain
2018-03-01
We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth velocity and radius depending on the growth condition. For the basic normal growth mode, the steady-state solid-liquid interface tip shape consists of a main facet intersected by two truncated side facets ending at triple points. The ratio of truncated and main facet lengths are in quantitative agreement with the prediction of sharp-interface theory that is developed here for faceted nanowire growth in two dimensions.
Distributed Computerized Catalog System
NASA Technical Reports Server (NTRS)
Borgen, Richard L.; Wagner, David A.
1995-01-01
DarkStar Distributed Catalog System describes arbitrary data objects in unified manner, providing end users with versatile, yet simple search mechanism for locating and identifying objects. Provides built-in generic and dynamic graphical user interfaces. Design of system avoids some of problems of standard DBMS, and system provides more flexibility than do conventional relational data bases, or object-oriented data bases. Data-collection lattice partly hierarchical representation of relationships among collections, subcollections, and data objects.
One-step assembly of coordination complexes for versatile film and particle engineering.
Ejima, Hirotaka; Richardson, Joseph J; Liang, Kang; Best, James P; van Koeverden, Martin P; Such, Georgina K; Cui, Jiwei; Caruso, Frank
2013-07-12
The development of facile and versatile strategies for thin-film and particle engineering is of immense scientific interest. However, few methods can conformally coat substrates of different composition, size, shape, and structure. We report the one-step coating of various interfaces using coordination complexes of natural polyphenols and Fe(III) ions. Film formation is initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. Aqueous deposition is performed on a range of planar as well as inorganic, organic, and biological particle templates, demonstrating an extremely rapid technique for producing structurally diverse, thin films and capsules that can disassemble. The ease, low cost, and scalability of the assembly process, combined with pH responsiveness and negligible cytotoxicity, makes these films potential candidates for biomedical and environmental applications.
Human-scale interaction for virtual model displays: a clear case for real tools
NASA Astrophysics Data System (ADS)
Williams, George C.; McDowall, Ian E.; Bolas, Mark T.
1998-04-01
We describe a hand-held user interface for interacting with virtual environments displayed on a Virtual Model Display. The tool, constructed entirely of transparent materials, is see-through. We render a graphical counterpart of the tool on the display and map it one-to-one with the real tool. This feature, combined with a capability for touch- sensitive, discrete input, results in a useful spatial input device that is visually versatile. We discuss the tool's design and interaction techniques it supports. Briefly, we look at the human factors issues and engineering challenges presented by this tool and, in general, by the class of hand-held user interfaces that are see-through.
Real-time Experiment Interface for Biological Control Applications
Lin, Risa J.; Bettencourt, Jonathan; White, John A.; Christini, David J.; Butera, Robert J.
2013-01-01
The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment types: dynamic patch clamp and closed-loop stimulation pattern control in neural and cardiac single cell electrophysiology. RTXI includes standard plug-ins for implementing commonly used electrophysiology protocols with synchronized stimulation, event detection, and online analysis. These and other user-contributed plug-ins can be found on the website (http://www.rtxi.org). PMID:21096883
Phase-field modeling of stress-induced instabilities
NASA Astrophysics Data System (ADS)
Kassner, Klaus; Misbah, Chaouqi; Müller, Judith; Kappey, Jens; Kohlert, Peter
2001-03-01
A phase-field approach describing the dynamics of a strained solid in contact with its melt is developed. Using a formulation that is independent of the state of reference chosen for the displacement field, we write down the elastic energy in an unambiguous fashion, thus obtaining an entire class of models. According to the choice of reference state, the particular model emerging from this class will become equivalent to one of the two independently constructed models on which brief accounts have been given recently [J. Müller and M. Grant, Phys. Rev. Lett. 82, 1736 (1999); K. Kassner and C. Misbah, Europhys. Lett. 46, 217 (1999)]. We show that our phase-field approach recovers the sharp-interface limit corresponding to the continuum model equations describing the Asaro-Tiller-Grinfeld instability. Moreover, we use our model to derive hitherto unknown sharp-interface equations for a situation including a field of body forces. The numerical utility of the phase-field approach is demonstrated by reproducing some known results and by comparison with a sharp-interface simulation. We then proceed to investigate the dynamics of extended systems within the phase-field model which contains an inherent lower length cutoff, thus avoiding cusp singularities. It is found that a periodic array of grooves generically evolves into a superstructure which arises from a series of imperfect period doublings. For wave numbers close to the fastest-growing mode of the linear instability, the first period doubling can be obtained analytically. Both the dynamics of an initially periodic array and a random initial structure can be described as a coarsening process with winning grooves temporarily accelerating whereas losing ones decelerate and even reverse their direction of motion. In the absence of gravity, the end state of a laterally finite system is a single groove growing at constant velocity, as long as no secondary instabilities arise (that we have not been able to see with our code). With gravity, several grooves are possible, all of which are bound to stop eventually. A laterally infinite system approaches a scaling state in the absence of gravity and probably with gravity, too.
Le Pogam, Pierre; Le Lamer, Anne-Cécile; Legouin, Béatrice; Boustie, Joël; Rondeau, David
2016-11-01
Lichens widely occur all over the world and are known to produce unique secondary metabolites with various biological activities. To develop high-throughput screening approaches requiring little to no sample preparation to alleviate the dereplication holdup and accelerate the discovery workflow of new structures from lichens. The extracellular distribution of lichen metabolites is incentive for in situ chemical profiling of lichens using the ambient mass spectrometry DART-MS. For this purpose, the chlorolichen Ophioparma ventosa, producing an array of lichen polyphenolics that encompass the main structural classes associated to lichen chemodiversity, represented a relevant model to assess the versatility of this platform. The feasibility of this approach was first established by analysing the pure compounds known from this species prior to being extended to different solid organs of the lichen. All tested compounds could be detected in positive and negative ion modes, most often with prevalent protonated or deprotonated molecules. Only depsides underwent a significant in-source fragmentation in both ionisation modes, which should be regarded as an added value for their structural elucidation. In situ DART-MS analyses of Ophioparma ventosa provided an extensive chemical profile and noteworthy pinpointed miriquidic acid, an unusual lichen depside so far unknown within this species. At last, in situ DART-MS granted a first insight into the distribution of the metabolites within the lichen. DART-MS represents a versatile tool to the wide field of lichenology, facilitating accelerated and sharp analyses of lichens and bypassing costly and tedious procedures of solvent extraction. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Xi-cam: a versatile interface for data visualization and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandolfi, Ronald J.; Allan, Daniel B.; Arenholz, Elke
Xi-cam is an extensible platform for data management, analysis and visualization.Xi-camaims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core ofXi-camis an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms. Plugins are available for SAXS/WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. WithXi-cam's `advanced' mode, data processing steps are designed as a graph-based workflow, which can be executed live, locally or remotely. Remote execution utilizes high-performance computing or de-localized resources, allowing for the effective reduction of high-throughput data.Xi-cam's plugin-based architecture targetsmore » cross-facility and cross-technique collaborative development, in support of multi-modal analysis.Xi-camis open-source and cross-platform, and available for download on GitHub.« less
Xi-cam: a versatile interface for data visualization and analysis
Pandolfi, Ronald J.; Allan, Daniel B.; Arenholz, Elke; ...
2018-05-31
Xi-cam is an extensible platform for data management, analysis and visualization.Xi-camaims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core ofXi-camis an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms. Plugins are available for SAXS/WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. WithXi-cam's `advanced' mode, data processing steps are designed as a graph-based workflow, which can be executed live, locally or remotely. Remote execution utilizes high-performance computing or de-localized resources, allowing for the effective reduction of high-throughput data.Xi-cam's plugin-based architecture targetsmore » cross-facility and cross-technique collaborative development, in support of multi-modal analysis.Xi-camis open-source and cross-platform, and available for download on GitHub.« less
Saravanan, K; Panigrahi, B K; Suresh, K; Sundaravel, B; Magudapathy, P; Gupta, Mukul
2018-08-24
Ion beam irradiation technique has been proposed, for efficient, fast and eco-friendly reduction of graphene oxide (GO), as an alternative to the conventional methods. 5 MeV, Au + ion beam has been used to reduce the free standing GO flake. Both electronic and nuclear energy loss mechanisms of the irradiation process play a major role in removal of oxygen moieties and recovery of graphene network. Atomic resolution scanning tunnelling microscopy analysis of the irradiated GO flake shows the characteristic honeycomb structure of graphene. X-ray absorption near edge structure analysis at C K-edge reveals that the features of the irradiated GO flake resemble the few layer graphene. Resonant Rutherford backscattering spectrometry analysis evidenced an enhanced C/O ratio of ∼23 in the irradiated GO. In situ sheet resistance measurements exhibit a sharp decrease of resistance (few 100 s of Ω) at a fluence of 6.5 × 10 14 ions cm -2 . Photoluminescence spectroscopic analysis of irradiated GO shows a sharp blue emission, while pristine GO exhibits a broad emission in the visible-near IR region. Region selective reduction, tunable electrical and optical properties by controlling C/O ratio makes ion irradiation as a versatile tool for the green reduction of GO for diverse applications.
NASA Astrophysics Data System (ADS)
Gnyawali, Surya C.; Blum, Kevin; Pal, Durba; Ghatak, Subhadip; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.
2017-01-01
Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system.
Gnyawali, Surya C.; Blum, Kevin; Pal, Durba; Ghatak, Subhadip; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.
2017-01-01
Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system. PMID:28106129
Photoemission from buried interfaces in SrTiO3/LaTiO3 superlattices.
Takizawa, M; Wadati, H; Tanaka, K; Hashimoto, M; Yoshida, T; Fujimori, A; Chikamatsu, A; Kumigashira, H; Oshima, M; Shibuya, K; Mihara, T; Ohnishi, T; Lippmaa, M; Kawasaki, M; Koinuma, H; Okamoto, S; Millis, A J
2006-08-04
We have measured photoemission spectra of SrTiO3/LaTiO3 superlattices with a topmost SrTiO3 layer of variable thickness. A finite coherent spectral weight with a clear Fermi cutoff was observed at chemically abrupt SrTiO3/LaTiO3 interfaces, indicating that an "electronic reconstruction" occurs at the interface between the Mott insulator LaTiO3 and the band insulator SrTiO3. For SrTiO3/LaTiO3 interfaces annealed at high temperatures (approximately 1000 degrees C), which leads to Sr/La atomic interdiffusion and hence to the formation of La(1-x)Sr(x)TiO3-like material, the intensity of the incoherent part was found to be dramatically reduced whereas the coherent part with a sharp Fermi cutoff was enhanced due to the spread of charge. These important experimental features are well reproduced by layer dynamical-mean-field-theory calculation.
System for concentrating and analyzing particles suspended in a fluid
Fiechtner, Gregory J [Bethesda, MD; Cummings, Eric B [Livermore, CA; Singh, Anup K [Danville, CA
2011-04-26
Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.
Apparatus and method for concentrating and filtering particles suspended in a fluid
Fiechtner, Gregory J [Bethesda, MD; Cummings, Eric B [Livermore, CA; Singh, Anup K [Danville, CA
2009-05-19
Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.
NASA Astrophysics Data System (ADS)
Bretin, Elie; Danescu, Alexandre; Penuelas, José; Masnou, Simon
2018-07-01
The structure of many multiphase systems is governed by an energy that penalizes the area of interfaces between phases weighted by surface tension coefficients. However, interface evolution laws depend also on interface mobility coefficients. Having in mind some applications where highly contrasted or even degenerate mobilities are involved, for which classical phase field models are inapplicable, we propose a new effective phase field approach to approximate multiphase mean curvature flows with mobilities. The key aspect of our model is to incorporate the mobilities not in the phase field energy (which is conventionally the case) but in the metric which determines the gradient flow. We show the consistency of such an approach by a formal analysis of the sharp interface limit. We also propose an efficient numerical scheme which allows us to illustrate the advantages of the model on various examples, as the wetting of droplets on solid surfaces or the simulation of nanowires growth generated by the so-called vapor-liquid-solid method.
Proximity-induced superconductivity in all-silicon superconductor /normal-metal junctions
NASA Astrophysics Data System (ADS)
Chiodi, F.; Duvauchelle, J.-E.; Marcenat, C.; Débarre, D.; Lefloch, F.
2017-07-01
We have realized laser-doped all-silicon superconducting (S)/normal metal (N) bilayers of tunable thickness and dopant concentration. We observed a strong reduction of the bilayers' critical temperature when increasing the normal metal thickness, a signature of the highly transparent S/N interface associated to the epitaxial sharp laser doping profile. We extracted the interface resistance by fitting with the linearized Usadel equations, demonstrating a reduction of 1 order of magnitude from previous superconductor/doped Si interfaces. In this well-controlled crystalline system we exploited the low-resistance S/N interfaces to elaborate all-silicon lateral SNS junctions with long-range proximity effect. Their dc transport properties, such as the critical and retrapping currents, could be well understood in the diffusive regime. Furthermore, this work led to the estimation of important parameters in ultradoped superconducting Si, such as the Fermi velocity, the coherence length, or the electron-phonon coupling constant, fundamental to conceive all-silicon superconducting electronics.
Structural differences between superconducting and non-superconducting CaCuO2/SrTiO3 interfaces
NASA Astrophysics Data System (ADS)
Zarotti, Francesca; Di Castro, Daniele; Felici, Roberto; Balestrino, Giuseppe
2018-06-01
A study of the interface structure of superconducting and non-superconducting CaCuO2/SrTiO3 heterostructures grown on NdGaO3(110) substrates is reported. Using the combination of high resolution x-ray reflectivity and surface diffraction, the crystallographic structure of superconducting and non-superconducting samples has been investigated. The analysis has demonstrated the excellent sharpness of the CaCuO2/SrTiO3 interface (roughness smaller than one perovskite unit cell). Furthermore, we were able to discriminate between the superconducting and the non-superconducting phase. In the former case, we found an increase of the spacing between the topmost Ca plane of CaCuO2 block and the first TiO2 plane of the overlaying STO block, relative to the non-superconducting case. These results are in agreement with the model that foresees a strong oxygen incorporation in the interface Ca plane in the superconducting heterostructures.
Ruthenium(II)-catalysed remote C-H alkylations as a versatile platform to meta-decorated arenes
NASA Astrophysics Data System (ADS)
Li, Jie; Korvorapun, Korkit; de Sarkar, Suman; Rogge, Torben; Burns, David J.; Warratz, Svenja; Ackermann, Lutz
2017-06-01
The full control of positional selectivity is of prime importance in C-H activation technology. Chelation assistance served as the stimulus for the development of a plethora of ortho-selective arene functionalizations. In sharp contrast, meta-selective C-H functionalizations continue to be scarce, with all ruthenium-catalysed transformations currently requiring difficult to remove or modify nitrogen-containing heterocycles. Herein, we describe a unifying concept to access a wealth of meta-decorated arenes by a unique arene ligand effect in proximity-induced ruthenium(II) C-H activation catalysis. The transformative nature of our strategy is mirrored by providing a step-economical entry to a range of meta-substituted arenes, including ketones, acids, amines and phenols--key structural motifs in crop protection, material sciences, medicinal chemistry and pharmaceutical industries.
Barz, F; Livi, A; Lanzilotto, M; Maranesi, M; Bonini, L; Paul, O; Ruther, P
2017-06-01
Application-specific designs of electrode arrays offer an improved effectiveness for providing access to targeted brain regions in neuroscientific research and brain machine interfaces. The simultaneous and stable recording of neuronal ensembles is the main goal in the design of advanced neural interfaces. Here, we describe the development and assembly of highly customizable 3D microelectrode arrays and demonstrate their recording performance in chronic applications in non-human primates. System assembly relies on a microfabricated stacking component that is combined with Michigan-style silicon-based electrode arrays interfacing highly flexible polyimide cables. Based on the novel stacking component, the lead time for implementing prototypes with altered electrode pitches is minimal. Once the fabrication and assembly accuracy of the stacked probes have been characterized, their recording performance is assessed during in vivo chronic experiments in awake rhesus macaques (Macaca mulatta) trained to execute reaching-grasping motor tasks. Using a single set of fabrication tools, we implemented three variants of the stacking component for electrode distances of 250, 300 and 350 µm in the stacking direction. We assembled neural probes with up to 96 channels and an electrode density of 98 electrodes mm -2 . Furthermore, we demonstrate that the shank alignment is accurate to a few µm at an angular alignment better than 1°. Three 64-channel probes were chronically implanted in two monkeys providing single-unit activity on more than 60% of all channels and excellent recording stability. Histological tissue sections, obtained 52 d after implantation from one of the monkeys, showed minimal tissue damage, in accordance with the high quality and stability of the recorded neural activity. The versatility of our fabrication and assembly approach should significantly support the development of ideal interface geometries for a broad spectrum of applications. With the demonstrated performance, these probes are suitable for both semi-chronic and chronic applications.
NASA Astrophysics Data System (ADS)
Barz, F.; Livi, A.; Lanzilotto, M.; Maranesi, M.; Bonini, L.; Paul, O.; Ruther, P.
2017-06-01
Objective. Application-specific designs of electrode arrays offer an improved effectiveness for providing access to targeted brain regions in neuroscientific research and brain machine interfaces. The simultaneous and stable recording of neuronal ensembles is the main goal in the design of advanced neural interfaces. Here, we describe the development and assembly of highly customizable 3D microelectrode arrays and demonstrate their recording performance in chronic applications in non-human primates. Approach. System assembly relies on a microfabricated stacking component that is combined with Michigan-style silicon-based electrode arrays interfacing highly flexible polyimide cables. Based on the novel stacking component, the lead time for implementing prototypes with altered electrode pitches is minimal. Once the fabrication and assembly accuracy of the stacked probes have been characterized, their recording performance is assessed during in vivo chronic experiments in awake rhesus macaques (Macaca mulatta) trained to execute reaching-grasping motor tasks. Main results. Using a single set of fabrication tools, we implemented three variants of the stacking component for electrode distances of 250, 300 and 350 µm in the stacking direction. We assembled neural probes with up to 96 channels and an electrode density of 98 electrodes mm-2. Furthermore, we demonstrate that the shank alignment is accurate to a few µm at an angular alignment better than 1°. Three 64-channel probes were chronically implanted in two monkeys providing single-unit activity on more than 60% of all channels and excellent recording stability. Histological tissue sections, obtained 52 d after implantation from one of the monkeys, showed minimal tissue damage, in accordance with the high quality and stability of the recorded neural activity. Significance. The versatility of our fabrication and assembly approach should significantly support the development of ideal interface geometries for a broad spectrum of applications. With the demonstrated performance, these probes are suitable for both semi-chronic and chronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliviero, E.; David, M. L.; Beaufort, M. F.
The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes placemore » and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.« less
Arieti, Fabiana; Gabus, Caroline; Tambalo, Margherita; Huet, Tiphaine; Round, Adam; Thore, Stéphane
2014-01-01
The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs—the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3–RRM4 block is the main platform mediating the stable association with the H12–H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP–RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions. PMID:24748666
Column formation and hysteresis in a two-fluid tornado
NASA Astrophysics Data System (ADS)
Sharifullin, B. R.; Naumov, I. V.; Herrada, M. A.; Shtern, V. N.
2018-03-01
This experimental and numerical study addresses a flow of water and sunflower oil. This flow is driven by the rotating lid in a sealed vertical cylinder. The experiments were performed in a glass container with a radius of 45 mm and a height of 45 mm with the water volume fraction of 20%. Different densities and immiscibility of liquids provide the stable and sharp interface. At the rest, the interface is flat and horizontal. As the rotation speeds up, a new water-flow cell emerges near the bottom center. This cell expands and occupies almost the entire water domain while the initial water circulation shrinks into a thin layer adjacent to the interface. The water, rising near the container axis, strongly deforms the interface (upward near the axis and downward near the sidewall). A new oil-flow cell emerges above the interface near the axis. This cell disappears as the interface approaches the lid. The water separates from the sidewall, reaches the lid, and forms a column. As the rotation is decreased, the scenario reverses, but the flow states differ from those for the increasing rotation, i.e., a hysteresis is observed. The numerical simulations agree with the experiment and help explain the flow metamorphoses.
Dependence of surface tension on curvature obtained from a diffuse-interface approach
NASA Astrophysics Data System (ADS)
Badillo, Arnoldo; Lafferty, Nathan; Matar, Omar K.
2017-11-01
From a sharp-interface viewpoint, the surface tension force is f = σκδ (x -xi) n , where σ is the surface tension, κ the local interface curvature, δ the delta function, and n the unit normal vector. The numerical implementation of this force on discrete domains poses challenges that arise from the calculation of the curvature. The continuous surface tension force model, proposed by Brackbill et al. (1992), is an alternative, used commonly in two-phase computational models. In this model, δ is replaced by the gradient of a phase indicator field, whose integral across a diffuse-interface equals unity. An alternative to the Brackbill model are Phase-Field models, which do not require an explicit calculation of the curvature. However, and just as in Brackbill's approach, there are numerical errors that depend on the thickness of the diffuse interface, the grid spacing, and the curvature. We use differential geometry to calculate the leading errors in this force when obtained from a diffuse-interface approach, and outline possible routes to eliminate them. Our results also provide a simple geometrical explanation to the dependence of surface tension on curvature, and to the problem of line tension.
Simulating shock-bubble interactions at water-gelatin interfaces
NASA Astrophysics Data System (ADS)
Adami, Stefan; Kaiser, Jakob; Bermejo-Moreno, Ivan; Adams, Nikolaus
2016-11-01
Biomedical problems are often driven by fluid dynamics, as in vivo organisms are usually composed of or filled with fluids that (strongly) affected their physics. Additionally, fluid dynamical effects can be used to enhance certain phenomena or destroy organisms. As examples, we highlight the benign potential of shockwave-driven kidney-stone lithotripsy or sonoporation (acoustic cavitation of microbubbles) to improve drug delivery into cells. During the CTR SummerProgram 2016 we have performed axisymmetric three-phase simulations of a shock hitting a gas bubble in water near a gelatin interface mimicking the fundamental process during sonoporation. We used our multi-resolution finite volume method with sharp interface representation (level-set), WENO-5 shock capturing and interface scale-separation and compared the results with a diffuse-interface method. Qualitatively our simulation results agree well with the reference. Due to the interface treatment the pressure profiles are sharper in our simulations and bubble collapse dynamics are predicted at shorter time-scales. Validation with free-field collapse (Rayleigh collapse) shows very good agreement. The project leading to this application has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No 667483).
González-Ruiz, Víctor; Codesido, Santiago; Rudaz, Serge; Schappler, Julie
2018-03-01
Although several interfaces for CE-MS hyphenation are commercially available, the development of new versatile, simple and yet efficient and sensitive alternatives remains an important field of research. In a previous work, a simple low sheath-flow interface was developed from inexpensive parts. This interface features a design easy to build, maintain, and adapt to particular needs. The present work introduces an improved design of the previous interface. By reducing the diameter of the separation capillary and the emitter, a smaller Taylor cone is spontaneously formed, minimizing the zone dispersion while the analytes go through the interface and leading to less peak broadening associated to the ESI process. Numerical modeling allowed studying the mixing and diffusion processes taking place in the Taylor cone. The analytical performance of this new interface was tested with pharmaceutically relevant molecules and endogenous metabolites. The interface was eventually applied to the analysis of neural cell culture samples, allowing the identification of a panel of neurotransmission-related molecules. An excellent migration time repeatability was obtained (intra-day RSD <0.5% for most compounds, and <3.0% for inter-day precision). Most metabolites showed S/N ratios >10 with an injected volume of 6.7 nL of biological extract. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphical interface between the CIRSSE testbed and CimStation software with MCS/CTOS
NASA Technical Reports Server (NTRS)
Hron, Anna B.
1992-01-01
This research is concerned with developing a graphical simulation of the testbed at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) and the interface which allows for communication between the two. Such an interface is useful in telerobotic operations, and as a functional interaction tool for testbed users. Creating a simulated model of a real world system, generates inevitable calibration discrepancies between them. This thesis gives a brief overview of the work done to date in the area of workcell representation and communication, describes the development of the CIRSSE interface, and gives a direction for future work in the area of system calibration. The CimStation software used for development of this interface, is a highly versatile robotic workcell simulation package which has been programmed for this application with a scale graphical model of the testbed, and supporting interface menu code. A need for this tool has been identified for the reasons of path previewing, as a window on teleoperation and for calibration of simulated vs. real world models. The interface allows information (i.e., joint angles) generated by CimStation to be sent as motion goal positions to the testbed robots. An option of the interface has been established such that joint angle information generated by supporting testbed algorithms (i.e., TG, collision avoidance) can be piped through CimStation as a visual preview of the path.
Sensitive singular-phase optical detection without phase measurements with Tamm plasmons.
Boriskina, Svetlana V; Tsurimaki, Yoichiro
2018-06-06
Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.
Sensitive singular-phase optical detection without phase measurements with Tamm plasmons
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Tsurimaki, Yoichiro
2018-06-01
Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.
A topological quantum optics interface
NASA Astrophysics Data System (ADS)
Barik, Sabyasachi; Karasahin, Aziz; Flower, Christopher; Cai, Tao; Miyake, Hirokazu; DeGottardi, Wade; Hafezi, Mohammad; Waks, Edo
2018-02-01
The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder. Although considerable progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored. We demonstrate a strong interface between single quantum emitters and topological photonic states. Our approach creates robust counterpropagating edge states at the boundary of two distinct topological photonic crystals. We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends. This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing.
NASA Astrophysics Data System (ADS)
Spalenka, Josef W.; Mannebach, Ehren M.; Bindl, Dominick J.; Arnold, Michael S.; Evans, Paul G.
2011-11-01
Pentacene field-effect transistors incorporating ZnO quantum dots can be used as a sensitive probe of the optical properties of a buried donor-acceptor interface. Photoinduced charge transfer between pentacene and ZnO in these devices varies with incident photon energy and reveals which energies will contribute most to charge transfer in other structures. A subsequent slow return to the dark state following the end of illumination arises from near-interface traps. Charge transfer has a sharp onset at 1.7 eV and peaks at 1.82 and 2.1 eV due to transitions associated with excitons, features absent in pentacene FETs without ZnO.
Density profile of nitrogen in cylindrical pores of MCM-41
NASA Astrophysics Data System (ADS)
Soper, Alan K.; Bowron, Daniel T.
2017-09-01
A straightforward approach using radiation scattering (X-ray or neutron) combined with atomistic modelling is used to accurately assess the pore dimensions in the porous silica, MCM-41. The method is used to calculate the density profile of nitrogen absorbed in this material at a variety of fractional pressures, p/p0, where p0 is the saturated vapour pressure, up to p/p0 = 0.36 at T = 87 K in the present instance. At this pressure two distinct layers of liquid nitrogen occur on the silica surface, with a relatively sharp gas-liquid interface. It is suggested surface tension effects at this interface strongly influence the growth of further layers.
Aland, Sebastian; Lowengrub, John; Voigt, Axel
2012-10-01
Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.
Interaction of Porosity with a Planar Solid/Liquid Interface
NASA Technical Reports Server (NTRS)
Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William F.
2004-01-01
In this article, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite-difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray transmission microscope (XTM). The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate, and the change in shape of the porosity during interaction with the SL interface in pure Al and Al-0.25 wt pct Au alloy. In addition, porosity-induced solute segregation patterns surrounding a pore were also quantified.
The development of technology for growing InAs/GaSb superlattices by MOCVD
NASA Astrophysics Data System (ADS)
Fedorov, I. V.; Levin, R. V.; Nevedomsky, V. N.
2018-03-01
This study is dedicated to developing the technology for growing InAs/GaSb superlattices (SLs) by MOCVD. The structures were studied by transmission electron microscopy (TEM) and photoluminescence (PL) methods. We concluded that hetero-interface sharpness is not affected by the pause time between growth stages for separate layers or by switching the layer direction. A possible interpretation for the spectra of SLs was suggested.
Method for forming monolayer graphene-boron nitride heterostructures
Sutter, Peter Werner; Sutter, Eli Anguelova
2016-08-09
A method for fabricating monolayer graphene-boron nitride heterostructures in a single atomically thin membrane that limits intermixing at boundaries between graphene and h-BN, so as to achieve atomically sharp interfaces between these materials. In one embodiment, the method comprises exposing a ruthenium substrate to ethylene, exposing the ruthenium substrate to oxygen after exposure to ethylene and exposing the ruthenium substrate to borazine after exposure to oxygen.
Mesoscale assembly of chemically modified graphene into complex cellular networks
Barg, Suelen; Perez, Felipe Macul; Ni, Na; do Vale Pereira, Paula; Maher, Robert C.; Garcia-Tuñon, Esther; Eslava, Salvador; Agnoli, Stefano; Mattevi, Cecilia; Saiz, Eduardo
2014-01-01
The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels. Here, we describe a versatile technique to build ultralight (density ≥1 mg cm−3) cellular networks based on the use of soft templates and the controlled segregation of chemically modified graphene to liquid interfaces. These novel structures can be tuned for excellent conductivity; versatile mechanical response (elastic-brittle to elastomeric, reversible deformation, high energy absorption) and organic absorption capabilities (above 600 g per gram of material). The approach can be used to uncover the basic principles that will guide the design of practical devices that by combining unique mechanical and functional performance will generate new technological opportunities. PMID:24999766
Three-Dimensional Electrodes for High-Performance Bioelectrochemical Systems
Yu, Yang-Yang; Zhai, Dan-Dan; Si, Rong-Wei; Sun, Jian-Zhong; Liu, Xiang; Yong, Yang-Chun
2017-01-01
Bioelectrochemical systems (BES) are groups of bioelectrochemical technologies and platforms that could facilitate versatile environmental and biological applications. The performance of BES is mainly determined by the key process of electron transfer at the bacteria and electrode interface, which is known as extracellular electron transfer (EET). Thus, developing novel electrodes to encourage bacteria attachment and enhance EET efficiency is of great significance. Recently, three-dimensional (3D) electrodes, which provide large specific area for bacteria attachment and macroporous structures for substrate diffusion, have emerged as a promising electrode for high-performance BES. Herein, a comprehensive review of versatile methodology developed for 3D electrode fabrication is presented. This review article is organized based on the categorization of 3D electrode fabrication strategy and BES performance comparison. In particular, the advantages and shortcomings of these 3D electrodes are presented and their future development is discussed. PMID:28054970
Design of Plant Eco-physiology Monitoring System Based on Embedded Technology
NASA Astrophysics Data System (ADS)
Li, Yunbing; Wang, Cheng; Qiao, Xiaojun; Liu, Yanfei; Zhang, Xinlu
A real time system has been developed to collect plant's growth information comprehensively. Plant eco-physiological signals can be collected and analyzed effectively. The system adopted embedded technology: wireless sensors network collect the eco-physiological information. Touch screen and ARM microprocessor make the system work independently without PC. The system is versatile and all parameters can be set by the touch screen. Sensors' intelligent compensation can be realized in this system. Information can be displayed by either graphically or in table mode. The ARM microprocessor provides the interface to connect with the internet, so the system support remote monitoring and controlling. The system has advantages of friendly interface, flexible construction and extension. It's a good tool for plant's management.
NASA Technical Reports Server (NTRS)
Ables, Brett
2014-01-01
Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile mission scope.
Pre- and post-processing for Cosmic/NASTRAN on personal computers and mainframes
NASA Technical Reports Server (NTRS)
Kamel, H. A.; Mobley, A. V.; Nagaraj, B.; Watkins, K. W.
1986-01-01
An interface between Cosmic/NASTRAN and GIFTS has recently been released, combining the powerful pre- and post-processing capabilities of GIFTS with Cosmic/NASTRAN's analysis capabilities. The interface operates on a wide range of computers, even linking Cosmic/NASTRAN and GIFTS when the two are on different computers. GIFTS offers a wide range of elements for use in model construction, each translated by the interface into the nearest Cosmic/NASTRAN equivalent; and the options of automatic or interactive modelling and loading in GIFTS make pre-processing easy and effective. The interface itself includes the programs GFTCOS, which creates the Cosmic/NASTRAN input deck (and, if desired, control deck) from the GIFTS Unified Data Base, COSGFT, which translates the displacements from the Cosmic/NASTRAN analysis back into GIFTS; and HOSTR, which handles stress computations for a few higher-order elements available in the interface, but not supported by the GIFTS processor STRESS. Finally, the versatile display options in GIFTS post-processing allow the user to examine the analysis results through an especially wide range of capabilities, including such possibilities as creating composite loading cases, plotting in color and animating the analysis.
On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension
NASA Astrophysics Data System (ADS)
Rohde, Christian; Zeiler, Christoph
2018-06-01
We consider a sharp interface approach for the inviscid isothermal dynamics of compressible two-phase flow that accounts for phase transition and surface tension effects. Kinetic relations are frequently used to fix the mass exchange and entropy dissipation rate across the interface. The complete unidirectional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.
Versatile dual organic interface layer for performance enhancement of polymer solar cells
NASA Astrophysics Data System (ADS)
Li, Zhiqi; Liu, Chunyu; Zhang, Zhihui; Li, Jinfeng; Zhang, Liu; Zhang, Xinyuan; Shen, Liang; Guo, Wenbin; Ruan, Shengping
2016-11-01
The electron transport layer plays a crucial role on determining electron injection and extraction, resulting from the effect of balancing charge transport and reducing the interfacial energy barrier. Decreasing the inherent incompatibility and enhancing electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collection. Herein, we demonstrate that an efficient dual polyelectrolytes interfacial layer composed of polyethylenimine (PEI) and conducting poly(9,9-dihexylfluorenyl-2,7-diyl) (PDHFD) is incorporated to investigate the interface energetics and electron transport in polymer solar cells (PSCs). The composited PEI/PDHFD interface layer (PPIL) overcomed the low conductivity of bare PEI polymer, which decreased series resistance and facilitated electron extraction at the ITO/PPIL-active layer interface. The introduction of the interface energy state of the PPIL reduced the work function of ITO so that it can mate the top of the valence band of the photoactive materials and promoted the formation of ohmic contact at ITO electrode interface. As a result, the composited PPIL tuned energy alignment and accelerated the electron transfer, leading to significantly increased photocurrent and power conversion efficiency (PCE) of the devices based on various representative polymer:fullerene systems.
Passive scalar dynamics near the turbulent/nonturbulent interface in a jet
NASA Astrophysics Data System (ADS)
Taveira, Rodrigo R.; da Silva, Carlos
2011-11-01
The present work uses several direct numerical simulations (DNS) of turbulent planar jets at Reynolds number ranging from Reλ = 120 to Reλ = 160 and Schmidt numbers raging from Sc = 0 . 7 to 7.0 to analyze the nature and properties of the ``scalar interface'' and to investigate the dynamics of turbulent mixing of a passive scalar. Specifically, we employ conditional statistics in relation to the distance from the T/NT interface in order to eliminate the intermittency that affects common turbulence statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces and their associated turbulent scales and topology are investigated. A sharp scalar interface exists separating the Turbulent and the irrotational flow regions. The thickness of this scalar interface δθ is also of the order of the Taylor micro-scale, λ. However, the thickness of the scalar gradient variance <θ2 >I (where Gj = ∂ θ / ∂xj) is much smaller. Very intense scalar gradient sheet structures along regions of intense strain, in particular at the T/NT interface. The scalar gradient transport equation is analyzed in order to further investigate the physical mechanism of scalar turbulent mixing at the jet edge. Almost all mixing takes place in a confined region close to the interface, beyond which they become reduced to an almost in perfect - balance between production and dissipation of scalar variance.
