Sample records for vertical axis wind

  1. The development and testing of a novel cross axis wind turbine

    NASA Astrophysics Data System (ADS)

    Chong, W. T.; Muzammil, W. K.; Gwani, M.; Wong, K. H.; Fazlizan, A.; Wang, C. T.; Poh, S. C.

    2016-06-01

    A novel cross axis wind turbine (CAWT) which comprises of a cross axis blades arrangement was presented and investigated experimentally. The CAWT is a new type of wind turbine that extracts wind energy from airflow coming from the horizontal and vertical directions. The wind turbine consists of three vertical blades and six horizontal blades arranged in a cross axis orientation. Hubs in the middle of the CAWT link the horizontal and vertical blades through connectors to form the CAWT. The study used a 45° deflector to guide the oncoming airflow upward (vertical wind direction). The results from the study showed that the CAWT produced significant improvements in power output and rotational speed performance compared to a conventional straight-bladed vertical axis wind turbine (VAWT).

  2. Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum

    NASA Astrophysics Data System (ADS)

    Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman

    2017-10-01

    Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.

  3. A local-circulation model for Darrieus vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Masse, B.

    1986-04-01

    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  4. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  5. Aerodynamic potpourri

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1981-01-01

    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  6. Analysis of conditions favourable for small vertical axis wind turbines between building passages in urban areas of Sweden

    NASA Astrophysics Data System (ADS)

    Awan, Muhammad Rizwan; Riaz, Fahid; Nabi, Zahid

    2017-05-01

    This paper presents the analysis of installing the vertical axis wind turbines between the building passages on an island in Stockholm, Sweden. Based on the idea of wind speed amplification due to the venture effect in passages, practical measurements were carried out to study the wind profile for a range of passage widths in parallel building passages. Highest increment in wind speed was observed in building passages located on the periphery of sland as wind enters from free field. Wind mapping was performed in the island to choose the most favourable location to install the vertical axis wind turbines (VAWT). Using the annual wind speed data for location and measured amplification factor, energy potential of the street was calculated. This analysis verified that small vertical axis wind turbines can be installed in the passage centre line provided that enough space is provided for traffic and passengers.

  7. The system design and performance test of hybrid vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Dwiyantoro, Bambang Arip; Suphandani, Vivien

    2017-04-01

    Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.

  8. Vertical axis wind turbines

    DOEpatents

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  9. The Potential of Indigenous Energy Resources for Remote Military Bases

    DTIC Science & Technology

    1976-03-01

    temperature collector schematic for steam production, ~ 350oF 3. Vertical-axis wind turbine 4. Proposed onshore siting for wind generator 5...inflmii ’amwiiMii "iHiHiiiiiiiiiir Üftiiiin- _ _ _. _ ;v’,. ^ L -^l . ’._...;’ :..; -23- turbine concept first designed by G.J.M. Darrieus of...adjusting fo’- the overall efficiency Airfoil section Vertical-axis windmil Fig. 3—Vertical-axis wind turbine L tiJBltlWittMMWiliMi^^ 1 0

  10. Aeroelastically coupled blades for vertical axis wind turbines

    DOEpatents

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  11. A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Griffith, D. Todd; Paquette, Joshua; Barone, Matthew; Goupee, Andrew J.; Fowler, Matthew J.; Bull, Diana; Owens, Brian

    2016-09-01

    Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.

  12. A Free Wake Numerical Simulation for Darrieus Vertical Axis Wind Turbine Performance Prediction

    NASA Astrophysics Data System (ADS)

    Belu, Radian

    2010-11-01

    In the last four decades, several aerodynamic prediction models have been formulated for the Darrieus wind turbine performances and characteristics. We can identified two families: stream-tube and vortex. The paper presents a simplified numerical techniques for simulating vertical axis wind turbine flow, based on the lifting line theory and a free vortex wake model, including dynamic stall effects for predicting the performances of a 3-D vertical axis wind turbine. A vortex model is used in which the wake is composed of trailing stream-wise and shedding span-wise vortices, whose strengths are equal to the change in the bound vortex strength as required by the Helmholz and Kelvin theorems. Performance parameters are computed by application of the Biot-Savart law along with the Kutta-Jukowski theorem and a semi-empirical stall model. We tested the developed model with an adaptation of the earlier multiple stream-tube performance prediction model for the Darrieus turbines. Predictions by using our method are shown to compare favorably with existing experimental data and the outputs of other numerical models. The method can predict accurately the local and global performances of a vertical axis wind turbine, and can be used in the design and optimization of wind turbines for built environment applications.

  13. Electric power from vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Touryan, K. J.; Strickland, J. H.; Berg, D. E.

    1987-12-01

    Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.

  14. A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2016-04-01

    Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.

  15. Design analysis of vertical wind turbine with airfoil variation

    NASA Astrophysics Data System (ADS)

    Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad

    2016-03-01

    With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.

  16. Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zheng, Y. F.; Feng, F.; He, Q. B.; Wang, N. X.

    2016-08-01

    To improve the starting performance of the straight-bladed vertical axis wind turbine (SB-VAWT) at low wind speed, and the output characteristics at high wind speed, a flexible, scalable auxiliary vane mechanism was designed and installed into the rotor of SB-VAWT in this study. This new vertical axis wind turbine is a kind of lift-to-drag combination wind turbine. The flexible blade expanded, and the driving force of the wind turbines comes mainly from drag at low rotational speed. On the other hand, the flexible blade is retracted at higher speed, and the driving force is primarily from a lift. To research the effects of the flexible, scalable auxiliary module on the performance of SB-VAWT and to find its best parameters, the computational fluid dynamics (CFD) numerical calculation was carried out. The calculation result shows that the flexible, scalable blades can automatic expand and retract with the rotational speed. The moment coefficient at low tip speed ratio increased substantially. Meanwhile, the moment coefficient has also been improved at high tip speed ratios in certain ranges.

  17. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity

    NASA Astrophysics Data System (ADS)

    Nitzsche, Fred

    1994-05-01

    The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

  18. Experimental characterization of vertical-axis wind turbine noise.

    PubMed

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization.

  19. Numerical modeling and preliminary validation of drag-based vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Krysiński, Tomasz; Buliński, Zbigniew; Nowak, Andrzej J.

    2015-03-01

    The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.

  20. Efficiency of the DOMUS 750 vertical-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Hallock, Kyle; Rasch, Tyler; Ju, Guoqiang; Alonso-Marroquin, Fernando

    2017-06-01

    The aim of this paper is to present some preliminary results on the efficiency of a wind turbine for an off-grid housing unit. To generate power, the unit uses a photovoltaic solar array and a vertical-axis wind turbine (VAWT). The existing VAWT was analysed to improve efficiency and increase power generation. There were found to be two main sources of inefficiency: 1. the 750W DC epicyclic generator performed poorly in low winds, and 2. the turbine blades wobbled, allowing for energy loss due to off-axis rotation. A 12V DC permanent magnet alternator was chosen that met the power requirements of the housing unit and would generate power at lower wind speeds. A support bracket was designed to prevent the turbine blades from wobbling.

  1. M-X Environmental Technical Report. Environmental Characteristics of Alternative Designated Deployment Areas, Power and Energy.

    DTIC Science & Technology

    1980-12-22

    Vertical Axis Turbine (3.4.2) A vertical axis ( Darrieus ) turbine has the following advantages over a horizontal turbine : I. Accepts wind from all...would be too large, while wind and solar could only achieve capacity factors of 40 to 50 percent. Alcohol fue’s in gas turbines would be too expensive...or biomass base load system. Wind would not be a good choice to supply such a small toad cencer, especially in Nevada/Utah, since the turbine would

  2. Wind tunnel investigation of a 14 foot vertical axis windmill

    NASA Technical Reports Server (NTRS)

    Muraca, R. J.; Guillotte, R. J.

    1976-01-01

    A full scale wind tunnel investigation was made to determine the performance characteristics of a 14 ft diameter vertical axis windmill. The parameters measured were wind velocity, shaft torque, shaft rotation rate, along with the drag and yawing moment. A velocity survey of the flow field downstream of the windmill was also made. The results of these tests along with some analytically predicted data are presented in the form of generalized data as a function of tip speed ratio.

  3. Unsteady Gas Dynamics Problems Related to Flight Vehicles

    DTIC Science & Technology

    1979-05-01

    vertical-axis wind turbines typified by the Darrieus machine (see Cha’. !. Ref. R9 and R10). When cUL.figured in the zero-bending- moment Tropeq.-!n...Performance Data for the Darrieus Wind Turbine with NASA 0012 Blades," Sandia Labs Energy Report, SAND 76-0130, May 1976. R11. Steele, C.R., "Application of...aspect!ratio wings proved often to be unfavorable. Improved steady and unsteady theories were published for the loading of vertical-axis wind turbines

  4. Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, volume 2

    NASA Astrophysics Data System (ADS)

    1983-03-01

    The fabrication, installation, and checkout of 100-kW 17 meter vertical axis wind turbines is described. Turbines are Darrieus-type VAWIs with rotors 17 meters and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18-mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable. Contract results are documented.

  5. Developments in blade shape design for a Darrieus vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Ashwill, T. D.; Leonard, T. M.

    1986-09-01

    A new computer program package has been developed that determines the troposkein shape for a Darrieus Vertical Axis Wind Turbine Blade with any geometrical configuration or rotation rate. This package allows users to interact and develop a buildable blade whose shape closely approximates the troposkein. Use of this package can significantly reduce flatwise mean bending stresses in the blade and increase fatigue life.

  6. Recent Darrieus vertical axis wind turbine aerodynamical experiments at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Klimas, P. C.

    1981-01-01

    Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.

  7. Wind energy converter with high-speed vertical axis rotor and straight rotor blades

    NASA Astrophysics Data System (ADS)

    Zelck, G.

    1982-11-01

    Complete documents for a wind energy converter with a vertical axis rotor and straight blades (H-rotor) were developed. The 2 blade rotor with rigid and rectangular air foils in wooden construction reaches the nominal output of 75 KVA from 11,4 m/sec. wind velocity onwards. The development activities are supported by wind tunnel and component tests. The final design selected was based upon previous development work. Trade offs show that the design is more advantageous compared to other designs. The use of wood as a material for the rotary and horizontal blade supports gives positive result.

  8. Double-multiple streamtube model for studying vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, Ion

    1988-08-01

    This work describes the present state-of-the-art in double-multiple streamtube method for modeling the Darrieus-type vertical-axis wind turbine (VAWT). Comparisons of the analytical results with the other predictions and available experimental data show a good agreement. This method, which incorporates dynamic-stall and secondary effects, can be used for generating a suitable aerodynamic-load model for structural design analysis of the Darrieus rotor.

  9. Proceedings of the vertical axis wind turbine (VAWT) design technology seminar for industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, S.F. Jr.

    1980-08-01

    The objective of the Vertical Axis Wind Turbine (VAWT) Program at Sandia National Laboratories is to develop technology that results in economical, industry-produced, and commercially marketable wind energy systems. The purpose of the VAWT Design Technology Seminar or Industry was to provide for the exchange of the current state-of-the-art and predictions for future VAWT technology. Emphasis was placed on technology transfer on Sandia's technical developments and on defining the available analytic and design tools. Separate abstracts are included for presented papers.

  10. Results of a utility survey of the status of large wind turbine development

    NASA Technical Reports Server (NTRS)

    Watts, A.; Quraeshi, S.; Rowley, L. P.

    1979-01-01

    Wind energy conversion systems were surveyed from a utility viewpoint to establish the state of the art with regard to: (1) availability of the type of machines; (2) quality of power generation; (3) suitability for electrical grid; (4) reliability; and (5) economics. Of the 23 designs discussed, 7 have vertical axis wind turbines, 9 have upwind horizontal axis turbines, and 7 have downwind horizontal axis turbines.

  11. Interaction of an Artificially Thickened Boundary Layer with a Vertically Mounted Pitching Airfoil

    NASA Astrophysics Data System (ADS)

    Hohman, Tristen; Smits, Alexander; Martinelli, Luigi

    2011-11-01

    Wind energy represents a large portion of the growing market in alternative energy technologies and the current landscape has been dominated by the more prevalent horizontal axis wind turbine. However, there are several advantages to the vertical axis wind turbine (VAWT) or Darrieus type design and yet there is much to be understood about how the atmospheric boundary layer (ABL) affects their performance. In this study the ABL was simulated in a wind tunnel through the use of elliptical shaped vortex generators, a castellated wall, and floor roughness elements as described in the method of Counihan (1967) and then verified its validity by hot wire measurement of the mean velocity profile as well as the turbulence intensity. The motion of an blade element around a vertical axis is approximated through the use of a pitching airfoil. The wake of the airfoil is investigated through hot wire anemometry in both uniform flow and in the simulated boundary layer both at Re = 1 . 37 ×105 based on the chord of the airfoil. Sponsored by Hopewell Wind Power (Hong Kong) Limited.

  12. On the Behavior of Pliable Plate Dynamics in Wind: Application to Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Cosse, Julia Theresa

    Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream. The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind. In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.

  13. Field investigation of a wake structure downwind of a VANT (Vertical-Axis Wind Turbine) in a wind farm array

    NASA Astrophysics Data System (ADS)

    Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.

  14. A new wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.

    1975-01-01

    It is presupposed that vertical axis wind energy machines will be superior to horizontal axis machines on a power output/cost basis and the design of a new wind energy machine is presented. The design employs conical cones with sharp lips and smooth surfaces to promote maximum drag and minimize skin friction. The cones are mounted on a vertical axis in such a way as to assist torque development. Storing wind energy as compressed air is thought to be optimal and reasons are: (1) the efficiency of compression is fairly high compared to the conversion of mechanical energy to electrical energy in storage batteries; (2) the release of stored energy through an air motor has high efficiency; and (3) design, construction, and maintenance of an all-mechanical system is usually simpler than for a mechanical to electrical conversion system.

  15. A new vertical axis wind turbine design for urban areas

    NASA Astrophysics Data System (ADS)

    Frunzulica, Florin; Cismilianu, Alexandru; Boros, Alexandru; Dumitrache, Alexandru; Suatean, Bogdan

    2016-06-01

    In this paper we aim at developing the model of a Vertical Axis Wind Turbine (VAWT) with the short-term goal of physically realising this turbine to operate at a maximmum power of 5 kW. The turbine is designed for household users in the urban or rural areas and remote or isolated residential areas (hardly accsessible). The proposed model has a biplane configuration on each arm of the VAWT (3 × 2 = 6 blades), allowing for increased performance of the turbine at TSR between 2 and 2.5 (urban area operation) compared to the classic vertical axis turbines. Results that validate the proposed configuration as well as passive control methods to increase the performance of the classic VAWTs are presented.

  16. Finite-element analysis and modal testing of a rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.

    1982-10-01

    A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, was developed to compute the mode shapes and frequencies of rotating structures. Special applications of this capability was made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine is established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.

  17. Finite element analysis and modal testing of a rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.

    A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, has been developed to compute the mode shapes and frequencies of rotating structures. Special application of this capability has been made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine has been established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.

  18. A 34-meter VAWT (Vertical Axis Wind Turbine) point design

    NASA Astrophysics Data System (ADS)

    Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.

    The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.

  19. Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, phase 2. Volume 3: Design, fabrication, and site drawing

    NASA Astrophysics Data System (ADS)

    1983-03-01

    The design, fabrication, and site drawings associated with fabrication, installation, and check out of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs) were reported. The turbines are Darrieus type VAWTs with rotors 17 meters in diameter and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines are produced, three are installed and operable.

  20. Vertical axis wind rotors: Status and potential. [energy conversion efficiency and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Vance, W.

    1973-01-01

    The design and application of a vertical axis wind rotor is reported that operates as a two stage turbine wherein the wind impinging on the concave side is circulated through the center of the rotor to the back of the convex side, thus decreasing what might otherwise be a high negative pressure region. Successful applications of this wind rotor to water pumps, ship propulsion, and building ventilators are reported. Also shown is the feasibility of using the energy in ocean waves to drive the rotor. An analysis of the impact of rotor aspect ratio on rotor acceleration shows that the amount of venting between rotor vanes has a very significant effect on rotor speed for a given wind speed.

  1. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ye; Karri, Naveen K.; Wang, Qi

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studiesmore » on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.« less

  2. High-efficiency wind turbine

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  3. The effect of solidity on the performance of H-rotor Darrieus turbine

    NASA Astrophysics Data System (ADS)

    Hassan, S. M. Rakibul; Ali, Mohammad; Islam, Md. Quamrul

    2016-07-01

    Utilization of wind energy has been investigated for a long period of time by different researchers in different ways. Out of which, the Horizontal Axis Wind Turbine and the Vertical Axis Wind Turbine have now advanced design, but still there is scope to improve their efficiency. The Vertical Axis Wind Turbine (VAWT) has the advantage over Horizontal Axis Wind Turbine (HAWT) for working on omnidirectional air flow without any extra control system. A modified H-rotor Darrieus type VAWT is analysed in this paper, which is a lift based wind turbine. The effect of solidity (i.e. chord length, no. of blades) on power coefficient (CP) of H-rotor for different tip speed ratios is numerically investigated. The study is conducted using time dependent RANS equations using SST k-ω model. SIMPLE scheme is used as pressure-velocity coupling and in all cases, the second order upwind discretization scheme is chosen for getting more accurate solution. In results, different parameters are compared, which depict the performance of the modified H-rotor Darrieus type VAWT. Double layered H-rotor having inner layer blades with longer chord gives higher power coefficient than those have inner layer blades with smaller chord.

  4. Design of multi-energy Helds coupling testing system of vertical axis wind power system

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.

    2016-08-01

    The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).

  5. Estimation of power in low velocity vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Sampath, S. S.; Shetty, Sawan; Chithirai Pon Selvan, M.

    2015-06-01

    The present work involves in the construction of a vertical axis wind turbine and the determination of power. Various different types of turbine blades are considered and the optimum blade is selected. Mechanical components of the entire setup are built to obtain maximum rotation per minute. The mechanical energy is converted into the electrical energy by coupling coaxially between the shaft and the generator. This setup produces sufficient power for consumption of household purposes which is economic and easily available.

  6. Effectiveness enhancement of a cycloidal wind turbine by individual active control of blade motion

    NASA Astrophysics Data System (ADS)

    Hwang, In Seong; Lee, Yun Han; Kim, Seung Jo

    2007-04-01

    In this paper, a research for the effectiveness enhancement of a Cycloidal Wind Turbine by individual active control of blade motion is described. To improve the performance of the power generation system, which consists of several straight blades rotating about axis in parallel direction, the cycloidal blade system and the individual active blade control method are adopted. It has advantages comparing with horizontal axis wind turbine or conventional vertical axis wind turbine because it maintains optimal blade pitch angles according to wind speed, wind direction and rotor rotating speed to produce high electric power at any conditions. It can do self-starting and shows good efficiency at low wind speed and complex wind condition. Optimal blade pitch angle paths are obtained through CFD analysis according to rotor rotating speed and wind speed. The individual rotor blade control system consists of sensors, actuators and microcontroller. To realize the actuating device, servo motors are installed to each rotor blade. Actuating speed and actuating force are calculated to compare with the capacities of servo motor, and some delays of blade pitch angles are corrected experimentally. Performance experiment is carried out by the wind blowing equipment and Labview system, and the rotor rotates from 50 to 100 rpm according to the electric load. From this research, it is concluded that developing new vertical axis wind turbine, Cycloidal Wind Turbine which is adopting individual active blade pitch control method can be a good model for small wind turbine in urban environment.

  7. Alternative Operational Energy Options - A Need for a Holistic Approach to Reduce the Logistics Tail and Improve Strategic Advantage

    DTIC Science & Technology

    2015-02-18

    tends to resurge when the cost of petroleum rises as it did during the energy crisis of the 1970’s. Wind turbines are divided into two categories that...include horizontal axis and vertical axis. Horizontal-axis wind turbines have a main rotor driving an electrical generator on... turbines . They convert significantly more power in medium and higher winds than drag blades. Blades are attached directly to a hub just like on a

  8. Counter-rotating vortex pairs in the wake of a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2017-04-01

    Despite the rising popularity of vertical axis wind turbines, or VAWTs, the wakes behind these machines is much less well understood than those behind horizontal axis wind turbines, or HAWTs. A thorough understanding of wakes is important as they can cause turbines in wind farms to produce less power than anticipated and increase the fatigue loading on turbines due to vibrations. In order to gain a deeper understanding of the wake behind a vertical axis wind turbine in atmospheric flow stereo-PIV is implemented in a boundary-layer wind tunnel to produce snapshots of the 3-component velocity field in the wake at various downstream positions. The boundaries of the wake are readily observed due to the high velocity gradients and turbulence present here. Two pairs of counter-rotating vortices similar to those in the wake of yawed HAWTs are also observed. An examination of the momentum fluxes behind the turbine demonstrates that the mean flow induced by these vortices entrains a large quantity of momentum from the unperturbed boundary layer flow above the wake. This effect proves to play an even more significant role than turbulence in reintroducing momentum into the wake. In order to comprehend why the VAWT produces these vortices we modify the double-multiple stream-tube model typically used to predict VAWT performance to incorporate crosswind forces. The similarity between VAWT and yawed HAWT wakes is found not to be coincidental as both cases feature rotors which exert a lateral thrust on the incoming wind which leads to the creation of counter-rotating vortex pairs.

  9. Wind measurement system

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Huffaker, R. M.; Dahm, W. K.; Thomson, J. A. L.; Lawrence, T. R.; Krause, M. C.; Wilson, D. J. (Inventor)

    1976-01-01

    A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed.

  10. Effect of the number of blades and solidity on the performance of a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Delafin, PL; Nishino, T.; Wang, L.; Kolios, A.

    2016-09-01

    Two, three and four bladed ϕ-shape Vertical Axis Wind Turbines are simulated using a free-wake vortex model. Two versions of the three and four bladed turbines are considered, one having the same chord length as the two-bladed turbine and the other having the same solidity as the two-bladed turbine. Results of the two-bladed turbine are validated against published experimental data of power coefficient and instantaneous torque. The effect of solidity on the power coefficient is presented and the instantaneous torque, thrust and lateral force of the two-, three- and four-bladed turbines are compared for the same solidity. It is found that increasing the number of blades from two to three significantly reduces the torque, thrust and lateral force ripples. Adding a fourth blade further reduces the ripples except for the torque at low tip speed ratio. This work aims to help choosing the number of blades during the design phase of a vertical axis wind turbine.

  11. Wind tunnel study of helical and straight-bladed vertical-axis wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Bagheri, Maryam; Araya, Daniel

    2017-11-01

    It is hypothesized that blade curvature can serve as a passive means to control fluid entrainment and wake recovery in vertical-axis wind turbine (VAWT) arrays. We test this experimentally in a wind tunnel using two different VAWT configurations, one with straight blades and another with helical blades, keeping all other experimental parameters fixed. A small-scale, commercially available VAWT (15W max power) is used as the baseline wind tunnel model in each case. The commercial VAWT blades are replaced with either straight or helical blades that are 3D-printed extrusions of the same airfoil cross-section. Results from smoke flow visualization, three-component wake velocity measurements, and turbine power data are presented. These results give insight into the potential use of VAWTs with curved blades in utility-scale wind farms.

  12. On the wake of a Darrieus turbine

    NASA Technical Reports Server (NTRS)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-01-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  13. Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander

    2016-09-01

    This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.

  14. A 20-KW Wind Energy Conversion System (WECS) at the Marine Corps Air Station, Kaneohe, Hawaii.

    DTIC Science & Technology

    1983-01-01

    of propellers and that vertical-axis wind turbines would be more efficient. Several turbines such as the Darrieus and gyro-mill, of this type are... wind turbines , wind systems siting, alternate energy systems, remote site power generation. 20 ABSTRACT (Con!,,u,. - r r... .. do I(3 lI - d #,d e...Corps Air Station (MCAS) Kaneohe Bay, Hawaii. The wind turbine generator chosen for the evaluation was a horizontal-axis-propeller- downwind rotor

  15. Control system for a vertical axis windmill

    DOEpatents

    Brulle, Robert V.

    1983-10-18

    A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90.degree. and 270.degree. to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  16. Control system for a vertical-axis windmill

    DOEpatents

    Brulle, R.V.

    1981-09-03

    A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  17. Kinematics of a vertical axis wind turbine with a variable pitch angle

    NASA Astrophysics Data System (ADS)

    Jakubowski, Mateusz; Starosta, Roman; Fritzkowski, Pawel

    2018-01-01

    A computational model for the kinematics of a vertical axis wind turbine (VAWT) is presented. A H-type rotor turbine with a controlled pitch angle is considered. The aim of this solution is to improve the VAWT productivity. The discussed method is related to a narrow computational branch based on the Blade Element Momentum theory (BEM theory). The paper can be regarded as a theoretical basis and an introduction to further studies with the application of BEM. The obtained torque values show the main advantage of using the variable pitch angle.

  18. The effect of solidity on the performance of H-rotor Darrieus turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, S. M. Rakibul, E-mail: rakibulhassan21@gmail.com; Ali, Mohammad, E-mail: mali@me.buet.ac.bd; Islam, Md. Quamrul, E-mail: quamrul@me.buet.ac.bd

    Utilization of wind energy has been investigated for a long period of time by different researchers in different ways. Out of which, the Horizontal Axis Wind Turbine and the Vertical Axis Wind Turbine have now advanced design, but still there is scope to improve their efficiency. The Vertical Axis Wind Turbine (VAWT) has the advantage over Horizontal Axis Wind Turbine (HAWT) for working on omnidirectional air flow without any extra control system. A modified H-rotor Darrieus type VAWT is analysed in this paper, which is a lift based wind turbine. The effect of solidity (i.e. chord length, no. of blades)more » on power coefficient (C{sub P}) of H-rotor for different tip speed ratios is numerically investigated. The study is conducted using time dependent RANS equations using SST k-ω model. SIMPLE scheme is used as pressure-velocity coupling and in all cases, the second order upwind discretization scheme is chosen for getting more accurate solution. In results, different parameters are compared, which depict the performance of the modified H-rotor Darrieus type VAWT. Double layered H-rotor having inner layer blades with longer chord gives higher power coefficient than those have inner layer blades with smaller chord.« less

  19. Apparatus and process for making a superconducting magnet for particle accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarabak, A.J.; Sunderman, W.H.; Mendola, E.G.

    1992-03-10

    This patent describes an apparatus for manufacturing a coil of superconducting material. It comprises a horizontally disposed winding mandrel; an adjustable support for receiving a spool of superconducting material, the spool having a vertical axis; means for translating the spool of superconducting material in a generally oval path around the winding mandrel so that the superconducting material is de-reeled from the spool, in order to wind a predetermined amount of superconducting material onto the mandrel, such that a coil of superconducting material is formed; means for guiding the superconducting material from the spool so as to deliver the superconducting materialmore » to the winding mandrel on a plane perpendicular to the vertical axis of the spool and parallel with a winding plane on the winding mandrel; means for imparting a tensioning force on the superconducting material as it is guided from the spool; means for rotating the winding mandrel about the horizontal axis thereof; means for clamping the superconducting material against the winding mandrel as the wire is wound thereon; means for securing the coil to the winding mandrel for lifting mandrel with the coil thereon; and means for curing the coil of superconducting material whereby a finished coil of superconducting material is formed.« less

  20. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence

    NASA Astrophysics Data System (ADS)

    Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire

    2017-11-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.

  1. The Oregon State University wind studies. [economic feasibility of windpowered generators

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1973-01-01

    The economic feasibility of commercial use of wind generated power in selected areas of Oregon is assessed. A number of machines for generating power have been examined. These include the Savonius rotor, translators, conventional wind turbines, the circulation controlled rotor and the vertical axis winged turbine. Of these machines, the conventional wind turbine and the vertical axis winged turbine show the greatest promise on the basis of the power developed per unit of rotor blade area. Attention has been focused on the structural and fatigue analysis of rotors since the economics of rotary winged, wind generated power depends upon low cost, long lifetime rotors. Analysis of energy storage systems and tower design has also been undertaken. An economic means of energy storage has not been found to date. Tower design studies have produced cost estimates that are in general agreement with the cost of the updated Putnam 110-foot tower.

  2. Rotor instrumentation circuits for the Sandia 34-meter vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Sutherland, Herbert J.; Stephenson, William A.

    1988-07-01

    Sandia National Laboratories has erected a research oriented, 34-meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas, which has been designated the Sandia 34-m VAWT Test Bed. To meet present and future research needs, the machine was equipped with a large array of sensors. This manuscript details the sensors initially placed on the rotor, their respective instrumentation circuits, and the provisions incorporated into the design of the rotor instrumentation circuits for future research. This manuscript was written as a reference manual for the rotor instrumentation of the Test Bed.

  3. Design, performance, and economics of 50-kW and 500-kW vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Schienbein, L. A.; Malcolm, D. J.

    1983-11-01

    A review of the development and performance of the DAF Indal 50-kW vertical axis Darrieus wind turbine shows that a high level of technical development and reliability has been achieved. Features of the drive train, braking and control systems are discussed and performance details are presented. Details are also presented of a 500-kW VAWT that is currently in production. A discussion of the economics of both the 50-kW and 500-kW VAWTs is included, showing the effects of charge rate, installed cost, operating cost, performance, and efficiency.

  4. Vertical axis wind turbine drive train transient dynamics

    NASA Technical Reports Server (NTRS)

    Clauss, D. B.; Carne, T. G.

    1982-01-01

    Start up of a vertical axis wind turbine causes transient torque oscillations in the drive train with peak torques which may be over two and one half times the rated torque of the turbine. A computer code, based on a lumped parameter model of the drive train, was developed and tested for the low cost 17 meter turbine; the results show excellent agreement with field data. The code was used to predict the effect of a slip clutch on transient torque oscillations. It was demonstrated that a slip clutch located between the motor and brake can reduce peak torques by thirty eight percent.

  5. Microgrid Control Strategy Utlizing Thermal Energy Storage With Renewable Solar And Wind Power Generation

    DTIC Science & Technology

    2016-06-01

    13 Figure 6. Vertical Axis Wind Turbines and Photovoltaic Solar Panels ....................15 Figure 7. Solar Sunny Boy Inverter...16 Figure 8. Wind Turbine Inverters...1. Comparison of Energy Storage. Adapted from [16], [18], [19]. ................10 Table 2. DC Operating Voltage of Wind Turbine Inverters

  6. Theoretical performance of cross-wind axis turbines with results for a catenary vertical axis configuration

    NASA Technical Reports Server (NTRS)

    Muraca, R. J.; Stephens, M. V.; Dagenhart, J. R.

    1975-01-01

    A general analysis capable of predicting performance characteristics of cross-wind axis turbines was developed, including the effects of airfoil geometry, support struts, blade aspect ratio, windmill solidity, blade interference and curved flow. The results were compared with available wind tunnel results for a catenary blade shape. A theoretical performance curve for an aerodynamically efficient straight blade configuration was also presented. In addition, a linearized analytical solution applicable for straight configurations was developed. A listing of the computer program developed for numerical solutions of the general performance equations is included in the appendix.

  7. Improved double-multiple streamtube model for the Darrieus-type vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Berg, D. E.

    Double streamtube codes model the curved blade (Darrieus-type) vertical axis wind turbine (VAWT) as a double actuator fish arrangement (one half) and use conservation of momentum principles to determine the forces acting on the turbine blades and the turbine performance. Sandia National Laboratories developed a double multiple streamtube model for the VAWT which incorporates the effects of the incident wind boundary layer, nonuniform velocity between the upwind and downwind sections of the rotor, dynamic stall effects and local blade Reynolds number variations. The theory underlying this VAWT model is described, as well as the code capabilities. Code results are compared with experimental data from two VAWT's and with the results from another double multiple streamtube and a vortex filament code. The effects of neglecting dynamic stall and horizontal wind velocity distribution are also illustrated.

  8. Experimental data on load test and performance parameters of a LENZ type vertical axis wind turbine in open environment condition.

    PubMed

    Sivamani, Seralathan; T, Micha Premkumar; Sohail, Mohammed; T, Mohan; V, Hariram

    2017-12-01

    Performance and load testing data of a three bladed two stage LENZ type vertical axis wind turbine from the experiments conducted in an open environment condition at Hindustan Institute of Technology and Science, Chennai (location 23.2167°N, 72.6833°E) are presented here. Low-wind velocity ranging from 2 to 11 m/s is available everywhere irrespective of climatic seasons and this data provides the support to the researchers using numerical tool to validate and develop an enhanced Lenz type design. Raw data obtained during the measurements are processed and presented in the form so as to compare with other typical outputs. The data is measured at different wind speeds prevalent in the open field condition ranging from 3 m/s to 9 m/s.

  9. Alcoa wind turbines

    NASA Technical Reports Server (NTRS)

    Ai, D. K.

    1979-01-01

    An overview of Alcoa's wind energy program is given with emphasis on the the development of a low cost, reliable Darrieus Vertical Axis Wind Turbine System. The design layouts and drawings for fabrication are now complete, while fabrication and installation to utilize the design are expected to begin shortly.

  10. Performance testing of a 50 kW VAWT in a built-up environment

    NASA Technical Reports Server (NTRS)

    Schienbein, L. A.

    1981-01-01

    The results of performance tests of a DAF Indal 50 kW vertical axis wind turbine are presented. Results of limited free stream turbulence and vertical wind shear measurements at the site are also presented. The close agreement between measured and predicted energy outputs, required to verify the wind turbine power output performance relationship, was not attained. A discussion is presented of factors that may have contributed to the lack of better agreement.

  11. Large Wind Turbine Design Characteristics and R and D Requirements

    NASA Technical Reports Server (NTRS)

    Lieblein, S. (Editor)

    1979-01-01

    Detailed technical presentations on large wind turbine research and development activities sponsored by public and private organizations are presented. Both horizontal and vertical axis machines are considered with emphasis on their structural design.

  12. CFD simulations of power coefficients for an innovative Darrieus style vertical axis wind turbine with auxiliary straight blades

    NASA Astrophysics Data System (ADS)

    Arpino, F.; Cortellessa, G.; Dell'Isola, M.; Scungio, M.; Focanti, V.; Profili, M.; Rotondi, M.

    2017-11-01

    The increasing price of fossil derivatives, global warming and energy market instabilities, have led to an increasing interest in renewable energy sources such as wind energy. Amongst the different typologies of wind generators, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off grid power generation at low wind speeds. In the present work, Computational Fluid Dynamic (CFD) simulations were performed in order to investigate the performance of an innovative configuration of straight-blades Darrieus-style vertical axis micro wind turbine, specifically developed for small scale energy conversion at low wind speeds. The micro turbine under investigation is composed of three pairs of airfoils, consisting of a main and auxiliary blades with different chord lengths. The simulations were made using the open source finite volume based CFD toolbox OpenFOAM, considering different turbulence models and adopting a moving mesh approach for the turbine rotor. The simulated data were reported in terms of dimensionless power coefficients for dynamic performance analysis. The results from the simulations were compared to the data obtained from experiments on a scaled model of the same VAWT configuration, conducted in a closed circuit open chamber wind tunnel facility available at the Laboratory of Industrial Measurements (LaMI) of the University of Cassino and Lazio Meridionale (UNICLAM). From the proposed analysis, it was observed that the most suitable model for the simulation of the performances of the micro turbine under investigation is the one-equation Spalart-Allmaras, even if under the conditions analysed in the present work and for TSR values higher than 1.1, some discrepancies between numerical and experimental data can be observed.

  13. Fish schooling as a basis for vertical axis wind turbine farm design.

    PubMed

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-09-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.

  14. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  15. Economic analysis of Darrieus vertical axis wind turbine systems for the generation of utility grid electrical power. Volume IV. Summary and analysis of the A. T. Kearney and Alcoa Laboratories point design economic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, W.N.; Nellums, R.O.

    1979-08-01

    The A.T. Kearney and Alcoa economic studies are two independent attempts to assess the installed costs of a series of six Darrieus vertical axis wind turbine designs. The designs cover a range of sizes with peak outputs from 10 to 1600 kW. All are designed to produce utility grid electrical power. Volume IV of this report summarizes, compares, and analyzes the results of these studies. The Kearney and Alcoa final reports are included in the Appendices.

  16. Economic analysis of Darrieus vertical axis wind turbine systems for the generation of utility grid electrical power. Volume IV: summary and analysis of the A. T. Kearney and Alcoa Laboratories point design economic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, W.N.; Nellums, R.O.

    1979-08-01

    The A. T. Kearney and Alcoa economic studies are two independent attempts to assess the installed costs of a series of six Darrieus vertical axis wind turbine designs. The designs cover a range of sizes with peak outputs from 10 to 1600 kW. All are designed to produce utility grid electrical power. Volume IV of this report summarizes, compares, and analyzes the results of these studies. The Kearney and Alcoa final reports are included in the Appendices.

  17. A method of calculation on the airloading of vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Azuma, A.; Kimura, S.

    A new method of analyzing the aerodynamic characteristics of the Darrieus Vertical-Axis Wind Turbine (VAWT) by applying the local circulation method is described. The validity of this method is confirmed by analyzing the air load acting on a curved blade. The azimuthwise variation of spanwise airloading, torque, and longitudinal forces are accurately calculated for a variety of operational conditions. The results are found to be in good agreement with experimental ones obtained elsewhere. It is concluded that the present approach can calculate the aerodynamic characteristics of the VAWT with much less computational time than that used by the free vortex model.

  18. Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors

    NASA Technical Reports Server (NTRS)

    Lobitz, D. W.

    1981-01-01

    The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.

  19. Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Chatelain, P.; Duponcheel, M.; Zeoli, S.; Buffin, S.; Caprace, D.-G.; Winckelmans, G.; Bricteux, L.

    2017-05-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed.

  20. Design and fabrication of a low cost Darrieus vertical axis wind turbine system: Phase 2, volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1983-03-01

    Described is the successful fabrication, installation, and checkout of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs). The turbines are Darrieus-type VAWTs with rotors 17 meters (55 feet) in diameter and 25.15 meters (83 feet) in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable at: (1) Wind Systems Test Center, Rocky Flats, Colorado; (2) the US Department of Agriculture Conservation and Production Research Center at Bushland, Texas; and (3) Tisbury Water Authority, Vineyard Haven, Massachusetts, on the island of Martha's Vineyard. The fourth turbine is stored at Bushland, Texas awaiting selection of an erection site.

  1. Structural design of the Sandia 34-M Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Berg, D. E.

    Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. The analytic tools used in this design are discussed and the conceptual design procedure is described.

  2. Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Fuchs, Roman; Nordborg, Henrik

    2012-11-01

    We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.

  3. Vertical axis wind turbine power regulation through centrifugally pumped lift spoiling

    NASA Astrophysics Data System (ADS)

    Klimas, P. C.; Sladky, J. F., Jr.

    This paper describes an approach for lowering the rated windspeeds of Darrieus-type vertical axis wind turbines (VAWTs) whose blades are hollow aluminum extrusions. The blades, which when rotating act as centrifugal pumps, are fitted with a series of small perforations distributed along a portion of the blades' span. By valving the ends of the hollow blades, flow into the blade ends and out of the perforations may be controlled. This flow can induce premature aerodynamic stall on the blade elements, thereby reducing both the rated power of the turbine and its cost-of-energy. The concept has been proven on the Sandia National Laboratories 5-m diameter research VAWT and force balance and flow visualization wind tunnel tests have been conducted using a blade section designed for the VAWT application.

  4. Design, performance and economics of the DAF Indal 50 kW and 375 kW vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Schienbein, L. A.; Malcolm, D. J.

    1982-03-01

    A review of the development and performance of the DAF Indal 50 kW vertical axis Darrieus wind turbines shows that a high level of technical development and reliability has been achieved. Features of the drive train, braking and control systems are discussed and performance details are presented. A description is given of a wind-diesel hybrid presently being tested. Details are also presented of a 375 kW VAWT planned for production in late 1982. A discussion of the economics of both the 50 kW and 375 kW VAWTs is included, showing the effects of charge rate, installed cost, operating cost, performance and efficiency. The energy outputs are translated into diesel fuel cost savings for remote communities.

  5. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.

    PubMed

    Borg, M; Collu, M

    2015-02-28

    The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Study of Vertical Axis Wind Turbine for Energy Harvester in A Fishing Boat

    NASA Astrophysics Data System (ADS)

    Budi, E. M.; Banjarnahor, D. A.; Hanifan, M.

    2017-07-01

    The wind speed in the southern beach of West Java Indonesia is quite promising for wind energy harvesting. A field survey reported that the wind speed reached 10 m/s, while the average recorded in a year is about 4.7 m/s. In this study, two vertical axis wind turbines (VAWT) were compared to be used in that area through calculation as well as experiments. The experiments measured that the turbines can produce about 7.82W and 2.33W of electricity respectively. These experiments are compared with theoretical calculation to obtain the performance of both turbines used. The coefficient of performance (cp) experimentally is 0.09 for Turbine 1 (hybrid Savonius-Darrieus rotor) and 0.14 for Turbine 2 (Savonius rotor). While, rotor’s mechanical performance Cpr, obtained theoritically through calculation, is 0.36 for Turbine 1 and 0.12 for Turbine 2. These results are analysed from mechanical and electrical view.

  7. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear

    NASA Astrophysics Data System (ADS)

    Mendoza, Victor; Goude, Anders

    2017-05-01

    The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.

  8. Wind turbine spoiler

    DOEpatents

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  9. Wind turbine spoiler

    DOEpatents

    Sullivan, William N.

    1985-01-01

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  10. Experimental and Computational Investigations of Vertical Axis Wind Turbine Enclosed with Flanged Diffuser

    NASA Astrophysics Data System (ADS)

    Surya Raj, G.; Sangeetha, N.; Prince, M.

    2018-02-01

    Generation of wind energy is a must to meet out additional demand. To meet out the additional demand several long term plans were considered now being taken up for generation of energy for the fast developing industries. Detailed researches were since taken up to improve the efficiency of such vertical axis wind turbine (VAWT). In this work VAWT with diffuser and without diffuser arrangement are considered for experimental and analysis. Five diffusers were since provided around its blades of VAWT which will be placed inside a pentagon shaped fabricated structure. In this power output of the diffuser based VAWT arrangement were studied in both numerical and experimental methods and related with that of a bared VAWT. Finally, it was found that the output power of diffuser based VAWT generates approximately two times than that of bared VAWT.

  11. Validation of an Actuator Line Model Coupled to a Dynamic Stall Model for Pitching Motions Characteristic to Vertical Axis Turbines

    NASA Astrophysics Data System (ADS)

    Mendoza, Victor; Bachant, Peter; Wosnik, Martin; Goude, Anders

    2016-09-01

    Vertical axis wind turbines (VAWT) can be used to extract renewable energy from wind flows. A simpler design, low cost of maintenance, and the ability to accept flow from all directions perpendicular to the rotor axis are some of the most important advantages over conventional horizontal axis wind turbines (HAWT). However, VAWT encounter complex and unsteady fluid dynamics, which present significant modeling challenges. One of the most relevant phenomena is dynamic stall, which is caused by the unsteady variation of angle of attack throughout the blade rotation, and is the focus of the present study. Dynamic stall is usually used as a passive control for VAWT operating conditions, hence the importance of predicting its effects. In this study, a coupled model is implemented with the open-source CFD toolbox OpenFOAM for solving the Navier-Stokes equations, where an actuator line model and dynamic stall model are used to compute the blade loading and body force. Force coefficients obtained from the model are validated with experimental data of pitching airfoil in similar operating conditions as an H-rotor type VAWT. Numerical results show reasonable agreement with experimental data for pitching motion.

  12. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.

  13. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  14. Development of a 5.5 m diameter vertical axis wind turbine, phase 3

    NASA Astrophysics Data System (ADS)

    Dekitsch, A.; Etzler, C. C.; Fritzsche, A.; Lorch, G.; Mueller, W.; Rogalla, K.; Schmelzle, J.; Schuhwerk, W.; Vollan, A.; Welte, D.

    1982-06-01

    In continuation of development of a 5.5 m diameter vertical axis windmill that consists in conception, building, and wind tunnel testing, a Darrieus rotor windpowered generator feeding an isolated network under different wind velocity conditions and with optimal energy conversion efficiency was designed built, and field tested. The three-bladed Darrieus rotor tested in the wind tunnel was equiped with two variable pitch Savonius rotors 2 m in diameter. By means of separate measures of the aerodynamic factors and the energy consumption, effect of revisions and optimizations on different elements was assessed. Pitch adjustement of the Savonius blades, lubrication of speed reducer, rotor speed at cut-in of generator field excitation, time constant of field excitation, stability conditions, switch points of ohmic resistors which combined with a small electric battery simulated a larger isolated network connected with a large storage battery, were investigated. Fundamentals for the economic series production of windpowered generators with Darrieus rotors for the control and the electric conversion system are presented.

  15. Study of turbine and guide vanes integration to enhance the performance of cross flow vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Wibowo, Andreas; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi; Situmorang, Marcelinus Risky Clinton

    2018-02-01

    The main purpose of this study is to investigate the best configuration between guide vanes and cross flow vertical axis wind turbine with variation of several parameters including guide vanes tilt angle and the number of turbine and guide vane blades. The experimental test were conducted under various wind speed and directions for testing cross flow wind turbine, consisted of 8, 12 and 16 blades. Two types of guide vane were developed in this study, employing 20° and 60° tilt angle. Both of the two types of guide vane had three variations of blade numbers which had same blade numbers variations as the turbines. The result showed that the configurations between 60° guide vane with 16 blade numbers and turbine with 16 blade numbers had the best configurations. The result also showed that for certain configuration, guide vane was able to increase the power generated by the turbine significantly by 271.39% compared to the baseline configuration without using of guide vane.

  16. Computational analysis of vertical axis wind turbine arrays

    NASA Astrophysics Data System (ADS)

    Bremseth, J.; Duraisamy, K.

    2016-10-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  17. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis

    PubMed Central

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524

  18. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.

    PubMed

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.

  19. Aerodynamic Interactions between Pairs of Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Brownstein, Ian; Dabiri, John

    2017-11-01

    Increased power production has been observed in downstream vertical-axis wind turbines (VAWTs) when positioned offset from the wake of upstream turbines. This effect was found to exist in both laboratory and field environments with pairs of co- and counter-rotating turbines. It is hypothesized that the observed power production enhancement is due to flow acceleration adjacent to the upstream turbine caused by bluff body blockage, which increases the incident freestream velocity on appropriately positioned downstream turbines. This type of flow acceleration has been observed in computational and laboratory studies of VAWTs and will be further investigated here using 3D-PTV measurements around pairs of laboratory-scale VAWTs. These measurements will be used to understand the mechanisms behind the performance enhancement effect and seek to determine optimal separation distances and angles between turbines based on turbine design parameters. These results will lead to recommendations for optimizing the power production of VAWT wind farms which utilize this effect.

  20. Aerodynamic performance of a small vertical axis wind turbine using an overset grid method

    NASA Astrophysics Data System (ADS)

    Bangga, Galih; Solichin, Mochammad; Daman, Aida; Sa'adiyah, Devy; Dessoky, Amgad; Lutz, Thorsten

    2017-08-01

    The present paper aims to asses the aerodynamic performance of a small vertical axis wind turbine operating at a small wind speed of 5 m/s for 6 different tip speed ratios (λ=2-7). The turbine consists of two blades constructed using the NACA 0015 airfoil. The study is carried out using computational fluid dynamics (CFD) methods employing an overset grid approach. The (URANS) SST k - ω is used as the turbulence model. For the preliminary study, simulations of the NACA 0015 under static conditions for a broad range of angle of attack and a rotating two-bladed VAWT are carried out. The results are compared with available measurement data and a good agreement is obtained. The simulations demonstrate that the maximum power coefficient attained is 0.45 for λ=4. The aerodynamic loads hysteresis are presented showing that the dynamic stall effect decreases with λ.

