Yin, Lihua; Yu, Zhanhai; Chen, Zhuofan; Huang, Baoxin; Zhang, Kailiang; Zhou, Ailing; Li, Xiangxin
2016-08-01
To retrospectively assess the changes of the vertical height of the maxillary sinus floor after augmentation with simultaneous and delayed placement of implants. In total, 38 patients with 76 implants were involved; vertical bone height of the sinus floor was radiographically measured at different stages including preoperation, immediately postsurgery, 6 and 12 months postsurgery, and 6 and 24 months postfunctional loading. Sinus augmentation significantly increased vertical bone height of the sinus floor for both the simultaneous and delayed groups. The survival rate was 100% in the simultaneous group and 95.46% in the delayed group. For simultaneous placement, the vertical bone height of the sinus floor at 6 and 12 months postsurgery was significantly less than that immediately postsurgery. For both groups, augmented bone height of the sinus floor showed significant decrease from 6 months to 24 months postfunctional loading. The mean value of final bone augmentation was 5.85 mm for simultaneous placement and 5.80 mm for delayed placements. Sinus augmentation with simultaneous and delayed placement of implants led to similar survival rates and bone augmentation. Resorption of augmentative bone was evident at 24 months postfunctional loading in both cases. © 2015 by the American College of Prosthodontists.
Jensen, Anders Torp; Jensen, Simon Storgård; Worsaae, Nils
2016-06-01
This retrospective clinical study aims to evaluate complications after augmentation of localized bone defects of the alveolar ridge. From standardized registrations, the following complications related to bone augmentation procedures were recorded: soft tissue dehiscence, infection, sensory disturbance, additional augmentation procedures needed, and early implant failure. A total of 223 patients (132 women, 91 men; mean age 23.5 years; range 17-65 years) with 331 bone defects had bone augmentation performed into which 350 implants were placed. Soft tissue dehiscence occurred in 1.7 % after GBR procedures, 25.9 % after staged horizontal ridge augmentation, and 18.2 % after staged vertical ridge augmentation. Infections were diagnosed in 2 % after GBR procedures, 12.5 % after sinus floor elevation (SFE) (transcrestal technique), 5 % after staged SFE, 11 % after staged horizontal ridge augmentation, and 9 % after staged vertical ridge augmentation. Additional augmentation procedures were needed in 2 % after GBR procedures, 37 % after staged horizontal ridge augmentation, and 9 % after staged vertical ridge augmentation. A total of six early implant failures occurred (1.7 %), four after GBR procedures (1.6 %), and two (12 %) after staged vertical ridge augmentation. Predictable methods exist to augment localized defects in the alveolar ridge, as documented by low complication rates and high early implant survival rates.
Urban, Istvan A; Monje, Alberto; Wang, Hom-Lay
2015-01-01
Severe vertical ridge deficiency in the anterior maxilla represents one of the most challenging clinical scenarios in the bone regeneration arena. As such, a combination of vertical bone augmentation using various biomaterials and soft tissue manipulation is needed to obtain successful outcomes. The present case series describes a novel approach to overcome vertical deficiencies in the anterior atrophied maxillae by using a mixture of autologous and anorganic bovine bone. Soft tissue manipulation including, but not limited to, free soft tissue graft was used to overcome the drawbacks of vertical bone augmentation (eg, loss of vestibular depth and keratinized mucosa). By combining soft and hard tissue grafts, optimum esthetic and long-term implant prosthesis stability can be achieved and sustained.