High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording
NASA Astrophysics Data System (ADS)
Kim, Seong-Min; Kim, Nara; Kim, Youngseok; Baik, Min-Seo; Yoo, Minsu; Kim, Dongyoon; Lee, Won-June; Kang, Dong-Hee; Kim, Sohee; Lee, Kwanghee; Yoon, Myung-Han
2018-04-01
Due to the trade-off between their electrical/electrochemical performance and underwater stability, realizing polymer-based, high-performance direct cellular interfaces for electrical stimulation and recording has been very challenging. Herein, we developed transparent and conductive direct cellular interfaces based on a water-stable, high-performance poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) film via solvent-assisted crystallization. The crystallized PEDOT:PSS on a polyethylene terephthalate (PET) substrate exhibited excellent electrical/electrochemical/optical characteristics, long-term underwater stability without film dissolution/delamination, and good viability for primarily cultured cardiomyocytes and neurons over several weeks. Furthermore, the highly crystallized, nanofibrillar PEDOT:PSS networks enabled dramatically enlarged surface areas and electrochemical activities, which were successfully employed to modulate cardiomyocyte beating via direct electrical stimulation. Finally, the high-performance PEDOT:PSS layer was seamlessly incorporated into transparent microelectrode arrays for efficient, real-time recording of cardiomyocyte action potentials with a high signal fidelity. All these results demonstrate the strong potential of crystallized PEDOT:PSS as a crucial component for a variety of versatile bioelectronic interfaces.
RF-powered BIONs for stimulation and sensing.
Loeb, G E; Richmond, F J R; Singh, J; Peck, R A; Tan, W; Zou, Q; Sachs, N
2004-01-01
Virtually all bodily functions are controlled by electrical signals in nerves and muscles. Electrical stimulation can restore missing signals but this has been difficult to achieve practically because of limitations in the bioelectric interfaces. Wireless, injectable microdevices are versatile, robust and relatively inexpensive to implant in a variety of sites and applications. Several variants are now in clinical use or under development to perform stimulation and/or sensing functions and to operate autonomously or with continuous coordination and feedback control.
JTHERGAS: Thermodynamic Estimation from 2D Graphical Representations of Molecules
Blurock, Edward; Warth, V.; Grandmougin, X.; Bounaceur, R.; Glaude, P.A.; Battin-Leclerc, F.
2013-01-01
JTHERGAS is a versatile calculator (implemented in JAVA) to estimate thermodynamic information from two dimensional graphical representations of molecules and radicals involving covalent bonds based on the Benson additivity method. The versatility of JTHERGAS stems from its inherent philosophy that all the fundamental data used in the calculation should be visible, to see exactly where the final values came from, and modifiable, to account for new data that can appear in the literature. The main use of this method is within automatic combustion mechanism generation systems where fast estimation of a large number and variety of chemical species is needed. The implementation strategy is based on meta-atom definitions and substructure analysis allowing a highly extensible database without modification of the core algorithms. Several interfaces for the database and the calculations are provided from terminal line commands, to graphical interfaces to web-services. The first order estimation of thermodynamics is based summing up the contributions of each heavy atom bonding description. Second order corrections due to steric hindrance and ring strain are made. Automatic estimate of contributions due to internal, external and optical symmetries are also made. The thermodynamical data for radicals is calculated by taking the difference due to the lost of a hydrogen radical taking into account changes in symmetry, spin, rotations, vibrations and steric hindrances. The software is public domain and is based on standard libraries such as CDK and CML. PMID:23761949
Leong, Jun-Yee; Tey, Beng-Ti; Tan, Chin-Ping; Chan, Eng-Seng
2015-08-05
Ionotropic gelation has been an attractive method for the fabrication of biopolymeric oil-core microcapsules due to its safe and mild processing conditions. However, the mandatory use of a nozzle system to form the microcapsules restricts the process scalability and the production of small microcapsules (<100 μm). We report, for the first time, a nozzleless and surfactant-free approach to fabricate oil-core biopolymeric microcapsules through ionotropic gelation at the interface of an O/W Pickering emulsion. This approach involves the self-assembly of calcium carbonate (CaCO3) nanoparticles at the interface of O/W emulsion droplets followed by the addition of a polyanionic biopolymer into the aqueous phase. Subsequently, CaCO3 nanoparticles are dissolved by pH reduction, thus liberating Ca(2+) ions to cross-link the surrounding polyanionic biopolymer to form a shell that encapsulates the oil droplet. We demonstrate the versatility of this method by fabricating microcapsules from different types of polyanionic biopolymers (i.e., alginate, pectin, and gellan gum) and water-immiscible liquid cores (i.e., palm olein, cyclohexane, dichloromethane, and toluene). In addition, small microcapsules with a mean size smaller than 100 μm can be produced by selecting the appropriate conventional emulsification methods available to prepare the Pickering emulsion. The simplicity and versatility of this method allows biopolymeric microcapsules to be fabricated with ease by ionotropic gelation for numerous applications.
2016-01-16
These characteristics far exceed those of well-lubricated interfaces of high performance steels and other expensive coatings. Despite this potential...the sharpness of these tips is a necessary characteristic to probe the high-stress wear regime. We also made progress in studying boron -doped UNCD... Boron -doping endows UNCD with electrical conductivity, which broadens its applications including for contact electrode applications, for example
2013-01-01
experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets for the proposed muon collider...validated through the comparison with experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets...FronTier-MHD code have been performed using experimental and theoretical studies of liquid mercury jets in magnetic fields. Experimental studies of a
Ionic Liquids with Symmetric Diether Tails: Bulk and Vacuum-Liquid Interfacial Structures.
Hettige, Jeevapani J; Amith, Weththasinghage D; Castner, Edward W; Margulis, Claudio J
2017-01-12
The behavior in the bulk and at interfaces of biphilic ionic liquids in which either the cation or anion possesses moderately long alkyl tails is to a significant degree well understood. Less clear is what happens when both the cation and anion possess tails that are not apolar, such as in the case of ether functionalities. The current article discusses the structural characteristics of C2OC2OC2-mim + /C2OC2OC2-OSO 3 - in the bulk and at the vacuum interface. We find that the vacuum interface affects only the nanometer length scale. This is in contrast to what we have recently found in ( J. Phys. Chem. Lett. , 2016 , 7 ( 19 ), 3785 - -3790 ) for isoelectronic C[8]-mim + /C[8]-OSO 3 - , where the interface effect is long ranged. Interestingly, ions with the diether tail functionality still favor the tail-outward orientation at the vacuum interface and the bulk phase preserves the alternation between charged networks and tails that is commonly observed for biphilic ionic liquids. However, such alternation is less well-defined and results in a significantly diminished first sharp diffraction peak in the bulk liquid structure function.
Tailoring the Two Dimensional Electron Gas at Polar ABO3/SrTiO3 Interfaces for Oxide Electronics.
Li, Changjian; Liu, Zhiqi; Lü, Weiming; Wang, Xiao Renshaw; Annadi, Anil; Huang, Zhen; Zeng, Shengwei; Ariando; Venkatesan, T
2015-08-26
The 2D electron gas at the polar/non-polar oxide interface has become an important platform for several novel oxide electronic devices. In this paper, the transport properties of a wide range of polar perovskite oxide ABO3/SrTiO3 (STO) interfaces, where ABO3 includes LaAlO3, PrAlO3, NdAlO3, NdGaO3 and LaGaO3 in both crystalline and amorphous forms, were investigated. A robust 4 unit cell (uc) critical thickness for metal insulator transition was observed for crystalline polar layer/STO interface while the critical thickness for amorphous ones was strongly dependent on the B site atom and its oxygen affinity. For the crystalline interfaces, a sharp transition to the metallic state (i.e. polarization catastrophe induced 2D electron gas only) occurs at a growth temperature of 515 °C which corresponds to a critical relative crystallinity of ~70 ± 10% of the LaAlO3 overlayer. This temperature is generally lower than the metal silicide formation temperature and thus offers a route to integrate oxide heterojunction based devices on silicon.
ρ-VOF: An interface sharpening method for gas-liquid flow simulation
NASA Astrophysics Data System (ADS)
Wang, Jiantao; Liu, Gang; Jiang, Xiong; Mou, Bin
2018-05-01
The study on simulation of compressible gas-liquid flow remains open. Popular methods are either confined to incompressible flow regime, or inevitably induce smear of the free interface. A new finite volume method for compressible two-phase flow simulation is contributed for this subject. First, the “heterogeneous equilibrium” assumption is introduced to the control volume, by hiring free interface reconstruction technology, the distribution of each component in the control volume is achieved. Next, AUSM+-up (advection upstream splitting method) scheme is employed to calculate the convective fluxes and pressure fluxes, with the contact discontinuity characteristic considered, followed by the update of the whole flow field. The new method features on density-based pattern and interface reconstruction technology from VOF (volume of fluid), thus we name it “ρ-VOF method”. Inherited from AUSM families and VOF, ρ-VOF behaves as an all-speed method, capable of simulating shock in gas-liquid flow, and preserving the sharpness of the free interface. Gas-liquid shock tube is simulated to evaluate the method, from which good agreement is obtained between the predicted results and those of the cited literature, meanwhile, sharper free interface is identified. Finally, the capability and validity of ρ-VOF method can be concluded in compressible gas-liquid flow simulation.
NASA Astrophysics Data System (ADS)
El Kazzi, S.; Alian, A.; Hsu, B.; Verhulst, A. S.; Walke, A.; Favia, P.; Douhard, B.; Lu, W.; del Alamo, J. A.; Collaert, N.; Merckling, C.
2018-02-01
In this work, we report on the growth of pseudomorphic and highly doped InAs(Si)/GaSb(Si) heterostructures on p-type (0 0 1)-oriented GaSb substrate and the fabrication and characterization of n+/p+ Esaki tunneling diodes. We particularly study the influence of the Molecular Beam Epitaxy shutter sequences on the structural and electrical characteristics of InAs(Si)/GaSb(Si) Esaki diodes structures. We use real time Reflection High Electron Diffraction analysis to monitor different interface stoichiometry at the tunneling interface. With Atomic Force Microscopy, X-ray diffraction and Transmission Electron Microscopy analyses, we demonstrate that an "InSb-like" interface leads to a sharp and defect-free interface exhibiting high quality InAs(Si) crystal growth contrary to the "GaAs-like" one. We then prove by means of Secondary Ion Mass Spectroscopy profiles that Si-diffusion at the interface allows the growth of highly Si-doped InAs/GaSb diodes without any III-V material deterioration. Finally, simulations are conducted to explain our electrical results where a high Band to Band Tunneling (BTBT) peak current density of Jp = 8 mA/μm2 is achieved.
Resolving metal-molecule interfaces at single-molecule junctions
NASA Astrophysics Data System (ADS)
Komoto, Yuki; Fujii, Shintaro; Nakamura, Hisao; Tada, Tomofumi; Nishino, Tomoaki; Kiguchi, Manabu
2016-05-01
Electronic and structural detail at the electrode-molecule interface have a significant influence on charge transport across molecular junctions. Despite the decisive role of the metal-molecule interface, a complete electronic and structural characterization of the interface remains a challenge. This is in no small part due to current experimental limitations. Here, we present a comprehensive approach to obtain a detailed description of the metal-molecule interface in single-molecule junctions, based on current-voltage (I-V) measurements. Contrary to conventional conductance studies, this I-V approach provides a correlated statistical description of both, the degree of electronic coupling across the metal-molecule interface, and the energy alignment between the conduction orbital and the Fermi level of the electrode. This exhaustive statistical approach was employed to study single-molecule junctions of 1,4-benzenediamine (BDA), 1,4-butanediamine (C4DA), and 1,4-benzenedithiol (BDT). A single interfacial configuration was observed for both BDA and C4DA junctions, while three different interfacial arrangements were resolved for BDT. This multiplicity is due to different molecular adsorption sites on the Au surface namely on-top, hollow, and bridge. Furthermore, C4DA junctions present a fluctuating I-V curve arising from the greater conformational freedom of the saturated alkyl chain, in sharp contrast with the rigid aromatic backbone of both BDA and BDT.
Test data from the chloride-monitor well at Sun City Center, Hillsborough County, Florida
Sinclair, William C.
1979-01-01
A test well drilled for Southwest Florida Water Management District at Sun City Center in Hillsborough County, will serve to monitor the interface between freshwater in the aquifer and the underlying chloride water. The sulfate content of the water in the aquifer at the well site exceeds 250 mg/L below a depth of about 700 feet. Wells for domestic and public supply in the area bottom at less than 500 feet and are separated from the sulfate water by about 100 feet of poorly-permeable limestone. The freshwater-chloride water interface is quite sharp and occurs at a depth of 1,410 feet. The chloride water is similar in composition to seawater but nearly twice as saline. (Woodard-USGS).
Pressure-induced reinforcement of interfacial superconductivity in a Bi2Te3/Fe1+yTe heterostructure
NASA Astrophysics Data System (ADS)
Shen, Junying; Heuckeroth, Claire; Deng, Yuhang; He, Qinglin; Liu, Hong Chao; Liang, Jing; Wang, Jiannong; Sou, Iam Keong; Schilling, James S.; Lortz, Rolf
2017-12-01
We investigate the hydrostatic pressure dependence of interfacial superconductivity occurring at the atomically sharp interface between two non-superconducting materials: the topological insulator (TI) Bi2Te3 and the parent compound Fe1+yTe of the chalcogenide iron-based superconductors. Under pressure, a significant increase in the superconducting transition temperature Tc is observed. We interpret our data in the context of a pressure-induced enhanced coupling of the Fe1+yTe interfacial layer with the Bi2Te3 surface state, which modifies the electronic properties of the interface layer in a way that superconductivity emerges and becomes further enhanced under pressure. This demonstrates the important role of the TI in the interfacial superconducting mechanism.
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.
Ge, Liang; Sotiropoulos, Fotis
2008-01-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533
Feng, Dong-xia; Nguyen, Anh V
2016-03-01
Floating objects on the air-water interfaces are central to a number of everyday activities, from walking on water by insects to flotation separation of valuable minerals using air bubbles. The available theories show that a fine sphere can float if the force of surface tension and buoyancies can support the sphere at the interface with an apical angle subtended by the circle of contact being larger than the contact angle. Here we show that the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, also plays a significant role in controlling the stability and detachment of floating spheres. Specifically, we truncated the spheres with different angles and used a force sensor device to measure the force of pushing the truncated spheres from the interface into water. We also developed a theoretical modeling to calculate the pushing force that in combination with experimental results shows different effects of the Gibbs inequality condition on the stability and detachment of the spheres from the water surface. For small angles of truncation, the Gibbs inequality condition does not affect the sphere detachment, and hence the classical theories on the floatability of spheres are valid. For large truncated angles, the Gibbs inequality condition determines the tenacity of the particle-meniscus contact and the stability and detachment of floating spheres. In this case, the classical theories on the floatability of spheres are no longer valid. A critical truncated angle for the transition from the classical to the Gibbs inequality regimes of detachment was also established. The outcomes of this research advance our understanding of the behavior of floating objects, in particular, the flotation separation of valuable minerals, which often contain various sharp edges of their crystal faces.
Nanoparticle Stability in Axial InAs-InP Nanowire Heterostructures with Atomically Sharp Interfaces.
Zannier, Valentina; Rossi, Francesca; Dubrovskii, Vladimir G; Ercolani, Daniele; Battiato, Sergio; Sorba, Lucia
2018-01-10
The possibility to expand the range of material combinations in defect-free heterostructures is one of the main motivations for the great interest in semiconductor nanowires. However, most axial nanowire heterostructures suffer from interface compositional gradients and kink formation, as a consequence of nanoparticle-nanowire interactions during the metal-assisted growth. Understanding such interactions and how they affect the growth mode is fundamental to achieve a full control over the morphology and the properties of nanowire heterostructures for device applications. Here we demonstrate that the sole parameter affecting the growth mode (straight or kinked) of InP segments on InAs nanowire stems by the Au-assisted method is the nanoparticle composition. Indeed, straight InAs-InP nanowire heterostructures are obtained only when the In/Au ratio in the nanoparticles is low, typically smaller than 1.5. For higher In content, the InP segments tend to kink. Tailoring the In/Au ratio by the precursor fluxes at a fixed growth temperature enables us to obtain straight and radius-uniform InAs-InP nanowire heterostructures (single and double) with atomically sharp interfaces. We present a model that is capable of describing all the experimentally observed phenomena: straight growth versus kinking, the stationary nanoparticle compositions in pure InAs and InAs-InP nanowires, the crystal phase trends, and the interfacial abruptness. By taking into account different nanowire/nanoparticle interfacial configurations (forming wetting or nonwetting monolayers in vertical or tapered geometry), our generalized model provides the conditions of nanoparticle stability and abrupt heterointerfaces for a rich variety of growth scenarios. Therefore, our results provide a powerful tool for obtaining high quality InAs-InP nanowire heterostructures with well-controlled properties and can be extended to other material combinations based on the group V interchange.
MIB Galerkin method for elliptic interface problems.
Xia, Kelin; Zhan, Meng; Wei, Guo-Wei
2014-12-15
Material interfaces are omnipresent in the real-world structures and devices. Mathematical modeling of material interfaces often leads to elliptic partial differential equations (PDEs) with discontinuous coefficients and singular sources, which are commonly called elliptic interface problems. The development of high-order numerical schemes for elliptic interface problems has become a well defined field in applied and computational mathematics and attracted much attention in the past decades. Despite of significant advances, challenges remain in the construction of high-order schemes for nonsmooth interfaces, i.e., interfaces with geometric singularities, such as tips, cusps and sharp edges. The challenge of geometric singularities is amplified when they are associated with low solution regularities, e.g., tip-geometry effects in many fields. The present work introduces a matched interface and boundary (MIB) Galerkin method for solving two-dimensional (2D) elliptic PDEs with complex interfaces, geometric singularities and low solution regularities. The Cartesian grid based triangular elements are employed to avoid the time consuming mesh generation procedure. Consequently, the interface cuts through elements. To ensure the continuity of classic basis functions across the interface, two sets of overlapping elements, called MIB elements, are defined near the interface. As a result, differentiation can be computed near the interface as if there is no interface. Interpolation functions are constructed on MIB element spaces to smoothly extend function values across the interface. A set of lowest order interface jump conditions is enforced on the interface, which in turn, determines the interpolation functions. The performance of the proposed MIB Galerkin finite element method is validated by numerical experiments with a wide range of interface geometries, geometric singularities, low regularity solutions and grid resolutions. Extensive numerical studies confirm the designed second order convergence of the MIB Galerkin method in the L ∞ and L 2 errors. Some of the best results are obtained in the present work when the interface is C 1 or Lipschitz continuous and the solution is C 2 continuous.
Use of XPS to clarify the Hall coefficient sign variation in thin niobium layers buried in silicon
NASA Astrophysics Data System (ADS)
Demchenko, Iraida N.; Lisowski, Wojciech; Syryanyy, Yevgen; Melikhov, Yevgen; Zaytseva, Iryna; Konstantynov, Pavlo; Chernyshova, Maryna; Cieplak, Marta Z.
2017-03-01
Si/Nb/Si trilayers formed with 9.5 and 1.3 nm thick niobium layer buried in amorphous silicon were prepared by magnetron sputtering and studied using XPS depth-profile techniques in order to investigate the change of Hall coefficient sign with thickness. The analysis of high-resolution (HR) XPS spectra revealed that the thicker layer sample has sharp top interface and metallic phase of niobium, thus holes dominate the transport. In contrast, the analysis indicates that the thinner layer sample has a Nb-rich mixed alloy formation at the top interface. The authors suggest that the main effect leading to a change of sign of the Hall coefficient for the thinner layer sample (which is negative contrary to the positive sign for the thicker layer sample) may be related to strong boundary scattering enhanced by the presence of silicon ions in the layer close to the interface/s. The depth-profile reconstruction was performed by SESSA software tool confirming that it can be reliably used for quantitative analysis/interpretation of experimental XPS data.
Curvature-driven capillary migration and assembly of rod-like particles
Cavallaro, Marcello; Botto, Lorenzo; Lewandowski, Eric P.; Wang, Marisa; Stebe, Kathleen J.
2011-01-01
Capillarity can be used to direct anisotropic colloidal particles to precise locations and to orient them by using interface curvature as an applied field. We show this in experiments in which the shape of the interface is molded by pinning to vertical pillars of different cross-sections. These interfaces present well-defined curvature fields that orient and steer particles along complex trajectories. Trajectories and orientations are predicted by a theoretical model in which capillary forces and torques are related to Gaussian curvature gradients and angular deviations from principal directions of curvature. Interface curvature diverges near sharp boundaries, similar to an electric field near a pointed conductor. We exploit this feature to induce migration and assembly at preferred locations, and to create complex structures. We also report a repulsive interaction, in which microparticles move away from planar bounding walls along curvature gradient contours. These phenomena should be widely useful in the directed assembly of micro- and nanoparticles with potential application in the fabrication of materials with tunable mechanical or electronic properties, in emulsion production, and in encapsulation. PMID:22184218
Han, Gang Hee; Rodríguez-Manzo, Julio A.; Lee, Chan-Woo; Kybert, Nicholas J.; Lerner, Mitchell B.; Qi, Zhengqing John; Dattoli, Eric N.; Rappe, Andrew M.; Drndic, Marija; Charlie Johnson, A. T.
2013-01-01
Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to microscopy of nano-domains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric. PMID:24182310
Han, Gang Hee; Rodríguez-Manzo, Julio A; Lee, Chan-Woo; Kybert, Nicholas J; Lerner, Mitchell B; Qi, Zhengqing John; Dattoli, Eric N; Rappe, Andrew M; Drndic, Marija; Johnson, A T Charlie
2013-11-26
Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric.
Interfacial Symmetry Control of Emergent Ferromagnetism
NASA Astrophysics Data System (ADS)
Grutter, Alexander; Borchers, Julie; Kirby, Brian; He, Chunyong; Arenholz, Elke; Vailionis, Arturas; Flint, Charles; Suzuki, Yuri
Atomically precise complex oxide heterostructures provide model systems for the discovery of new emergent phenomena since their magnetism, structure and electronic properties are strongly coupled. Octahedral tilts and rotations have been shown to alter the magnetic properties of complex oxide heterostructures, but typically induce small, gradual magnetic changes. Here, we demonstrate sharp switching between ferromagnetic and antiferromagnetic order at the emergent ferromagnetic interfaces of CaRuO3/CaMnO3 superlattices. Through synchrotron X-ray diffraction and neutron reflectometry, we show that octahedral distortions in superlattices with an odd number of CaMnO3 unit cells in each layer are symmetry mismatched across the interface. In this case, the rotation symmetry switches across the interface, reducing orbital overlap, suppressing charge transfer from Ru to Mn, and disrupting the interfacial double exchange. This disruption switches half of the interfaces from ferromagnetic to antiferromagnetic and lowers the saturation magnetic of the superlattice from 1.0 to 0.5 μB/interfacial Mn. By targeting a purely interfacial emergent magnetic system, we achieve drastic alterations to the magnetic ground state with extremely small changes in layer thickness.
Simulating compressible-incompressible two-phase flows
NASA Astrophysics Data System (ADS)
Denner, Fabian; van Wachem, Berend
2017-11-01
Simulating compressible gas-liquid flows, e.g. air-water flows, presents considerable numerical issues and requires substantial computational resources, particularly because of the stiff equation of state for the liquid and the different Mach number regimes. Treating the liquid phase (low Mach number) as incompressible, yet concurrently considering the gas phase (high Mach number) as compressible, can improve the computational performance of such simulations significantly without sacrificing important physical mechanisms. A pressure-based algorithm for the simulation of two-phase flows is presented, in which a compressible and an incompressible fluid are separated by a sharp interface. The algorithm is based on a coupled finite-volume framework, discretised in conservative form, with a compressive VOF method to represent the interface. The bulk phases are coupled via a novel acoustically-conservative interface discretisation method that retains the acoustic properties of the compressible phase and does not require a Riemann solver. Representative test cases are presented to scrutinize the proposed algorithm, including the reflection of acoustic waves at the compressible-incompressible interface, shock-drop interaction and gas-liquid flows with surface tension. Financial support from the EPSRC (Grant EP/M021556/1) is gratefully acknowledged.
Aland, Sebastian; Lowengrub, John; Voigt, Axel
2013-01-01
Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691
Wang, Huai-Song; Song, Min; Hang, Tai-Jun
2016-02-10
The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.
S-Layer Protein-Based Biosensors.
Schuster, Bernhard
2018-04-11
The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.
Inertial particle manipulation in microscale oscillatory flows
NASA Astrophysics Data System (ADS)
Agarwal, Siddhansh; Rallabandi, Bhargav; Raju, David; Hilgenfeldt, Sascha
2017-11-01
Recent work has shown that inertial effects in oscillating flows can be exploited for simultaneous transport and differential displacement of microparticles, enabling size sorting of such particles on extraordinarily short time scales. Generalizing previous theory efforts, we here derive a two-dimensional time-averaged version of the Maxey-Riley equation that includes the effect of an oscillating interface to model particle dynamics in such flows. Separating the steady transport time scale from the oscillatory time scale results in a simple and computationally efficient reduced model that preserves all slow-time features of the full unsteady Maxey-Riley simulations, including inertial particle displacement. Comparison is made not only to full simulations, but also to experiments using oscillating bubbles as the driving interfaces. In this case, the theory predicts either an attraction to or a repulsion from the bubble interface due to inertial effects, so that versatile particle manipulation is possible using differences in particle size, particle/fluid density contrast and streaming strength. We also demonstrate that these predictions are in agreement with experiments.
A Software Upgrade of the NASA Aeroheating Code "MINIVER"
NASA Technical Reports Server (NTRS)
Louderback, Pierce Mathew
2013-01-01
Computational Fluid Dynamics (CFD) is a powerful and versatile tool simulating fluid and thermal environments of launch and re-entry vehicles alike. Where it excels in power and accuracy, however, it lacks in speed. An alternative tool for this purpose is known as MINIVER, an aeroheating code widely used by NASA and within the aerospace industry. Capable of providing swift, reasonably accurate approximations of the fluid and thermal environment of launch vehicles, MINIVER is used where time is of the essence and accuracy need not be exact. However, MINIVER is an old, aging tool: running on a user-unfriendly, legacy command-line interface, it is difficult for it to keep pace with more modem software tools. Florida Institute of Technology was tasked with the construction of a new Graphical User Interface (GUI) that implemented the legacy version's capabilities and enhanced them with new tools and utilities. This thesis provides background to the legacy version of the program, the progression and final version of a modem user interface, and benchmarks to demonstrate its usefulness.
Visual communication interface for severe physically disabled patients
NASA Astrophysics Data System (ADS)
Savino, M. J.; Fernández, E. A.
2007-11-01
During the last years several interfaces have been developed to allow communication to those patients suffering serious physical disabilities. In this work, a computer based communication interface is presented. It was designed to allow communication to those patients that cannot use neither their hands nor their voice but they can do it through their eyes. The system monitors the eyes movements by means of a webcam. Then, by means of an Artificial Neural Network, the system allows the identification of specified position on the screen through the identification of the eyes positions. This way the user can control a virtual keyboard on a screen that allows him to write and browse the system and enables him to send e-mails, SMS, activate video/music programs and control environmental devices. A patient was simulated to evaluate the versatility of the system. Its operation was satisfactory and it allowed the evaluation of the system potential. The development of this system requires low cost elements that are easily found in the market.
Pairwise Force SPH Model for Real-Time Multi-Interaction Applications.
Yang, Tao; Martin, Ralph R; Lin, Ming C; Chang, Jian; Hu, Shi-Min
2017-10-01
In this paper, we present a novel pairwise-force smoothed particle hydrodynamics (PF-SPH) model to enable simulation of various interactions at interfaces in real time. Realistic capture of interactions at interfaces is a challenging problem for SPH-based simulations, especially for scenarios involving multiple interactions at different interfaces. Our PF-SPH model can readily handle multiple types of interactions simultaneously in a single simulation; its basis is to use a larger support radius than that used in standard SPH. We adopt a novel anisotropic filtering term to further improve the performance of interaction forces. The proposed model is stable; furthermore, it avoids the particle clustering problem which commonly occurs at the free surface. We show how our model can be used to capture various interactions. We also consider the close connection between droplets and bubbles, and show how to animate bubbles rising in liquid as well as bubbles in air. Our method is versatile, physically plausible and easy-to-implement. Examples are provided to demonstrate the capabilities and effectiveness of our approach.
Ling, Yonghong; Huang, Lirong; Hong, Wei; Liu, Tongjun; Jing, Luan; Liu, Wenbin; Wang, Ziyong
2017-11-27
Realizing versatile functionalities in a single photonic device is crucial for photonic integration. We here propose a polarization-switchable and wavelength-controllable multi-functional metasurface. By changing the polarization state of incident light, its functionality can be switched between the flat focusing lens and exciting surface-plasmon-polariton (SPP) wave. Interestingly, by tuning the wavelength of incident light, the generated SPP waves can also be controlled at desired interfaces, traveling along the upper or lower interface of the metasurface, or along both of them, depending on whether the incident light satisfies the first or second Kerker condition. This polarization-switchable and wavelength-controllable multifunctional metasurface may provide flexibility in designing tunable or multifunctional metasurfaces and may find potential applications in highly integrated photonic systems.
Tunable Snell's law for spin waves in heterochiral magnetic films
NASA Astrophysics Data System (ADS)
Mulkers, Jeroen; Van Waeyenberge, Bartel; Milošević, Milorad V.
2018-03-01
Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized Snell's law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave guides.
Toward more versatile and intuitive cortical brain machine interfaces
Andersen, Richard A.; Kellis, Spencer; Klaes, Christian; Aflalo, Tyson
2015-01-01
Brain machine interfaces have great potential in neuroprosthetic applications to assist patients with brain injury and neurodegenerative diseases. One type of BMI is a cortical motor prosthetic which is used to assist paralyzed subjects. Motor prosthetics to date have typically used the motor cortex as a source of neural signals for controlling external devices. The review will focus on several new topics in the arena of cortical prosthetics. These include using 1) recordings from cortical areas outside motor cortex; 2) local field potentials (LFPs) as a source of recorded signals; 3) somatosensory feedback for more dexterous control of robotics; and 4) new decoding methods that work in concert to form an ecology of decode algorithms. These new advances hold promise in greatly accelerating the applicability and ease of operation of motor prosthetics. PMID:25247368
Liquid lens: advances in adaptive optics
NASA Astrophysics Data System (ADS)
Casey, Shawn Patrick
2010-12-01
'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.
Comprehensive T-matrix Reference Database: A 2009-2011 Update
NASA Technical Reports Server (NTRS)
Zakharova, Nadezhda T.; Videen, G.; Khlebtsov, Nikolai G.
2012-01-01
The T-matrix method is one of the most versatile and efficient theoretical techniques widely used for the computation of electromagnetic scattering by single and composite particles, discrete random media, and particles in the vicinity of an interface separating two half-spaces with different refractive indices. This paper presents an update to the comprehensive database of peer-reviewed T-matrix publications compiled by us previously and includes the publications that appeared since 2009. It also lists several earlier publications not included in the original database.
Versatile IEEE-488 data acquisition and control routines for a diode array spectrophotometer
Shiundu, Paul M.
1991-01-01
The UV-visible diode array spectrophotometer is a work-horse instrument for many laboratories. This article provides simple data acquisition and control routines in Microsoft QuickBasic for a HP-8452A diode array spectrophotometer interfaced to an IBM PC/XT/AT, or compatible, microcomputer. These allow capture of full spectra and measure absorbance at one or several wavelengths at preset time intervals. The variance in absorbance at each wavelength is available as an option. PMID:18924888
Applications of Sharp Interface Method for Flow Dynamics, Scattering and Control Problems
2012-07-30
Reynolds number, Advances in Applied Mathematics and Mechanics, to appear. 17. K. Ito and K. Kunisch, Optimal Control of Parabolic Variational ...provides more precise and detailed sensitivity of the solution and describes the dynamical change due to the variation in the Reynolds number. The immersed... Inequalities , Journal de Math. Pures et Appl, 93 (2010), no. 4, 329-360. 18. K. Ito and K. Kunisch, Semi-smooth Newton Methods for Time-Optimal Control for a
Lidierth, Malcolm
2005-02-15
This paper describes software that runs in the Spike2 for Windows environment and provides a versatile tool for generating stimuli during data acquisition from the 1401 family of interfaces (CED, UK). A graphical user interface (GUI) is used to provide dynamic control of stimulus timing. Both single stimuli and trains of stimuli can be generated. The pulse generation routines make use of programmable variables within the interface and allow these to be rapidly changed during an experiment. The routines therefore provide the ease-of-use associated with external, stand-alone pulse generators. Complex stimulus protocols can be loaded from an external text file and facilities are included to create these files through the GUI. The software consists of a Spike2 script that runs in the host PC, and accompanying routines written in the 1401 sequencer control code, that run in the 1401 interface. Handshaking between the PC and the interface card are built into the routines and provides for full integration of sampling, analysis and stimulus generation during an experiment. Control of the 1401 digital-to-analogue converters is also provided; this allows control of stimulus amplitude as well as timing and also provides a sample-hold feature that may be used to remove DC offsets and drift from recorded data.
Ma, Xiangchao; Wu, Xin; Wang, Yucheng; Dai, Ying
2017-07-19
Charge transfer across the Pt/TiO 2 interface, which is mainly determined by the interface Schottky barrier height (SBH), is an important process in the (photo)catalytic and electronic applications of the Pt/TiO 2 composite. Therefore, systematic investigation of the factors that affect the interface SBH is indispensable for understanding and optimizing its performance. In this work, a systematic study of the effects of the interfacial structure and strain on the SBH of the Pt/TiO 2 (001) interface has been carried out based on the first-principles calculations. The results of interface adhesion energy show that two different interfacial structures for the Pt/TiO 2 (001) heterointerface may exist experimentally, namely, O-Pt bonding and Ti-Pt bonding. Moreover, the interfacial structures result in not only different values for the SBH, but also different dependences of the SBH on strain. Detailed investigations show that these versatile modulations of the SBH with the structure and strain are mainly attributed to the strong dependence of the band edges of TiO 2 and the interfacial potential alignments on the strain and structure, suggesting that these results are general and may be applicable to other metal/TiO 2 heterostructures.
Coupled Physics Environment (CouPE) library - Design, Implementation, and Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Vijay S.