  1. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  2. The Department of Energy (DOE) research program in structural analysis of vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Sullivan, W. N.

    The Darrieus-type Vertical Axis Wind Turbine (VAWT) presents a variety of unusual structural problems to designers. The level of understanding of these structural problems governs, to a large degree, the success or failure of today's rotor designs. A survey is presented of the technology available for rotor structural design with emphasis on the DOE research program now underway. Itemizations are included of the major structural issues unique to the VAWT along with discussion of available analysis techniques for each problem area. It is concluded that tools are available to at least approximately address the most important problems. However, experimental data for confirmation is rather limited in terms of volume and the range of rotor configurations tested.

  3. Aeroelastic equations of motion of a Darrieus vertical-axis wind-turbine blade

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kvaternik, R. G.

    1979-01-01

    The second-degree nonlinear aeroelastic equations of motion for a slender, flexible, nonuniform, Darrieus vertical-axis wind turbine blade which is undergoing combined flatwise bending, edgewise bending, torsion, and extension are developed using Hamilton's principle. The blade aerodynamic loading is obtained from strip theory based on a quasi-steady approximation of two-dimensional incompressible unsteady airfoil theory. The derivation of the equations has its basis in the geometric nonlinear theory of elasticity and the resulting equations are consistent with the small deformation approximation in which the elongations and shears are negligible compared to unity. These equations are suitable for studying vibrations, static and dynamic aeroelastic instabilities, and dynamic response. Several possible methods of solution of the equations, which have periodic coefficients, are discussed.

  4. Final Technical Report: Hawaii Energy and Environmental Technologies Initiative 2009 (HEET)

    DTIC Science & Technology

    2016-05-25

    environment. A second objective under this subtask was to install, test and evaluate small wind turbine technologies to determine the relative... wind turbines adjacent to, and connected with the test platforms located at the Crissy Field Center in the Presidio of San Francisco, a proven wind ...resource for collection of comparative wind energy data. Vertical axis technology, turbines manufactured by Venco Power, Windspire Energy and

  5. Device for passive flow control around vertical axis marine turbine

    NASA Astrophysics Data System (ADS)

    Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.

    2012-11-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  6. Review Report on Design Study and Economic Assessment of Multi-Unit Offshore Wind Energy Conversion Systems Applications,

    DTIC Science & Technology

    1977-03-21

    meter turbine . Available from NTIS; $6.50. 113 pages. 7. SAND-76-0130 Wind Tunnel Performance Data for the Darrieus Wind Tur- bine with NACA-0012...2-meter-diameter Darrieus wind turbine have been tested in a low speed wind tunnel. The airfoil section for all configurations was NACA 0012. The... Darrieus Vertical-Axis Wind Turbine Program at Sandia Laboratories, Kadlec, E.G., published by Sandia Laboratories 1976. Contract No. AT(29-1)-789. From

  7. Blade pitch optimization methods for vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  8. Scope of wind energy in Bangladesh and simulation analysis of three different horizontal axis wind turbine blade shapes

    NASA Astrophysics Data System (ADS)

    Khan, Md. Arif-Ul Islam; Das, Swapnil; Dey, Saikat

    2017-12-01

    : Economic growth and energy demand are intertwined. Therefore, one of the most important concerns of the government and in the world is the need for energy security. Currently, the world relies on coal, crude oil and natural gas for energy generati on. However, the energy crisis together with climate change and depletion of oil have become major concerns to all countries. Therefore, alternative energy resources such as wind energy attracted interest from both public and private sectors to invest in energy generation from this source extensively. Both Vertical and Horizontal axis wind turbine can be used for this purpose. But, Horizontal axis is the most promising between them due to its efficiency and low expense. Bangladesh being a tropical country does have a lot of wind flow at different seasons of the year. However, there are some windy locations in which wind energy projects could be feasible. In this project a detailed review of the current st ate-of-art for wind turbine blade design is presented including theoretical maximum efficiency, Horizontal Axis Wind Turbine (HAWT) blade design, simulation power and COP values for different blade material. By studying previously collected data on the wind resources available in B angladesh at present and by analyzing this data, this paper will discuss the scope of wind energy in Bangladesh.

  9. Flow Over a Body of Revolution in a Steady Turn

    DTIC Science & Technology

    2004-10-01

    31], Migliore and Wolfe [32]. Migliore investigated flow curvature effects on Darrieus wind turbines , a special type of turbine which has a continuous...and Wolfe- J. B.. Some Effects of Flow Curvature Effects oil the Aerodynamics of Darrieus Wind Turbines West Viryinia University , 1979 33. Hirsch, Ch...and Mandal. A. C., Flow Curvature Effects on Vertical Axis Darrieus Wind Turbine Having High Chord-Radius Ratio European Wind Energy Confer- ence

  10. Field test report of the Department of Energy's 100-kW vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Nellums, R. O.

    1985-02-01

    Three second generation Darrieus type vertical axis wind turbines of approximately 120 kW capacity per unit were installed in 1980-1981. Through March 1984, over 9000 hours of operation had been accumulated, including 6600 hours of operation on the unit installed in Bushland, Texas. The turbines were heavily instrumented and have yielded a large amount of test data. Test results of this program, including aerodynamic, structural, drive train, and economic data are presented. Among the most favorable results were an aerodynamic peak performance coefficient of 0.41; fundamental structural integrity requiring few repairs and no major component replacements as of March 1984; and an average prototype fabrication cost of approximately $970 per peak kilowatt of output. A review of potential design improvements is presented.

  11. A numerical analysis to evaluate Betz's Law for vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Thönnißen, F.; Marnett, M.; Roidl, B.; Schröder, W.

    2016-09-01

    The upper limit for the energy conversion rate of horizontal axis wind turbines (HAWT) is known as the Betz limit. Often this limit is also applied to vertical axis wind turbines (VAWT). However, a literature review reveals that early analytical and recent numerical approaches predicted values for the maximum power output of VAWTs close to or even higher than the Betz limit. Thus, it can be questioned whether the application of Betz's Law to VAWTs is justified. To answer this question, the current approach combines a free vortex model with a 2D inviscid panel code to represent the flow field of a generic VAWT. To ensure the validity of the model, an active blade pitch control system is used to avoid flow separation. An optimal pitch curve avoiding flow separation is determined for one specific turbine configuration by applying an evolutionary algorithm. The analysis yields a net power output that is slightly (≈6%) above the Betz limit. Besides the numerical result of an increased energy conversion rate, especially the identification of two physical power increasing mechanisms shows, that the application of Betz's Law to VAWTs is not justified.

  12. Aeroelastic analysis of a troposkien-type wind turbine blade

    NASA Technical Reports Server (NTRS)

    Nitzsche, F.

    1981-01-01

    The linear aeroelastic equations for one curved blade of a vertical axis wind turbine in state vector form are presented. The method is based on a simple integrating matrix scheme together with the transfer matrix idea. The method is proposed as a convenient way of solving the associated eigenvalue problem for general support conditions.

  13. United States Air Force Academy (USAFA) Vertical Axis Wind Turbine.

    DTIC Science & Technology

    1980-09-01

    Rotors, SAND76-0131. Albuquerque: July 1977. 10. Oliver, R.C. and P.R. Nixon. "Design Procedure for Coupling Savonius and Darrieus Wind Turbines ", Air...May 17-20, 1976. -65- 16. Blackwell, B.F., R.E. Sheldahl, and L.V. Feltz. Wind Tunnel Performance Data for the Darrieus Wind Turbine with NACA 0012...a 5.8 m/s (13 mph) wind . At 100 rpm, the Darrieus turbine would be fully self-sustaining and acceleration would continue to an operating tip speed

  14. Utility experience with two demonstration wind turbine generators

    NASA Astrophysics Data System (ADS)

    Wehrey, M. C.

    Edison has committed 360 MW of nameplate generating capacity to wind energy by year 1990 in its long-range generation plan. To reach this goal the Company's wind energy program focuses on three areas: the continuous evaluation of the wind resource, the hands-on demonstration of wind turbine generators (WTG) and an association with wind park developers. Two demonstration WTGs have been installed and operated at Edison's Wind Energy Center near Palm Springs, California: a 3 MW horizontal axis Bendix/Schachle WTG and a 500 kW vertical axis Alcoa WTG. They are part of a one to two year test program during which the performance of the WTGs will be evaluated, their system operation and environmental impact will be assessed and the design criteria of future WTGs will be identified. Edison's experience with these two WTGs is summarized and the problems encountered with the operation of the two machines are discussed.

  15. Utility experience with two demonstration wind turbine generators

    NASA Technical Reports Server (NTRS)

    Wehrey, M. C.

    1982-01-01

    Edison has committed 360 MW of nameplate generating capacity to wind energy by year 1990 in its long-range generation plan. To reach this goal the Company's wind energy program focuses on three areas: the continuous evaluation of the wind resource, the hands-on demonstration of wind turbine generators (WTG) and an association with wind park developers. Two demonstration WTGs have been installed and operated at Edison's Wind Energy Center near Palm Springs, California: a 3 MW horizontal axis Bendix/Schachle WTG and a 500 kW vertical axis Alcoa WTG. They are part of a one to two year test program during which the performance of the WTGs will be evaluated, their system operation and environmental impact will be assessed and the design criteria of future WTGs will be identified. Edison's experience with these two WTGs is summarized and the problems encountered with the operation of the two machines are discussed.

  16. Historical development of the windmill

    NASA Technical Reports Server (NTRS)

    Shepherd, Dennis G.

    1990-01-01

    Throughout history, windmill technology represented the highest levels of development in those technical fields now referred to as mechanical engineering, civil engineering, and aerodynamics. Key stages are described in the technical development of windmills as prime movers; from antiquity to construction of the well known Smith-Putnam wind turbine generator of the 1940's, which laid the foundation for modern wind turbines. Subjects covered are windmills in ancient times; the vertical axis Persian windmill; the horizontal axis European windmill (including both post mills and tower mills); technology improvements in sails, controls, and analysis; the American farm windmill; the transition from windmills to wind turbines for generating electricity at the end of the 19th century; and wind turbine development in the first half of the 20th century.

  17. Vibrational analysis of vertical axis wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kapucu, Onur

    The goal of this research is to derive a vibration model for a vertical axis wind turbine blade. This model accommodates the affects of varying relative flow angle caused by rotating the blade in the flow field, uses a simple aerodynamic model that assumes constant wind speed and constant rotation rate, and neglects the disturbance of wind due to upstream blade or post. The blade is modeled as elastic Euler-Bernoulli beam under transverse bending and twist deflections. Kinetic and potential energy equations for a rotating blade under deflections are obtained, expressed in terms of assumed modal coordinates and then plugged into Lagrangian equations where the non-conservative forces are the lift and drag forces and moments. An aeroelastic model for lift and drag forces, approximated with third degree polynomials, on the blade are obtained assuming an airfoil under variable angle of attack and airflow magnitudes. A simplified quasi-static airfoil theory is used, in which the lift and drag coefficients are not dependent on the history of the changing angle of attack. Linear terms on the resulting equations of motion will be used to conduct a numerical analysis and simulation, where numeric specifications are modified from the Sandia-17m Darrieus wind turbine by Sandia Laboratories.

  18. Application of computational fluid dynamics (CFD) simulation in a vertical axis wind turbine (VAWT) system

    NASA Astrophysics Data System (ADS)

    Kao, Jui-Hsiang; Tseng, Po-Yuan

    2018-01-01

    The objective of this paper is to describe the application of CFD (Computational fluid dynamics) technology in the matching of turbine blades and generator to increase the efficiency of a vertical axis wind turbine (VAWT). A VAWT is treated as the study case here. The SST (Shear-Stress Transport) k-ω turbulence model with SIMPLE algorithm method in transient state is applied to solve the T (torque)-N (r/min) curves of the turbine blades at different wind speed. The T-N curves of the generator at different CV (constant voltage) model are measured. Thus, the T-N curves of the turbine blades at different wind speed can be matched by the T-N curves of the generator at different CV model to find the optimal CV model. As the optimal CV mode is selected, the characteristics of the operating points, such as tip speed ratio, revolutions per minute, blade torque, and efficiency, can be identified. The results show that, if the two systems are matched well, the final output power at a high wind speed of 9-10 m/s will be increased by 15%.

  19. Effective solidity in vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  20. Vertical-axis wind turbine development in Canada

    NASA Astrophysics Data System (ADS)

    Templin, R. J.; Rangi, R. S.

    1983-12-01

    Recent Canadian progress in the development of the curved-blade Darrieus vertical-axis wind turbine (VAWT) is described. Cooperation between government, industry and power utilities in the conduct of field trials, over several years, has demonstrated improved performance and reliability of grid-coupled turbines of this type. The rated power of the VAWTs currently under test ranges from 30 kW, in a wind/diesel powerplant, to 230 kW, in an installation on an island in the Gulf of St. Lawrence. Progress has also been made in understanding the basic aerodynamic behavior of the VAWT and theoretical methods for performance and load prediction have correspondingly improved. A brief description is given of 'Project EOLE', a cooperative project between the federal government and the utility Hydro-Quebec to develop and test, during the next two to three years, a 4 MW VAWT prototype, which will be coupled to the power grid at a location on the south shore of the St. Lawrence River.

  1. Model tests of wind turbine with a vertical axis of rotation type Lenz 2

    NASA Astrophysics Data System (ADS)

    Zwierzchowski, Jaroslaw; Laski, Pawel Andrzej; Blasiak, Slawomir; Takosoglu, Jakub Emanuel; Pietrala, Dawid Sebastian; Bracha, Gabriel Filip; Nowakowski, Lukasz

    A building design of vertical axis wind turbines (VAWT) was presented in the article. The construction and operating principle of a wind turbine were described therein. Two VAWT turbine models were compared, i.a. Darrieus and Lenz2, taking their strengths and weaknesses into consideration. 3D solid models of turbine components were presented with the use of SolidWorks software. Using CFD methods, the air flow on two aerodynamic fins, symmetrical and asymmetrical, at different angles of attack were tested. On the basis of flow simulation conducted in FlowSimulation, an asymmetrical fin was chosen as the one showing greater load bearing capacities. Due to the uncertainty of trouble-free operation of Darrieus turbine on construction elements creating the basis thereof, a 3D model of Lenz2 turbine was constructed, which is more reliable and makes turbine self-start possible. On the basis of the research, components were designed and technical docu mentation was compiled.

  2. Flow measurement behind a pair of vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Hummels, Raymond; Leftwich, Megan C.

    2017-11-01

    The wake from a pair of vertical-axis wind turbines (VAWTs) is measured using particle imaging velocimetry (PIV). The VAWT models are mounted in a low-speed wind tunnel and driven using a motor control system. The rotation of the turbines is synced using a proportional controller that allows the turbine's rotational position to be set relative to each other. The rotation of the turbines is also synced with the PIV system for taking phase averaged results. The VAWTs are tested for both co- and counter-rotating cases over a range of relative phase offsets. Time averaged and phase averaged results are measured at the horizontal mid-plane in the near wake. The time-averaged results compare the bulk wake profiles from the pair of turbines. Phase averaged results look at the vortex interactions in the near wake of the turbines. By changing the phase relation between the turbines we can see the impact of the structure interactions in both the phase and time averaged results.

  3. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  4. Gravity effects on wind-induced flutter of leaves

    NASA Astrophysics Data System (ADS)

    Clemmer, Nickalaus; Kopperstad, Karsten; Solano, Tomas; Shoele, Kourosh; Ordonez, Juan

    2017-11-01

    Wind-Induced flutter of leaves depends on both wind velocity and the gravity. To study the gravitational effects on the oscillatory behavior of leaves in the wind, a wind tunnel that can be tilted about the center of the test section is created. This unique rotation capability allows systematic investigation of gravitational effects on the fluttering response of leaves. The flow-induced vibration will be studied for three different leaves at several different tilting angles including the wind travels horizontally, vertically downward and vertically upward. In each situation, the long axis of a leaf is placed parallel to the wind direction and its response is studied at different flow speed. Oscillation of the leaf is recorded via high-speed camera at each of setup, and the effect of the gravity on stabilizing or destabilizing the fluttering response is investigated. Summer REU student at Florida State University.

  5. Strain gauge validation experiments for the Sandia 34-meter VAWT (Vertical Axis Wind Turbine) test bed

    NASA Astrophysics Data System (ADS)

    Sutherland, Herbert J.

    1988-08-01

    Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to equivalent gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system.

  6. Guy cable design and damping for vertical axis wind turbines

    NASA Technical Reports Server (NTRS)

    Carne, T. G.

    1981-01-01

    Guy cables are frequently used to support vertical axis wind turbines since guying the turbine reduces some of the structural requirements on the tower. The guys must be designed to provide both the required strength and the required stiffness at the top of the turbine. The axial load which the guys apply to the tower, bearings, and foundations is an undesirable consequence of using guys to support the turbine. Limiting the axial load so that it does not significantly affect the cost of the turbine is an important objective of the cable design. The lateral vibrations of the cables is another feature of the cable design which needs to be considered. These aspects of the cable design are discussed, and a technique for damping cable vibrations was mathematically analyzed and demonstrated with experimental data.

  7. Feasibility Study on a Low Power Vertical Axis Wind-Powered Generator

    DTIC Science & Technology

    1980-09-01

    E A S I B I L I T Y STUDY ON A LOW POWER VERTICAL A X I S WIND -POWERED GENERATOR W.R. Crook, T. Puust, M.L. Robinson and L . J . Vencel S U M M...A R Y This paper describes inves t igat ions ca r r i ed out t o es tab l i sh a design concept fo r a 1 kW wind -powered generator s u i t a b...a b l e configurat ion using a Darrieus S t ra igh t blade r o t o r with a microprocessor based control system and provides information on t

  8. Vertical-axis wind turbine experiments at full dynamic similarity

    NASA Astrophysics Data System (ADS)

    Duvvuri, Subrahmanyam; Miller, Mark; Brownstein, Ian; Dabiri, John; Hultmark, Marcus

    2017-11-01

    This study presents results from pressurized (upto 200 atm) wind tunnel tests of a self-spinning 5-blade model Vertical-Axis Wind Turbine (VAWT). The model is geometrically similar (scale ratio 1:22) to a commercially available VAWT, which has a rotor diameter of 2.17 meters and blade span of 3.66 meters, and is used at the Stanford university field lab. The use of pressurized air as working fluid allows for the unique ability to obtain full dynamic similarity with field conditions in terms of matched Reynolds numbers (Re), tip-speed ratios (λ), and Mach number (M). Tests were performed across a wide range of Re and λ, with the highest Re exceeding the maximum operational field Reynolds number (Remax) by a factor of 3. With an extended range of accessible Re conditions, the peak turbine power efficiency was seen to occur roughly at Re = 2 Remax and λ = 1 . Beyond Re > 2 Remax the turbine performance is invariant in Re for all λ. A clear demonstration of Reynolds number invariance for an actual full-scale wind turbine lends novelty to this study, and overall the results show the viability of the present experimental technique in testing turbines at field conditions.

  9. Implementation and application of the actuator line model by OpenFOAM for a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Riva, L.; Giljarhus, K.-E.; Hjertager, B.; Kalvig, S. M.

    2017-12-01

    University of Stavanger has started The Smart Sustainable Campus & Energy Lab project, to gain knowledge and facilitate project based education in the field of renewable and sustainable energy and increase the research effort in the same area. This project includes the future installation of a vertical axis wind turbine on the campus roof. A newly developed Computational Fluid Dynamics (CFD) model by OpenFOAM have been implemented to study the wind behavior over the building and the turbine performance. The online available wind turbine model case from Bachant, Goude and Wosnik from 2016 is used as the starting point. This is a Reynolds-Averaged Navier-Stokes equations (RANS) case set up that uses the Actuator Line Model. The available test case considers a water tank with controlled external parameters. Bachant et al.’s model has been modified to study a VAWT in the atmospheric boundary layer. Various simulations have been performed trying to verify the models use and suitability. Simulation outcomes help to understand the impact of the surroundings on the turbine as well as its reaction to parameters changes. The developed model can be used for wind energy and flow simulations for both onshore and offshore applications.

  10. Test results of the DOE/Sandia 17 meter VAWT

    NASA Technical Reports Server (NTRS)

    Nellums, R. O.; Worstell, M. H.

    1979-01-01

    A review is given of the test program of a 17 meter Vertical Axis Wind Turbine VAWT. Performance test results are discussed including difficulties encountered during the VAWT operation along with ways of solving these problems.

  11. Location of aerodynamic noise sources from a 200 kW vertical-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Ottermo, Fredric; Möllerström, Erik; Nordborg, Anders; Hylander, Jonny; Bernhoff, Hans

    2017-07-01

    Noise levels emitted from a 200 kW H-rotor vertical-axis wind turbine have been measured using a microphone array at four different positions, each at a hub-height distance from the tower. The microphone array, comprising 48 microphones in a spiral pattern, allows for directional mapping of the noise sources in the range of 500 Hz to 4 kHz. The produced images indicate that most of the noise is generated in a narrow azimuth-angle range, compatible with the location where increased turbulence is known to be present in the flow, as a result of the previous passage of a blade and its support arms. It is also shown that a semi-empirical model for inflow-turbulence noise seems to produce noise levels of the correct order of magnitude, based on the amount of turbulence that could be expected from power extraction considerations.

  12. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    NASA Astrophysics Data System (ADS)

    Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.

    2016-09-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.

  13. Making windpower an important part of a national energy plan

    NASA Astrophysics Data System (ADS)

    Finlayson, A. N.

    1981-01-01

    The design characteristics of the Finlayson Windcatcher wind turbine are outlined. The unit geometry consists of two vertical axis cylindrical vane arrays mounted very close to each other and rotating in opposite directions. The two rotors are supported top and bottom by anti-friction bearings mounted at the ends of arms which are attached to a single support pillar. Because the rotor axes are downwind of the support pillar axis, they are free to swing in the horizontal plane, remaining automatically downwind without the need for a separate guide vane. There is not gyroscopic effect of the rotors to hinder rotation in wind direction. A 1-2 kW net electrical output in a 30 mph wind is estimated.

  14. Utility-sized Madaras wind plants

    NASA Astrophysics Data System (ADS)

    Whitford, D. H.; Minardi, J. E.

    1981-01-01

    An analysis and technological updating were conducted for the Madaras Rotor Power Plant concept, to determine its ability to compete both technically and economically with horizontal axis wind turbine generators currently under development. The Madaras system uses large cylinders rotating vertically atop each regularly spaced flatcar of a train to propel them, by means of Magnus-effect interaction with the wind, along a circular or oval track. Alternators geared to the wheels of each car generate electrical power, which is transmitted to a power station by a trolley system. The study, consisting of electromechanical design, wind tunnel testing, and performance and cost analyses, shows that utility-sized plants greater than 228 MW in capacity and producing 975,000 kWh/year are feasible. Energy costs for such plants are projected to be between 22% lower and 12% higher than horizontal axis turbine plants of comparable output.

  15. A model for the response of vertical axis wind turbines to turbulent flow: Parts 1 and 2

    NASA Astrophysics Data System (ADS)

    Malcolm, D. R.

    1988-07-01

    This report describes a project intended to incorporate the effects of atmospheric turbulence into the structural response of Darrieus rotor, vertical axis wind turbines. The basis of the technique is the generation of a suitable time series of wind velocities, which are passed through a double multiple streamtube aerodynamic representation of the rotor. The aerodynamic loads are decomposed into components of the real eigenvectors of the rotor and subsequently into full-power and cross-spectral densities. These modal spectra are submitted as input to a modified NASTRAN random load analysis and the power spectra of selected responses are obtained. This procedure appears to be successful. Results at zero turbulence agree with alternative solutions, and when turbulence is included, the predicted stress spectra for the Indal 6400 rotor are in good agreement with field data. The model predicts that the effect of turbulence on harmonic frequency peaks and on all lead-lag bending will not be great. However, it appears that only 11 percent turbulence intensity can almost double the rms of cyclic flatwise blade bending.

  16. Design of h-Darrieus vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.

    2015-05-01

    Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  17. Wind data from Memphis airport

    DOT National Transportation Integrated Search

    1997-06-01

    A 1300-foot array of horizontal and vertical single-axis anemometers was installed at the Memphis, TN Airport on 10- and 13-foot poles under the approach to Runway 727. One-minute average measurements were recorded continuously from mid August 1995 t...

  18. International Symposium on Wind Energy Systems, Held at Cambridge University, on 7-9 September 1976

    DTIC Science & Technology

    1976-12-07

    Darrieus turbine design. B.F. Blackwell, Sandia Laboratories, USA. Some design aspects of high-speed vertical- axis wind turbines . R.J. Templin and P...Energy, Energy Conversion, Power Systems, Windmills, Wind Turbines . 20. §6PAT(Cin~hW. "" aid. it 00e096 suf id""App hr 6Řb nwe) This report of qs brief...large wind turbines ocerating in lare arrays, and the output (with and without storage) of several such arrwef awhen geographically dispersed, has yet to

  19. Aerodynamics of small-scale vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Desy, P.

    1985-12-01

    The purpose of this work is to study the influence of various rotor parameters on the aerodynamic performance of a small-scale Darrieus wind turbine. To do this, a straight-bladed Darrieus rotor is calculated by using the double-multiple-streamtube model including the streamtube expansion effects through the rotor (CARDAAX computer code) and the dynamicstall effects. The straight-bladed Darrieus turbine is as expected more efficient with respect the curved-bladed rotor but for a given solidity is operates at higher wind speeds.

  20. Differential Canard deflection for generation of yawing moment on the X-31 with and without the vertical tail. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Whiting, Matthew Robert

    1996-01-01

    The feasibility of augmenting the available yaw control power on the X-31 through differential deflection of the canard surfaces was studied as well as the possibility of using differential canard control to stabilize the X-31 with its vertical tail removed. Wind-tunnel tests and the results of departure criteria and linear analysis showed the destabilizing effect of the reduction of the vertical tail on the X-31. Wind-tunnel testing also showed that differential canard deflection was capable of generating yawing moments of roughly the same magnitude as the thrust vectoring vanes currently in place on the X-31 in the post-stall regime. Analysis showed that the X-31 has sufficient aileron roll control power that with the addition of differential canard as a yaw controller, the wind-axis roll accelerations will remain limited by yaw control authority. It was demonstrated, however, that pitch authority may actually limit the maximum roll rate which can be sustained. A drop model flight test demonstrated that coordinated, wind axis rolls could be performed with roll rates as high as 50 deg/sec (full scale equivalent) at 50 deg angle of attack. Another drop model test was conducted to assess the effect of vertical tail reduction, and an analysis of using differential canard deflection to stabilize the tailless X-31 was performed. The results of six-degree-of-freedom, non-linear simulation tests were correlated with the drop model flights. Simulation studies then showed that the tailless X-31 could be controlled at angles of attack at or above 20 deg using differential canard as the only yaw controller.

  1. Overview of Vertical Axis Wind Turbine (VAWT)

    NASA Technical Reports Server (NTRS)

    Sullivan, W. N.

    1979-01-01

    A survey is presented of the practices which were applied for designing VAWT blades. An attempt is made to discuss strengths and weaknesses of the existing procedures. Discussion is provided on planned or suggested future work in developing improved design tools.

  2. Aeroelastic stability analysis of a Darrieus wind turbine

    NASA Astrophysics Data System (ADS)

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis was developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  3. Characteristics of future Vertical Axis Wind Turbines (VAWTs). [to generate utility grid electric power

    NASA Technical Reports Server (NTRS)

    Kadlec, E. G.

    1979-01-01

    The developing Darrieus VAWT technology whose ultimate objective is economically feasible, industry-produced, commercially marketed wind energy systems is reviewed. First-level aerodynamic, structural, and system analyses capabilities which support and evaluate the system designs are discussed. The characteristics of current technology designs are presented and their cost effectiveness is assessed. Potential improvements identified are also presented along with their cost benefits.

  4. Research on the space-borne coherent wind lidar technique and the prototype experiment

    NASA Astrophysics Data System (ADS)

    Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao

    2016-10-01

    Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.

  5. Design, Analysis, Hybrid Testing and Orientation Control of a Floating Platform with Counter-Rotating Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kanner, Samuel Adam Chinman

    The design and operation of two counter-rotating vertical-axis wind turbines on a floating, semi-submersible platform is studied. The technology, called the Multiple Integrated and Synchronized Turbines (MIST) platform has the potential to reduce the cost of offshore wind energy per unit of installed capacity. Attached to the platform are closely-spaced, counter-rotating turbines, which can achieve a higher power density per planform area because of synergistic interaction effects. The purpose of the research is to control the orientation of the platform and rotational speeds of the turbines by modifying the energy absorbed by each of the generators of the turbines. To analyze the various aspects of the platform and wind turbines, the analysis is drawn from the fields of hydrodynamics, electromagnetics, aerodynamics and control theory. To study the hydrodynamics of the floating platform in incident monochromatic waves, potential theory is utilized, taking into account the slow-drift yaw motion of the platform. Steady, second-order moments that are spatially dependent (i.e., dependent on the platform's yaw orientation relative to the incident waves) are given special attention since there are no natural restoring yaw moment. The aerodynamics of the counter-rotating turbines are studied in collaboration with researchers at the UC Berkeley Mathematics Department using a high-order, implicit, large-eddy simulation. An element flipping technique is utilized to extend the method to a domain with counter-rotating turbines and the effects from the closely-spaced turbines is compared with existing experimental data. Hybrid testing techniques on a model platform are utilized to prove the controllability of the platform in lieu of a wind-wave tank. A 1:82 model-scale floating platform is fabricated and tested at the UC Berkeley Physical-Model Testing Facility. The vertical-axis wind turbines are simulated by spinning, controllable actuators that can be updated in real-time of the model scale. Under certain wind and wave headings, it is possible to control the orientation of the platform in regular waves to maximize the power output from the turbines. A time-domain numerical simulation tool is able to confirm some of the experimental findings, taking into account the decoupled properties of the slow-drift hydrodynamics and wind turbine aerodynamics. Future platform designs are discussed, including the French-based, pre-commercial design from Nenuphar Wind, called the TwinFloat, which is closely related to concepts examined in the thesis.

  6. Backup Mechanical Brake System of the Wind Turbine

    NASA Astrophysics Data System (ADS)

    Sirotkin, E. A.; Solomin, E. V.; Gandzha, S. A.; Kirpichnikova, I. M.

    2018-01-01

    Paper clarifies the necessity of the emergency mechanical brake systems usage for wind turbines. We made a deep analysis of the wind turbine braking methods available on the market, identifying their strengths and weaknesses. The electromechanical braking appeared the most technically reasonable and economically attractive. We described the developed combined electromechanical brake system for vertical axis wind turbine driven from electric drive with variable torque enough to brake over the turbine even on the storm wind speed up to 45 m/s. The progress was made due to the development of specific kinematic brake system diagram and intelligent control system managed by special operation algorithm.

  7. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Simão Ferreira, C.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.

    2014-06-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed.

  8. Panel method for the wake effects on the aerodynamics of vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Goyal, Udit; Rempfer, Dietmar

    2011-11-01

    A formulation based on the panel method is implemented for studying the unsteady aerodynamics of straight-bladed vertical-axis wind turbines. A combination of source and vortex distributions is used to represent an airfoil in Darrieus type motion. Our approach represents a low-cost computational technique that takes into account the dynamic changes in angle of attack of the blade during a cycle. A time-stepping mechanism is introduced for the wake convection, and its effects on the aerodynamic forces on the blade are discussed. The focus of the study is to describe the effect of the trailing wakes on the upstream flow conditions and coefficient of performance of the turbines. Results show a decrease in Cp until the wake structure develops and assumes a quasi-steady behavior. A comparison with other models such as single and multiple streamtubes is discussed, and optimization of the blade pitch angle is performed to increase the instantaneous torque and hence the power output from the turbine.

  9. Low order physical models of vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Craig, Anna; Dabiri, John; Koseff, Jeffrey

    2016-11-01

    In order to examine the ability of low-order physical models of vertical axis wind turbines to accurately reproduce key flow characteristics, experiments were conducted on rotating turbine models, rotating solid cylinders, and stationary porous flat plates (of both uniform and non-uniform porosities). From examination of the patterns of mean flow, the wake turbulence spectra, and several quantitative metrics, it was concluded that the rotating cylinders represent a reasonably accurate analog for the rotating turbines. In contrast, from examination of the patterns of mean flow, it was found that the porous flat plates represent only a limited analog for rotating turbines (for the parameters examined). These findings have implications for both laboratory experiments and numerical simulations, which have previously used analogous low order models in order to reduce experimental/computational costs. NSF GRF and SGF to A.C; ONR N000141211047 and the Gordon and Betty Moore Foundation Grant GBMF2645 to J.D.; and the Bob and Norma Street Environmental Fluid Mechanics Laboratory at Stanford University.

  10. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part I: from the airfoil performance to the very far wake

    NASA Astrophysics Data System (ADS)

    Chatelain, Philippe; Duponcheel, Matthieu; Caprace, Denis-Gabriel; Marichal, Yves; Winckelmans, Gregoire

    2017-11-01

    A vortex particle-mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES) of vertical axis wind turbine (VAWT) flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied with respect to the VAWT geometry and its operating point. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  11. An LES study of vertical-axis wind turbine wakes aerodynamics

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Dabiri, John O.

    2016-11-01

    In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.

  12. Wind wheel electric power generator

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  13. Effects of setting angle on performance of fish-bionic wind wheel

    NASA Astrophysics Data System (ADS)

    Li, G. S.; Yang, Z. X.; Song, L.; Chen, Q.; Li, Y. B.; Chen, W.

    2016-08-01

    With the energy crisis and the increasing environmental pollutionmore and more efforts have been made about wind power development. In this paper, a new type of vertical axis named the fish-bionic wind wheel was proposed, and the outline of wind wheel was constructed by curve of Fourier fitting and polynomial equations. This paper attempted to research the relationship between the setting angle and the wind turbine characteristics by computational fluid dynamics (CFD) simulation. The results showed that the setting angle of the fish-bionic wind wheel has some significant effects on the efficiency of the wind turbine, Within the range of wind speed from 13m/s to 15m/s, wind wheel achieves the maximum efficiency when the setting angle is at 37 degree. The conclusion will work as a guideline for the improvement of wind turbine design.

  14. Wind turbine generator with improved operating subassemblies

    DOEpatents

    Cheney, Jr., Marvin C.

    1985-01-01

    A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

  15. Effect of chord-to-diameter ratio on vertical-axis wind turbine wake development

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Araya, Daniel B.; Leftwich, Megan C.

    2017-12-01

    The wake structure of a vertical-axis wind turbine (VAWT) is strongly dependent on the tip-speed ratio, λ, or the tangential speed of the turbine blade relative to the incoming wind speed. The geometry of a turbine can influence λ, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. To investigate this relationship, we present the results of an experiment to characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter ( D), to blade chord ( c), which was chosen to be D/c = 3, 6, and 9. For a fixed freestream Reynolds number based on the blade chord of Re_c = 1.6× 10^3, both two-component particle image velocimetry (PIV) and single-component hot-wire anemometer measurements are taken at the horizontal mid-plane in the wake of each turbine. PIV measurements are ensemble averaged in time and phase averaged with each rotation of the turbine. Hot-wire measurement points are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine.

  16. New airfoil sections for straight bladed turbine

    NASA Astrophysics Data System (ADS)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine.

  17. Energy characteristics of Darrieus rotor ( review)

    NASA Astrophysics Data System (ADS)

    Gorelov, D. N.

    2010-09-01

    Presented below is the review of the results of experimental studies of energy characteristics of Darrieus rotor with vertical rotation axis. Influence of main geometry parameters of the rotor on its energy characteristics has been analyzed. It is shown that Darrieus rotor may have the higher level of energy characteristics than the best propeller wind turbines.

  18. Numerical Investigation of Synthetic-jet based Flow Control on Vertical-axis Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Menon, Ashwin; Tran, Steven; Sahni, Onkar

    2013-11-01

    Vertical-axis wind turbines encounter large unsteady aerodynamic loads in a sustained fashion due to the continuously varying angle of attack that is experienced by turbine blades during each revolution. Moreover, the detachment of the leading edge vortex at high angles of attack leads to sudden change in aerodynamic loads that result in structural vibrations and fatigue, and possibly failure. This numerical study focuses on using synthetic-jet based fluidic actuation to reduce the unsteady loading on VAWT blades. In the simulations, the jets are placed at the dominant separation location that is observed in the baseline case. We consider different tip-speed ratios, O(2-5), and we also study the effect of blowing ratio (to be in O(0.5-1.5)) and reduced frequency, i.e., ratio of jet frequency to flow frequency (to be in O(5-15)). For all cases, unsteady Reynolds-averaged Navier-Stokes simulations are carried out by using the Spallart-Allamaras turbulence model, where stabilized finite element method is employed for spatial discretization along with an implicit time-integration scheme.

  19. A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2017-04-01

    In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs) exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs). Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES). To do this, we use a previously-validated LES framework in which an actuator line model (ALM) is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as Nc/R, where N is the number of blades, c is the chord length and R is the rotor radius) and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI) at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height) increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the upper wake edge compared to the ones at the lower edge), only slight lateral asymmetries were observed at the optimum tip-speed ratio for which the simulations were performed.

  20. Wind energy - A utility perspective

    NASA Astrophysics Data System (ADS)

    Fung, K. T.; Scheffler, R. L.; Stolpe, J.

    1981-03-01

    Broad consideration is given to the siting, demand, capital and operating cost and wind turbine design factors involved in a utility company's incorporation of wind powered electrical generation into existing grids. With the requirements of the Southern California Edison service region in mind, it is concluded that although the economic and legal climate for major investments in windpower are favorable, the continued development of large only wind turbine machines (on the scale of NASA's 2.5 MW Mod-2 design) is imperative in order to reduce manpower and maintenance costs. Stress is also put on the use of demonstration projects for both vertical and horizontal axis devices, in order to build up operational experience and confidence.

  1. Description of the 3 MW SWT-3 wind turbine at San Gorgonio Pass, California

    NASA Technical Reports Server (NTRS)

    Rybak, S. C.

    1982-01-01

    The SWT-3 wind turbine, a microprocessor controlled three bladed variable speed upwind machine with a 3MW rating that is presently operational and undergoing system testing, is discussed. The tower, a rigid triangular truss configuration, is rotated about its vertical axis to position the wind turbine into the prevailing wind. The blades rotate at variable speed in order to maintain an optimum 6 to 1 tip speed ratio between cut in and fated wind velocity, thereby maximizing power extraction from the wind. Rotor variable speed is implemented by the use of a hydrostatic transmission consisting of fourteen fixed displacement pumps operating in conjunction with eighteen variable displacement motors. Full blade pitch with on-off hydraulic actuation is used to maintain 3MW of output power.

  2. Control strategy for a variable-speed wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Jacob, A.; Veillette, D.; Rajagopalan, V.

    1979-01-01

    A control concept for a variable-speed wind energy conversion system is proposed, for which a self-exited asynchronous cage generator is used along with a system of thyristor converters. The control loops are the following: (1) regulation of the entrainment speed as function of available mechanical energy by acting on the resistance couple of the asynchronous generator; (2) control of electric power delivered to the asynchronous machine, functioning as a motor, for start-up of the vertical axis wind converter; and (3) limitation of the slip value, and by consequence, of the induction currents in the presence of sudden variations of input parameters.

  3. Jet spoiler arrangement for wind turbine

    DOEpatents

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  4. Jet spoiler arrangement for wind turbine

    DOEpatents

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  5. Jet spoiler arrangement for wind turbine

    NASA Astrophysics Data System (ADS)

    Cyrus, J. D.; Kablec, E. G.; Klimas, P. C.

    1983-09-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stal conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  6. Analogy between a flapping wing and a wind turbine with a vertical axis of revolution

    NASA Astrophysics Data System (ADS)

    Gorelov, D. N.

    2009-03-01

    Based on an analysis of available experimental data, the hypothesis about an analogy between a flapping wing and a wind turbine of the Darrieus rotor type is justified. It is demonstrated that the torque on the shaft of the Darrieus rotor is generated by thrust forces acting on the blades in a pulsed flow. A conclusion is drawn that it is necessary to perform aerodynamic calculations of blades on the basis of the nonlinear theory of the wing in an unsteady flow with allowance for the airfoil thickness.

  7. Hess Tower field study: sonic measurements at a former building-integrated wind farm site

    NASA Astrophysics Data System (ADS)

    Araya, Daniel

    2017-11-01

    Built in 2010, Hess Tower is a 29-story office building located in the heart of downtown Houston, TX. Unique to the building is a roof structure that was specifically engineered to house ten vertical-axis wind turbines (VAWTs) to partially offset the energy demands of the building. Despite extensive atmospheric boundary layer (ABL) wind tunnel tests to predict the flow conditions on the roof before the building was constructed, the Hess VAWTs were eventually removed after allegedly one of the turbines failed and fell to the ground. This talk presents in-situ sonic anemometry measurements taken on the roof of Hess Tower at the former turbine locations. We compare this wind field characterization to the ABL wind tunnel data to draw conclusions about building-integrated wind farm performance and prediction capability.

  8. CFD Analysis of a Finite Linear Array of Savonius Wind Turbines

    NASA Astrophysics Data System (ADS)

    Belkacem, Belabes; Paraschivoiu, Marius

    2016-09-01

    Vertical axis wind turbines such as Savonius rotors have been shown to be suitable for low wind speeds normally associated with wind resources in all corners of the world. However, the efficiency of the rotor is low. This paper presents results of Computational Fluid Dynamics (CFD) simulations for an array of Savonius rotors that show a significant increase in efficiency. It looks at identifying the effect on the energy yield of a number of turbines placed in a linear array. Results from this investigation suggest that an increase in the energy yield could be achieved which can reach almost two times than the conventional Savonius wind turbine in the case of an array of 11turbines with a distance of 1.4R in between them. The effect of different TSR values and different wind inlet speeds on the farm has been studied for both a synchronous and asynchronous wind farm.

  9. An implementation of an aeroacoustic prediction model for broadband noise from a vertical axis wind turbine using a CFD informed methodology

    NASA Astrophysics Data System (ADS)

    Botha, J. D. M.; Shahroki, A.; Rice, H.

    2017-12-01

    This paper presents an enhanced method for predicting aerodynamically generated broadband noise produced by a Vertical Axis Wind Turbine (VAWT). The method improves on existing work for VAWT noise prediction and incorporates recently developed airfoil noise prediction models. Inflow-turbulence and airfoil self-noise mechanisms are both considered. Airfoil noise predictions are dependent on aerodynamic input data and time dependent Computational Fluid Dynamics (CFD) calculations are carried out to solve for the aerodynamic solution. Analytical flow methods are also benchmarked against the CFD informed noise prediction results to quantify errors in the former approach. Comparisons to experimental noise measurements for an existing turbine are encouraging. A parameter study is performed and shows the sensitivity of overall noise levels to changes in inflow velocity and inflow turbulence. Noise sources are characterised and the location and mechanism of the primary sources is determined, inflow-turbulence noise is seen to be the dominant source. The use of CFD calculations is seen to improve the accuracy of noise predictions when compared to the analytic flow solution as well as showing that, for inflow-turbulence noise sources, blade generated turbulence dominates the atmospheric inflow turbulence.

  10. Adjoint-Baed Optimal Control on the Pitch Angle of a Single-Bladed Vertical-Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Tsai, Hsieh-Chen; Colonius, Tim

    2017-11-01

    Optimal control on the pitch angle of a NACA0018 single-bladed vertical-axis wind turbine (VAWT) is numerically investigated at a low Reynolds number of 1500. With fixed tip-speed ratio, the input power is minimized and mean tangential force is maximized over a specific time horizon. The immersed boundary method is used to simulate the two-dimensional, incompressible flow around a horizontal cross section of the VAWT. The problem is formulated as a PDE constrained optimization problem and an iterative solution is obtained using adjoint-based conjugate gradient methods. By the end of the longest control horizon examined, two controls end up with time-invariant pitch angles of about the same magnitude but with the opposite signs. The results show that both cases lead to a reduction in the input power but not necessarily an enhancement in the mean tangential force. These reductions in input power are due to the removal of a power-damaging phenomenon that occurs when a vortex pair is captured by the blade in the upwind-half region of a cycle. This project was supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  11. Instantaneous charging & discharging cycle analysis of a novel supercapacitor based energy harvesting circuit

    NASA Astrophysics Data System (ADS)

    Khan, MD Shahrukh Adnan; Kuni, Sharsad Kara; Rajkumar, Rajprasad; Syed, Anas; Hawladar, Masum; Rahman, Md. Moshiur

    2017-12-01

    In this paper, an extensive effort has been made to design and develop a prototype in a laboratory setup environment in order to investigate experimentally the response of a novel Supercapacitor based energy harvesting circuit; particularly the phenomena of instantaneous charging and discharging cycle is analysed. To maximize battery lifespan and storage capacity, charging/discharging cycles need to be optimized in such a way, it ultimately enhances the system performances reliably. Keeping this into focus, an Arduino-MOSFET based control system is developed to charge the Supercapacitor from a low wind Vertical Axis Turbine (VAWT) and discharge it through a 6V battery. With a wind speed of 5m/s, the wind turbine requires approximately 8.1 hours to charge the 6V battery through Supercapacitor bank that constitutes 18 cycles in which each cycle consumes 27 minutes. The overall performance of the proposed system was quite convincing in a sense that the efficiency of the developed Energy Harvesting Circuit EHC raises to 19% in comparison to direct charging of the battery from the Vertical wind turbine. At low wind speed, such value of efficiency margin is quite encouraging which essentially validates the system design.

  12. Influence of omni-directional guide vane on the performance of cross-flow rotor for urban wind energy

    NASA Astrophysics Data System (ADS)

    Wicaksono, Yoga Arob; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    Vertical axis wind turbine like cross-flow rotor have some advantage there are, high self-starting torque, low noise, and high stability; so, it can be installed in the urban area to produce electricity. But, the urban area has poor wind condition, so the cross-flow rotor needs a guide vane to increase its performance. The aim of this study is to determine experimentally the effect of Omni-Directional Guide Vane (ODGV) on the performance of a cross-flow wind turbine. Wind tunnel experiment has been carried out for various configurations. The ODGV was placed around the cross-flow rotor in order to increase ambient wind environment of the wind turbine. The maximum power coefficient is obtained as Cpmax = 0.125 at 60° wind direction. It was 21.46% higher compared to cross-flow wind turbine without ODGV. This result showed that the ODGV able to increase the performance of the cross-flow wind turbine.

  13. 75 FR 27583 - Job Corps: Final Finding of No Significant Impact (FONSI) for Small Vertical Wind Turbine and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ...Pursuant to the Council on Environmental Quality Regulations (40 CFR part 1500-08) implementing procedural provisions of the National Environmental Policy Act (NEPA), the Department of Labor, Office of the Secretary (OSEC), in accordance with 29 CFR 11.11(d), gives final notice of the proposed construction of a small vertical axis wind turbine and solar cells at the Paul Simon Job Corps Center, and that this project will not have a significant adverse impact on the environment. In accordance with 29 CFR 11.11(d) and 40 CFR 1501.4(e)(2), a preliminary Environmental Assessment was presented through a public meeting held on 5/4/2010 at the Paul Simon Job Corps Center. No comments were received regarding the Environmental Assessment (EA). OSEC has reviewed the conclusion of the EA, and agrees with the finding of no significant impact. This notice serves as the Final Finding of No Significant Impact (FONSI) for Small Vertical Wind Turbine and Solar Installation at the Paul Simon Job Corps Center located at 3348 South Kedzie Avenue, Chicago, IL 60623. The preliminary EA are adopted in final with no change.

  14. Design Mining Interacting Wind Turbines.

    PubMed

    Preen, Richard J; Bull, Larry

    2016-01-01

    An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.

  15. A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1995-01-01

    Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.