Kaner, Doğan; Zhao, Han; Arnold, Wolfgang; Terheyden, Hendrik; Friedmann, Anton
2017-06-01
Soft tissue (ST) dehiscence with graft exposure is a frequent complication of vertical augmentation. Flap dehiscence is caused by failure to achieve tension-free primary wound closure and by the impairment of flap microcirculation due to surgical trauma. Soft tissue expansion (STE) increases ST quality and quantity prior to reconstructive surgery. We hypothesized that flap preconditioning using STE would reduce the incidence of ST complications after bone augmentation and that optimized ST healing would improve the outcome of bone regeneration. Self-filling tissue expanders were implanted in mandibular bone defects in ten beagle dogs. After expansion, alloplastic scaffolds were placed for vertical bone augmentation in STE sites and in control sites without STE pre-treatment. ST flap microcirculation was analysed using laser Doppler flowmetry. The incidence of graft exposures was evaluated after 2 weeks. Bone formation was assessed after 2 months, using histomorphometry and immunohistochemistry. Test sites showed significantly less impairment of perfusion and faster recovery of microcirculation after bone augmentation. Furthermore, no flap dehiscences occurred in STE sites. Bone regeneration was found in both groups; however, significantly greater formation of new bone was detected in test sites with preceding STE. Preconditioning using STE improved ST healing and bone formation after vertical augmentation. The combination of STE and the subsequent placement of alloplastic scaffolds may facilitate the reconstruction of severe bone defects. © 2016 The Authors. Clinical Oral Implants Research Published by John Wiley & Sons Ltd.
Urban, Istvan A; Monje, Alberto; Lozada, Jaime L; Wang, Hom-Lay
2017-02-01
To the best of the authors' knowledge, there is very limited clinical data on the outcomes of simultaneous guided bone regeneration (GBR) for horizontal and/or vertical bone gain for the reconstruction of severely atrophic edentulous maxilla. Therefore, the purpose of the clinical series presented herein was to clinically evaluate long-term horizontal and vertical bone gain, as well as implant survival rate after reconstruction of severely atrophic edentulous maxillary ridges. Sixteen patients (mean age: 64.6 ± 14.6 years of age) were consecutively treated for vertical and/or horizontal bone augmentation via GBR in combination with bilateral sinus augmentation utilizing a mixture of autologous and anorganic bovine bone. Implant survival, bone gain, intraoperative/postoperative complications and peri-implant bone loss were calculated up to the last follow-up exam. Overall, 122 dental implants were placed into augmented sites and have been followed from 12 to 180 months (mean: 76.5 months). Implant survival was 100% (satisfactory survival rate of 97.5%). Mean bone gain was 5.6 mm (max: 9 mm; min: 3 mm) While vertical bone gain was 5.1 ± 1.8 mm; horizontal bone gain was 7.0 ± 1.5 mm. No intraoperative/postoperative complications were noted. Mean peri-implant bone loss values were consistent within the standards for implant success (1.4 ± 1.0 mm). At patient-level, only one patient who had three implants presented with severe peri-implant bone loss. Complete reconstruction of an atrophied maxilla can be successfully achieved by means of guided bone regeneration for horizontal and/or vertical bone gain including bilateral sinus augmentation using a mixture of anorganic bovine bone and autologous bone. © 2016 Wiley Periodicals, Inc.
Felice, Pietro; Pellegrino, Gerardo; Checchi, Luigi; Pistilli, Roberto; Esposito, Marco
2010-12-01
To evaluate whether 7-mm-long implants could be an alternative to longer implants placed in vertically augmented posterior mandibles. Sixty patients with posterior mandibular edentulism with 7-8 mm bone height above the mandibular canal were randomized to either vertical augmentation with anorganic bovine bone blocks and delayed 5-month placement of ≥10 mm implants or to receive 7-mm-long implants. Four months after implant placement, provisional prostheses were delivered, replaced after 4 months, by definitive prostheses. The outcome measures were prosthesis and implant failures, any complications and peri-implant marginal bone levels. All patients were followed to 1 year after loading. One patient dropped out from the short implant group. In two augmented mandibles, there was not sufficient bone to place 10-mm-long implants possibly because the blocks had broken apart during insertion. One prosthesis could not be placed when planned in the 7 mm group vs. three prostheses in the augmented group, because of early failure of one implant in each patient. Four complications (wound dehiscence) occurred during graft healing in the augmented group vs. none in the 7 mm group. No complications occurred after implant placement. These differences were not statistically significant. One year after loading, patients of both groups lost an average of 1 mm of peri-implant bone. There no statistically significant differences in bone loss between groups. When residual bone height over the mandibular canal is between 7 and 8 mm, 7 mm short implants might be a preferable choice than vertical augmentation, reducing the chair time, expenses and morbidity. These 1-year preliminary results need to be confirmed by follow-up of at least 5 years. © 2010 John Wiley & Sons A/S.
Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation
Sheikh, Zeeshan; Sima, Corneliu; Glogauer, Michael
2015-01-01
Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or synthetic graft materials to achieve vertical alveolar bone augmentation. While continuously improving surgical techniques combined with the use of auto- or allografts provide the most predictable clinical outcomes, their success often depends on the status of recipient tissues. The morbidity associated with donor sites for auto-grafts makes these techniques less appealing to both patients and clinicians. New developments in material sciences offer a range of synthetic replacements for natural grafts to address the shortcoming of a second surgical site and relatively high resorption rates. This narrative review focuses on existing techniques, natural tissues and synthetic biomaterials commonly used to achieve vertical bone height gain in order to successfully restore edentulous ridges with implant-supported prostheses.
Melatonin enhances vertical bone augmentation in rat calvaria secluded spaces.
Shino, Hiromichi; Hasuike, Akira; Arai, Yoshinori; Honda, Masaki; Isokawa, Keitaro; Sato, Shuichi
2016-01-01
Melatonin has many roles, including bone remodeling and osseointegration of dental implants. The topical application of melatonin facilitated bone regeneration in bone defects. We evaluated the effects of topical application of melatonin on vertical bone augmentation in rat calvaria secluded spaces. In total, 12 male Fischer rats were used and two plastic caps were fixed in the calvarium. One plastic cap was filled with melatonin powder and the other was left empty. Newly generated bone at bone defects and within the plastic caps was evaluated using micro-CT and histological sections. New bone regeneration within the plastic cap was increased significantly in the melatonin versus the control group. Melatonin promoted vertical bone regeneration in rat calvaria in the secluded space within the plastic cap.
Xuan, Feng; Lee, Chun-Ui; Son, Jeong-Seog; Fang, Yiqin; Jeong, Seung-Mi; Choi, Byung-Ho
2014-09-01
Previous studies have shown that the subperiosteal tunneling procedure in vertical ridge augmentation accelerates healing after grafting and prevents graft exposure, with minor postoperative complications. It is conceivable that new bone formation would be greater with the tunneling procedure than with the flap procedure, because the former is minimally invasive. This hypothesis was tested in this study by comparing new bone formation between the flap and tunneling procedures after vertical ridge augmentation using xenogenous bone blocks in a canine mandible model. Two Bio-Oss blocks were placed on the edentulous ridge in each side of the mandibles of 6 mongrel dogs. The blocks in each side were randomly assigned to grafting with a flap procedure (flap group) or grafting with a tunneling procedure (tunneling group). The mean percentage of newly formed bone within the block was 15.3 ± 6.6% in the flap group and 46.6 ± 23.4% in the tunneling group. Based on data presented in this study, when a tunneling procedure is used to place xenogenous bone blocks for vertical ridge augmentation, bone formation in the graft sites is significantly greater than when a flap procedure is used. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Chavda, Suraj; Levin, Liran
2018-02-01
Alveolar ridge augmentation can be completed with various types of bone augmentation materials (autogenous, allograft, xenograft, and alloplast). Currently, autogenous bone is labeled as the "gold standard" because of faster healing times and integration between native and foreign bone. No systematic review has currently determined whether there is a difference in implant success between various bone augmentation materials. The purpose of this article was to systematically review comparative human studies of vertical and horizontal alveolar ridge augmentation comparing different types of bone graft materials (autogenous, allograft, xenograft, and alloplast). A MEDLINE search was conducted under the 3 search concepts of bone augmentation, dental implants, and alveolar ridge augmentation. Studies pertaining to socket grafts or sinus lifts were excluded. Case reports, small case series, and review papers were excluded. A bias assessment tool was applied to the final articles. Overall, 219 articles resulted from the initial search, and 9 articles were included for final analysis. There were no discernible differences in implant success between bone augmentation materials. Generally, patients preferred nonautogenous bone sources as there were fewer hospital days, less pain, and better recovery time. Two articles had industrial support; however, conclusions of whether that support influenced the outcomes could not be determined. Future comparative studies should compare nonautogenous bone sources and have longer follow-up times.