Over several years, high fidelity, validated mono-physics solvers with proven scalability on peta-scale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a unified mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. In this report, we present details on the design decisions and developments on CouPE, an acronym that stands for Coupled Physics Environment that orchestrates a coupled physics solver through the interfaces exposed by MOAB array-based unstructured mesh, both of which are part of SIGMA (Scalable Interfaces for Geometry and Mesh-Based Applications) toolkit.more » The SIGMA toolkit contains libraries that enable scalable geometry and unstructured mesh creation and handling in a memory and computationally efficient implementation. The CouPE version being prepared for a full open-source release along with updated documentation will contain several useful examples that will enable users to start developing their applications natively using the native MOAB mesh and couple their models to existing physics applications to analyze and solve real world problems of interest. An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is also being investigated as part of the NEAMS RPL, to tightly couple neutron transport, thermal-hydraulics and structural mechanics physics under the SHARP framework. This report summarizes the efforts that have been invested in CouPE to bring together several existing physics applications namely PROTEUS (neutron transport code), Nek5000 (computational fluid-dynamics code) and Diablo (structural mechanics code). The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The design of CouPE along with motivations that led to implementation choices are also discussed. The first release of the library will be different from the current version of the code that integrates the components in SHARP and explanation on the need for forking the source base will also be provided. Enhancements in the functionality and improved user guides will be available as part of the release. CouPE v0.1 is scheduled for an open-source release in December 2014 along with SIGMA v1.1 components that provide support for language-agnostic mesh loading, traversal and query interfaces along with scalable solution transfer of fields between different physics codes. The coupling methodology and software interfaces of the library are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the CouPE library.« less
The silicon chip: A versatile micro-scale platform for micro- and nano-scale systems
NASA Astrophysics Data System (ADS)
Choi, Edward
Cutting-edge advances in micro- and nano-scale technology require instrumentation to interface with the external world. While technology feature sizes are continually being reduced, the size of experimentalists and their instrumentation do not mirror this trend. Hence there is a need for effective application-specific instrumentation to bridge the gap from the micro and nano-scale phenomena being studied to the comparative macro-scale of the human interfaces. This dissertation puts forward the idea that the silicon CMOS integrated circuit, or microchip in short, serves as an excellent platform to perform this functionality. The electronic interfaces designed for the semiconductor industry are particularly attractive as development platforms, and the reduction in feature sizes that has been a hallmark of the industry suggests that chip-scale instrumentation may be more closely coupled to the phenomena of interest, allowing finer control or improved measurement capabilities. Compatibility with commercial processes will further enable economies of scale through mass production, another welcome feature of this approach. Thus chip-scale instrumentation may replace the bulky, expensive, cumbersome-to-operate macro-scale prototypes currently in use for many of these applications. The dissertation examines four specific applications in which the chip may serve as the ideal instrumentation platform. These are nanorod manipulation, polypyrrole bilayer hinge microactuator control, organic transistor hybrid circuits, and contact fluorescence imaging. The thesis is structured around chapters devoted to each of these projects, in addition to a chapter on preliminary work on an RFID system that serves as a wireless interface model. Each of these chapters contains tools and techniques developed for chip-scale instrumentation, from custom scripts for automated layout and data collection to microfabrication processes. Implementation of these tools to develop systems for the applications above is evaluated. The viability of this approach is not limited to the examples listed in this work, and innovative new methodologies beyond those included here may be developed in the future for other systems which would benefit from the versatility of chip-scale platforms.
Park, Beomjin; Park, Jaesung; Son, Jin Gyeong; Kim, Yong-Jin; Yu, Seong Uk; Park, Hyo Ju; Chae, Dong-Hun; Byun, Jinseok; Jeon, Gumhye; Huh, Sung; Lee, Seoung-Ki; Mishchenko, Artem; Hyun, Seung; Lee, Tae Geol; Han, Sang Woo; Ahn, Jong-Hyun; Lee, Zonghoon; Hwang, Chanyong; Novoselov, Konstantin S; Kim, Kwang S; Hong, Byung Hee; Kim, Jin Kon
2015-08-25
Precise graphene patterning is of critical importance for tailor-made and sophisticated two-dimensional nanoelectronic and optical devices. However, graphene-based heterostructures have been grown by delicate multistep chemical vapor deposition methods, limiting preparation of versatile heterostructures. Here, we report one-pot synthesis of graphene/amorphous carbon (a-C) heterostructures from a solid source of polystyrene via selective photo-cross-linking process. Graphene is successfully grown from neat polystyrene regions, while patterned cross-linked polystyrene regions turn into a-C because of a large difference in their thermal stability. Since the electrical resistance of a-C is at least 2 orders of magnitude higher than that for graphene, the charge transport in graphene/a-C heterostructure occurs through the graphene region. Measurement of the quantum Hall effect in graphene/a-C lateral heterostructures clearly confirms the reliable quality of graphene and well-defined graphene/a-C interface. The direct synthesis of patterned graphene from polymer pattern could be further exploited to prepare versatile heterostructures.
BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.
Joshi, Jitesh; Saharan, Sumiti; Mandal, Pravat K
2014-02-15
Precise and synchronized presentation of paradigm stimuli in functional magnetic resonance imaging (fMRI) is central to obtaining accurate information about brain regions involved in a specific task. In this manuscript, we present a new MATLAB-based toolbox, BOLDSync, for synchronized stimulus presentation in fMRI. BOLDSync provides a user friendly platform for design and presentation of visual, audio, as well as multimodal audio-visual (AV) stimuli in functional imaging experiments. We present simulation experiments that demonstrate the millisecond synchronization accuracy of BOLDSync, and also illustrate the functionalities of BOLDSync through application to an AV fMRI study. BOLDSync gains an advantage over other available proprietary and open-source toolboxes by offering a user friendly and accessible interface that affords both precision in stimulus presentation and versatility across various types of stimulus designs and system setups. BOLDSync is a reliable, efficient, and versatile solution for synchronized stimulus presentation in fMRI study. Copyright © 2013 Elsevier B.V. All rights reserved.
Bota, Mihail; Talpalaru, Ştefan; Hintiryan, Houri; Dong, Hong-Wei; Swanson, Larry W.
2014-01-01
We present in this paper a novel neuroinformatic platform, the BAMS2 Workspace (http://brancusi1.usc.edu), designed for storing and processing information about gray matter region axonal connections. This de novo constructed module allows registered users to directly collate their data by using a simple and versatile visual interface. It also allows construction and analysis of sets of connections associated with gray matter region nomenclatures from any designated species. The Workspace includes a set of tools allowing the display of data in matrix and networks formats, and the uploading of processed information in visual, PDF, CSV, and Excel formats. Finally, the Workspace can be accessed anonymously by third party systems to create individualized connectivity networks. All features of the BAMS2 Workspace are described in detail, and are demonstrated with connectivity reports collated in BAMS and associated with the rat sensory-motor cortex, medial frontal cortex, and amygdalar regions. PMID:24668342
Kim, Young-Ki; Huang, Yuran; Tsuei, Michael; Wang, Xin; Gianneschi, Nathan C; Abbott, Nicholas L
2018-04-22
Liquid crystals (LCs) offer the basis of stimuli-responsive materials that can amplify targeted molecular events into macroscopic outputs. However, general and versatile design principles are needed to realize the full potential of these materials. To this end, we report the synthesis of two homopolymers with mesogenic side chains that can be cleaved upon exposure to either H 2 O 2 (polymer P1) or UV light (polymer P2). Optical measurements reveal that the polymers dissolve in bulk LC and spontaneously assemble at nematic LC-aqueous interfaces to impose a perpendicular orientation on the LCs. Subsequent addition of H 2 O 2 to the aqueous phase or exposure of the LC to UV was shown to trigger a surface-driven ordering transition to a planar orientation and an accompanying macroscopic optical output. Differences in the dynamics of the response to each stimulus are consistent with sequential processing of P1 at the LC-aqueous interface (H 2 O 2 ) and simultaneous transformation of P2 within the LC (UV). The versatility of the approach is demonstrated by creating stimuli-responsive LCs as films or microdroplets, and by dissolving mixtures of P1 and P2 into LCs to create LC materials that respond to two stimuli. Overall, our results validate a simple and generalizable approach to the rational design of polymers that can be used to program stimuli-responsiveness into LC materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Entanglement between random and clean quantum spin chains
NASA Astrophysics Data System (ADS)
Juhász, Róbert; Kovács, István A.; Roósz, Gergő; Iglói, Ferenc
2017-08-01
The entanglement entropy in clean, as well as in random quantum spin chains has a logarithmic size-dependence at the critical point. Here, we study the entanglement of composite systems that consist of a clean subsystem and a random subsystem, both being critical. In the composite, antiferromagnetic XX-chain with a sharp interface, the entropy is found to grow in a double-logarithmic fashion {{ S}}∼ \\ln\\ln(L) , where L is the length of the chain. We have also considered an extended defect at the interface, where the disorder penetrates into the homogeneous region in such a way that the strength of disorder decays with the distance l from the contact point as ∼l-κ . For κ<1/2 , the entropy scales as {{ S}}(κ) ≃ \\frac{\\ln 2 (1-2κ)}{6}{\\ln L} , while for κ ≥slant 1/2 , when the extended interface defect is an irrelevant perturbation, we recover the double-logarithmic scaling. These results are explained through strong-disorder RG arguments.
Gugliotti, M; Chaimovich, H; Politi, M J
2000-02-15
Fusion of vesicles with the air-water interface and consequent monolayer formation has been studied as a function of temperature. Unilamellar vesicles of DMPC, DPPC, and DODAX (X=Cl(-), Br(-)) were injected into a subphase containing NaCl, and the surface pressure (tension) was recorded on a Langmuir Balance (Tensiometer) using the Wilhelmy plate (Ring) method. For the zwitterionic vesicles, plots of the initial surface pressure increase rate (surface tension decrease rate) as a function of temperature show a peak at the phase transition temperature (T(m)) of the vesicles, whereas for ionic ones they show a sharp rise. At high concentrations of NaCl, ionic DODA(Cl) vesicles seem to behave like zwitterionic ones, and the rate of fusion is higher at the T(m). The influence of size was studied comparing large DODA(Cl) vesicles with small sonicated ones, and no significant changes were found regarding the rate of fusion with the air-water interface.
Characterization of Brazed Joints of C-C Composite to Cu-clad-Molybdenum
NASA Technical Reports Server (NTRS)
Singh, M.; Asthana, R.
2008-01-01
Carbon-carbon composites with either pitch+CVI matrix or resin-derived matrix were joined to copper-clad molybdenum using two active braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward de-lamination in resin-derived C-C composite due to its low inter-laminar shear strength. Extensive braze penetration of the inter-fiber channels in the pitch+CVI C-C composites was observed. The relatively low brazing temperatures (<950 C) precluded melting of the clad layer and restricted the redistribution of alloying elements but led to metallurgically sound composite joints. The Knoop microhardness (HK) distribution across the joint interfaces revealed sharp gradients at the Cu-clad-Mo/braze interface and higher hardness in Ticusil (approx.85-250 HK) than in Cusil-ABA (approx.50-150 HK). These C-C/Cu-clad-Mo joints with relatively low thermal resistance may be promising for thermal management applications.
The Investigation of Ghost Fluid Method for Simulating the Compressible Two-Medium Flow
NASA Astrophysics Data System (ADS)
Lu, Hai Tian; Zhao, Ning; Wang, Donghong
2016-06-01
In this paper, we investigate the conservation error of the two-dimensional compressible two-medium flow simulated by the front tracking method. As the improved versions of the original ghost fluid method, the modified ghost fluid method and the real ghost fluid method are selected to define the interface boundary conditions, respectively, to show different effects on the conservation error. A Riemann problem is constructed along the normal direction of the interface in the front tracking method, with the goal of obtaining an efficient procedure to track the explicit sharp interface precisely. The corresponding Riemann solutions are also used directly in these improved ghost fluid methods. Extensive numerical examples including the sod tube and the shock-bubble interaction are tested to calculate the conservation error. It is found that these two ghost fluid methods have distinctive performances for different initial conditions of the flow field, and the related conclusions are made to suggest the best choice for the combination.
Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring.
Li, Xiaosheng; He, Xiaowei; Liu, Xuehui; Zhang, Jian J; Liu, Baoquan; Wu, Enhua
2016-08-01
We propose a semi-Lagrangian method for multiphase interface tracking. In contrast to previous methods, our method maintains an explicit polygonal mesh, which is reconstructed from an unsigned distance function and an indicator function, to track the interface of arbitrary number of phases. The surface mesh is reconstructed at each step using an efficient multiphase polygonization procedure with precomputed stencils while the distance and indicator function are updated with an accurate semi-Lagrangian path tracing from the meshes of the last step. Furthermore, we provide an adaptive data structure, multiphase distance tree, to accelerate the updating of both the distance function and the indicator function. In addition, the adaptive structure also enables us to contour the distance tree accurately with simple bisection techniques. The major advantage of our method is that it can easily handle topological changes without ambiguities and preserve both the sharp features and the volume well. We will evaluate its efficiency, accuracy and robustness in the results part with several examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Chenadec, Vincent, E-mail: vlechena@stanford.edu; Pitsch, Heinz; Institute for Combustion Technology, RWTH Aachen, Templergraben 64, 52056 Aachen
2013-09-15
This paper presents a novel approach for solving the conservative form of the incompressible two-phase Navier–Stokes equations. In order to overcome the numerical instability induced by the potentially large density ratio encountered across the interface, the proposed method includes a Volume-of-Fluid type integration of the convective momentum transport, a monotonicity preserving momentum rescaling, and a consistent and conservative Ghost Fluid projection that includes surface tension effects. The numerical dissipation inherent in the Volume-of-Fluid treatment of the convective transport is localized in the interface vicinity, enabling the use of a kinetic energy conserving discretization away from the singularity. Two- and three-dimensionalmore » tests are presented, and the solutions shown to remain accurate at arbitrary density ratios. The proposed method is then successfully used to perform the detailed simulation of a round water jet emerging in quiescent air, therefore suggesting the applicability of the proposed algorithm to the computation of realistic turbulent atomization.« less
Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poulopoulos, P., E-mail: poulop@upatras.gr; Materials Science Department, University of Patras, 26504 Patras; Goschew, A.
2014-03-17
Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4 × 10{sup −9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8 nm thick and EuS layers are 2–4 nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.
Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction
2014-01-01
Semiconductor heterostructures form the cornerstone of many electronic and optoelectronic devices and are traditionally fabricated using epitaxial growth techniques. More recently, heterostructures have also been obtained by vertical stacking of two-dimensional crystals, such as graphene and related two-dimensional materials. These layered designer materials are held together by van der Waals forces and contain atomically sharp interfaces. Here, we report on a type-II van der Waals heterojunction made of molybdenum disulfide and tungsten diselenide monolayers. The junction is electrically tunable, and under appropriate gate bias an atomically thin diode is realized. Upon optical illumination, charge transfer occurs across the planar interface and the device exhibits a photovoltaic effect. Advances in large-scale production of two-dimensional crystals could thus lead to a new photovoltaic solar technology. PMID:25057817
Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces
Yallapragada, Venkata Jayasurya; Ravishankar, Ajith P.; Mulay, Gajendra L.; Agarwal, Girish S.; Achanta, Venu Gopal
2016-01-01
Metasurfaces with sub-wavelength features are useful in modulating the phase, amplitude or polarization of electromagnetic fields. While several applications are reported for light manipulation and control, the sharp phase changes would be useful in enhancing the beam shifts at reflection from a metasurface. In designed periodic patterns on metal film, at surface plasmon resonance, we demonstrate Goos-Hanchen shift of the order of 70 times the incident wavelength and the angular shifts of several hundred microradians. We have designed the patterns using rigorous coupled wave analysis (RCWA) together with S-matrices and have used a complete vector theory to calculate the shifts as well as demonstrate a versatile experimental setup to directly measure the shifts. The giant shifts demonstrated could prove to be useful in enhancing the sensitivity of experiments ranging from atomic force microscopy to gravitational wave detection. PMID:26758471
Kim, Seok; Wu, Jian; Carlson, Andrew; Jin, Sung Hun; Kovalsky, Anton; Glass, Paul; Liu, Zhuangjian; Ahmed, Numair; Elgan, Steven L.; Chen, Weiqiu; Ferreira, Placid M.; Sitti, Metin; Huang, Yonggang; Rogers, John A.
2010-01-01
Reversible control of adhesion is an important feature of many desired, existing, and potential systems, including climbing robots, medical tapes, and stamps for transfer printing. We present experimental and theoretical studies of pressure modulated adhesion between flat, stiff objects and elastomeric surfaces with sharp features of surface relief in optimized geometries. Here, the strength of nonspecific adhesion can be switched by more than three orders of magnitude, from strong to weak, in a reversible fashion. Implementing these concepts in advanced stamps for transfer printing enables versatile modes for deterministic assembly of solid materials in micro/nanostructured forms. Demonstrations in printed two- and three-dimensional collections of silicon platelets and membranes illustrate some capabilities. An unusual type of transistor that incorporates a printed gate electrode, an air gap dielectric, and an aligned array of single walled carbon nanotubes provides a device example. PMID:20858729
Regularized magnetotelluric inversion based on a minimum support gradient stabilizing functional
NASA Astrophysics Data System (ADS)
Xiang, Yang; Yu, Peng; Zhang, Luolei; Feng, Shaokong; Utada, Hisashi
2017-11-01
Regularization is used to solve the ill-posed problem of magnetotelluric inversion usually by adding a stabilizing functional to the objective functional that allows us to obtain a stable solution. Among a number of possible stabilizing functionals, smoothing constraints are most commonly used, which produce spatially smooth inversion results. However, in some cases, the focused imaging of a sharp electrical boundary is necessary. Although past works have proposed functionals that may be suitable for the imaging of a sharp boundary, such as minimum support and minimum gradient support (MGS) functionals, they involve some difficulties and limitations in practice. In this paper, we propose a minimum support gradient (MSG) stabilizing functional as another possible choice of focusing stabilizer. In this approach, we calculate the gradient of the model stabilizing functional of the minimum support, which affects both the stability and the sharp boundary focus of the inversion. We then apply the discrete weighted matrix form of each stabilizing functional to build a unified form of the objective functional, allowing us to perform a regularized inversion with variety of stabilizing functionals in the same framework. By comparing the one-dimensional and two-dimensional synthetic inversion results obtained using the MSG stabilizing functional and those obtained using other stabilizing functionals, we demonstrate that the MSG results are not only capable of clearly imaging a sharp geoelectrical interface but also quite stable and robust. Overall good performance in terms of both data fitting and model recovery suggests that this stabilizing functional is effective and useful in practical applications.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C. M.; Chen, Zhong
2017-08-01
Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions are preserved in the brain mask. Shadow artifacts due to strong susceptibility variations in the derived QSM maps could also be largely eliminated using the R-SHARP method, leading to more accurate QSM reconstruction.
Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C M; Chen, Zhong
2017-08-01
Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions are preserved in the brain mask. Shadow artifacts due to strong susceptibility variations in the derived QSM maps could also be largely eliminated using the R-SHARP method, leading to more accurate QSM reconstruction. Copyright © 2017. Published by Elsevier Inc.
Photo-Sensitivity of Large Area Physical Vapor Deposited Mono and Bilayer MoS2 (Postprint)
2014-07-01
layer MoS2 without any apparent rectifying junctions , making device fabrication straightforward. For bi-layers, no such effect was present, suggesting...layer MoS2 without any apparent rectifying junctions , making device fabrication straightforward. For bi-layers, no such effect was present, suggesting...pressure below 5×10−9 Torr for atomically sharp and clean interfaces. The mono and bi-layer specimens were grown on 100 nm thick thermal oxide coated silicon
Analysis of models for two solution crystal growth problems
NASA Technical Reports Server (NTRS)
Fehribach, Joseph D.; Rosenberger, Franz
1989-01-01
Two diffusive solution crystal growth models are considered which are characterized by two phases separated by an interface, a lack of convective mixing in either phase, and the presence of diffusion components differing widely in diffusivity. The first model describes precipitant-driven solution crystal growth and the second model describes a hanging drop evaporation problem. It is shown that for certain proteins sharp concentration gradients may develop in the drop during evaporation, while under the same conditions the concentrations of other proteins remain uniform.
Summary of Laboratory and Field Comfort Studies on Candidate Fabrics for a Year-Round Uniform
1986-06-01
differences were particularly sharp under wearing conditions involving mild to heavy sweating at the skin- garment interface. 5 The evaluation of comfort using...34 would be inter- preted as meaning that the garment was "mildly scratchy". If no comment was made by the wearer, a rating of 5, "totally comfortable...25 women used in this study had no difficulty in detecting these differences even though the garments were presented randomly without identifying
Optical Tamm states in one-dimensional magnetophotonic structures.
Goto, T; Dorofeenko, A V; Merzlikin, A M; Baryshev, A V; Vinogradov, A P; Inoue, M; Lisyansky, A A; Granovsky, A B
2008-09-12
We demonstrate the existence of a spectrally narrow localized surface state, the so-called optical Tamm state, at the interface between one-dimensional magnetophotonic and nonmagnetic photonic crystals. The state is spectrally located inside the photonic band gaps of each of the photonic crystals comprising this magnetophotonic structure. This state is associated with a sharp transmission peak through the sample and is responsible for the substantial enhancement of the Faraday rotation for the corresponding wavelength. The experimental results are in excellent agreement with the theoretical predictions.
2015-10-27
both surfaces lack order underneath the graphene, quantitative differences exist in their in-plane and out-of plane structure. Relatively sharp in-plane...Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe , K.; Taniguchi, T.; Kim, P.; Shepard, K. L. Nat. Nanotechnol. 2010, 5, 722−726. (25) Martin, J...V.; MacDonald, A. H.; Morozov, S. V.; Watanabe , K.; Taniguchi, T.; Ponomarenko, L. A. Nat. Phys. 2012, 8, 896−901. (32) Ponomarenko, L. A
Mixing, Combustion, and Other Interface Dominated Flows; Paragraphs 3.2.1 A, B, C and 3.2.2 A
2014-04-09
Condensed Matter Physics , (12 2010): 43401. doi: H. Lim, Y. Yu, J. Glimm, X. L. Li, D.H. Sharp. Subgrid Models for Mass and Thermal Diffusion in...zone and a series of radial cracks in solid plates hit by high velocity projectiles). • Only 2D dimensional models • Serial codes for running on single ...exter- nal parallel packages TAO and Global Arrays, developed within DOE high performance computing initiatives. A Schwartz-type overlapping domain
Upper limb functional electrical stimulation devices and their man-machine interfaces.
Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D
2015-01-01
Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required.
Development of the Telehealth Usability Questionnaire (TUQ).
Parmanto, Bambang; Lewis, Allen Nelson; Graham, Kristin M; Bertolet, Marnie H
2016-01-01
Current telehealth usability questionnaires are designed primarily for older technologies, where telehealth interaction is conducted over dedicated videoconferencing applications. However, telehealth services are increasingly conducted over computer-based systems that rely on commercial software and a user supplied computer interface. Therefore, a usability questionnaire that addresses the changes in telehealth service delivery and technology is needed. The Telehealth Usability Questionnaire (TUQ) was developed to evaluate the usability of telehealth implementation and services. This paper addresses: (1) the need for a new measure of telehealth usability, (2) the development of the TUQ, (3) intended uses for the TUQ, and (4) the reliability of the TUQ. Analyses indicate that the TUQ is a solid, robust, and versatile measure that can be used to measure the quality of the computer-based user interface and the quality of the telehealth interaction and services.
The MANIFEST prototyping design study
NASA Astrophysics Data System (ADS)
Lawrence, Jonathan S.; Ben-Ami, Sagi; Brown, David M.; Brown, Rebecca A.; Case, Scott; Chapman, Steve; Churilov, Vladimir; Colless, Matthew; Content, Robert; Depoy, Darren; Evans, Ian; Farrell, Tony; Goodwin, Michael; Jacoby, George; Klauser, Urs; Kuehn, Kyler; Lorente, Nuria P. F.; Mali, Slavko; Marshall, Jennifer; Muller, Rolf; Nichani, Vijay; Pai, Naveen; Prochaska, Travis; Saunders, Will; Schmidt, Luke; Shortridge, Keith; Staszak, Nicholas F.; Szentgyorgyi, Andrew; Tims, Julia; Vuong, Minh V.; Waller, Lewis G.; Zhelem, Ross
2016-08-01
MANIFEST is a facility multi-object fibre system for the Giant Magellan Telescope, which uses `Starbug' fibre positioning robots. MANIFEST, when coupled to the telescope's planned seeing-limited instruments, GMACS, and G-CLEF, offers access to: larger fields of view; higher multiplex gains; versatile reformatting of the focal plane via IFUs; image-slicers; and in some cases higher spatial and spectral resolution. The Prototyping Design Study phase for MANIFEST, nearing completion, has focused on developing a working prototype of a Starbugs system, called TAIPAN, for the UK Schmidt Telescope, which will conduct a stellar and galaxy survey of the Southern sky. The Prototyping Design Study has also included work on the GMT instrument interfaces. In this paper, we outline the instrument design features of TAIPAN, highlight the modifications that will be necessary for the MANIFEST implementation, and provide an update on the MANIFEST/instrument interfaces.
New developments in the McStas neutron instrument simulation package
NASA Astrophysics Data System (ADS)
Willendrup, P. K.; Knudsen, E. B.; Klinkby, E.; Nielsen, T.; Farhi, E.; Filges, U.; Lefmann, K.
2014-07-01
The McStas neutron ray-tracing software package is a versatile tool for building accurate simulators of neutron scattering instruments at reactors, short- and long-pulsed spallation sources such as the European Spallation Source. McStas is extensively used for design and optimization of instruments, virtual experiments, data analysis and user training. McStas was founded as a scientific, open-source collaborative code in 1997. This contribution presents the project at its current state and gives an overview of the main new developments in McStas 2.0 (December 2012) and McStas 2.1 (expected fall 2013), including many new components, component parameter uniformisation, partial loss of backward compatibility, updated source brilliance descriptions, developments toward new tools and user interfaces, web interfaces and a new method for estimating beam losses and background from neutron optics.
Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.
Melin, Jessica; van der Wijngaart, Wouter; Stemme, Göran
2005-06-01
This paper introduces a method of combining open and closed microchannels in a single component in a novel way which couples the benefits of both open and closed microfluidic systems and introduces interesting on-chip microfluidic behaviour. Fluid behaviour in such a component, based on continuous pressure driven flow and surface tension, is discussed in terms of cross sectional flow behaviour, robustness, flow-pressure performance, and its application to microfluidic interfacing. The closed-open-closed microchannel possesses the versatility of upstream and downstream closed microfluidics along with open fluidic direct access. The device has the advantage of eliminating gas bubbles present upstream when these enter the open channel section. The unique behaviour of this device opens the door to applications including direct liquid sample interfacing without the need for additional and bulky sample tubing.
Van Berkel, Gary J.; Kertesz, Vilmos
2015-08-25
RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore » a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less
Fundamentals of lateral and vertical heterojunctions of atomically thin materials.
Pant, Anupum; Mutlu, Zafer; Wickramaratne, Darshana; Cai, Hui; Lake, Roger K; Ozkan, Cengiz; Tongay, Sefaattin
2016-02-21
At the turn of this century, Herbert Kroemer, the 2000 Nobel Prize winner in Physics, famously commented that "the interface is the device". This statement has since opened up unparalleled opportunities at the interface of conventional three-dimensional (3D) materials (H. Kroemer, Quasi-Electric and Quasi-Magnetic Fields in Non-Uniform Semiconductors, RCA Rev., 1957, 18, 332-342). More than a decade later, Sir Andre Geim and Irina Grigorieva presented their views on 2D heterojunctions which further cultivated broad interests in the 2D materials field. Currently, advances in two-dimensional (2D) materials enable us to deposit layered materials that are only one or few unit-cells in thickness to construct sharp in-plane and out-of-plane interfaces between dissimilar materials, and to be able to fabricate novel devices using these cutting-edge techniques. The interface alone, which traditionally dominated overall device performance, thus has now become the device itself. Fueled by recent progress in atomically thin materials, we are now at the ultimate limit of interface physics, which brings to us new and exciting opportunities, with equally demanding challenges. This paper endeavors to provide stalwarts and newcomers a perspective on recent advances in synthesis, fundamentals, applications, and future prospects of a large variety of heterojunctions of atomically thin materials.
NASA Astrophysics Data System (ADS)
Hu, Yangsen; Wu, Zhenghua; Ye, Fengjie; Hu, Zhiyu
2018-02-01
The manoeuvre of thermal transport property across multilayer films with inserted metal layers through controlling the metal-nonmetal interfaces is of fundamental interest. In this work, amorphous Si/Si0.75Ge0.25 multilayer films inserted with varying Au layers were fabricated by magnetron sputtering. The structure and sharp interface of multilayers films were characterized by low angle x-ray diffraction (LAXRD), grazing incidence small angle x-ray scattering (GISAXS) and scanning electron microscopy (SEM). A differential 3ω method was applied to measure the effective thermal conductivity. The measurements show that thermal conductivity has changed as varying Au layers. Thermal conductivity increased from 0.94 to 1.31 Wm-1K-1 while Si0.75Ge0.25 layer was replaced by different Au layers, which was attributed to the strong electron-phonon coupling and interface thermal resistance in a metal-nonmetal multilayered system. Theoretical calculation combined with experimental results indicate that the thermal conductivity of the multilayer film could be facilely controlled by introducing different number of nanoconstructed metal-nonmetal interfaces, which provide a more insightful understanding of the thermal transport manipulation mechanism of the thin film system with inserting metal layers.
Hypoxia interface behavior of the ctenophore Mnemiopsis leidyi
NASA Astrophysics Data System (ADS)
Gentry, L. A.; Moss, A.
2016-02-01
The ctenophore Mnemiopsis leidyi is most widely known as a destructive invasive species of the Black and Caspian seas. Ctenophores are also found endemically in oceans worldwide, where their low oxygen tolerances allow many of them to use hypoxic zones to escape predation and hunt disabled prey. Ctenophores have also been observed in the wild and laboratory conditions associating with the interface of hypoxic and normoxic waters, allowing them to feed on the organisms found there. In order to test the ability of M. leidyi to find oxygen interfaces, a 10 cm diameter X 60 cm tall cylindrical tank was designed with a sharp oxycline (<1cm) in the middle, stabilized by a 1 ppt salinity difference. The hypoxic water was produced by nitrogen bubbling prior to the experiment. We found that animals introduced to the tank under oxycline conditions increased their time spent at the interface by over nearly five-fold versus those in a fully normoxic or hypoxic water. These preliminary results would indicate that M. leidyi preferentially associates with the interfaces of hypoxic zones. As human effects such as overfishing, nutrient enrichment of coastal waters, and invasive introduction continue to rise, the complex interactions of these animals and hypoxic zones will become increasingly important to planktonic and pelagic ecosystems worldwide.
Depth resolution and preferential sputtering in depth profiling of sharp interfaces
NASA Astrophysics Data System (ADS)
Hofmann, S.; Han, Y. S.; Wang, J. Y.
2017-07-01
The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16-84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16-84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.
Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes
NASA Astrophysics Data System (ADS)
Capuano, M.; Bogey, C.; Spelt, P. D. M.
2018-05-01
A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.
A Versatile Strategy for Characterization and Imaging of Drip Flow Microbial Biofilms.
Li, Bin; Dunham, Sage J B; Ellis, Joseph F; Lange, Justin D; Smith, Justin R; Yang, Ning; King, Travis L; Amaya, Kensey R; Arnett, Clint M; Sweedler, Jonathan V
2018-06-05
The inherent architectural and chemical complexities of microbial biofilms mask our understanding of how these communities form, survive, propagate, and influence their surrounding environment. Here we describe a simple and versatile workflow for the cultivation and characterization of model flow-cell-based microbial ecosystems. A customized low-shear drip flow reactor was designed and employed to cultivate single and coculture flow-cell biofilms at the air-liquid interface of several metal surfaces. Pseudomonas putida F1 and Shewanella oneidensis MR-1 were selected as model organisms for this study. The utility and versatility of this platform was demonstrated via the application of several chemical and morphological imaging techniques-including matrix-assisted laser desorption/ionization mass spectrometry imaging, secondary ion mass spectrometry imaging, and scanning electron microscopy-and through the examination of model systems grown on iron substrates of varying compositions. Implementation of these techniques in combination with tandem mass spectrometry and a two-step imaging principal component analysis strategy resulted in the identification and characterization of 23 lipids and 3 oligosaccharides in P. putida F1 biofilms, the discovery of interaction-specific analytes, and the observation of several variations in cell and substrate morphology present during microbially influenced corrosion. The presented workflow is well-suited for examination of both single and multispecies drip flow biofilms and offers a platform for fundamental inquiries into biofilm formation, microbe-microbe interactions, and microbially influenced corrosion.
Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control.
Bercich, Rebecca A; Wang, Zhi; Mei, Henry; Hammer, Lauren H; Seburn, Kevin L; Hargrove, Levi J; Irazoqui, Pedro P
2016-08-01
A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject's forearm. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device's programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system's functional protocol for patient- or algorithm-specific needs.
NASA Astrophysics Data System (ADS)
Elder, Robert M.; O'Connor, Thomas C.; Chantawansri, Tanya L.; Sliozberg, Yelena R.; Sirk, Timothy W.; Yeh, In-Chul; Robbins, Mark O.; Andzelm, Jan W.
2017-09-01
Semicrystalline polyethylene (PE) is attractive for a variety of mechanically demanding applications, where shock compression can occur. Although often highly crystalline, PE invariably contains nanoscale amorphous domains that influence shock propagation. Our objective in this work is to study the effects of such domains. To this end, we adopt a novel approach wherein we parametrize a simple continuum-level theory based on the shock impedance from molecular dynamics (MD) simulations. Using this theory, we predict how crystalline/amorphous interfaces attenuate shocks via energy reflection due to the impedance mismatch between the phases. The theory predicts that these interfaces attenuate weak shocks more effectively than strong shocks. We compare the theory to explicit nonequilibrium MD simulations of compressive shocks in semicrystalline PE containing nanometer-scale amorphous regions of varying size, where we analyze the pressure response and reflection of energy. The theory and simulations show good agreement for strong shocks (≥1.0 km /s ), but for weak shocks (<1.0 km /s ) the simulations show enhanced energy reflection relative to the continuum predictions. Furthermore, the simulations show an effect not captured by the continuum theory: the size of amorphous regions is important. The theory assumes a sharp (discontinuous) interface between two bulk phases and a sharp change in thermodynamic and hydrodynamic quantities at the shock front. However, the simulations show that when amorphous domains are narrow—with widths comparable to the shock front—reflection is reduced compared to the predictions. We identify several nanoscale mechanisms that reduce the impedance mismatch, and thus reduce reflection, at thin amorphous domains. First, the two-wave elastic-plastic structure of shocks in crystalline PE allows the faster-moving elastic precursor wave to compress small amorphous domains before the plastic wave arrives. Second, confinement between stiff, ordered crystalline domains increases the stiffness and chain ordering in small amorphous regions. Moreover, in terms of stiffness the interfaces are similar in width to the shock front, which may contribute to the underprediction of the theory for weak shocks, where the shock front is widest. We conclude by discussing the significance of these results, namely, how they can be applied to tune shock attenuation for particular applications.
Diffuse interface models of locally inextensible vesicles in a viscous fluid
Aland, Sebastian; Egerer, Sabine; Lowengrub, John; Voigt, Axel
2014-01-01
We present a new diffuse interface model for the dynamics of inextensible vesicles in a viscous fluid with inertial forces. A new feature of this work is the implementation of the local inextensibility condition in the diffuse interface context. Local inextensibility is enforced by using a local Lagrange multiplier, which provides the necessary tension force at the interface. We introduce a new equation for the local Lagrange multiplier whose solution essentially provides a harmonic extension of the multiplier off the interface while maintaining the local inextensibility constraint near the interface. We also develop a local relaxation scheme that dynamically corrects local stretching/compression errors thereby preventing their accumulation. Asymptotic analysis is presented that shows that our new system converges to a relaxed version of the inextensible sharp interface model. This is also verified numerically. To solve the equations, we use an adaptive finite element method with implicit coupling between the Navier-Stokes and the diffuse interface inextensibility equations. Numerical simulations of a single vesicle in a shear flow at different Reynolds numbers demonstrate that errors in enforcing local inextensibility may accumulate and lead to large differences in the dynamics in the tumbling regime and smaller differences in the inclination angle of vesicles in the tank-treading regime. The local relaxation algorithm is shown to prevent the accumulation of stretching and compression errors very effectively. Simulations of two vesicles in an extensional flow show that local inextensibility plays an important role when vesicles are in close proximity by inhibiting fluid drainage in the near contact region. PMID:25246712
Ping, Y.; Fernandez-Panella, A.; Sio, H.; ...