  16. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays configurations. Under controlled flow conditions in a wind tunnel, the counter-rotating configuration resulted in a slight improvement in the aerodynamic performance of each turbine compared to the isolated installation. Moreover, the counter-rotating pair improved the power generation of a turbine located downstream of the pair substantially.

  17. Preface: Workshop on Off-Grid Technology Systems

    NASA Astrophysics Data System (ADS)

    Alonso-Marroquin, Fernando

    2017-06-01

    Off-grid houses are dwellings that do not rely on water supply, sewer, or electrical power grid, and are able to operate independently of all public utility services. These houses are ideal for remote communities or population suffering natural or human-made disasters. Our aim is to develop compact and affordable off-grid technologies by integrating high-end nano-engineering with systems that imitates natural biological processes. The key areas of focus in the workshop were: solar energy harvesting using nanotechnology, wind energy harvesting from vertical-axis wind turbines, supercapacitors energy storage systems, treatment of greywater, and green roofs to achieve air comfort.

  18. Solar breeze power package and saucer ship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, S. E.

    1985-11-12

    A solar breeze power package having versatile sail and windmast options useful both on land and sea and especially useful in the saucer ship type design. The Vertical Axis Wind Turbine (VAWT) of the several Darrieus designs in conjunction with roll-up or permanently mounted solar cells combine in a hybrid or are used separately to provide power to a battery bank or other storage device.

  19. Description of signature scales in a floating wind turbine model wake subjected to varying turbulence intensity

    NASA Astrophysics Data System (ADS)

    Kadum, Hawwa; Rockel, Stanislav; Holling, Michael; Peinke, Joachim; Cal, Raul Bayon

    2017-11-01

    The wake behind a floating model horizontal axis wind turbine during pitch motion is investigated and compared to a fixed wind turbine wake. An experiment is conducted in an acoustic wind tunnel where hot-wire data are acquired at five downstream locations. At each downstream location, a rake of 16 hot-wires was used with placement of the probes increasing radially in the vertical, horizontal, and diagonally at 45 deg. In addition, the effect of turbulence intensity on the floating wake is examined by subjecting the wind turbine to different inflow conditions controlled through three settings in the wind tunnel grid, a passive and two active protocols, thus varying in intensity. The wakes are inspected by statistics of the point measurements, where the various length/time scales are considered. The wake characteristics for a floating wind turbine are compared to a fixed turbine, and uncovering its features; relevant as the demand for exploiting deep waters in wind energy is increasing.

  20. Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Dabiri, John O.

    2017-04-01

    Large eddy simulation (LES) is coupled with a turbine model to study the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a tuning-free anisotropic minimum dissipation model is used to parameterise the subfilter stress tensor, while the turbine-induced forces are modelled with an actuator line technique. The LES framework is first validated in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit can be well characterised by a two-dimensional multivariate Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine. Also, a simple parameterisation of VAWTs for LES with very coarse grid resolutions is proposed, in which the turbine is modelled as a rectangular porous plate with the same thrust coefficient. The simulation results show that, after some downwind distance (x/D ≈ 6), both actuator line and rectangular porous plate models have similar predictions for the mean velocity deficit. These results are of particular importance in simulations of large wind farms where, due to the coarse spatial resolution, the flow around individual VAWTs is not resolved.

  1. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  2. Rolling with the flow: bumblebees flying in unsteady wakes.

    PubMed

    Ravi, Sridhar; Crall, James D; Fisher, Alex; Combes, Stacey A

    2013-11-15

    Our understanding of how variable wind in natural environments affects flying insects is limited because most studies of insect flight are conducted in either smooth flow or still air conditions. Here, we investigate the effects of structured, unsteady flow (the von Karman vortex street behind a cylinder) on the flight performance of bumblebees (Bombus impatiens). Bumblebees are 'all-weather' foragers and thus frequently experience variable aerial conditions, ranging from fully mixed, turbulent flow to unsteady, structured vortices near objects such as branches and stems. We examined how bumblebee flight performance differs in unsteady versus smooth flow, as well as how the orientation of unsteady flow structures affects their flight performance, by filming bumblebees flying in a wind tunnel under various flow conditions. The three-dimensional flight trajectories and orientations of bumblebees were quantified in each of three flow conditions: (1) smooth flow, (2) the unsteady wake of a vertical cylinder (inducing strong lateral disturbances) and (3) the unsteady wake of a horizontal cylinder (inducing strong vertical disturbances). In both unsteady conditions, bumblebees attenuated the disturbances induced by the wind quite effectively, but still experienced significant translational and rotational fluctuations as compared with flight in smooth flow. Bees appeared to be most sensitive to disturbance along the lateral axis, displaying large lateral accelerations, translations and rolling motions in response to both unsteady flow conditions, regardless of orientation. Bees also displayed the greatest agility around the roll axis, initiating voluntary casting maneuvers and correcting for lateral disturbances mainly through roll in all flow conditions. Both unsteady flow conditions reduced the upstream flight speed of bees, suggesting an increased cost of flight in unsteady flow, with potential implications for foraging patterns and colony energetics in natural, variable wind environments.

  3. Darrieus wind-turbine and pump performance for low-lift irrigation pumping

    NASA Astrophysics Data System (ADS)

    Hagen, L. J.; Sharif, M.

    1981-10-01

    In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.

  4. Experimental study of separator effect and shift angle on crossflow wind turbine performance

    NASA Astrophysics Data System (ADS)

    Fahrudin, Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    This paper present experimental test results of separator and shift angle influence on Crossflow vertical axis wind turbine. Modification by using a separator and shift angle is expected to improve the thrust on the blade so as to improve the efficiency. The design of the wind turbine is tested at different wind speeds. There are 2 variations of crossflow turbine design which will be analyzed using an experimental test scheme that is, 3 stage crossflow and 2 stage crossflow with the shift angle. Maximum power coefficient obtained as Cpmax = 0.13 at wind speed 4.05 m/s for 1 separator and Cpmax = 0.12 for 12° shear angle of wind speed 4.05 m/s. In this study, power characteristics of the crossflow rotor with separator and shift angle have been tested. The experimental data was collected by variation of 2 separator and shift angle 0°, 6°, 12° and wind speed 3.01 - 4.85 m/s.

  5. Energy Alternatives. Volume 2, No. 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielke, G.

    1984-08-01

    Some new ways of financing energy-efficient homes are briefly discussed. A vertical axis wind turbine operating at an Illinois residence is described. The failure of the 40% federal renewable energy tax credit to be extended beyond December 31, 1985, and legislation concerning the manufacture, importation, and use of alcohol fuels are reported. An alternative way of constructing exterior corners using only two studs with drywall clips is described. (LEW)

  6. Coriolis effect on dynamic stall in a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Tsai, Hsieh-Chen; Colonius, Tim

    2013-11-01

    The immersed boundary method is used to simulate the flow around a two-dimensional rotating NACA 0018 airfoil at moderate (sub-scale) Reynolds number in order to investigate separated flow occurring on a vertical-axis wind turbine (VAWT). The influence of dynamic stall on the forces is characterized as a function of tip-speed ratio. The influence of the Coriolis effect is also investigated by comparing the rotating airfoil to one undergoing a surging and pitching motion that produces an equivalent speed and angle-of-attack variation over the cycle. While the Coriolis force produces only small differences in the averaged forces, it plays an important role during dynamic stall. Due to the fact that the Coriolis force deflects the fluid and propagates the vortices differently, the wake-capturing phenomenon of the trailing edge vortex is observed in the flow around the rotating airfoil during a certain range of azimuthal angle. This wake-capturing of the trailing edge vortex leads to a large decrease in lift. However, because of the phase difference between each wake-capturing, there are only small differences in the average forces. The simulations are also compared to results from companion water-tunnel experiments at Caltech. This project is supported by the Gordon and Betty Moore Foundation.

  7. Numerical investigation of the self-starting of a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Tsai, Hsieh-Chen; Colonius, Tim

    2014-11-01

    The immersed boundary method is used to simulate the incompressible flow around two-dimensional airfoils at sub-scale Reynolds number in order to investigate the self-starting capability of a vertical-axis wind turbine (VAWT). By investigating a single blade fixed at various angle of attacks, the leading edge vortex (LEV) is shown to play an important role in the starting mechanism for both flat-plate and NACA 0018 blades. Depending on the angle of attack of the blade, as the LEV grows, the corresponding low pressure region results in a thrust in the tangential direction, which produces a positive torque to VAWT. Due to the characteristics of the blades, a NACA 0018 blade produces a larger thrust over a wider range of angle of attacks than a flat-plate blade. Therefore, a VAWT with NACA 0018 blades can self-start more easily than one with flat-plate blades. Moreover, by investigating the starting torque of three-bladed VAWTs fixed at various orientations, the optimal orientation that produces the largest torque to start both VAWTs is with a blade parallel to the flow and facing downstream. The simulations are also compared to results from companion water-tunnel experiments at Caltech. This project is supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  8. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    NASA Astrophysics Data System (ADS)

    Bieniek, Andrzej

    2017-10-01

    The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 m s-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  9. Investigation of turbine ventilator performance after added wind cup for room exhaust air applications

    NASA Astrophysics Data System (ADS)

    Harun, D.; Zulfadhli; Akhyar, H.

    2018-05-01

    The turbine ventilator is a wind turbine with a vertical axis that has a combined function of the wind turbine and a suction fan. In this study, the turbine ventilator modified by adding a wind cup on the top (cap) turbine ventilator. The purpose of this experiment is to investigated the effect of the addition of wind cup on the turbine ventilator. Turbine ventilator used is type v30 and wind cup with diameter 77 mm. The experiment was conducted using a triangular pentagon model space chamber which was cut off to place the ventilator turbine ventilation cup with a volume of 0.983 m3 (equivalent to 1 mm3). The results of this study indicate that at an average wind speed of 1.8 m/s, the rotation of the turbine produced without a wind cup is 60.6 rpm while with the addition of a wind cup in the turbine ventilator is 69 rpm. The average increase of rotation turbine after added win cup is 8.4 rpm and the efficiency improvement of turbine ventilator is 1.7 %.

  10. Wind Turbines Adaptation to the Variability of the Wind Field

    NASA Astrophysics Data System (ADS)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.

  11. Advanced composites for windmills

    NASA Astrophysics Data System (ADS)

    Bourquardez, G.

    A development status assessment is conducted for advanced composite construction techniques for windmill blade structures which, as in the case of composite helicopter rotors, promise greater reliability, longer service life, superior performance, and lower costs. Composites in wind turbine applications must bear aerodynamic, inertial and gravitational loads in complex interaction cycles. Attention is given to large Darrieus-type vertical axis windmills, to which composite construction methods may offer highly effective pitch-control mechanisms, especially in the 'umbrella' configuration.

  12. Comparative hybrid and digital simulation studies of the behaviour of a wind generator equipped with a static frequency converter

    NASA Astrophysics Data System (ADS)

    Dube, B.; Lefebvre, S.; Perocheau, A.; Nakra, H. L.

    1988-01-01

    This paper describes the comparative results obtained from digital and hybrid simulation studies on a variable speed wind generator interconnected to the utility grid. The wind generator is a vertical-axis Darrieus type coupled to a synchronous machine by a gear-box; the synchronous machine is connected to the AC utility grid through a static frequency converter. Digital simulation results have been obtained using CSMP software; these results are compared with those obtained from a real-time hybrid simulator that in turn uses a part of the IREQ HVDC simulator. The agreement between hybrid and digital simulation results is generally good. The results demonstrate that the digital simulation reproduces the dynamic behavior of the system in a satisfactory manner and thus constitutes a valid tool for the design of the control systems of the wind generator.

  13. Simulating the dynamic behavior of a vertical axis wind turbine operating in unsteady conditions

    NASA Astrophysics Data System (ADS)

    Battisti, L.; Benini, E.; Brighenti, A.; Soraperra, G.; Raciti Castelli, M.

    2016-09-01

    The present work aims at assessing the reliability of a simulation tool capable of computing the unsteady rotational motion and the associated tower oscillations of a variable speed VAWT immersed in a coherent turbulent wind. As a matter of fact, since the dynamic behaviour of a variable speed turbine strongly depends on unsteady wind conditions (wind gusts), a steady state approach can't accurately catch transient correlated issues. The simulation platform proposed here is implemented using a lumped mass approach: the drive train is described by resorting to both the polar inertia and the angular position of rotating parts, also considering their speed and acceleration, while rotor aerodynamic is based on steady experimental curves. The ultimate objective of the presented numerical platform is the simulation of transient phenomena, driven by turbulence, occurring during rotor operation, with the aim of supporting the implementation of efficient and robust control algorithms.

  14. Large Eddy Simulation of Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Hezaveh, Seyed Hossein

    Due to several design advantages and operational characteristics, particularly in offshore farms, vertical axis wind turbines (VAWTs) are being reconsidered as a complementary technology to horizontal axial turbines (HAWTs). However, considerable gaps remain in our understanding of VAWT performance since they have been significantly less studied than HAWTs. This thesis examines the performance of isolated VAWTs based on different design parameters and evaluates their characteristics in large wind farms. An actuator line model (ALM) is implemented in an atmospheric boundary layer large eddy simulation (LES) code, with offline coupling to a high-resolution blade-scale unsteady Reynolds-averaged Navier-Stokes (URANS) model. The LES captures the turbine-to-farm scale dynamics, while the URANS captures the blade-to-turbine scale flow. The simulation results are found to be in good agreement with existing experimental datasets. Subsequently, a parametric study of the flow over an isolated VAWT is carried out by varying solidities, height-to-diameter aspect ratios, and tip speed ratios. The analyses of the wake area and power deficits yield an improved understanding of the evolution of VAWT wakes, which in turn enables a more informed selection of turbine designs for wind farms. One of the most important advantages of VAWTs compared to HAWTs is their potential synergistic interactions that increase their performance when placed in close proximity. Field experiments have confirmed that unlike HAWTs, VAWTs can enhance and increase the total power production when placed near each other. Based on these experiments and using ALM-LES, we also present and test new approaches for VAWT farm configuration. We first design clusters with three turbines then configure farms consisting of clusters of VAWTs rather than individual turbines. The results confirm that by using a cluster design, the average power density of wind farms can be increased by as much as 60% relative to regular arrays. Finally, the thesis conducts an investigation of the influence of farm length (parallel to the wind) to assess the fetch needed for equilibrium to be reached, as well as the origin of the kinetic energy extracted by the turbines.

  15. Vortex-Induced Vibration of an Airfoil Used in Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Benner, Bridget; Carlson, Daniel; Seyed-Aghazadeh, Banafsheh; Modarres-Sadeghi, Yahya

    2017-11-01

    In Vertical-axis wind turbines (VAWTs), when the blades are placed at high angles of attack with respect to the incoming flow, they could experience flow-induced oscillations. A series of experiments in a re-circulating water tunnel was conducted to study the possible Vortex-Induced Vibration (VIV) of a fully-submerged, flexibly-mounted NACA 0021 airfoil, which is used in some designs of VAWTs. The airfoil was free to oscillate in the crossflow direction, and the tests were conducted in a Reynolds number range of 600

  16. Wind tunnel acoustic study of a propeller installed behind an airplane empennage: Data report

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Wilby, E. G.

    1985-01-01

    The open test section of the NASA-Ames 7- by 10- ft wind tunnel was used for an acoustic test of a propeller mounted behind an airplane empennage. The empennage was attached to a model fuselage and the propeller with its electric motor drive was mounted separately so that the relative positions of empennage and propeller could be varied. A single vertical fin, and a V-tail with, and without, a dorsal fin configurations were used the model propeller had four blades (SR-1). Data were recorded at several locations for two tunnel flow speeds (45.7) and 62.5 m/s) and propeller speeds in the range 4000 to 8200 rpm. Data reduction was performed in narrowband and one-third octave band spectra, with emphasis on harmonics of the passage frequency blade. The influence of flow speed, propeller rpm, empennage configuration, axial and vertical separation between propeller axis and empennage centerline, and empennage angle of incidence on propeller harmonic levels and acoustic field directivity are studied.

  17. Air core poloidal magnetic field system for a toroidal plasma producing device

    DOEpatents

    Marcus, Frederick B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux.

  18. Performance prediction of asymmetrical bladed H-Darrieus VAWT rotors in low wind speed condition using CFD

    NASA Astrophysics Data System (ADS)

    Mazarbhuiya, Hussain Mahamed Sahed Mostafa; Biswas, Agnimitra; Sharma, Kaushal Kumar

    2018-04-01

    Wind energy is an essential and carbon free form of renewable energy resources. Energy can be easily extracted from wind with the use of Horizontal axis and Vertical axis wind turbine(VAWT). The performance of turbine depends on airfoil shape. The present work emphasizes the aerodynamics of different asymmetrical airfoils used in VAWT rotors. This investigation is conducted for the selection of efficient asymmetrical bladed H-Darrieus VAWT rotor. Five numbers of thick and cambered asymmetrical airfoil is considered for this investigation. A free stream velocity of 6.0 m/s is considered to simulate 2D CFD analysis using k-ɛ turbulence model. The power coefficient (Cp) of all H-Darrieus VAWT rotor increase with increase in TSR value to a certain limit and after it starts decrease with further increase of TSR. In the present investigation the Cp and TSR of NACA 63415 (RT-30%) are found to be higher among all considered asymmetrical airfoils. Moreover, Ct values of NACA 63415 (RT-30%) are also high corresponding to all TSR values. This is due to the long duration of attachment of flow with blade surroundings. Hence, NACA 63415 (RT- 30%) airfoil may be considered as an efficient airfoil among S818, GOE 561, GU25-5(11)8, and KENNEDY AND MARSDEN (kenmar) asymmetrical airfoils.

  19. Performance Investigation of A Mix Wind Turbine Using A Clutch Mechanism At Low Wind Speed Condition

    NASA Astrophysics Data System (ADS)

    Jamanun, M. J.; Misaran, M. S.; Rahman, M.; Muzammil, W. K.

    2017-07-01

    Wind energy is one of the methods that generates energy from sustainable resources. This technology has gained prominence in this era because it produces no harmful product to the society. There is two fundamental type of wind turbine are generally used this day which is Horizontal axis wind turbine (HAWT) and Vertical axis wind turbine (VAWT). The VAWT technology is more preferable compare to HAWT because it gives better efficiency and cost effectiveness as a whole. However, VAWT is known to have distinct disadvantage compared to HAWT; self-start ability and efficiency at low wind speed condition. Different solution has been proposed to solve these issues which includes custom design blades, variable angle of attack mechanism and mix wind turbine. A new type of clutch device was successfully developed in UMS to be used in a mix Savonius-Darrieus wind turbine configuration. The clutch system which barely audible when in operation compared to a ratchet clutch system interconnects the Savonius and Darrieus rotor; allowing the turbine to self-start at low wind speed condition as opposed to a standalone Darrieus turbine. The Savonius height were varied at three different size in order to understand the effect of the Savonius rotor to the mix wind turbine performance. The experimental result shows that the fabricated Savonius rotor show that the height of the Savonius rotor affecting the RPM for the turbine. The swept area (SA), aspect ratio (AR) and tip speed ratio (TSR) also calculated in this paper. The highest RPM recorded in this study is 90 RPM for Savonius rotor 0.22-meter height at 2.75 m/s. The Savonius rotor 0.22-meter also give the highest TSR for each range of speed from 0.75 m/s, 1.75 m/s and 2.75 m/s where it gives 1.03 TSR, 0.76 TSR, and 0.55 TSR.

  20. Interdisciplinary design study of a high-rise integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.

    2012-10-01

    Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  1. Filament winding technique, experiment and simulation analysis on tubular structure

    NASA Astrophysics Data System (ADS)

    Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.

    2018-04-01

    Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.

  2. Design and optimize of 3-axis filament winding machine

    NASA Astrophysics Data System (ADS)

    Quanjin, Ma; Rejab, M. R. M.; Idris, M. S.; Bachtiar, B.; Siregar, J. P.; Harith, M. N.

    2017-10-01

    Filament winding technique is developed as the primary process for composite cylindrical structures fabrication at low cost. Fibres are wound on a rotating mandrel by a filament winding machine where resin impregnated fibres pass through a pay-out eye. This paper aims to develop and optimize a 3-axis, lightweight, practical, efficient, portable filament winding machine to satisfy the customer demand, which can fabricate pipes and round shape cylinders with resins. There are 3 main units on the 3-axis filament winding machine, which are the rotary unit, the delivery unit and control system unit. Comparison with previous existing filament winding machines in the factory, it has 3 degrees of freedom and can fabricate more complex shape specimens based on the mandrel shape and particular control system. The machine has been designed and fabricated on 3 axes movements with control system. The x-axis is for movement of the carriage, the y-axis is the rotation of mandrel and the z-axis is the movement of the pay-out eye. Cylindrical specimens with different dimensions and winding angles were produced. 3-axis automated filament winding machine has been successfully designed with simple control system.

  3. The Environment Friendly Power Source for Power Supply of Mobile Communication Base Stations

    NASA Astrophysics Data System (ADS)

    Rudenko, N. V.; Ershov, V. V.; Evstafiev, V. V.

    2017-05-01

    The article describes the technical proposals to improve environmental and resource characteristics of the autonomous power supply systems of mobile communication base stations based on renewable energy sources, while ensuring the required reliability and security of power supply. These include: the replacement of diesel-generator with clean energy source - an electrochemical generator based on hydrogen fuel cells; the use of wind turbines with a vertical axis; use of specialized batteries. Based on the analysis of the know technical solutions, the structural circuit diagram of the hybrid solar-wind-hydrogen power plant and the basic principles of the algorithm of its work were proposed. The implementation of these proposals will improve the environmental and resource characteristics.

  4. Experimental investigation on performance of crossflow wind turbine as effect of blades number

    NASA Astrophysics Data System (ADS)

    Kurniawati, Diniar Mungil; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    Urban living is one of the areas with large electrical power consumption that requires a power supply that is more than rural areas. The number of multi-storey buildings such as offices, hotels and several other buildings that caused electricity power consumption in urban living is very high. Therefore, energy alternative is needed to replace the electricity power consumption from government. One of the utilization of renewable energy in accordance with these conditions is the installation of wind turbines. One type of wind turbine that is now widely studied is a crossflow wind turbines. Crossflow wind turbine is one of vertical axis wind turbine which has good self starting at low wind speed condition. Therefore, the turbine design parameter is necessary to know in order to improve turbine performance. One of wind turbine performance parameter is blades number. The main purpose of this research to investigate the effect of blades number on crossflow wind turbine performance. The design of turbine was 0.4 × 0.4 m2 tested by experimental method with configuration on three kinds of blades number were 8,16 and 20. The turbine investigated at low wind speed on 2 - 5 m/s. The result showed that best performance on 16 blade number.

  5. CFD analysis of a Darrieus wind turbine

    NASA Astrophysics Data System (ADS)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.

    2017-07-01

    The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.

  6. Reducing representativeness and sampling errors in radio occultation-radiosonde comparisons

    NASA Astrophysics Data System (ADS)

    Gilpin, Shay; Rieckh, Therese; Anthes, Richard

    2018-05-01

    Radio occultation (RO) and radiosonde (RS) comparisons provide a means of analyzing errors associated with both observational systems. Since RO and RS observations are not taken at the exact same time or location, temporal and spatial sampling errors resulting from atmospheric variability can be significant and inhibit error analysis of the observational systems. In addition, the vertical resolutions of RO and RS profiles vary and vertical representativeness errors may also affect the comparison. In RO-RS comparisons, RO observations are co-located with RS profiles within a fixed time window and distance, i.e. within 3-6 h and circles of radii ranging between 100 and 500 km. In this study, we first show that vertical filtering of RO and RS profiles to a common vertical resolution reduces representativeness errors. We then test two methods of reducing horizontal sampling errors during RO-RS comparisons: restricting co-location pairs to within ellipses oriented along the direction of wind flow rather than circles and applying a spatial-temporal sampling correction based on model data. Using data from 2011 to 2014, we compare RO and RS differences at four GCOS Reference Upper-Air Network (GRUAN) RS stations in different climatic locations, in which co-location pairs were constrained to a large circle ( ˜ 666 km radius), small circle ( ˜ 300 km radius), and ellipse parallel to the wind direction ( ˜ 666 km semi-major axis, ˜ 133 km semi-minor axis). We also apply a spatial-temporal sampling correction using European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) gridded data. Restricting co-locations to within the ellipse reduces root mean square (RMS) refractivity, temperature, and water vapor pressure differences relative to RMS differences within the large circle and produces differences that are comparable to or less than the RMS differences within circles of similar area. Applying the sampling correction shows the most significant reduction in RMS differences, such that RMS differences are nearly identical to the sampling correction regardless of the geometric constraints. We conclude that implementing the spatial-temporal sampling correction using a reliable model will most effectively reduce sampling errors during RO-RS comparisons; however, if a reliable model is not available, restricting spatial comparisons to within an ellipse parallel to the wind flow will reduce sampling errors caused by horizontal atmospheric variability.

  7. Reliability of numerical wind tunnels for VAWT simulation

    NASA Astrophysics Data System (ADS)

    Raciti Castelli, M.; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.

    2016-09-01

    Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities).

  8. 3D-PTV around Operational Wind Turbines

    NASA Astrophysics Data System (ADS)

    Brownstein, Ian; Dabiri, John

    2016-11-01

    Laboratory studies and numerical simulations of wind turbines are typically constrained in how they can inform operational turbine behavior. Laboratory experiments are usually unable to match both pertinent parameters of full-scale wind turbines, the Reynolds number (Re) and tip speed ratio, using scaled-down models. Additionally, numerical simulations of the flow around wind turbines are constrained by the large domain size and high Re that need to be simulated. When these simulations are preformed, turbine geometry is typically simplified resulting in flow structures near the rotor not being well resolved. In order to bypass these limitations, a quantitative flow visualization method was developed to take in situ measurements of the flow around wind turbines at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA. The apparatus constructed was able to seed an approximately 9m x 9m x 5m volume in the wake of the turbine using artificial snow. Quantitative measurements were obtained by tracking the evolution of the artificial snow using a four camera setup. The methodology for calibrating and collecting data, as well as preliminary results detailing the flow around a 2kW vertical-axis wind turbine (VAWT), will be presented.

  9. Steerable vertical to horizontal energy transducer for mobile robots

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Feddema, John T.

    2001-01-01

    The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.

  10. Orientation of human optokinetic nystagmus to gravity: a model-based approach

    NASA Technical Reports Server (NTRS)

    Gizzi, M.; Raphan, T.; Rudolph, S.; Cohen, B.

    1994-01-01

    Optokinetic nystagmus (OKN) was induced by having subjects watch a moving display in a binocular, head-fixed apparatus. The display was composed of 3.3 degrees stripes moving at 35 degrees/s for 45 s. It subtended 88 degrees horizontally by 72 degrees vertically of the central visual field and could be oriented to rotate about axes that were upright or tilted 45 degrees or 90 degrees. The head was held upright or was tilted 45 degrees left or right on the body during stimulation. Head-horizontal (yaw axis) and head-vertical (pitch axis) components of OKN were recorded with electro-oculography (EOG). Slow phase velocity vectors were determined and compared with the axis of stimulation and the spatial vertical (gravity axis). With the head upright, the axis of eye rotation during yaw axis OKN was coincident with the stimulus axis and the spatial vertical. With the head tilted, a significant vertical component of eye velocity appeared during yaw axis stimulation. As a result the axis of eye rotation shifted from the stimulus axis toward the spatial vertical. Vertical components developed within 1-2 s of stimulus onset and persisted until the end of stimulation. In the six subjects there was a mean shift of the axis of eye rotation during yaw axis stimulation of approximately 18 degrees with the head tilted 45 degrees on the body. Oblique optokinetic stimulation with the head upright was associated with a mean shift of the axis of eye rotation toward the spatial vertical of 9.2 degrees. When the head was tilted and the same oblique stimulation was given, the axis of eye rotation rotated to the other side of the spatial vertical by 5.4 degrees. This counterrotation of the axis of eye rotation is similar to the "Muller (E) effect," in which the perception of the upright is counterrotated to the opposite side of the spatial vertical when subjects are tilted in darkness. The data were simulated by a model of OKN with a "direct" and "indirect" pathway. It was assumed that the direct visual pathway is oriented in a body, not a spatial frame of reference. Despite the short optokinetic after-nystagmus time constants, strong horizontal to vertical cross-coupling could be produced if the horizontal and vertical time constants were in proper ratio and there were no suppression of nystagmus in directions orthogonal to the stimulus direction. The model demonstrates that the spatial orientation of OKN can be achieved by restructuring the system matrix of velocity storage. We conclude that an important function of velocity storage is to orient slow-phase velocity toward the spatial vertical during movement in a terrestrial environment.

  11. Dynamics of tethered constellations in Earth orbit

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1986-01-01

    Topics covered include station keeping of single-axis and two-axis constellations; single-axis vertical constellations with low-g platform; single-axis vertical constellations with three masses; deployment strategy; and damping of vibrational modes.

  12. Transverse-displacement stabilizer for passive magnetic bearing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Richard F

    The invention provides a way re-center a rotor's central longitudinal rotational axis with a desired system longitudinal axis. A pair of planar semicircular permanent magnets are pieced together to form a circle. The flux from each magnet is pointed in in opposite directions that are both parallel with the rotational axis. A stationary shorted circular winding the plane of which is perpendicular to the system longitudinal axis and the center of curvature of the circular winding is positioned on the system longitudinal axis. Upon rotation of the rotor, when a transverse displacement of the rotational axis occurs relative to themore » system longitudinal axis, the winding will experience a time-varying magnetic flux such that an alternating current that is proportional to the displacement will flow in the winding. Such time-varying magnetic flux will provide a force that will bring the rotor back to its centered position about the desired axis.« less

  13. Wind and Wave Influences on Sea Ice Floe Size and Leads in the Beaufort and Chukchi Seas During the Summer-Fall Transition 2014

    DTIC Science & Technology

    2016-01-26

    However, validation and parameterization of these theories present significant observational challenges. Starting from Rothrock and Thorndike [1984...Rothrock and Thorndike , 1984] remained in the 1.8–2.9 range, and did not change by the storm passage. In Holt and Martin [2001] ERS-1 SAR imagery at 25...cumulative FSD as defined in Rothrock and Thorndike [1984]. The vertical axis is NðdÞ, the number of floes per square kilometer with diameter no less

  14. Solar energy system with wind vane

    DOEpatents

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  15. Microburst vertical wind estimation from horizontal wind measurements

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    1994-01-01

    The vertical wind or downdraft component of a microburst-generated wind shear can significantly degrade airplane performance. Doppler radar and lidar are two sensor technologies being tested to provide flight crews with early warning of the presence of hazardous wind shear. An inherent limitation of Doppler-based sensors is the inability to measure velocities perpendicular to the line of sight, which results in an underestimate of the total wind shear hazard. One solution to the line-of-sight limitation is to use a vertical wind model to estimate the vertical component from the horizontal wind measurement. The objective of this study was to assess the ability of simple vertical wind models to improve the hazard prediction capability of an airborne Doppler sensor in a realistic microburst environment. Both simulation and flight test measurements were used to test the vertical wind models. The results indicate that in the altitude region of interest (at or below 300 m), the simple vertical wind models improved the hazard estimate. The radar simulation study showed that the magnitude of the performance improvement was altitude dependent. The altitude of maximum performance improvement occurred at about 300 m.

  16. Development and Assessment of Planetary Gear Unit for Experimental Prototype of Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Urbahs, A.; Urbaha, M.; Carjova, K.

    2017-10-01

    The theoretical calculation for development of planetary gear unit of wind turbine (WT) and its experimental tests are presented in the paper. Development of experimental prototypes from composite materials is essential to determine capability of element and its impact on feature. Two experimental scale prototypes of planetary gear unit for WT were developed for such purposes. Hall transducer, servomechanisms and optical tachometers were used to obtain results, comparison analysis of theoretical and actual data was performed as well as quality assessment of experimental prototypes of planetary gear unit. After kinematic and load analysis as well as control of rotation frequency, it is possible to declare that the unit is able to operate at designated quality. Theoretical calculations and test results obtained are used for industrial WT prototype development.

  17. Turbulence influence on optimum tip speed ratio for a 200 kW vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Möllerström, E.; Eriksson, S.; Goude, A.; Ottermo, F.; Hylander, J.

    2016-09-01

    The influence of turbulence intensity (TI) on the tip speed ratio for maximum power coefficient, here called λCp_max, is studied for a 200 kW VAWT H-rotor using logged data from a 14 month period with the H-rotor operating in wind speeds up to 9 m/s. The TI - λCp_max relation is examined by dividing 10 min mean values in different turbulence intensity ranges and producing multiple CP(λ) curves. A clear positive relation between TI and λCp_max is shown and is further strengthened as possible secondary effects are examined and deemed non-essential. The established relation makes it possible to tune the control strategy to enhance the total efficiency of the turbine.

  18. Doppler Lidar for Wind Measurements on Venus

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  19. Transient Performance of a Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Onol, Aykut; Yesilyurt, Serhat

    2016-11-01

    A coupled CFD/rotor dynamics modeling approach is presented for the analysis of realistic transient behavior of a height-normalized, three-straight-bladed VAWT subject to inertial effects of the rotor and generator load which is manipulated by a feedback control under standardized wind gusts. The model employs the k- ɛ turbulence model to approximate unsteady Reynolds-averaged Navier-Stokes equations and is validated with data from field measurements. As distinct from related studies, here, the angular velocity is calculated from the rotor's equation of motion; thus, the dynamic response of the rotor is taken into account. Results include the following: First, the rotor's inertia filters large amplitude oscillations in the wind torque owing to the first-order dynamics. Second, the generator and wind torques differ especially during wind transients subject to the conservation of angular momentum of the rotor. Third, oscillations of the power coefficient exceed the Betz limit temporarily due to the energy storage in the rotor, which acts as a temporary buffer that stores the kinetic energy like a flywheel in short durations. Last, average of transient power coefficients peaks at a smaller tip-speed ratio for wind gusts than steady winds. This work was supported by the Sabanci University Internal Research Grant Program (SU-IRG-985).

  20. Effects of Cross-axis Wind Jet Events on the Northern Red Sea Circulation

    NASA Astrophysics Data System (ADS)

    Menezes, V. V.; Bower, A. S.; Farrar, J. T.

    2016-12-01

    Despite its small size, the Red Sea has a complex circulation. There are boundary currents in both sides of the basin, a meridional overturning circulation, water mass formation in the northern part and an intense eddy activity. This complex pattern is driven by strong air-sea interactions. The Red Sea has one of the largest evaporation rates of the global oceans (2m/yr), an intricate and seasonally varying wind pattern. The winds blowing over the Northern Rea Sea (NRS, north of 20N) are predominantly southeastward along the main axis all year round; in the southern, they reverse seasonally due to the monsoonal regime. Although the winds are mostly along-axis in the NRS, several works have shown that sometimes during the boreal winter, the winds blow in a cross-axis direction. The westward winds from Saudi Arabia bring relatively cold dry air and dust from the desert, enhancing heat loss and evaporation off the Red Sea. These wind-jet events may contribute to increased eddy activity and are a trigger for water mass formation. Despite that, our knowledge about the cross-axis winds and their effect on NRS circulation is still incipient. In the present work we analyze 10-years of Quikscat scatterometer winds and altimetric sea surface height anomalies, together with 2-yrs of mooring data, to characterize the westward wind jet events and their impacts on the circulation. We show that the cross-axis winds are, indeed, an important component of the wind regime, explaining 11% of wind variability of the NRS (well-described by a 2nd EOF mode). The westward events occur predominantly in the winter, preferentially in January (about 15 events in 10-years) and have a mean duration of 4-5 days, with a maximum of 12 days (north of 22N). There are around 6 events per year, but in 2002-2003 and 2007-2008, twice more events were detected. The westward wind events are found to strongly modify the wind stress curl, causing a distinct positive/negative curl pattern along the main axis. This pattern enhances the eddy activity and impacts the NRS circulation.

  1. Why the long face? The importance of vertical image structure for biological "barcodes" underlying face recognition.

    PubMed

    Spence, Morgan L; Storrs, Katherine R; Arnold, Derek H

    2014-07-29

    Humans are experts at face recognition. The mechanisms underlying this complex capacity are not fully understood. Recently, it has been proposed that face recognition is supported by a coarse-scale analysis of visual information contained in horizontal bands of contrast distributed along the vertical image axis-a biological facial "barcode" (Dakin & Watt, 2009). A critical prediction of the facial barcode hypothesis is that the distribution of image contrast along the vertical axis will be more important for face recognition than image distributions along the horizontal axis. Using a novel paradigm involving dynamic image distortions, a series of experiments are presented examining famous face recognition impairments from selectively disrupting image distributions along the vertical or horizontal image axes. Results show that disrupting the image distribution along the vertical image axis is more disruptive for recognition than matched distortions along the horizontal axis. Consistent with the facial barcode hypothesis, these results suggest that human face recognition relies disproportionately on appropriately scaled distributions of image contrast along the vertical image axis. © 2014 ARVO.

  2. Development of methodology for horizontal axis wind turbine dynamic analysis

    NASA Technical Reports Server (NTRS)

    Dugundji, J.

    1982-01-01

    Horizontal axis wind turbine dynamics were studied. The following findings are summarized: (1) review of the MOSTAS computer programs for dynamic analysis of horizontal axis wind turbines; (2) review of various analysis methods for rotating systems with periodic coefficients; (3) review of structural dynamics analysis tools for large wind turbine; (4) experiments for yaw characteristics of a rotating rotor; (5) development of a finite element model for rotors; (6) development of simple models for aeroelastics; and (7) development of simple models for stability and response of wind turbines on flexible towers.

  3. Design and Near-Field Measurement Performance Evaluation of the Sea Winds Dual- Beam Reflector Antenna

    NASA Technical Reports Server (NTRS)

    Hussein, Z.; Rahmat-Samii, Y.; Kellogg, K.

    1997-01-01

    This paper presents the design and performance evaluation of a lightweight, composite material, elliptical-aperture, parabolic-reflector antenna. The performance characterization is obtained using the cylindrical near-field measurement facility at JPL as shown. The reflector has been designed and calibrated for the SeaWinds spaceborne scatterometer instrument. The instrument operates at Ku-band and is designed to accurately measure wind speed and direction over Earth's ocean surface. The SeaWinds antenna design requires two linearly polarized independent beams pointed at 40 deg.and 46 deg. from nadir as shown. The inner beam, pointed at 40 deg. from nadir, is horizontally polarized with 1.6 in x 1.8 in required beamwidths in the elevation and azimuth planes, respectively. The outer beam, pointed at 46 deg. from nadir, is vertically polarized with 1.4 in x 1.7 in required beamwidths. Noteworthy, the reflector boresight axis is pointed at 43 deg. from nadir. Both beams are required to have the first sidelobe level below -15 dB relative to the peak of the beam.

  4. Estimation of mesospheric vertical winds from a VHF meteor radar at King Sejong Station, Antarctica (62.2S, 58.8W)

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, C.; Kim, J.; Jee, G.

    2013-12-01

    For the first time, vertical winds near the mesopause region were estimated from radial velocities of meteor echoes detected by a VHF meteor radar at King Sejong Station (KSS) in 2011 and 2012. Since the radar usually detects more than a hundred echoes every hour in an altitude bin of 88 - 92 km, much larger than other radars, we were able to fit measured radial velocities of these echoes with a 6 component model that consists of horizontal winds, spatial gradients of horizontal winds and vertical wind. The conventional method of deriving horizontal winds from meteor echoes utilizes a 2 component model, assuming that vertical winds and spatial gradients of horizontal winds are negligible. We analyzed the radar data obtained for 8400 hours in 2012 and 8100 hours in 2011. We found that daily mean values of vertical winds are mostly within +/- 1 m/s, whereas those of zonal winds are a few tens m/s mostly eastward. The daily mean vertical winds sometimes stay positive or negative for more than 20 days, implying that the atmosphere near the mesopause experiences episodically a large scale low and high pressure environments, respectively, like the tropospheric weather system. By conducting Lomb-normalized periodogram analysis, we also found that the vertical winds have diurnal, semidiurnal and terdiurnal tidal components with about equal significance, in contrast to horizontal winds that show a dominant semidiurnal one. We will discuss about uncertainties of the estimated vertical wind and possible reasons of its tidal and daily variations.

  5. Computational modeling of unsteady loads in tidal boundary layers

    NASA Astrophysics Data System (ADS)

    Alexander, Spencer R.

    As ocean current turbines move from the design stage into production and installation, a better understanding of oceanic turbulent flows and localized loading is required to more accurately predict turbine performance and durability. In the present study, large eddy simulations (LES) are used to measure the unsteady loads and bending moments that would be experienced by an ocean current turbine placed in a tidal channel. The LES model captures currents due to winds, waves, thermal convection, and tides, thereby providing a high degree of physical realism. Probability density functions, means, and variances of unsteady loads are calculated, and further statistical measures of the turbulent environment are also examined, including vertical profiles of Reynolds stresses, two-point correlations, and velocity structure functions. The simulations show that waves and tidal velocity had the largest impact on the strength of off-axis turbine loads. By contrast, boundary layer stability and wind speeds were shown to have minimal impact on the strength of off- axis turbine loads. It is shown both analytically and using simulation results that either transverse velocity structure functions or two-point transverse velocity spatial correlations are good predictors of unsteady loading in tidal channels.

  6. Stereo Photogrammetry Measurements of the Position and Attitude of a Nozzle-Plume/Shock-Wave Interaction Model in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Kushner, Laura K.; Drain, Bethany A.; Heineck, James T.; Durston, Donald A.

    2017-01-01

    Stereo photogrammetry was used to measure the position and attitude of a slender body of revolution during nozzle-plume/shock-wave interaction tests in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel. The model support system was designed to allow the model to be placed at many locations in the test section relative to a pressure rail on one sidewall. It included a streamwise traverse as well as a thin blade that offset the model axis from the sting axis. With these features the support system was more flexible than usual resulting in higher-than-usual uncertainty in the position and attitude of the model. Also contributing to this uncertainty were the absence of a balance, so corrections for sting deflections could not be applied, and the wings-vertical orientation of the model, which precluded using a gravity-based accelerometer to measure pitch angle. Therefore, stereo photogrammetry was chosen to provide independent measures of the model position and orientation. This paper describes the photogrammetry system and presents selected results from the test.

  7. HFSB-seeding for large-scale tomographic PIV in wind tunnels

    NASA Astrophysics Data System (ADS)

    Caridi, Giuseppe Carlo Alp; Ragni, Daniele; Sciacchitano, Andrea; Scarano, Fulvio

    2016-12-01

    A new system for large-scale tomographic particle image velocimetry in low-speed wind tunnels is presented. The system relies upon the use of sub-millimetre helium-filled soap bubbles as flow tracers, which scatter light with intensity several orders of magnitude higher than micron-sized droplets. With respect to a single bubble generator, the system increases the rate of bubbles emission by means of transient accumulation and rapid release. The governing parameters of the system are identified and discussed, namely the bubbles production rate, the accumulation and release times, the size of the bubble injector and its location with respect to the wind tunnel contraction. The relations between the above parameters, the resulting spatial concentration of tracers and measurement of dynamic spatial range are obtained and discussed. Large-scale experiments are carried out in a large low-speed wind tunnel with 2.85 × 2.85 m2 test section, where a vertical axis wind turbine of 1 m diameter is operated. Time-resolved tomographic PIV measurements are taken over a measurement volume of 40 × 20 × 15 cm3, allowing the quantitative analysis of the tip-vortex structure and dynamical evolution.

  8. Wind lift generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, G. R.; Martin, W. A.

    1985-08-20

    A wind lift generator includes a housing structure formed by a pair of spaced apart plates mounted on support structure for pivotal rotation about a vertical axis at the forward end thereof for orienting into the wind, and said plates supporting a plurality of coaxially disposed sprockets arranged to support a pair of spaced apart drive chains in a quadrilateral configuration with lift foils connected and supported between the chains with the quadrilateral chain configuration supporting the chain for an initial lift mode at the forward end of the housing, followed by a direct impact mode extending from the frontmore » of the housing upward and backward to the rear of the housing and a negative lift mode extending from the top rear of the housing to the bottom with the vanes returning via a neutral mode to the front of the housing for repeating the lift cycle. A suitable electrical generator is driven from one or more shafts of the assembly driven by the drive chains.« less

  9. Vertical axis wind turbine turbulent response model. Part 2: Response of Sandia National laboratories' 34-meter VAWT with aeroelastic effects

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The dynamic response of Sandia National Laboratories' 34-m Darrieus rotor wind turbine at Bushland, Texas, is presented. The formulation used a double-multiple streamtube aerodynamic model with a turbulent airflow and included the effects of linear aeroelastic forces. The structural analysis used established procedures with the program MSC/NASTRAN. The effects of aeroelastic forces on the damping of natural modes agree well with previous results at operating rotor speeds, but show some discrepancies at very high rotor speeds. A number of alternative expressions for the spectrum of turbulent wind were investigated. The model loading represented by each does not differ significantly; a more significant difference is caused by imposing a full lateral coherence of the turbulent flow. Spectra of the predicted stresses at various locations show that without aeroelastic forces, very severe resonance is likely to occur at certain natural frequencies. Inclusion of aeroelastic effects greatly attenuates this stochastic response, especially in modes involving in-plane blade bending.

  10. Variation of Equatorial F-region Vertical Neutral Wind and Neutral Temperature during Geomagnetic Storms: Brazil FPI Observations

    NASA Astrophysics Data System (ADS)

    Sheng, C.; De La Garza, J. L.; Deng, Y.; Makela, J. J.; Fisher, D. J.; Meriwether, J. W.; Mesquita, R.

    2015-12-01

    An accurate description of vertical neutral winds in the thermosphere is essential to understand how the upper atmosphere responds to the geomagnetic storms. However, vertical wind measurements are difficult to obtain and there are still limited data. Recent observation deployments now permit substantial progress on this issue. In this paper, neutral vertical wind data from Brazil FPI observations at around 240 km altitude during 2009 to 2015 are used for the study of the equatorial vertical wind and neutral temperature variation during geomagnetic activity times. First, the observations during several particular storm periods will be analyzed. Secondly, Epoch analysis will be used to bin all the observed events together to investigate the climatological features of vertical wind and temperature during storms. The results will give us an unprecedented view of the nighttime vertical wind and neutral temperature variations at low latitudes, which is critical to specify the dynamics of the upper atmosphere.

  11. Variational optimization analysis of temperature and moisture advection in a severe storm environment

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.

    1975-01-01

    Horizontal wind components, potential temperature, and mixing ratio fields associated with a severe storm environment in the south central U.S. were analyzed from synoptic upper air observations with a nonhomogeneous, anisotropic weighting function. Each data field was filtered with variational optimization analysis techniques. Variational optimization analysis was also performed on the vertical motion field and was used to produce advective forecasts of the potential temperature and mixing ratio fields. Results show that the dry intrusion is characterized by warm air, the advection of which produces a well-defined upward motion pattern. A corresponding downward motion pattern comprising a deep vertical circulation in the warm air sector of the low pressure system was detected. The axes alignment of maximum dry and warm advection with the axis of the tornado-producing squall line also resulted.

  12. Repeatability and oblique flow response characteristics of current meters

    USGS Publications Warehouse

    Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.; ,

    1993-01-01

    Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.

  13. Numerical simulation of VAWT on the effects of rotation cylinder

    NASA Astrophysics Data System (ADS)

    Xing, Shuda; Cao, Yang; Ren, Fuji

    2017-06-01

    Based on Finite Element Analysis Method, studying on Vertical Axis Wind Turbine (VAWT) which is added rotating cylinder in front of its air foils, especially focusing on the analysis of NACA6 series air foils about variation of lift to drag ratio. Choosing the most suitable blades with rotary cylinder added on leading edge. Analysis indicates that the front rotating cylinders on the VAWT is benefit to lift rise and drag fall. The most suitable air foil whose design lift coefficient is 0.8, the blades relative thickness is 20%, and the optimistic tip speed ratio is about 7.