Zhang, Qiao; Zhang, Li Li; Yang, Yang; Lin, Yi Zhen; Miron, Richard J; Zhang, Yu Feng
To study the clinical effect of short implant placement using osteotome sinus floor elevation technique and tent-pole grafting technique with recombinant human bone morphogenetic protein 2 (rhBMP-2) in severely resorbed maxillary area. Eleven patients with insufficient bone height in the posterior maxillary area were included. According to the native bone height and crown height space (CHS), the patients were divided into two groups: immediate placement of short implants with simultaneous bone augmentation (group A, 5 patients) and delayed dental implant placement (4 to 6 months) after bone augmentation. The rhBMP-2 was added into a deproteinised bovine bone mineral (DBBM) bone grafting material to shorten the treatment procedure and enhance the final effect of bone augmentation in both groups. Tent-pole grafting technique was applied for vertical bone augmentation in group B (6 patients). The success rate of the implants placed was 100% in both groups. In group A, the short implants treatment was successful, with a vertical gain of 1.5 to 6.4 mm in bone height after 4 to 6 months. In group B, the tent-pole grafting procedure in combination with DBBM and rhBMP-2 increased vertical bone height between 3.1 and 8.1 mm, an optimistic and adequate increase for implant placement. This bone increase was maintained following implant placement and final crown placement in the maxillary region (3.5 to 7.3 mm). The tent-pole grafting technique was a viable alternative choice to lateral sinus floor elevation in cases with excessive CHS. The application of rhBMP-2 with a shortened treatment time demonstrated positive outcomes in sinus floor augmentation procedures.
Gümrükçü, Zeynep; Korkmaz, Yavuz Tolga; Korkmaz, Fatih Mehmet
2017-07-01
The purpose of this study is to evaluate and compare bone stress that occurs as a result of using vertical implants with simultaneous sinus augmentation with bone stress generated from oblique implants without sinus augmentation in atrophic maxilla. Six, three-dimensional (3D) finite element (FE) models of atrophic maxilla were generated with SolidWorks software. The maxilla models were varied for two different bone types. Models 2a, 2b and 2c represent maxilla models with D2 bone type. Models 3a, 3b and 3c represent maxilla models with D3 bone type. Five implants were embedded in each model with different configurations for vertical implant insertion with sinus augmentation: Model 2a/Model 3a, 30° tilted insertion; Model 2b/Model 3b and 45° tilted insertion; Model 2c/Model 3c. A 150 N load was applied obliquely on the hybrid prosthesis. The maximum von Mises stress values were comparatively evaluated using color scales. The von Mises stress values predicted by the FE models were higher for all D3 bone models in both cortical and cancellous bone. For the vertical implant models, lower stress values were found in cortical bone. Tilting of the distal implants by 30° increased the stress in the cortical layer compared to vertical implant models. Tilting of the distal implant by 45° decreased the stress in the cortical bone compared to the 30° models, but higher stress values were detected in the 45° models compared to the vertical implant models. Augmentation should be the first treatment option in atrophic maxilla in terms of biomechanics. Tilted posterior implants can create higher stress values than vertical posterior implants. During tilting implant planning, the use of a 45° tilted implant results in better biomechanical performance in peri-implant bone than 30° tilted implant due to the decrease in cantilever length. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nissan, Joseph; Ghelfan, Oded; Mardinger, Ofer; Calderon, Shlomo; Chaushu, Gavriel
2011-12-01
The present study evaluated the outcome of ridge augmentation with cancellous freeze-dried block bone allografts in the posterior atrophic mandible followed by placement of dental implants. A bony deficiency of at least 3 mm, horizontally, vertically, or both, according to computerized tomography (CT) para-axial reconstruction served as inclusion criteria. Implants were inserted after a healing period of 6 months. Bone measurements were taken prior to bone augmentation, during implant placement, and at second-stage surgery. Marginal bone loss and crown-to-implant ratio were also measured. Twenty-nine cancellous allogeneic bone blocks were placed in 21 patients. The mean follow-up was 37 months. Bone block survival rate was 79.3%. Mean horizontal and vertical bone gains were 5.6 and 4.3 mm, respectively. Mean buccal bone resorption was 0.5 mm at implant placement and 0.2 mm at second-stage surgery. A total of 85 implants were placed. Mean bone thickness buccal to the implant neck was 2.5 mm at implant placement and 2.3 mm at second-stage surgery. There was no evidence of vertical bone loss between implant placement and second-stage surgery. Implant survival rate was 95.3%. All patients received a fixed implant-supported prosthesis. At the last follow-up, the mean marginal bone loss was 0.5 mm. The mean crown-to-implant ratio was 0.96. Implant placement in the posterior atrophic mandible following augmentation with cancellous freeze-dried bone block allografts may be regarded as a viable treatment alternative. © 2009 Wiley Periodicals, Inc.