2015-09-04
We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.
General-Purpose Electronic System Tests Aircraft
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1989-01-01
Versatile digital equipment supports research, development, and maintenance. Extended aircraft interrogation and display system is general-purpose assembly of digital electronic equipment on ground for testing of digital electronic systems on advanced aircraft. Many advanced features, including multiple 16-bit microprocessors, pipeline data-flow architecture, advanced operating system, and resident software-development tools. Basic collection of software includes program for handling many types of data and for displays in various formats. User easily extends basic software library. Hardware and software interfaces to subsystems provided by user designed for flexibility in configuration to meet user's requirements.
Comprehensive T-Matrix Reference Database: A 2007-2009 Update
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Zakharova, Nadia T.; Videen, Gorden; Khlebtsov, Nikolai G.; Wriedt, Thomas
2010-01-01
The T-matrix method is among the most versatile, efficient, and widely used theoretical techniques for the numerically exact computation of electromagnetic scattering by homogeneous and composite particles, clusters of particles, discrete random media, and particles in the vicinity of an interface separating two half-spaces with different refractive indices. This paper presents an update to the comprehensive database of T-matrix publications compiled by us previously and includes the publications that appeared since 2007. It also lists several earlier publications not included in the original database.
NASA Technical Reports Server (NTRS)
Schoenfeld, A. D.; Yu, Y.
1973-01-01
Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.
Constraint-Muse: A Soft-Constraint Based System for Music Therapy
NASA Astrophysics Data System (ADS)
Hölzl, Matthias; Denker, Grit; Meier, Max; Wirsing, Martin
Monoidal soft constraints are a versatile formalism for specifying and solving multi-criteria optimization problems with dynamically changing user preferences. We have developed a prototype tool for interactive music creation, called Constraint Muse, that uses monoidal soft constraints to ensure that a dynamically generated melody harmonizes with input from other sources. Constraint Muse provides an easy to use interface based on Nintendo Wii controllers and is intended to be used in music therapy for people with Parkinson’s disease and for children with high-functioning autism or Asperger’s syndrome.
Removal of the Magnetic Dead Layer by Geometric Design
Guo, Er-jia; Roldan, Manuel; Charlton, Timothy R.; ...
2018-05-28
The proximity effect is used to engineer interface effects such as magnetoelectric coupling, exchange bias, and emergent interfacial magnetism. However, the presence of a magnetic “dead layer” adversely affects the functionality of a heterostructure. Here in this paper, it is shown that by utilizing (111) polar planes, the magnetization of a manganite ultrathin layer can be maintained throughout its thickness. Combining structural characterization, magnetometry measurements, and magnetization depth profiling with polarized neutron reflectometry, it is found that the magnetic dead layer is absent in the (111)-oriented manganite layers, however, it occurs in the films with other orientations. Quantitative analysis ofmore » local structural and elemental spatial evolutions using scanning transmission electron microscopy and electron energy loss spectroscopy reveals that atomically sharp interfaces with minimal chemical intermixing in the (111)-oriented superlattices. The polar discontinuity across the (111) interfaces inducing charge redistribution within the SrTiO 3 layers is suggested, which promotes ferromagnetism throughout the (111)-oriented ultrathin manganite layers. The approach of eliminating problematic magnetic dead layers by changing the crystallographic orientation suggests a conceptually useful recipe to engineer the intriguing physical properties of oxide interfaces, especially in low dimensionality.« less
Removal of the Magnetic Dead Layer by Geometric Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Er-jia; Roldan, Manuel; Charlton, Timothy R.
The proximity effect is used to engineer interface effects such as magnetoelectric coupling, exchange bias, and emergent interfacial magnetism. However, the presence of a magnetic “dead layer” adversely affects the functionality of a heterostructure. Here in this paper, it is shown that by utilizing (111) polar planes, the magnetization of a manganite ultrathin layer can be maintained throughout its thickness. Combining structural characterization, magnetometry measurements, and magnetization depth profiling with polarized neutron reflectometry, it is found that the magnetic dead layer is absent in the (111)-oriented manganite layers, however, it occurs in the films with other orientations. Quantitative analysis ofmore » local structural and elemental spatial evolutions using scanning transmission electron microscopy and electron energy loss spectroscopy reveals that atomically sharp interfaces with minimal chemical intermixing in the (111)-oriented superlattices. The polar discontinuity across the (111) interfaces inducing charge redistribution within the SrTiO 3 layers is suggested, which promotes ferromagnetism throughout the (111)-oriented ultrathin manganite layers. The approach of eliminating problematic magnetic dead layers by changing the crystallographic orientation suggests a conceptually useful recipe to engineer the intriguing physical properties of oxide interfaces, especially in low dimensionality.« less
Magnetism and electronic structure at the interface of a metal CaRuO3 and Mott insulator CaMnO3.
NASA Astrophysics Data System (ADS)
Boris, Alexander; Freeland, John; Kavich, Jerald; Lee, Ho Nyung; Yordanov, Petar; Khaliullin, Giniyat; Keimer, Bernhard; Chakhalian, Jak
2007-03-01
Recent advances in fabrication of ultra-thin complex oxide heterostructures have opened new opportunities to investigate possible novel quantum states at the correlated interfaces. With this aim we fabricated ultra-thin superlattices of CaMnO3(CMO)/CaRuO3(CRO) with the thickness of CRO layers from 1 to 12 unit cells by laser MBE. Electronic properties of CRO/CMO were investigated by soft x-ray spectroscopies at the L-edges of Mn and Ru. SQUID and optical reflectivity revealed a ferromagnetic thickness-independent transition at Tc 100K and CRO thickness-dependent negative magnetoresistance. This behavior is in marked contrast to the individual layers. At the interface we found a clear sign of net magnetic moment on Mn, which saturates only at magnetic field of 5T. Unlike CMO, similar measurements at the Ru L3-edge showed no detectable magnetism in the field up to 5T. Comparison with Ru references confirmed Ru(IV) oxidation state. These findings are in the sharp contrast with previously suggested models involving Ru(IV-V) valency exchange and thus reveal intricate nature of the interface between a metal and Mott insulator.
NASA Astrophysics Data System (ADS)
Patel, Jitendra Kumar; Natarajan, Ganesh
2018-05-01
We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The proposed diffuse interface immersed boundary method is shown to be discretely mass-preserving while being temporally second-order accurate and exhibits nominal second-order accuracy in space. We examine the efficacy of the proposed approach through extensive numerical experiments involving one or more fluids and solids, that include two-particle sedimentation in homogeneous and stratified environment. The results from the numerical simulations show that the proposed methodology results in reduced spurious force oscillations in case of moving bodies while accurately resolving complex flow phenomena in multiphase flows with moving solids. These studies demonstrate that the proposed diffuse interface immersed boundary method, which could be related to a class of penalisation approaches, is a robust and promising alternative to computationally expensive conformal moving mesh algorithms as well as the class of sharp interface immersed boundary methods for multibody problems in multi-phase flows.
Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids
NASA Astrophysics Data System (ADS)
Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk
2018-03-01
The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reis, Nuno M.; Chirgadze, Dimitri Y.; Blundell, Tom L.
The nucleation of lysozyme in microbatch experiments was linked to the formation of protein–precipitant interfaces. The use of oscillatory shear allowed decreasing the nucleation rate and extending the growth period for lysozyme crystals, presumably through the control of the number of interfaces and removal of impurities or defects. This paper is concerned with the effect of protein–precipitant interfaces and externally applied shear on the nucleation and growth kinetics of hen egg-white lysozyme crystals. The early stages of microbatch crystallization of lysozyme were explored using both optical and confocal fluorescence microscopy imaging. Initially, an antisolvent (precipitant) was added to a proteinmore » drop and the optical development of the protein–precipitant interface was followed with time. In the presence of the water-soluble polymer poly(ethylene glycol) (PEG) a sharp interface was observed to form immediately within the drop, giving an initial clear separation between the lighter protein solution and the heavier precipitant. This interface subsequently became unstable and quickly developed within a few seconds into several unstable ‘fingers’ that represented regions of high concentration-gradient interfaces. Confocal microscopy demonstrated that the subsequent nucleation of protein crystals occurred preferentially in the region of these interfaces. Additional experiments using an optical shearing system demonstrated that oscillatory shear significantly decreased nucleation rates whilst extending the growth period of the lysozyme crystals. The experimental observations relating to both nucleation and growth have relevance in developing efficient and reliable protocols for general crystallization procedures and the controlled crystallization of single large high-quality protein crystals for use in X-ray crystallography.« less
Pura, J L; Periwal, P; Baron, T; Jiménez, J
2018-08-31
The vapour-liquid-solid (VLS) method is by far the most extended procedure for bottom-up nanowire growth. This method also allows for the manufacture of nanowire axial heterojunctions in a straightforward way. To do this, during the growth process, precursor gases are switched on/off to obtain the desired change in the nanowire composition. Using this technique, axially heterostructured nanowires can be grown, which are crucial for the fabrication of electronic and optoelectronic devices. SiGe/Si nanowires are compatible with complementary metal oxide semiconductor (CMOS) technology, which improves their versatility and the possibility of integration with current electronic technologies. Abrupt heterointerfaces are fundamental for the development and correct operation of electronic and optoelectronic devices. Unfortunately, the VLS growth of SiGe/Si heterojunctions does not provide abrupt transitions because of the high solubility of group IV semiconductors in Au, with the corresponding reservoir effect that precludes the growth of sharp interfaces. In this work, we studied the growth dynamics of SiGe/Si heterojunctions based on already developed models for VLS growth. A composition map of the Si-Ge-Au liquid alloy is proposed to better understand the impact of the growing conditions on the nanowire growth process and the heterojunction formation. The solution of our model provides heterojunction profiles that are in good agreement with the experimental measurements. Finally, an in-depth study of the composition map provides a practical approach to the drastic reduction of heterojunction abruptness by reducing the Si and Ge concentrations in the catalyst droplet. This converges with previous approaches, which use catalysts aiming to reduce the solubility of the atomic species. This analysis opens new paths to the reduction of heterojunction abruptness using Au catalysts, but the model can be naturally extended to other catalysts and semiconductors.
Chan, K L Andrew; Kazarian, Sergei G
2013-01-15
Transmission mode is one of the most common sampling methods for FT-IR spectroscopic imaging because the spectra obtained generally have a reasonable signal-to-noise ratio. However, dispersion and refraction of infrared light occurs when samples are sandwiched between infrared windows or placed underneath a layer of liquid. Dispersion and refraction cause infrared light to focus with different focal lengths depending on the wavelength (wavenumber) of the light. As a result, images obtained are in focus only at a particular wavenumber while they are defocused at other wavenumber values. In this work, a solution to correct this spread of focus by means of adding a lens on top of the infrared transparent window, such that a pseudo hemisphere is formed, has been investigated. Through this lens (or pseudo hemisphere), refraction of light is removed and the light across the spectral range has the same focal depth. Furthermore, the lens acts as a solid immersion objective and an increase of both magnification and spatial resolution (by 1.4 times) is demonstrated. The spatial resolution was investigated using an USAF resolution target, showing that the Rayleigh criterion can be achieved, as well as a sample with a sharp polymer interface to indicate the spatial resolution that can be expected in real samples. The reported approach was used to obtain chemical images of cross sections of cancer tissue and hair samples sandwiched between infrared windows showing the versatility and applicability of the method. In addition to the improved spatial resolution, the results reported herein also demonstrate that the lens can reduce the effect of scattering near the edges of tissue samples. The advantages of the presented approach, obtaining FT-IR spectroscopic images in transmission mode with the same focus across all wavenumber values and simultaneous improvement in spatial resolution, will have wide implications ranging from studies of live cells to sorption of drugs into tissues.
Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer
2016-01-01
The mechanisms by which chemical vapor deposited (CVD) graphene and hexagonal boron nitride (h-BN) films can be released from a growth catalyst, such as widely used copper (Cu) foil, are systematically explored as a basis for an improved lift-off transfer. We show how intercalation processes allow the local Cu oxidation at the interface followed by selective oxide dissolution, which gently releases the 2D material (2DM) film. Interfacial composition change and selective dissolution can thereby be achieved in a single step or split into two individual process steps. We demonstrate that this method is not only highly versatile but also yields graphene and h-BN films of high quality regarding surface contamination, layer coherence, defects, and electronic properties, without requiring additional post-transfer annealing. We highlight how such transfers rely on targeted corrosion at the catalyst interface and discuss this in context of the wider CVD growth and 2DM transfer literature, thereby fostering an improved general understanding of widely used transfer processes, which is essential to numerous other applications. PMID:27934130
High-Rate Digital Receiver Board
NASA Technical Reports Server (NTRS)
Ghuman, Parminder; Bialas, Thomas; Brambora, Clifford; Fisher, David
2004-01-01
A high-rate digital receiver (HRDR) implemented as a peripheral component interface (PCI) board has been developed as a prototype of compact, general-purpose, inexpensive, potentially mass-producible data-acquisition interfaces between telemetry systems and personal computers. The installation of this board in a personal computer together with an analog preprocessor enables the computer to function as a versatile, highrate telemetry-data-acquisition and demodulator system. The prototype HRDR PCI board can handle data at rates as high as 600 megabits per second, in a variety of telemetry formats, transmitted by diverse phase-modulation schemes that include binary phase-shift keying and various forms of quadrature phaseshift keying. Costing less than $25,000 (as of year 2003), the prototype HRDR PCI board supplants multiple racks of older equipment that, when new, cost over $500,000. Just as the development of standard network-interface chips has contributed to the proliferation of networked computers, it is anticipated that the development of standard chips based on the HRDR could contribute to reductions in size and cost and increases in performance of telemetry systems.
Powers, Michael H.; Burton, Bethany L.
2004-01-01
In late May and early June of 2002, the U.S. Geological Survey (USGS) acquired four P-wave seismic profiles across the Straight Creek drainage near Red River, New Mexico. The data were acquired to support a larger effort to investigate baseline and pre-mining ground-water quality in the Red River basin (Nordstrom and others, 2002). For ground-water flow modeling, knowledge of the thickness of the valley fill material above the bedrock is required. When curved-ray refraction tomography was used with the seismic first arrival times, the resulting images of interval velocity versus depth clearly show a sharp velocity contrast where the bedrock interface is expected. The images show that the interpreted buried bedrock surface is neither smooth nor sharp, but it is clearly defined across the valley along the seismic line profiles. The bedrock models defined by the seismic refraction images are consistent with the well data.
SPH simulation of free surface flow over a sharp-crested weir
NASA Astrophysics Data System (ADS)
Ferrari, Angela
2010-03-01
In this paper the numerical simulation of a free surface flow over a sharp-crested weir is presented. Since in this case the usual shallow water assumptions are not satisfied, we propose to solve the problem using the full weakly compressible Navier-Stokes equations with the Tait equation of state for water. The numerical method used consists of the new meshless Smooth Particle Hydrodynamics (SPH) formulation proposed by Ferrari et al. (2009) [8], that accurately tracks the free surface profile and provides monotone pressure fields. Thus, the unsteady evolution of the complex moving material interface (free surface) can been properly solved. The simulations involving about half a million of fluid particles have been run in parallel on two of the most powerful High Performance Computing (HPC) facilities in Europe. The validation of the results has been carried out analysing the pressure field and comparing the free surface profiles obtained with the SPH scheme with experimental measurements available in literature [18]. A very good quantitative agreement has been obtained.
Coupling to Tamm-plasmon-polaritons: dependence on structural parameters
NASA Astrophysics Data System (ADS)
Kumari, Anupa; Kumar, Samir; Shukla, Mukesh Kumar; Kumar, Govind; Sona Maji, Partha; Vijaya, R.; Das, Ritwick
2018-06-01
Tamm plasmon-polaritons (TPPs), formed at the interface of a plasmon-active metal and a distributed Bragg reflector (DBR), are characterized by sharp resonances in the reflection spectrum. The features of these sharp TPP resonances are primarily dictated by the structural parameters as well as by the nature of materials of the constituent DBR and metal. In the present investigation, we experimentally and theoretically analyze the role played by the DBR parameters and the metal layer thickness in determining the efficiency of TPP-mode excitation using plane waves. The findings reveal that the minimum in the reflection spectrum depicting the TPP resonance is strongly influenced by the thickness of plasmon-active metal film as well as the number of DBR unit cells. In fact, there exists an optimum combination of the geometrical parameters for achieving a maximum coupling to TPP modes. A brief theoretical analysis elucidating the underlying mechanism behind such observations is also presented so as to optimally design TPP-based architectures for different applications.
NASA Astrophysics Data System (ADS)
Zhang, Baomin; Cao, Chonglong; Li, Guowei; Li, Feng; Ji, Weixiao; Zhang, Shufeng; Ren, Miaojuan; Zhang, Haikun; Zhang, Rui-Qin; Zhong, Zhicheng; Yuan, Zhe; Yuan, Shengjun; Blake, Graeme R.
2018-04-01
We use first-principles calculations to predict the occurrence of half-metallicity and anionogenic ferromagnetism at the heterointerface between two 2p insulators, taking the KO2/BaO2 (001) interface as an example. Whereas a sharp heterointerface is semiconducting, a heterointerface with a moderate concentration of swapped K and Ba atoms is half-metallic and ferromagnetic at ambient pressure due to the double exchange mechanism. The K-Ba swap renders the interfacial K-O and Ba-O atomic layers electron-doped and hole-doped, respectively. Our findings pave the way to realize metallicity and ferromagnetism at the interface between two 2 p insulators, and such systems can constitute a new family of heterostructures with novel properties, expanding studies on heterointerfaces from 3 d insulators to 2 p insulators.
Joining of dissimilar materials
Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P
2012-10-16
A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, In-Sung; Jung, Yong Chan; Seong, Sejong
2015-01-15
The charge trapping properties of metal-HfO{sub 2}-Ge capacitor as a nonvolatile memory have been investigated with (NH{sub 4}){sub 2}S-treated Ge substrate and atomic-layer-deposited HfO{sub 2} layer. The interfacial layer generated by (NH{sub 4}){sub 2}S-treated Ge substrate reveals a trace of -S- bonding, very sharp interface edges, and smooth surface morphology. The Ru-HfO{sub 2}-Ge capacitor with (NH{sub 4}){sub 2}S-treated Ge substrate shows an enhanced interface state with little frequency dispersion, a lower leakage current, and very reliable properties with the enhanced endurance and retention than Ru-HfO{sub 2}-Ge capacitor with cyclic-cleaned Ge substrate.
Stochastic Inversion of 2D Magnetotelluric Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jinsong
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, itmore » provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less
Crystal growth kinetics in undercooled melts of pure Ge, Si and Ge-Si alloys
NASA Astrophysics Data System (ADS)
Herlach, Dieter M.; Simons, Daniel; Pichon, Pierre-Yves
2018-01-01
We report on measurements of crystal growth dynamics in semiconducting pure Ge and pure Si melts and in Ge100-xSix (x = 25, 50, 75) alloy melts as a function of undercooling. Electromagnetic levitation techniques are applied to undercool the samples in a containerless way. The growth velocity is measured by the utilization of a high-speed camera technique over an extended range of undercooling. Solidified samples are examined with respect to their microstructure by scanning electron microscopic investigations. We analyse the experimental results of crystal growth kinetics as a function of undercooling within the sharp interface theory developed by Peter Galenko. Transitions of the atomic attachment kinetics are found at large undercoolings, from faceted growth to dendrite growth. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
A topological quantum optics interface.
Barik, Sabyasachi; Karasahin, Aziz; Flower, Christopher; Cai, Tao; Miyake, Hirokazu; DeGottardi, Wade; Hafezi, Mohammad; Waks, Edo
2018-02-09
The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder. Although considerable progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored. We demonstrate a strong interface between single quantum emitters and topological photonic states. Our approach creates robust counterpropagating edge states at the boundary of two distinct topological photonic crystals. We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends. This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Lockwood, David; Wu, Xiaohua; Baribeau, Jean-Marc; Mala, Selina; Wang, Xialou; Tsybeskov, Leonid
2016-03-01
Fast optical interconnects together with an associated light emitter that are both compatible with conventional Si-based complementary metal-oxide- semiconductor (CMOS) integrated circuit technology is an unavoidable requirement for the next-generation microprocessors and computers. Self-assembled Si/Si1-xGex nanostructures, which can emit light at wavelengths within the important optical communication wavelength range of 1.3 - 1.55 μm, are already compatible with standard CMOS practices. However, the expected long carrier radiative lifetimes observed to date in Si and Si/Si1-xGex nanostructures have prevented the attainment of efficient light-emitting devices including the desired lasers. Thus, the engineering of Si/Si1-xGex heterostructures having a controlled composition and sharp interfaces is crucial for producing the requisite fast and efficient photoluminescence (PL) at energies in the range 0.8-0.9 eV. In this paper we assess how the nature of the interfaces between SiGe nanostructures and Si in heterostructures strongly affects carrier mobility and recombination for physical confinement in three dimensions (corresponding to the case of quantum dots), two dimensions (corresponding to quantum wires), and one dimension (corresponding to quantum wells). The interface sharpness is influenced by many factors such as growth conditions, strain, and thermal processing, which in practice can make it difficult to attain the ideal structures required. This is certainly the case for nanostructure confinement in one dimension. However, we demonstrate that axial Si/Ge nanowire (NW) heterojunctions (HJs) with a Si/Ge NW diameter in the range 50 - 120 nm produce a clear PL signal associated with band-to-band electron-hole recombination at the NW HJ that is attributed to a specific interfacial SiGe alloy composition. For three-dimensional confinement, the experiments outlined here show that two quite different Si1-xGex nanostructures incorporated into a Si0.6Ge0.4 wavy superlattice structure display PL of high intensity while exhibiting a characteristic decay time that is up to 1000 times shorter than that found in conventional Si/SiGe nanostructures. The non-exponential PL decay found experimentally in Si/SiGe nanostructures can be interpreted as resulting from variations in the separation distance between electrons and holes at the Si/SiGe heterointerface. The results demonstrate that a sharp Si/SiGe heterointerface acts to reduce the carrier radiative recombination lifetime and increase the PL quantum
Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures
NASA Astrophysics Data System (ADS)
Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Liu, Xinyue; Zhao, Xuanhe
2016-06-01
Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel-elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in patterning microstructures. Here, we report a simple yet versatile method to assemble hydrogels and elastomers into hybrids with extremely robust interfaces (interfacial toughness over 1,000 Jm-2) and functional microstructures such as microfluidic channels and electrical circuits. The proposed method is generally applicable to various types of tough hydrogels and diverse commonly used elastomers including polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further demonstrate applications enabled by the robust and microstructured hydrogel-elastomer hybrids including anti-dehydration hydrogel-elastomer hybrids, stretchable and reactive hydrogel-elastomer microfluidics, and stretchable hydrogel circuit boards patterned on elastomer.
He, Zhen; Jiang, Hui-Jun; Wu, Long-Long; Liu, Jian-Wei; Wang, Geng; Wang, Xiao; Wang, Jin-Long; Hou, Zhong-Huai; Chen, Gang; Yu, Shu-Hong
2018-07-02
Although many assembly strategies have been used to successfully construct well-aligned nanowire (NW) assemblies, the understanding of their assembly kinetics has remained elusive, which restricts the development of NW-based device and circuit fabrication. Now a versatile strategy that combines interfacial assembly and synchrotron-based grazing-incidence small-angle X-ray scattering (GISAXS) is presented to track the assembly evolution of the NWs in real time. During the interface assembly process, the randomly dispersed NWs gradually aggregate to form small ordered NW-blocks and finally are constructed into well-defined NW monolayer driven by the conformation entropy. The NW assembly mechanism can be well revealed by the thermodynamic analysis and large-scale molecular dynamics theoretical evaluation. These findings point to new opportunities for understanding NW assembly kinetics and manipulating NW assembled structures by bottom-up strategy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Human-Robot Control Strategies for the NASA/DARPA Robonaut
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Culbert, Chris J.; Ambrose, Robert O.; Huber, E.; Bluethmann, W. J.
2003-01-01
The Robotic Systems Technology Branch at the NASA Johnson Space Center (JSC) is currently developing robot systems to reduce the Extra-Vehicular Activity (EVA) and planetary exploration burden on astronauts. One such system, Robonaut, is capable of interfacing with external Space Station systems that currently have only human interfaces. Robonaut is human scale, anthropomorphic, and designed to approach the dexterity of a space-suited astronaut. Robonaut can perform numerous human rated tasks, including actuating tether hooks, manipulating flexible materials, soldering wires, grasping handrails to move along space station mockups, and mating connectors. More recently, developments in autonomous control and perception for Robonaut have enabled dexterous, real-time man-machine interaction. Robonaut is now capable of acting as a practical autonomous assistant to the human, providing and accepting tools by reacting to body language. A versatile, vision-based algorithm for matching range silhouettes is used for monitoring human activity as well as estimating tool pose.
Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules
Parker, Richard M; Zhang, Jing; Zheng, Yu; Coulston, Roger J; Smith, Clive A; Salmon, Andrew R; Yu, Ziyi; Scherman, Oren A; Abell, Chris
2015-01-01
Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules—where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core–shell microcapsules, gives access to a new generation of innovative self-assembled constructs. PMID:26213532
BIOLOGICAL NETWORK EXPLORATION WITH CYTOSCAPE 3
Su, Gang; Morris, John H.; Demchak, Barry; Bader, Gary D.
2014-01-01
Cytoscape is one of the most popular open-source software tools for the visual exploration of biomedical networks composed of protein, gene and other types of interactions. It offers researchers a versatile and interactive visualization interface for exploring complex biological interconnections supported by diverse annotation and experimental data, thereby facilitating research tasks such as predicting gene function and pathway construction. Cytoscape provides core functionality to load, visualize, search, filter and save networks, and hundreds of Apps extend this functionality to address specific research needs. The latest generation of Cytoscape (version 3.0 and later) has substantial improvements in function, user interface and performance relative to previous versions. This protocol aims to jump-start new users with specific protocols for basic Cytoscape functions, such as installing Cytoscape and Cytoscape Apps, loading data, visualizing and navigating the network, visualizing network associated data (attributes) and identifying clusters. It also highlights new features that benefit experienced users. PMID:25199793
Domain matching epitaxy of BaBiO3 on SrTiO3 with structurally modified interface
NASA Astrophysics Data System (ADS)
Zapf, M.; Stübinger, M.; Jin, L.; Kamp, M.; Pfaff, F.; Lubk, A.; Büchner, B.; Sing, M.; Claessen, R.
2018-04-01
The perovskite BaBiO3 (BBO) is a versatile oxide parent material which displays superconductivity upon p-doping, while n-doping has been predicted to establish a wide-bandgap topological insulator phase. Here, we report on a mechanism that allows for epitaxial deposition of high-quality crystalline BBO thin films on SrTiO3 substrates despite a significant lattice mismatch of as large as 12%. It is revealed that the growth takes place through domain matching epitaxy, resulting in domains with alternating lateral sizes of 8 and 9 BBO unit cells. In particular, a structurally modified interface layer is identified which serves as a nucleation layer for the BBO films and gradually relieves the strain by decoupling the film lattice from the substrate. The BBO growth mechanism identified here may be prototypical for prospective thin film deposition of other perovskites with large lattice constants.
BFPTool: a software tool for analysis of Biomembrane Force Probe experiments.
Šmít, Daniel; Fouquet, Coralie; Doulazmi, Mohamed; Pincet, Frédéric; Trembleau, Alain; Zapotocky, Martin
2017-01-01
The Biomembrane Force Probe is an approachable experimental technique commonly used for single-molecule force spectroscopy and experiments on biological interfaces. The technique operates in the range of forces from 0.1 pN to 1000 pN. Experiments are typically repeated many times, conditions are often not optimal, the captured video can be unstable and lose focus; this makes efficient analysis challenging, while out-of-the-box non-proprietary solutions are not freely available. This dedicated tool was developed to integrate and simplify the image processing and analysis of videomicroscopy recordings from BFP experiments. A novel processing feature, allowing the tracking of the pipette, was incorporated to address a limitation of preceding methods. Emphasis was placed on versatility and comprehensible user interface implemented in a graphical form. An integrated analytical tool was implemented to provide a faster, simpler and more convenient way to process and analyse BFP experiments.
Near-Infrared Ag2S Quantum Dots-Based DNA Logic Gate Platform for miRNA Diagnostics.
Miao, Peng; Tang, Yuguo; Wang, Bidou; Meng, Fanyu
2016-08-02
Dysregulation of miRNA expression is correlated with the development and progression of many diseases. These miRNAs are regarded as promising biomarkers. However, it is challenging to measure these low abundant molecules without employing time-consuming radioactive labeling or complex amplification strategies. Here, we present a DNA logic gate platform for miRNA diagnostics with fluorescence outputs from near-infrared (NIR) Ag2S quantum dots (QDs). Carefully designed toehold exchange-mediated strand displacements with different miRNA inputs occur on a solid-state interface, which control QDs release from solid-state interface to solution, responding to multiplex information on initial miRNAs. Excellent fluorescence emission properties of NIR Ag2S QDs certify the great prospect for amplification-free and sensitive miRNA assay. We demonstrate the potential of this platform by achieving femtomolar level miRNA analysis and the versatility of a series of logic circuits computation.
Wang, Pengwei; Zhao, Tianyi; Bian, Ruixin; Wang, Guangyan; Liu, Huan
2017-12-26
Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.
Staritzbichler, René; Anselmi, Claudio; Forrest, Lucy R.; Faraldo-Gómez, José D.
2014-01-01
As new atomic structures of membrane proteins are resolved, they reveal increasingly complex transmembrane topologies, and highly irregular surfaces with crevices and pores. In many cases, specific interactions formed with the lipid membrane are functionally crucial, as is the overall lipid composition. Compounded with increasing protein size, these characteristics pose a challenge for the construction of simulation models of membrane proteins in lipid environments; clearly, that these models are sufficiently realistic bears upon the reliability of simulation-based studies of these systems. Here, we introduce GRIFFIN, which uses a versatile framework to automate and improve a widely-used membrane-embedding protocol. Initially, GRIFFIN carves out lipid and water molecules from a volume equivalent to that of the protein, so as to conserve the system density. In the subsequent optimization phase GRIFFIN adds an implicit grid-based protein force-field to a molecular dynamics simulation of the pre-carved membrane. In this force-field, atoms inside the implicit protein volume experience an outward force that will expel them from that volume, whereas those outside are subject to electrostatic and van-der-Waals interactions with the implicit protein. At each step of the simulation, these forces are updated by GRIFFIN and combined with the intermolecular forces of the explicit lipid-water system. This procedure enables the construction of realistic and reproducible starting configurations of the protein-membrane interface within a reasonable timeframe and with minimal intervention. GRIFFIN is a standalone tool designed to work alongside any existing molecular dynamics package, such as NAMD or GROMACS. PMID:24707227
Choi, Wuyong; Lee, Slgirim; Kim, Seung-Hyun; Jang, Jae-Hyung
2016-06-01
Designing versatile 3D interfaces that can precisely represent a biological environment is a prerequisite for the creation of artificial tissue structures. To this end, electrospun fibrous sponges, precisely mimicking an extracellular matrix and providing highly porous interfaces, have capabilities that can function as versatile physical cues to regenerate various tissues. However, their intrinsic features, such as sheet-like, thin, and weak structures, limit the design of a number of uses in tissue engineering applications. Herein, a highly facile methodology capable of fabricating rigid, sticky, spatially expanded fluffy electrospun fibrous sponges is proposed. A bio-inspired adhesive material, poly(dopamine) (pDA), is employed as a key mediator to provide rigidity and stickiness to the 3D poly(ε-caprolactone) (PCL) fibrous sponges, which are fabricated using a coaxial electrospinning with polystyrene followed by a selective leaching process. The iron ion induced oxidation of dopamine into pDA networks interwoven with PCL fibers results in significant increases in the rigidity of 3D fibrous sponges. Furthermore, the exposure of catecholamine groups on the fiber surfaces promotes the stable attachment of the sponges on wet organ surfaces and triggers the robust immobilization of biomolecules (e.g., proteins and gene vectors), demonstrating their potential for 3D scaffolds as well as drug delivery vehicles. Because fibrous structures are ubiquitous in the human body, these rigid, sticky, 3D fibrous sponges are good candidates for powerful biomaterial systems that functionally mimic a variety of tissue structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rickmann, M; Siklós, L; Joó, F; Wolff, J R
1990-09-01
An interface for IBM XT/AT-compatible computers is described which has been designed to read the actual specimen stage position of electron microscopes. The complete system consists of (i) optical incremental encoders attached to the x- and y-stage drivers of the microscope, (ii) two keypads for operator input, (iii) an interface card fitted to the bus of the personal computer, (iv) a standard configuration IBM XT (or compatible) personal computer optionally equipped with a (v) HP Graphic Language controllable colour plotter. The small size of the encoders and their connection to the stage drivers by simple ribbed belts allows an easy adaptation of the system to most electron microscopes. Operation of the interface card itself is supported by any high-level language available for personal computers. By the modular concept of these languages, the system can be customized to various applications, and no computer expertise is needed for actual operation. The present configuration offers an inexpensive attachment, which covers a wide range of applications from a simple notebook to high-resolution (200-nm) mapping of tissue. Since section coordinates can be processed in real-time, stereological estimations can be derived directly "on microscope". This is exemplified by an application in which particle numbers were determined by the disector method.
A correction function method for the wave equation with interface jump conditions
NASA Astrophysics Data System (ADS)
Abraham, David S.; Marques, Alexandre Noll; Nave, Jean-Christophe
2018-01-01
In this paper a novel method to solve the constant coefficient wave equation, subject to interface jump conditions, is presented. In general, such problems pose issues for standard finite difference solvers, as the inherent discontinuity in the solution results in erroneous derivative information wherever the stencils straddle the given interface. Here, however, the recently proposed Correction Function Method (CFM) is used, in which correction terms are computed from the interface conditions, and added to affected nodes to compensate for the discontinuity. In contrast to existing methods, these corrections are not simply defined at affected nodes, but rather generalized to a continuous function within a small region surrounding the interface. As a result, the correction function may be defined in terms of its own governing partial differential equation (PDE) which may be solved, in principle, to arbitrary order of accuracy. The resulting scheme is not only arbitrarily high order, but also robust, having already seen application to Poisson problems and the heat equation. By extending the CFM to this new class of PDEs, the treatment of wave interface discontinuities in homogeneous media becomes possible. This allows, for example, for the straightforward treatment of infinitesimal source terms and sharp boundaries, free of staircasing errors. Additionally, new modifications to the CFM are derived, allowing compatibility with explicit multi-step methods, such as Runge-Kutta (RK4), without a reduction in accuracy. These results are then verified through numerous numerical experiments in one and two spatial dimensions.