  14. Design Characteristics of the 224 kW Magdalen Islands VAWT

    NASA Technical Reports Server (NTRS)

    Templin, R. J.

    1979-01-01

    The evolution of the main design features of the Magdalen Islands vertical axis wind turbine (VAWT) is described. The turbine has a rotor height of 120 ft (36.58 m) and diameter 80 ft (24.38 m). It was operated as a joint project between NRC and Hydro-Quebec in grid-coupled mode from July 1977 to July 1978 when the rotor was destroyed in an accident. The accident, although unfortunate, tested the basic integrity of the design in a gross overspeed condition, and the rotor is being rebuilt with minor modifications. Some directions for future VAWT research are suggested.

  15. Observations of vertical winds and the origin of thermospheric gravity waves launched by auroral substorms and westward travelling surges

    NASA Technical Reports Server (NTRS)

    Rees, D.

    1986-01-01

    Several sequences of observations of strong vertical winds in the upper thermosphere are discussed, in conjunction with models of the generation of such winds. In the auroral oval, the strongest upward winds are observed in or close to regions of intense auroral precipitation and strong ionospheric currents. The strongest winds, of the order of 100 to 200 m/sec are usually upward, and are both localized and of relatively short duration (10 to 20 min). In regions adjacent to those displaying strong upward winds, and following periods of upward winds, downward winds of rather lower magnitude (40 to about 80 m/sec) may be observed. Strong and rapid changes of horizontal winds are correlated with these rapid vertical wind variations. Considered from a large scale viewpoint, this class of strongly time dependent winds propagate globally, and may be considered to be gravity waves launched from an auroral source. During periods of very disturbed geomagnetic activity, there may be regions within and close to the auroral oval where systematic vertical winds of the order of 50 m/sec will occur for periods of several hours. Such persistent winds are part of a very strong large scale horizontal wind circulation set up in the polar regions during a major geomagnetic disturbance. This second class of strong horizontal and vertical winds corresponds more to a standing wave than to a gravity wave, and it is not as effective as the first class in generating large scale propagating gravity waves and correlated horizontal and vertical oscillations. A third class of significant (10 to 30 m/sec) vertical winds can be associated with systematic features of the average geomagnetic energy and momentum input to the polar thermosphere, and appear in statistical studies of the average vertical wind as a function of Universal Time at a given location.

  16. The 630 nm MIG and the vertical neutral wind in the low latitude nighttime thermosphere

    NASA Technical Reports Server (NTRS)

    Herrero, F. A.; Meriwether, J. W., Jr.

    1994-01-01

    It is shown that large negative divergences (gradients) in the horizontal neutral wind in the equatorial thermosphere can support downward neutral winds in excess of 20 m/s. With attention to the meridional and vertical winds only, the pressure tendency equation is used to derive the expression U(sub z0) approximately equals (Partial derivative U(sub y)/Partial derivative y)H for the vertical wind U(sub z0) at the reference altitude for the pressure tendency equation; H is the atmospheric density scale height, and (Partial derivative U(sub y)/Partial derivative y) is the meridional wind gradient. The velocity gradient associated with the Meridional Intensity Gradient (MIG) of the O((sup 1)D) emission (630 nm) at low latitudes is used to estimate the vertical neutral wind in the MIG region. Velocity gradients derived from MIG data are about 0.5 (m/s)/km) or more, indicating that the MIG region may contain downward neutral winds in excess of 20 m/s. Though direct measurements of the vertical wind are scarce, Fabry-Perot interferometer data of the equatorial F-region above Natal, Brazil, showed downward winds of 30 m/s occurring during a strong meridional wind convergence in 1982. In-situ measurements with the WATS instrument on the DE-2 satellite also show large vertical neutral winds in the equatorial region.

  17. Preliminary Paleomagnetically Determined Vertical-Axis Rotations and their Relationship to Extensional Events of the Southern Walker Lane

    NASA Astrophysics Data System (ADS)

    Johnson, S.; Geissman, J. W.; Katopody, D. T.; Kerstetter, S. R.; Oldow, J. S.

    2016-12-01

    The northern part of the southern Walker Lane experienced three extensional events from the late Oligocene to the Holocene: 1) late Oligocene to early Miocene WNW and ENE trending half-grabens, 2) Late Miocene to early Pliocene high-magnitude extension on a low-angle normal fault, and 3) contemporary transtensional deformation that initiated at 4 Ma. Each of the extensional events controlled deposition of synextensional strata. What is less understood is the timing and magnitude of vertical axis rotation and its relationship to each of the three extensional events. As part of a recent and ongoing multidisciplinary study to better understand the complex nature and history of these extensional events we present preliminary paleomagnetic data from 55 sites in Miocene extrusive igneous rocks which record that clockwise vertical-axis rotation played a significant role in accommodating displacement in these systems. Recently refined stratigraphic, geochronologic, and structural controls have allowed the detailed paleomagnetic sampling required for this study. We seek to provide better constraints on timing, areal extent, and distribution of vertical axis rotation to answer how vertical axis rotation interacted with these extensional events. Consistent with past studies, we have recognized 20-30 degrees of clockwise vertical-axis rotation distributed heterogeneously throughout the study area. However, clockwise vertical-axis rotations are no longer occurring in this region as evidenced by modern geodetic velocity fields. The accommodation of displacement by vertical axis rotations in this region likely ceased by early Pliocene to late Miocene when the structural step-over migrated to the northwest to its present day manifestation in the Mina Deflection. Anisotropy of magnetic susceptibility (AMS), used as a proxy for flow direction in igneous extrusive rocks, provides evidence that at least one late Oligocene-early Miocene half-grabens acted as near-source depositional centers concurrent with extension.

  18. Evaluation of commercially available seat suspensions to reduce whole body vibration exposures in mining heavy equipment vehicle operators.

    PubMed

    Kim, Jeong Ho; Marin, Luz S; Dennerlein, Jack T

    2018-09-01

    As mining vehicle operators are exposed to high level of Whole body vibration (WBV) for prolonged periods of time, approaches to reduce this exposure are needed for the specific types of exposures in mining. Although various engineering controls (i.e. seat suspension systems) have been developed to address WBV, there has been lack of research to systematically evaluate these systems in reducing WBV exposures in mining heavy equipment vehicle settings. Therefore, this laboratory-based study evaluated the efficacy of different combinations of fore-aft (x-axis), lateral (y-axis), and vertical (z-axis) suspensions in reducing WBV exposures. The results showed that the active vertical suspension more effectively reduced the vertical vibration (∼50%; p's < 0.0001) as compared to the passive vertical suspension (10%; p's < 0.11). The passive fore-aft (x-axis) and lateral (y-axis) suspension systems did not attenuate the corresponding axis vibration (p's > 0.06) and sometimes amplified the floor vibration, especially when the non-vertical vibration was predominant (p's < 0.02). These results indicate that there is a critical need to develop more effective engineering controls including better seat suspensions to address non-vertical WBV exposures, especially because these non-vertical WBV exposures can increase risks for adverse health effects including musculoskeletal loading, discomfort, and impaired visual acuity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Climatology of Neutral vertical winds in the midlatitude thermosphere

    NASA Astrophysics Data System (ADS)

    Kerr, R.; Kapali, S.; Riccobono, J.; Migliozzi, M. A.; Noto, J.; Brum, C. G. M.; Garcia, R.

    2017-12-01

    More than one thousand measurements of neutral vertical winds, relative to an assumed average of 0 m/s during a nighttime period, have been made at Arecibo Observatory and the Millstone Hill Optical Facility since 2012, using imaging Fabry-Perot interferometers. These instruments, tuned to the 630 nm OI emission, are carefully calibrated for instrumental frequency drift using frequency stabilized lasers, allowing isolation of Doppler motion in the zenith with 1-2 m/s accuracy. As one example of the results, relative vertical winds at Arecibo during quiet geomagnetic conditions near winter solstice 2016, range ±70 m/s and have a one standard deviation statistical variability of ±34 m/s. This compares with a ±53 m/s deviation from the average meridional wind, and a ±56 m/s deviation from the average zonal wind measured during the same period. Vertical neutral wind velocities for all periods range from roughly 30% - 60% of the horizontal velocity domain at Arecibo. At Millstone Hill, the vertical velocities relative to horizontal velocities are similar, but slightly smaller. The midnight temperature maximum at Arecibo is usually correlated with a surge in the upward wind, and vertical wind excursions of more than 80 m/s are common during magnetic storms at both sites. Until this compilation of vertical wind climatology, vertical motions of the neutral atmosphere outside of the auroral zone have generally been assumed to be very small compared to horizontal transport. In fact, excursions from small vertical velocities in the mid-latitude thermosphere near the F2 ionospheric peak are common, and are not isolated events associated with unsettled geomagnetic conditions or other special dynamic conditions.

  20. State of the art in protection of erosion-corrosion on vertical axis tidal current turbine

    NASA Astrophysics Data System (ADS)

    Musabikha, Siti; Utama, I. Ketut Aria Pria; Mukhtasor

    2018-05-01

    Vertical axis tidal current turbine is main part of ocean energy devices which converts the tidal current energy into electricity. Its development is arising too due to increased interest research topic concerning climate change mitigation. Due to its rotating movement, it will be induced mechanical forces, such as shear stress and/or particle impact. Because of its natural operations, vertical axis turbine is also being exposed to harsh and corroding marine environment itself. In order to secure the vertical tidal turbine devices from mechanical wear and corrosion effects which is lead to a material loss, an appropriate erosion-corrosion protection needs to be defined. Its protection actionscan be derived such as design factors, material selections, inhibitors usage, cathodic protections, and coatings. This paper aims to analyze protection method which is necessary to control erosion-corrosion phenomenon that appears to the vertical axis tidal current turbine.

  1. Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Through a Wind Farm Sited on Topography

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2017-04-01

    Large-eddy simulation (LES) has recently been well validated and applied in the context of wind turbines over flat terrain; however, to date its accuracy has not been tested systematically in the case of turbine-wake flows over topography. Here, we investigate the wake flow in a wind farm situated on hilly terrain using LES for a case where wind-tunnel experimental data are available. To this end, first boundary-layer flow is simulated over a two-dimensional hill in order to characterize the spatial distribution of the mean velocity and the turbulence statistics. A flow simulation is then performed through a wind farm consisting of five horizontal-axis wind turbines sited over the same hill in an aligned layout. The resulting flow characteristics are compared with the former case, i.e., without wind turbines. To assess the validity of the simulations, the results are compared with the wind-tunnel measurements. It is found that LES can reproduce the flow field effectively, and, specifically, the speed-up over the hilltop and the velocity deficit and turbulence intensity enhancement induced by the turbines are well captured by the simulations. Besides, the vertical profiles of the mean velocity and turbulence intensity at different streamwise positions match well those for the experiment. In addition, another numerical experiment is carried out to show how higher (and more realistic) thrust coefficients of the turbines lead to stronger wakes and, at the same time, higher turbulence intensities.

  2. Simulating wind and marine hydrokinetic turbines with actuator lines in RANS and LES

    NASA Astrophysics Data System (ADS)

    Bachant, Peter; Wosnik, Martin

    2015-11-01

    As wind and marine hydrokinetic (MHK) turbine designs mature, focus is shifting towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow or horizontal-axis turbines, or taking advantage of constructive wake interaction for cross-flow or vertical-axis turbines. Towards this goal, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An additional sub-model is considered for injecting turbulence model scalar quantities based on actuator line element loading. Results are presented for the simulation of performance and wake dynamics of axial- and cross-flow turbines and compared with moderate Reynolds number experiments and body-fitted mesh, blade-resolving CFD. Work supported by NSF-CBET grant 1150797.

  3. Wind tunnel testing of 5-bladed H-rotor wind turbine with the integration of the omni-direction-guide-vane

    NASA Astrophysics Data System (ADS)

    Fazlizan, A.; Chong, W. T.; Omar, W. Z. W.; Mansor, S.; Zain, Z. M.; Pan, K. C.; Oon, C. S.

    2012-06-01

    A novel omni-direction-guide-vane (ODGV) that surrounds a vertical axis wind turbine (VAWT) is designed to improve the wind turbine performance by increasing the oncoming wind speed and guiding the wind-stream through optimum flow angles before impinging onto the turbine blades. Wind tunnel testing was performed to measure the performance of a 5-bladed H-rotor wind turbine with Wortmann FX63-137 airfoil blades, with and without the integration of the ODGV. The test was conducted using a scaled model turbine which was constructed to simulate the VAWT enclosed by the ODGV on a building. The diameter and height of the ODGV are 2 times larger than the VAWT's. Torque, rotational speed and power measurements were performed by using torque transducer with hysteresis brake applied to the rotor shaft. The VAWT shows an improvement on its self-starting behavior where the cut-in speed reduced to 4 m/s with the ODGV (7.35 m/s without the ODGV). Since the VAWT is able to self-start at lower wind speed, the working hour of the wind turbine would increase. At the wind speed of 6 m/s and free-running condition (only rotor inertia and bearing friction were applied), the ODGV helps to increase the rotor RPM by 182%. At the same wind speed (6 m/s), the ODGV helps to increase the power output by 3.48 times at peak torque. With this innovative design, the size of VAWT can be reduced for a given power output and should generate interest in the market, even for regions with weaker winds.

  4. 14 CFR 25.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first... two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the... axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...

  5. 14 CFR 27.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first... two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...

  6. Estimating vertical velocity and radial flow from Doppler radar observations of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Lee, J. L.; Lee, W. C.; MacDonald, A. E.

    2006-01-01

    The mesoscale vorticity method (MVM) is used in conjunction with the ground-based velocity track display (GBVTD) to derive the inner-core vertical velocity from Doppler radar observations of tropical cyclone (TC) Danny (1997). MVM derives the vertical velocity from vorticity variations in space and in time based on the mesoscale vorticity equation. The use of MVM and GBVTD allows us to derive good correlations among the eye-wall maximum wind, bow-shaped updraught and echo east of the eye-wall in Danny. Furthermore, we demonstrate the dynamically consistent radial flow can be derived from the vertical velocity obtained from MVM using the wind decomposition technique that solves the Poisson equations over a limited-area domain. With the wind decomposition, we combine the rotational wind which is obtained from Doppler radar wind observations and the divergent wind which is inferred dynamically from the rotational wind to form the balanced horizontal wind in TC inner cores, where rotational wind dominates the divergent wind. In this study, we show a realistic horizontal and vertical structure of the vertical velocity and the induced radial flow in Danny's inner core. In the horizontal, the main eye-wall updraught draws in significant surrounding air, converging at the strongest echo where the maximum updraught is located. In the vertical, the main updraught tilts vertically outwards, corresponding very well with the outward-tilting eye-wall. The maximum updraught is located at the inner edge of the eye-wall clouds, while downward motions are found at the outer edge. This study demonstrates that the mesoscale vorticity method can use high-temporal-resolution data observed by Doppler radars to derive realistic vertical velocity and the radial flow of TCs. The vorticity temporal variations crucial to the accuracy of the vorticity method have to be derived from a high-temporal-frequency observing system such as state-of-the-art Doppler radars.

  7. Pulse Power Hybrid Energy Storage Module Development Program

    DTIC Science & Technology

    2015-05-01

    consumed by the PFN. The energy stored in the HESM is displayed 12 as flywheel speed (RPM) against the right-side vertical axis . The flywheel speed...energy consumed by the PFN. The energy stored in the HESM is shown in Joules on the left-side vertical axis and in terms of flywheel speed (RPM) on the...right-side vertical axis . A noticeable difference in the charging variants is seen in the energy transfer through the HESM. Referring to Fig. 8, the

  8. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    NASA Astrophysics Data System (ADS)

    Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.

    2004-11-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are less pronounced and no longer have systematic subsident charateristics. In addition, those vertical motions are found to be much less developed during the nighttimes because of the stabilization of the nocturnal planetary boundary layer due to a ground cooling. The enhanced turbulent dissipation-rate values found at lower levels during the afternoons of weak Mistral cases are consistent with the installation of the summer convective boundary layer and show that, as expected in weaker Mistral events, the convection is the preponderant factor for the turbulence generation. On the other hand, for stronger cases, such a convective boundary layer installation is perturbed by the Mistral.

  9. X, Y, Z positioner

    DOEpatents

    Goers, G.F.

    1987-11-10

    A three-axis control for precisely and conveniently adjusting items such as mirrors and lenses is disclosed. The adjuster apparatus includes a vertical stack of three rotatable adjusters. Rotation of the first effects vertical translation, whereas the second and third are eccentric assemblies which interact to effect movement along two angled axes perpendicular to the vertical axis. 13 figs.

  10. X, Y, Z positioner

    DOEpatents

    Goers, George F.

    1987-01-01

    A three-axis control for precisely and conveniently adjusting items such as irrors and lenses is disclosed. The adjuster apparatus includes a vertical stack of three rotatable adjusters. Rotation of the first effects vertical translation, whereas the second and third are eccentric assemblies which interact to effect movement along two angled axes perpendicular to the vertical axis.

  11. 14 CFR 29.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the... formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...

  12. 14 CFR 23.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the... formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...

  13. Binocular Coordination of the Human Vestibulo-Ocular Reflex during Off-axis Pitch Rotation

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Reschke, M. F.; Kaufman, G. D.; Black, F. O.; Paloski, W. H.

    2006-01-01

    Head movements in the sagittal pitch plane typically involve off-axis rotation requiring both vertical and horizontal vergence ocular reflexes to compensate for angular and translational motion relative to visual targets of interest. The purpose of this study was to compare passive pitch VOR responses during rotation about an Earth-vertical axis (canal only cues) with off-axis rotation (canal and otolith cues). Methods. Eleven human subjects were oscillated sinusoidally at 0.13, 0.3 and 0.56 Hz while lying left-side down with the interaural axis either aligned with the axis of rotation or offset by 50 cm. In a second set of measurements, twelve subjects were also tested during sinusoidally varying centrifugation over the same frequency range. The modulation of vertical and horizontal vergence ocular responses was measured with a binocular videography system. Results. Off-axis pitch rotation enhanced the vertical VOR at lower frequencies and enhanced the vergence VOR at higher frequencies. During sinusoidally varying centrifugation, the opposite trend was observed for vergence, with both vertical and vergence vestibulo-ocular reflexes being suppressed at the highest frequency. Discussion. These differential effects of off-axis rotation over the 0.13 to 0.56 Hz range are consistent with the hypothesis that otolith-ocular reflexes are segregated in part on the basis of stimulus frequency. At the lower frequencies, tilt otolith-ocular responses compensate for declining canal input. At higher frequencies, translational otolith-ocular reflexes compensate for declining visual contributions to the kinematic demands required for fixating near targets.

  14. A new approach to wind energy: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Dabiri, John O.; Greer, Julia R.; Koseff, Jeffrey R.; Moin, Parviz; Peng, Jifeng

    2015-03-01

    Despite common characterizations of modern wind energy technology as mature, there remains a persistent disconnect between the vast global wind energy resource—which is 20 times greater than total global power consumption—and the limited penetration of existing wind energy technologies as a means for electricity generation worldwide. We describe an approach to wind energy harvesting that has the potential to resolve this disconnect by geographically distributing wind power generators in a manner that more closely mirrors the physical resource itself. To this end, technology development is focused on large arrays of small wind turbines that can harvest wind energy at low altitudes by using new concepts of biology-inspired engineering. This approach dramatically extends the reach of wind energy, as smaller wind turbines can be installed in many places that larger systems cannot, especially in built environments. Moreover, they have lower visual, acoustic, and radar signatures, and they may pose significantly less risk to birds and bats. These features can be leveraged to attain cultural acceptance and rapid adoption of this new technology, thereby enabling significantly faster achievement of state and national renewable energy targets than with existing technology alone. Favorable economics stem from an orders-of-magnitude reduction in the number of components in a new generation of simple, mass-manufacturable (even 3D-printable), vertical-axis wind turbines. However, this vision can only be achieved by overcoming significant scientific challenges that have limited progress over the past three decades. The following essay summarizes our approach as well as the opportunities and challenges associated with it, with the aim of motivating a concerted effort in basic and applied research in this area.

  15. Nonlinear Aeroelastic Equations of Motion of Twisted, Nonuniform, Flexible Horizontal-Axis Wind Turbine Blades

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.

    1980-01-01

    The second-degree nonlinear equations of motion for a flexible, twisted, nonuniform, horizontal axis wind turbine blade were developed using Hamilton's principle. A mathematical ordering scheme which was consistent with the assumption of a slender beam was used to discard some higher-order elastic and inertial terms in the second-degree nonlinear equations. The blade aerodynamic loading which was employed accounted for both wind shear and tower shadow and was obtained from strip theory based on a quasi-steady approximation of two-dimensional, incompressible, unsteady, airfoil theory. The resulting equations had periodic coefficients and were suitable for determining the aeroelastic stability and response of large horizontal-axis wind turbine blades.

  16. Simulating and understanding the gap outflow and oceanic response over the Gulf of Tehuantepec during GOTEX

    NASA Astrophysics Data System (ADS)

    Hong, Xiaodong; Peng, Melinda; Wang, Shouping; Wang, Qing

    2018-06-01

    Tehuantepecer is a strong mountain gap wind traveling through Chivela Pass into eastern Pacific coast in southern Mexico, most commonly between October and February and brings huge impacts on local and surrounding meteorology and oceanography. Gulf of Tehuantepec EXperiment (GOTEX) was conducted in February 2004 to enhance the understanding of the strong offshore gap wind, ocean cooling, vertical circulations and interactions among them. The gap wind event during GOTEX was simulated using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). The simulations are compared and validated with the observations retrieved from several satellites (GOES 10-12, MODIS/Aqua/Terra, TMI, and QuikSCAT) and Airborne EXpendable BathyThermograph (AXBT). The study shows that the gap wind outflow has a fanlike pattern expending from the coast and with a strong diurnal variability. The surface wind stress and cooling along the axis of the gap wind outflow caused intense upwelling and vertical mixing in the upper ocean; both contributed to the cooling of the ocean mixed layer under the gap wind. The cooling pattern of sea surface temperature (SST) also reflects temperature advection by the nearby ocean eddies to have a crescent shape. Two sensitivity experiments were conducted to understand the relative roles of the wind stress and heat flux on the ocean cooling. The control has more cooling right under the gap flow region than either the wind-stress-only or the heat-flux-only experiment. Overall, the wind stress has a slightly larger effect in bringing down the ocean temperature near the surface and plays a more important role in local ocean circulations beneath the mixed layer. The impact of surface heat flux on the ocean is more limited to the top 30 m within the mixed layer and is symmetric to the gap flow region by cooling the ocean under the gap flow region and reducing the warming on both sides. The effect of surface wind stress is to induce more cooling in the mixed layer under the gap wind through upwelling associated with Ekman divergence at the surface. Its effect deeper down is antisymmetric related to the nearby thermocline dome by inducing more upwelling to the east side of the gap flow region and more downwelling on the west side. Diagnostics from the mixed layer heat budget for the control and sensitivity experiments confirm that the surface heat flux has more influence on the broader area and the wind stress has more influence in a deeper region.

  17. Ionospheric vertical plasma drift perturbations due to the quasi 2 day wave

    NASA Astrophysics Data System (ADS)

    Gu, Sheng-Yang; Liu, Han-Li; Li, Tao; Dou, Xiankang

    2015-05-01

    The thermosphere-ionosphere-mesosphere-electrodynamics-general circulation model is utilized to study the vertical E × B drift perturbations due to the westward quasi 2 day wave with zonal wave numbers 2 and 3 (W2 and W3). The simulations show that both wind components contribute directly and significantly to the vertical drift, which is not merely confined to low latitudes. The vertical drifts at the equator induced by the total wind perturbations of W2 are comparable with that at middle latitudes, while the vertical drifts from W3 are much stronger at middle latitudes than at the equator. The ion drift perturbations induced by the zonal and meridional wind perturbations of W2 are nearly in-phase with each other, whereas the phase discrepancies of the ion drift induced by the individual wind component of W3 are much larger. This is because the wind perturbations of W2 and W3 have different latitudinal structures and phases, which result in different ionospheric responses through wind dynamo.

  18. Effect of micro-scale wind on the measurement of airborne pollen concentrations using volumetric methods on a building rooftop

    NASA Astrophysics Data System (ADS)

    Miki, Kenji; Kawashima, Shigeto; Fujita, Toshio; Nakamura, Kimihito; Clot, Bernard

    2017-06-01

    Evaluating airborne pollen concentrations is important for the understanding of the spatiotemporal dispersion of pollen grains. Using two identical pollen monitors in parallel, we performed two experiments in order to study the influences of a) the physical characteristics (orientation) of the air inlet and b) the presence of obstacles in proximity to the monitors on airborne pollen concentration data. The first experiment consisted of an evaluation of airborne pollen concentrations using two different types of orifices; 1) a vertically oriented inlet and 2) a wind vane intake, both attached to the same type of automatic pollen sampler. The second experiment investigated the relationship between vertical wind speed and horizontal wind direction around an obstacle with the goal of studying the impact of micro-scale wind on pollen sampling efficiency. The results of the two experiments suggest that the wind path near an obstacle might be redirected in a vertical direction before or after the wind flows over the obstacle, which causes measurement errors of airborne pollen concentrations that are proportional to the vertical wind speed, especially when a vertically oriented inlet is used.

  19. Methods and apparatus for cooling wind turbine generators

    DOEpatents

    Salamah, Samir A [Niskayuna, NY; Gadre, Aniruddha Dattatraya [Rexford, NY; Garg, Jivtesh [Schenectady, NY; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Alplaus, NY; Carl, Jr., Ralph James

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  20. Modular off-axis solar concentrator

    DOEpatents

    Plesniak, Adam P; Hall, John C

    2015-01-27

    A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.

  1. An analytic model of the in-line and cross-axis apparent mass of the seated human body exposed to vertical vibration with and without a backrest

    NASA Astrophysics Data System (ADS)

    Zheng, Guangtai; Qiu, Yi; Griffin, Michael J.

    2011-12-01

    During vertical excitation of the seated human body there are vertical and fore-and-aft forces at the seat that are influenced by contact with a backrest, so it is desirable to take into account the effect of a backrest when developing models of the seated human body. Initially, a seven degree-of-freedom multi-body dynamic model was developed for the human body sitting with an upright posture unsupported by a backrest and exposed to vertical vibration. The model was optimized to fit the vertical apparent mass and the fore-and-aft cross-axis apparent mass measured on a seat. The model was then extended by the addition of vertical and fore-and-aft reaction forces to the upper lumbar spine to model the interaction between the human body and a backrest. By minimizing the least square error between experimental data and the analytical solution of the apparent masses on the seat and at the back, the human body model was able to represent both the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and at the back. Parameter sensitivity studies showed that the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and the backrest were all highly sensitive to the axial stiffness of the tissue beneath the pelvis. Pitch motion of the upper-body contributed to the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat. The apparent mass at the back was more sensitive to the stiffness and damping of the lower back than the properties of the upper back.

  2. Adaptive Changes in the Perception of Fast and Slow Movement at Different Head Positions.

    PubMed

    Panichi, Roberto; Occhigrossi, Chiara; Ferraresi, Aldo; Faralli, Mario; Lucertini, Marco; Pettorossi, Vito E

    2017-05-01

    This paper examines the subjective sense of orientation during asymmetric body rotations in normal subjects. Self-motion perception was investigated in 10 healthy individuals during asymmetric whole-body rotation with different head orientations. Both on-vertical axis and off-vertical axis rotations were employed. Subjects tracked a remembered earth-fixed visual target while rotating in the dark for four cycles of asymmetric rotation (two half-sinusoidal cycles of the same amplitude, but of different duration). The rotations induced a bias in the perception of velocity (more pronounced with fast than with slow motion). At the end of rotation, a marked target position error (TPE) was present. For the on-vertical axis rotations, the TPE was no different if the rotations were performed with a 30° nose-down, a 60° nose-up, or a 90° side-down head tilt. With off-vertical axis rotations, the simultaneous activation of the semicircular canals and otolithic receptors produced a significant increase of TPE for all head positions. This difference between on-vertical and off-vertical axis rotation was probably partly due to the vestibular transfer function and partly due to different adaptation to the speed of rotation. Such a phenomenon might be generated in different components of the vestibular system. The adaptive process enhancing the perception of dynamic movement around the vertical axis is not related to the specific semicircular canals that are activated; the addition of an otolithic component results in a significant increase of the TPE.Panichi R, Occhigrossi C, Ferraresi A, Faralli M, Lucertini M, Pettorossi VE. Adaptive changes in the perception of fast and slow movement at different head positions. Aerosp Med Hum Perform. 2017; 88(5):463-468.

  3. A search for thermospheric composition perturbations due to vertical winds

    NASA Astrophysics Data System (ADS)

    Krynicki, Matthew P.

    The thermosphere is generally in hydrostatic equilibrium, with winds blowing horizontally along stratified constant-pressure surfaces, driven by the dayside-to-nightside pressure gradient. A marked change in this paradigm resulted after Spencer et al. [1976] reported vertical wind measurements of 80 m·s-1 from analyses of AE-C satellite data. It is now established that the thermosphere routinely supports large-magnitude (˜30-150 m·s-1) vertical winds at auroral latitudes. These vertical winds represent significant departure from hydrostatic and diffusive equilibrium, altering locally---and potentially globally---the thermosphere's and ionosphere's composition, chemistry, thermodynamics and energy budget. Because of their localized nature, large-magnitude vertical wind effects are not entirely known. This thesis presents ground-based Fabry-Perot Spectrometer OI(630.0)-nm observations of upper-thermospheric vertical winds obtained at Inuvik, NT, Canada and Poker Flat, AK. The wind measurements are compared with vertical displacement estimates at ˜104 km2 horizontal spatial scales determined from a new modification to the electron transport code of Lummerzheim and Lilensten [1994] as applied to FUV-wavelength observations by POLAR spacecraft's Ultraviolet Imager [Torr et al. , 1995]. The modification, referred to as the column shift, simulates vertical wind effects such as neutral transport and disruption of diffusive equilibrium by vertically displacing the Hedin [1991] MSIS-90 [O2]/[N2] and [O]/([N2]+[O2]) mixing ratios and subsequently redistributing the O, O2, and N 2 densities used in the transport code. Column shift estimates are inferred from comparisons of UVI OI(135.6)-nm auroral observations to their corresponding modeled emission. The modeled OI(135.6)-nm brightness is determined from the modeled thermospheric response to electron precipitation and estimations of the energy flux and characteristic energy of the precipitation, which are inferred from UVI-observed Lyman-Birge-Hopfield N2 emissions in two wavelength ranges. Two-dimensional column shift maps identify the spatial morphology of thermospheric composition perturbations associated with auroral forms relative to the model thermosphere. Case-study examples and statistical analyses of the column shift data sets indicate that column shifts can be attributed to vertical winds. Unanticipated limitations associated with modeling of the OI(135.6)-nm auroral emission make absolute column shift estimates indeterminate. Insufficient knowledge of thermospheric air-parcel time histories hinders interpretations of point-to-point time series comparisons between column shifts and vertical winds.

  4. Forcing mechanisms and hydrodynamics in Loch Linnhe, a dynamically wide Scottish estuary

    NASA Astrophysics Data System (ADS)

    Rabe, Berit; Hindson, Jennifer

    2017-09-01

    Hydrodynamic conditions in Loch Linnhe, a dynamifcally wide estuary on the west coast of Scotland, are primarily influenced by wind forcing, freshwater input, and tides. Winds in the region are orographically steered along the axis of the estuary due to surrounding mountains. A large rainfall catchment area results in a large freshwater inflow into Loch Linnhe which in turn produces low salinity waters at the head of the estuary. This, combined with a connection to the open sea with coastal salinities, leads to salinity gradients in the horizontal and vertical. Even though a range of observational programmes have focussed on Loch Linnhe, the literature still lacks an evaluation of its physical dynamics. Here we present a first description of the hydrodynamics in Loch Linnhe based on observations. Wind stress predominantly influences the surface layer, especially at low frequencies and with a stronger influence than tides during neap tides. The buoyancy-driven flow due to the large river runoff influences the circulation independent of wind stress. Seasonal (spring, autumn) and interannual (2011, 2012) variability of water masses occur especially in the surface layer. Tides are dominated by the semi-diurnal constituent M2 with tidal ellipses aligned in the along-estuary direction and a stronger influence during spring tides compared to wind. An evaluation of dimensionless numbers reveal laterally and vertically sheared exchange flows. Compared to other Scottish estuaries Loch Linnhe is wide enough to be influenced by the Earth's rotation and demonstrates an enhanced freshwater outflow along its north-western coast as the freshwater is diverted to the right in the direction of the flow. These observed patterns are important for the sustainable environmental management of this socio-economically valuable region, e.g. through their relevance to aquaculture pathogen transmission patterns. A thorough understanding of the dynamics of the system is essential for a successful evidence-based marine planning framework.

  5. Three-dimensional organization of vestibular-related eye movements to off-vertical axis rotation and linear translation in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Angelaki, D. E.

    1999-01-01

    During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8-58 degrees /s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions.

  6. System efficiency of a tap transformer based grid connection topology applied on a direct driven generator for wind power.

    PubMed

    Apelfröjd, Senad; Eriksson, Sandra

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.

  7. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    PubMed Central

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733

  8. Constraints on vertical transport near the polar summer mesopause from PMC observations and modelling

    NASA Astrophysics Data System (ADS)

    Wilms, H.; Rapp, M.; Kirsch, A.

    2016-12-01

    The comparison of microphysical simulations of polar mesospheric cloud properties with ground based and satellite borne observations suggests that vertical wind variance imposed by gravity waves is an important prerequisite to realistically model PMC properties. This paper reviews the available observational evidence of vertical wind measurements at the polar summer mesopause (including their frequency content). Corresponding results are compared to vertical wind variance from several global models and implications for the transport of trace constituents in this altitude region are discussed.

  9. Mars vertical axis wind machines. The design of a Darreus and a Giromill for use on Mars

    NASA Astrophysics Data System (ADS)

    Brach, David; Dube, John; Kelly, Jon; Peterson, Joanna; Bollig, John; Gohr, Lisa; Mahoney, Kamin; Polidori, Dave

    1992-05-01

    This report contains the design of both a Darrieus and a Giromill for use on Mars. The report has been organized so that the interested reader may read only about one machine without having to read the entire report. Where components for the two machines differ greatly, separate sections have been allotted for each machine. Each section is complete; therefore, no relevant information is missed by reading only the section for the machine of interest. Also, when components for both machines are similar, both machines have been combined into one section. This is done so that the reader interested in both machines need not read the same information twice.

  10. Mars vertical axis wind machines. The design of a Darreus and a Giromill for use on Mars

    NASA Technical Reports Server (NTRS)

    Brach, David; Dube, John; Kelly, Jon; Peterson, Joanna; Bollig, John; Gohr, Lisa; Mahoney, Kamin; Polidori, Dave

    1992-01-01

    This report contains the design of both a Darrieus and a Giromill for use on Mars. The report has been organized so that the interested reader may read only about one machine without having to read the entire report. Where components for the two machines differ greatly, separate sections have been allotted for each machine. Each section is complete; therefore, no relevant information is missed by reading only the section for the machine of interest. Also, when components for both machines are similar, both machines have been combined into one section. This is done so that the reader interested in both machines need not read the same information twice.

  11. Temperatures and Composition in the Saturn System from Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael

    2008-01-01

    We summarize recent observations by the Composite Infrared Spectrometer of Saturn, its rings, Titan, and the icy satellites. Limb observations of Saturn show vertical oscillations of temperatures and zonal-wind shears in the equatorial region that may be related to a temporal oscillation similar to the terrestrial QBO and Jupiter's QQO. There is also evidence of subsidence at mid-northern latitudes driven by the equatorial activity. Nadir-viewing observations show compact warm spots in the troposphere and stratosphere at both (summer and winter) poles, likely associated with subsidence. Observations of Titan have defined better the characteristics of the northern winter polar vortex, with 190 m/s winds surrounding a cold atmosphere at 1 microbar. The very warm polar stratopause at 10 microbar and the enhanced abundances of organic compounds suggest subsidence within the vortex. Analysis of the zonal structure in temperature indicates that the stratospheric zonal winds rotate about an axis that is displaced approximately 4.1 deg from the IAU pole. Additional flybys, including a close one in March 2008, continue to characterize the endogenic activity in Enceladus s south polar region. Temperature maps of bright and dark terrains on Iapetus indicate that its ice is approximately stable to sublimation in the bright regions and highly unstable in the dark regions. Thermal mapping of Saturn s rings continues to constrain their composition, and observations at different solar phase angles, spacecraft elevations, solar elevations, and local hour angles have elucidated the effects of ring-particle shadowing and vertical motions on the thermal structure, and revealed the presence of small-scale structure associated with self-gravity wakes.

  12. Minimum Altitude-Loss Soaring in a Specified Vertical Wind Distribution

    NASA Technical Reports Server (NTRS)

    Pierson, B. L.; Chen, I.

    1979-01-01

    Minimum altitude-loss flight of a sailplane through a given vertical wind distribution is discussed. The problem is posed as an optimal control problem, and several numerical solutions are obtained for a sinusoidal wind distribution.

  13. A scheiner-principle vernier optometer

    NASA Astrophysics Data System (ADS)

    Cushman, William B.

    1989-06-01

    A method and optometer apparatus is disclosed for measuring the dark focus of accommodation. In a preferred embodiment, the optometer apparatus includes: a pinhole aperture plate having first and second horizontally positioned apertures disposed on opposite sides of a first optical axis; first and second orthogonally-oriented polarizing filters respectively covering the first and second horizontally positioned apertures; a positive lens having an optical axis on the first optical axis and being positioned at a distance of approximately one focal length from the pinhole aperture plate; a lens system having an optical axis on the first optical axis; a slit aperture plate having a vertical slit and being disposed on the first optical axis and between the positive lens and the lens system; third and fourth vertically positioned polarizing filters selectively disposed adjacent to the slit aperture plate to divide the slit vertically, a monochromatic light source for propagating light along the first optical axis through the lens system; and movable means attached to the slit aperture plate, the lens system and the monochromatic light source for moving the slit aperture plate.

  14. Research on the unsteady hydrodynamic characteristics of vertical axis tidal turbine

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-wei; Zhang, Liang; Wang, Feng; Zhao, Dong-ya; Pang, Cheng-yan

    2014-03-01

    The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.

  15. Righting response of artificially inclined maritime pine (Pinus pinaster) saplings to wind loading.

    PubMed

    Berthier, Stephane; Stokes, Alexia

    2006-01-01

    To determine if trees respond to dynamic and static loading in the same manner, 2-year-old maritime pine (Pinus pinaster Ait.) trees were subjected to different types of mechanical loading in the field. One block of trees (the control) were kept in pots and planted in the field at an angle of 0 or 45 degrees to the vertical. A similar block of leaning potted trees was planted nearby and subjected to frequent, unilateral wind loading for a period of 1 s every 2 min. Half the leaning trees were oriented toward the direction of wind loading and half were oriented along the axis of wind loading. The stem profile was measured three times during the growing season to quantify the rate of stem straightening. Compression wood formation and stem shape were measured in all plants. No differences in mean height or diameter were observed between blocks and all leaning trees straightened, but not at the same rate. Although no difference in the rate of apical straightening occurred between control and wind-treated trees, the righting response of the basal part of the stem of leaning trees subjected to wind was four times greater than that of leaning trees without wind. No differences in the righting response were observed between leaning trees growing toward and trees growing away from the source of wind. No significant differences in compression wood formation were found between control trees and wind-treated trees, indicating that other factors must determine the reorientation rate of leaning trees. Results are discussed with reference to the quality of compression wood in conifers and the mechanotransductive pathway in plants.

  16. Analysis and test results for a two-bladed, passive cycle pitch, horizontal-axis wind turbine in free and controlled yaw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holenemser, K.H.

    1995-10-01

    This report surveys the analysis and tests performed at Washington University in St. Louis, Missouri, on a horizontal-axis, two-laded wind turbine with teeter hub. The introduction is a brief account of results obtained during the 5-year period ending December 1985. The wind tunnel model and the test turbine (7.6 m [25 ft.] in diameter) at Washington University`s Tyson Research Center had a 67{degree} delta-three angle of the teeter axis. The introduction explains why this configuration was selected and named the passive cycle pitch (PCP) wind turbine. Through the analysis was not limited to the PCP rotor, all tests, including thosemore » done from 1986 to 1994, wee conducted with the same teetered wind rotor. The blades are rather stiff and have only a small elastic coning angle and no precone.« less

  17. Electrocardiographic screening for emphysema: the frontal plane P axis.

    PubMed

    Baljepally, R; Spodick, D H

    1999-03-01

    Because the most characteristic and sensitive electrocardiographic (ECG) correlate of pulmonary emphysema in adults is verticalization of the frontal plane P-wave vector (P axis), we investigated its strength as a lone criterion to screen for obstructive pulmonary disease (OPD) in an adult hospital population. In all, 954 consecutive unselected ECGs were required to yield 100 with P axis > or = +70 degrees (unequivocally negative P in a VL during sinus rhythm) and pulmonary function tests. and 100 with P axis < or = +50 degrees (unequivocally positive P-aVL). Obstructive pulmonary disease by both pulmonary function test and clinical criteria was present in 89 of 100 patients with vertical P axes and 4 of 100 patients without OPD. The high sensitivity (89% for this series) and high specificity (96%) makes vertical P axis a useful screening criterion. Its at-a-glance simplicity makes it "user-friendly."

  18. A preliminary theoretical study of double blade two-dimensional aerodynamics for applications to vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Weibust, E.

    1981-04-01

    A NASA model for computing the subsonic, viscous, attached flow around multielement airfoils was used to determine the amount of energy lost when using double blades rather than single ones. The resulting tangential force for the double or single blade configuration used as a criterion is found. Radial spacing, toe-in toe-out angle and tangential displacement (stagger) were varied to see how tagential force is affected. The greatest tangential force values are found to be achieved for maximum allowable radial spacing, which is determined by structural considerations, and is assumed to be on the order of 1.5 c. At this rather large distance, stagger as well as toe-in toe-out angle only gives slight improvements as long as the flow separation effects (stall region) are not considered. A large part of the energy is captured at relatively high wind speeds when the flow on the blades is partly separated (stalled).

  19. Investigation of space shuttle orbiter subsonic stability and control characteristics in the NAAL low speed wind tunnel (OA62B), volume 2

    NASA Technical Reports Server (NTRS)

    Mennell, R.; Hughes, T.

    1974-01-01

    Experimental aerodynamic investigations were conducted on a sting-mounted 0.0405 scale representation of the 140A/B space shuttle orbiter in a 7.75 ft by 11 ft low speed wind tunnel during the period from November 14, 1973 to December 6, 1973. Establishment of basic longitudinal stability characteristics in and out of ground effect, and the establishment of lateral-directional stability characteristics in free air were the primary test objectives. The following effects and configurations were tested: (1) two dual podded nacelle configurations; (2) stability and control characteristics at nominal elevon deflections, rudder deflections, airleron deflections, rudder flare angles, and body flap deflections; (3) effects of various elevon and elevon/fuselage gaps on longitudinal stability and control; (4) pressures on the vertical tail at spanwise stations using pressure bugs; (5) aerodynamic force and moment data measured in the stability axis system by an internally mounted, six-component strain gage balance. For Vol. 1, see N74-32324.

  20. Optimum dimensions of power solenoids for magnetic suspension

    NASA Technical Reports Server (NTRS)

    Kaznacheyev, B. A.

    1985-01-01

    Design optimization of power solenoids for controllable and stabilizable magnetic suspensions with force compensation in a wind tunnel is shown. It is assumed that the model of a levitating body is a sphere of ferromagnetic material with constant magnetic permeability. This sphere, with a radius much smaller than its distance from the solenoid above, is to be maintained in position on the solenoid axis by balance of the vertical electromagnetic force and the force of gravitation. The necessary vertical (axial) force generated by the solenoid is expressed as a function of relevant system dimensions, solenoid design parameters, and physical properties of the body. Three families of curves are obtained which depict the solenoid power for a given force as a function of the solenoid length with either outside radius or inside radius as a variable parameter and as a function of the outside radius with inside radius as a variable parameter. The curves indicate the optimum solenoid length and outside radius, for minimum power, corresponding to a given outside radius and inside radius, respectively.

  1. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Xing, Chengzhi; Liu, Cheng; Wang, Shanshan; Chan, Ka Lok; Gao, Yang; Huang, Xin; Su, Wenjing; Zhang, Chengxin; Dong, Yunsheng; Fan, Guangqiang; Zhang, Tianshu; Chen, Zhenyi; Hu, Qihou; Su, Hang; Xie, Zhouqing; Liu, Jianguo

    2017-12-01

    Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.

  2. Equations for Estimating the Strength of TV Signals Scattered by Wind Turbines

    NASA Technical Reports Server (NTRS)

    Spera, David A.; Sengupta, Dipak L.

    1994-01-01

    During the late 1970's and early 1980's, concerns about the potential interference of wind turbine generators with electromagnetic communication signals led to a series of research studies, both in the laboratory and in the field, conducted by the staff of the University of Michigan Radiation Laboratory. These studies were sponsored by organizations such as the U.S. Department of Energy, the Solar Energy Research Institute, and private developers of wind power stations. Research objectives were to identify the mechanisms by which wind turbines might adversely affect communication signals, estimate the severity of these effects for different types of signals (e.g. television, radio, microwave, and navigation), and formulate mathematical models with which to predict the sizes of potential interference zones around wind turbines and wind power plants. This work formed the basis for preliminary standards on assessing electromagnetic interference (EMI) by wind turbines. With the current renewal of interest in wind energy projects, it is appropriate that the many experimental and analytical aspects of this pioneering work be reviewed and correlated. The purpose of this study is to combine test data and theory from previously published and unpublished research reports into a unified and consistent set of equations which are useful for estimating potential levels of television interference from wind turbines. To be comprehensive, these equations will include both horizontal-axis and vertical-axis wind turbines (HAWT's and VAWT's), blade configuration parameters (e.g. number, size, material, twist, and coning), signal frequency and power, and directional characteristics of the receiving antenna. The approach that is followed in this report is as follows. First, some basic equations that describe electromagnetic signals with interference are presented without detailed derivations, since the latter are available in the references. Minor changes in terminology are made for purposes of consistency. Next, the concept of a signal scatter ratio is introduced, which defines the fraction of the signal impinging on a wind turbine that is scattered by its blades onto a nearby receiver. Equations from references are modified for the calculation of experimental scatter ratios (from measured signals containing interference) and idealized scatter ratios (from rotor characteristics and relative locations of the transmitter, the turbine, and the receiver). Experimental and idealized scatter ratios are then calculated and compared for 75 cases from the literature, in which TVI measurements were made around a variety of wind turbines. An empirical equation is then defined for estimating the probability that an actual scatter ratio will differ from an idealized ratio by a given amount. Finally a sample calculation of the size of a potential TV interference zone around a hypothetical wind power station is presented.

  3. Experimental study of a wake behind a barrier

    NASA Astrophysics Data System (ADS)

    Tomáš, Dufek; Katarína, Ratkovská

    2017-09-01

    This article describes in detail an experiment which was carried out on a wind tunnel in the Laboratory of the Department of Power Machines, Faculty of Mechanical Engineering, at the University of West Bohemia (UWB), using Particle Image Velocimetry and Stereo Particle Image Velocimetry. PIV is a non-invasive method that allows you to simultaneously measure the flow velocity across the entire field under investigation. In the experiment, the field was located behind the exit of the wind tunnel. The experiment dealt with the measurement of the wake behind a barrier. Measurement with Stereo PIV was carried out in several vertical parallel planes perpendicular to the axis of the tunnel. Conventional PIV method was then used for a horizontal plane passing through the axis of the tunnel at half the height of the barrier. The velocities in the measured plane are expressed by a vector map. In areas not affected by the wake, the speed in the w direction is about 16 m / s. The wake is formed behind the barrier. A shear layer is formed at the boundary between the flowing air and the braked air. A backflow occurs in the area just behind the barrier. The highest speed in the area is achieved in places just behind the exit of the tunnel, where the current is not affected by the barrier. In the direction from the axis and the obstacle, the speed gradually rises from the negative values of the return flow through the zero speed. In addition to the velocity fields, the output from the experimental measurement was also the distribution of the sum of variances, standard deviation and correlation coefficient in the measured planes.