Camps-Font, Octavi; Burgueño-Barris, Genís; Figueiredo, Rui; Jung, Ronald E; Gay-Escoda, Cosme; Valmaseda-Castellón, Eduard
2016-12-01
The purpose of the current study is to assess which vertical bone augmentation techniques are most effective for restoring atrophic posterior areas of the mandible with dental implants and compare these procedures with alternative treatments. Electronic literature searches in PubMed (MEDLINE), Ovid, and the Cochrane Library were conducted to identify all relevant articles published up to July 1, 2015. Eligibility was based on inclusion criteria, and quality assessments were conducted. The primary outcome variables were implant and prosthetic failure. After data extraction, meta-analyses were performed. Out of 527 potentially eligible papers, 14 randomized clinical trials were included. Out of these 14 studies, four trials assessed short implants (5 to 8 mm) as an alternative to vertical bone augmentation in sites with a residual ridge height of 5 to 8 mm. No statistically significant differences were found in implant (odds ratio [OR]: 1.02; 95% confidence interval [CI]: 0.31 to 3.31; P = 0.98; I 2 : 0%) or prosthetic failure (OR: 0.64; 95% CI: 0.21 to 1.96; P = 0.43; I 2 : 0%) after 12 months of loading. However, complications at treated sites increased with the augmentation procedures (OR: 8.33; 95% CI: 3.85 to 20.0; P <0.001; I 2 : 0%). There was no evidence of any vertical augmentation procedure being of greater benefit than any other for the primary outcomes (implant and prosthetic failure). Short implants in the posterior area of the mandible seem to be preferable to vertical augmentation procedures, which present similar implant and prosthetic failure rates but greater morbidity. All the vertical augmentation technique comparisons showed similar intergroup results.
Localized ridge defect augmentation using human pericardium membrane and demineralized bone matrix.
Vidyadharan, Arun Kumar; Ravindran, Anjana
2014-01-01
Patient wanted to restore her lost teeth with implants in the lower left first molar and second premolar region. Cone beam computerized tomography (CBCT) revealed inadequate bone width and height around future implant sites. The extraction socket of second premolar area revealed inadequate socket healing with sparse bone fill after 4 months of extraction. To evaluate the clinical feasibility of using a collagen physical resorbable barrier made of human pericardium (HP) to augment localized alveolar ridge defects for the subsequent placement of dental implants. Ridge augmentation was done in the compromised area using Puros® demineralized bone matrix (DBM) Putty with chips and an HP allograft membrane. Horizontal (width) and vertical hard tissue measurements with CBCT were recorded on the day of ridge augmentation surgery, 4 month and 7 months follow-up. Intra oral periapical taken 1 year after implant installation showed minimal crestal bone loss. Bone volume achieved through guided bone regeneration was a gain of 4.8 mm horizontally (width) and 6.8 mm vertically in the deficient ridge within a period of 7 months following the procedure. The results suggested that HP Allograft membrane may be a suitable component for augmentation of localized alveolar ridge defects in conjunction with DBM with bone chips.