Modeling Thin Film Oxide Growth
NASA Astrophysics Data System (ADS)
Sherman, Quentin
Thin film oxidation is investigated using two modeling techniques in the interest of better understanding the roles of space charge and non-equilibrium effects. An electrochemical phase-field model of an oxide-metal interface is formulated in one dimension and studied at equilibrium and during growth. An analogous sharp interface model is developed to validate the phase-field model in the thick film limit. Electrochemical profiles across the oxide are shown to deviate from the sharp interface prediction when the oxide film is thin compared to the Debye length, however no effect on the oxidation kinetics is found. This is attributed to the simple thermodynamic and kinetic models used therein. The phase-field model provides a framework onto to which additional physics can be added to better model thin film oxidation. A model for solute trapping during the oxidation of binary alloys is developed to study non-equilibrium effects during the early stages of oxide growth. The model is applied to NiCr alloys, and steady-state interfacial composition maps are presented for the growth of an oxide with the rock salt structure. No detailed experimental data is available to verify the predictions of the solute trapping model, however it is shown to be consistent with the trends observed during the early stages of NiCr oxidation. Lastly, experimental studies of the wet infiltration technique for decorating solid oxide fuel cell anodes with nickel nanoparticles are presented. The effect of nickel nitrate calcination parameters on the resulting nickel oxide microstructures are studied on both porous and planar substrates. Decreasing the calcination temperature and dwell time, as well as a dehydration step after nickel nitrate infiltration, are all shown to decrease the initial nickel oxide particle size, but other factors such as geometry and nickel loading per unit area also affected the final nickel particle size and morphology upon reduction.
Hudry, Damien; Busko, Dmitry; Popescu, Radian; ...
2017-11-02
Core@shell design represents an important class of architectures because of its capability to dramatically increase the absolute upconversion quantum yield (UCQY) of upconverting nanocrystals (UCNCs) but also to tune energy migration pathways. A relatively new trend towards the use of very thick optically inert shells affording significantly higher absolute UCQYs raises the question of the crystallographic and chemical characteristics of such nanocrystals (NCs). In this article, local chemical analyses performed by scanning transmission electron microscopy (STEM) combined with energy dispersive x-ray spectroscopy (EDXS) and x-ray total scattering experiments together with pair distribution function (PDF) analyses were used to probe themore » local chemical and structural characteristics of hexagonal β-NaGd0.78Yb0.2Er0.02F4@NaYF4 core@shell UCNCs. The investigations lead to a new crystallochemical model to describe core@shell UCNCs that considerably digresses from the commonly accepted epitaxial growth concept with sharp interfaces. The results obtained on ultra-small (4.8 ± 0.5 nm) optically active cores (β-NaGd0.78Yb0.2Er0.02F4) surrounded by an optically inert shell (NaYF4) of tunable thickness (roughly 0, 1, 2, and 3.5 nm) clearly indicate the massive dissolution of the starting seeds and the inter-diffusion of the shell element (such as Y) into the Gd/Yb/Er-containing core giving rise to the formation of a non-homogeneous solid solution characterized by concentration gradients and the lack of sharp interfaces. Independently of the inert shell thickness, core/interface/shell architectures were observed for all synthesized UCNCs. The presented results constitute a significant step towards the comprehensive understanding of the “structure - property” relationship of upconverting core@shell architectures, which is of prime interest not only in the development of more efficient structures but also to provide new physical insights at the nanoscale to better explain upconversion (UC) properties alterations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudry, Damien; Busko, Dmitry; Popescu, Radian
Core@shell design represents an important class of architectures because of its capability to dramatically increase the absolute upconversion quantum yield (UCQY) of upconverting nanocrystals (UCNCs) but also to tune energy migration pathways. A relatively new trend towards the use of very thick optically inert shells affording significantly higher absolute UCQYs raises the question of the crystallographic and chemical characteristics of such nanocrystals (NCs). In this article, local chemical analyses performed by scanning transmission electron microscopy (STEM) combined with energy dispersive x-ray spectroscopy (EDXS) and x-ray total scattering experiments together with pair distribution function (PDF) analyses were used to probe themore » local chemical and structural characteristics of hexagonal β-NaGd0.78Yb0.2Er0.02F4@NaYF4 core@shell UCNCs. The investigations lead to a new crystallochemical model to describe core@shell UCNCs that considerably digresses from the commonly accepted epitaxial growth concept with sharp interfaces. The results obtained on ultra-small (4.8 ± 0.5 nm) optically active cores (β-NaGd0.78Yb0.2Er0.02F4) surrounded by an optically inert shell (NaYF4) of tunable thickness (roughly 0, 1, 2, and 3.5 nm) clearly indicate the massive dissolution of the starting seeds and the inter-diffusion of the shell element (such as Y) into the Gd/Yb/Er-containing core giving rise to the formation of a non-homogeneous solid solution characterized by concentration gradients and the lack of sharp interfaces. Independently of the inert shell thickness, core/interface/shell architectures were observed for all synthesized UCNCs. The presented results constitute a significant step towards the comprehensive understanding of the “structure - property” relationship of upconverting core@shell architectures, which is of prime interest not only in the development of more efficient structures but also to provide new physical insights at the nanoscale to better explain upconversion (UC) properties alterations.« less
NASA Astrophysics Data System (ADS)
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.
NASA Astrophysics Data System (ADS)
Wilson, Seth Robert
A mathematical model that results in an expression for the local acceleration of a network of sharp interfaces interacting with an ambient solute field is proposed. This expression comprises a first-order differential equation for the local velocity that, given the appropriate initial conditions, may be used to predict the subsequent time evolution of the system, including non-steady state absorption and desorption of solute. Evolution equations for both interfaces and the junction of interfaces are derived by maximizing a functional approximating the rate at which the local Gibbs free energy density decreases, as a function of the local solute content and the instantaneous velocity. The model has been formulated in three dimensions, and non-equilibrium effects such as grain boundary diffusion, solute gradients, and time-dependant segregation are taken into account. As a consequence of this model, it is shown that both interfaces and the junctions between interfaces obey evolution equations that closely resemble Newton's second law. In particular, the concept of "thrust" in variable-mass systems is shown to have a direct analog in solute-interface interaction. Numerical analysis of the equations that result reveals that a double cusp catastrophe governs the behavior of the solute-interface system, for which trajectories that include hysteresis, slip-stick motion, and jerky motion are all conceivable. The geometry of the cusp catastrophe is quantified, and a number of relations between physical parameters and system behavior are consequently predicted.
Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application
Barbee, Jr., Troy W.; Bajt, Sasa
2002-01-01
The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers
Viewpoint 9--molecular structure of aqueous interfaces
NASA Technical Reports Server (NTRS)
Pohorille, A.; Wilson, M. A.
1993-01-01
In this review we summarize recent progress in our understanding of the structure of aqueous interfaces emerging from molecular level computer simulations. It is emphasized that the presence of the interface induces specific structural effects which, in turn, influence a wide variety of phenomena occurring near the phase boundaries. At the liquid-vapor interface, the most probable orientations of a water molecule is such that its dipole moment lies parallel to the interface, one O-H bond points toward the vapor and the other O-H bond is directed toward the liquid. The orientational distributions are broad and slightly asymmetric, resulting in an excess dipole moment pointing toward the liquid. These structural preferences persist at interfaces between water and nonpolar liquids, indicating that the interactions between the two liquids in contact are weak. It was found that liquid-liquid interfaces are locally sharp but broadened by capillary waves. One consequence of anisotropic orientations of interfacial water molecules is asymmetric interactions, with respect to the sign of the charge, of ions with the water surface. It was found that even very close to the surface ions retain their hydration shells. New features of aqueous interfaces have been revealed in studies of water-membrane and water-monolayer systems. In particular, water molecules are strongly oriented by the polar head groups of the amphiphilic phase, and they penetrate the hydrophilic head-group region, but not the hydrophobic core. At infinite dilution near interfaces, amphiphilic molecules exhibit behavior different from that in the gas phase or in bulk water. This result sheds new light on the nature of hydrophobic effect in the interfacial regions. The presence of interfaces was also shown to affect both equilibrium and dynamic components of rates of chemical reactions. Applications of continuum models to interfacial problems have been, so far, unsuccessful. This, again, underscores the importance of molecular-level information about interfaces.
Atomistic study of mixing at high Z / low Z interfaces at Warm Dense Matter Conditions
NASA Astrophysics Data System (ADS)
Haxhimali, Tomorr; Glosli, James; Rudd, Robert; Lawrence Livermore National Laboratory Team
2016-10-01
We use atomistic simulations to study different aspects of mixing occurring at an initially sharp interface of high Z and low Z plasmas in the Warm/Hot Dense Matter regime. We consider a system of Diamond (the low Z component) in contact with Ag (the high Z component), which undergoes rapid isochoric heating from room temperature up to 10 eV, rapidly changing the solids into warm dense matter at solid density. We simulate the motion of ions via the screened Coulomb potential. The electric field, the electron density and ionizations level are computed on the fly by solving Poisson equation. The spatially varying screening lengths computed from the electron cloud are included in this effective interaction; the electrons are not simulated explicitly. We compute the electric field generated at the Ag-C interface as well as the dynamics of the ions during the mixing process occurring at the plasma interface. Preliminary results indicate an anomalous transport of high Z ions (Ag) into the low Z component (C); a phenomenon that is partially related to the enhanced transport of ions due to the generated electric field. These results are in agreement with recent experimental observation on Au-diamond plasma interface. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.
Li, An-Ping; Park, Jewook; Lee, Jaekwang; ...
2014-01-01
Two-dimensional (2D) interfaces between crystalline materials have been shown to generate unusual interfacial electronic states in complex oxides1-4. Recently, a onedimensional (1D) polar-on-nonpolar interface has been realized in hexagonal boron nitride (hBN) and graphene heterostructures 5-10, where a coherent 1D boundary is expected to possess peculiar electronic states dictated by edge states of graphene and the polarity of hBN 11-13. Here we present a combined scanning tunneling microscopy (STM) and firstprinciples theory study of the graphene-hBN boundary to provide a rare glimpse into the spatial and energetic distributions of the 1D boundary states in real-space. The interfaces studied here aremore » crystallographically coherent with sharp transitions from graphene zigzag edges to B (or N) terminated hBN atomic layers on a Cu foil substrate5. The revealed boundary states are about 0.6 eV below or above the Fermi energy depending on the termination of the hBN at the boundary, and are extended along but localized at the boundary with a lateral thickness of 2-3nm. These results suggest that unconventional physical effects similar to those observed at 2D interfaces can also exist in lower dimensions, opening a route for tuning of electronic properties at interfaces in 2D heterostructures.« less
Plasma kinetic effects on atomistic mix in one dimension and at structured interfaces (I)
NASA Astrophysics Data System (ADS)
Yin, L.; Albright, B. J.; Vold, E. L.; Taitano, W.; Chacon, L.; Simakov, A.
2017-10-01
Kinetic effects on interfacial mix are examined using VPIC simulations. In 1D, comparisons are made to the results of analytic theory in the small Knudsen number limit. While the bulk mixing properties of interfaces are in general agreement, differences arise near the low-concentration fronts during the early evolution of a sharp interface when the species' perpendicular scattering rate dominates over the slowing down rate. In kinetic simulations, the diffusion velocities can be larger or comparable to the ion thermal speeds, and the Knudsen number can be large. Super-diffusive growth in mix widths (Δx ta where a >=1/2) is seen before transition to the slow diffusive process predicted from theory (a =1/2). Mixing at interfaces leads to persistent, bulk, hydrodynamic features in the center of mass flow profiles as a result of diffusion and momentum conservation. These conclusions are drawn from VPIC results together with simulations from the RAGE hydrodynamics code with an implementation of diffusion and viscosity from theory and an implicit Vlasov-Fokker-Planck code iFP. In perturbed 2D and 3D interfaces, it is found that 1D ambipolarity is still valid and that initial perturbations flatten out on a-few-ps time scale, implying that finite diffusivity and viscosity can slow instability growth in ICF and HED settings. Work supported by the LANL ASC and Science programs.
Novel user interface design for medication reconciliation: an evaluation of Twinlist.
Plaisant, Catherine; Wu, Johnny; Hettinger, A Zach; Powsner, Seth; Shneiderman, Ben
2015-03-01
The primary objective was to evaluate time, number of interface actions, and accuracy on medication reconciliation tasks using a novel user interface (Twinlist, which lays out the medications in five columns based on similarity and uses animation to introduce the grouping - www.cs.umd.edu/hcil/sharp/twinlist) compared to a Control interface (where medications are presented side by side in two columns). A secondary objective was to assess participant agreement with statements regarding clarity and utility and to elicit comparisons. A 1 × 2 within-subjects experimental design was used with interface (Twinlist or Control) as an independent variable; time, number of clicks, scrolls, and errors were used as dependent variables. Participants were practicing medical providers with experience performing medication reconciliation but no experience with Twinlist. They reconciled two cases in each interface (in a counterbalanced order), then provided feedback on the design of the interface. Twenty medical providers participated in the study for a total of 80 trials. The trials using Twinlist were statistically significantly faster (18%), with fewer clicks (40%) and scrolls (60%). Serious errors were noted 12 and 31 times in Twinlist and Control trials, respectively. Trials using Twinlist were faster and more accurate. Subjectively, participants rated Twinlist more favorably than Control. They valued the novel layout of the drugs, but indicated that the included animation would be valuable for novices, but not necessarily for advanced users. Additional feedback from participants provides guidance for further development and clinical implementations. Cognitive support of medication reconciliation through interface design can significantly improve performance and safety. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
An interface tracking model for droplet electrocoalescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Lindsay Crowl
This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms betweenmore » approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.« less
Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control
NASA Astrophysics Data System (ADS)
Bercich, Rebecca A.; Wang, Zhi; Mei, Henry; Hammer, Lauren H.; Seburn, Kevin L.; Hargrove, Levi J.; Irazoqui, Pedro P.
2016-08-01
Objective. A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. Approach. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. Main results. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject’s forearm. Significance. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device’s programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system’s functional protocol for patient- or algorithm-specific needs.
Carbon Dots as Versatile Photosensitizers for Solar-Driven Catalysis with Redox Enzymes.
Hutton, Georgina A M; Reuillard, Bertrand; Martindale, Benjamin C M; Caputo, Christine A; Lockwood, Colin W J; Butt, Julea N; Reisner, Erwin
2016-12-28
Light-driven enzymatic catalysis is enabled by the productive coupling of a protein to a photosensitizer. Photosensitizers used in such hybrid systems are typically costly, toxic, and/or fragile, with limited chemical versatility. Carbon dots (CDs) are low-cost, nanosized light-harvesters that are attractive photosensitizers for biological systems as they are water-soluble, photostable, nontoxic, and their surface chemistry can be easily modified. We demonstrate here that CDs act as excellent light-absorbers in two semibiological photosynthetic systems utilizing either a fumarate reductase (FccA) for the solar-driven hydrogenation of fumarate to succinate or a hydrogenase (H 2 ase) for reduction of protons to H 2 . The tunable surface chemistry of the CDs was exploited to synthesize positively charged ammonium-terminated CDs (CD-NHMe 2 + ), which were capable of transferring photoexcited electrons directly to the negatively charged enzymes with high efficiency and stability. Enzyme-based turnover numbers of 6000 mol succinate (mol FccA) -1 and 43,000 mol H 2 (mol H 2 ase) -1 were reached after 24 h. Negatively charged carboxylate-terminated CDs (CD-CO 2 - ) displayed little or no activity, and the electrostatic interactions at the CD-enzyme interface were determined to be essential to the high photocatalytic activity observed with CD-NHMe 2 + . The modular surface chemistry of CDs together with their photostability and aqueous solubility make CDs versatile photosensitizers for redox enzymes with great scope for their utilization in photobiocatalysis.
Assembly of acid-functionalized single-walled carbon nanotubes at oil/water interfaces.
Feng, Tao; Hoagland, David A; Russell, Thomas P
2014-02-04
The efficient segregation of water-soluble, acid-functionalized, single-walled carbon nanotubes (SWCNTs) at the oil/water interface was induced by dissolving low-molecular-weight amine-terminated polystyrene (PS-NH2) in the oil phase. Salt-bridge interactions between carboxylic acid groups of SWCNTs and amine groups of PS drove the assembly of SWCNTs at the interface, monitored by pendant drop tensiometry and laser scanning confocal microscopy. The impact of PS end-group functionality, PS and SWCNT concentrations, and the degree of SWCNT acid modification on the interfacial activity was assessed, and a sharp drop in interfacial tension was observed above a critical SWCNT concentration. Interfacial tensions were low enough to support stable oil/water emulsions. Further experiments, including potentiometric titrations and the replacement of SWCNTs by other carboxyl-containing species, demonstrated that the interfacial tension drop reflects the loss of SWCNT charge as the pH falls near/below the intrinsic carboxyl dissociation constant; species lacking multivalent carboxylic acid groups are inactive. The trapped SWCNTs appear to be neither ordered nor oriented.
Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik
2016-02-01
A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Benjamin, Ilan
1993-01-01
A molecular dynamics study of adsorption of p-n-pentylphenol at infinite dilution at the water liquid-vapor interface is reported. The calculated free energy of adsorption is -8.8 +/- 0.7 kcal/mol, in good agreement with the experimental value of -7.3 kcal/mol. The transition between the interfacial region and the bulk solution is sharp and well-defined by energetic, conformational, and orientational criteria. At the water surface, the phenol head group is mostly immersed in aqueous solvent. The most frequent orientation of the hydrocarbon tail is parallel to the interface, due to dispersion interactions with the water surface. This arrangement of the phenol ring and the alkyl chain requires that the chain exhibits a kink. As the polar head group is being moved into the solvent, the chain length increases and the tail becomes increasingly aligned toward the surface normal, such that the nonpolar part of the molecule exposed to water is minimized. The same effect was achieved when phenol was replaced by a more polar head group, phenolate.
Elastic energy distribution in bi-material lithosphere: implications for shear zone formation
NASA Astrophysics Data System (ADS)
So, B.; Yuen, D. A.
2013-12-01
Shear instability in the lithosphere can cause mechanical rupturing such as slab detachment and deep focus earthquake. Recent studies reported that bi-material interface, which refers to sharp elastic modulus contrast, plays an important role in triggering the instability [So and Yuen et al., 2012, GJI]. In present study, we performed two-dimensional numerical simulations to investigate the distribution of thermal-mechanical energy within the bi-material lithosphere. Under the far-field constant compression exerted on the domain, a larger elastic energy is accumulated into the compliant part than stiff medium. For instance, the compliant part has two times greater elastic energy density than surrounding stiff part, when the elastic modulus contrast between two different parts is five. Although these elastic energies in both parts are conversed into thermal energies after plastic yielding, denser elastic energy in the compliant is released more efficiently. This leads to efficient strength weakening and the subsequent ductile shear zone in the compliant part. We propose that strong shear heating occurs in lithosphere with the bi-material interface due to locally non-uniform distribution of the energy around the interface.
Analysis of a diffuse interface model of multispecies tumor growth
NASA Astrophysics Data System (ADS)
Dai, Mimi; Feireisl, Eduard; Rocca, Elisabetta; Schimperna, Giulio; Schonbek, Maria E.
2017-04-01
We consider a diffuse interface model for tumor growth recently proposed in Chen et al (2014 Int. J. Numer. Methods Biomed. Eng. 30 726-54). In this new approach sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species. Hence, a continuum thermodynamically consistent model is introduced. The resulting PDE system couples four different types of equations: a Cahn-Hilliard type equation for the tumor cells (which include proliferating and dead cells), a Darcy law for the tissue velocity field, whose divergence may be different from 0 and depend on the other variables, a transport equation for the proliferating (viable) tumor cells, and a quasi-static reaction diffusion equation for the nutrient concentration. We establish existence of weak solutions for the PDE system coupled with suitable initial and boundary conditions. In particular, the proliferation function at the boundary is supposed to be nonnegative on the set where the velocity \\mathbf{u} satisfies \\mathbf{u}\\centerdot ν >0 , where ν is the outer normal to the boundary of the domain.
Mercer, James W.; Larson, S.P.; Faust, Charles R.
1980-01-01
Model documentation is presented for a two-dimensional (areal) model capable of simulating ground-water flow of salt water and fresh water separated by an interface. The partial differential equations are integrated over the thicknesses of fresh water and salt water resulting in two equations describing the flow characteristics in the areal domain. These equations are approximated using finite-difference techniques and the resulting algebraic equations are solved for the dependent variables, fresh water head and salt water head. An iterative solution method was found to be most appropriate. The program is designed to simulate time-dependent problems such as those associated with the development of coastal aquifers, and can treat water-table conditions or confined conditions with steady-state leakage of fresh water. The program will generally be most applicable to the analysis of regional aquifer problems in which the zone between salt water and fresh water can be considered a surface (sharp interface). Example problems and a listing of the computer code are included. (USGS).
Experimental study of mixing mechanisms in stably stratified Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Augier, Pierre; Caulfield, Colm-Cille; Dalziel, Stuart
2014-11-01
We consider experimentally the mechanisms of mixing in stably stratified Taylor-Couette (TC) flow in a TC apparatus for which both cylinders can rotate independently. In the case for which only the inner cylinder rotates, centrifugal instability rapidly splits an initially linear density profile into an array of thin nearly homogeneous layers. Shadowgraph, PIV and density profiles measured by a moving conductivity probe allow us to characterise this process and the resulting flow. In particular, we observe turbulent intrusions of mixed fluid propagating relatively slowly around the tank at the interfaces between the layers, leading to a time-dependent variation in the sharpness and turbulent activity at these interfaces, whose period scales with (but is much larger than) the rotation period. Interestingly, the turbulent intrusions are anti-correlated between adjacent interfaces leading to snake-skin-like patterns in the spatio-temporal diagrams of the density profiles. We also explore how the presence of a density stratification modifies end effects at the top and bottom of the cylinders, in both the presence and absence of primary centrifugal instability.
A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry
NASA Astrophysics Data System (ADS)
Al-Marouf, M.; Samtaney, R.
2017-05-01
We present an embedded ghost fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.
Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement
Harne, R. L.; Wang, K. W.
2015-01-01
Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. PMID:25608517
A Robust Kalman Framework with Resampling and Optimal Smoothing
Kautz, Thomas; Eskofier, Bjoern M.
2015-01-01
The Kalman filter (KF) is an extremely powerful and versatile tool for signal processing that has been applied extensively in various fields. We introduce a novel Kalman-based analysis procedure that encompasses robustness towards outliers, Kalman smoothing and real-time conversion from non-uniformly sampled inputs to a constant output rate. These features have been mostly treated independently, so that not all of their benefits could be exploited at the same time. Here, we present a coherent analysis procedure that combines the aforementioned features and their benefits. To facilitate utilization of the proposed methodology and to ensure optimal performance, we also introduce a procedure to calculate all necessary parameters. Thereby, we substantially expand the versatility of one of the most widely-used filtering approaches, taking full advantage of its most prevalent extensions. The applicability and superior performance of the proposed methods are demonstrated using simulated and real data. The possible areas of applications for the presented analysis procedure range from movement analysis over medical imaging, brain-computer interfaces to robot navigation or meteorological studies. PMID:25734647
Cell Surface and Membrane Engineering: Emerging Technologies and Applications
Saeui, Christopher T.; Mathew, Mohit P.; Liu, Lingshui; Urias, Esteban; Yarema, Kevin J.
2015-01-01
Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels. PMID:26096148
NASA Astrophysics Data System (ADS)
Henry de Frahan, Marc T.; Varadan, Sreenivas; Johnsen, Eric
2015-01-01
Although the Discontinuous Galerkin (DG) method has seen widespread use for compressible flow problems in a single fluid with constant material properties, it has yet to be implemented in a consistent fashion for compressible multiphase flows with shocks and interfaces. Specifically, it is challenging to design a scheme that meets the following requirements: conservation, high-order accuracy in smooth regions and non-oscillatory behavior at discontinuities (in particular, material interfaces). Following the interface-capturing approach of Abgrall [1], we model flows of multiple fluid components or phases using a single equation of state with variable material properties; discontinuities in these properties correspond to interfaces. To represent compressible phenomena in solids, liquids, and gases, we present our analysis for equations of state belonging to the Mie-Grüneisen family. Within the DG framework, we propose a conservative, high-order accurate, and non-oscillatory limiting procedure, verified with simple multifluid and multiphase problems. We show analytically that two key elements are required to prevent spurious pressure oscillations at interfaces and maintain conservation: (i) the transport equation(s) describing the material properties must be solved in a non-conservative weak form, and (ii) the suitable variables must be limited (density, momentum, pressure, and appropriate properties entering the equation of state), coupled with a consistent reconstruction of the energy. Further, we introduce a physics-based discontinuity sensor to apply limiting in a solution-adaptive fashion. We verify this approach with one- and two-dimensional problems with shocks and interfaces, including high pressure and density ratios, for fluids obeying different equations of state to illustrate the robustness and versatility of the method. The algorithm is implemented on parallel graphics processing units (GPU) to achieve high speedup.
Nanoscale hybrid systems based on carbon nanotubes for biological sensing and control
Cho, Youngtak; Shin, Narae; Kim, Daesan; Park, Jae Yeol
2017-01-01
This paper provides a concise review on the recent development of nanoscale hybrid systems based on carbon nanotubes (CNTs) for biological sensing and control. CNT-based hybrid systems have been intensively studied for versatile applications of biological interfaces such as sensing, cell therapy and tissue regeneration. Recent advances in nanobiotechnology not only enable the fabrication of highly sensitive biosensors at nanoscale but also allow the applications in the controls of cell growth and differentiation. This review describes the fabrication methods of such CNT-based hybrid systems and their applications in biosensing and cell controls. PMID:28188158
A versatile multi-objective FLUKA optimization using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Vlachoudis, Vasilis; Antoniucci, Guido Arnau; Mathot, Serge; Kozlowska, Wioletta Sandra; Vretenar, Maurizio
2017-09-01
Quite often Monte Carlo simulation studies require a multi phase-space optimization, a complicated task, heavily relying on the operator experience and judgment. Examples of such calculations are shielding calculations with stringent conditions in the cost, in residual dose, material properties and space available, or in the medical field optimizing the dose delivered to a patient under a hadron treatment. The present paper describes our implementation inside flair[1] the advanced user interface of FLUKA[2,3] of a multi-objective Genetic Algorithm[Erreur ! Source du renvoi introuvable.] to facilitate the search for the optimum solution.
An experimental microcomputer controlled system for synchronized pulsating anti-gravity suit.
Moore, T W; Foley, J; Reddy, B R; Kepics, F; Jaron, D
1987-07-01
An experimental system to deliver synchronized external pressure pulsations to the lower body is described in this technical note. The system is designed using a microcomputer with a real time interface and an electro-pneumatic subsystem capable of delivering pressure pulses to a modified anti-G suit at a fast rate. It is versatile, containing many options for synchronizing, phasing and sequencing of the pressure pulsations and controlling the pressure level in the suit bladders. Details of its software and hardware are described along with the results of initial testing in a Dynamic Flight Simulator on human volunteers.
NASA Astrophysics Data System (ADS)
Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin
2015-06-01
We report a simple, versatile, and wafer-scale water-assisted transfer printing method (WTP) that enables the transfer of nanowire devices onto diverse nonconventional substrates that were not easily accessible before, such as paper, plastics, tapes, glass, polydimethylsiloxane (PDMS), aluminum foil, and ultrathin polymer substrates. The WTP method relies on the phenomenon of water penetrating into the interface between Ni and SiO2. The transfer yield is nearly 100%, and the transferred devices, including NW resistors, diodes, and field effect transistors, maintain their original geometries and electronic properties with high fidelity.
He, Chuanglong; Xiao, Guiyong; Jin, Xiaobing; Sun, Chenghui; Ma, Peter X.
2011-01-01
We developed a straightforward, fast, and versatile technique to fabricate mineralized nanofibrous polymer scaffolds for bone regeneration in this work. Nanofibrous poly(l-lactic acid) scaffolds were fabricated using both electrospinning and phase separation techniques. An electrodeposition process was designed to deposit calcium phosphate on the nanofibrous scaffolds. Such scaffolds contain a high quality mineral coating on the fiber surface with tunable surface topography and chemical composition by varying the processing parameters, which can mimic the composition and structure of natural bone extracellular matrix and provide a more biocompatible interface for bone regeneration. PMID:21673827
Using the FORTH Language to Develop an ICU Data Acquisition System
Goldberg, Arthur; SooHoo, Spencer L.; Koerner, Spencer K.; Chang, Robert S. Y.
1980-01-01
This paper describes a powerful programming tool that should be considered as an alternative to the more conventional programming languages now in use for developing medical computer systems. Forth provides instantaneous response to user commands, rapid program execution and tremendous programming versatility. An operating system and a language in one carefully designed unit, Forth is well suited for developing data acquisition systems and for interfacing computers to other instruments. We present some of the general features of Forth and describe its use in implementing a data collection system for a Respiratory Intensive Care Unit (RICU).
Comprehensive Thematic T-Matrix Reference Database: A 2014-2015 Update
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Zakharova, Nadezhda; Khlebtsov, Nikolai G.; Videen, Gorden; Wriedt, Thomas
2015-01-01
The T-matrix method is one of the most versatile and efficient direct computer solvers of the macroscopic Maxwell equations and is widely used for the computation of electromagnetic scattering by single and composite particles, discrete random media, and particles in the vicinity of an interface separating two half-spaces with different refractive indices. This paper is the seventh update to the comprehensive thematic database of peer-reviewed T-matrix publications initiated by us in 2004 and includes relevant publications that have appeared since 2013. It also lists a number of earlier publications overlooked previously.
GAP: yet another image processing system for solar observations.
NASA Astrophysics Data System (ADS)
Keller, C. U.
GAP is a versatile, interactive image processing system for analyzing solar observations, in particular extended time sequences, and for preparing publication quality figures. It consists of an interpreter that is based on a language with a control flow similar to PASCAL and C. The interpreter may be accessed from a command line editor and from user-supplied functions, procedures, and command scripts. GAP is easily expandable via external FORTRAN programs that are linked to the GAP interface routines. The current version of GAP runs on VAX, DECstation, Sun, and Apollo computers. Versions for MS-DOS and OS/2 are in preparation.
A programing system for research and applications in structural optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Rogers, J. L., Jr.
1981-01-01
The flexibility necessary for such diverse utilizations is achieved by combining, in a modular manner, a state-of-the-art optimization program, a production level structural analysis program, and user supplied and problem dependent interface programs. Standard utility capabilities in modern computer operating systems are used to integrate these programs. This approach results in flexibility of the optimization procedure organization and versatility in the formulation of constraints and design variables. Features shown in numerical examples include: variability of structural layout and overall shape geometry, static strength and stiffness constraints, local buckling failure, and vibration constraints.
Three-dimensional real-time imaging of bi-phasic flow through porous media
NASA Astrophysics Data System (ADS)
Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, S.
2011-11-01
We present a scanning laser-sheet video imaging technique to image bi-phasic flow in three-dimensional porous media in real time with pore-scale spatial resolution, i.e., 35 μm and 500 μm for directions parallel and perpendicular to the flow, respectively. The technique is illustrated for the case of viscous fingering. Using suitable image processing protocols, both the morphology and the movement of the two-fluid interface, were quantitatively estimated. Furthermore, a macroscopic parameter such as the displacement efficiency obtained from a microscopic (pore-scale) analysis demonstrates the versatility and usefulness of the method.
NASA Astrophysics Data System (ADS)
Bourrion, O.; Boyer, B.; Derome, L.; Pignol, G.
2016-06-01
We developed a highly integrated and versatile electronic module to equip small nuclear physics experiments and lab teaching classes: the User friendly Configurable Trigger, scaler and delay Module for nuclear and particle physics (UCTM). It is configurable through a Graphical User Interface (GUI) and provides a large number of possible trigger conditions without any Hardware Description Language (HDL) required knowledge. This new version significantly enhances the previous capabilities by providing two additional features: signal digitization and time measurements. The design, performances and a typical application are presented.
Injection doping of ultrathin microcrystalline silicon films prepared by CC-CVD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koynov, S.; Grebner, S.; Schwarz, R.
1997-07-01
Recently, the authors have proposed a cyclic method, referred to as Closed Chamber CVD (CC-CVD), for the preparation of {micro}c-Si films of high crystalline fraction at increased deposition rates. In this work, they first report new process conditions of CC-CVD, which result in growth of highly crystalline films with a sharp interface on a foreign substrate. Then these conditions are further used together with a pulsed injection of B{sub 2}H{sub 6} in an appropriate moment of each cycle, so that the disturbance of the crystallization process is prevented. A series of ultrathin {micro}c-Si films, doped by this technique, is characterizedmore » by conductivity measurements, SEM, Raman Scattering, optical transmission and UV reflection. A strong reduction of the transient interface layer is achieved and conductivity as high as 2 S/cm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldosary, Mohammed; Li, Junxue; Tang, Chi
30-80 nm thick yttrium iron garnet (YIG) films are grown by pulsed laser deposition on a 5 nm thick sputtered Pt atop gadolinium gallium garnet substrate (GGG) (110). Upon post-growth rapid thermal annealing, single crystal YIG(110) emerges as if it were epitaxially grown on GGG(110) despite the presence of the intermediate Pt film. The YIG surface shows atomic steps with the root-mean-square roughness of 0.12 nm on flat terraces. Both Pt/YIG and GGG/Pt interfaces are atomically sharp. The resulting YIG(110) films show clear in-plane uniaxial magnetic anisotropy with a well-defined easy axis along 〈001〉 and a peak-to-peak ferromagnetic resonance linewidth of 7.5 Oe atmore » 9.32 GHz, similar to YIG epitaxially grown on GGG. Both spin Hall magnetoresistance and longitudinal spin Seebeck effects in the inverted bilayers indicate excellent Pt/YIG interface quality.« less
Atomically thin heterostructures based on single-layer tungsten diselenide and graphene.
Lin, Yu-Chuan; Chang, Chih-Yuan S; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; Kim, Moon J; Robinson, Jeremy T; Wallace, Robert M; Mayer, Theresa S; Datta, Suman; Li, Lain-Jong; Robinson, Joshua A
2014-12-10
Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).
NASA Astrophysics Data System (ADS)
Caruso, Alice; Boano, Fulvio; Ridolfi, Luca; Chopp, David L.; Packman, Aaron
2017-05-01
Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zone is poorly understood. We present a hydrobiogeochemical model to assess how the growth of heterotrophic and autotrophic biomass affects the transport and transformation of dissolved nitrogen compounds in bed form-induced hyporheic zones. Coupling between hyporheic exchange, nitrogen metabolism, and biomass growth leads to an equilibrium between permeability reduction and microbial metabolism that yields shallow hyporheic flows in a region with low permeability and high rates of microbial metabolism near the stream-sediment interface. The results show that the bioclogging caused by microbial growth can constrain rates and patterns of hyporheic fluxes and microbial transformation rate in many streams.
Crystal growth kinetics in undercooled melts of pure Ge, Si and Ge-Si alloys.