  4. A Quantitative Study of Vertical Replenishment and its Contribution to Momentum Recovery for a Large Offshore Windfarm

    NASA Astrophysics Data System (ADS)

    Gupta, T.; Baidya Roy, S.; Miller, L.

    2017-12-01

    With rapid increase in the installed wind capacity around the globe, it is important and interesting to understand the processes involved in wind farm-atmospheric boundary layer interactions. A wind turbine extracts energy from the mean flow and converts it into electrical energy, thereby reducing the mean kinetic energy available. The corresponding reduction in momentum triggers vertical mixing that transports high-momentum air from aloft to the wind turbine layer thereby replenishing the lost momentum, at least partially. This study investigates the phenomenon of vertical replenishment and quantifies its contribution in the momentum recovery as a function of various factors including installed capacity (MW/km2), depth of the wind farm (km) and climatology of the area. Numerical experiments are conducted using the WRF mesoscale model to simulate wind turbine-boundary layer interactions in a hypothetical large off-shore wind farm located deep in the Arabian Sea off the western coast of India. WRF is equipped with a wind turbine parameterization and is capable of simulating both the momentum reduction and vertical replenishment phenomena. It is found that the downward turbulent flux is able to replenish about 66% of momentum lost because of wind turbines. Additionally, the feedback leads to an average increase of 1.5% in generated power capacity in the wind farm. These results indicate that when the momentum deficit occurs, the vertical replenishment in form of turbulent flux tries to dampen the momentum loss, hence, acting as a negative feedback in the wind farm.

  5. Into Turbulent Air: Hummingbird Aerodynamic Control in Unsteady Circumstances

    DTIC Science & Technology

    2016-06-24

    costs of flight. We have also completed studies of hummingbird hovering flight within a vertical wind tunnel to enable study of the vortex ring state...vertical wind tunnel to enable study of the vortex ring state, a well-known problem in helicopter descent. This work evaluated both ascending and...wakes. DISTRIBUTION A: Distribution approved for public release. Our work with hummingbirds hovering in a vertical wind tunnel has enabled

  6. Aircraft body-axis rotation measurement system

    NASA Technical Reports Server (NTRS)

    Cowdin, K. T. (Inventor)

    1983-01-01

    A two gyro four gimbal attitude sensing system having gimbal lock avoidance is provided with continuous azimuth information, rather than roll information, relative to the magnetic cardinal headings while in near vertical attitudes to allow recovery from vertical on a desired heading. The system is comprised of a means for stabilizing an outer roll gimbal that is common to a vertical gyro and a directional gyro with respect to the aircraft platform which is being angularly displaced about an axis substantially parallel to the outer roll gyro axis. A means is also provided for producing a signal indicative of the magnitude of such displacement as an indication of aircraft heading. Additional means are provided to cause stabilization of the outer roll gimbal whenever the pitch angle of the aircraft passes through a threshold prior to entering vertical flight and destabilization of the outer roll gimbal upon passing through the threshold when departing vertical flight.

  7. Wind-tunnel investigation of the descent characteristics of bodies of revolution simulating anti-personnel bombs

    NASA Technical Reports Server (NTRS)

    Sher, S. H.

    1951-01-01

    An investigation has been conducted in the Langley 20-foot free spinning tunnel to study the relative behavior in descent of a number of homogeneous balsa bodies of revolution simulating anti-personnel bombs with a small cylindrical exploding device suspended approximately 10 feet below the bomb. The bodies of revolution included hemispherical, near-hemispherical, and near-paraboloid shapes. The ordinates of one near-paraboloid shape were specified by the Office of the Chief of Ordnance, U. S. Army. The behavior of the various bodies without the cylinder was also investigated. The results of the investigation indicated that several of the bodies descended vertically with their longitudinal axis, suspension line, and small cylinder in a vertical attitude,. However, the body, the ordinates of which had been specified by the Office of the Chief of Ordnance, U. S. Army, oscillated considerably from a vertical attitude while descending and therefore appeared unsuitable for its intended use. The behavior of this body became satisfactory when its center of gravity was moved well forward from its original position. In general, the results indicated that the descent characteristics of the bodies of revolution become more favorable as their shapes approached that of a hemisphere.

  8. Enclosed, off-axis solar concentrator

    DOEpatents

    Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A

    2013-11-26

    A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.

  9. United in prevention-electrocardiographic screening for chronic obstructive pulmonary disease.

    PubMed

    Lazovic, Biljana; Mazic, Sanja; Stajic, Zoran; Djelic, Marina; Zlatkovic-Svenda, Mirjana; Putnikovic, Biljana

    2013-01-01

    NONE DECLARED. P-wave abnormalities on the resting electrocardiogram have been associated with cardiovascular or pulmonary disease. So far, "Gothic" P wave and verticalization of the frontal plane axis is related to lung disease, particularly obstructive lung disease. We tested if inverted P wave in AVl as a lone criteria of P wave axis >70° could be screening tool for emphysema. 1095 routine electrocardiograms (ECGs) were reviewed which yielded 478 (82,1%) ECGs with vertical P-axis in sinus rhythm. Charts were reviewed for the diagnosis of COPD and emphysema based on medical history and pulmonary function tests. Electrocardiogram is very effective screening tool not only in cardiovascular field but in chronic obstructive pulmonary disease. The verticality of the P axis is usually immediately apparent, making electrocardiogram rapid screening test for emphysema.

  10. 40 CFR 75.41 - Precision criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...

  11. 40 CFR 75.41 - Precision criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...

  12. 40 CFR 75.41 - Precision criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...

  13. 40 CFR 75.41 - Precision criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...

  14. 40 CFR 75.41 - Precision criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...

  15. Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer

    NASA Astrophysics Data System (ADS)

    Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles

    2012-11-01

    For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).

  16. Aerodynamic study of a stall regulated horizontal-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Constantinescu, S. G.; Crunteanu, D. E.; Niculescu, M. L.

    2013-10-01

    The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbines will play a vital role in the urban environment. Unfortunately, the complexity and the price of pitch regulated small horizontal-axis wind turbines represent ones of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of small stall regulated wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. During the running stall regulated wind turbines, due to the extremely broad range of the wind velocity, the angle of attack can reach high values and some regions of the blade will show stall and post-stall behavior. This paper deals with stall and post-stall regimes because they can induce significant vibrations, fatigue and even the wind turbine failure.

  17. Techniques for studying gravity waves and turbulence: Vertical wind speed power spectra from the troposphere and stratosphere obtained under light wind conditions

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.

    1983-01-01

    A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.

  18. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation (Invited)

    NASA Astrophysics Data System (ADS)

    Xie, S.; Archer, C. L.

    2013-12-01

    In this study, a new large-eddy simulation code, the Wind Turbine and Turbulence Simulator (WiTTS), is developed to study the wake generated from a single wind turbine in the neutral ABL. The WiTTS formulation is based on a scale-dependent Lagrangian dynamical model of the sub-grid shear stress and uses actuator lines to simulate the effects of the rotating blades. WiTTS is first tested against wind tunnel experiments and then used to study the commonly-used assumptions of self-similarity and axis-symmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. The mean velocity deficit shows good self-similarity properties following a normal distribution in the horizontal plane at the hub-height level. Self-similarity is a less valid approximation in the vertical near the ground, due to strong wind shear and ground effects. The mean velocity deficit is strongly dependent on the thrust coefficient or induction factor. A new relationship is proposed to model the mean velocity deficit along the centerline at the hub-height level to fit the LES results piecewise throughout the wake. A logarithmic function is used in the near and intermediate wake regions whereas a power function is used in the far-wake. These two functions provide a better fit to both simulated and observed wind velocity deficits than other functions previously used in wake models such as WAsP. The wind shear and impact with the ground cause an anisotropy in the expansion of the wake such that the wake grows faster horizontally than vertically. The wake deforms upon impact with the ground and spreads laterally. WiTTS is also used to study the turbulence characteristics in the wake. Aligning with the mean wind direction, the streamwise component of turbulence intensity is the dominant among the three components and thus it is further studied. The highest turbulence intensity occurs near the top-tip level. The added turbulence intensity increases fast in the near-wake and reaches its maximum at about x/D ~ 5, then it gradually decreases further downstream. In the far-wake, the added turbulence intensity is primarily dependent on the induction factor and the ambient turbulence: it increases with the induction factor and ambient turbulence and it decays exponentially downstream. An analysis of the added TKE budget shows that production by shear and advection by the mean flow dominate throughout the wake, whereas dissipation and turbulent transport are less important. In the near-wake, TKE is entrained from the upper regions of the annular shear layer into the center of the wake. The nacelle causes a significant increase of production, advection, and dissipation in the near-wake. Wind shear and momentum fluxes are reduced in the lower part of the wake, thus TKE production is reduced at the bottom-tip level. In summary, we find that the WiTTS model, although applied to a simplified case of neutral stability with a single wind turbine, was able to offer new insights into wake properties, including non-symmetric wake growth and reduced vertical mixing near the ground.

  19. Equatorial F region neutral winds and shears near sunset measured with chemical release techniques

    NASA Astrophysics Data System (ADS)

    Kiene, A.; Larsen, M. F.; Kudeki, E.

    2015-10-01

    The period near sunset is a dynamic and critical time for the daily development of the equatorial nighttime ionosphere and the instabilities that occur there. It is during these hours that the preconditions necessary for the later development of Equatorial Spread F (ESF) plasma instabilities occur. The neutral dynamics of the sunset ionosphere are also of critical importance to the generation of currents and electric fields; however, the behavior of the neutrals is experimentally understood primarily through very limited single-altitude measurements or measurements that provide weighted altitude means of the winds as a function of time. To date, there have been very few vertically resolved neutral wind measurements in the F region at sunset. We present two sets of sounding rocket chemical release measurements, one from a launch in the Marshall Islands on Kwajalein atoll and one from Alcantara, Brazil. Analysis of the release motions has yielded vertically resolved neutral wind profiles that show both the mean horizontal winds and the vertical shears in the winds. In both experiments, we observe significant vertical gradients in the zonal wind that are unexpected by classical assumptions about the behavior of the neutral wind at these altitudes at sunset near the geomagnetic equator.

  20. Radar - ARL Wind Profilerwith RASS, Boardman - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  1. Radar - ANL Wind Profiler with RASS, Yakima - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  2. Radar - ESRL Wind Profiler with RASS, Condon - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  3. Radar - ANL Wind Profiler with RASS, Walla Walla - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  4. Radar - ESRL Wind Profiler with RASS, Prineville - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  5. Radar - ESRL Wind Profiler with RASS, Troutdale - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  6. Radar - ANL Wind Profiler with RASS, Goldendale - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  7. Radar - ESRL Wind Profiler with RASS, Wasco Airport - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  8. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    DOE PAGES

    Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...

    2017-02-06

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved withmore » good accuracy. Furthermore, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less

  9. The effect of the arbitrary level assignment of satellite cloud motion wind vectors on wind analyses in the pre-thunderstorm environment

    NASA Technical Reports Server (NTRS)

    Peslen, C. A.; Koch, S. E.; Uccellini, L. W.

    1985-01-01

    The impact of satellite-derived cloud motion vectors on SESAME rawinsonde wind fields was studied in two separate cases. The effect of wind and moisture gradients on the arbitrary assignment of the satellite data is assessed to coordinate surfaces in a severe storm environment marked by strong vertical wind shear. Objective analyses of SESAME rawinsonde winds and combined winds are produced and differences between these two analyzed fields are used to make an assessment of coordinate level choice. It is shown that the standard method of arbitrarily assigning wind vectors to a low level coordinate surface yields systematic differences between the rawinsonde and combined wind analyses. Arbitrary assignment of cloud motions to the 0.9 sigma surface produces smaller differences than assignment to the 825 mb pressure surface. Systematic differences occur near moisture discontinuities and in regions of horizontal and vertical wind shears. The differences between the combined and SESAME wind fields are made smallest by vertically interpolating cloud motions to either a pressure or sigma surface.

  10. Large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Perkins, P.; Dennett, J. T.

    1984-01-01

    Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.

  11. Vertical profiles of wind and temperature by remote acoustical sounding

    NASA Technical Reports Server (NTRS)

    Fox, H. L.

    1969-01-01

    An acoustical method was investigated for obtaining meteorological soundings based on the refraction due to the vertical variation of wind and temperature. The method has the potential of yielding horizontally averaged measurements of the vertical variation of wind and temperature up to heights of a few kilometers; the averaging takes place over a radius of 10 to 15 km. An outline of the basic concepts and some of the results obtained with the method are presented.

  12. On Design Mining: Coevolution and Surrogate Models.

    PubMed

    Preen, Richard J; Bull, Larry

    2017-01-01

    Design mining is the use of computational intelligence techniques to iteratively search and model the attribute space of physical objects evaluated directly through rapid prototyping to meet given objectives. It enables the exploitation of novel materials and processes without formal models or complex simulation. In this article, we focus upon the coevolutionary nature of the design process when it is decomposed into concurrent sub-design-threads due to the overall complexity of the task. Using an abstract, tunable model of coevolution, we consider strategies to sample subthread designs for whole-system testing and how best to construct and use surrogate models within the coevolutionary scenario. Drawing on our findings, we then describe the effective design of an array of six heterogeneous vertical-axis wind turbines.

  13. Dynamic stall - The case of the vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Laneville, A.; Vittecoq, P.

    1986-05-01

    This paper presents the results of an experimental investigation on a driven Darrieus turbine rotating at different tip speed ratios. For a Reynolds number of 3.8 x 10 to the 4th, the results indicate the presence of dynamic stall at tip speed ratio less than 4, and that helicopter blade aerodynamics can be used in order to explain some aspects of the phenomenon. It was observed that in deep stall conditions, a vortex is formed at the leading edge; this vortex moves over the airfoil surface with 1/3 of the airfoil speed and then is shed at the trailing edge. After its shedding, the vortex can interact with the airfoil surface as the blade passes downstream.

  14. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones.

    PubMed

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-23

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones.

  15. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    PubMed Central

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-01

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones. PMID:29360793

  16. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.

    PubMed

    Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng

    2013-06-01

    The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.

  17. The UTRC wind energy conversion system performance analysis for horizontal axis wind turbines (WECSPER)

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1981-01-01

    The theory for the UTRC Energy Conversion System Performance Analysis (WECSPER) for the prediction of horizontal axis wind turbine performance is presented. Major features of the analysis are the ability to: (1) treat the wind turbine blades as lifting lines with a prescribed wake model; (2) solve for the wake-induced inflow and blade circulation using real nonlinear airfoil data; and (3) iterate internally to obtain a compatible wake transport velocity and blade loading solution. This analysis also provides an approximate treatment of wake distortions due to tower shadow or wind shear profiles. Finally, selected results of internal UTRC application of the analysis to existing wind turbines and correlation with limited test data are described.

  18. Horizontal EDNA miner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Justice, J.C.; Delli-Gatti, F.A.

    1985-12-03

    A mining machine is utilized for making original generally horizontal bores in coal seams, and for enlarging preexisting bores. A single cutting head is mounted for rotation about a first horizontal axis generally perpendicular to the dimension of elongation of the horizontal bore, and is pivotal about a second horizontal axis, parallel to the first axis, to change its cutting, vertical position within the bore. A non-rotatable body member, with side wall supports, is mounted posteriorly of the cutting head, and includes a conveyor mechanism and a power mechanism operatively connected to it. The machine can be sumped into amore » bore and then the cutting head rotated about the second axis to change the vertical position thereof, and then moved rearwardly, any cut material being continuously conveyed to the bore mouth by the conveyor mechanism. The amount of vertical movement during the pivoting action about the second axis is controlled in response to the automatic sensing of the thickness of the coal seam in which the machine operates.« less

  19. The Kerala Decentration Meter. A new method and devise for fitting the optical of spectacle lenses in the visual axis.

    PubMed

    Joseph, T K; Kartha, C P

    1982-01-01

    Centring of spectacle lenses is much neglected field of ophthalmology. The prismatic effect caused by wrong centring results in a phoria on the eye muscles which in turn causes persistent eyestrain. The theory of visual axis, optical axis and angle alpha is discussed. Using new methods the visual axis and optical axis of 35 subjects were measured. The results were computed for facial asymmetry, parallax error, angle alpha and also decentration for near vision. The results show that decentration is required on account of each of these factors. Considerable correction is needed in the vertical direction, a fact much neglected nowadays; and vertical decentration results in vertical phoria which is more symptomatic than horizontal phorias. Angle Alpha was computed for each of these patients. A new devise called 'The Kerala Decentration Meter' using the pinhole method for measuring the degree of decentration from the datum centre of the frame, and capable of correcting all the factors described above, is shown with diagrams.

  20. Coaxial Compound Helicopter for Confined Urban Operations

    DTIC Science & Technology

    2016-01-22

    climb or descent power for the aircraft) is obtained from the wind axis drag force and rotor velocity: ! Pp = "XV . The induced power is...speed. The induced and profile power cannot be measured separately in a wind tunnel or flight test, only the sum is available from ! P i + P o = P...XV (if the rotor wind -axis drag force ! X is measured or estimated). Therefore analysis is used to separate induced and profile power. In this

  1. Alignment of x-ray tube focal spots for spectral measurement.

    PubMed

    Nishizawa, K; Maekoshi, H; Kamiya, Y; Kobayashi, Y; Ohara, K; Sakuma, S

    1982-01-01

    A general method to align a diagnostic x-ray machine for x-ray spectrum measurement purpose was theoretically and experimentally investigated by means of the optical alignment of focal pinhole images. Focal pinhole images were obtained by using a multi-pinholed lead plate. the vertical plane, including the central axis and tube axis, was decided upon by observing the symmetry of focal images. the central axis was designated as a line through the center of focus parallel to the target surface lying in the vertical plane. A method to determine the manipulation of the central axis in any direction is presented.

  2. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic contribution of otolith signals to three-dimensional angular vestibuloocular reflex (VOR) was studied during off-vertical axis rotations in rhesus monkeys. In an attempt to separate response components to head velocity from those to head position relative to gravity during low-frequency sinusoidal oscillations, large oscillation amplitudes were chosen such that peak-to-peak head displacements exceeded 360 degrees. Because the waveforms of head position and velocity differed in shape and frequency content, the particular head position and angular velocity sensitivity of otolith-ocular responses could be independently assessed. 2. During both constant velocity rotation and low-frequency sinusoidal oscillations, the otolith system generated two different types of oculomotor responses: 1) modulation of three-dimensional eye position and/or eye velocity as a function of head position relative to gravity, as presented in the preceding paper, and 2) slow-phase eye velocity as a function of head angular velocity. These two types of otolith-ocular responses have been analyzed separately. In this paper we focus on the angular velocity responses of the otolith system. 3. During constant velocity off-vertical axis rotations, a steady-state nystagmus was elicited that was maintained throughout rotation. During low-frequency sinusoidal off-vertical axis oscillations, dynamic otolith stimulation resulted primarily in a reduction of phase leads that characterize low-frequency VOR during earth-vertical axis rotations. Both of these effects are the result of an internally generated head angular velocity signal of otolithic origin that is coupled through a low-pass filter to the VOR. No change in either VOR gain or phase was observed at stimulus frequencies larger than 0.1 Hz. 4. The dynamic otolith contribution to low-frequency angular VOR exhibited three-dimensional response characteristics with some quantitative differences in the different response components. For horizontal VOR, the amplitude of the steady-state slow-phase velocity during constant velocity rotation and the reduction of phase leads during sinusoidal oscillation were relatively independent of tilt angle (for angles larger than approximately 10 degrees). For vertical and torsional VOR, the amplitude of steady-state slow-phase eye velocity during constant velocity rotation increased, and the phase leads during sinusoidal oscillation decreased with increasing tilt angle. The largest steady-state response amplitudes and smallest phase leads were observed during vertical/torsional VOR about an earth-horizontal axis. 5. The dynamic range of otolith-borne head angular velocity information in the VOR was limited to velocities up to approximately 110 degrees/s. Higher head velocities resulted in saturation and a decrease in the amplitude of the steady-state response components during constant velocity rotation and in increased phase leads during sinusoidal oscillations. 6. The response characteristics of otolith-borne angular VORs were also studied in animals after selective semicircular canal inactivation. Otolith angular VORs exhibited clear low-pass filtered properties with a corner frequency of approximately 0.05-0.1 Hz. Vectorial summation of canal VOR alone (elicited during earth-vertical axis rotations) and otolith VOR alone (elicited during off-vertical axis oscillations after semicircular canal inactivation) could not predict VOR gain and phase during off-vertical axis rotations in intact animals. This suggests a more complex interaction of semicircular canal and otolith signals. 7. The results of this study show that the primate low-frequency enhancement of VOR dynamics during off-vertical axis rotation is independent of a simultaneous activation of the vertical and torsional "tilt" otolith-ocular reflexes that have been characterized in the preceding paper. (ABSTRACT TRUNCATED).

  3. Effects of the Relaxation of Upwelling-Favorable Winds on the Diurnal and Semidiurnal Water Temperature Fluctuations in the Santa Barbara Channel, California

    NASA Astrophysics Data System (ADS)

    Aristizábal, María. F.; Fewings, Melanie R.; Washburn, Libe

    2017-10-01

    In the Santa Barbara Channel, California, and around the Northern Channel Islands, water temperature fluctuations in the diurnal and semidiurnal frequency bands are intermittent, with amplitudes that vary on time scales of days to weeks. The cause of this intermittency is not well understood. We studied the effects of the barotropic tide, vertical stratification, propagation of coastal-trapped waves, regional wind relaxations, and diurnal-band winds on the intermittency of the temperature fluctuations during 1992-2015. We used temperature data from 43 moorings in 10-200 m water depth and wind data from two buoys and one land station. Subtidal-frequency changes in vertical stratification explain 20-40% of the intermittency in diurnal and semidiurnal temperature fluctuations at time scales of days to weeks. Along the mainland north of Point Conception and at the Northern Channel Islands, the relaxation of upwelling-favorable winds substantially increases vertical stratification, accounting for up to 55% of the subtidal-frequency variability in stratification. As a result of the enhanced stratification, wind relaxations enhance the diurnal and semidiurnal temperature fluctuations at those sites, even though the diurnal-band wind forcing decreases during wind relaxation. A linear model where the background stratification is advected vertically explains a substantial fraction of the temperature fluctuations at most sites. The increase of vertical stratification and subsequent increase in diurnal and semidiurnal temperature fluctuations during wind relaxation is a mechanism that can supply nutrients to the euphotic zone and kelp forests in the Channel in summer when upwelling is weak.

  4. Performance ‘S’ Type Savonius Wind Turbine with Variation of Fin Addition on Blade

    NASA Astrophysics Data System (ADS)

    Pamungkas, S. F.; Wijayanto, D. S.; Saputro, H.; Widiastuti, I.

    2018-01-01

    Wind power has been receiving attention as the new energy resource in addressing the ecological problems of burning fossil fuels. Savonius wind rotor is a vertical axis wind turbines (VAWT) which has relatively simple structure and low operating speed. These characteristics make it suitable for areas with low average wind speed as in Indonesia. To identify the performance of Savonius rotor in generating electrical energy, this research experimentally studied the effect of fin addition for the ‘S’ shape of Savonius VAWT. The fin is added to fill the space in the blade in directing the wind flow. This rotor has two turbine blades, a rotor diameter of 1.1 m and rotor height of 1.4 m, used pulley transmission system with 1:4.2 multiplication ratio, and used a generator type PMG 200 W. The research was conducted during dry season by measuring the wind speed in the afternoon. The average wind speed in the area is 2.3 m/s with the maximum of 4.5 m/s. It was found that additional fin significantly increase the ability of Savonius rotor VAWT to generate electrical energy shown by increasing of electrical power. The highest power generated is 13.40 Watt at a wind speed of 4.5 m/s by adding 1 (one) fin in the blade. It increased by 22.71% from the rotor blade with no additional fin. However, increasing number of fins in the blade was not linearly increase the electrical power generated. The wind rotor blade with 4 additional fins is indicated has the lowest performance, generating only 10.80 Watt electrical power, accounted lower than the one generated by no fin-rotor blade. By knowing the effect of the rotor shape, the rotor dimension, the addition of fin, transmission, and generator used, it is possible to determine alternative geometry design in increasing the electrical power generated by Savonius wind turbine.

  5. Wind Profiling from a High Energy, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar during Field Campaign

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Koch, G. J.; Kavaya, M. J.; Yu, J.; Beyon, J. Y.; Demoz, B.

    2009-12-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. The LaRC mobile lidar was deployed at Howard University facility in Beltsville, Maryland as part of NASA HQ funded (ROSES-2007, Wind Lidar Science Proposal entitled “Intercomparison of Multiple Lidars for Wind Measurements). During the campaign, testing of the lidar was combined with a field campaign to operate a 2-μm coherent lidar alongside a 355-nm direct detection lidar to demonstrate the hybrid wind lidar concept. Besides lidar, many other meteorological sensors were located at the campaign site, including wind measuring balloon sondes, sonic and propeller anemometers mounted on a tower, and a 915-MHz radio acoustic sounding system. Comparisons among these wind measurement sensors are currently being analyzed and should be available for presentation at the Conference.

  6. The Time Evolution of Eta Carinae's Colliding Winds

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Madura, T. I.; Grobe, J. H.; Corcoran, M. F.

    2011-01-01

    We report new HST/STIS observations that map the high-ionization forbidden line emission in the inner arc second of Eta Car, the first that fully image the extended wind-wind interaction region of the massive colliding wind binary. These observations were obtained after the 2009.0 periastron at orbital phases 0.084, 0.163, and 0.323 of the 5.54-year spectroscopic cycle. We analyze the variations in brightness and morphology of the emission, and find that blue-shifted emission (-400 to -200 km/s is symmetric and elongated along the northeast-southwest axis, while the red-shifted emission (+ 100 to +200 km/s) is asymmetric and extends to the north-northwest. Comparison to synthetic images generated from a 3-D dynamical model strengthens the 3-D orbital orientation found by Madura et al. (2011), with an inclination i = 138 deg, argument of periapsis w = 270 deg, and an orbital axis that is aligned at the same P A on the sky as the symmetry axis of the Homunculus, 312 deg. We discuss the potential that these and future mappings have for constraining the stellar parameters of the companion star and the long-term variability of the system. Plain-Language Abstract: With HST, we resolved the interacting winds of the binary, Eta Carinae. With a 3-D model, we find the binary orbit axis is aligned to the Homunculus axis. This suggests a connection between the binary and Homunculus ejection mechanism.

  7. NASA Goddard Earth Sciences Graduate Student Program. [FIRE CIRRUS-II examination of coupling between an upper tropospheric cloud system and synoptic-scale dynamics

    NASA Technical Reports Server (NTRS)

    Ackerman, Thomas P.

    1994-01-01

    The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.

  8. Extended field observations of cirrus clouds using a ground-based cloud observing system

    NASA Technical Reports Server (NTRS)

    Ackerman, Thomas P.

    1994-01-01

    The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.

  9. RSRA sixth scale wind tunnel test. Tabulated balance data, volume 2

    NASA Technical Reports Server (NTRS)

    Ruddell, A.; Flemming, R.

    1974-01-01

    Summaries are presented of all the force and moment data acquired during the RSRA Sixth Scale Wind Tunnel Test. These data include and supplement the data presented in curve form in previous reports. Each summary includes the model configuration, wing and empennage incidences and deflections, and recorded balance data. The first group of data in each summary presents the force and moment data in full scale parametric form, the dynamic pressure and velocity in the test section, and the powered nacelle fan speed. The second and third groups of data are the balance data in nondimensional coefficient form. The wind axis coefficient data corresponds to the parametric data divided by the wing area for forces and divided by the product of the wing area and wing span or mean aerodynamic chord for moments. The stability axis data resolves the wind axis data with respect to the angle of yaw.

  10. “Open Hatch” Tour of Offshore Wind Buoy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zayas, Jose

    2015-09-18

    Wind and Water Power Technologies Office Director, Jose Zayas gives a behind the scenes tour of the AXYS WindSentinel research buoy, which uses high-tech instruments to measure conditions for potential offshore wind energy development.

  11. Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope.

    PubMed

    Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D

    2013-02-01

    We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0-400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument.

  12. Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope

    PubMed Central

    Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J.; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D.

    2013-01-01

    We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0–400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument. PMID:23412564

  13. Surface Wind Field Analyses of Tropical Cyclones in the Western Pacific

    DTIC Science & Technology

    2012-09-01

    Averaged vertical profiles of actual wind speeds (m s-1) from all dropwindsondes in three ITOP storms . (b) Averaged vertical profiles of wind speeds...for the entire set of winds from the three ITOP 2010 typhoons. .............................1  Figure 27.  a) Storm -relative motion flight track for...1  Figure 28.  a) Storm -relative motion flight track for flight 0420 in TY Fanapi

  14. United in Prevention–Electrocardiographic Screening for Chronic Obstructive Pulmonary Disease

    PubMed Central

    Mazic, Sanja; Stajic, Zoran; Djelic, Marina; Zlatkovic-Svenda, Mirjana; Putnikovic, Biljana

    2013-01-01

    CONFLICT OF INTEREST: NONE DECLARED Introduction P-wave abnormalities on the resting electrocardiogram have been associated with cardiovascular or pulmonary disease. So far, “Gothic” P wave and verticalization of the frontal plane axis is related to lung disease, particularly obstructive lung disease. Aim We tested if inverted P wave in AVl as a lone criteria of P wave axis >70° could be screening tool for emphysema. Material and method 1095 routine electrocardiograms (ECGs) were reviewed which yielded 478 (82,1%) ECGs with vertical P-axis in sinus rhythm. Charts were reviewed for the diagnosis of COPD and emphysema based on medical history and pulmonary function tests. Conclusion Electrocardiogram is very effective screening tool not only in cardiovascular field but in chronic obstructive pulmonary disease. The verticality of the P axis is usually immediately apparent, making electrocardiogram rapid screening test for emphysema. PMID:24058253

  15. Estimates of lower-tropospheric divergence and average vertical motion in the Southern Great Plains region

    NASA Astrophysics Data System (ADS)

    Muradyan, P.; Coulter, R.; Kotamarthi, V. R.; Wang, J.; Ghate, V. P.

    2016-12-01

    Large-scale mean vertical motion affects the atmospheric stability and is an important component in cloud formation. Thus, the analysis of temporal variations in the long-term averages of large-scale vertical motion would provide valuable insights into weather and climate patterns. 915-MHz radar wind profilers (RWP) provide virtually unattended and almost uninterrupted long-term wind speed measurements. We use five years of RWP wind data from the Atmospheric Boundary Layer Experiments (ABLE) located within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site from 1999 to 2004. Wind speed data from a triangular array of SGP A1, A2, and A5 ancillary sites are used to calculate the horizontal divergence field over the profiler network area using the line integral method. The distance between each vertex of this triangle is approximately 60km. Thus, the vertical motion profiles deduced from the divergence/convergence of horizontal winds over these spatial scales are of relevance to mesoscale dynamics. The wind data from RWPs are averaged over 1 hour time slice and divergence is calculated at each range gate from the lowest at 82 m to the highest at 2.3 km. An analysis of temporal variations in the long-term averages of the atmospheric divergence and vertical air motion for the months of August/September indicates an overall vertical velocity of -0.002 m/s with a standard deviation of 0.013 m/s, agreeing well with previous studies. Overall mean of the diurnal variation of vertical velocity for the study period from surface to 500 m height is 0.0018 m/s with a standard error of 0.00095 m/s. Seasonal mean daytime vertical winds suggest generally downward motion in Winter and upward motion in Summer. Validation of the derived divergence and vertical motion against a regional climate model (Weather Forecast and Research, WRF) at a spatial resolution of 12 km, as well as clear-sky vs. cloudy conditions comparisons will also be presented.

  16. Design and aero-acoustic analysis of a counter-rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Agrawal, Vineesh V.

    Wind turbines have become an integral part of the energy business because they are one of the most economical and reliable sources of renewable energy. Conventional wind turbines are capable of capturing less than half of the energy present in the wind. Hence, to make the wind turbines more efficient, it is important to increase their performance. A horizontal axis wind turbine with multiple rotors is one concept that can achieve a higher power conversion rate. Also, a concern for wind energy is the noise generated by wind turbines. Hence, an investigation into the acoustic behavior of a multi-rotor horizontal axis wind turbine is required. In response to the need of a wind turbine design with higher power coefficient, a unique design of a counter-rotating horizontal axis wind turbine (CR-HAWT) is proposed. The Blade Element Momentum (BEM) theory is used to aerodynamically design the blades of the two rotors. Modifications are made to the BEM theory to accommodate the interaction of the two rotors. The tower effect on the noise generation of the downwind rotor is investigated. Predictions are made for the total noise generated by the wind turbine at its design operating conditions. A total power coefficient of 65.2% is predicted for the proposed CR-HAWT design. A low tip speed ratio is chosen to minimize the noise generation. The aeroacoustic analysis of the CR-HAWT shows that the noise generated at its design operating conditions is within an acceptable range. Thus, the CR-HAWT is predicted to be a quiet wind turbine with a high power coefficient, making it highly desirable for small wind turbine applications.

  17. PIV and Hotwire Measurement and Analysis of Tip Vortices and Turbulent Wake Generated by a Model Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Green, D.; Tan, Y. M.; Chamorro, L. P.; Arndt, R.; Sotiropoulos, F.; Sheng, J.

    2011-12-01

    Understanding vortical flow structures and turbulence in the wake flow behind a Horizontal Axis Wind Turbine (HAWT) has widespread applications in efficient blade design. Moreover, the knowledge of wake-turbine interactions allows us to devise optimal operational parameters, such as the spatial allocation and control algorithms of wind turbines, for a densely populated wind farm. To understand the influence of tip vortices on energy containing mean flow and turbulence, characteristics of vortical structures and turbulence must be quantified thoroughly. In this study, we conduct phase-locked Particle Image Velocimetry (PIV) measurements of the flow before and after a model HAWT, which is located in a zero-pressure gradient wind tunnel with a cross section of 1.7 × 1.7 m and a test section of 16 m in length. A three-blade model HAWT with a diameter of 605 mm and tip-speed ratio of 5 is used. PIV images are recorded by a 2048 × 2048 CCD camera and streamed at 6 Hz continuously; and phased locked with the passage of the blade at its vertical position. Each PIV measurement covers a 0.13 × 0.13 m2 sample area with the spatial resolution of 63 μm and a vector spacing of 0.5 mm. All experiments are conducted at the free-stream wind speed of 10 m/s. Flow fields at thirty consecutive downstream locations up to six rotor diameters and 144 mid chord lengths are measured. At each location, we obtain at least 10,000 instantaneous PIV realizations or 20,000 images. Three different configurations: single, dual, and trio turbines located at 5 rotor diameter upstream to each other, are examined experimentally. The flow statistics include mean wake velocity distributions, characteristics of tip vortices evolving downstream, fluctuation velocity, turbulent kinetic energy, stresses, and energy spectra. We find that tip vortices decay much faster in the wake of the upstream turbines (multiple-turbine configurations), whereas they maintain the coherence and strength behind a single turbine. The tip vortices entrain the high speed free-stream fluids and subsequently replenish the loss of momentum into the wake. Such a mechanism is greatly mitigated in the multiple-turbine scenarios. On-going analysis is to elucidate the generation, evolution and dissipation of the tip vortices in the various configurations.

  18. Evaluation of simulation motion fidelity criteria in the vertical and directional axes

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery A.

    1993-01-01

    An evaluation of existing motion fidelity criteria was conducted on the NASA Ames Vertical Motion Simulator. Experienced test pilots flew single-axis repositioning tasks in both the vertical and the directional axes. Using a first-order approximation of a hovering helicopter, tasks were flown with variations only in the filters that attenuate the commands to the simulator motion system. These filters had second-order high-pass characteristics, and the variations were made in the filter gain and natural frequency. The variations spanned motion response characteristics from nearly full math-model motion to fixed-base. Between configurations, pilots recalibrated their motion response perception by flying the task with full motion. Pilots subjectively rated the motion fidelity of subsequent configurations relative to this full motion case, which was considered the standard for comparison. The results suggested that the existing vertical-axis criterion was accurate for combinations of gain and natural frequency changes. However, if only the gain or the natural frequency was changed, the rated motion fidelity was better than the criterion predicted. In the vertical axis, the objective and subjective results indicated that a larger gain reduction was tolerated than the existing criterion allowed. The limited data collected in the yaw axis revealed that pilots had difficulty in distinguishing among the variations in the pure yaw motion cues.

  19. Low-latitude Temperatures, Pressures, and Winds on Saturn from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    Flasar, F. M.; Schinder, P. J.; Kliore, A. J.; French, R. G.; Marouf, E. A.; Nagy, A.; Rappaport, N. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.; Johnston, D. V.; Rochblatt, D.; McGhee, C. A.

    2005-12-01

    We present results from 12 ingress and egress soundings done within 10 degrees of Saturn's equator. Above the 100-mbar level, near the tropopause, the vertical profiles of temperature are marked by undulatory structure that may be associated with vertically propagating waves. Below the 200-mbar level, in the upper troposphere, the vertical profiles are smoother, and the overall trend of temperatures is to increase away from the equator. This implies a decay of the zonal winds with altitude. The zonal winds can actually be inferred directly from the meridional gradient in pressure, without the need of a boundary condition on the winds. We summarize results of these calculations. This is of interest because recent cloud tracking studies have indicated lower equatorial winds than found earlier, but whether this indicates a real change in the winds at a given altitude or a change in the altitudes of the features tracked is controversial.

  20. Wind Characterization for the Assessment of Collision Risk During Flight Level Changes

    NASA Technical Reports Server (NTRS)

    Carreno, Victor; Chartrand, Ryan

    2009-01-01

    A model of vertical wind gradient is presented based on National Oceanic and Atmospheric Administration (NOAA) wind data. The objective is to have an accurate representation of wind to be used in Collision Risk Models (CRM) of aircraft procedures. Depending on how an aircraft procedure is defined, wind and the different characteristics of the wind will have a more severe or less severe impact on distances between aircraft. For the In-Trail Procedure, the non-linearity of the vertical wind gradient has the greatest impact on longitudinal distance. The analysis in this paper extracts standard deviation, mean, maximum, and linearity characteristics from the NOAA data.

  1. “Open Hatch” Tour of Offshore Wind Buoy

    ScienceCinema

    Zayas, Jose

    2018-01-16

    Wind and Water Power Technologies Office Director, Jose Zayas gives a behind the scenes tour of the AXYS WindSentinel research buoy, which uses high-tech instruments to measure conditions for potential offshore wind energy development.

  2. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  3. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-01

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  4. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  5. The Huygens Doppler Wind Experiment: Ten Years Ago

    NASA Astrophysics Data System (ADS)

    Bird, Michael; Dutta-Roy, Robin; Dzierma, Yvonne; Atkinson, David; Allison, Michael; Asmar, Sami; Folkner, William; Preston, Robert; Plettemeier, Dirk; Tyler, Len; Edenhofer, Peter

    2015-04-01

    The Huygens Doppler Wind Experiment (DWE) achieved its primary scientific goal: the derivation of Titan's vertical wind profile from the start of Probe descent to the surface. The carrier frequency of the ultra-stable Huygens radio signal at 2040 MHz was recorded using special narrow-band receivers at two large radio telescopes on Earth: the Green Bank Telescope in West Virginia and the Parkes Radio Telescope in Australia. Huygens drifted predominantly eastward during the parachute descent, providing the first in situ confirmation of Titan's prograde super-rotational zonal winds. A region of surprisingly weak wind with associated strong vertical shear reversal was discovered within the range of altitudes from 65 to 100 km. Below this level, the zonal wind subsided monotonically from 35 m/s to about 7 km, at which point it reversed direction. The vertical profile of the near-surface winds implies the existence of a planetary boundary layer. Recent results on Titan atmospheric circulation within the context of the DWE will be reviewed.

  6. Computational investigation of flow control by means of tubercles on Darrieus wind turbine blades

    NASA Astrophysics Data System (ADS)

    Sevinç, K.; Özdamar, G.; Şentürk, U.; Özdamar, A.

    2015-09-01

    This work presents the current status of the computational study of the boundary layer control of a vertical axis wind turbine blade by modifying the blade geometry for use in wind energy conversion. The control method is a passive method which comprises the implementation of the tubercle geometry of a humpback whale flipper onto the leading edge of the blades. The baseline design is an H-type, three-bladed Darrieus turbine with a NACA 0015 cross-section. Finite-volume based software ANSYS Fluent was used in the simulations. Using the optimum control parameters for a NACA 634-021 profile given by Johari et al. (2006), turbine blades were modified. Three dimensional, unsteady, turbulent simulations for the blade were conducted to look for a possible improvement on the performance. The flow structure on the blades was investigated and flow phenomena such as separation and stall were examined to understand their impact on the overall performance. For a tip speed ratio of 2.12, good agreement was obtained in the validation of the baseline model with a relative error in time- averaged power coefficient of 1.05%. Modified turbine simulations with a less expensive but less accurate turbulence model yielded a decrease in power coefficient. Results are shown comparatively.

  7. Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution

    NASA Astrophysics Data System (ADS)

    Stein, Victor P.; Kaltenbach, Hans-Jakob

    2016-09-01

    Wind-tunnel measurements on the near-wake evolution of a three bladed horizontal axis wind turbine model (HAWT) in the scale 1:O(350) operating in uniform flow conditions and within a turbulent boundary layer at different tip speed ratios are presented. Operational conditions are chosen to exclude Reynolds number effects regarding the turbulent boundary layer as well as the rotor performance. Triple-wire anemometry is used to measure all three velocity components in the mid-vertical and mid-horizontal plane, covering the range from the near- to the far-wake region. In order to analyse wake properties systematically, power and thrust coefficients of the turbine were measured additionally. It is confirmed that realistic modelling of the wake evolution is not possible in a low-turbulence uniform approach flow. Profiles of mean velocity and turbulence intensity exhibit large deviations between the low-turbulence uniform flow and the turbulent boundary layer, especially in the far-wake region. For nearly constant thrust coefficients differences in the evolution of the near-wake can be identified for tip speed ratios in the range from 6.5 to 10.5. It is shown that with increasing downstream distances mean velocity profiles become indistinguishable whereas for turbulence statistics a subtle dependency on the tip speed ratio is still noticeable in the far-wake region.

  8. Investigation of space shuttle orbiter subsonic stability and control characteristics in the NAAL low speed wind tunnel (0A62b), volume 1

    NASA Technical Reports Server (NTRS)

    Mennell, R.; Hughes, T.

    1974-01-01

    Experimental aerodynamic investigations were conducted on a sting-mounted 0.0405 scale representation of the 140A/B space shuttle orbiter in a 7.75 ft by 11 ft low speed wind tunnel during the time period from November 14, 1973, to December 6, 1973, with the primary test objectives being to establish basic longitudinal stability characteristics in and out of ground effect, as well as lateral-directional stability characteristics in free air. Two dual podded nacelle configurations were also tested, one with three dual podded nacelles on the lower wing surface, and the other with a single dual nacelle on the lower centerline with dual nacelle pylons mounted above each wing. Stability and control characteristics were investigated at nominal elevon, rudder, aileron, and body flap deflections. Pressure bugs were used to determine pressures on the vertical tail at spanwise stations, and aerodynamic force and moment data were measured in the stability axis system by an internally mounted, six component strain gage balance.

  9. Modal testing of a rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Carne, T. G.; Nord, A. R.

    1982-11-01

    A testing technique was developed to measure the modes of vibration of a rotating vertical-axis wind turbine. This technique was applied to the Sandia Two-Meter Turbine, where the changes in individual modal frequencies as a function of the rotational speed were tracked from 0 rpm (parked) to 600 rpm. During rotational testing, the structural response was measured using a combination of strain gages and accelerometers, passing the signals through slip rings. Excitation of the turbine structure was provided by a scheme which suddenly released a pretensioned cable, thus plucking the turbine as it was rotating at a set speed. In addition to calculating the real modes of the parked turbine, the modes of the rotating turbine were also determined at several rotational speeds. The modes of the rotating system proved to be complex due to centrifugal and Coriolis effects. The modal data for the parked turbine were used to update a finite-element model. Also, the measured modal parameters for the rotating turbine were compared to the analytical results, thus verifying the analytical procedures used to incorporate the effects of the rotating coordinate system.

  10. Vertical cross-spectral phases in atmospheric flow

    NASA Astrophysics Data System (ADS)

    Chougule, A.; Mann, J.; Kelly, M.

    2014-11-01

    The cross-spectral phases between velocity components at two heights are analyzed from observations at the Høvsøre test site under diabatic conditions. These phases represent the degree to which turbulence sensed at one height leads (or lags) in time the turbulence sensed at the other height. The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases increase with stream-wise wavenumber and vertical separation distance, but there is no significant change in the phase angle of vertical velocity. The phase angles for all atmospheric stabilities show similar order in phasing. The phase angles from the Høvsøre observations under neutral condition are compared with a rapid distortion theory model which show similar order in phase shift.

  11. Aerial manoeuvrability in wingless gliding ants (Cephalotes atratus)

    PubMed Central

    Yanoviak, Stephen P.; Munk, Yonatan; Kaspari, Mike; Dudley, Robert

    2010-01-01

    In contrast to the patagial membranes of gliding vertebrates, the aerodynamic surfaces used by falling wingless ants to direct their aerial descent are unknown. We conducted ablation experiments to assess the relative contributions of the hindlegs, midlegs and gaster to gliding success in workers of the Neotropical arboreal ant Cephalotes atratus (Hymenoptera: Formicidae). Removal of hindlegs significantly reduced the success rate of directed aerial descent as well as the glide index for successful flights. Removal of the gaster alone did not significantly alter performance relative to controls. Equilibrium glide angles during successful targeting to vertical columns were statistically equivalent between control ants and ants with either the gaster or the hindlegs removed. High-speed video recordings suggested possible use of bilaterally asymmetric motions of the hindlegs to effect body rotations about the vertical axis during targeting manoeuvre. Overall, the control of gliding flight was remarkably robust to dramatic anatomical perturbations, suggesting effective control mechanisms in the face of adverse initial conditions (e.g. falling upside down), variable targeting decisions and turbulent wind gusts during flight. PMID:20236974

  12. Empirical relation between induced velocity, thrust, and rate of descent of a helicopter rotor as determined by wind-tunnel tests on four model rotors

    NASA Technical Reports Server (NTRS)

    Castles, Walter, Jr.; Gray, Robin B.

    1951-01-01

    The empirical relation between the induced velocity, thrust, and rate of vertical descent of a helicopter rotor was calculated from wind tunnel force tests on four model rotors by the application of blade-element theory to the measured values of the thrust, torque, blade angle, and equivalent free-stream rate of descent. The model tests covered the useful range of C(sub t)/sigma(sub e) (where C(sub t) is the thrust coefficient and sigma(sub e) is the effective solidity) and the range of vertical descent from hovering to descent velocities slightly greater than those for autorotation. The three bladed models, each of which had an effective solidity of 0.05 and NACA 0015 blade airfoil sections, were as follows: (1) constant-chord, untwisted blades of 3-ft radius; (2) untwisted blades of 3-ft radius having a 3/1 taper; (3) constant-chord blades of 3-ft radius having a linear twist of 12 degrees (washout) from axis of rotation to tip; and (4) constant-chord, untwisted blades of 2-ft radius. Because of the incorporation of a correction for blade dynamic twist and the use of a method of measuring the approximate equivalent free-stream velocity, it is believed that the data obtained from this program are more applicable to free-flight calculations than the data from previous model tests.