Herlach, Dieter M; Simons, Daniel; Pichon, Pierre-Yves
2018-02-28
We report on measurements of crystal growth dynamics in semiconducting pure Ge and pure Si melts and in Ge 100- x Si x ( x = 25, 50, 75) alloy melts as a function of undercooling. Electromagnetic levitation techniques are applied to undercool the samples in a containerless way. The growth velocity is measured by the utilization of a high-speed camera technique over an extended range of undercooling. Solidified samples are examined with respect to their microstructure by scanning electron microscopic investigations. We analyse the experimental results of crystal growth kinetics as a function of undercooling within the sharp interface theory developed by Peter Galenko. Transitions of the atomic attachment kinetics are found at large undercoolings, from faceted growth to dendrite growth.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'. © 2018 The Author(s).
Quantum Transmission Conditions for Diffusive Transport in Graphene with Steep Potentials
NASA Astrophysics Data System (ADS)
Barletti, Luigi; Negulescu, Claudia
2018-05-01
We present a formal derivation of a drift-diffusion model for stationary electron transport in graphene, in presence of sharp potential profiles, such as barriers and steps. Assuming the electric potential to have steep variations within a strip of vanishing width on a macroscopic scale, such strip is viewed as a quantum interface that couples the classical regions at its left and right sides. In the two classical regions, where the potential is assumed to be smooth, electron and hole transport is described in terms of semiclassical kinetic equations. The diffusive limit of the kinetic model is derived by means of a Hilbert expansion and a boundary layer analysis, and consists of drift-diffusion equations in the classical regions, coupled by quantum diffusive transmission conditions through the interface. The boundary layer analysis leads to the discussion of a four-fold Milne (half-space, half-range) transport problem.
Graphene barristor, a triode device with a gate-controlled Schottky barrier.
Yang, Heejun; Heo, Jinseong; Park, Seongjun; Song, Hyun Jae; Seo, David H; Byun, Kyung-Eun; Kim, Philip; Yoo, InKyeong; Chung, Hyun-Jong; Kim, Kinam
2012-06-01
Despite several years of research into graphene electronics, sufficient on/off current ratio I(on)/I(off) in graphene transistors with conventional device structures has been impossible to obtain. We report on a three-terminal active device, a graphene variable-barrier "barristor" (GB), in which the key is an atomically sharp interface between graphene and hydrogenated silicon. Large modulation on the device current (on/off ratio of 10(5)) is achieved by adjusting the gate voltage to control the graphene-silicon Schottky barrier. The absence of Fermi-level pinning at the interface allows the barrier's height to be tuned to 0.2 electron volt by adjusting graphene's work function, which results in large shifts of diode threshold voltages. Fabricating GBs on respective 150-mm wafers and combining complementary p- and n-type GBs, we demonstrate inverter and half-adder logic circuits.
Humidity-insensitive water evaporation from molecular complex fluids.
Salmon, Jean-Baptiste; Doumenc, Frédéric; Guerrier, Béatrice
2017-09-01
We investigated theoretically water evaporation from concentrated supramolecular mixtures, such as solutions of polymers or amphiphilic molecules, using numerical resolutions of a one-dimensional model based on mass transport equations. Solvent evaporation leads to the formation of a concentrated solute layer at the drying interface, which slows down evaporation in a long-time-scale regime. In this regime, often referred to as the falling rate period, evaporation is dominated by diffusive mass transport within the solution, as already known. However, we demonstrate that, in this regime, the rate of evaporation does not also depend on the ambient humidity for many molecular complex fluids. Using analytical solutions in some limiting cases, we first demonstrate that a sharp decrease of the water chemical activity at high solute concentration leads to evaporation rates which depend weakly on the humidity, as the solute concentration at the drying interface slightly depends on the humidity. However, we also show that a strong decrease of the mutual diffusion coefficient of the solution enhances considerably this effect, leading to nearly independent evaporation rates over a wide range of humidity. The decrease of the mutual diffusion coefficient indeed induces strong concentration gradients at the drying interface, which shield the concentration profiles from humidity variations, except in a very thin region close to the drying interface.
Interface energy band alignment at the all-transparent p-n heterojunction based on NiO and BaSnO3
NASA Astrophysics Data System (ADS)
Zhang, Jiaye; Han, Shaobo; Luo, Weihuang; Xiang, Shuhuai; Zou, Jianli; Oropeza, Freddy E.; Gu, Meng; Zhang, Kelvin H. L.
2018-04-01
Transparent oxide semiconductors hold great promise for many optoelectronic devices such as transparent electronics, UV-emitting devices, and photodetectors. A p-n heterojunction is the most ubiquitous building block to realize these devices. In this work, we report the fabrication and characterization of the interface properties of a transparent heterojunction consisting of p-type NiO and n-type perovskite BaSnO3. We show that high-quality NiO thin films can be epitaxially grown on BaSnO3 with sharp interfaces because of a small lattice mismatch (˜1.3%). The diode fabricated from this heterojunction exhibits rectifying behavior with a ratio of 500. X-ray photoelectron spectroscopy reveals a type II or "staggered" band alignment with valence and conduction band offsets of 1.44 eV and 1.86 eV, respectively. Moreover, a large upward band bending potential of 0.90 eV for BaSnO3 and a downward band bending potential of 0.15 eV for NiO were observed in the interface region. Such electronic properties have important implication for optoelectronic applications as the large built-in potential provides favorable energetics for photo-generated electron-hole separation/migration.
Cyclodextrins as versatile building blocks for regenerative medicine.
Alvarez-Lorenzo, Carmen; García-González, Carlos A; Concheiro, Angel
2017-12-28
Cyclodextrins (CDs) are one of the most versatile substances produced by nature, and it is in the aqueous biological environment where the multifaceted potential of CDs can be completely unveiled. CDs form inclusion complexes with a variety of guest molecules, including polymers, producing very diverse biocompatible supramolecular structures. Additionally, CDs themselves can trigger cell differentiation to distinct lineages depending on the substituent groups and also promote salt nucleation. These features together with the affinity-driven regulated release of therapeutic molecules, growth factors and gene vectors explain the rising interest for CDs as building blocks in regenerative medicine. Supramolecular poly(pseudo)rotaxane structures and zipper-like assemblies exhibit outstanding viscoelastic properties, performing as syringeable implants. The sharp shear-responsiveness of the supramolecular assemblies is opening new avenues for the design of bioinks for 3D printing and also of electrospun fibers. CDs can also be transformed into polymerizable monomers to prepare alternative nanostructured materials. The aim of this review is to analyze the role that CDs may play in regenerative medicine through the analysis of the last decade research. Most applications of CD-based scaffolds are focussed on non-healing bone fractures, cartilage reparation and skin recovery, but also on even more challenging demands such as neural grafts. For the sake of clarity, main sections of this review are organized according to the architecture of the CD-based scaffolds, mainly syringeable supramolecular hydrogels, 3D printed scaffolds, electrospun fibers, and composites, since the same scaffold type may find application in different tissues. Copyright © 2017 Elsevier B.V. All rights reserved.
Dastgeer, Ghulam; Khan, Muhammad Farooq; Nazir, Ghazanfar; Afzal, Amir Muhammad; Aftab, Sikandar; Naqvi, Bilal Abbas; Cha, Janghwan; Min, Kyung-Ah; Jamil, Yasir; Jung, Jongwan; Hong, Suklyun; Eom, Jonghwa
2018-04-18
Heterostructures comprising two-dimensional (2D) semiconductors fabricated by individual stacking exhibit interesting characteristics owing to their 2D nature and atomically sharp interface. As an emerging 2D material, black phosphorus (BP) nanosheets have drawn much attention because of their small band gap semiconductor characteristics along with high mobility. Stacking structures composed of p-type BP and n-type transition metal dichalcogenides can produce an atomically sharp interface with van der Waals interaction which leads to p-n diode functionality. In this study, for the first time, we fabricated a heterojunction p-n diode composed of BP and WS 2 . The rectification effects are examined for monolayer, bilayer, trilayer, and multilayer WS 2 flakes in our BP/WS 2 van der Waals heterojunction diodes and also verified by density function theory calculations. We report superior functionalities as compared to other van der Waals heterojunction, such as efficient gate-dependent static rectification of 2.6 × 10 4 , temperature dependence, thickness dependence of rectification, and ideality factor of the device. The temperature dependence of Zener breakdown voltage and avalanche breakdown voltage were analyzed in the same device. Additionally, superior optoelectronic characteristics such as photoresponsivity of 500 mA/W and external quantum efficiency of 103% are achieved in the BP/WS 2 van der Waals p-n diode, which is unprecedented for BP/transition metal dichalcogenides heterostructures. The BP/WS 2 van der Waals p-n diodes have a profound potential to fabricate rectifiers, solar cells, and photovoltaic diodes in 2D semiconductor electronics and optoelectronics.
Improved efficiency of nanoneedle insertion by modification with a cell-puncturing protein
NASA Astrophysics Data System (ADS)
Ryu, Seunghwan; Matsumoto, Yuta; Matsumoto, Takahiro; Ueno, Takafumi; Silberberg, Yaron R.; Nakamura, Chikashi
2018-03-01
An atomic force microscope (AFM) probe etched into an ultra-sharp cylindrical shape (a nanoneedle) can be inserted into a living cell and mechanical responses of the insertion process are represented as force-distance curves using AFM. A probe-molecule-functionalized nanoneedle can be used to detect intracellular molecules of interest in situ. The insertion efficiencies of nanoneedles vary among cell types due to the cortex structures of cells, and some cell types, such as mouse fibroblast Balb/3T3 cells, show extremely low efficacy of insertion. We addressed this issue by using a cell membrane puncturing protein from bacteriophage T4 (gp5), a needle-like protein that spontaneously penetrates through the cell membrane. Gp5 was immobilized onto a nanoneedle surface. The insertion efficiency of the functionalized nanoneedle increased by over 15% compared to the non-functionalized control. Gp5-modification is a versatile approach in cell manipulation techniques for the insertion of other types of nanostructures into cells.
LlamaTags: A Versatile Tool to Image Transcription Factor Dynamics in Live Embryos.
Bothma, Jacques P; Norstad, Matthew R; Alamos, Simon; Garcia, Hernan G
2018-06-14
Embryonic cell fates are defined by transcription factors that are rapidly deployed, yet attempts to visualize these factors in vivo often fail because of slow fluorescent protein maturation. Here, we pioneer a protein tag, LlamaTag, which circumvents this maturation limit by binding mature fluorescent proteins, making it possible to visualize transcription factor concentration dynamics in live embryos. Implementing this approach in the fruit fly Drosophila melanogaster, we discovered stochastic bursts in the concentration of transcription factors that are correlated with bursts in transcription. We further used LlamaTags to show that the concentration of protein in a given nucleus heavily depends on transcription of that gene in neighboring nuclei; we speculate that this inter-nuclear signaling is an important mechanism for coordinating gene expression to delineate straight and sharp boundaries of gene expression. Thus, LlamaTags now make it possible to visualize the flow of information along the central dogma in live embryos. Copyright © 2018 Elsevier Inc. All rights reserved.
Molecular basis of cooperativity in pH-triggered supramolecular self-assembly
NASA Astrophysics Data System (ADS)
Li, Yang; Zhao, Tian; Wang, Chensu; Lin, Zhiqiang; Huang, Gang; Sumer, Baran D.; Gao, Jinming
2016-10-01
Supramolecular self-assembly offers a powerful strategy to produce high-performance, stimuli-responsive nanomaterials. However, lack of molecular understanding of stimulated responses frequently hampers our ability to rationally design nanomaterials with sharp responses. Here we elucidated the molecular pathway of pH-triggered supramolecular self-assembly of a series of ultra-pH sensitive (UPS) block copolymers. Hydrophobic micellization drove divergent proton distribution in either highly protonated unimer or neutral micelle states along the majority of the titration coordinate unlike conventional small molecular or polymeric bases. This all-or-nothing two-state solution is a hallmark of positive cooperativity. Integrated modelling and experimental validation yielded a Hill coefficient of 51 in pH cooperativity for a representative UPS block copolymer, by far the largest reported in the literature. These data suggest hydrophobic micellization and resulting positive cooperativity offer a versatile strategy to convert responsive nanomaterials into binary on/off switchable systems for chemical and biological sensing, as demonstrated in an additional anion sensing model.
Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate
2015-01-01
Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments. We firstly tested our approach on a physical simulation environment and then applied it to our real biomechanical walking robot AMOSII with 19 DOFs to adaptively avoid obstacles and navigate in the real world.
Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate
2015-01-01
Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments. We firstly tested our approach on a physical simulation environment and then applied it to our real biomechanical walking robot AMOSII with 19 DOFs to adaptively avoid obstacles and navigate in the real world. PMID:26528176
The Dynamics of Turbulent Scalar Mixing near the Edge of a Shear Layer
NASA Astrophysics Data System (ADS)
Taveira, R. M. R.; da Silva, C. B.; Pereira, J. C. F.
2011-12-01
In free shear flows a sharp and convoluted turbulent/nonturbulent (T/NT) interface separates the outer fluid region, where the flow is essentially irrotational, from the shear layer turbulent region. It was found recently that the entrainment mechanism is mainly caused by small scale ("nibbling") motions (Westerweel et al. (2005)). The dynamics of this interface is crucial to understand important exchanges of enstrophy and scalars that can be conceived as a three-stage process of entrainment, dispersion and diffusion (Dimotakis (2005)). A thorough understanding of scalar mixing and transport is of indisputable relevance to control turbulent combustion, propulsion and contaminant dispersion (Stanley et al. (2002)). The present work uses several DNS of turbulent jets at Reynolds number ranging from Reλ = 120 to Reλ = 160 (da Silva & Taveira (2010)) and a Schmidt number Sc = 0.7 to analyze the "scalar interface" and turbulent mixing of a passive scalar. Specifically, we employ conditional statistics, denoted by langlerangleI, in order to eliminate the intermittency that affects statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces, their scales and topology are investigated detail. Analysis of the instantaneous fields showed intense scalar gradient sheet-like structures along regions of persistent strain, in particular at the T/NT interface. The scalar gradient transport equation, at the jet edge, showed that almost all mixing mechanisms are taking place in a confined region, beyond which they become reduced to an almost in perfect balance between production and dissipation of scalar variance. At the T/NT interface transport mechanisms are the ones responsible for the growth in the scalar fluctuations to the entrained fluid, where convection plays a dominant role, smoothing scalar gradients inside the interface and boosting them as far as
KAnalyze: a fast versatile pipelined K-mer toolkit
Audano, Peter; Vannberg, Fredrik
2014-01-01
Motivation: Converting nucleotide sequences into short overlapping fragments of uniform length, k-mers, is a common step in many bioinformatics applications. While existing software packages count k-mers, few are optimized for speed, offer an application programming interface (API), a graphical interface or contain features that make it extensible and maintainable. We designed KAnalyze to compete with the fastest k-mer counters, to produce reliable output and to support future development efforts through well-architected, documented and testable code. Currently, KAnalyze can output k-mer counts in a sorted tab-delimited file or stream k-mers as they are read. KAnalyze can process large datasets with 2 GB of memory. This project is implemented in Java 7, and the command line interface (CLI) is designed to integrate into pipelines written in any language. Results: As a k-mer counter, KAnalyze outperforms Jellyfish, DSK and a pipeline built on Perl and Linux utilities. Through extensive unit and system testing, we have verified that KAnalyze produces the correct k-mer counts over multiple datasets and k-mer sizes. Availability and implementation: KAnalyze is available on SourceForge: https://sourceforge.net/projects/kanalyze/ Contact: fredrik.vannberg@biology.gatech.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24642064
KAnalyze: a fast versatile pipelined k-mer toolkit.
Audano, Peter; Vannberg, Fredrik
2014-07-15
Converting nucleotide sequences into short overlapping fragments of uniform length, k-mers, is a common step in many bioinformatics applications. While existing software packages count k-mers, few are optimized for speed, offer an application programming interface (API), a graphical interface or contain features that make it extensible and maintainable. We designed KAnalyze to compete with the fastest k-mer counters, to produce reliable output and to support future development efforts through well-architected, documented and testable code. Currently, KAnalyze can output k-mer counts in a sorted tab-delimited file or stream k-mers as they are read. KAnalyze can process large datasets with 2 GB of memory. This project is implemented in Java 7, and the command line interface (CLI) is designed to integrate into pipelines written in any language. As a k-mer counter, KAnalyze outperforms Jellyfish, DSK and a pipeline built on Perl and Linux utilities. Through extensive unit and system testing, we have verified that KAnalyze produces the correct k-mer counts over multiple datasets and k-mer sizes. KAnalyze is available on SourceForge: https://sourceforge.net/projects/kanalyze/. © The Author 2014. Published by Oxford University Press.
Tuning spin-polarized transport in organic semiconductors
NASA Astrophysics Data System (ADS)
Mattana, Richard; Galbiati, Marta; Delprat, Sophie; Tatay, Sergio; Deranlot, Cyrile; Seneor, Pierre; Petroff, Frederic
Molecular spintronics is an emerging research field at the frontier between organic chemistry and the spintronics. Compared to traditional inorganic materials molecules are flexible and can be easily tailored by chemical synthesis. Due to their theoretically expected very long spin lifetime, they were first only seen as the ultimate media for spintronics devices. It was recently that new spintronics tailoring could arise from the chemical versatility brought by molecules. The hybridization between a ferromagnet and molecules induces a spin dependent broadening and energy shifting of the molecular orbitals leading to an induced spin polarization on the first molecular layer. This spin dependent hybridization can be used to tailor the spin dependent transport in organic spintronics devices. We have studied vertical Co/Alq3/Co organic spin valves. The negative magnetoresistance observed is the signature of different coupling strengths at the top and bottom interfaces. We have then inserted an inorganic tunnel barrier at the bottom interface in order to suppress the spin-dependent hybridization. In this case we restore a positive magnetoresistance. This demonstrates that at the bottom Co/Alq3 interface a stronger coupling occurs which induces an inversion of the spin polarization.
LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces
NASA Astrophysics Data System (ADS)
Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina
2016-11-01
The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.
Characterization of charge trapping phenomena at III-N/dielectric interfaces
NASA Astrophysics Data System (ADS)
Stradiotto, Roberta; Pobegen, Gregor; Ostermaier, Clemens; Grasser, Tibor
2016-11-01
Charge trapping related phenomena are among the most serious reliability issues in GaN/AlGaN MIS-HEMTs technology. Today, many research efforts are undertaken to investigate and identify the defects responsible for device degradation. This work focuses on the trap sites located close to the interface with the dielectric, which are responsible for large voltage drifts in on-state conditions. We study the response of GaN/AlGaN/SiN systems to small and large signal excitation. Measurements performed with a lock-in amplifier enable us to deeply understand the dynamic behavior because of the improved time resolution and the versatility of the instrument. We investigate the frequency dispersion and the hysteresis of these devices and conclude that direct analysis of impedance characteristics is not sufficient to extract information about the interface trap response. We propose a methodology to study trapping phenomena based on transient measurement analysis, describing the approximations made and their effect on the accuracy of the result. Results on MIS test structures confirm the existence of a broad distribution of trap states. Capture time constants are found to be uniformly distributed in the experimental time window between 50 μs and 100 s.
High Resolution Spectroscopy and Dynamics: from Jet Cooled Radicals to Gas-Liquid Interfaces
NASA Astrophysics Data System (ADS)
Sharp-Williams, E.; Roberts, M. A.; Roscioli, J. R.; Gisler, A. W.; Ziemkiewicz, M.; Nesbitt, D. J.; Dong, F.; Perkins, B. G., Jr.
2010-06-01
This talk will attempt to reflect recent work in our group involving two quite different but complementary applications of high resolution molecular spectroscopy for detailed study of intramolecular as well as intermolecular dynamics in small molecules. The first is based on direct infrared absorption spectroscopy in a 100 KHz slit supersonic discharge, which provides a remarkably versatile and yet highly sensitive probe for study of important chemical transients such as open shell combustion species and molecular ions under jet cooled (10-20K), sub-Doppler conditions. For this talk will focus on gas phase spectroscopic results for a series of unsaturated hydrocarbon radical species (ethynyl, vinyl, and phenyl) reputed to be critical intermediates in soot formation. Secondly, we will discuss recent applications of high resolution IR and velocity map imaging spectroscopy toward quantum state resolved collision dynamics of jet cooled molecules from gas-room temperature ionic liquid (RTIL) and gas-self assembled monolayer (SAM) interfaces. Time permitting, we will also present new results on hyperthermal scattering of jet cooled NO radical from liquid Ga, which offer a novel window into non-adiabatic energy transfer and electron-hole pair dynamics at the gas-molten metal interface.
Roughening of surfaces under intense and rapid heating
NASA Astrophysics Data System (ADS)
Andersen, Michael Louis
The High Average Power Laser (HAPL) project is aimed at a chamber design with a solid first wall in pursuit of sustained Laser Inertial Confinement Fusion. The wall must be able to withstand cyclic high temperatures and the corresponding thermal stresses. Tungsten was proposed as a suitable armor for the wall, because as a refractory metal, it has a high melting temperature and can act as a stress dampener. The nature of the surface loading consists of x-rays, ions, and neutrons, which through mainly thermal loading, create a biaxial surface stress. This condition causes the surface to roughen as ridges and valleys form to relieve the elastic energy. As the valleys deepen they eventually become cracks and traditional fracture mechanics can be used to determine the life of the first wall. Beginning from the Asaro-Tiller-Grinfeld instability, sharp interface calculations can be performed to determine the surface profile as a result of the interplay between surface stress energy and mass transport mechanisms. One successful approach to determine interface evolution is phase field theory and its embodiment in the numerical level-set method. Applications of the method included problems of solid/liquid and solid/vapor interfaces. In the present method, however, we develop a numerical procedure for surface profile tracking directly without the need to develop partial differential equations for the phase field, which typically smooth out sharp interfaces. Surface roughening instabilities, which are driven by a competition between elastic and surface energy contributions, are shown to be significantly controlled by plastic energy dissipation. We consider here a general parametric description of the surface of a stressed solid and through a mechanical kinetic transport mechanism, follow the temporal evolution of the surface morphology. It is found that once a groove reaches a certain depth and curvature, an instability is created that cannot be followed through elasticity alone. It is shown in this thesis that these morphological instabilities do not experience unbounded growth, as predicted by consideration of elastic energy alone, and that their growth will be severely limited by dislocation emission from high curvature grooves. Comparisons between perturbation theory and the present numerical approach are given along with comparisons to results from laser, ion, and x-ray experiments. Finally, the model is applied to the conditions of Inertial Confinement Fusion chamber walls to determine the number of cycles for crack nucleation.
Hysteretic phenomena in GFET: Comprehensive theory and experiment
NASA Astrophysics Data System (ADS)
Kurchak, Anatolii I.; Morozovska, Anna N.; Strikha, Maksym V.
2017-07-01
We propose a comprehensive analytical theory for the description of versatile hysteretic phenomena in a graphene field effect transistor (GFET). Our theory account for the existence of the three most important rival factors, such as external dipoles on graphene free surface, localized states at the graphene-substrate interface, and the bound polarization charge coming from a ferroelectric substrate. In particular, we demonstrated that the absorbed dipole molecules (e.g., dissociated or highly polarized water molecules) can cause hysteretic form of carrier concentration as a function of gate voltage and corresponding dependence of graphene conductivity in GFET on the substrate of different types, including the most common SiO2 and ferroelectric ones. It was shown that the increase in the gate voltage sweeping rate leads to the complete vanishing of hysteresis for GFET on SiO2 substrate as well as for GFET on ferroelectric substrate for applied electric fields E less than the critical value Ec. For E > Ec, the cross-over from the anti-hysteresis to hysteresis take place. The carriers' trapping from the graphene channel by the interface states describes the "anti-hysteresis" in GFET on PZT substrate well enough. These results well correlate with the available experimental data up to the quantitative agreement. So, the obtained analytical results predict new and clarify existing effects in GFET. They describe quantitatively the physical principles of GFET operation and can become the first necessary step to transform the state-of-art from almost empirical to analytical level, because they can be directly applied to describe the basic characteristics of advanced non-volatile ultra-fast memory devices using GFET on versatile substrates.
Substrate Temperature effect on the transition characteristics of Vanadium (IV) oxide
NASA Astrophysics Data System (ADS)
Yang, Tsung-Han; Wei, Wei; Jin, Chunming; Narayan, Jay
2008-10-01
One of the semiconductor to metal transition material (SMT) is Vanadium Oxide (VO2) which has a very sharp transition temperature close to 340 K as the crystal structure changes from monoclinic phase (semiconductor) into tetragonal phase (metal phase). We have grown high-quality epitaxial vanadium oxide (VO2) films on sapphire (0001) substrates by pulsed laser deposition for oxygen pressure 10-2torr and obtained interesting results without further annealing treatments. The epitaxial growth via domain matching epitaxy, where integral multiples of planes matched across the film-substrate interface. We were able to control the transition characteristics such as the sharpness (T), amplitude (A) of SMT transition and the width of thermal hysteresis (H) by altering the substrate temperature from 300 ^oC, 400 ^oC, 500 ^oC, and 600 ^oC. We use the XRD to identify the microstructure of film and measure the optical properties of film. Finally the transition characteristics is observed by the resistance with the increase of temperature by Van Der Pauw method from 25 to 100 ^oC to measure the electrical resistivity hystersis loop during the transition temperature.
Gong, Zhaoyuan; Walls, Jamie D
2018-02-01
Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T 2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T 2 -relaxing species are more suppressed relative to the sharp signals from slow T 2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gong, Zhaoyuan; Walls, Jamie D.
2018-02-01
Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T2 -relaxing species are more suppressed relative to the sharp signals from slow T2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented.
Paudel, Nava Raj; Shvydka, Diana; Parsai, E Ishmael
2016-09-08
Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in-house-built inexpensive thin-film Cadmium Telluride (CdTe) photodetector to study this effect at the gold-tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three-micron thick thin-film CdTe photodetectors were fabricated in our lab. One-, ten- or one hundred-micron thick gold foils placed in a tissue-equivalent-phantom were irradiated with a clinical Ir-192 high-dose-rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue-equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5μm from the interface were 42.6 ± 10.8 , 137.0 ± 11.9, and 203.0 ± 15.4, respectively. The corresponding MC modeled PDEs were 38.1 ± 1, 164 ± 1, and 249 ± 1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold-tissue interface was successfully measured using an in-house-built, high-resolution CdTe-based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation. © 2016 The Authors.
Grinthal, Alison; Aizenberg, Joanna
2013-10-14
Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design andmore » fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions-able to operate in harsh, changing environments-not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. In conclusion, with nearly unlimited design possibilities and unmatched interfacial properties, liquid materials-as long-term stable interfaces yet in their fully liquid state-may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.« less
Spray algorithm without interface construction
NASA Astrophysics Data System (ADS)
Al-Kadhem Majhool, Ahmed Abed; Watkins, A. P.
2012-05-01
This research is aimed to create a new and robust family of convective schemes to capture the interface between the dispersed and the carrier phases in a spray without the need to build up the interface boundary. The selection of the Weighted Average Flux (WAF) scheme is due to this scheme being designed to deal with random flux scheme which is second-order accurate in space and time. The convective flux in each cell face utilizes the WAF scheme blended with Switching Technique for Advection and Capturing of Surfaces (STACS) scheme for high resolution flux limiters. In the next step, the high resolution scheme is blended with the WAF scheme to provide the sharpness and boundedness of the interface by using switching strategy. In this work, the Eulerian-Eulerian framework of non-reactive turbulent spray is set in terms of theoretical proposed methodology namely spray moments of drop size distribution, presented by Beck and Watkins [1]. The computational spray model avoids the need to segregate the local droplet number distribution into parcels of identical droplets. The proposed scheme is tested on capturing the spray edges in modelling hollow cone sprays without need to reconstruct two-phase interface. A test is made on simple comparison between TVD scheme and WAF scheme using the same flux limiter on convective flow hollow cone spray. Results show the WAF scheme gives a better prediction than TVD scheme. The only way to check the accuracy of the presented models is by evaluating the spray sheet thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zhang; Chen, Wei
Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matvejeff, M., E-mail: mikko.matvejeff@picosun.com; Department of Chemistry, Aalto University, Kemistintie 1, 02150 Espoo; Ahvenniemi, E.
We study magnetic coupling between hole-doped manganite layers separated by either a perovskite or a rock-salt barrier of variable thickness. Both the type and the quality of the interface have a strong impact on the minimum critical barrier thickness where the manganite layers become magnetically decoupled. A rock-salt barrier layer only 1 unit cell (0.5 nm) thick remains insulating and is able to magnetically de-couple the electrode layers. The technique can therefore be used for developing high-performance planar oxide electronic devices such as magnetic tunnel junctions and quantum well structures that depend on magnetically and electronically sharp heterointerfaces.
Simulation of dispersion in layered coastal aquifer systems
Reilly, T.E.
1990-01-01
A density-dependent solute-transport formulation is used to examine ground-water flow in layered coastal aquifers. The numerical experiments indicate that although the transition zone may be thought of as an impermeable 'sharp' interface with freshwater flow parallel to the transition zone in homogeneous aquifers, this is not the case for layered systems. Freshwater can discharge through the transition zone in the confining units. Further, for the best simulation of layered coastal aquifer systems, either a flow-direction-dependent dispersion formulation is required, or the dispersivities must change spatially to reflect the tight thin confining unit. ?? 1990.
Jiang, Zhang; Chen, Wei
2017-11-03
Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.
Pulsed laser deposition—invention or discovery?
NASA Astrophysics Data System (ADS)
Venkatesan, T.
2014-01-01
The evolution of pulsed laser deposition had been an exciting process of invention and discovery, with the development of high Tc superconducting films as the main driver. It has become the method of choice in research and development for rapid prototyping of multicomponent inorganic materials for preparing a variety of thin films, heterostructures and atomically sharp interfaces, and has become an indispensable tool for advancing oxide electronics. In this paper I will give a personal account of the invention and development of this process at Bellcore/Rutgers, the opportunity, challenges and mostly the extraordinary excitement that was generated, typical of any disruptive technology.
Structural characterization of Co-Re superlattices
NASA Astrophysics Data System (ADS)
Melo, L. V.; Trindade, I.; From, M.; Freitas, P. P.; Teixeira, N.; da Silva, M. F.; Soares, J. C.
1991-12-01
Co-Re superlattices were prepared with nominal periodicities of 65-67 Å and varying bilayer composition. The structural characterization was made by x-ray diffraction and Rutherford backscattering spectrometry (RBS). First, second, and third order satellites are observed in the x-ray diffractogram at 2θ values and with intensities close to those predicted by simulation. This confirms the coherence of the superlattice. RBS measurements combined with RUMP simulations give information on interface sharpness and the absolute thicknesses of the Co and Re layers. Discrepancies between the experimental and simulated diffractograms are found for Co thicknesses below 18 Å.
Directing self-assembly of gold nanoparticles in diblock copolymer scaffold
NASA Astrophysics Data System (ADS)
Li, Qifang; He, Jinbo; Glogowski, Elizabeth; Emrick, Todd; Russell, Thomas
2007-03-01
A versatile hierarchical approach for directing self -assembly of gold nanostructures with size 2-3nm in diblock copolymer scaffolds is found. Diblock copolymer polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) is used to form a regular scaffold of highly anisotropic, stripe-like domains, and controlled differential wetting by dichloromethane and thermal annealing guides gold nanoparticles with half hydrophilic ligand to aggregate selectively along the scaffold, producing highly organized metal nanostructures. In as-cast block-copolymer and gold nanoparticles thin films, micelle structure and gold nanoparticles random distribution on scaffold are typically observed. However, samples annealed in dichloromethane exhibit well-defined short-range ordered nanostructure with gold nanoparticles located at the interface of PS and P2VP nanoscale domain. After annealing at 170 C, the gold nanoparticles at interface migrated into the middle of P2VP phase and exhibited long-range ordered hierarchical structures. Synergistic interactions between the gold nanoparticles and the PS-b-P2VP caused an orientation of the microdomains normal to the film surface.
Interfacial electrofluidics in confined systems
Tang, Biao; Groenewold, Jan; Zhou, Min; Hayes, Robert A.; Zhou, Guofu (G.F.)
2016-01-01
Electrofluidics is a versatile principle that can be used for high speed actuation of liquid interfaces. In most of the applications, the fundamental mechanism of electro-capillary instability plays a crucial role, yet it’s potential richness in confined fluidic layers has not been well addressed. Electrofluidic displays which are comprised of thin pixelated colored films in a range of architectures are excellent systems for studying such phenomena. In this study we show theoretically and experimentally that confinement leads to the generation of a cascade of voltage dependent modes as a result of the electro-capillary instability. In the course of reconciling theory with our experimental data we have observed a number of previously unreported phenomena such as a significant induction time (several milliseconds) prior to film rupture as well as a rupture location not corresponding to the minimum electric field strength in the case of the standard convex water/oil interface used in working devices. These findings are broadly applicable to a wide range of switchable electrofluidic applications and devices having confined liquid films. PMID:27221211
Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Ditto, Jeffrey J.; ...
2016-04-21
Here, the rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly-dispersed discrete redox-active cluster anions (50 ng of pure ~0.7 nm size molybdenum polyoxometalate anions (POM) anions on 25 mg (≈ 0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft-landingmore » (SL). For the first time, electron microscopy provides atomically-resolved images of individual POM species directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage.« less
Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants
Huang, Caili; Forth, Joe; Wang, Weiyu; ...
2017-09-25
Bicontinuous jammed emulsions (or bijels) are tortuous, interconnected structures of two immiscible liquids, kinetically trapped by colloidal particles that are irreversibly bound to the oil–water interface. A wealth of applications has been proposed for bijels in catalysis, energy storage and molecular encapsulation, but large domain sizes (on the order of 5 µm or larger) and difficulty in fabrication pose major barriers to their use. In this paper, we show that bijels with sub-micrometre domains can be formed via homogenization, rather than spinodal decomposition. We achieve this by using nanoparticle surfactants: polymers and nanoparticles of complementary functionality (for example, ion-pairing) thatmore » bind to one another at the oil–water interface. This allows the stabilization of the bijel far from the demixing point of the liquids, with interfacial tensions on the order of 20 mN m -1. Finally, furthermore, our strategy is extremely versatile, as solvent, nanoparticle and ligand can all be varied.« less
Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Caili; Forth, Joe; Wang, Weiyu
Bicontinuous jammed emulsions (or bijels) are tortuous, interconnected structures of two immiscible liquids, kinetically trapped by colloidal particles that are irreversibly bound to the oil–water interface. A wealth of applications has been proposed for bijels in catalysis, energy storage and molecular encapsulation, but large domain sizes (on the order of 5 µm or larger) and difficulty in fabrication pose major barriers to their use. In this paper, we show that bijels with sub-micrometre domains can be formed via homogenization, rather than spinodal decomposition. We achieve this by using nanoparticle surfactants: polymers and nanoparticles of complementary functionality (for example, ion-pairing) thatmore » bind to one another at the oil–water interface. This allows the stabilization of the bijel far from the demixing point of the liquids, with interfacial tensions on the order of 20 mN m -1. Finally, furthermore, our strategy is extremely versatile, as solvent, nanoparticle and ligand can all be varied.« less
Swimming near an interface in a viscoelastic fluid
NASA Astrophysics Data System (ADS)
Yazdi, Shahrzad; Ardekani, Arezoo; Borhan, Ali
2014-11-01
Given the versatility of their natural habitats, microorganisms often encounter the presence of confining boundaries while moving in polymeric solutions. Some examples include swimming of spermatozoa in the mammalian reproductive tract or bacteria in extracellular polymeric matrices during biofilm formation. It has been shown that both confinement and fluid elasticity can have significant impacts on the locomotion of microswimmers. However, the combined effect of these environmental conditions has not been fully understood yet. In this work, we present a fully resolved solution of a low-Reynolds-number microorganism swimming near an interface in a viscoelastic fluid. The kinematics of locomotion for a squirmer in a viscoelastic fluid is compared to its Newtonian counterpart using a perturbation analysis. The results suggest that extracellular polymers dramatically alter the swimming hydrodynamics, and in general increase the residence time of the microswimmer near a no-slip boundary that can consequently facilitate its adhesion rate. The emergence of a limit cycle can also enhance cell-cell communication in the form of quorum sensing and consequently biofilm formation.
Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks
NASA Astrophysics Data System (ADS)
Dana, Hod; Marom, Anat; Paluch, Shir; Dvorkin, Roman; Brosh, Inbar; Shoham, Shy
2014-06-01
Planar neural networks and interfaces serve as versatile in vitro models of central nervous system physiology, but adaptations of related methods to three dimensions (3D) have met with limited success. Here, we demonstrate for the first time volumetric functional imaging in a bioengineered neural tissue growing in a transparent hydrogel with cortical cellular and synaptic densities, by introducing complementary new developments in nonlinear microscopy and neural tissue engineering. Our system uses a novel hybrid multiphoton microscope design combining a 3D scanning-line temporal-focusing subsystem and a conventional laser-scanning multiphoton microscope to provide functional and structural volumetric imaging capabilities: dense microscopic 3D sampling at tens of volumes per second of structures with mm-scale dimensions containing a network of over 1,000 developing cells with complex spontaneous activity patterns. These developments open new opportunities for large-scale neuronal interfacing and for applications of 3D engineered networks ranging from basic neuroscience to the screening of neuroactive substances.
Remote Control and Data Acquisition: A Case Study
NASA Technical Reports Server (NTRS)
DeGennaro, Alfred J.; Wilkinson, R. Allen
2000-01-01
This paper details software tools developed to remotely command experimental apparatus, and to acquire and visualize the associated data in soft real time. The work was undertaken because commercial products failed to meet the needs. This work has identified six key factors intrinsic to development of quality research laboratory software. Capabilities include access to all new instrument functions without any programming or dependence on others to write drivers or virtual instruments, simple full screen text-based experiment configuration and control user interface, months of continuous experiment run-times, order of 1% CPU load for condensed matter physics experiment described here, very little imposition of software tool choices on remote users, and total remote control from anywhere in the world over the Internet or from home on a 56 Kb modem as if the user is sitting in the laboratory. This work yielded a set of simple robust tools that are highly reliable, resource conserving, extensible, and versatile, with a uniform simple interface.
Controlling Self-Assembly of Engineered Peptides on Graphite by Rational Mutation
So, Christopher R.; Hayamizu, Yuhei; Yazici, Hilal; Gresswell, Carolyn; Khatayevich, Dmitriy; Tamerler, Candan; Sarikaya, Mehmet
2012-01-01
Self-assembly of proteins on surfaces is utilized in many fields to integrate intricate biological structures and diverse functions with engineered materials. Controlling proteins at bio-solid interfaces relies on establishing key correlations between their primary sequences and resulting spatial organizations on substrates. Protein self-assembly, however, remains an engineering challenge. As a novel approach, we demonstrate here that short dodecapeptides selected by phage display are capable of self-assembly on graphite and form long-range ordered biomolecular nanostructures. Using atomic force microscopy and contact angle studies, we identify three amino-acid domains along the primary sequence that steer peptide ordering and lead to nanostructures with uniformly displayed residues. The peptides are further engineered via simple mutations to control fundamental interfacial processes, including initial binding, surface aggregation and growth kinetics, and intermolecular interactions. Tailoring short peptides via their primary sequence offers versatile control over molecular self-assembly, resulting in well-defined surface properties essential in building engineered, chemically rich, bio-solid interfaces. PMID:22233341
Dynamics and Instabilities of Acoustically Stressed Interfaces
NASA Astrophysics Data System (ADS)
Shi, William Tao
An intense sound field exerts acoustic radiation pressure on a transitional layer between two continuous fluid media, leading to the unconventional dynamical behavior of the interface in the presence of the sound field. An understanding of this behavior has applications in the study of drop dynamics and surface rheology. Acoustic fields have also been utilized in the generation of interfacial instability, which may further encourage the dispersion or coalescence of liquids. Therefore, the study of the dynamics of the acoustically stressed interfaces is essential to infer the mechanism of the various phenomena related to interfacial dynamics and to acquire the properties of liquid surfaces. This thesis studies the dynamics of acoustically stressed interfaces through a theoretical model of surface interactions on both closed and open interfaces. Accordingly, a boundary integral method is developed to simulate the motions of a stressed interface. The method has been employed to determine the deformation, oscillation and instability of acoustically levitated drops. The generalized computations are found to be in good agreement with available experimental results. The linearized theory is also derived to predict the instability threshold of the flat interface, and is then compared with experiments conducted to observe and measure the unstable motions of the horizontal interface. This thesis is devoted to describing and classifying the simplest mechanisms by which acoustic fields provide a surface interaction with a fluid. A physical picture of the competing processes introduced by the evolution of an interface in a sound field is presented. The development of an initial small perturbation into a sharp form is observed on either a drop surface or a horizontal interface, indicating a strong focusing of acoustic energy at certain spots of the interface. Emphasis is placed on understanding the basic coupling mechanisms, rather than on particular applications that may involve this coupling. The dynamical behavior of a stressed drop can be determined in terms of a given form of an incident sound field and three dimensionless quantities. Thus, the behavior of a complex dynamic system has been clarified, permitting the exploration and interpretation of the nature of liquid surface phenomena.
Formation of iron disilicide on amorphous silicon
NASA Astrophysics Data System (ADS)
Erlesand, U.; Östling, M.; Bodén, K.
1991-11-01
Thin films of iron disilicide, β-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The β-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski <111> silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed β-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.
A transition in the viscous fingering instability in miscible fluids
NASA Astrophysics Data System (ADS)
Videbaek, Thomas; Nagel, Sidney R.
2017-11-01
The viscous fingering instability in a quasi-two dimensional Hele-Shaw cell is an example of complex structure formation from benign initial conditions. When the invading fluid has the lesser viscosity, the interface between the two fluids is unstable to finger formation. Here, we study the instability between pairs of miscible fluids in a circular cell with fluid injected at its center. As the injection rate is decreased, diffusion will smooth out the discontinuity in the gap-averaged viscosity at the interface between the fluids. At high injection rates (i.e., high Péclet number, Pe), fingering is associated with three-dimensional structure within the gap between the confining plates. On lowering Pe, we find a sharp transition in the finger morphology at a critical value, Pec (ηi /ηo) 1 / 2 , with ηi (ηo) being the viscosity of the inner (outer) fluid; at this point, the width of the fingers jumps, the length of the fingers shrinks towards zero and the three-dimensional structure goes from half filling to fully filling the gap. Thus, by controlling the viscosity contrast at the interface, one can alter and even completely suppress the instability.
Chen, Xian; Tamura, Nobumichi; MacDowell, Alastair; ...
2016-05-23
The alloy Cu 25 Au 30 Zn 45 undergoes a huge first-order phase transformation (6% strain) and shows a high reversibility under thermal cycling and an unusual martensitc microstructure in sharp contrast to its nearby compositions. We discovered this alloy by systematically tuning the composition so that its lattice parameters satisfy the cofactor conditions (i.e., the kinematic conditions of compatibility between phases). It was conjectured that satisfaction of these conditions is responsible for the enhanced reversibility as well as the observed unusual fluid-like microstructure during transformation, but so far, there has been no direct evidence confirming that these observed microstructuresmore » are those predicted by the cofactor conditions. In order to verify this hypothesis, we use synchrotron X-ray Laue microdiffraction to measure the orientations and structural parameters of variants and phases near the austenite/martensite interface. The areas consisting of both austenite and multi-variants of martensite are scanned by microLaue diffraction. The cofactor conditions have been examined from the kinematic relation of lattice vectors across the interface. The continuity condition of the interface is precisely verified from the correspondent lattice vectors between two phases.« less
Effects of argon addition on a-CNx film deposition by hot carbon filament chemical vapor deposition
NASA Astrophysics Data System (ADS)
Watanabe, Yoshihisa; Aono, Masami; Yamazaki, Ayumi; Kitazawa, Nobuaki; Nakamura, Yoshikazu
2002-07-01
Using a carbon filament which supplies carbon and heat, amorphous carbon nitride (a-CNx) films were prepared on Si (100) substrates by hot filament chemical vapor deposition. Deposition was performed in a low-pressure atmosphere of pure nitrogen and a gas mixture of nitrogen and argon. Effects of argon additions to the nitrogen atmosphere on the film microstructure and interface composition between the film and substrate were studied by field-emission scanning electron microscopy (FESEM) and x-ray photoelectron spectroscopy (XPS). FESEM observations reveal that the film prepared in a pure nitrogen atmosphere has uniform nucleation and a densely packed columnar pieces structure. The film prepared in the nitrogen and argon gas mixture exhibits preferential nucleation and a tapered structure with macroscopic voids. Depth analyses using XPS reveal that the film prepared in pure nitrogen possesses a broad interface, which includes silicon carbide as well as a-CNx, whereas a sharp interface is discerned in the film prepared in the mixed nitrogen and argon gas. We observed that silicon carbide formation is suppressed by an argon addition to the nitrogen atmosphere during deposition. copyright 2002 American Vacuum Society.
Minimal color-flavor-locked-nuclear interface
NASA Astrophysics Data System (ADS)
Alford, Mark; Rajagopal, Krishna; Reddy, Sanjay; Wilczek, Frank
2001-10-01
At nuclear matter density, electrically neutral strongly interacting matter in weak equilibrium is made of neutrons, protons, and electrons. At sufficiently high density, such matter is made of up, down, and strange quarks in the color-flavor-locked (CFL) phase, with no electrons. As a function of increasing density (or, perhaps, increasing depth in a compact star) other phases may intervene between these two phases, which are guaranteed to be present. The simplest possibility, however, is a single first order phase transition between CFL and nuclear matter. Such a transition, in space, could take place either through a mixed phase region or at a single sharp interface with electron-free CFL and electron-rich nuclear matter in stable contact. Here we construct a model for such an interface. It is characterized by a region of separated charge, similar to an inversion layer at a metal-insulator boundary. On the CFL side, the charged boundary layer is dominated by a condensate of negative kaons. We then consider the energetics of the mixed phase alternative. We find that the mixed phase will occur only if the nuclear-CFL surface tension is significantly smaller than dimensional analysis would indicate.
Level set immersed boundary method for gas-liquid-solid interactions with phase-change
NASA Astrophysics Data System (ADS)
Dhruv, Akash; Balaras, Elias; Riaz, Amir; Kim, Jungho
2017-11-01
We will discuss an approach to simulate the interaction between two-phase flows with phase changes and stationary/moving structures. In our formulation, the Navier-Stokes and heat advection-diffusion equations are solved on a block-structured grid using adaptive mesh refinement (AMR) along with sharp jump in pressure, velocity and temperature across the interface separating the different phases. The jumps are implemented using a modified Ghost Fluid Method (Lee et al., J. Comput. Physics, 344:381-418, 2017), and the interface is tracked with a level set approach. Phase transition is achieved by calculating mass flux near the interface and extrapolating it to the rest of the domain using a Hamilton-Jacobi equation. Stationary/moving structures are simulated with an immersed boundary formulation based on moving least squares (Vanella & Balaras, J. Comput. Physics, 228:6617-6628, 2009). A variety of canonical problems involving vaporization, film boiling and nucleate boiling is presented to validate the method and demonstrate the its formal accuracy. The robustness of the solver in complex problems, which are crucial in efficient design of heat transfer mechanisms for various applications, will also be demonstrated. Work supported by NASA, Grant NNX16AQ77G.
Using Laser-Induced Thermal Voxels to Pattern Diverse Materials at the Solid-Liquid Interface.
Zarzar, Lauren D; Swartzentruber, B S; Donovan, Brian F; Hopkins, Patrick E; Kaehr, Bryan
2016-08-24
We describe a high-resolution patterning approach that combines the spatial control inherent to laser direct writing with the versatility of benchtop chemical synthesis. By taking advantage of the steep thermal gradient that occurs while laser heating a metal edge in contact with solution, diverse materials comprising transition metals are patterned with feature size resolution nearing 1 μm. We demonstrate fabrication of reduced metallic nickel in one step and examine electrical properties and air stability through direct-write integration onto a device platform. This strategy expands the chemistries and materials that can be used in combination with laser direct writing.
Using laser-induced thermal voxels to pattern diverse materials at the solid–liquid interface
Zarzar, Lauren D.; Swartzentruber, B. S.; Donovan, Brian F.; ...
2016-08-05
We describe a high-resolution patterning approach that combines the spatial control inherent to laser direct writing with the versatility of benchtop chemical synthesis. By taking advantage of the steep thermal gradient that occurs while laser heating a metal edge in contact with solution, diverse materials comprising transition metals are patterned with feature size resolution nearing 1 μm. We demonstrate fabrication of reduced metallic nickel in one step and examine electrical properties and air stability through direct-write integration onto a device platform. In conclusion, this strategy expands the chemistries and materials that can be used in combination with laser direct writing.
NASA Technical Reports Server (NTRS)
1973-01-01
The development, construction, and test of a 100-word vocabulary near real time word recognition system are reported. Included are reasonable replacement of any one or all 100 words in the vocabulary, rapid learning of a new speaker, storage and retrieval of training sets, verbal or manual single word deletion, continuous adaptation with verbal or manual error correction, on-line verification of vocabulary as spoken, system modes selectable via verification display keyboard, relationship of classified word to neighboring word, and a versatile input/output interface to accommodate a variety of applications.
The Delta Launch Vehicle Model 2914 Series
NASA Technical Reports Server (NTRS)
Gunn, C. R.
1973-01-01
The newest Delta launch vehicle configuration, Model 2914 is described for potential users together with recent flight results. A functional description of the vehicle, its performance, flight profile, flight environment, injection accuracy, spacecraft integration requirements, user organizational interfaces, launch operations, costs and reimbursable users payment plan are provided. The versatile, relatively low cost Delta has a flight demonstrated reliability record of 92 percent that has been established in 96 launches over twelve years while concurrently undergoing ten major upratings to keep pace with the ever increasing performance and reliability requirements of its users. At least 40 more launches are scheduled over the next three years from the Eastern and Western Test Ranges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, J.E.
Many robotic operations, e.g., mapping, scanning, feature following, etc., require accurate surface following of arbitrary targets. This paper presents a versatile surface following and mapping system designed to promote hardware, software and application independence, modular development, and upward expandability. These goals are met by: a full, a priori specification of the hardware and software interfaces; a modular system architecture; and a hierarchical surface-data analysis method, permitting application specific tuning at each conceptual level of topological abstraction. This surface following system was fully designed and independently of any specific robotic host, then successfully integrated with and demonstrated on a completely amore » priori unknown, real-time robotic system. 7 refs.« less
Comprehensive Thematic T-Matrix Reference Database: A 2015-2017 Update
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Zakharova, Nadezhda; Khlebtsov, Nikolai G.; Videen, Gorden; Wriedt, Thomas
2017-01-01
The T-matrix method pioneered by Peter C. Waterman is one of the most versatile and efficient numerically exact computer solvers of the time-harmonic macroscopic Maxwell equations. It is widely used for the computation of electromagnetic scattering by single and composite particles, discrete random media, periodic structures (including metamaterials), and particles in the vicinity of plane or rough interfaces separating media with different refractive indices. This paper is the eighth update to the comprehensive thematic database of peer-reviewed T-matrix publications initiated in 2004 and lists relevant publications that have appeared since 2015. It also references a small number of earlier publications overlooked previously.
Rydberg excitation of cold atoms inside a hollow-core fiber
NASA Astrophysics Data System (ADS)
Langbecker, Maria; Noaman, Mohammad; Kjærgaard, Niels; Benabid, Fetah; Windpassinger, Patrick
2017-10-01
We report on a versatile, highly controllable hybrid cold Rydberg atom fiber interface, based on laser cooled atoms transported into a hollow-core kagome crystal fiber. Our experiments demonstrate the feasibility of exciting cold Rydberg atoms inside a hollow-core fiber and we study the influence of the fiber on Rydberg electromagnetically induced transparency (EIT) signals. Using a temporally resolved detection method to distinguish between excitation and loss, we observe two different regimes of the Rydberg excitations: one EIT regime and one regime dominated by atom loss. These results are a substantial advancement towards future use of our system for quantum simulation or information.
A universal DNA-based protein detection system.
Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan
2013-09-25
Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.
A Universal DNA-Based Protein Detection System
Tran, Thua N. N.; Cui, Jinhui; Hartman, Mark R.; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C.; Lis, John T.; Cui, Haixin; Luo, Dan
2014-01-01
Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability. PMID:23978265
Comprehensive thematic T-matrix reference database: A 2015-2017 update
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Zakharova, Nadezhda T.; Khlebtsov, Nikolai G.; Videen, Gorden; Wriedt, Thomas
2017-11-01
The T-matrix method pioneered by Peter C. Waterman is one of the most versatile and efficient numerically exact computer solvers of the time-harmonic macroscopic Maxwell equations. It is widely used for the computation of electromagnetic scattering by single and composite particles, discrete random media, periodic structures (including metamaterials), and particles in the vicinity of plane or rough interfaces separating media with different refractive indices. This paper is the eighth update to the comprehensive thematic database of peer-reviewed T-matrix publications initiated in 2004 and lists relevant publications that have appeared since 2015. It also references a small number of earlier publications overlooked previously.
Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement.
Harne, R L; Wang, K W
2015-03-06
Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
de Aquino, Emerson Vidal; Rohwedder, Jarbas José Rodrigues; Pasquini, Celio
2006-11-01
Monosegmented flow analysis (MSFA) has been used as a flow-batch system to produce a simple, robust, and mechanized titrator that enables true titrations to be performed without the use of standards. This paper also introduces the use of coulometry with monosegmented titration by proposing a versatile flow cell. Coulometric generation of the titrand is attractive for titrations performed in monosegmented systems, because the reagent can be added without increasing the volume of sample injected. Also, biamperomeric and potentiometric detection of titration end-points can increase the versatility of the monosegmented titrator. The cell integrates coulometric generation of the titrand with detection of end-point by potentiometry or biamperometry. The resulting titrator is a flow-batch system in which the liquid monosegment, constrained by the interfaces of the gaseous carrier stream, plays the role of a sample of known volume to be titrated. The system has been used for determination of ascorbic acid, by coulometric generation of I2 with biamperometric detection, and for determination of Fe(II), by coulometric generation of Ce(IV) with potentiometric detection of the end-point, both in feed supplements.
RICOR K527 highly reliable linear cooler: applications and model overview
NASA Astrophysics Data System (ADS)
Riabzev, Sergey; Nachman, Ilan; Levin, Eli; Perach, Adam; Vainshtein, Igor; Gover, Dan
2017-05-01
The K527 linear cooler was developed in order to meet the requirements of reliability, cooling power needs and versatility for a wide range of applications such as hand held, 24/7 and MWS. During the recent years the cooler was incorporated in variety of systems. Some of these systems can be sensitive to vibrations which are induced from the cooler. In order to reduce those vibrations significantly, a Tuned Dynamic Absorber (TDA) was added to the cooler. Other systems, such as the MWS type, are not sensitive to vibrations, but require a robust cooler in order to meet the high demand for environmental vibration and temperature. Therefore various mounting interfaces are designed to meet system requirements. The latest K527 version was designed to be integrated with the K508 cold finger, in order to give it versatility to standard detectors that are already designed and available for the K508 cooler type. The reliability of the cooler is of a high priority. In order to meet the 30,000 working hours target, special design features were implemented. Eight K527 coolers have passed the 19,360 working hours without degradations, and are still running according to our expectations.
Hebart, Martin N.; Görgen, Kai; Haynes, John-Dylan
2015-01-01
The multivariate analysis of brain signals has recently sparked a great amount of interest, yet accessible and versatile tools to carry out decoding analyses are scarce. Here we introduce The Decoding Toolbox (TDT) which represents a user-friendly, powerful and flexible package for multivariate analysis of functional brain imaging data. TDT is written in Matlab and equipped with an interface to the widely used brain data analysis package SPM. The toolbox allows running fast whole-brain analyses, region-of-interest analyses and searchlight analyses, using machine learning classifiers, pattern correlation analysis, or representational similarity analysis. It offers automatic creation and visualization of diverse cross-validation schemes, feature scaling, nested parameter selection, a variety of feature selection methods, multiclass capabilities, and pattern reconstruction from classifier weights. While basic users can implement a generic analysis in one line of code, advanced users can extend the toolbox to their needs or exploit the structure to combine it with external high-performance classification toolboxes. The toolbox comes with an example data set which can be used to try out the various analysis methods. Taken together, TDT offers a promising option for researchers who want to employ multivariate analyses of brain activity patterns. PMID:25610393
Organic electrode coatings for next-generation neural interfaces
Aregueta-Robles, Ulises A.; Woolley, Andrew J.; Poole-Warren, Laura A.; Lovell, Nigel H.; Green, Rylie A.
2014-01-01
Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes. PMID:24904405
NASA Astrophysics Data System (ADS)
Hizir, F. E.; Hardt, D. E.
2017-05-01
An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.
NASA Astrophysics Data System (ADS)
Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis
2016-11-01
A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates the potential of the method to simulate turbulent flows past geometrically complex bodies on locally refined meshes. In all the cases, the results are found to be in very good agreement with published data and savings in computational resources are achieved.
New Numerical Approaches To thermal Convection In A Compositionally Stratified Fluid
NASA Astrophysics Data System (ADS)
Puckett, E. G.; Turcotte, D. L.; Kellogg, L. H.; Lokavarapu, H. V.; He, Y.; Robey, J.
2016-12-01
Seismic imaging of the mantle has revealed large and small scale heterogeneities in the lower mantle; specifically structures known as large low shear velocity provinces (LLSVP) below Africa and the South Pacific. Most interpretations propose that the heterogeneities are compositional in nature, differing from the overlying mantle, an interpretation that would be consistent with chemical geodynamic models. The LLSVP's are thought to be very old, meaning they have persisted thoughout much of Earth's history. Numerical modeling of persistent compositional interfaces present challenges to even state-of-the-art numerical methodology. It is extremely difficult to maintain sharp composition boundaries which migrate and distort with time dependent fingering without compositional diffusion and / or artificial diffusion. The compositional boundary must persist indefinitely. In this work we present computations of an initial compositionally stratified fluid that is subject to a thermal gradient ΔT = T1 - T0 across the height D of a rectangular domain over a range of buoyancy numbers B and Rayleigh numbers Ra. In these computations we compare three numerical approaches to modeling the movement of two distinct, thermally driven, compositional fields; namely, a high-order Finte Element Method (FEM) that employs artifical viscosity to preserve the maximum and minimum values of the compositional field, a Discontinous Galerkin (DG) method with a Bound Preserving (BP) limiter, and a Volume-of-Fluid (VOF) interface tracking algorithm. Our computations demonstrate that the FEM approach has far too much numerical diffusion to yield meaningful results, the DGBP method yields much better resuts but with small amounts of each compositional field being (numerically) entrained within the other compositional field, while the VOF method maintains a sharp interface between the two compositions throughout the computation. In the figure we show a comparison of between the three methods for a computation made with B = 1.111 and Ra = 10,000 after the flow has reached 'steady state'. (R) the images computed with the standard FEM method (with artifical viscosity), (C) the images computed with the DGBP method (with no artifical viscosity or diffusion due to discretization errors) and (L) the images computed with the VOF algorithm.
NASA Astrophysics Data System (ADS)
Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.
2017-12-01
We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.
NASA Astrophysics Data System (ADS)
Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.
2018-01-01
Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.
Electrically driven hybrid photonic metamaterials for multifunctional control
NASA Astrophysics Data System (ADS)
Kang, Lei; Liu, Liu; Campbell, Sawyer D.; Yue, Taiwei; Ren, Qiang; Mayer, Theresa S.; Werner, Douglas H.
2017-08-01
The unique light-matter interaction in metamaterials, a type of artificial medium in which the geometrical features of subunits dominate their optical responses, have been utilized to achieve exotic material properties that are rare or nonexistent in natural materials. Furthermore, to extend their behaviors, active materials have been introduced into metamaterial systems to advance tunability, switchability and nonlinearity. Nevertheless, practical examples of versatile photonic metamaterials remain exceedingly rare for two main reasons. On the one hand, in sharp contrast to the broad material options available at lower frequencies, it is less common to find active media in the optical regime that can provide pronounced dielectric property changes under external stimuli, such as electric and magnetic fields. Vanadium dioxide (VO2), offering a large refractive index variation over a broad frequency range due to its near room temperature insulator-to-metal transition (IMT), has been favored in recent studies on tunable metamaterials. On the other hand, it turns out that regulating responses of hybrid metamaterials to external forces in an integrated manner is not a straightforward task. Recently, metamaterial-enabled devices (i.e., metadevices) with `self-sufficient' or `self-contained' electrical and optical properties have enabled complex functionalities. Here, we present a design methodology along with the associated experimental validation of a VO2 thin film integrated optical metamaterial absorber as a hybrid photonic platform for electrically driven multifunctional control, including reflectance switching, a rewritable memory process and manageable localized camouflage. The nanoengineered topologically continuous metal structure simultaneously supports the optical resonance and electrical functionality that actuates the phase transition in VO2 through the process of Joule heating. This work provides a universal approach to creating self-sufficient and highly-versatile nanophotonic systems.
Grand-Guillaume Perrenoud, Alexandre; Veuthey, Jean-Luc; Guillarme, Davy
2014-04-25
The recent market release of a new generation of supercritical fluid chromatography (SFC) instruments compatible with state-of-the-art columns packed with sub-2μm particles (UHPSFC) has contributed to the reemergence of interest in this technology at the analytical scale. However, to ensure performance competitiveness of this technique with modern analytical standards, a robust hyphenation of UHPSFC to mass spectrometry (MS) is mandatory. UHPSFC-MS hyphenation interface should be able to manage the compressibility of the SFC mobile phase and to preserve as much as possible the chromatographic separation integrity. Although several interfaces can be envisioned, each will have noticeable effects on chromatographic fidelity, flexibility and user-friendliness. In the present study, various interface configurations were evaluated in terms of their impact on chromatographic efficiency and MS detection sensitivity. An interface including a splitter and a make-up solvent inlet was found to be the best compromise and exhibited good detection sensitivity while maintaining more than 75% of the chromatographic efficiency. This interface was also the most versatile in terms of applicable analytical conditions. In addition, an accurate model of the fluidics behavior of this interface was created for a better understanding of the influence of chromatographic settings on its mode of operation. In the second part, the most influential experimental factors affecting MS detection sensitivity were identified and optimized using a design-of-experiment approach. The application of low capillary voltage and high desolvation temperature and drying gas flow rate were required for optimal ESI ionization and nebulization processes. The detection sensitivity achieved using the maximized UHPSFC-ESI-MS/MS conditions for a mixture of basic pharmaceutical compounds showed 4- to 10-fold improvements in peak intensity compared to the best performance achieved by UHPLC-ESI-MS/MS with the same MS detector. Copyright © 2014 Elsevier B.V. All rights reserved.
Evidence of a Transition Layer between the Free Surface and the Bulk.
Ogieglo, Wojciech; Tempelman, Kristianne; Napolitano, Simone; Benes, Nieck E
2018-03-15
The free surface, a very thin layer at the interface between polymer and air, is considered the main source of the perturbations in the properties of ultrathin polymer films, i.e., nanoconfinement effects. The structural relaxation of such a layer is decoupled from the molecular dynamics of the bulk. The free surface is, in fact, able to stay liquid even below the temperature where the polymer resides in the glassy state. Importantly, this surface layer is expected to have a very sharp interface with the underlying bulk. Here, by analyzing the penetration of n-hexane into polystyrene films, we report on the existence of a transition region, not observed by previous investigations, extending for 12 nm below the free surface. The presence of such a layer permits reconciling the behavior of interfacial layers with current models and has profound implications on the performance of ultrathin membranes. We show that the expected increase in the flux of the permeating species is actually overruled by nanoconfinement.
Phase-field model for isothermal phase transitions in binary alloys
NASA Technical Reports Server (NTRS)
Wheeler, A. A.; Boettinger, W. J.; Mcfadden, G. B.
1992-01-01
A new phase field model is described which models isothermal phase transitions between ideal binary alloy solution phases. Equations are developed for the temporal and spatial variation of the phase field, which describes the identity of the phase, and of the composition. An asymptotic analysis, as the gradient energy coefficient of the phase field becomes small, was conducted. From the analysis, it is shown that the model recovers classical sharp interface models of this situation when the interfacial layers are thin, and they show how to relate the parameters appearing in the phase field model to material and growth parameters in real systems. Further, three stages of temporal evolution are identified: the first corresponding to interfacial genesis which occurs very rapidly; the second to interfacial motion controlled by the local energy difference across the interface and diffusion; the last taking place on a long time scale in which curvature effects are important and which correspond to Ostwald ripening. The results of the numerical calculations are presented.
Johnson, Ashley R.; Caudill, Cassie L.; Tumbleston, John R.; Bloomquist, Cameron J.; Moga, Katherine A.; Ermoshkin, Alexander; Shirvanyants, David; Mecham, Sue J.; Luft, J. Christopher; DeSimone, Joseph M.
2016-01-01
Microneedles, arrays of micron-sized needles that painlessly puncture the skin, enable transdermal delivery of medications that are difficult to deliver using more traditional routes. Many important design parameters, such as microneedle size, shape, spacing, and composition, are known to influence efficacy, but are notoriously difficult to alter due to the complex nature of microfabrication techniques. Herein, we utilize a novel additive manufacturing (“3D printing”) technique called Continuous Liquid Interface Production (CLIP) to rapidly prototype sharp microneedles with tuneable geometries (size, shape, aspect ratio, spacing). This technology allows for mold-independent, one-step manufacturing of microneedle arrays of virtually any design in less than 10 minutes per patch. Square pyramidal CLIP microneedles composed of trimethylolpropane triacrylate, polyacrylic acid and photopolymerizable derivatives of polyethylene glycol and polycaprolactone were fabricated to demonstrate the range of materials that can be utilized within this platform for encapsulating and controlling the release of therapeutics. These CLIP microneedles effectively pierced murine skin ex vivo and released the fluorescent drug surrogate rhodamine. PMID:27607247
Structural characterization of nano-oxide layers in PtMn based specular spin valves
NASA Astrophysics Data System (ADS)
Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming
2005-05-01
A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.
Effect of a CoFeB layer on the anisotropic magnetoresistance of Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta films
NASA Astrophysics Data System (ADS)
Li, Minghua; Shi, Hui; Dong, Yuegang; Ding, Lei; Han, Gang; Zhang, Yao; Liu, Ye; Yu, Guanghua
2017-10-01
The anisotropic magnetoresistance (AMR) and magnetic properties of NiFe films can be remarkably enhanced via CoFeB layer. In the case of an ultrathin NiFe film having a Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta structure, the CoFeB/MgO layers suppressed the formation of magnetic dead layers and the interdiffusions and interface reactions between the NiFe and Ta layers. The AMR reached a maximum value of 3.56% at 450 °C. More importantly, a single NiFe (1 1 1) peak can be formed resulting in higher AMR values for films having CoFeB layer. This enhanced AMR also originated from the significant specular reflection of electrons owing to the crystalline MgO layer, together with the sharp interfaces with the NiFe layer. These factors together resulted in higher AMR and improved magnetic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fang; Xie, Dong Yue; Majdi, Tahereh
By applying a simple and inexpensive thermal treatment, we synthesized supported gold-oxide nanostructures, which have potential applications to plasmonic devices and biosensors. The regrowth of nominally stable substrates under gold nanoparticles is associated with the appearance of preferential orientations of dewetted nanoparticles and the formation of atomically sharp interfacial monolayers. Steps present at the interfacial monolayer usually occur at defects including the intersection points of twin planes at the interface. They were related to the nucleation and immigration of the interfacial monolayers, prompting the substrate regrowth. Accordingly, we proposed the twin-assisted growth mechanism, which provides insight on the synthesis ofmore » gold-oxide nanostructures. - Highlights: • The twin-assisted growth mechanism is proposed for the abnormal regrowth of substrate underneath Au nanoparticles. • The substrate regrowth is related to the steps and ledges that are present at the Au–MgAl{sub 2}O{sub 4} interfacial monolayers. • Interfacial steps are detected at defects such as the intersecting points of twin planes at the interface.« less
Rutile IrO2/TiO2 superlattices: A hyperconnected analog to the Ruddelsden-Popper structure
NASA Astrophysics Data System (ADS)
Kawasaki, Jason K.; Baek, David; Paik, Hanjong; Nair, Hari P.; Kourkoutis, Lena F.; Schlom, Darrell G.; Shen, Kyle M.
2018-05-01
Dimensionality and connectivity among octahedra play important roles in determining the properties, electronic structure, and phase transitions of transition-metal oxides. Here we demonstrate the epitaxial growth of (110)-oriented alternating layers of IrO2 and TiO2, both of which have the rutile structure. These (IrO2)n/(TiO2)2 superlattices consist of IrO6 and TiO6 octahedra tiled in a hyperconnected, edge- and corner-sharing network. Despite the large lattice mismatch between constituent layers (Δ d∥=-2.1 % and Δ c =+6.6 % ), our reactive molecular-beam epitaxy-grown superlattices show high structural quality as determined by x-ray diffraction and sharp interfaces as observed by transmission electron microscopy. The large strain at the interface is accommodated by an ordered interfacial reconstruction. The superlattices show persistent metallicity down to n =3 atomic layers, and angle-resolved photoemission spectroscopy measurements reveal quantized sub-bands with signatures of IrO2-IrO2 interlayer coupling.
Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching
Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham B.; ...
2015-01-14
The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-lossmore » spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.« less
A Phase Field Study of the Effect of Microstructure Grain Size Heterogeneity on Grain Growth
NASA Astrophysics Data System (ADS)
Crist, David J. D.
Recent studies conducted with sharp-interface models suggest a link between the spatial distribution of grain size variance and average grain growth rate. This relationship and its effect on grain growth rate was examined using the diffuse-interface Phase Field Method on a series of microstructures with different degrees of grain size gradation. Results from this work indicate that the average grain growth rate has a positive correlation with the average grain size dispersion for phase field simulations, confirming previous observations. It is also shown that the grain growth rate in microstructures with skewed grain size distributions is better measured through the change in the volume-weighted average grain size than statistical mean grain size. This material is based upon work supported by the National Science Foundation under Grant No. 1334283. The NSF project title is "DMREF: Real Time Control of Grain Growth in Metals" and was awarded by the Civil, Mechanical and Manufacturing Innovation division under the Designing Materials to Revolutionize and Engineer our Future (DMREF) program.
Electromagnetic and electrostatic emissions at the cusp-magnetosphere interface during substorms
NASA Technical Reports Server (NTRS)
Curtis, S. A.; Fairfield, D. H.; Wu, C. S.