  13. Empirical Relation Between Induced Velocity, Thrust, and Rate of Descent of a Helicopter Rotor as Determined by Wind-tunnel Tests on Four Model Rotors

    NASA Technical Reports Server (NTRS)

    Castles, Walter, Jr; Gray, Robin B

    1951-01-01

    The empirical relation between the induced velocity, thrust, and rate of vertical descent of a helicopter rotor was calculated from wind tunnel force tests on four model rotors by the application of blade-element theory to the measured values of the thrust, torque, blade angle, and equivalent free-stream rate of descent. The model tests covered the useful range of C(sub t)/sigma(sub e) (where C(sub t) is the thrust coefficient and sigma(sub e) is the effective solidity) and the range of vertical descent from hovering to descent velocities slightly greater than those for autorotation. The three bladed models, each of which had an effective solidity of 0.05 and NACA 0015 blade airfoil sections, were as follows: (1) constant-chord, untwisted blades of 3-ft radius; (2) untwisted blades of 3-ft radius having a 3/1 taper; (3) constant-chord blades of 3-ft radius having a linear twist of 12 degrees (washout) from axis of rotation to tip; and (4) constant-chord, untwisted blades of 2-ft radius. Because of the incorporation of a correction for blade dynamic twist and the use of a method of measuring the approximate equivalent free-stream velocity, it is believed that the data obtained from this program are more applicable to free-flight calculations than the data from previous model tests.

  14. Passive magnetic bearing for a motor-generator

    DOEpatents

    Post, Richard F [Walnut Creek, CA

    2006-07-18

    Conductive lap windings are interleaved with conventional loops in the stator of a motor-generator. The rotor provides magnetic induction lines that, when rotated, cut across the lap windings and the loops. When the rotor is laterally displaced from its equilibrium axis of rotation, its magnetic lines of induction induce a current in the interleaved lap windings. The induced current interacts with the magnetic lines of induction of the rotor in accordance with Lenz's law to generate a radial force that returns the rotor to its equilibrium axis of rotation.

  15. Airship-floated wind turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, W. K.

    1985-01-01

    A wind turbine, by use of a tethered airship for support, may be designed for the economical recovery of power at heights of 2,000 feet or more above ground, at which height power density in the wind is typically three times the power density available to a conventionally supported wind turbine. Means can be added to such an airship-floated wind turbine which will permit its generators to be used to meet load demand even during periods of little or no wind. Described to this end is a wind turbine system which combines, among other novel features: a novel tether linemore » system which provides access for men and materials to the supporting airship while in active service, a novel system for providing additional buoyant lift at the nose of the turbine-supporting airship to offset the vertical component of tension induced in the tether line by the downwind force exerted by the turbine blades, a novel bearing assembly at the nose of the supporting airship which permits the airship to rotate as a unit with the turbine it supports without causing a similar rotation of the tether line, a novel turbine airship structure which handles concentrated loads from the turbine efficiently and also permits the safe use of hydrogen for buoyancy, a novel ''space frame'' structure which supports the turbine blades and greatly reduces blade weight, a novel system for controlling turbine blade angle of incidence and for varying blade incidene in synchrony with blade angular position abut the turbine axis to provide greater control over airship movement, a novel system for locating propellor-driven generators out at the wind turbine perimeter and for using lightweight, high-RPM generators to produce electrical energy at a power line frequency, which greatly reduces the weight required to convert turbine blade torque into useful power, and a novel system for incorporating compressed air storage and combustion turbine components into the wind turbine's generator drive systems.« less

  16. The Structure of Vertical Wind Shear in Tropical Cyclone Environments: Implications for Forecasting and Predictability

    NASA Astrophysics Data System (ADS)

    Finocchio, Peter M.

    The vertical wind shear measured between 200 and 850 hPa is commonly used to diagnose environmental interactions with a tropical cyclone (TC) and to forecast the storm's intensity and structural evolution. More often than not, stronger vertical shear within this deep layer prohibits the intensification of TCs and leads to predictable asymmetries in precipitation. But such bulk measures of vertical wind shear can occasionally mislead the forecaster. In the first part of this dissertation, we use a series of idealized numerical simulations to examine how a TC responds to changing the structure of unidirectional vertical wind shear while fixing the 200-850-hPa shear magnitude. These simulations demonstrate a significant intensity response, in which shear concentrated in shallow layers of the lower troposphere prevents vortex intensification. We attribute the arrested development of TCs in lower-level shear to the intrusion of mid-level environmental air over the surface vortex early in the simulations. Convection developing on the downshear side of the storm interacts with the intruding air so as to enhance the downward flux of low-entropy air into the boundary layer. We also construct a two-dimensional intensity response surface from a set of simulations that sparsely sample the joint shear height-depth parameter space. This surface reveals regions of the two-parameter space for which TC intensity is particularly sensitive. We interpret these parameter ranges as those which lead to reduced intensity predictability. Despite the robust response to changing the shape of a sheared wind profile in idealized simulations, we do not encounter such sensitivity within a large set of reanalyzed TCs in the Northern Hemisphere. Instead, there is remarkable consistency in the structure of reanalyzed wind profiles around TCs. This is evident in the distributions of two new parameters describing the height and depth of vertical wind shear, which highlight a clear preference for shallow layers of upper-level shear. Many of the wind profiles tested in the idealized simulations have shear height or depth values on the tails of these distributions, suggesting that the environmental wind profiles around real TCs do not exhibit enough structural variability to have the clear statistical relationship to intensity change that we expected. In the final part of this dissertation, we use the reanalyzed TC environments to initialize ensembles of idealized simulations. Using a new modeling technique that allows for time-varying environments, these simulations examine the predictability implications of exposing a TC to different structures and magnitudes of vertical wind shear during its life cycle. We find that TCs in more deeply distributed vertical wind shear environments have a more uncertain intensity evolution than TCs exposed to shallower layers of upper-level shear. This higher uncertainty arises from a more marginal boundary layer environment that the deeply distributed shear establishes, which enhances the TC sensitivity to the magnitude of deep-layer shear. Simulated radar reflectivity also appears to evolve in a more uncertain fashion in environments with deeply distributed vertical shear. However, structural predictability timescales, computed as the time it takes for errors in the amplitude or phase of azimuthal asymmetries of reflectivity to saturate, are similar for wind profiles with shallow upper-level shear and deeply distributed shear. Both ensembles demonstrate predictability timescales of two to three days for the lowest azimuthal wavenumbers of amplitude and phase. As the magnitude of vertical wind shear increases to universally destructive levels, structural and intensity errors begin to decrease. Shallow upper-level shear primes the TC for a more pronounced recovery in the predictability of the wavenumber-one precipitation structure in stronger shear. The recovered low-wavenumber predictability of TC precipitation structure and the collapse in intensity spread in strong shear suggests that vertical wind shear is most effective at reducing TC predictability when its magnitude is near the threshold between favorable and unfavorable values and when it is deeply distributed through the troposphere. By isolating the effect of the environmental flow, the simulations and analyses in this dissertation offer a unique understanding of how vertical wind shear affects TCs. In particular, the results have important implications for designing and implementing future environmental observing strategies that will be critical for improving forecasts of these destructive storms.

  17. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, Thomas A.; Yetter, Harold H.

    1986-01-01

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  18. Development of Vault Toilet Waste Treatment Systems.

    DTIC Science & Technology

    1978-06-01

    wi nd turbine used was a Savoniut’ Wing Rotor, a vertical axis rotor developed by S. J. Savonius in the early 1920’s and used exten- sively in the...2 ) i t was a vertical axis turbine which minimi zed tower con- struction costs, and (3) its high starting torque made it wel l suited to ariving an...ihe turbine constructed by this investigation consistea of two rotors, each 4 ft (1.2 m) high and 7 ft (2.1 m) in wi ath across the long axis , mounted

  19. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, T.A.; Yetter, H.H.

    1985-01-30

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  20. Kinesthetic perceptions of earth- and body-fixed axes.

    PubMed

    Darling, W G; Hondzinski, J M

    1999-06-01

    The major purpose of this research was to determine whether kinesthetic/proprioceptive perceptions of the earth-fixed vertical axis are more accurate than perceptions of intrinsic axes. In one experiment, accuracy of alignment of the forearm to earth-fixed vertical and head- and trunk-longitudinal axes by seven blindfolded subjects was compared in four tasks: (1) Earth-Arm--arm (humerus) orientation was manipulated by the experimenter; subjects aligned the forearm parallel to the vertical axis, which was also aligned with the head and trunk longitudinal axis; (2) Head--head, trunk, and upper-limb orientations were manipulated by the experimenter, subjects aligned the forearm parallel to the longitudinal axis of the head using only elbow flexion/extension and shoulder internal/external rotation; (3) Trunk--same as (2), except that subjects aligned the forearm parallel to the trunk-longitudinal axis; (4) Earth--same as (2), except that subjects aligned the forearm parallel to the earth-fixed vertical. Head, trunk, and gravitational axes were never parallel in tasks 2, 3, and 4 so that subjects could not simultaneously match their forearm to all three axes. The results showed that the errors for alignment of the forearm with the earth-fixed vertical were lower than for the trunk- and head-longitudinal axes. Furthermore, errors in the Earth condition were less dependent on alterations of the head and trunk orientation than in the Head and Trunk conditions. These data strongly suggest that the earth-fixed vertical is used as one axis for the kinesthetic sensory coordinate system that specifies upper-limb orientation at the perceptual level. We also examined the effects of varying gravitational torques at the elbow and shoulder on the accuracy of forearm alignment to earth-fixed axes. Adding a 450 g load to the forearm to increase gravitational torques when the forearm is not vertical did not improve the accuracy of forearm alignment with the vertical. Furthermore, adding small, variably sized loads (between which the subjects could not distinguish at the perceptual level) to the forearm just proximal to the wrist produced similar errors in aligning the forearm with the vertical and horizontal. Forearm-positioning errors were not correlated with the size of the load, as would be expected if gravitational torques affected forearm-position sense. We conclude that gravitational torques exerted about the shoulder and elbow do not make significant contributions to sensing forearm-orientation relative to earth-fixed axes when the upper-limb segments are not constrained by external supports.

  1. Measurements on the Magdalen Islands VAWT and future projects

    NASA Astrophysics Data System (ADS)

    Gallagher, N. C.; Rangi, R. S.

    The rotor of a 224 kW vertical axis wind turbine (VAWT) is discussed. The rebuilt rotor of the 224 kW Magdalen Islands VAWT was installed in Sept. 1979 and is operating at its design speed (36.6 rpm). Agreement between measured and theoretical performance is generally good except that maximum power may exceed theoretical predictions. Measurements of drive train losses, torque and power ripple, and rotor stresses are discussed. Although peak-to-peak cyclic stress levels are low in relation to fatigue life limits, spectral analysis of stress data indicates that the 3-per-rev component is amplified by near-resonance with the first butterfly blade mode. This resonance was subsequently de-coupled by a damped connection between the blade struts and the central column.

  2. Analysis of Different Blade Architectures on small VAWT Performance

    NASA Astrophysics Data System (ADS)

    Battisti, L.; Brighenti, A.; Benini, E.; Raciti Castelli, M.

    2016-09-01

    The present paper aims at describing and comparing different small Vertical Axis Wind Turbine (VAWT) architectures, in terms of performance and loads. These characteristics can be highlighted by resorting to the Blade Element-Momentum (BE-M) model, commonly adopted for rotor pre-design and controller assessment. After validating the model with experimental data, the paper focuses on the analysis of VAWT loads depending on some relevant rotor features: blade number (2 and 3), airfoil camber line (comparing symmetrical and asymmetrical profiles) and blade inclination (straight versus helical blade). The effect of such characteristics on both power and thrusts (in the streamwise direction and in the crosswise one) as a function of both the blades azimuthal position and their Tip Speed Ratio (TSR) are presented and widely discussed.

  3. Three-Axis Ground Reaction Force Distribution during Straight Walking.

    PubMed

    Hori, Masataka; Nakai, Akihito; Shimoyama, Isao

    2017-10-24

    We measured the three-axis ground reaction force (GRF) distribution during straight walking. Small three-axis force sensors composed of rubber and sensor chips were fabricated and calibrated. After sensor calibration, 16 force sensors were attached to the left shoe. The three-axis force distribution during straight walking was measured, and the local features of the three-axis force under the sole of the shoe were analyzed. The heel area played a role in receiving the braking force, the base area of the fourth and fifth toes applied little vertical or shear force, the base area of the second and third toes generated a portion of the propulsive force and received a large vertical force, and the base area of the big toe helped move the body's center of mass to the other foot. The results demonstrate that measuring the three-axis GRF distribution is useful for a detailed analysis of bipedal locomotion.

  4. Basic principles and recent observations of rotationally sampled wind

    NASA Technical Reports Server (NTRS)

    Connell, James R.

    1995-01-01

    The concept of rotationally sampled wind speed is described. The unusual wind characteristics that result from rotationally sampling the wind are shown first for early measurements made using an 8-point ring of anemometers on a vertical plane array of meteorological towers. Quantitative characterization of the rotationally sampled wind is made in terms of the power spectral density function of the wind speed. Verification of the importance of the new concept is demonstrated with spectral analyses of the response of the MOD-OA blade flapwise root bending moment and the corresponding rotational analysis of the wind measured immediately upwind of the MOD-OA using a 12-point ring of anemometers on a 7-tower vertical plane array. The Pacific Northwest Laboratory (PNL) theory of the rotationally sampled wind speed power spectral density function is tested successfully against the wind spectrum measured at the MOD-OA vertical plane array. A single-tower empirical model of the rotationally sampled wind speed is also successfully tested against the measurements from the full vertical plane array. Rotational measurements of the wind velocity with hotfilm anemometers attached to rotating blades are shown to be accurate and practical for research on winds at the blades of wind turbines. Some measurements at the rotor blade of a MOD-2 turbine using the hotfilm technique in a pilot research program are shown. They are compared and contrasted to the expectations based upon application of the PNL theory of rotationally sampled wind to the MOD-2 size and rotation rate but without teeter, blade bending, or rotor induction accounted for. Finally, the importance of temperature layering and of wind modifications due to flow over complex terrain is demonstrated by the use of hotfilm anemometer data, and meteorological tower and acoustic doppler sounder data from the MOD-2 site at Goodnoe Hills, Washington.

  5. P-wave indices in patients with pulmonary emphysema: do P-terminal force and interatrial block have confounding effects?

    PubMed

    Chhabra, Lovely; Chaubey, Vinod K; Kothagundla, Chandrasekhar; Bajaj, Rishi; Kaul, Sudesh; Spodick, David H

    2013-01-01

    Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60°) serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf), amplitude of initial positive component of P-waves in V1 (i-PV1), and interatrial block (IAB) have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf) was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (-) P wave in V1 or a biphasic (+/-) P wave in V1. s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03). s-Ptf also significantly correlated with IAB (P = 0.001); however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23). There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047); however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36). We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by right atrial displacement, and thus the common assumption that increased P-tf implies left atrial enlargement should be made with caution in patients with emphysema. Also, the lack of strong correlation between i-PV1 and P-amplitude in lead III or vertical P-vector may suggest the predominant role of downward right atrial distortion rather than right atrial enlargement in causing vertical P-vector in emphysema.

  6. Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars

    NASA Technical Reports Server (NTRS)

    Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin

    1994-01-01

    Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.

  7. Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars

    NASA Astrophysics Data System (ADS)

    Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin; Ralston, Michael

    1994-06-01

    Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.

  8. Flexible helical-axis stellarator

    DOEpatents

    Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.

    1988-01-01

    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  9. The effect of single-horn glaze ice on the vortex structures in the wake of a horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Jin, Zhe-Yan; Dong, Qiao-Tian; Yang, Zhi-Gang

    2015-02-01

    The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.

  10. Cold Ion Escape from the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Fraenz, M.; Dubinin, E.; Wei, Y.; Woch, J. G.; Morgan, D. D.; Barabash, S. V.; Lundin, R. N.; Fedorov, A.

    2012-12-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express. We first use support from the MARSIS radar experiment for some orbits with fortunate observation geometry. Here we have observed a transterminator flow of O+ and O2+ ions with a super-sonic velocity of around 5km/s and fluxes of 0.8x10^9/cm^2s. If we assume a symmetric flux around the terminator this corresponds to an ion flow of 3.1x10^25/s half of which is expected to escape from Mars (Fraenz et al, 2010). This escape flux is significantly higher than previously observed on the tailside of Mars, we discuss possible reasons for the difference. Since 2008 the MARSIS radar does nightside local plasma density measurement which often coincide with ASPERA-3 measurements. In a new analysis of the combined nightside datasets (Fig. 1) we show that the main escape channel is along the shadow boundary on the tailside of Mars. At a distance of about 0.5 R_M the flux settles at a constant value (Fig. 2) which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvenic regime.; Median oxygen ion flux reconstructed by combining ion velocity observations of the Mars Express ASPERA-3 IMA sensor and local plasma density observations by the MARSIS radar. Each bin value is the median from observations on about 3000 orbits between May 2007 and July 2011. Horizontal axis is MSO X-axis (Sun towards the left), vertical axis is vertical distance from MSO X-axis. ; Ring median flux of cylindrical ring regions of all bins shown in previous figure. The different colors show median fluxes for different regions in R-cylindrical (distance from MSO-X-axis) as a function of tailward distance from the terminator (or surface for Rcyl < 1).

  11. Relation between the Fluctuating Wall Pressure and the Turbulent Structure of a Boundary Layer on a Cylinder in Axial Flow

    DTIC Science & Technology

    1993-08-12

    Shop for their expert assistance during thze design ard development ur the wind tunnel and experimental apparatus; Drs. Alan L. Kistler, Seth Lichter...vertical wind tunnel was designed and built for this research. I With the test section in a vertical orientation, gravity effects leading to cylinder sag...were eliminated. The overall design and layout of the wind tunnel, as well as specific design features incorporated into the wind tunnel to satisfy

  12. Measurements of vertical motions by the Saskatoon MF radar (1983-1985): Relationships with horizontal winds and gravity waves

    NASA Technical Reports Server (NTRS)

    Manson, A. H.; Meek, C. E.

    1989-01-01

    The continuing series of horizontal wind measurements by the spaced-antenna real time winds (RTW) method was supplemented by a phase coherent system for two years. Vertical motions are inferred from the complex autocorrelation functions, and an RTW system provides 5 min samples from 60 to 110 km. Comparisons with full interferometric 3-D velocity measurements confirm the validity of this approach. Following comparisons and corrections with the horizontal winds, mean summer and winter (24 h) days of vertical motions are shown. Tidal fluctuations are evident. In summer the motions are downward, consistent with data from Poker Flat, and the suggestion of Coy et al. (1986) that these represent Eulerian motions. The expected upward Lagrangian motion then results from adding up upward Stokes' drift. The winter motions are more complex, and are discussed in the context of gravity wave fluxes and possible meridional cells. The divergence of the vertical flux of zonal momentum is also calculated and found to be similar to the coriolis torque due to the meridional winds.

  13. Hatching success of ostrich eggs in relation to setting, turning and angle of rotation.

    PubMed

    van Schalkwyk, S J; Cloete, S W; Brown, C R; Brand, Z

    2000-03-01

    1. Three trials were designed to study the effects of axis of setting, turning frequency and axis and angle of rotation on the hatching success of ostrich eggs. The joint effects of axis of setting and angle of rotation were investigated in a fourth trial. 2. The hatchability of fertile ostrich eggs artificially incubated in electronic incubators (turned through 60 degrees hourly) was improved substantially in eggs set in horizontal positions for 2 or 3 weeks and vertically for the rest of the time. 3. The hatchability of fertile eggs set in the horizontal position without any turning was very low (27%). It was improved to approximately 60% by manual turning through 180 degrees around the short axis and through 60 degrees around the long axis at 08.00 and 16.00 h. A further improvement to approximately 80% was obtained in eggs automatically turned through 60 degrees around the long axis in the incubator. Additional turning through 180 degrees around the short axis twice daily at 08.00 and 16.00 h resulted in no further improvement. 4. The hatchability of fertile eggs set vertically in electronic incubators and rotated hourly through angles ranging from 60 degrees to 90 degrees around the short axis increased linearly over the range studied. The response amounted to 1.83% for an increase of 10 (R2=0.96). 5. The detrimental effect of rotation through the smaller angle of 60 degrees around the short axis could be compensated for by setting ostrich eggs in the horizontal position for 2 weeks before putting them in the vertical position.

  14. A tidal explanation for the sunrise/sunset anomaly in HALOE low-latitude nitric oxide observations

    NASA Astrophysics Data System (ADS)

    Marsh, Daniel R.; Russell, James M., III

    2000-10-01

    The difference in sunrise and sunset low-latitude nitric oxide (NO) mixing ratios in the mesosphere and lower thermosphere (MLT) is shown to be consistent with a perturbation induced by the migrating diurnal tide. The vertical wind of the tide can induce factor of 2 changes over 12 hours at the equator. The vertical, latitudinal and temporal structure of NO perturbations closely matches the structure of vertical winds from a tidal model. In addition, previous observations of the seasonal and interannual variation in the tidal wind appear to correlate with NO variations.

  15. Flux-gate magnetometer spin axis offset calibration using the electron drift instrument

    NASA Astrophysics Data System (ADS)

    Plaschke, Ferdinand; Nakamura, Rumi; Leinweber, Hannes K.; Chutter, Mark; Vaith, Hans; Baumjohann, Wolfgang; Steller, Manfred; Magnes, Werner

    2014-10-01

    Spin-stabilization of spacecraft immensely supports the in-flight calibration of on-board flux-gate magnetometers (FGMs). From 12 calibration parameters in total, 8 can be easily obtained by spectral analysis. From the remaining 4, the spin axis offset is known to be particularly variable. It is usually determined by analysis of Alfvénic fluctuations that are embedded in the solar wind. In the absence of solar wind observations, the spin axis offset may be obtained by comparison of FGM and electron drift instrument (EDI) measurements. The aim of our study is to develop methods that are readily usable for routine FGM spin axis offset calibration with EDI. This paper represents a major step forward in this direction. We improve an existing method to determine FGM spin axis offsets from EDI time-of-flight measurements by providing it with a comprehensive error analysis. In addition, we introduce a new, complementary method that uses EDI beam direction data instead of time-of-flight data. Using Cluster data, we show that both methods yield similarly accurate results, which are comparable yet more stable than those from a commonly used solar wind-based method.

  16. Method and apparatus for wind turbine air gap control

    DOEpatents

    Grant, James Jonathan; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; DiMascio, Paul Stephen; Gadre, Aniruddha Dattatraya; Qu, Ronghai

    2007-02-20

    Methods and apparatus for assembling a wind turbine generator are provided. The wind turbine generator includes a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis, a rotor rotatable about the generator longitudinal axis wherein the rotor includes a plurality of magnetic elements coupled to a radially outer periphery of the rotor such that an airgap is defined between the stator windings and the magnetic elements and the plurality of magnetic elements including a radially inner periphery having a first diameter. The wind turbine generator also includes a bearing including a first member in rotatable engagement with a radially inner second member, the first member including a radially outer periphery, a diameter of the radially outer periphery of the first member being substantially equal to the first diameter, the rotor coupled to the stator through the bearing such that a substantially uniform airgap is maintained.

  17. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED).

  18. On the Effect of Offshore Wind Parks on Ocean Dynamics

    NASA Astrophysics Data System (ADS)

    Ludewig, E.; Pohlmann, T.

    2012-12-01

    Nowadays renewable energy resources play a key role in the energy supply discussion and especially an increasingly interest in wind energy induces intensified installations of wind parks. At this offshore wind energy gains in popularity in the course of higher and more consistent energy availability than over land. For example Germany's government adopted a national interurban offshore wind energy program comprising the construction of hundreds of wind turbines within Germany's Exclusive Economic Zone to ensure up to 50% of Germany's renewable energy supply. The large number of installation in coastal regions asks for analyzing the impact of offshore wind parks (OWPs) on the atmosphere and the ocean. As known from literature such wind parks excite also-called wake-effect and such an influence on the wind field in turn affects ocean circulation. To cover OWP's impact on ocean dynamics we evaluate model simulations using the Hamburg Shelf-Ocean-Model (HAMSOM). All simulations were driven with a wind forcing produced by the Mesoscale Atmosphere Model of the Hamburg University (METRAS) which has implemented wind turbines. Wind forcing data were generated in collaboration with and by courtesy of the Meteorological Institute of the University of Hamburg, Department Technical Meteorology, Numeric Modeling-METRAS. To evaluate dynamical changes forced by the OWP's wind wake-effect we did a sensitivity study with a theoretical setup of a virtual ocean of 60m depth with a flat bottom and a temperature and salinity stratification according to common North Sea's conditions. Here our results show that already a small OWP of 12 wind turbines, placed in an area of 4 km^2, lead to a complex change in ocean dynamics. Due to the wake-effect zones of upwelling and downwelling are formed within a minute after turning-on wind turbines. The evolving vertical cells have a size of around 15x15 kilometers with a vertical velocity in order of 10^-2 mm/sec influencing the dynamic of an area being hundred times bigger than the wind park itself. The emerged vertical structure is generated due to a newly created geostrophic balance resulting in a redistribution of the ocean mass field. A number of additional upwelling and downwelling cells around the wind park support an intensified vertical dispersion through all layers and incline the thermocline which also influences the lower levels. The disturbances of mass show a dipole structure across the main wind direction with a maximum change in thermocline depth of some meters close to the OWP. Diffusion, mostly driven by direct wind induced surface shear is also modified by the wind turbines and supports a further modification of the vertical patterns. Considering that wind turbines operate only in a special window of wind speed, i.e. wind turbines will stop in case of too weak or too strong wind speeds as well as in case of technical issues, the averaged dimension and intensity of occurring vertical cells depend on the number of rotors and expected wind speeds. Finally we will focus on scenario runs for the North Sea under fully realistic conditions to estimate possible changes in ocean dynamics due to OWPs in future and these results will be further used for process analyzes of the ecosystem. If we assume a continuous operation of North Sea's OWPs in future we expect a fundamental constant change in ocean dynamics and moreover in the ecosystem in its vicinity.

  19. Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion

    NASA Astrophysics Data System (ADS)

    Yang, Haijun; Wang, Kun; Dai, Haijin; Wang, Yuxing; Li, Qing

    2016-06-01

    Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated using a fully coupled climate model. The AMOC can change significantly when perturbed by either wind stress or freshwater flux in the North Atlantic. This study focuses on wind stress effect. Our model results show that the wind forcing is crucial in maintaining the AMOC. Reducing wind forcing over the ocean can cause immediately weakening of the vertical salinity diffusion and convection in the mid-high latitudes Atlantic, resulting in an enhancement of vertical salinity stratification that restrains the deep water formation there, triggering a slowdown of the thermohaline circulation. As the thermohaline circulation weakens, the sea ice expands southward and melts, providing the upper ocean with fresh water that weakens the thermohaline circulation further. The wind perturbation experiments suggest a positive feedback between sea-ice and thermohaline circulation strength, which can eventually result in a complete shutdown of the AMOC. This study also suggests that sea-ice variability may be also important to the natural AMOC variability on decadal and longer timescales.

  20. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    DOE PAGES

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; ...

    2015-02-23

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes ormore » complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s -1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s −1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 s -1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Furthermore, measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.« less

  1. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-01

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 m s-1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.

  2. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Newman, Jennifer

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in windmore » profiling aimed at reducing uncertainty and increasing data availability are introduced.« less

  3. Predicting Noise From Wind Turbines

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1990-01-01

    Computer program WINDY predicts broadband noise spectra of horizontal-axis wind-turbine generators. Enables adequate assessment of impact of broadband wind-turbine noise. Effects of turbulence, trailing-edge wakes, and bluntness taken into account. Program has practical application in design and siting of wind-turbine machines acceptable to community. Written in GW-Basic.

  4. Generating Electricity by Harnessing Air That Flows Around a Skyscraper by Using Bernoulli's Principle And The Venturi Effect w/Special Emphasis on Biomimicry

    NASA Astrophysics Data System (ADS)

    Pizzolato, R.

    2017-12-01

    Can skyscrapers become carbon neutral using wind that flows around them to power wind turbines? I say YES! To test this idea, I constructed a venturi to capture wind flowing around a skyscraper by applying Bernoulli's Principle and the Venturi Effect to power vertical axis wind turbines (VAWT) to generate electricity. The model was constructed from polycarbonate. Turbine blades (45°&60°) carved from balsa wood with square edges, airfoils, and trailing edge tubercles (Humpback whales-biomimicry) were tested in a wind tunnel. Output was measured using Vernier's Logger Pro 3.12 software, energy and wind sensors. Voltage (mV), current (mA), power (mW) and total energy (mJ) produced at winds speeds of 3.9, 5, 7.5 and 10 m/s were recorded. 10 trials were performed for each blade angle and each blade design for a total of 240 trials. Trials were 100 seconds long and recorded at a rate of 10 measurements/second. The blades that showed the largest %Δ in total average energy output (mJ) were the 60° airfoil blades w/ tubercles on the trailing edge (20,490 mJ) when compared to 60° square edged blades (7,021 mJ). The trend of the data showed that the airfoils w/tubercles (45° & 60°) outperformed all the other blade designs at wind speeds of 7.5 m/s and 10 m/s. Also, the 45° airfoil w/tubercles produced the highest output of 25,136 mJ! This was possibly due to the improved aerodynamics of the tubercle blades which led to improvements in lift and a reduction in drag. The data shows that turbine blades that incorporate biomimicry in their design result in more efficient power output. Through biomimicry, it is possible to efficiently generate electricity with a skyscraper and reduce our dependence upon fossil fuels!

  5. Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Kaoru

    1993-02-14

    This paper describes small-scale wind disturbances associated with Typhoon Kelly (October 1987) that were observed by the MU radar, one of the MST (mesosphere, stratosphere, and troposphere) radars, for about 60 hours with fine time and height resolution. To elucidate the background of small-scale disturbances, synoptic-scale variation in atmospheric stability related to the typhoon structure during the observation is examined. When the typhoon passed near the MU radar site, the structure was no longer axisymmetric. There is deep convection only in north-northeast side of the typhoon while convection behind it is suppressed by a synoptic-scale cold air mass moving eastwardmore » to the west of the typhoon. A change in atmospheric stability over the radar site as indicated by echo power profiles is likely due to the passage of the sharp transition zone of convection. Strong small-scale wind disturbances were observed around the typhoon passage. The statistical characteristics are different before (BT) and after (AT) the typhoon passage, especially in frequency spectra of vertical wind fluctuations. The spectra for BT are unique compared with earlier studies of vertical winds observed by VHF radars. Another difference is dominance of a horizontal wind component with a vertical wavelength of about 3 km, observed only in AT. Further analyses are made of characteristics and vertical momentum fluxes for dominant disturbances. Some disturbances are generated to remove the momentum of cyclonic wind rotation of the typhoon. Deep convection, topographic effects in strong winds, and strong vertical shear of horizontal winds around an inversion layer are possible sources of the disturbances. Two monochromatic disturbances lasting for more than 10 h in the lower stratosphere observed in BT and AT are identified as inertio-gravity waves, by obtaining wave parameters consistent with all observed quantities. Both of the inertio-gravity waves propagate energy away from the typhoon.« less

  6. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar - Part 1: frequency spectrum

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph

    2018-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity < 10 m s-1). The distribution of spectral slopes is roughly symmetric with a maximum at -5/3 during active periods, whereas a very asymmetric distribution with a maximum at around -1 is observed during quiet periods. The slope profiles along altitudes reveal a significant height dependence for both conditions, i.e., the spectra become shallower with increasing altitudes in the upper troposphere and maintain roughly a constant slope in the lower stratosphere. With both wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.

  7. Some techniques for reducing the tower shadow of the DOE/NASA mod-0 wind turbine tower. [wind tunnel tests to measure effects of tower structure on wind velocity

    NASA Technical Reports Server (NTRS)

    Burley, R. R.; Savino, J. M.; Wagner, L. H.; Diedrich, J. H.

    1979-01-01

    Wind speed profile measurements to measure the effect of a wind turbine tower on the wind velocity are presented. Measurements were made in the wake of scale models of the tower and in the wake of certain full scale components to determine the magnitude of the speed reduction (tower shadow). Shadow abatement techniques tested on the towers included the removal of diagonals, replacement of diagonals and horizontals with round cross section members, installation of elliptical shapes on horizontal members, installation of airfoils on vertical members, and application of surface roughness to vertical members.

  8. Influence of wind and river discharge on the vertical exchange process in the Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Hong, B.; Peng, S.

    2016-02-01

    Vertical exchange process is controlled by the buoyancy input from river discharge and the momentum input by wind forcing. This study investigates the vertical exchange process in the Pearl River Estuary by using a 3-D numerical model. The vertical exchange time (VET) is used to quantify the magnitude of vertical exchange process in response to changing local wind and river discharge. During the dry season, it only takes about 2 days for the surface layer water mass being transported to the bottom layer. During the wet season, such transport will take more than 20 days in a large portion of the main channel. The water in the slope area can be well ventilated. Linear regression of VET indicates that water column stratification can be used to estimate the VET and up to 71% of the variance can be accounted. The estimation by using river runoff can only account for about 49% of the variance. The effects of wind speed and direction are investigated separately. Neither river runoff nor the stratification can properly predict the VET during the typical wet season. Further investigations are needed to reveal the dynamics of vertical exchange process and find out other factors that influence the VET during the wet season.

  9. Integrated Medical Curriculum: Advantages and Disadvantages

    PubMed Central

    Quintero, Gustavo A.; Vergel, John; Arredondo, Martha; Ariza, María-Cristina; Gómez, Paula; Pinzon-Barrios, Ana-Maria

    2016-01-01

    Most curricula for medical education have been integrated horizontally and vertically–-vertically between basic and clinical sciences. The Flexnerian curriculum has disappeared to permit integration between basic sciences and clinical sciences, which are taught throughout the curriculum. We have proposed a different form of integration where the horizontal axis represents the defined learning outcomes and the vertical axis represents the teaching of the sciences throughout the courses. We believe that a mere integration of basic and clinical sciences is not enough because it is necessary to emphasize the importance of humanism as well as health population sciences in medicine. It is necessary to integrate basic and clinical sciences, humanism, and health population in the vertical axis, not only in the early years but also throughout the curriculum, presupposing the use of active teaching methods based on problems or cases in small groups. PMID:29349303

  10. Theoretical and experimental power from large horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Janetzke, D. C.

    1982-01-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip-speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-0 (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  11. Design and Analysis of Horizontal Axial Flow Motor Shroud

    NASA Astrophysics Data System (ADS)

    Wang, Shiming; Shen, Yu

    2018-01-01

    The wind turbine diffuser can increase the wind energy utilization coefficient of the wind turbine, and the addition of the shroud to the horizontal axis wind turbine also plays a role of accelerating the flow of the condensate. First, the structure of the shroud was designed and then modeled in gambit. The fluent software was used to establish the mathematical model for simulation. The length of the shroud and the opening angle of the shroud are analyzed to determine the best shape of the shroud. Then compared the efficiency with or without the shroud, through the simulation and the experiment of the water tank, it is confirmed that the horizontal axis of the shroud can improve the hydrodynamic performance.

  12. Responses of neurons in the medial column of the inferior olive in pigeons to translational and rotational optic flowfields.

    PubMed

    Winship, I R; Wylie, D R

    2001-11-01

    The responses of neurons in the medial column of the inferior olive to translational and rotational optic flow were recorded from anaesthetized pigeons. Panoramic translational or rotational flowfields were produced by mechanical devices that projected optic flow patterns onto the walls, ceiling and floor of the room. The axis of rotation/translation could be positioned to any orientation in three-dimensional space such that axis tuning could be determined. Each neuron was assigned a vector representing the axis about/along which the animal would rotate/translate to produce the flowfield that elicited maximal modulation. Both translation-sensitive and rotation-sensitive neurons were found. For neurons responsive to translational optic flow, the preferred axis is described with reference to a standard right-handed coordinate system, where +x, +y and +z represent rightward, upward and forward translation of the animal, respectively (assuming that all recordings were from the right side of the brain). t(+y) neurons were maximally excited in response to a translational optic flowfield that results from self-translation upward along the vertical (y) axis. t(-y) neurons also responded best to translational optic flow along the vertical axis but showed the opposite direction preference. The two remaining groups, t(-x+z) and t(-x-z) neurons, responded best to translational optic flow along horizontal axes that were oriented 45 degrees to the midline. There were two types of neurons responsive to rotational optic flow: rVA neurons preferred rotation about the vertical axis, and rH135c neurons preferred rotation about a horizontal axis at 135 degrees contralateral azimuth. The locations of marking lesions indicated a clear topographical organization of the six response types. In summary, our results reinforce that the olivo-cerebellar system dedicated to the analysis of optic flow is organized according to a reference frame consisting of three approximately orthogonal axes: the vertical axis, and two horizontal axes oriented 45 degrees to either side the midline. Previous research has shown that the eye muscles, vestibular semicircular canals and postural control system all share a similar spatial frame of reference.

  13. The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.

    2015-01-01

    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.

  14. Piloted Evaluation of Modernized Limited Authority Control Laws in the NASA-Ames Vertical Motion Simulator (VMS)

    NASA Technical Reports Server (NTRS)

    Sahasrabudhe, Vineet; Melkers, Edgar; Faynberg, Alexander; Blanken, Chris L.

    2003-01-01

    The UH-60 BLACK HAWK was designed in the 1970s, when the US Army primarily operated during the day in good visual conditions. Subsequently, the introduction of night-vision goggles increased the BLACK HAWK'S mission effectiveness, but the accident rate also increased. The increased accident rate is strongly tied to increased pilot workload as a result of a degradation in visual cues. Over twenty years of research in helicopter flight control and handling qualities has shown that these degraded handling qualities can be recovered by modifying the response type of the helicopter in low speed flight. Sikorsky Aircraft Corporation initiated a project under the National Rotorcraft Technology Center (NRTC) to develop modern flight control laws while utilizing the existing partial authority Stability Augmentation System (SAS) of the BLACK HAWK. This effort resulted in a set of Modernized Control Laws (MCLAWS) that incorporate rate command and attitude command response types. Sikorsky and the US Army Aeroflightdynamics Directorate (AFDD) conducted a piloted simulation on the NASA-Ames Vertical h4otion Simulator, to assess potential handling qualities and to reduce the risk of subsequent implementation and flight test of these modern control laws on AFDD's EH-60L helicopter. The simulation showed that Attitude Command Attitude Hold control laws in pitch and roll improve handling qualities in the low speed flight regime. These improvements are consistent across a range of mission task elements and for both good and degraded visual environments. The MCLAWS perform better than the baseline UH-60A control laws in the presence of wind and turbulence. Finally, while the improved handling qualities in the pitch and roll axis allow the pilot to pay more attention to the vertical axis and hence altitude performance also improves, it is clear from pilot comments and altitude excursions that the addition of an Altitude Hold function would further reduce workload and improve overall handling qualities of the aircraft.

  15. PHLUX: Photographic Flux Tools for Solar Glare and Flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2010-12-02

    A web-based tool to a) analytically and empirically quantify glare from reflected light and determine the potential impact (e.g., temporary flash blindness, retinal burn), and b) produce flux maps for central receivers. The tool accepts RAW digital photographs of the glare source (for hazard assessment) or the receiver (for flux mapping), as well as a photograph of the sun for intensity and size scaling. For glare hazard assessment, the tool determines the retinal irradiance (W/cm2) and subtended source angle for an observer and plots the glare source on a hazard spectrum (i.e., low-potential for flash blindness impact, potential for flashmore » blindness impact, retinal burn). For flux mapping, the tool provides a colored map of the receiver scaled by incident solar flux (W/m2) and unwraps the physical dimensions of the receiver while accounting for the perspective of the photographer (e.g., for a flux map of a cylindrical receiver, the horizontal axis denotes receiver angle in degrees and the vertical axis denotes vertical position in meters; for a flat panel receiver, the horizontal axis denotes horizontal position in meters and the vertical axis denotes vertical position in meters). The flux mapping capability also allows the user to specify transects along which the program plots incident solar flux on the receiver.« less

  16. Do humans show velocity-storage in the vertical rVOR?

    PubMed

    Bertolini, G; Bockisch, C J; Straumann, D; Zee, D S; Ramat, S

    2008-01-01

    To investigate the contribution of the vestibular velocity-storage mechanism (VSM) to the vertical rotational vestibulo-ocular reflex (rVOR) we recorded eye movements evoked by off-vertical axis rotation (OVAR) using whole-body constant-velocity pitch rotations about an earth-horizontal, interaural axis in four healthy human subjects. Subjects were tumbled forward, and backward, at 60 deg/s for over 1 min using a 3D turntable. Slow-phase velocity (SPV) responses were similar to the horizontal responses elicited by OVAR along the body longitudinal axis, ('barbecue' rotation), with exponentially decaying amplitudes and a residual, otolith-driven sinusoidal response with a bias. The time constants of the vertical SPV ranged from 6 to 9 s. These values are closer to those that reflect the dynamic properties of vestibular afferents than the typical 20 s produced by the VSM in the horizontal plane, confirming the relatively smaller contribution of the VSM to these vertical responses. Our preliminary results also agree with the idea that the VSM velocity response aligns with the direction of gravity. The horizontal and torsional eye velocity traces were also sinusoidally modulated by the change in gravity, but showed no exponential decay.

  17. An efficient, self-orienting, vertical-array, sand trap

    NASA Astrophysics Data System (ADS)

    Hilton, Michael; Nickling, Bill; Wakes, Sarah; Sherman, Douglas; Konlechner, Teresa; Jermy, Mark; Geoghegan, Patrick

    2017-04-01

    There remains a need for an efficient, low-cost, portable, passive sand trap, which can provide estimates of vertical sand flux over topography and within vegetation and which self-orients into the wind. We present a design for a stacked vertical trap that has been modelled (computational fluid dynamics, CFD) and evaluated in the field and in the wind tunnel. The 'swinging' trap orients to within 10° of the flow in the wind tunnel at 8 m s-1, and more rapidly in the field, where natural variability in wind direction accelerates orientation. The CFD analysis indicates flow is steered into the trap during incident wind flow. The trap has a low profile and there is only a small decrease in mass flow rate for multiple traps, poles and rows of poles. The efficiency of the trap was evaluated against an isokinetic sampler and found to be greater than 95%. The centre pole is a key element of the design, minimally decreasing trap efficiency. Finally, field comparisons with the trap of Sherman et al. (2014) yielded comparable estimates of vertical sand flux. The trap described in this paper provides accurate estimates of sand transport in a wide range of field conditions.

  18. SORD Special Operations and Research Division)

    Science.gov Websites

    ) Climate Summaries Lightning Precipitation Wind Chill Chart Wind Roses Sodar Sodar Data Wind Plot Vertical ) Relative Humidity (%) Max Wind Gust (mph) Pressure (mb) Precipitation (in) Solar Radiation (W/m^2) Battery

  19. Windward Cooling: An Overlooked Factor in the Calculation of Wind Chill.

    NASA Astrophysics Data System (ADS)

    Osczevski, Randall J.

    2000-12-01

    Wind chill equivalent temperatures calculated from a recent vertical cylinder model of wind chill are several degrees colder than those calculated from a facial cooling model. The latter was based on experiments with a heated model of a face in a wind tunnel. Wind chill has sometimes been modeled as the overall heat transfer from the surface of a cylinder in cross flow, but such models average the cooling over the whole surface and thus minimize the effect of local cooling on the upwind side, particularly at low wind speeds. In this paper, a vertical cylinder model of wind chill has been modified so that just the cooling of its windward side is considered. Wind chill equivalent temperatures calculated with this new model compare favorably with those calculated by the facial cooling model.

  20. Flight dynamics of axisymmetric rotating bodies in an air medium

    NASA Astrophysics Data System (ADS)

    Borisenok, I. T.; Lokshin, B. Ia.; Privalov, V. A.

    1984-04-01

    The free flight motion of a rigid axisymmetric body due to the action of its own weight, aerodynamic effects (autorotation), and possible reactive forces is examined. It is assumed that the central ellipsoid of inertia of the body is an ellipsoid of rotation about the axis of symmetry, and that the center of gravity is at the geometric center of the body. The region of stability of vertical descent is approximated by dividing a system of characteristic equations into fast and slow parts. It is shown that, for given gyroscopic forces, the presence of the nonconservative Magnus moment may lead to a loss of stability of this type of motion. The stability of the case of planar motion, where the Magnus force and weight form an equilibrium force system, and of the case of spiral motion is considered. Stability is also studied for the case of the center of mass at an arbitrary point on the axis of symmetry, and for the case of an axisymmetric body not having an equatorial plane of symmetry. Conditions for the equilibrium and precession stability of a rotating parachute in a wind tunnel are identified.

  1. Summary of tower designs for large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Frederick, G. R.; Savino, J. M.

    1986-01-01

    Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-5B presently being fabricated. Design goals and requirements that influence tower configuration, height and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted.

  2. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    NASA Astrophysics Data System (ADS)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambda<2, blades operate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were implemented, varying Re, k, and +/-alpha to match a typical VAWT operating environment. A range of reduced jet frequencies (0.25≤St≤4) were analyzed with varying Cmu, based on effective ranges from prior flow control airfoil studies. Airfoil pitch was found to increase the baseline lift-to-drag ratio (L/D) by up to 50% due to dynamic stall effects. The influence of dynamic stall on steady CC airfoil performance was greater for Cmu=0.05, increasing L/D by 115% for positive angle-of-attack. Pulsed actuation was shown to match, or improve, steady jet lift performance while reducing required mass flow by up to 35%. From numerical flow visualization, pulsed actuation was shown to reduce the size and strength of wake vorticity during DS, resulting in lower profile drag relative to baseline and steady actuation cases. A database of pitching airfoil test data, including overshoot and hysteresis of aerodynamic coefficients (Cl, Cd), was compiled for improved analytical model inputs to update CCVAWT performance predictions, where the aforementioned L/D improvements will be directly reflected. Relative to a conventional VAWT with annual power output of 1 MW, previous work at WVU proved that the addition of steady jet CC could improve total output to 1.25 MW. However, the pumping cost to generate the continuous jet reduced yearly CCVAWT net gains to 1.15 MW. The current study has shown that pulsed CC jets can recover 4% of the pumping demands due to reduced mass flow requirements, increasing annual CCVAWT net power production to 1.19 MW, a 19% improvement relative to the conventional turbine.

  3. Intracycle angular velocity control of cross-flow turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven L.; Polagye, Brian

    2017-08-01

    Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.

  4. Statistical characterization of high-to-medium frequency mesoscale gravity waves by lidar-measured vertical winds and temperatures in the MLT

    NASA Astrophysics Data System (ADS)

    Lu, Xian; Chu, Xinzhao; Li, Haoyu; Chen, Cao; Smith, John A.; Vadas, Sharon L.

    2017-09-01

    We present the first statistical study of gravity waves with periods of 0.3-2.5 h that are persistent and dominant in the vertical winds measured with the University of Colorado STAR Na Doppler lidar in Boulder, CO (40.1°N, 105.2°W). The probability density functions of the wave amplitudes in temperature and vertical wind, ratios of these two amplitudes, phase differences between them, and vertical wavelengths are derived directly from the observations. The intrinsic period and horizontal wavelength of each wave are inferred from its vertical wavelength, amplitude ratio, and a designated eddy viscosity by applying the gravity wave polarization and dispersion relations. The amplitude ratios are positively correlated with the ground-based periods with a coefficient of 0.76. The phase differences between the vertical winds and temperatures (φW -φT) follow a Gaussian distribution with 84.2±26.7°, which has a much larger standard deviation than that predicted for non-dissipative waves ( 3.3°). The deviations of the observed phase differences from their predicted values for non-dissipative waves may indicate wave dissipation. The shorter-vertical-wavelength waves tend to have larger phase difference deviations, implying that the dissipative effects are more significant for shorter waves. The majority of these waves have the vertical wavelengths ranging from 5 to 40 km with a mean and standard deviation of 18.6 and 7.2 km, respectively. For waves with similar periods, multiple peaks in the vertical wavelengths are identified frequently and the ones peaking in the vertical wind are statistically longer than those peaking in the temperature. The horizontal wavelengths range mostly from 50 to 500 km with a mean and median of 180 and 125 km, respectively. Therefore, these waves are mesoscale waves with high-to-medium frequencies. Since they have recently become resolvable in high-resolution general circulation models (GCMs), this statistical study provides an important and timely reference for them.

  5. Neglected locked vertical patellar dislocation

    PubMed Central

    Gupta, Rakesh Kumar; Gupta, Vinay; Sangwan, Sukhbir Singh; Kamboj, Pradeep

    2012-01-01

    Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge. PMID:23162154

  6. Horizontal-axis clothes washer market poised for expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, K.L.

    1994-12-31

    The availability of energy- and water-efficient horizontal-axis washing machines in the North American market is growing, as US and European manufacturers position for an expected long-term market shift toward horizontal-axis (H-axis) technology. Four of the five major producers of washing machines in the US are developing or considering new H-axis models. New entrants, including US-based Staber Industries and several European manufacturers, are also expected to compete in this market. The intensified interest in H-axis technology is partly driven by speculation that new US energy efficiency standards, to be proposed in 1996 and implemented in 1999, will effectively mandate H-axis machines.more » H-axis washers typically use one-third to two-thirds less energy, water, and detergent than vertical-axis machines. Some models also reduce the energy needed to dry the laundry, since their higher spin speeds extract more water than is typical with vertical-axis designs. H-axis washing machines are the focus of two broadly-based efforts to support coordinated research and incentive programs by electric, gas, and water utilities: The High-Efficiency Laundry Metering/Marketing Analysis (THELMA), and the Consortium for Energy Efficiency (CEE) High-Efficiency Clothes Washer Initiative. These efforts may help to pave the way for new types of marketing partnerships among utilities and other parties that could help to speed adoption of H-axis washers.« less

  7. P-wave indices in patients with pulmonary emphysema: do P-terminal force and interatrial block have confounding effects?

    PubMed Central

    Chhabra, Lovely; Chaubey, Vinod K; Kothagundla, Chandrasekhar; Bajaj, Rishi; Kaul, Sudesh; Spodick, David H

    2013-01-01

    Introduction Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60°) serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf), amplitude of initial positive component of P-waves in V1 (i-PV1), and interatrial block (IAB) have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Materials and methods Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf) was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (−) P wave in V1 or a biphasic (+/−) P wave in V1. Results s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03). s-Ptf also significantly correlated with IAB (P = 0.001); however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23). There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047); however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36). Conclusion We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by right atrial displacement, and thus the common assumption that increased P-tf implies left atrial enlargement should be made with caution in patients with emphysema. Also, the lack of strong correlation between i-PV1 and P-amplitude in lead III or vertical P-vector may suggest the predominant role of downward right atrial distortion rather than right atrial enlargement in causing vertical P-vector in emphysema. PMID:23690680

  8. Taylor dispersion in wind-driven current

    NASA Astrophysics Data System (ADS)

    Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.

    2017-12-01

    Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.

  9. Spin-stabilized magnetic levitation without vertical axis of rotation

    DOEpatents

    Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aaronson, Gene [Albuquerque, NM

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  10. Measurement of the vertical gradient of the semidiurnal tidal wind phase in winter at the 95 km level

    NASA Astrophysics Data System (ADS)

    Schminder, R.; Kurschner, D.

    1984-05-01

    When supplemented by absolute reflection height measurements, low frequency wind measurements in the 90-100 km height range become truly competitive in comparison with the more widely used radar meteor wind observations. For example, height profiles of the wind parameters in the so-called meteor zone can be obtained due to the considerable interdiurnal variability of the average nighttime reflection heights controlled by geomagnetic activity. The phase of the semidiurnal tidal wind is particularly height-dependent. The measured vertical gradient of 1/4 h/km in winter corresponds to a vertical wavelength of about 50 km. Wind measurements in the upper atmosphere, at heights between 90 and 100 km, were carried out at the Collm Geophysical Observatory of Karl Marx University Leipzig for a number of years. These measurements use the closely-spaced receiver method and three measuring paths, on 179, 227, and 272 kHz. They take place every day between sunset and sunrise, i.e., nightly. A night in this sense may last as long as 18 hours in winter. Both the measurements and their evaluation are completely automatic, and the prevailing winds and tides are separated.

  11. Measurement of the Vertical Gradient of the Semidiurnal Tidal Wind Phase in Winter at the 95 Km Level

    NASA Technical Reports Server (NTRS)

    Schminder, R.; Kurschner, D.

    1984-01-01

    When supplemented by absolute reflection height measurements, low frequency wind measurements in the 90-100 km height range become truly competitive in comparison with the more widely used radar meteor wind observations. For example, height profiles of the wind parameters in the so-called meteor zone can be obtained due to the considerable interdiurnal variability of the average nighttime reflection heights controlled by geomagnetic activity. The phase of the semidiurnal tidal wind is particularly height-dependent. The measured vertical gradient of 1/4 h/km in winter corresponds to a vertical wavelength of about 50 km. Wind measurements in the upper atmosphere, at heights between 90 and 100 km, were carried out at the Collm Geophysical Observatory of Karl Marx University Leipzig for a number of years. These measurements use the closely-spaced receiver method and three measuring paths, on 179, 227, and 272 kHz. They take place every day between sunset and sunrise, i.e., nightly. A night in this sense may last as long as 18 hours in winter. Both the measurements and their evaluation are completely automatic, and the prevailing winds and tides are separated.

  12. Comparison of current meters used for stream gaging

    USGS Publications Warehouse

    Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.

    1994-01-01

    The U.S. Geological Survey (USGS) is field and laboratory testing the performance of several current meters used throughout the world for stream gaging. Meters tested include horizontal-axis current meters from Germany, the United Kingdom, and the People's Republic of China, and vertical-axis and electromagnetic current meters from the United States. Summarized are laboratory test results for meter repeatability, linearity, and response to oblique flow angles and preliminary field testing results. All current meters tested were found to under- and over-register velocities; errors usually increased as the velocity and angle of the flow increased. Repeatability and linearity of all meters tested were good. In the field tests, horizontal-axis meters, except for the two meters from the People's Republic of China, registered higher velocity than did the vertical-axis meters.

  13. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed

    PubMed Central

    Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K.; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50–150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi’s pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely. PMID:29561851

  14. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed.

    PubMed

    Wellig, Sascha D; Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.

  15. Prediction of passenger ride quality in a multifactor environment

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Leatherwood, J. D.

    1976-01-01

    A model being developed, permits the understanding and prediction of passenger discomfort in a multifactor environment with particular emphasis upon combined noise and vibration. The model has general applicability to diverse transportation systems and provides a means of developing ride quality design criteria as well as a diagnostic tool for identifying the vibration and/or noise stimuli causing discomfort. Presented are: (1) a review of the basic theoretical and mathematical computations associated with the model, (2) a discussion of methodological and criteria investigations for both the vertical and roll axes of vibration, (3) a description of within-axis masking of discomfort responses for the vertical axis, thereby allowing prediction of the total discomfort due to any random vertical vibration, (4) a discussion of initial data on between-axis masking, and (5) discussion of a study directed towards extension of the vibration model to the more general case of predicting ride quality in the combined noise and vibration environments.

  16. Human otolith-ocular reflexes during off-vertical axis rotation: effect of frequency on tilt-translation ambiguity and motion sickness

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Paloski, W. H. (Principal Investigator)

    2002-01-01

    The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.

  17. The effect of wind on the dispersal of a tropical small river plume

    NASA Astrophysics Data System (ADS)

    Zhao, Junpeng; Gong, Wenping; Shen, Jian

    2018-03-01

    Wanquan River is a small river located in Hainan, a tropical island in China. As the third largest river in Hainan, the river plume plays an important role in the regional terrigenous mass transport, coastal circulation, and the coral reef's ecosystem. Studies have shown that wind forcings significantly influence river plume dynamics. In this study, wind effects on the dispersal of the river plume and freshwater transport were examined numerically using a calibrated, unstructured, finite volume numerical model (FVCOM). Both wind direction and magnitude were determined to influence plume dispersal. Northeasterly (downwelling-favorable) winds drove freshwater down-shelf while southeasterly (onshore) winds drove water up-shelf (in the sense of Kelvin wave propagation), and were confined near the coast. Southwesterly (upwelling-favorable) and north-westerly (offshore) winds transport more freshwater offshore. The transport flux is decomposed into an advection, a vertical shear, and an oscillatory component. The advection flux dominates the freshwater transport in the coastal area and the vertical shear flux is dominant in the offshore area. For the upwelling-favorable wind, the freshwater transport becomes more controlled by the advection transport with an increase in wind stress, due to enhanced vertical mixing. The relative importance of wind forcing and buoyancy force was investigated. It was found that, when the Wedderburn number is larger than one, the plume was dominated by wind forcing, although the importance of wind varies in different parts of the plume. The water column stratification decreased as a whole under the prevailing southwesterly wind, with the exception of the up-shelf and offshore areas.

  18. LCSs in tropical cyclone genesis

    NASA Astrophysics Data System (ADS)

    Rutherford, B.; Montgomery, M. T.

    2011-12-01

    The formation of tropical cyclones in the Atlantic most often occurs at the intersection of the wave trough axis of a westward propagating African easterly wave and the wave critical latitude. Viewed in a moving reference frame with the wave, a cat's eye region of cyclonic recirculation can be seen in streamlines prior to genesis. The cat's eye recirculation region has little strain deformation and its center serves as the focal point for aggregation of convectively generated vertical vorticity. Air inside the cat's eye is repeatedly moistened by convection and is protected from the lateral intrusion of dry air. Since the flow is inherently time-dependent, we contrast the time-dependent structures with Eulerian structures of the wave-relative frame. Time-dependence complicates the kinematic structure of the recirculation region as air masses from the outer environment are allowed to interact with the interior of the cat's eye. LCSs show different boundaries of the cat's eye than the streamlines in the wave-relative frame. These LCSs are particularly important for showing the pathways of air masses that interact with the developing vortex, as moist air promotes development by supporting deep convection, while interaction with dry air impedes development. We primarily use FTLEs to locate the LCSs, and show the role of LCSs in both developing and non-developing storms. In addition, we discuss how the vertical coherence of LCSs is important for resisting the effects of vertical wind shear.

  19. A comparison of selected vertical wind measurement techniques on basis of the EUCAARI IMPACT observations

    NASA Astrophysics Data System (ADS)

    Arabas, S.; Baehr, C.; Boquet, M.; Dufournet, Y.; Pawlowska, H.; Siebert, H.; Unal, C.

    2009-04-01

    The poster presents a comparison of selected methods for determination of the vertical wind in the boundary layer used during the EUCAARI IMPACT campaign that took place in May 2008 in The Netherlands. The campaign covered a monthlong intensified ground-based and airborne measurements in the vicinity of the CESAR observatory in Cabauw. Ground-based vertical wind remote sensing was carried out using the Leosphere WindCube WLS70 IR Doppler lidar, Vaisala LAP3000 radar wind-profiler and the TUDelft TARA S-band radar. In-situ airborne measurements were performed using an ultrasonic anemometer (on the ACTOS helicopter underhung platform) and a 5-hole pressure probe (on the SAFIRE ATR-42 airplane radome). Several in-situ anemometers were deployed on the 200-meter high tower of the CESAR observatory. A summary of the characteristics and principles of the considered techniques is presented. A comparison of the results obtained from different platforms depicts the capabilities of each technique and highlights the time, space and velocity resolutions.

  20. Coupling with ocean mixed layer leads to intraseasonal variability in tropical deep convection: Evidence from cloud-resolving simulations

    NASA Astrophysics Data System (ADS)

    Anber, Usama; Wang, Shuguang; Sobel, Adam

    2017-03-01

    The effect of coupling a slab ocean mixed layer to atmospheric convection is examined in cloud-resolving model (CRM) simulations in vertically sheared and unsheared environments without Coriolis force, with the large-scale circulation parameterized using the Weak Temperature Gradient (WTG) approximation. Surface fluxes of heat and moisture as well as radiative fluxes are fully interactive, and the vertical profile of domain-averaged horizontal wind is strongly relaxed toward specified profiles with vertical shear that varies from one simulation to the next. Vertical wind shear is found to play a critical role in the simulated behavior. There exists a threshold value of the shear strength above which the coupled system develops regular oscillations between deep convection and dry nonprecipitating states, similar to those found earlier in a much more idealized model which did not consider wind shear. The threshold value of the vertical shear found here varies with the depth of the ocean mixed layer. The time scale of the spontaneously generated oscillations also varies with mixed layer depth, from 10 days with a 1 m deep mixed layer to 50 days with a 10 m deep mixed layer. The results suggest the importance of the interplay between convection organized by vertical wind shear, radiative feedbacks, large-scale dynamics, and ocean mixed layer heat storage in real intraseasonal oscillations.

  1. Winds of Massive Magnetic Stars: Interacting Fields and Flow

    NASA Astrophysics Data System (ADS)

    Daley-Yates, S.; Stevens, I. R.

    2018-01-01

    We present results of 3D numerical simulations of magnetically confined, radiatively driven stellar winds of massive stars, conducted using the astrophysical MHD code Pluto, with a focus on understanding the rotational variability of radio and sub-mm emission. Radiative driving is implemented according to the Castor, Abbott and Klein theory of radiatively driven winds. Many magnetic massive stars posses a magnetic axis which is inclined with respect to the rotational axis. This misalignment leads to a complex wind structure as magnetic confinement, centrifugal acceleration and radiative driving act to channel the circumstellar plasma into a warped disk whose observable properties should be apparent in multiple wavelengths. This structure is analysed to calculate free-free thermal radio emission and determine the characteristic intensity maps and radio light curves.

  2. Dynamics of Katabatic Winds in Colorado' Brush Creek Valley.

    NASA Astrophysics Data System (ADS)

    Vergeiner, I.; Dreiseitl, E.; Whiteman, C. David

    1987-01-01

    A method is proposed to evaluate the coupled mass, momentum and thermal energy budget equations for a deep valley under two-dimensional, steady-state flow conditions. The method requires the temperature, down- valley wind and valley width fields to be approximated by simple analytical functions. The vertical velocity field is calculated using the mass continuity equation. Advection terms in the momentum and energy equations are then calculated using finite differences computed on a vertical two-dimensional grid that runs down the valley's axis. The pressure gradient term in the momentum equation is calculated from the temperature field by means of the hydrostatic equation. The friction term is then calculated as a residual in the xmomentum equation, and the diabatic cooling term is calculated as a residual in the thermal energy budget equation.The method is applied to data from an 8-km-long segment of Colorado's; Brush Creek Valley on the night of 30-31 July 1982. Pressure decreased with distance down the peak on horizontal surfaces, with peak horizontal pressure gradients of 0.04 hPa km1. The valley mass budget indicated that subsidence was required in the valley to support calculated mean along-valley mass flux divergence. Peak subsidence rates on the order of 0.10 m s1 were calculated. Subsiding motions in the valley produced negative vertical down-valley momentum fluxes in the upper valley atmosphere, but produced positive down-valley momentum fluxes below the level of the jet. Friction, calculated as a residual in the x momentum equation, was negative, as expected on physical grounds. and attained reasonable quantitative values.The strong subsidence field in the stable valley atmosphere produced subsidence warming that was only partly counteracted by down-valley cold air advection. Strong diabatic cooling was therefore required in order to account for the weak net cooling of the valley atmosphere during the nighttime period when tethered balloon observations were made.

  3. Evaluation of the Environmental Instruments, Incorporated Series 200 Dual Component Wind Set.

    DTIC Science & Technology

    1980-09-01

    elements is sensed to derive the sign (+ or -), which indicates the wind direction across the element pair. The reference arm of the Wheatstone bridge...Csine a for the crosswind axis, r and PF=a Vw Sine a for the headwind axis, r where Pa is the ambient air density, Pr is reference density at standard...pressure transducer is a hybrid linear silicon device which consists of a diaphragm and pressure reference , piezoresistive sensor, signal discriminator

  4. The vertical profile of winds on Titan.

    PubMed

    Bird, M K; Allison, M; Asmar, S W; Atkinson, D H; Avruch, I M; Dutta-Roy, R; Dzierma, Y; Edenhofer, P; Folkner, W M; Gurvits, L I; Johnston, D V; Plettemeier, D; Pogrebenko, S V; Preston, R A; Tyler, G L

    2005-12-08

    One of Titan's most intriguing attributes is its copious but featureless atmosphere. The Voyager 1 fly-by and occultation in 1980 provided the first radial survey of Titan's atmospheric pressure and temperature and evidence for the presence of strong zonal winds. It was realized that the motion of an atmospheric probe could be used to study the winds, which led to the inclusion of the Doppler Wind Experiment on the Huygens probe. Here we report a high resolution vertical profile of Titan's winds, with an estimated accuracy of better than 1 m s(-1). The zonal winds were prograde during most of the atmospheric descent, providing in situ confirmation of superrotation on Titan. A layer with surprisingly slow wind, where the velocity decreased to near zero, was detected at altitudes between 60 and 100 km. Generally weak winds (approximately 1 m s(-1)) were seen in the lowest 5 km of descent.

  5. Constructing a Plastic Bottle Wind Turbine as a Practical Aid for Learning about Using Wind Energy to Generate Electricity

    ERIC Educational Resources Information Center

    Appleyard, S. J.

    2009-01-01

    A simple horizontal axis wind turbine can be easily constructed using a 1.5 l PET plastic bottle, a compact disc and a small dynamo. The turbine operates effectively at low wind speeds and has a rotational speed of 500 rpm at a wind speed of about 14 km h[superscript -1]. The wind turbine can be used to demonstrate the relationship between open…

  6. Exploring point-cloud features from partial body views for gender classification

    NASA Astrophysics Data System (ADS)

    Fouts, Aaron; McCoppin, Ryan; Rizki, Mateen; Tamburino, Louis; Mendoza-Schrock, Olga

    2012-06-01

    In this paper we extend a previous exploration of histogram features extracted from 3D point cloud images of human subjects for gender discrimination. Feature extraction used a collection of concentric cylinders to define volumes for counting 3D points. The histogram features are characterized by a rotational axis and a selected set of volumes derived from the concentric cylinders. The point cloud images are drawn from the CAESAR anthropometric database provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate and SAE International. This database contains approximately 4400 high resolution LIDAR whole body scans of carefully posed human subjects. Success from our previous investigation was based on extracting features from full body coverage which required integration of multiple camera images. With the full body coverage, the central vertical body axis and orientation are readily obtainable; however, this is not the case with a one camera view providing less than one half body coverage. Assuming that the subjects are upright, we need to determine or estimate the position of the vertical axis and the orientation of the body about this axis relative to the camera. In past experiments the vertical axis was located through the center of mass of torso points projected on the ground plane and the body orientation derived using principle component analysis. In a natural extension of our previous work to partial body views, the absence of rotational invariance about the cylindrical axis greatly increases the difficulty for gender classification. Even the problem of estimating the axis is no longer simple. We describe some simple feasibility experiments that use partial image histograms. Here, the cylindrical axis is assumed to be known. We also discuss experiments with full body images that explore the sensitivity of classification accuracy relative to displacements of the cylindrical axis. Our initial results provide the basis for further investigation of more complex partial body viewing problems and new methods for estimating the two position coordinates for the axis location and the unknown body orientation angle.

  7. Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Desy, P.; Masson, C.

    1988-02-01

    The objective of the work described in this paper was to apply the Boeing-Vertol dynamic stall model in an asymmetric manner to account for the asymmetry of the flow between the left and right sides of the rotor. This phenomenon has been observed by the flow visualization of a two-straight-bladed Darrieus rotor in the IMST water tunnel. Also introduced into the aerodynamic model are the effects of the blade tip and finite aspect ratio on the aerodynamic performance of the Darrieus wind turbine. These improvements are compatible with the double-multiple-streamtube model and have been included in the CARDAAV computer code for predicting the aerodynamic performance. Very good agreement has been observed between the test data (Sandia 17 m) and theoretical predictions; a significant improvement over the previous dynamic stall model was obtained for the rotor power at low tip speed ratios, while the inclusion of the finite aspect ratio effects enhances the prediction of the rotor power for high tip speed ratios. The tip losses and finite aspect ratio effects were also calculated for a small-scale vertical-axis wind turbine, with a two-straight-bladed (NACA 0015) rotor.

  8. Experimental investigation of low aspect ratio, large amplitude, aeroelastic energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Kirschmeier, Benjamin; Summerour, Jacob; Bryant, Matthew

    2017-04-01

    Interest in clean, stable, and renewable energy harvesting devices has increased dramatically with the volatility of petroleum markets. Specifically, research in aero/hydro kinetic devices has created numerous new horizontal and vertical axis wind turbines, and oscillating wing turbines. Oscillating wing turbines (OWTs) differ from their wind turbine cousins by having a rectangular swept area compared to a circular swept area. The OWT systems also possess a lower tip speed that reduces the overall noise produced by the system. OWTs have undergone significant computational analysis to uncover the underlying flow physics that can drive the system to high efficiencies for single wing oscillations. When two of these devices are placed in tandem configuration, i.e. one placed downstream of the other, they either can constructively or destructively interact. When constructive interactions occurred, they enhance the system efficiency to greater than that of two devices on their own. A new experimental design investigates the dependency of interaction modes on the pitch stiffness of the downstream wing. The experimental results demonstrated that interaction modes are functions of convective time scale and downstream wing pitch stiffness. Heterogeneous combinations of pitch stiffness exhibited constructive and destructive lock-in phenomena whereas the homogeneous combination exhibited only destructive interactions.

  9. A call for conservation scientists to evaluate opportunities and risks from operation of vertical axis wind turbines

    USGS Publications Warehouse

    Santangeli, Andrea; Katzner, Todd E.

    2015-01-01

    A new conservation paradigm (Kareiva and Marvier, 2012) emphasizes the need for scientists to embrace a holistic approach taking into account the social and natural dimensions of conservation in human-dominated landscapes. While there is heavy debate over the new approach (Tallis and Lubchenco, 2014), most conservation scientists seem to agree on to the need to cooperate with corporations when such interaction can benefit people and the environment (Miller et al., 2014;Tallis and Lubchenco, 2014). Cooperation can be most productive when established in the early phases of development, but this requires a high capacity for forward looking pre-emptive action (i.e., anticipating potential forthcoming issues before they arise; Sutherland and Woodroof, 2009). This framework is particularly salient for rapidly developing and expanding technologies such as those for harvesting renewable energy sources. Here the stakes are very high, as they concern mitigating negative consequences to global climate while generating energy without impacting wildlife. In this vein, past experience is instructional. The environmental impacts of biofuels and wind, among others, have been identified and evaluated rather late (Sutherland and Woodroof, 2009), so that implementation of best management practices on existing facilities is now often prohibitively expensive.

  10. On the stability of motion of several types of heavy symmetric gyroscopes with damping torques

    NASA Astrophysics Data System (ADS)

    Ge, Z.-M.; Wu, M.-H.

    Sufficient conditions for the stability of motion of several gyroscopes are obtained using Liapunov's direct method. The stability of a 'temporarily' sleeping top with damping torque is considered for the cases of the support being fixed, being in vertical harmonic motion, and being in vertical periodic motion. Sufficient conditions are also obtained for the stability of a heavy symmetric gyroscope with damping torque and motor torque for the cases of regular precession, vertical axis permanent rotation with and without the axis of the outer gimbal being inclined, and the gyroscope being in a Newtonian central gravitational field.

  11. Dynamic modulation of ocular orientation during visually guided saccades and smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Hess, Bernhard J M.; Angelaki, Dora E.

    2003-01-01

    Rotational disturbances of the head about an off-vertical yaw axis induce a complex vestibuloocular reflex pattern that reflects the brain's estimate of head angular velocity as well as its estimate of instantaneous head orientation (at a reduced scale) in space coordinates. We show that semicircular canal and otolith inputs modulate torsional and, to a certain extent, also vertical ocular orientation of visually guided saccades and smooth-pursuit eye movements in a similar manner as during off-vertical axis rotations in complete darkness. It is suggested that this graviceptive control of eye orientation facilitates rapid visual spatial orientation during motion.

  12. Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1998-01-01

    The adaptive plasticity of the spatial organization of the vestibuloocular reflex (VOR) has been investigated in intact and canal-plugged primates using 2-h exposure to conflicting visual (optokinetic, OKN) and vestibular rotational stimuli about mutually orthogonal axes (generating torsional VOR + vertical OKN, torsional VOR + horizontal OKN, vertical VOR + horizontal OKN, and horizontal VOR + vertical OKN). Adaptation protocols with 0.5-Hz (+/-18 degrees ) head movements about either an earth-vertical or an earth-horizontal axis induced orthogonal response components as high as 40-70% of those required for ideal adaptation. Orthogonal response gains were highest at the adapting frequency with phase leads present at lower and phase lags present at higher frequencies. Furthermore, the time course of adaptation, as well as orthogonal response dynamics were similar and relatively independent of the particular visual/vestibular stimulus combination. Low-frequency (0. 05 Hz, vestibular stimulus: +/-60 degrees ; optokinetic stimulus: +/-180 degrees ) adaptation protocols with head movements about an earth-vertical axis induced smaller orthogonal response components that did not exceed 20-40% of the head velocity stimulus (i.e., approximately 10% of that required for ideal adaptation). At the same frequency, adaptation with head movements about an earth-horizontal axis generated large orthogonal responses that reached values as high as 100-120% of head velocity after 2 h of adaptation (i.e., approximately 40% of ideal adaptation gains). The particular spatial and temporal response characteristics after low-frequency, earth-horizontal axis adaptation in both intact and canal-plugged animals strongly suggests that the orienting (and perhaps translational) but not inertial (velocity storage) components of the primate otolith-ocular system exhibit spatial adaptability. Due to the particular nested arrangement of the visual and vestibular stimuli, the optic flow pattern exhibited a significant component about the third spatial axis (i.e., orthogonal to the axes of rotation of the head and visual surround) at twice the oscillation frequency. Accordingly, the adapted VOR was characterized consistently by a third response component (orthogonal to both the axes of head and optokinetic drum rotation) at twice the oscillation frequency after earth-horizontal but not after earth-vertical axis 0.05-Hz adaptation. This suggests that the otolith-ocular (but not the semicircular canal-ocular) system can adaptively change its spatial organization at frequencies different from those of the head movement.

  13. The vertical structure of tangential winds in tropical cyclones: Observations, theory, and numerical simulations

    NASA Astrophysics Data System (ADS)

    Stern, Daniel P.

    The vertical structure of the tangential wind field in tropical cyclones is investigated through observations, theory, and numerical simulations. First, a dataset of Doppler radar wind swaths obtained from NOAA/AOML/HRD is used to create azimuthal mean tangential wind fields for 7 storms on 17 different days. Three conventional wisdoms of vertical structure are reexamined: the outward slope of the Radius of Maximum Winds (RMW) decreases with increasing intensity, the slope increases with the size of the RMW, and the RMW is a surface of constant absolute angular momentum (M). The slopes of the RMW and of M surfaces are objectively determined. The slopes are found to increase linearly with the size of the low-level RMW, and to be independent of the intensity of the storm. While the RMW is approximately an M surface, M systematically decreases with height along the RMW. The steady-state analytical theory of Emanuel (1986) is shown to make specific predictions regarding the vertical structure of tropical cyclones. It is found that in this model, the slope of the RMW is a linear function of its size and is independent of intensity, and that the RMW is almost exactly an M surface. A simple time-dependent model which is governed by the same assumptions as the analytical theory yields the same results. Idealized hurricane simulations are conducted using the Weather Research and Forecasting (WRF) model. The assumptions of Emanuel's theory, slantwise moist neutrality and thermal wind balance, are both found to be violated. Nevertheless, the vertical structure of the wind field itself is generally well predicted by the theory. The percentage rate at which the winds decay with height is found to be nearly independent of both size and intensity, in agreement with observations and theory. Deviations from this decay profile are shown to be due to gradient wind imbalance. The slope of the RMW increases linearly with its size, but is systematically too large compared to observations. Also in contrast to observations, M generally increases with height along the RMW.

  14. Evaluation of wind regimes and their impact on vertical mixing and coupling in a moderately dense forest

    NASA Astrophysics Data System (ADS)

    Wunder, Tobias; Ehrnsperger, Laura; Thomas, Christoph

    2017-04-01

    In the last decades much attention has been devoted to improving our understanding of organized motions in plant canopies. Particularly the impact of coherent structures on turbulent flows and vertical mixing in near-neutral conditions has been the focus of many experimental and modeling studies. Despite this progress, the weak-wind subcanopy airflow in concert with stable or weak-wind above-canopy conditions remains poorly understood. In these conditions, evidence is mounting that larger-scale motions, so called sub-meso motions which occupy time scales from minutes to hours and spatial scales from tens of meters to kilometers, dominate transport and turbulent mixing particularly in the subcanopy, because of generally weaker background flow as a result of the enhanced friction due to the plant material. We collected observations from a network of fast-response sensor across the vertical and horizontal dimensions during the INTRAMIX experiment at the Fluxnet site Waldstein/ Weidenbrunnen (DE-Bay) in a moderately dense Norway spruce (Picea Abies) forest over a period of ten weeks. Its main goal was to investigate the role of the submeso-structures on the turbulent wind field and the mixing mechanisms including coherent structures. In a first step, coupling regimes differentiating between weak and strong flows and day- and nighttime-conditions are determined. Subsequently, each of the regimes is analyzed for its dominant flow dynamics identified by wavelet analysis. It is hypothesized that strong vertical wind directional shear does not necessarily indicate a decoupling of vertical layers, but on the contrary may create situations of significant coupling of the sub-canopy with the canopy layers above. Moreover, rapid changes of wind direction or even reversals may generate substantial turbulence and induce intermittent coupling on a variety of time scales. The overarching goal is to improve diagnostics for vertical mixing in plant canopies incorporating turbulence and submeso-motions and to develop a classification of flow modes capable of representing the main driving mechanisms of mixing in forest canopies.

  15. Experiments on tropical stratospheric mean-wind variations in a spectral general circulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, K.; Yuan, L.

    1992-12-15

    A 30-level version of the rhomboidal-15 GFDL spectral climate model was constructed with roughly 2-km vertical resolution. This model fails to produce a realistic quasi-biennial oscillation (QBO) in the tropical stratosphere. Several simulations were conducted in which the zonal-mean winds and temperatures in the equatorial lower and middle stratosphere were instantaneously perturbed and the model was integrated while the mean state relaxed toward its equilibrium. The time scale for the mean wind relaxation varied from over one month at 40 km to a few months in the lower stratosphere. The wind relaxations in the model also displayed the downward phasemore » propagation characteristic of QBO wind reversals, and mean wind anomalies of opposite sign to the imposed perturbation appear at higher levels. In the GCM the downward propagation is clear only above about 20 mb. Detailed investigations were made of the zonal-mean zonal momentum budget in the equatorial stratosphere. The mean flow relaxations above 20 mb were mostly driven by the vertical Eliassen-Palm flux convergence. The anomalies in the horizontal Eliassen-Palm fluxes from extratropical planetary waves were found to be the dominant effect forcing the mean flow to its equilibrium at altitudes below 20 mb. The vertical eddy momentum fluxes near the equator in the model were decomposed using space-time Fourier analysis. While total fluxes associated with easterly and westerly waves are comparable to those used in simple mechanistic models of the QBO, the GCM has its flux spread over a broad range of wavenumbers and phase speeds. The effects of vertical resolution were studied by repeating part of the control integration with a 69-level version of the model with greatly enhance vertical resolution in the lower and middle stratosphere. The results showed that there is almost no sensitivity of the simulation in the tropical stratosphere to the increased vertical resolution. 34 refs., 16 figs., 3 tabs.« less

  16. Measurement of Posterior Corneal Astigmatism by the IOLMaster 700.

    PubMed

    LaHood, Benjamin R; Goggin, Michael

    2018-05-01

    To provide the first description of posterior corneal astigmatism as measured by the IOLMaster 700 (Carl Zeiss Meditec, Jena, Germany) and assess how its characteristics compare to previous measurements from other devices. A total of 1,098 routine IOLMaster 700 biometric measurements were analyzed to provide magnitudes and orientation of steep and flat axes of anterior and posterior corneal astigmatism. Subgroup analysis was conducted to assess correlation of posterior corneal astigmatism characteristics to anterior corneal astigmatism and describe the distribution of posterior corneal astigmatism with age. Mean posterior corneal astigmatism was 0.24 ± 0.15 diopters (D). The steep axis of posterior corneal astigmatism was vertically oriented in 73.32% of measurements. Correlation between the magnitude of anterior and posterior corneal astigmatism was greatest when the steep axis of the anterior corneal astigmatism was oriented vertically (r = 0.68, P < .0001). Vertical orientation of the steep axis of anterior corneal astigmatism became less common as age increased, whereas for posterior corneal astigmatism it remained by far the most common orientation. This first description of posterior corneal astigmatism measurement by the IOLMaster 700 found the average magnitude of posterior corneal astigmatism and proportion of vertical orientation of steep axis was lower than previous estimates. The IOLMaster 700 appears capable of providing enhanced biometric measurement for individualized surgical planning. [J Refract Surg. 2018;34(5):331-336.]. Copyright 2018, SLACK Incorporated.

  17. Modeling of Geometric Error in Linear Guide Way to Improved the vertical three-axis CNC Milling machine’s accuracy

    NASA Astrophysics Data System (ADS)

    Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna

    2018-03-01

    The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.

  18. Surface wind, pressure and temperature fields near tornadic and non-tornadic narrow cold-frontal rainbands

    NASA Astrophysics Data System (ADS)

    Clark, Matthew; Parker, Douglas

    2014-05-01

    Narrow cold frontal rainbands (NCFRs) occur frequently in the UK and other parts of northwest Europe. At the surface, the passage of an NCFR is often marked by a sharp wind veer, abrupt pressure increase and a rapid temperature decrease. Tornadoes and other instances of localised wind damage sometimes occur in association with meso-gamma-scale vortices (sometimes called misocyclones) that form along the zone of abrupt horizontal wind veer (and associated vertical vorticity) at the leading edge of the NCFR. Using one-minute-resolution data from a mesoscale network of automatic weather stations, surface pressure, wind and temperature fields in the vicinity of 12 NCFRs (five of which were tornadic) have been investigated. High-resolution surface analyses were obtained by mapping temporal variations in the observed parameters to equivalent spatial variations, using a system velocity determined by analysis of the radar-observed movement of NCFR precipitation segments. Substantial differences were found in the structure of surface wind and pressure fields close to tornadic and non-tornadic NCFRs. Tornadic NCFRs exhibited a large wind veer (near 90°) and strong pre- and post-frontal winds. These attributes were associated with large vertical vorticity and horizontal convergence across the front. Tornadoes typically occurred where vertical vorticity and horizontal convergence were increasing. Here, we present surface analyses from selected cases, and draw comparisons between the tornadic and non-tornadic NCFRs. Some Doppler radar observations will be presented, illustrating the development of misocyclones along parts of the NCFR that exhibit strong, and increasing, vertical vorticity stretching. The influence of the stability of the pre-frontal air on the likelihood of tornadoes will also be discussed.

  19. Development of high resolution simulations of the atmospheric environment using the MASS model

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Zack, John W.; Karyampudi, V. Mohan

    1989-01-01

    Numerical simulations were performed with a very high resolution (7.25 km) version of the MASS model (Version 4.0) in an effort to diagnose the vertical wind shear and static stability structure during the Shuttle Challenger disaster which occurred on 28 January 1986. These meso-beta scale simulations reveal that the strongest vertical wind shears were concentrated in the 200 to 150 mb layer at 1630 GMT, i.e., at about the time of the disaster. These simulated vertical shears were the result of two primary dynamical processes. The juxtaposition of both of these processes produced a shallow (30 mb deep) region of strong vertical wind shear, and hence, low Richardson number values during the launch time period. Comparisons with the Cape Canaveral (XMR) rawinsonde indicates that the high resolution MASS 4.0 simulation more closely emulated nature than did previous simulations of the same event with the GMASS model.

  20. Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation

    NASA Astrophysics Data System (ADS)

    Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti

    2017-10-01

    Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.

  1. Calculating Radiation Dose for Biological Tissue

    NASA Image and Video Library

    2013-05-30

    This graph based on data from the RAD instrument onboard NASA Mars Science Laboratory spacecraft shows the flux of energetic particles vertical axis as a function of the estimated energy deposited in water horizontal axis.

  2. Optimal electrocardiographic limb lead set for rapid emphysema screening

    PubMed Central

    Bajaj, Rishi; Chhabra, Lovely; Basheer, Zainab; Spodick, David H

    2013-01-01

    Background Pulmonary emphysema of any etiology has been shown to be strongly and quasidiagnostically associated with a vertical frontal P wave axis. A vertical P wave axis (>60 degrees) during sinus rhythm can be easily determined by a P wave in lead III greater than the P wave in lead I (bipolar lead set) or a dominantly negative P wave in aVL (unipolar lead set). The purpose of this investigation was to determine which set of limb leads may be better for identifying the vertical P vector of emphysema in adults. Methods Unselected consecutive electrocardiograms from 100 patients with a diagnosis of emphysema were analyzed to determine the P wave axis. Patients aged younger than 45 years, those not in sinus rhythm, and those with poor quality tracings were excluded. The electrocardiographic data were divided into three categories depending on the frontal P wave axis, ie, >60 degrees, 60 degrees, or <60 degrees, by each criterion (P amplitude lead III > lead I and a negative P wave in aVL). Results Sixty-six percent of patients had a P wave axis > 60 degrees based on aVL, and 88% of patients had a P wave axis > 60 degrees based on the P wave in lead III being greater than in lead I. Conclusion A P wave in lead III greater than that in lead I is a more sensitive marker than a negative P wave in aVL for diagnosing emphysema and is recommended for rapid routine screening. PMID:23378754

  3. Comparison of measured and calculated sound pressure levels around a large horizontal axis wind turbine generator

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Willshire, William L., Jr.; Hubbard, Harvey H.

    1989-01-01

    Results are reported from a large number of simultaneous acoustic measurements around a large horizontal axis downwind configuration wind turbine generator. In addition, comparisons are made between measurements and calculations of both the discrete frequency rotational harmonics and the broad band noise components. Sound pressure time histories and noise radiation patterns as well as narrow band and broadband noise spectra are presented for a range of operating conditions. The data are useful for purposes of environmental impact assessment.

  4. Exploring the nearshore marine wind profile from field measurements and numerical hindcast

    NASA Astrophysics Data System (ADS)

    del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.

    2012-12-01

    Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind profile are evaluated and, based on this work, a particular parameterization of the wind profile is proposed.

  5. An investigation of the environment surrounding supercell thunderstorms using wind profiler data

    NASA Astrophysics Data System (ADS)

    Thornhill, Kenneth Lee, II

    1998-12-01

    One of the cornerstones of severe thunderstorm research has been quantifying the relationship between the ambient vertical wind profile and the environment of a supercell thunderstorm. Continual refinement of that understanding will lead to the ability to distinguish between tornadic and non-tornadic supercells. Recently, studies have begun to show the importance of the mid-level winds (about 3-6 km), in addition to the normally analyzed 0-3 km inflow layer winds. The 32 wind profilers of the NOAA Profiler Network provide a new source of wind field data that is of higher temporal and spatial resolution that the normally used radiosonde soundings. Continuous raw wind field data (u, v, and w) is now available every 6 minutes, with a quality controlled hourly averaged wind field data set also available. In this work, a 6-minute quality control algorithm is presented and utilized. This 6-minute quality controlled wind data can be used to calculate predictive parameters such as storm relative environmental helicity, Bulk Richardson Number shear, and positive mean shear, indices that are normally calculated only for the inflow layer. In addition, the time series evolution of the mean midlevel winds and the mean vertical winds can also be examined. This present work concentrates on the 1994 and 1995 spring tornado seasons in the central plains of the United States. Combining the data from the NOAA Profiler Network with the data collected from the Verification of the Origins of Rotation in Tornadoes Experiment, the time series evolution of the several indices mentioned above are examined for the winds above the inflow layer in an attempt to add to the current understanding of the relationship between the vertical wind profile and the environment of tornadic and non-tornadic supercell thunderstorms.

  6. Multi-photon vertical cross-sectional imaging with a dynamically-balanced thin-film PZT z-axis microactuator.

    PubMed

    Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R

    2017-10-01

    Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.

  7. Control System for Bearingless Motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2008-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  8. Control system for bearingless motor-generator

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor); Kascak, Peter E. (Inventor)

    2010-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  9. Gravitomagnetic acceleration from black hole accretion disks

    NASA Astrophysics Data System (ADS)

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  10. A review of supercell and tornado dynamics

    NASA Astrophysics Data System (ADS)

    Davies-Jones, Robert

    2015-05-01

    Thunderstorms that form in strong vertical wind shear often evolve into supercell storms. Supercells are well-organized, monolithic units of vigorous long-lasting convection. A classic supercell in its mature stage consists of a rotating updraft (mid-altitude mesocyclone) and a downdraft that coexists symbiotically with the updraft in an almost steady state. Doppler-radar and visual observations along with computer simulations reveal that tornadic supercells evolve through three stages. Firstly, the updraft starts rotating and a mesocyclone forms aloft, secondly a narrower vortex develops near the ground (thus completing a rotating column that extends from the ground to upper levels), and lastly a tornado forms from contraction of the near-ground cyclone. The updraft tilts environmental horizontal vorticity upwards. The updraft rotates cyclonically as a whole if this vorticity is streamwise in the updrafts' reference frame (i.e., in the direction of the storm-relative wind). Updraft rotation and motion are linked so a complete theory of mid-altitude mesocyclones requires an understanding of how supercells propagate. There are two principle propagation mechanisms; one is linear and the other is nonlinear. The process whereby rotation develops in rising air cannot explain how cyclonic rotation starts near the ground where updrafts and background vertical vorticity are normally weak. A near-ground cyclone does not form without a downdraft. In computer simulations, low-altitude air parcels with cyclonic vorticity have previously subsided in horizontal gradients of buoyancy that generate horizontal vorticity. During an air parcel's descent, its horizontal vorticity is first tipped downward into anticyclonic vorticity, but then upwards into cyclonic vorticity before it reaches the nadir of its trajectory because the vorticity vector is inclined upward relative to the velocity vector. The parcel then flows close to the ground into the updraft where its cyclonic vorticity is greatly amplified as it is stretched vertically. In simulations, this near-ground cyclone collapses into a tornado only if the model includes surface friction, which paradoxically causes the extreme upward and rotary winds. With friction, inflowing air parcels near the ground penetrate much closer to the rotation axis and revolve much faster despite some loss of angular momentum to the ground. Their extra kinetic energy comes from a further loss in their enthalpy.

  11. Turbulent premixed combustion in V-shaped flames: Characteristics of flame front

    NASA Astrophysics Data System (ADS)

    Kheirkhah, S.; Gülder, Ö. L.

    2013-05-01

    Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.

  12. Wind shear related research at Princeton University

    NASA Technical Reports Server (NTRS)

    Stengel, Robert

    1992-01-01

    The topics addressed are: (1) real-time decision aiding-aircraft guidance for wind shear avoidance; (2) reducing the thrust-manual recovery strategies; and (3) dynamic behaviour of and aircraft encountering a single axis vortex.

  13. Wind Field Extractions from SAR Sentinel-1 Images Using Electromagnetic Models

    NASA Astrophysics Data System (ADS)

    La, Tran Vu; Khenchaf, Ali; Comblet, Fabrice; Nahum, Carole

    2016-08-01

    Among available wind sources, i.e. measured data, numeric weather models, the retrieval of wind vectors from Synthetic Aperture Radar (SAR) data / images is particularly preferred due to a lot of SAR systems (available data in most meteorological conditions, revisit mode, high resolution, etc.). For this purpose, the retrieval of wind vectors is principally based on the empirical (EP) models, e.g. CMOD series in C-band. Little studies have been reported about the use of the electromagnetic (EM) models for wind vector retrieval, since it is quite complicated to invert. However, the EM models can be applied for most cases of polarization, frequency and wind regime. In order to evaluate the advantages and limits of the EM models for wind vector retrieval, we compare in this study estimated results by the EM and EP models for both cases of polarization (vertical-vertical, or VV-pol and horizontal- horizontal, or HH-pol).

  14. Coastal Wind Profiles In The Mediterranean Area From A Wind Lidar During A Two Year Period

    NASA Astrophysics Data System (ADS)

    Gullì, Daniel; Avolio, Elenio; Calidonna, Claudia Roberta; Lo Feudo, Teresa; Torcasio, Rosa Claudia; Sempreviva, Anna Maria

    2017-04-01

    Reliable measurements of vertical profiles of wind speed and direction are the basis for testing models and methodologies of use for wind energy assessment. Modelling coastal areas further introduce the challenge of the coastal discontinuity, which is often not accurately resolved in meso-scale numerical model. Here, we present the analysis of two year of 10-minute averaged wind speed and direction vertical profiles collected during a two-year period from a Wind- lidar ZEPHIR 300® at a coastal suburban area. The lidar is located at the SUPER SITE of CNR-ISAC section of Lamezia Terme, Italy and both dataset and site are unique in the Mediterranean area. The instrument monitors at 10 vertical levels, from 10 m up to 300 m. The analysis is classified according to season, and wind directions for offshore and offshore flow. For onshore flow, we note an atmospheric layer at around 100 m that likely represents the effect an internal boundary layer caused by the sharp coastal discontinuity of the surface characteristics. For offshore flows, the profiles show a layer ranging between 80m and 100m, which might be ascribed to the land night time boundary layer combined to the impact of the building around the mast.