1979-01-01
Strongly peaked electrostatic emissions near 10.0 kHz and electromagnetic emissions near 0.56 kHz have been observed by the VLF wave detector on board Imp 6 on crossings from the earth's magnetosphere into the polar cusp during the occurrence of large magnetospheric substorms. The electrostatic emissions were observed to be closely confined to the cusp-magnetosphere interface. The electromagnetic emissions were of somewhat broader spatial extent and were seen on higher-latitude field lines within the cusp. Using these plasma wave observations and additional information provided by plasma, magnetometer and particle measurements made simultaneously on Imp 6, theories are constructed to explain each of the two classes of emission. The electromagnetic waves are modeled as whistlers, and the electrostatic waves as electron-cyclotron harmonics. The resulting growth rates predict power spectra similar to those observed for both emission classes. The electrostatic waves may play a significant role via enhanced diffusion in the relaxation of the sharp substorm time cusp-magnetosphere boundary to a more diffuse quiet time boundary.
Electrokinetics of diffuse soft interfaces. 1. Limit of low Donnan potentials.
Duval, Jérôme F L; van Leeuwen, Herman P
2004-11-09
The current theoretical approaches to electrokinetics of gels or polyelectrolyte layers are based on the assumption that the position of the very interface between the aqueous medium and the gel phase is well defined. Within this assumption, spatial profiles for the volume fraction of polymer segments (phi), the density of fixed charges in the porous layer (rho fix), and the coefficient modeling the friction to hydrodynamic flow (k) follow a step-function. In reality, the "fuzzy" nature of the charged soft layer is intrinsically incompatible with the concept of a sharp interface and therefore necessarily calls for more detailed spatial representations for phi, rho fix, and k. In this paper, the notion of diffuse interface is introduced. For the sake of illustration, linear spatial distributions for phi and rho fix are considered in the interfacial zone between the bulk of the porous charged layer and the bulk electrolyte solution. The corresponding distribution for k is inferred from the Brinkman equation, which for low phi reduces to Stokes' equation. Linear electrostatics, hydrodynamics, and electroosmosis issues are analytically solved within the context of streaming current and streaming potential of charged surface layers in a thin-layer cell. The hydrodynamic analysis clearly demonstrates the physical incorrectness of the concept of a discrete slip plane for diffuse interfaces. For moderate to low electrolyte concentrations and nanoscale spatial transition of phi from zero (bulk electrolyte) to phi o (bulk gel), the electrokinetic properties of the soft layer as predicted by the theory considerably deviate from those calculated on the basis of the discontinuous approximation by Ohshima.
[Study on shape and structure of calcified cartilage zone in normal human knee joint].
Wang, Fuyou; Yang, Liu; Duan, Xiaojun; Tan, Hongbo; Dai, Gang
2008-05-01
To explore the shape and structure of calcified cartilage zone and its interface between the non-calcified articular cartilage and subchondral bone plate. The normal human condyles of femur (n=20) were obtained from the tissue bank donated by the residents, 10 males and 10 females, aged 17-45 years. The longitudinal and transverse paraffin sections were prepared by the routine method. The shape and structure of calcified cartilage zone were observed with the Safranin O/fast green and von kossa stain method. The interface conjunction among zones of cartilage was researched by SEM and the 3D structural model was established by serial sections and modeling technique. Articular bone-cartilage safranin O/fast green staining showed that cartilage was stained red and subchondral bone was stained blue. The calcified cartilage zone was located between the tidemark and cement line. Von kossa staining showed that calcified cartilage zone was stained black and sharpness of structure border. Upper interface gomphosised tightly with the non-calcified cartilage by the wave shaped tidemark and lower interface anchored tightly with the subchondral bone by the uneven comb shaped cement line. The non-calcified cartilage zone was interlocked tightly in the manner of "ravine-engomphosis" by the calcified cartilage zone as observed under SEM, and the subchondral bone was anchored tightly in the manner of"comb-anchor" by the in the calcified cartilage zone 3D reconstruction model. The calcified cartilage zone is an important structure in the articular cartilage. The articular cartilage is fixed firmly into subchondral bone plate by the distinctive conjunct interfaces of calcified cartilage zone.
Zhang, Jie; Zhang, Lin; Wang, Wei; Han, Lianhuan; Jia, Jing-Chun; Tian, Zhao-Wu; Tian, Zhong-Qun; Zhan, Dongping
2017-03-01
Although metal assisted chemical etching (MacEtch) has emerged as a versatile micro-nanofabrication method for semiconductors, the chemical mechanism remains ambiguous in terms of both thermodynamics and kinetics. Here we demonstrate an innovative phenomenon, i.e. , the contact electrification between platinum (Pt) and an n-type gallium arsenide (100) wafer (n-GaAs) can induce interfacial redox reactions. Because of their different work functions, when the Pt electrode comes into contact with n-GaAs, electrons will move from n-GaAs to Pt and form a contact electric field at the Pt/n-GaAs junction until their electron Fermi levels ( E F ) become equal. In the presence of an electrolyte, the potential of the Pt/electrolyte interface will shift due to the contact electricity and induce the spontaneous reduction of MnO 4 - anions on the Pt surface. Because the equilibrium of contact electrification is disturbed, electrons will transfer from n-GaAs to Pt through the tunneling effect. Thus, the accumulated positive holes at the n-GaAs/electrolyte interface make n-GaAs dissolve anodically along the Pt/n-GaAs/electrolyte 3-phase interface. Based on this principle, we developed a direct electrochemical nanoimprint lithography method applicable to crystalline semiconductors.
Recent Advances in Electrospun Nanofiber Interfaces for Biosensing Devices
Sapountzi, Eleni; Braiek, Mohamed; Chateaux, Jean-François; Lagarde, Florence
2017-01-01
Electrospinning has emerged as a very powerful method combining efficiency, versatility and low cost to elaborate scalable ordered and complex nanofibrous assemblies from a rich variety of polymers. Electrospun nanofibers have demonstrated high potential for a wide spectrum of applications, including drug delivery, tissue engineering, energy conversion and storage, or physical and chemical sensors. The number of works related to biosensing devices integrating electrospun nanofibers has also increased substantially over the last decade. This review provides an overview of the current research activities and new trends in the field. Retaining the bioreceptor functionality is one of the main challenges associated with the production of nanofiber-based biosensing interfaces. The bioreceptors can be immobilized using various strategies, depending on the physical and chemical characteristics of both bioreceptors and nanofiber scaffolds, and on their interfacial interactions. The production of nanobiocomposites constituted by carbon, metal oxide or polymer electrospun nanofibers integrating bioreceptors and conductive nanomaterials (e.g., carbon nanotubes, metal nanoparticles) has been one of the major trends in the last few years. The use of electrospun nanofibers in ELISA-type bioassays, lab-on-a-chip and paper-based point-of-care devices is also highly promising. After a short and general description of electrospinning process, the different strategies to produce electrospun nanofiber biosensing interfaces are discussed. PMID:28813013
GneimoSim: A Modular Internal Coordinates Molecular Dynamics Simulation Package
Larsen, Adrien B.; Wagner, Jeffrey R.; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan
2014-01-01
The Generalized Newton Euler Inverse Mass Operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this paper we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. PMID:25263538
Opportunities of hydrostatically coupled dielectric elastomer actuators for haptic interfaces
NASA Astrophysics Data System (ADS)
Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo
2011-04-01
As a means to improve versatility and safety of dielectric elastomer actuators (DEAs) for several fields of application, so-called 'hydrostatically coupled' DEAs (HC-DEAs) have recently been described. HC-DEAs are based on an incompressible fluid that mechanically couples a DE-based active part to a passive part interfaced to the load, so as to enable hydrostatic transmission. This paper presents ongoing developments of HC-DEAs and potential applications in the field of haptics. Three specific examples are considered. The first deals with a wearable tactile display used to provide users with tactile feedback during electronic navigation in virtual environments. The display consists of HCDEAs arranged in contact with finger tips. As a second example, an up-scaled prototype version of an 8-dots refreshable cell for dynamic Braille displays is shown. Each Braille dot consists of a miniature HC-DEA, with a diameter lower than 2 mm. The third example refers to a device for finger rehabilitation, conceived to work as a sort of active version of a rehabilitation squeezing ball. The device is designed to dynamically change its compliance according to an electric control. The three examples of applications intend to show the potential of the new technology and the prospective opportunities for haptic interfaces.
Medlay: A Reconfigurable Micro-Power Management to Investigate Self-Powered Systems.
Kokert, Jan; Beckedahl, Tobias; Reindl, Leonhard M
2018-01-17
In self-powered microsystems, a power management is essential to extract, transfer and regulate power from energy harvesting sources to loads such as sensors. The challenge is to consider all of the different structures and components available and build the optimal power management on a microscale. The purpose of this paper is to streamline the design process by creating a novel reconfigurable testbed called Medlay. First, we propose a uniform interface for management functions e.g., power conversion, energy storing and power routing. This interface results in a clear layout because power and status pins are strictly separated, and inputs and outputs have fixed positions. Medlay is the ready-to-use and open-hardware platform based on the interface. It consists of a base board and small modules incorporating e.g., dc-dc converters, power switches and supercapacitors. Measurements confirm that Medlay represents a system on one circuit board, as parasitic effects of the interconnections are negligible. The versatility regarding different setups on the testbed is determined to over 250,000 combinations by layout graph grammar. Lastly, we underline the applicability by recreating three state-of-the-art systems with the testbed. In conclusion, Medlay facilitates building and testing power management in a very compact, clear and extensible fashion.
TELICS—A Telescope Instrument Control System for Small/Medium Sized Astronomical Observatories
NASA Astrophysics Data System (ADS)
Srivastava, Mudit K.; Ramaprakash, A. N.; Burse, Mahesh P.; Chordia, Pravin A.; Chillal, Kalpesh S.; Mestry, Vilas B.; Das, Hillol K.; Kohok, Abhay A.
2009-10-01
For any modern astronomical observatory, it is essential to have an efficient interface between the telescope and its back-end instruments. However, for small and medium-sized observatories, this requirement is often limited by tight financial constraints. Therefore a simple yet versatile and low-cost control system is required for such observatories to minimize cost and effort. Here we report the development of a modern, multipurpose instrument control system TELICS (Telescope Instrument Control System) to integrate the controls of various instruments and devices mounted on the telescope. TELICS consists of an embedded hardware unit known as a common control unit (CCU) in combination with Linux-based data acquisition and user interface. The hardware of the CCU is built around the ATmega 128 microcontroller (Atmel Corp.) and is designed with a backplane, master-slave architecture. A Qt-based graphical user interface (GUI) has been developed and the back-end application software is based on C/C++. TELICS provides feedback mechanisms that give the operator good visibility and a quick-look display of the status and modes of instruments as well as data. TELICS has been used for regular science observations since 2008 March on the 2 m, f/10 IUCAA Telescope located at Girawali in Pune, India.
GneimoSim: a modular internal coordinates molecular dynamics simulation package.
Larsen, Adrien B; Wagner, Jeffrey R; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan
2014-12-05
The generalized Newton-Euler inverse mass operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this article, we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, and Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. © 2014 Wiley Periodicals, Inc.
Schütze, Tonio; Ulrich, Alexander K.C.; Apelt, Luise; Will, Cindy L.; Bartlick, Natascha; Seeger, Martin; Weber, Gert; Lührmann, Reinhard; Stelzl, Ulrich; Wahl, Markus C.
2016-01-01
Spliceosomal Prp38 proteins contain a conserved amino-terminal domain, but only higher eukaryotic orthologs also harbor a carboxy-terminal RS domain, a hallmark of splicing regulatory SR proteins. We show by crystal structure analysis that the amino-terminal domain of human Prp38 is organized around three pairs of antiparallel α-helices and lacks similarities to RNA-binding domains found in canonical SR proteins. Instead, yeast two-hybrid analyses suggest that the amino-terminal domain is a versatile protein–protein interaction hub that possibly binds 12 other spliceosomal proteins, most of which are recruited at the same stage as Prp38. By quantitative, alanine surface-scanning two-hybrid screens and biochemical analyses we delineated four distinct interfaces on the Prp38 amino-terminal domain. In vitro interaction assays using recombinant proteins showed that Prp38 can bind at least two proteins simultaneously via two different interfaces. Addition of excess Prp38 amino-terminal domain to in vitro splicing assays, but not of an interaction-deficient mutant, stalled splicing at a precatalytic stage. Our results show that human Prp38 is an unusual SR protein, whose amino-terminal domain is a multi-interface protein–protein interaction platform that might organize the relative positioning of other proteins during splicing. PMID:26673105
Medlay: A Reconfigurable Micro-Power Management to Investigate Self-Powered Systems
Beckedahl, Tobias
2018-01-01
In self-powered microsystems, a power management is essential to extract, transfer and regulate power from energy harvesting sources to loads such as sensors. The challenge is to consider all of the different structures and components available and build the optimal power management on a microscale. The purpose of this paper is to streamline the design process by creating a novel reconfigurable testbed called Medlay. First, we propose a uniform interface for management functions e.g., power conversion, energy storing and power routing. This interface results in a clear layout because power and status pins are strictly separated, and inputs and outputs have fixed positions. Medlay is the ready-to-use and open-hardware platform based on the interface. It consists of a base board and small modules incorporating e.g., dc-dc converters, power switches and supercapacitors. Measurements confirm that Medlay represents a system on one circuit board, as parasitic effects of the interconnections are negligible. The versatility regarding different setups on the testbed is determined to over 250,000 combinations by layout graph grammar. Lastly, we underline the applicability by recreating three state-of-the-art systems with the testbed. In conclusion, Medlay facilitates building and testing power management in a very compact, clear and extensible fashion. PMID:29342110
NASA Astrophysics Data System (ADS)
Spandan, Vamsi; Meschini, Valentina; Ostilla-Mónico, Rodolfo; Lohse, Detlef; Querzoli, Giorgio; de Tullio, Marco D.; Verzicco, Roberto
2017-11-01
In this paper we show and discuss how the deformation dynamics of closed liquid-liquid interfaces (for example drops and bubbles) can be replicated with use of a phenomenological interaction potential model. This new approach to simulate liquid-liquid interfaces is based on the fundamental principle of minimum potential energy where the total potential energy depends on the extent of deformation of a spring network distributed on the surface of the immersed drop or bubble. Simulating liquid-liquid interfaces using this model require computing ad-hoc elastic constants which is done through a reverse-engineered approach. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as a deforming drop in a shear flow or cross flow. The interaction potential model is highly versatile, computationally efficient and can be easily incorporated into generic single phase fluid solvers to also simulate complex fluid-structure interaction problems. This is shown by simulating flow in the left ventricle of the heart with mechanical and natural mitral valves where the imposed flow, motion of ventricle and valves dynamically govern the behaviour of each other. Results from these simulations are compared with ad-hoc in-house experimental measurements. Finally, we present a simple and easy to implement parallelisation scheme, as high performance computing is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies in highly turbulent flows.
Dai, Yilin; Guo, Ling; Li, Meng; Chen, Yi-Bu
2012-06-08
Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.
Anticorrelated Emission of High Harmonics and Fast Electron Beams From Plasma Mirrors.
Bocoum, Maïmouna; Thévenet, Maxence; Böhle, Frederik; Beaurepaire, Benoît; Vernier, Aline; Jullien, Aurélie; Faure, Jérôme; Lopez-Martens, Rodrigo
2016-05-06
We report for the first time on the anticorrelated emission of high-order harmonics and energetic electron beams from a solid-density plasma with a sharp vacuum interface-plasma mirror-driven by an intense ultrashort laser pulse. We highlight the key role played by the nanoscale structure of the plasma surface during the interaction by measuring the spatial and spectral properties of harmonics and electron beams emitted by a plasma mirror. We show that the nanoscale behavior of the plasma mirror can be controlled by tuning the scale length of the electron density gradient, which is measured in situ using spatial-domain interferometry.
Prasad, Tushar; Colvin, Vicki L; Mittleman, Daniel M
2007-12-10
We measure the normal-incidence transmission coefficient of photonic crystal slabs with hexagonal arrays of air holes in silicon. The transmission spectra exhibit sharp resonant features with Fano line shapes. They are produced due to the coupling of the leaky photonic crystal modes, called guided resonances, to the continuum of free-space modes. We investigate the effects of several types of structural disorder on the spectra of these resonances. Our results indicate that guided resonances are very tolerant to disorder in the hole diameter and to interface roughness, but very sensitive to disorder in the lattice periodicity.
High strength W/TiNi micro-laminated composite with transformation-mediated ductility
Shao, Yang; Yu, Kaiyuan; Jiang, Daqiang; ...
2016-06-06
A laminated W/TiNi composite is fabricated by hot pressing under vacuum and subsequent forging. The W and TiNi constituents are about 250 μm and 80 μm respectively in thicknesses and their interfaces are chemically sharp with negligible intermixing. The material exhibits two yielding plateaus and excellent strength-ductility combination during compression tests. In situ X-ray technique is employed to demonstrate that the unusual yielding phenomenon is related to the reversible thermoelastic phase transformation of TiNi layers. Furthermore, such mechanisms also contribute to the damage tolerance of the materials by inhibiting crack propagation in W.
Lushnikov, Pavel M; Zubarev, Nikolay M
2018-05-18
Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.
NASA Astrophysics Data System (ADS)
Lushnikov, Pavel M.; Zubarev, Nikolay M.
2018-05-01
Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.
2008-07-11
CAPE CANAVERAL, Fla. – In the Orbiter Processing Facility at NASA's Kennedy Space Center, STS-125 Pilot Gregory C. Johnson examines the cockpit window on space shuttle Atlantis, checking for sharp edges. The inspection is part of the crew equipment interface test, which provides hands-on experience with hardware and equipment for the mission. Atlantis is targeted to launch Oct. 8 on the STS-125 mission to service the Hubble Space Telescope. The mission crew will perform history-making, on-orbit “surgery” on two important science instruments aboard the telescope. After capturing the telescope, two teams of spacewalking astronauts will perform the repairs during five planned spacewalks. Photo credit: NASA/Kim Shiflett
Modeling multiphase migration of organic chemicals in groundwater systems--a review and assessment.
Abriola, L M
1989-01-01
Over the past two decades, a number of models have been developed to describe the multiphase migration of organic chemicals in the subsurface. This paper presents the state-of-the-art with regard to such modeling efforts. The mathematical foundations of these models are explored and individual models are presented and discussed. Models are divided into three groups: a) those that assume a sharp interface between the migrating fluids; b) those that incorporate capillarity; and c) those that consider interphase transport of mass. Strengths and weaknesses of each approach are considered along with supporting data for model validation. Future research directions are also highlighted. PMID:2695322
A free boundary problem for steady small plaques in the artery and their stability
NASA Astrophysics Data System (ADS)
Friedman, Avner; Hao, Wenrui; Hu, Bei
2015-08-01
Atherosclerosis is a leading cause of death in the United States and worldwide; it originates from a plaque which builds up in the artery. In this paper, we consider a simplified model of plaque growth involving LDL and HDL cholesterols, macrophages and foam cells, which satisfy a coupled system of PDEs with a free boundary, the interface between the plaque and the blood flow. We prove that there exist small radially symmetric stationary plaques and establish a sharp condition that ensures their stability. We also determine necessary and sufficient conditions under which a small initial plaque will shrink and disappear, or persist for all times.
2008-07-11
CAPE CANAVERAL, Fla. – In the Orbiter Processing Facility at NASA's Kennedy Space Center, STS-125 Commander Scott Altman examines the cockpit window on space shuttle Atlantis, checking for sharp edges. The inspection is part of the crew equipment interface test, which provides hands-on experience with hardware and equipment for the mission. Atlantis is targeted to launch Oct. 8 on the STS-125 mission to service the Hubble Space Telescope. The mission crew will perform history-making, on-orbit “surgery” on two important science instruments aboard the telescope. After capturing the telescope, two teams of spacewalking astronauts will perform the repairs during five planned spacewalks. Photo credit: NASA/Kim Shiflett
2008-07-11
CAPE CANAVERAL, Fla. – In the Orbiter Processing Facility at NASA's Kennedy Space Center, STS-125 Pilot Gregory C. Johnson examines the cockpit window on space shuttle Atlantis, checking for sharp edges. The inspection is part of the crew equipment interface test, which provides hands-on experience with hardware and equipment for the mission. Atlantis is targeted to launch Oct. 8 on the STS-125 mission to service the Hubble Space Telescope. The mission crew will perform history-making, on-orbit “surgery” on two important science instruments aboard the telescope. After capturing the telescope, two teams of spacewalking astronauts will perform the repairs during five planned spacewalks. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Vasco, D. W.
2018-04-01
Following an approach used in quantum dynamics, an exponential representation of the hydraulic head transforms the diffusion equation governing pressure propagation into an equivalent set of ordinary differential equations. Using a reservoir simulator to determine one set of dependent variables leaves a reduced set of equations for the path of a pressure transient. Unlike the current approach for computing the path of a transient, based on a high-frequency asymptotic solution, the trajectories resulting from this new formulation are valid for arbitrary spatial variations in aquifer properties. For a medium containing interfaces and layers with sharp boundaries, the trajectory mechanics approach produces paths that are compatible with travel time fields produced by a numerical simulator, while the asymptotic solution produces paths that bend too strongly into high permeability regions. The breakdown of the conventional asymptotic solution, due to the presence of sharp boundaries, has implications for model parameter sensitivity calculations and the solution of the inverse problem. For example, near an abrupt boundary, trajectories based on the asymptotic approach deviate significantly from regions of high sensitivity observed in numerical computations. In contrast, paths based on the new trajectory mechanics approach coincide with regions of maximum sensitivity to permeability changes.
Kinetics of (2 × 4) → (3 × 1(6)) structural changes on GaAs(001) surfaces during the UHV annealing
NASA Astrophysics Data System (ADS)
Vasev, A. V.; Putyato, M. A.; Preobrazhenskii, V. V.
2018-06-01
The peculiarities of superstructural transition (2 × 4) → (3 × 1(6)) on the GaAs(001) surface were studied by the RHEED method in the conditions initiated by a sharp change of the arsenic flux. The specular beam intensities RHEED picture dependences on time were obtained during the transition. The measurement results were analyzed within the JMAK (Johnson - Melh - Avrami - Kolmogorov) kinetic model. It was established that the process of structural rearrangement proceeds in two stages and it is realized through the state of intermediate disordering, domains with different reconstructions being coexistent on the surface. The activation energies and phase transition velocities were determined for each of the stages. The procedure for precise determination of GaAs(001) surface temperature using the features of the α(2 × 4) → DO transition process kinetic was proposed. The results of this work allow us to broaden our understanding of the reconstruction transitions mechanisms. This information has a key (fundamental and applied) nature for the technologies of epitaxial growth of multilayer heterostructures, where the interface planarity and the sharpness of composition profile are of particular importance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudel, N; University of Toledo Medical Center, Toledo, OH; Shvydka, D
Purpose: Presence of interfaces between high and low atomic number materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. This phenomenon is characterized by a very narrow region of sharp dose enhancement at the interface. The rapid fall-off of the dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in-house-built inexpensive thin-film Cadmium Telluride (CdTe) photodetector to study this effect at the gold-tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Methods: Three micron thick CdTe photodetectors were fabricated in our lab. One,more » ten or one hundred micron thick gold foils placed in a tissue-equivalent-phantom were irradiated with a clinical Ir-192 high dose rate source and current measured with a CdTe detector in each case was compared against the current measured for all uniform tissue-equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. Results: The experiment based PSEs due to 1, 10, and 100 micron thick gold foils at the closest measured distance of measurement (12.5 micron) from the interface were 42.6 ± 10.8, 137.0 ± 11.9 and 203.0 ± 15.4 respectively. The corresponding MC modeled PDEs were 38.1 ± 1, 164 ± 1 and 249 ± 1 respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. Conclusion: The dose enhancement near the gold-tissue interface was measured using an in-house-built high-resolution CdTe-based photodetector and validated with MC simulations. A close agreement of the experimental results with the corresponding MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation.« less
Paudel, Nava Raj; Shvydka, Diana
2016-01-01
Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in‐house‐built inexpensive thin‐film Cadmium Telluride (CdTe) photodetector to study this effect at the gold‐tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three‐micron thick thin‐film CdTe photodetectors were fabricated in our lab. One‐, ten‐ or one hundred‐micron thick gold foils placed in a tissue‐equivalent‐phantom were irradiated with a clinical Ir‐192 high‐dose‐rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue‐equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5 μm from the interface were 42.6±10.8, 137.0±11.9, and 203.0±15.4, respectively. The corresponding MC modeled PDEs were 38.1±1., 164±1, and 249±1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold‐tissue interface was successfully measured using an in‐house‐built, high‐resolution CdTe‐based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation. PACS number(s): 29.40.Wk, 73.50.Pz, 87.53.Jw, 87.55.K‐ PMID:27685139
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
NASA Astrophysics Data System (ADS)
Kou, Jisheng; Sun, Shuyu
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Jisheng; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from themore » microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.« less
MOSAIC: Software for creating mosaics from collections of images
NASA Technical Reports Server (NTRS)
Varosi, F.; Gezari, D. Y.
1992-01-01
We have developed a powerful, versatile image processing and analysis software package called MOSAIC, designed specifically for the manipulation of digital astronomical image data obtained with (but not limited to) two-dimensional array detectors. The software package is implemented using the Interactive Data Language (IDL), and incorporates new methods for processing, calibration, analysis, and visualization of astronomical image data, stressing effective methods for the creation of mosaic images from collections of individual exposures, while at the same time preserving the photometric integrity of the original data. Since IDL is available on many computers, the MOSAIC software runs on most UNIX and VAX workstations with the X-Windows or Sun View graphics interface.
BioLayout(Java): versatile network visualisation of structural and functional relationships.
Goldovsky, Leon; Cases, Ildefonso; Enright, Anton J; Ouzounis, Christos A
2005-01-01
Visualisation of biological networks is becoming a common task for the analysis of high-throughput data. These networks correspond to a wide variety of biological relationships, such as sequence similarity, metabolic pathways, gene regulatory cascades and protein interactions. We present a general approach for the representation and analysis of networks of variable type, size and complexity. The application is based on the original BioLayout program (C-language implementation of the Fruchterman-Rheingold layout algorithm), entirely re-written in Java to guarantee portability across platforms. BioLayout(Java) provides broader functionality, various analysis techniques, extensions for better visualisation and a new user interface. Examples of analysis of biological networks using BioLayout(Java) are presented.
Terrain following of arbitrary surfaces using a high intensity LED proximity sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, J.E.
1992-01-01
Many robotic operations, e.g., mapping, scanning, feature following, etc., require accurate surface following of arbitrary targets. This paper presents a versatile surface following and mapping system designed to promote hardware, software and application independence, modular development, and upward expandability. These goals are met by: a full, a priori specification of the hardware and software interfaces; a modular system architecture; and a hierarchical surface-data analysis method, permitting application specific tuning at each conceptual level of topological abstraction. This surface following system was fully designed and independently of any specific robotic host, then successfully integrated with and demonstrated on a completely amore » priori unknown, real-time robotic system. 7 refs.« less
Sahu, Atanu; Bhattacharya, Partha; Niyogi, Arup Guha; Rose, Michael
2017-06-01
Double-wall panels are known for their superior sound insulation properties over single wall panels as a sound barrier. The sound transmission phenomenon through a double-wall structure is a complex process involving vibroacoustic interaction between structural panels, the air-cushion in between, and the secondary acoustic domain. It is in this context a versatile and a fully coupled technique based on the finite-element-boundary element model is developed that enables estimation of sound transfer through a double-wall panel into an adjacent enclosure while satisfying the displacement compatibility across the interface. The contribution of individual components in the transmitted energy is identified through numerical simulations.
A Guide to the PLAZA 3.0 Plant Comparative Genomic Database.
Vandepoele, Klaas
2017-01-01
PLAZA 3.0 is an online resource for comparative genomics and offers a versatile platform to study gene functions and gene families or to analyze genome organization and evolution in the green plant lineage. Starting from genome sequence information for over 35 plant species, precomputed comparative genomic data sets cover homologous gene families, multiple sequence alignments, phylogenetic trees, and genomic colinearity information within and between species. Complementary functional data sets, a Workbench, and interactive visualization tools are available through a user-friendly web interface, making PLAZA an excellent starting point to translate sequence or omics data sets into biological knowledge. PLAZA is available at http://bioinformatics.psb.ugent.be/plaza/ .
England, Duncan G; Fisher, Kent A G; MacLean, Jean-Philippe W; Bustard, Philip J; Lausten, Rune; Resch, Kevin J; Sussman, Benjamin J
2015-02-06
We report the storage and retrieval of single photons, via a quantum memory, in the optical phonons of a room-temperature bulk diamond. The THz-bandwidth heralded photons are generated by spontaneous parametric down-conversion and mapped to phonons via a Raman transition, stored for a variable delay, and released on demand. The second-order correlation of the memory output is g((2))(0)=0.65±0.07, demonstrating a preservation of nonclassical photon statistics throughout storage and retrieval. The memory is low noise, high speed and broadly tunable; it therefore promises to be a versatile light-matter interface for local quantum processing applications.
Uranyl extraction by N,N-dialkylamide ligands studied using static and dynamic DFT simulations.
Sieffert, Nicolas; Wipff, Georges
2015-02-14
We report DFT static and dynamic studies on uranyl complexes [UO(2)(NO(3))x(H(2)O)(y)L(z)](2-x) involved in the uranyl extraction from water to an "oil" phase (hexane) by an amide ligand L (N,N-dimethylacetamide). Static DFT results "in solution" (continuum SMD models for water and hexane) predict that the stepwise formation of [UO(2)(NO(3))(2)L(2)] from the UO(2)(H(2)O)(5)(2+) species is energetically favourable, and allow us to compare cis/trans isomers of penta- and hexa-coordinated complexes and key intermediates in the two solvents. DFT-MD simulations of [UO(2)(NO(3))(2)L(2)], [UO(2)(NO(3))(2)(H(2)O)L(2)], and [UO(2)(NO(3))(H(2)O)L(2)](+) species in explicit solvent environments (water, hexane, or the water/hexane interface) represented at the MM or full-DFT level reveal a versatile solvent dependent binding mode of nitrates, also evidenced by metadynamics simulations. In water and at the interface, the latter exchange from bi- to monodentate, via in plane rotational motions in some cases. Remarkably, structures of complexes at the interface are more "water-like" than gas phase- or hexane-like. Thus, the order of U-O(NO(3))/U-O(L) bond distances observed in the gas phase (U-O(nit) < U-OL) is inverted at the interface and in water. Overall, the results are consistent with the experimental observation of uranyl extraction from nitric acid solutions by amide analogues (bearing "fatty" substituents), and allow us to propose possible extraction mechanisms, involving complexation of L "right at the interface". They also point to the importance of the solvent environment and the dynamics on the structure and stability of the complexes.
Nanostructural Characteristics and Interfacial Properties of Polymer Fibers in Cement Matrix.
Shalchy, Faezeh; Rahbar, Nima
2015-08-12
Concrete is the most used material in the world. It is also one of the most versatile yet complex materials that humans have used for construction. However, an important weakness of concrete (cement-based composites) is its low tensile properties. Therefore, over the past 30 years many studies were focused on improving its tensile properties using a variety of physical and chemical methods. One of the most successful attempts is to use polymer fibers in the structure of concrete to obtain a composite with high tensile strength and ductility. The advantages of polymer fiber as reinforcing material in concrete, both with regard to reducing environmental pollution and the positive effects on a country's economy, are beyond dispute. However, a thorough understanding of the mechanical behavior of fiber-reinforced concrete requires a knowledge of fiber/matrix interfaces at the nanoscale. In this study, a combination of atomistic simulations and experimental techniques has been used to study the nanostructure of fiber/matrix interfaces. A new model for calcium-silicate-hydrate (C-S-H)/fiber interfaces is also proposed on the basis of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. Finally, the adhesion energy between the C-S-H gel and three different polymeric fibers (poly(vinyl alcohol), nylon-6, and polypropylene) were numerically studied at the atomistic level because adhesion plays a key role in the design of ductile fiber-reinforced composites. The mechanisms of adhesion as a function of the nanostructure of fiber/matrix interfaces are further studied and discussed. It is observed that the functional group in the structure of polymer macromolecule affects the adhesion energy primarily by changing the C/S ratio of the C-S-H at the interface and by absorbing additional positive ions in the C-S-H structure.
A versatile program for the calculation of linear accelerator room shielding.
Hassan, Zeinab El-Taher; Farag, Nehad M; Elshemey, Wael M
2018-03-22
This work aims at designing a computer program to calculate the necessary amount of shielding for a given or proposed linear accelerator room design in radiotherapy. The program (Shield Calculation in Radiotherapy, SCR) has been developed using Microsoft Visual Basic. It applies the treatment room shielding calculations of NCRP report no. 151 to calculate proper shielding thicknesses for a given linear accelerator treatment room design. The program is composed of six main user-friendly interfaces. The first enables the user to upload their choice of treatment room design and to measure the distances required for shielding calculations. The second interface enables the user to calculate the primary barrier thickness in case of three-dimensional conventional radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT) and total body irradiation (TBI). The third interface calculates the required secondary barrier thickness due to both scattered and leakage radiation. The fourth and fifth interfaces provide a means to calculate the photon dose equivalent for low and high energy radiation, respectively, in door and maze areas. The sixth interface enables the user to calculate the skyshine radiation for photons and neutrons. The SCR program has been successfully validated, precisely reproducing all of the calculated examples presented in NCRP report no. 151 in a simple and fast manner. Moreover, it easily performed the same calculations for a test design that was also calculated manually, and produced the same results. The program includes a new and important feature that is the ability to calculate required treatment room thickness in case of IMRT and TBI. It is characterised by simplicity, precision, data saving, printing and retrieval, in addition to providing a means for uploading and testing any proposed treatment room shielding design. The SCR program provides comprehensive, simple, fast and accurate room shielding calculations in radiotherapy.
Complex apodized Bragg grating filters without circulators in silicon-on-insulator.
Simard, Alexandre D; LaRochelle, Sophie
2015-06-29
Bragg gratings operating in reflection are versatile filters that are an important building block of photonic circuits but, so far, their use has been limited due to the absence of CMOS compatible integrated circulators. In this paper, we propose to introduce two identical Bragg gratings in the arms of a Mach-Zehnder interferometer built with multimode interference 2 x 2 couplers to provide a reflective filter without circulator. We show that this structure has unique properties that significantly reduce phase noise distortions, avoid the need for thermal phase tuning, and make it compatible with complex apodization functions implemented through superposition apodization. We experimentally demonstrate several Bragg grating filters with high quality reflection spectra. For example, we successfully fabricated a 4 nm dispersion-less square-shaped filter having a sidelobe suppression ratio better than 15 dB and an in-band phase response with a group delay standard deviation of 2.0 ps. This result will enable the fabrication of grating based narrowband reflective filters having sharp spectral responses, which represents a major improvement in the filtering capability of the silicon platform.
Bioorthogonal Diversification of Peptides through Selective Ruthenium(II)-Catalyzed C-H Activation.
Schischko, Alexandra; Ren, Hongjun; Kaplaneris, Nikolaos; Ackermann, Lutz
2017-02-01
Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium-catalyzed cross-coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step-economical late-stage diversification of α- and β-amino acids, as well as peptides, through chemo-selective C-H arylation under racemization-free reaction conditions. The ligand-accelerated C-H activation strategy proved water-tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C-H arylations for the complexity-increasing assembly of artificial peptides within a multicatalytic C-H activation manifold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.