  15. Computational Aerodynamic Analysis of Offshore Upwind and Downwind Turbines

    DOE PAGES

    Zhao, Qiuying; Sheng, Chunhua; Afjeh, Abdollah

    2014-01-01

    Aerodynamic interactions of the model NREL 5 MW offshore horizontal axis wind turbines (HAWT) are investigated using a high-fidelity computational fluid dynamics (CFD) analysis. Four wind turbine configurations are considered; three-bladed upwind and downwind and two-bladed upwind and downwind configurations, which operate at two different rotor speeds of 12.1 and 16 RPM. In the present study, both steady and unsteady aerodynamic loads, such as the rotor torque, blade hub bending moment, and base the tower bending moment of the tower, are evaluated in detail to provide overall assessment of different wind turbine configurations. Aerodynamic interactions between the rotor and tower are analyzed,more » including the rotor wake development downstream. The computational analysis provides insight into aerodynamic performance of the upwind and downwind, two- and three-bladed horizontal axis wind turbines.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wosnik, Martin; Bachant, Pete; Neary, Vincent Sinclair

    CACTUS, developed by Sandia National Laboratories, is an open-source code for the design and analysis of wind and hydrokinetic turbines. While it has undergone extensive validation for both vertical axis and horizontal axis wind turbines, and it has been demonstrated to accurately predict the performance of horizontal (axial-flow) hydrokinetic turbines, its ability to predict the performance of crossflow hydrokinetic turbines has yet to be tested. The present study addresses this problem by comparing the predicted performance curves derived from CACTUS simulations of the U.S. Department of Energy’s 1:6 scale reference model crossflow turbine to those derived by experimental measurements inmore » a tow tank using the same model turbine at the University of New Hampshire. It shows that CACTUS cannot accurately predict the performance of this crossflow turbine, raising concerns on its application to crossflow hydrokinetic turbines generally. The lack of quality data on NACA 0021 foil aerodynamic (hydrodynamic) characteristics over the wide range of angles of attack (AoA) and Reynolds numbers is identified as the main cause for poor model prediction. A comparison of several different NACA 0021 foil data sources, derived using both physical and numerical modeling experiments, indicates significant discrepancies at the high AoA experienced by foils on crossflow turbines. Users of CACTUS for crossflow hydrokinetic turbines are, therefore, advised to limit its application to higher tip speed ratios (lower AoA), and to carefully verify the reliability and accuracy of their foil data. Accurate empirical data on the aerodynamic characteristics of the foil is the greatest limitation to predicting performance for crossflow turbines with semi-empirical models like CACTUS. Future improvements of CACTUS for crossflow turbine performance prediction will require the development of accurate foil aerodynamic characteristic data sets within the appropriate ranges of Reynolds numbers and AoA.« less

  17. Accuracy of vertical radial plume mapping technique in measuring lagoon gas emissions.

    PubMed

    Viguria, Maialen; Ro, Kyoung S; Stone, Kenneth C; Johnson, Melvin H

    2015-04-01

    Recently, the U.S. Environmental Protection Agency (EPA) posted a ground-based optical remote sensing method on its Web site called Other Test Method (OTM) 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to calculate fugitive gas emission mass rates based on measured wind speed profiles and path-integrated gas concentrations (PICs). This study evaluates the accuracy of the VRPM technique in measuring gas emission from animal waste treatment lagoons. A field trial was designed to evaluate the accuracy of the VRPM technique. Control releases of methane (CH4) were made from a 45 m×45 m floating perforated pipe network located on an irrigation pond that resembled typical treatment lagoon environments. The accuracy of the VRPM technique was expressed by the ratio of the calculated emission rates (QVRPM) to actual emission rates (Q). Under an ideal condition of having mean wind directions mostly normal to a downwind vertical plane, the average VRPM accuracy was 0.77±0.32. However, when mean wind direction was mostly not normal to the downwind vertical plane, the emission plume was not adequately captured resulting in lower accuracies. The accuracies of these nonideal wind conditions could be significantly improved if we relaxed the VRPM wind direction criteria and combined the emission rates determined from two adjacent downwind vertical planes surrounding the lagoon. With this modification, the VRPM accuracy improved to 0.97±0.44, whereas the number of valid data sets also increased from 113 to 186. The need for developing accurate and feasible measuring techniques for fugitive gas emission from animal waste lagoons is vital for livestock gas inventories and implementation of mitigation strategies. This field lagoon gas emission study demonstrated that the EPA's vertical radial plume mapping (VRPM) technique can be used to accurately measure lagoon gas emission with two downwind vertical concentration planes surrounding the lagoon.

  18. FORGE Milford Triaxial Test Data and Summary from EGI labs

    DOE Data Explorer

    Joe Moore

    2016-03-01

    Six samples were evaluated in unconfined and triaxial compression, their data are included in separate excel spreadsheets, and summarized in the word document. Three samples were plugged along the axis of the core (presumed to be nominally vertical) and three samples were plugged perpendicular to the axis of the core. A designation of "V"indicates vertical or the long axis of the plugged sample is aligned with the axis of the core. Similarly, "H" indicates a sample that is nominally horizontal and cut orthogonal to the axis of the core. Stress-strain curves were made before and after the testing, and are included in the word doc.. The confining pressure for this test was 2800 psi. A series of tests are being carried out on to define a failure envelope, to provide representative hydraulic fracture design parameters and for future geomechanical assessments. The samples are from well 52-21, which reaches a maximum depth of 3581 ft +/- 2 ft into a gneiss complex.

  19. The vibration discomfort of standing people: evaluation of multi-axis vibration.

    PubMed

    Thuong, Olivier; Griffin, Michael J

    2015-01-01

    Few studies have investigated discomfort caused by multi-axis vibration and none has explored methods of predicting the discomfort of standing people from simultaneous fore-and-aft, lateral and vertical vibration of a floor. Using the method of magnitude estimation, 16 subjects estimated their discomfort caused by dual-axis and tri-axial motions (octave-bands centred on either 1 or 4 Hz with various magnitudes in the fore-and-aft, lateral and vertical directions) and the discomfort caused by single-axis motions. The method of predicting discomfort assumed in current standards (square-root of the sums of squares of the three components weighted according to their individual contributions to discomfort) provided reasonable predictions of the discomfort caused by multi-axis vibration. Improved predictions can be obtained for specific stimuli, but no single simple method will provide accurate predictions for all stimuli because the rate of growth of discomfort with increasing magnitude of vibration depends on the frequency and direction of vibration.

  20. Imaging with HST the Time Evolution of Eta Carinae's Colliding Winds

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Madura, Thomas I.; Groh, Jose H.; Corcoran, Michael F.

    2011-01-01

    We report new HST/STIS observations that map the high-ionization forbidden line emission in the inner arcsecond of Eta Car, the first that fully image the extended wind-wind interaction region of the massive colliding wind binary. These observations were obtained after the 2009.0 periastron at orbital phases 0.084, 0.163, and 0.323 of the 5.54-year spectroscopic cycle. We analyze the variations in brightness and morphology of the emission, and find that blue-shifted emission (-400 to -200 km/s is symmetric and elongated along the northeast-southwest axis, while the red-shifted emission (+ 100 to +200 km/s) is asymmetric and extends to the north-northwest. Comparison to synthetic images generated from a 3-D dynamical model strengthens the 3-D orbital orientation found by Madura et al. (2011), with an inclination i approx. 138deg, argument of periapsis omega approx. 270deg, and an orbital axis that is aligned at the same PA on the sky as the symmetry axis of the Homunculus, 312deg. We discuss the potential that these and future mappings have for constraining the stellar parameters of the companion star and the long-term variability of the system.

  1. The Vertical Error Characteristics of GOES-derived Winds: Description and Impact on Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Rao, P. Anil; Velden, Christopher S.; Braun, Scott A.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Errors in the height assignment of some satellite-derived winds exist because the satellites sense radiation emitted from a finite layer of the atmosphere rather than a specific level. Potential problems in data assimilation may arise because the motion of a measured layer is often represented by a single-level value. In this research, cloud and water vapor motion winds that are derived from the Geostationary Operational Environmental Satellites (GOES winds) are compared to collocated rawinsonde observations (RAOBs). An important aspect of this work is that in addition to comparisons at each assigned height, the GOES winds are compared to the entire profile of the collocated RAOB data to determine the vertical error characteristics of the GOES winds. The impact of these results on numerical weather prediction is then investigated. The comparisons at individual vector height assignments indicate that the error of the GOES winds range from approx. 3 to 10 m/s and generally increase with height. However, if taken as a percentage of the total wind speed, accuracy is better at upper levels. As expected, comparisons with the entire profile of the collocated RAOBs indicate that clear-air water vapor winds represent deeper layers than do either infrared or water vapor cloud-tracked winds. This is because in cloud-free regions the signal from water vapor features may result from emittance over a thicker layer. To further investigate characteristics of the clear-air water vapor winds, they are stratified into two categories that are dependent on the depth of the layer represented by the vector. It is found that if the vertical gradient of moisture is smooth and uniform from near the height assignment upwards, the clear-air water vapor wind tends to represent a relatively deep layer. The information from the comparisons is then used in numerical model simulations of two separate events to determine the forecast impacts. Four simulations are performed for each case: 1) A control simulation that assimilates no satellite wind data, 2) assimilation of all GOES winds according to their assigned single level height, 3) assimilation of all GOES winds spread over multiple levels, and 4) assimilation of all GOES winds spread over multiple levels, but with variations in the vertical influence of clear-air water vapor winds based on the moisture profile in the model. In the first case, a strong mid-latitude cyclone is present and the use of the satellite data results in improved storm tracks during the initial approx. 36 h forecast period. This is because the satellite data improves the analysis of the environment into which the storm progresses. Statistics for mean wind vector and height differences show that, with the exception of the height field at later times in the first case, the use of GOES winds improves the simulation with time. The simulation results suggest that it is beneficial to spread the GOES wind information over multiple levels, particularly when the moisture profile is used to define the vertical influence.

  2. Water Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.

  3. Water-Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    McGehee, John R.; Hathaway, Melvin E.; Vaughan, Victor L., Jr.

    1959-01-01

    Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.

  4. Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Trillenberg, P.; Shelhamer, M.; Roberts, D. C.; Zee, D. S.

    2003-01-01

    The three pairs of semicircular canals within the labyrinth are not perfectly aligned with the pulling directions of the six extraocular muscles. Therefore, for a given head movement, the vestibulo-ocular reflex (VOR) depends upon central neural mechanisms that couple the canals to the muscles with the appropriate functional gains in order to generate a response that rotates the eye the correct amount and around the correct axis. A consequence of these neural connections is a cross-axis adaptive capability, which can be stimulated experimentally when head rotation is around one axis and visual motion about another. From this visual-vestibular conflict the brain infers that the slow-phase eye movement is rotating around the wrong axis. We explored the capability of human cross-axis adaptation, using a short-term training paradigm, to determine if torsional eye movements could be elicited by yaw (horizontal) head rotation (where torsion is normally inappropriate). We applied yaw sinusoidal head rotation (+/-10 degrees, 0.33 Hz) and measured eye movement responses in the dark, and before and after adaptation. The adaptation paradigm lasted 45-60 min, and consisted of the identical head motion, coupled with a moving visual scene that required one of several types of eye movements: (1) torsion alone (-Roll); (2) horizontal/torsional, head right/CW torsion (Yaw-Roll); (3) horizontal/torsional, head right/CCW torsion (Yaw+Roll); (4) horizontal, vertical, torsional combined (Yaw+Pitch-Roll); and (5) horizontal and vertical together (Yaw+Pitch). The largest and most significant changes in torsional amplitude occurred in the Yaw-Roll and Yaw+Roll conditions. We conclude that short-term, cross-axis adaptation of torsion is possible but constrained by the complexity of the adaptation task: smaller torsional components are produced if more than one cross-coupling component is required. In contrast, vertical cross-axis components can be easily trained to occur with yaw head movements.

  5. Vestibulo-ocular reflex of the squirrel monkey during eccentric rotation with centripetal acceleration along the naso-occipital axis

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Paloski, W. H. (Principal Investigator)

    1996-01-01

    The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in four male squirrel monkeys. Monkeys were rotated in the dark at 200 degrees/s, centrally or 79 cm off-axis, with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's position relative to the centripetal acceleration (facing center or back to center) had a dramatic influence on the VOR. These studies show that a torsional response was always elicited that acted to shift the axis of eye rotation toward alignment with gravito-inertial force. On the other hand, a slow phase downward vertical response usually existed, which shifted the axis of eye rotation away from the gravito-inertial force. These findings were consistent across all monkeys. In another set of tests, the same monkeys were rapidly tilted about their interaural (pitch) axis. Tilt orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the rotation, no consistent eye velocity response was ever observed during or following the tilt. The absence of any response following tilt proves that the observed torsional and vertical responses were not a positional nystagmus. Model simulations qualitatively predict all components of these eccentric rotation and tilt responses. These simulations support the conclusion that the VOR during eccentric rotation may consist of two components: a linear VOR and a rotational VOR. The model predicts a slow phase downward, vertical, linear VOR during eccentric rotation even though there was never a change in the force aligned with monkey's spinal (Z) axis. The model also predicts the torsional components of the response that shift the rotation axis of the angular VOR toward alignment with gravito-inertial force.

  6. Vestibulo-ocular reflex of the squirrel monkey during eccentric rotation with centripetal acceleration along the naso-occipital axis.

    PubMed

    Merfeld, D M

    1996-01-01

    The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in four male squirrel monkeys. Monkeys were rotated in the dark at 200 degrees/s, centrally or 79 cm off-axis, with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's position relative to the centripetal acceleration (facing center or back to center) had a dramatic influence on the VOR. These studies show that a torsional response was always elicited that acted to shift the axis of eye rotation toward alignment with gravito-inertial force. On the other hand, a slow phase downward vertical response usually existed, which shifted the axis of eye rotation away from the gravito-inertial force. These findings were consistent across all monkeys. In another set of tests, the same monkeys were rapidly tilted about their interaural (pitch) axis. Tilt orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the rotation, no consistent eye velocity response was ever observed during or following the tilt. The absence of any response following tilt proves that the observed torsional and vertical responses were not a positional nystagmus. Model simulations qualitatively predict all components of these eccentric rotation and tilt responses. These simulations support the conclusion that the VOR during eccentric rotation may consist of two components: a linear VOR and a rotational VOR. The model predicts a slow phase downward, vertical, linear VOR during eccentric rotation even though there was never a change in the force aligned with monkey's spinal (Z) axis. The model also predicts the torsional components of the response that shift the rotation axis of the angular VOR toward alignment with gravito-inertial force.

  7. Model surgery with a passive robot arm for orthognathic surgery planning.

    PubMed

    Theodossy, Tamer; Bamber, Mohammad Anwar

    2003-11-01

    The aims of the study were to assess the degree of accuracy of model surgery performed manually using the Eastman technique and to compare it with model surgery performed with the aid of a robot arm. Twenty-one patients undergoing orthognathic surgery gave consent for this study. They were divided into 2 groups based on the model surgery technique used. Group A (52%) had model surgery performed manually, whereas group B (48%) had their model surgery performed using the robot arm. Patients' maxillary casts were measured before and after model surgery, and results were compared with those for the original treatment plan in horizontal (x-axis), vertical (y-axis), and transverse (z-axis) planes. Statistical analysis using Mann-Whitney U test for x- and y-axis and independent sample t test for z-axis have shown significant differences between both groups in x-axis (P =.024) and y-axis (P =.01) but not in z-axis (P =.776). Model surgery performed with the aid of a robot arm is significantly more accurate in anteroposterior and vertical planes than is manual model surgery. Robot arm has an important role to play in orthognathic surgery planning and in determining the biometrics of orthognathic surgical change at the model surgery stage.

  8. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F [Walnut Creek, CA

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  9. Optimization of Darrieus turbines with an upwind and downwind momentum model

    NASA Astrophysics Data System (ADS)

    Loth, J. L.; McCoy, H.

    1983-08-01

    This paper presents a theoretical aerodynamic performance optimization for two dimensional vertical axis wind turbines. A momentum type wake model is introduced with separate cosine type interference coefficients for the up and downwind half of the rotor. The cosine type loading permits the rotor blades to become unloaded near the junction of the upwind and downwind rotor halves. Both the optimum and the off design magnitude of the interference coefficients are obtained by equating the drag on each of the rotor halves to that on each of two cosine loaded actuator discs in series. The values for the optimum rotor efficiency, solidity and corresponding interference coefficients have been obtained in a closed form analytic solution by maximizing the power extracted from the downwind rotor half as well as from the entire rotor. A numerical solution was required when viscous effects were incorporated in the rotor optimization.

  10. Research on modified the estimates of NOx emissions combined the OMI and ground-based DOAS technique

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Li*, Ang; Xie, Pinhua; Hu, Zhaokun; Wu, Fengcheng; Xu, Jin

    2017-04-01

    A new method to calibrate nitrogen dioxide (NO2) lifetimes and emissions from point sources using satellite measurements base on the mobile passive differential optical absorption spectroscopy (DOAS) and multi axis differential optical absorption spectroscopy (MAX-DOAS) is described. It is based on using the Exponentially-Modified Gaussian (EMG) fitting method to correct the line densities along the wind direction by fitting the mobile passive DOAS NO2 vertical column density (VCD). An effective lifetime and emission rate are then determined from the parameters of the fit. The obtained results were then compared with the results acquired by fitting OMI (Ozone Monitoring Instrument) NO2 using the above fitting method, the NOx emission rate was about 195.8mol/s, 160.6mol/s, respectively. The reason why the latter less than the former may be because the low spatial resolution of the satellite.

  11. Wind Turbine Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, D. R. (Editor)

    1978-01-01

    A workshop on wind turbine structural dynamics was held to review and document current United States work on the dynamic behavior of large wind turbines, primarily of the horizontal-axis type, and to identify and discuss other wind turbine configurations that may have lower cost and weight. Information was exchanged on the following topics: (1) Methods for calculating dynamic loads; (2) Aeroelasticity stability (3) Wind loads, both steady and transient; (4) Critical design conditions; (5) Drive train dynamics; and (6) Behavior of operating wind turbines.

  12. Local and Remote Influences on Vertical Wind Shear over the Northern Tropical Atlantic Region

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Zhu, X.

    2009-12-01

    Vertical wind shear is one of the most important parameters controlling the frequency and intensity of Atlantic hurricanes. It has been argued that in global warming scenarios, the mechanical effect of changing vertical wind shear may even trump the thermodynamic effect of increasing Atlantic sea surface temperatures, when it comes to projected trends in Atlantic hurricane activity. Despite its importance, little is known about the connection between vertical shear in the north Atlantic region and the global atmospheric circulation, apart from the well-known positive correlation with El Nino-Southern Oscillation (ENSO). In this study, we analyze the statistical relationship between vertical shear and features of the large-scale circulation such as the distribution of sea surface temperature and vertical motion. We examine whether this relationship is different on interannual timescales associated with ENSO as compared to the decadal timescales associated with the Atlantic Multidecadal Oscillation (AMO). We also investigate how well the global general circulation models manage to simulate the observed vertical shear in this region, and its relationship to the large-scale circulation. Our analyses reveal an interesting sensitivity to air-sea coupling in model simulations of vertical shear. Another interesting property of vertical shear, as defined in the context of hurricane studies, is that it is positive definite, rather like precipitation. This means that it has a very nongaussian probability distribution on short timescales. We analyze how this nongaussianity changes when averaged over longer timescales.

  13. One year of vertical wind profiles measurements at a Mediterranean coastal site of South Italy

    NASA Astrophysics Data System (ADS)

    Calidonna, Claudia Roberta; Avolio, Elenio; Federico, Stefano; Gullì, Daniel; Lo Feudo, Teresa; Sempreviva, Anna Maria

    2015-04-01

    In order to develop wind farms projects is challenging to site them on coastal areas both onshore and offshore as suitable sites. Developing projects need high quality databases under a wide range of atmospheric conditions or high resolution models that could resolve the effect of the coastal discontinuity in the surface properties. New parametrizations are important and high quality databases are also needed for formulating them. Ground-based remote sensing devices such as lidars have been shown to be functional for studying the evolution of the vertical wind structure coastal atmospheric boundary layer both on- and offshore. Here, we present results from a year of vertical wind profiles, wind speed and direction, monitoring programme at a site located in the Italian Calabria Region, Central Mediterranean, 600m from the Thyrrenian coastline, where a Lidar Doppler, ZephIr (ZephIr ltd) has been operative since July 2013. The lidar monitors wind speed and direction from 10m up to 300m at 10 vertical levels with an average of 10 minutes and it is supported by a metmast providing: Atmospheric Pressure, Solar Radiation, Precipitation, Relative Humidity, Temperature,Wind Speed and Direction at 10m. We present the characterization of wind profiles during one year period according to the time of the day to transition periods night/day/night classified relating the local scale, breeze scale, to the large scale conditions. The dataset is also functional for techniques for short-term prediction of wind for the renewable energy integration in the distribution grids. The site infrastructure is funded within the Project "Infrastructure of High Technology for Environmental and Climate Monitoring" (I-AMICA) (PONa3_00363) by the Italian National Operative Program (PON 2007-2013) and European Regional Development Fund. Real-time data are show on http://www.i-amica.it/i-amica/?page_id=1122.

  14. Optimization of Wind Turbine Airfoils/Blades and Wind Farm Layouts

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin

    Shape optimization is widely used in the design of wind turbine blades. In this dissertation, a numerical optimization method called Genetic Algorithm (GA) is applied to address the shape optimization of wind turbine airfoils and blades. In recent years, the airfoil sections with blunt trailing edge (called flatback airfoils) have been proposed for the inboard regions of large wind-turbine blades because they provide several structural and aerodynamic performance advantages. The FX, DU and NACA 64 series airfoils are thick airfoils widely used for wind turbine blade application. They have several advantages in meeting the intrinsic requirements for wind turbines in terms of design point, off-design capabilities and structural properties. This research employ both single- and multi-objective genetic algorithms (SOGA and MOGA) for shape optimization of Flatback, FX, DU and NACA 64 series airfoils to achieve maximum lift and/or maximum lift to drag ratio. The commercially available software FLUENT is employed for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a two-equation Shear Stress Transport (SST) turbulence model and a three equation k-kl-o turbulence model. The optimization methodology is validated by an optimization study of subsonic and transonic airfoils (NACA0012 and RAE 2822 airfoils). In this dissertation, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given B and lambda and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated by the turbine can be significantly increased. Parametric studies are also conducted by varying the turbine diameter. In addition, a simplified dynamic inflow model is integrated into the BEM theory. It is shown that the improved BEM theory has superior performance in capturing the instantaneous behavior of wind turbines due to the existence of wind turbine wake or temporal variations in wind velocity. The dissertation also considers the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal --Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed. Finally, some preliminary investigation of shape optimization of 3D wind turbine blades at low Reynolds numbers is conducted. The optimization employs a 3D straight untapered wind turbine blade with cross section of NACA 0012 airfoils as the geometry of baseline blade. The optimization objective is to achieve maximum Cl/Cd as well as maximum Cl. The multi-objective genetic algorithm is employed together with the commercially available software FLUENT for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a one-equation Sparlart-Allmaras turbulence model. The results show excellent performance of the optimized wind turbine blade and indicate the feasibility of optimization on real wind turbine blades with more complex shapes in the future. (Abstract shortened by UMI.)

  15. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles

    NASA Astrophysics Data System (ADS)

    Smith, Craig M.; Barthelmie, R. J.; Pryor, S. C.

    2013-09-01

    Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m.

  16. Modeling human vestibular responses during eccentric rotation and off vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Paloski, W. H. (Principal Investigator)

    1995-01-01

    A mathematical model has been developed to help explain human multi-sensory interactions. The most important constituent of the model is the hypothesis that the nervous system incorporates knowledge of sensory dynamics into an "internal model" of these dynamics. This internal model allows the nervous system to integrate the sensory information from many different sensors into a coherent estimate of self-motion. The essence of the model is unchanged from a previously published model of monkey eye movement responses; only a few variables have been adjusted to yield the prediction of human responses. During eccentric rotation, the model predicts that the axis of eye rotation shifts slightly toward alignment with gravito-inertial force. The model also predicts that the time course of the perception of tilt following the acceleration phase of eccentric rotation is much slower than that during deceleration. During off vertical axis rotation (OVAR) the model predicts a small horizontal bias along with small horizontal, vertical, and torsional oscillations. Following OVAR stimulation, when stopped right- or left-side down, a small vertical component is predicted that decays with the horizontal post-rotatory response. All of the predictions are consistent with measurements of human responses.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qian; Fan, Jiwen; Hagos, Samson M.

    Understanding of critical processes that contribute to the organization of mesoscale convective systems is important for accurate weather forecast and climate prediction. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of cloud systems using the Weather Research & Forecasting (WRF) model with a spectral-bin microphysical scheme. The sensitivity experiments are performed by increasing wind shear at the lower (0-5 km), middle (5-10 km), upper (> 10 km) and the entire troposphere, respectively, based on a control run for a mesoscale convective system (MCS) with weak wind shear. We findmore » that increasing wind shear at the both lower and middle vertical levels reduces the domain-accumulated precipitation and the occurrence of heavy rain, while increasing wind shear at the upper levels changes little on precipitation. Although increasing wind shear at the lower-levels is favorable for a more organized quasi-line system which leads to enlarged updraft core area, and enhanced updraft velocities and vertical mass fluxes, the precipitation is still reduced by 18.6% compared with the control run due to stronger rain evaporation induced by the low-level wind shear. Strong wind shear in the middle levels only produces a strong super-cell over a narrow area, leading to 67.3% reduction of precipitation over the domain. By increasing wind shear at the upper levels only, the organization of the convection is not changed much, but the increased cloudiness at the upper-levels leads to stronger surface cooling and then stabilizes the atmosphere and weakens the convection. When strong wind shear exists over the entire vertical profile, a deep dry layer (2-9 km) is produced and convection is severely suppressed. There are fewer very-high (cloud top height (CTH) > 15 km) and very-deep (cloud thickness > 15 km) clouds, and the precipitation is only about 11.8% of the control run. The changes in cloud microphysical properties further explain the reduction of surface rain by strong wind shear especially at the lower- and middle-levels. The insights obtained from this study help us better understand the cloud system organization and provide foundation for better parameterizing organized MCS.« less

  18. Dunes on Titan observed by Cassini Radar

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Boubin, G.; Reffet, E.; Kirk, R.L.; Lopes, R.M.; Stofan, E.R.; Soderblom, L.; Allison, M.; Janssen, M.; Paillou, P.; Callahan, P.; Spencer, C.; ,

    2008-01-01

    Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ??30?? of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes. ?? 2007 Elsevier Inc. All rights reserved.

  19. Curiosity ChemCam Analyzes Rocks, Soils and Dust

    NASA Image and Video Library

    2013-04-08

    This diagram shows how materials analyzed by the ChemCam instrument on NASA Curiosity Mars rover during the first 100 Martian days of the mission differed with regard to hydrogen content horizontal axis and alkali vertical axis.

  20. Fabric and texture at Siple Dome, Antarctica

    USGS Publications Warehouse

    Diprinzio, C.L.; Wilen, Lawrence A.; Alley, R.B.; Fitzpatrick, J.J.; Spencer, M.K.; Gow, A.J.

    2005-01-01

    Preferred c-axis orientations are present in the firn at Siple Dome, West Antarctica, and recrystallization begins as shallow as 200 m depth in ice below -20??C, based on digital analysis of c-axis fabrics, grain-sizes and other characteristics of 52 vertical thin sections prepared in the field from the kilometer-long Siple Dome ice core. The shallowest section analyzed, from 22 m, shows clustering of c axes toward the vertical. By 200 m depth, girdle fabric and other features of recrystallized ice are evident in layers (or regions), separated by layers (regions) of typically finer-grained ice lacking evidence of recrystallization. Ice from about 700-780 m depth, which was deposited during the last ice age, is especially fine-grained, with strongly vertical c axes, but deeper ice shows much larger crystals and strong evidence of recrystallization. Azimuthal asymmetry of some c-axis fabrics, trends in grain-size, and other indicators reveal additional information on processes and history of ice flow at Siple Dome.

  1. Optimization of blade motion of vertical axis turbine

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng

    2016-04-01

    In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.

  2. Characterization of Water Vapor Fluxes by the Raman Lidar System Basil and the Univeristy of Cologne Wind Lidar in the Frame of the HD(CP)2 Observational Prototype Experiment - Hope

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Schween, Jan H.

    2016-06-01

    Measurements carried out by the Raman lidar system BASIL and the University of Cologne wind lidar are reported to demonstrate the capability of these instruments to characterize water vapour fluxes within the Convective Boundary Layer (CBL). In order to determine the water vapour flux vertical profiles, high resolution water vapour and vertical wind speed measurements, with a temporal resolution of 1 sec and a vertical resolution of 15-90, are considered. Measurements of water vapour flux profiles are based on the application of covariance approach to the water vapour mixing ratio and vertical wind speed time series. The algorithms are applied to a case study (IOP 11, 04 May 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. For this case study, the water vapour flux profile is characterized by increasing values throughout the CBL with lager values (around 0.1 g/kg m/s) in the entrainment region. The noise errors are demonstrated to be small enough to allow the derivation of water vapour flux profiles with sufficient accuracy.

  3. Salt structures and vertical axis rotations; a case study in the Barbastro-Balaguer anticline, Southern Pyrenees.

    NASA Astrophysics Data System (ADS)

    Pueyo, Emilio L.; Oliván, Carlota; Soto, Ruth; Rodríguez-Pintó, Adriana; Santolaria, Pablo; Luzón, Aránzazu; Casas, Antonio M.; Ayala, Conxi

    2017-04-01

    Vertical axis rotations are common in all deformation settings. At larger scales, for example in fold and thrust belts, they are usually related to differential shortening along strike and this may be caused by a number of reasons (interplay of plate boundaries, sedimentary wedges, detachment level distribution, etc.). At smaller scales, local stress fields, interference of non-coaxial deformation phases, development of non-cylindrical structures, etc. may play an important role to accommodate significant magnitudes of rotation. Apart from their implication in the truly 4D understanding of geological structures, the occurrence of vertical axis rotation usually precludes the application of most 3D restoration techniques and thus, increases the uncertainty in any 3D reconstruction. Salt structures may form in different geological settings, but focusing on compressive regimes, very little is known about the relation between their geometry and kinematics and their ability to accommodate vertical axis rotations (i.e. local or regional lateral gradients of shortening). The Barbastro-Balaguer anticline (BBA) is the southernmost structure of the Central Pyrenees. It is a large detachment fold spreading more than 150 km along the front. In contrast to most frontal Pyrenean structures, the BBA is detached in Priabonian evaporites and was folded during Oligocene times as witnessed by well exposed growth strata. Along strike changes in the fold axis trend may reach 50°, an overall the anticline displays a convex shape towards the foreland (south). A residual Bouguer anomaly map based on a densely sampled gravimetric surveying (10.000 stations) has helped delineating a heterogeneous distribution of the Eocene detachment level in the subsurface. In this contribution we explore the interplay between vertical axis rotations, detachment level distribution and the fold geometry (structural trend and style based on hundreds of data). Seventy paleomagnetic sites evenly and densely distributed along the structure have been analyzed for this purpose. About 600 standard specimens have been thermally demagnetized in the Paleomagnetic Laboratory of the Burgos University (ASC TD48DC thermal demagnetizer and 2G superconducting magnetometer). Data processing has been carried out with the VPD program, applying standard PCA and virtual direction analyses. The ChRM directions passes the fold test and display two polarities, pointing to the primary character of the magnetization (key factor for the 3D restoration). This large dataset allows us to draw a robust network of rotation magnitudes along strike the western sector of the BBA that are key to understand its kinematics together to the aforementioned factors. We also pretend to use this network of vertical axis rotations to restore in 3D this salt structure.

  4. Determining the parameters of Weibull function to estimate the wind power potential in conditions of limited source meteorological data

    NASA Astrophysics Data System (ADS)

    Fetisova, Yu. A.; Ermolenko, B. V.; Ermolenko, G. V.; Kiseleva, S. V.

    2017-04-01

    We studied the information basis for the assessment of wind power potential on the territory of Russia. We described the methodology to determine the parameters of the Weibull function, which reflects the density of distribution of probabilities of wind flow speeds at a defined basic height above the surface of the earth using the available data on the average speed at this height and its repetition by gradations. The application of the least square method for determining these parameters, unlike the use of graphical methods, allows performing a statistical assessment of the results of approximation of empirical histograms by the Weibull formula. On the basis of the computer-aided analysis of the statistical data, it was shown that, at a fixed point where the wind speed changes at different heights, the range of parameter variation of the Weibull distribution curve is relatively small, the sensitivity of the function to parameter changes is quite low, and the influence of changes on the shape of speed distribution curves is negligible. Taking this into consideration, we proposed and mathematically verified the methodology of determining the speed parameters of the Weibull function at other heights using the parameter computations for this function at a basic height, which is known or defined by the average speed of wind flow, or the roughness coefficient of the geological substrate. We gave examples of practical application of the suggested methodology in the development of the Atlas of Renewable Energy Resources in Russia in conditions of deficiency of source meteorological data. The proposed methodology, to some extent, may solve the problem related to the lack of information on the vertical profile of repeatability of the wind flow speeds in the presence of a wide assortment of wind turbines with different ranges of wind-wheel axis heights and various performance characteristics in the global market; as a result, this methodology can become a powerful tool for effective selection of equipment in the process of designing a power supply system in a certain location.

  5. Tsunami-driven gravity waves in the presence of vertically varying background and tidal wind structures

    NASA Astrophysics Data System (ADS)

    Laughman, B.; Fritts, D. C.; Lund, T. S.

    2017-05-01

    Many characteristics of tsunami-driven gravity waves (TDGWs) enable them to easily propagate into the thermosphere and ionosphere with appreciable amplitudes capable of producing detectable perturbations in electron densities and total electron content. The impact of vertically varying background and tidal wind structures on TDGW propagation is investigated with a series of idealized background wind profiles to assess the relative importance of wave reflection, critical-level approach, and dissipation. These numerical simulations employ a 2-D nonlinear anelastic finite-volume neutral atmosphere model which accounts for effects accompanying vertical gravity wave (GW) propagation such as amplitude growth with altitude. The GWs are excited by an idealized tsunami forcing with a 50 cm sea surface displacement, a 400 km horizontal wavelength, and a phase speed of 200 ms-1 consistent with previous studies of the tsunami generated by the 26 December 2004 Sumatra earthquake. Results indicate that rather than partial reflection and trapping, the dominant process governing TDGW propagation to thermospheric altitudes is refraction to larger and smaller vertical scales, resulting in respectively larger and smaller vertical group velocities and respectively reduced and increased viscous dissipation. Under all considered background wind profiles, TDGWs were able to attain ionospheric altitudes with appreciable amplitudes. Finally, evidence of nonlinear effects is observed and the conditions leading to their formation is discussed.

  6. Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: Improvements in the cold pole bias and generation of a QBO-like oscillation in the tropics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, K.; Wilson, R.J.; Hemler, R.S.

    1999-11-15

    The large-scale circulation in the Geophysical Fluid Dynamics Laboratory SKYHI troposphere-stratosphere-mesosphere finite-difference general circulation model is examined as a function of vertical and horizontal resolution. The experiments examined include one with horizontal grid spacing of {approximately}35 km and another with {approximately}100 km horizontal grid spacing but very high vertical resolution (160 levels between the ground and about 85 km). The simulation of the middle-atmospheric zonal-mean winds and temperatures in the extratropics is found to be very sensitive to horizontal resolution. For example, in the early Southern Hemisphere winter the South Pole near 1 mb in the model is colder thanmore » observed, but the bias is reduced with improved horizontal resolution (from {approximately}70 C in a version with {approximately}300 km grid spacing to less than 10 C in the {approximately}35 km version). The extratropical simulation is found to be only slightly affected by enhancements of the vertical resolution. By contrast, the tropical middle-atmospheric simulation is extremely dependent on the vertical resolution employed. With level spacing in the lower stratosphere {approximately}1.5 km, the lower stratospheric zonal-mean zonal winds in the equatorial region are nearly constant in time. When the vertical resolution is doubled, the simulated stratospheric zonal winds exhibit a strong equatorially centered oscillation with downward propagation of the wind reversals and with formation of strong vertical shear layers. This appears to be a spontaneous internally generated oscillation and closely resembles the observed QBO in many respects, although the simulated oscillation has a period less than half that of the real QBO.« less

  7. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    Field measurements of the wake flow produced from the interaction between atmospheric boundary layer and a wind turbine are performed with three wind LiDARs. The tested wind turbine is a 2 MW Enercon E-70 located in Collonges, Switzerland. First, accuracy of mean values and frequency resolution of the wind measurements are surveyed as a function of the number of laser rays emitted for each measurement. Indeed, measurements performed with one single ray allow maximizing sampling frequency, thus characterizing wake turbulence. On the other hand, if the number of emitted rays is increased accuracy of mean wind is increased due to the longer sampling period. Subsequently, two-dimensional measurements with a single LiDAR are carried out over vertical sections of the wind turbine wake and mean wake flow is obtained by averaging 2D measurements consecutively performed. The high spatial resolution of the used LiDAR allows characterizing in details velocity defect present in the central part of the wake and its downstream recovery. Single LiDAR measurements are also performed by staring the laser beam at fixed directions for a sampling period of about ten minutes and maximizing the sampling frequency in order to characterize wake turbulence. From these tests wind fluctuation peaks are detected in the wind turbine wake at blade top-tip height for different downstream locations. The magnitude of these turbulence peaks is generally reduced by moving downstream. This increased turbulence level at blade top-tip height observed for a real wind turbine has been already detected from previous wind tunnel tests and Large Eddy simulations, thus confirming the presence of a source of dangerous fatigue loads for following wind turbines within a wind farm. Furthermore, the proper characterization of wind fluctuations through LiDAR measurements is proved by the detection of the inertial subrange from spectral analysis of these velocity signals. Finally, simultaneous measurements with two LiDARs are performed over the mean vertical symmetry plane of the wind turbine wake, while a third LiDAR measures the incoming wind over a vertical plane parallel to the mean wind direction and lying outside of the wake. One LiDAR is placed in proximity of the wind turbine location and measures pointing downstream, whereas a second LiDAR is located along the mean wind direction at a downstream distance of 6.5 diameters and measures pointing upstream. For these measurements axial and vertical velocity components are retrieved only for measurement points where the two laser beams result to be roughly orthogonal. Statistics of the two velocity components show in the near wake at hub height strong flow fluctuations with magnitudes about 30% of the mean value, and a gradual reduction for downstream distances larger than three rotor diameters.

  8. Mechanisms of the intensification of the upwelling-favorable winds during El Niño 1997-1998 in the Peruvian upwelling system

    NASA Astrophysics Data System (ADS)

    Chamorro, Adolfo; Echevin, Vincent; Colas, François; Oerder, Vera; Tam, Jorge; Quispe-Ccalluari, Carlos

    2018-01-01

    The physical processes driving the wind intensification in a coastal band of 100 km off Peru during the intense 1997-1998 El Niño (EN) event were studied using a regional atmospheric model. A simulation performed for the period 1994-2000 reproduced the coastal wind response to local sea surface temperature (SST) forcing and large scale atmospheric conditions. The model, evaluated with satellite data, represented well the intensity, seasonal and interannual variability of alongshore (i.e. NW-SE) winds. An alongshore momentum budget showed that the pressure gradient was the dominant force driving the surface wind acceleration. The pressure gradient tended to accelerate the coastal wind, while turbulent vertical mixing decelerated it. A quasi-linear relation between surface wind and pressure gradient anomalies was found. Alongshore pressure gradient anomalies were caused by a greater increase in near-surface air temperature off the northern coast than off the southern coast, associated with the inhomogeneous SST warming. Vertical profiles of wind, mixing coefficient, and momentum trends showed that the surface wind intensification was not caused by the increase of turbulence in the planetary boundary layer. Moreover, the temperature inversion in the vertical mitigated the development of pressure gradient due to air convection during part of the event. Sensitivity experiments allowed to isolate the respective impacts of the local SST forcing and large scale condition on the coastal wind intensification. It was primarily driven by the local SST forcing whereas large scale variability associated with the South Pacific Anticyclone modulated its effects. Examination of other EN events using reanalysis data confirmed that intensifications of alongshore wind off Peru were associated with SST alongshore gradient anomalies, as during the 1997-1998 event.

  9. FAST Simulation Tool Containing Methods for Predicting the Dynamic Response of Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason

    2015-08-12

    FAST is a simulation tool (computer software) for modeling tlie dynamic response of horizontal-axis wind turbines. FAST employs a combined modal and multibody structural-dynamics formulation in the time domain.

  10. Preliminary analysis of dynamic stall effects on a 91-meter wind turbine rotor

    NASA Technical Reports Server (NTRS)

    Wilson, Robert E.

    1995-01-01

    Analytical investigation of dynamic stall on HAWT (horizontal-axis wind turbines) rotor loads was conducted. Dynamic stall was modeled using the Gormont approach on the MOD-2 rotor, treating the blade as a rigid body teetering about a fixed axis. Blade flapwise bending moments at station 370 were determined with and without dynamic stall for spatial variations in local wind speed due to wind shear and yaw. The predicted mean flapwise bending moments were found to be in good agreement with test results. Results obtained with and without dynamic stall showed no significant difference for the mean flapwise bending moment. The cyclic bending moments calculated with and without dynamic stall effects were substantially the same. None of the calculated cyclic loads reached the level of the cyclic loads measured on the MOD-2 using the Boeing five-minute-average technique.

  11. Temporal dynamics of ocular position dependence of the initial human vestibulo-ocular reflex.

    PubMed

    Crane, Benjamin T; Tian, Junru; Demer, Joseph L

    2006-04-01

    While an ideal vestibulo-ocular reflex (VOR) generates ocular rotations compensatory for head motion, during visually guided movements, Listing's Law (LL) constrains the eye to rotational axes lying in Listing's Plane (LP). The present study was conducted to explore the recent proposal that the VOR's rotational axis is not collinear with the head's, but rather follows a time-dependent strategy intermediate between LL and an ideal VOR. Binocular LPs were defined during visual fixation in eight normal humans. The VOR was evoked by a highly repeatable transient whole-body yaw rotation in darkness at a peak acceleration of 2800 deg/s2. Immediately before rotation, subjects regarded targets 15 or 500 cm distant located at eye level, 20 degrees up, or 20 degrees down. Eye and head responses were compared with LL predictions in the position and velocity domains. LP orientation varied both among subjects and between individual subject's eyes, and rotated temporally with convergence by 5 +/- 5 degrees (+/-SEM). In the position domain, the eye compensated for head displacement even when the head rotated out of LP. Even within the first 20 ms from onset of head rotation, the ocular velocity axis tilted relative to the head axis by 30% +/- 8% of vertical gaze position. Saccades increased this tilt. Regardless of vertical gaze position, the ocular rotation axis tilted backward 4 degrees farther in abduction than in adduction. There was also a binocular vertical eye velocity transient and lateral tilt of the ocular axis. These disconjugate, short-latency axis perturbations appear intrinsic to the VOR and may have neural or mechanical origins.

  12. Validation of Long Range Wind Lidar for Atmospheric Dynamics Studies during inter comparison campaign

    NASA Astrophysics Data System (ADS)

    Boquet, M.; Cariou, J. P.; Lolli, S.; Sauvage, L.; Parmentier, R.

    2009-09-01

    To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity resolution (0.2m/s). Enhanced measurement range is now expected through new optical device.

  13. Contour symmetry detection: the influence of axis orientation and number of objects.

    PubMed

    Friedenberg, J; Bertamini, M

    2000-09-01

    Participants discriminated symmetrical from random contours connected by straight lines to form part of one- or two-objects. In experiment one, symmetrical contours were translated or reflected and presented at vertical, horizontal, and oblique axis orientations with orientation constant within blocks. Translated two-object contours were detected more easily than one, replicating a "lock-and-key" effect obtained previously for vertical orientations only [M. Bertamini, J.D. Friedenberg, M. Kubovy, Acta Psychologica, 95 (1997) 119-140]. A second experiment extended these results to a wider variety of axis orientations under mixed block conditions. The pattern of performance for translation and reflection at different orientations corresponded in both experiments, suggesting that orientation is processed similarly in the detection of these symmetries.

  14. Rotary moving bed for CO.sub.2 separation and use of same

    DOEpatents

    Elliott, Jeannine Elizabeth; Copeland, Robert James; McCall, Patrick P.

    2017-01-10

    A rotary moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The rotary moving bed can have a rotational assembly rotating on a vertical axis, and a plurality of sorbent cells positioned horizontally to the axis of rotation that fills a vertical space in the moving bed, where the sorbent cells adsorb the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement with steam. The gas flows in the system flow in a direction horizontal to the axis of rotation and in a direction opposite the rotational movement of the sorbent cells.

  15. Review of gravitomagnetic acceleration from accretion disks

    NASA Astrophysics Data System (ADS)

    Poirier, J.; Mathews, G. J.

    2015-11-01

    We review the development of the equations of gravitoelectromagnetism and summarize how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism to produce collimated jets, it is a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  16. Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer.

    PubMed

    Leen, J Brian; Yu, Xiao-Ying; Gupta, Manish; Baer, Douglas S; Hubbe, John M; Kluzek, Celine D; Tomlinson, Jason M; Hubbell, Mike R

    2013-09-17

    A new ammonia (NH3) analyzer was developed based on off-axis integrated cavity output spectroscopy. Its feasibility was demonstrated by making tropospheric measurements in flights aboard the Department of Energy Gulfstream-1 aircraft. The ammonia analyzer consists of an optical cell, quantum-cascade laser, gas sampling system, control and data acquisition electronics, and analysis software. The NH3 mixing ratio is determined from high-resolution absorption spectra obtained by tuning the laser wavelength over the NH3 fundamental vibration band near 9.67 μm. Excellent linearity is obtained over a wide dynamic range (0-101 ppbv) with a response rate (1/e) of 2 Hz and a precision of ±90 pptv (1σ in 1 s). Two research flights were conducted over the Yakima Valley in Washington State. In the first flight, the ammonia analyzer was used to identify signatures of livestock from local dairy farms with high vertical and spatial resolution under low wind and calm atmospheric conditions. In the second flight, the analyzer captured livestock emission signals under windy conditions. Our results demonstrate that this new ammonia spectrometer is capable of providing fast, precise, and accurate in situ observations of ammonia aboard airborne platforms to advance our understanding of atmospheric compositions and aerosol formation.

  17. A case study using kinematic quantities derived from a triangle of VHF Doppler wind profilers

    NASA Technical Reports Server (NTRS)

    Carlson, Catherine A.; Forbes, Gregory S.

    1989-01-01

    Horizontal divergence, relative vorticity, kinematic vertical velocity, and geostrophic and ageostrophic winds are computed from Colorado profiler network data to investigate an upslope snowstorm in northeastern Colorado. Horizontal divergence and relative vorticity are computed using the Gauss and Stokes theorems, respectively. Kinematic vertical velocities are obtained from the surface to 9 km by vertically integrating the continuity equation. The geostrophic and ageostrophic winds are computed by applying a finite differencing technique to evaluate the derivatives in the horizontal equations of motion. Comparison of the synoptic-scale data with the profiler network data reveals that the two datasets are generally consistent. Also, the profiler-derived quantities exhibit coherent vertical and temporal patterns consistent with conceptual and theoretical flow fields of various meteorological phenomena. It is suggested that the profiler-derived quantities are of potential use to weather forecasters in that they enable the dynamic and kinematic interpretation of weather system structure to be made and thus have nowcasting and short-term forecasting value.

  18. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the gas transfer coefficient, k, for both a vegetated condition and a control condition (no cylinders). The presence of cylinders in the tank substantially increased the rate of the gas transfer. For the highest wind speed, the gas transfer coefficient was several times higher when cylinders were present compared to when they were not. The gas transfer coefficient for the vegetated condition also proved sensitive to wind speed, increasing markedly with increasing mean wind speeds. Profiles of dissolved oxygen revealed well-mixed conditions in the bulk water column following prolonged air-flow above the water surface, suggesting application of the thin-film model is appropriate. The enhanced gas exchange observed might be explained by increased turbulent kinetic energy within the water column and the anisotropy of the cylinder array, which constrains horizontal motions more than vertical motions. Improved understanding of gas exchange in vegetated water columns may be of particularly use to investigations of carbon fluxes and soil accretion in wetlands. Reference: Nepf, H. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res., 35(2), 479-489.

  19. Vertical Descent and Landing Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane in Still Air, TED No. NACA DE 368

    NASA Technical Reports Server (NTRS)

    Smith, Charlee C., Jr.; Lovell, Powell M., Jr.

    1954-01-01

    An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of Convair XFY-1 vertically rising airplane. This paper presents the results of flight and force tests to determine the stability and control characteristics of the model in vertical descent and landings in still air. The tests indicated that landings, including vertical descent from altitudes representing up to 400 feet for the full-scale airplane and at rates of descent up to 15 or 20 feet per second (full scale), can be performed satisfactorily. Sustained vertical descent in still air probably will be more difficult to perform because of large random trim changes that become greater as the descent velocity is increased. A slight steady head wind or cross wind might be sufficient to eliminate the random trim changes.

  20. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

Top