Domingues, Eduardo Pinheiro; Ribeiro, Rafael Fernandes; Horta, Martinho Campolina Rebello; Manzi, Flávio Ricardo; Côsso, Maurício Greco; Zenóbio, Elton Gonçalves
2017-10-01
Using computed tomography, to compare vertical and volumetric bone augmentation after interposition grafting with bovine bone mineral matrix (GEISTLICH BIO-OSS ® ) or hydroxyapatite/tricalcium phosphate (STRAUMANN ® BONECERAMIC) for atrophic posterior mandible reconstruction through segmental osteotomy. Seven patients received interposition grafts in the posterior mandible for implant rehabilitation. The computed tomography cone beam images were analysed with OsiriX Imaging Software 6.5 (Pixmeo Geneva, Switzerland) in the pre-surgical period (T0), at 15 days post-surgery (T1) and at 180 days post-surgery (T2). The tomographic analysis was performed by a single trained and calibrated radiologist. Descriptive statistics and nonparametric methods were used to analyse the data. There was a significant difference in vertical and volume augmentation with both biomaterials using the technique (P < 0.05). There were no significant differences (P > 0.05) in volume change of the graft, bone volume augmentation, or augmentation of the maximum linear vertical distance between the two analysed biomaterials. The GEISTLICH BIO-OSS ® and STRAUMANN ® BONECERAMIC interposition grafts exhibited similar and sufficient dimensional stability and volume gain for short implants in the atrophic posterior mandible. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nevins, Myron; Al Hezaimi, Khalid; Schupbach, Peter; Karimbux, Nadeem; Kim, David M
2012-07-01
This study tests the effectiveness of hydroxyapatite and collagen bone blocks of equine origin (eHAC), infused with recombinant human platelet-derived growth factor-BB (rhPDGF-BB), to augment localized posterior mandibular defects in non-human primates (Papio hamadryas). Bilateral critical-sized defects simulating severe atrophy were created at the time of the posterior teeth extraction. Test and control blocks (without growth factor) were randomly grafted into the respective sites in each non-human primate. All sites exhibited vertical ridge augmentation, with physiologic hard- and soft-tissue integration of the blocks when clinical and histologic examinations were done at 4 months after the vertical ridge augmentation procedure. There was a clear, although non-significant, tendency to increased regeneration in the test sites. As in the first two preclinical studies in this series using canines, experimental eHAC blocks infused with rhPDGF-BB proved to be a predictable and technically viable method to predictably regenerate bone and soft tissue in critical-sized defects. This investigation supplies additional evidence that eHAC blocks infused with rhPDGF-BB growth factor is a predictable and technically feasible option for vertical augmentation of severely resorbed ridges.
Cancellous bone block allografts for the augmentation of the anterior atrophic maxilla.
Nissan, Joseph; Mardinger, Ofer; Calderon, Shlomo; Romanos, George E; Chaushu, Gavriel
2011-06-01
Pre-implant augmentative surgery is a prerequisite in many cases in the anterior maxilla to achieve a stable, long-term esthetic final result. The aim of the present study was to evaluate the outcome of ridge augmentation with cancellous freeze-dried block bone allografts in the anterior atrophic maxilla followed by placement of dental implants. Thirty-one consecutive patients were included in the study. A bony deficiency of at least 3 mm horizontally and up to 3 mm vertically according to computerized tomography (CT) served as inclusion criteria. Sixty-three implants were inserted after a healing period of 6 months. Nineteen of sixty-three implants were immediately restored. Bone measurements were taken prior to bone augmentation, during implant placement, and at second-stage surgery. Forty-six cancellous allogeneic bone blocks were used. The mean follow-up was 34 ± 16 months. Mean bone gain was 5 ± 0.5 mm horizontally, and 2 ± 0.5 mm vertically. Mean buccal bone resorption was 0.5 ± 0.5 mm at implant placement, and 0.2 ± 0.2 mm at second-stage surgery. Mean bone thickness buccal to the implant neck was 2.5 ± 0.5 mm at implant placement, and 2.3 ± 0.2 mm at second-stage surgery. There was no evidence of vertical bone loss between implant placement and second-stage surgery. Block and implant survival rates were 95.6 and 98%, respectively. All patients received a fixed implant-supported prosthesis. Cancellous block allografts appear to hold promise for grafting the anterior atrophic maxilla. © 2009 Wiley Periodicals, Inc.
Dagassan-Berndt, Dorothea C; Zitzmann, Nicola U; Walter, Clemens; Schulze, Ralf K W
2016-08-01
To evaluate the impact of cone beam computed tomography (CBCT) imaging on treatment planning regarding augmentation procedures for implant placement. Panoramic radiographs and CBCT images of 40 patients requesting single-tooth implants in 59 sites were retrospectively analyzed by six specialists in implantology, and treatment planning was performed. Therapeutic recommendations were compared with the surgical protocol performed initially. Bone height estimation from panoramic radiographs yielded to higher measures and greater variability compared to CBCT. The suggested treatment plan for lateral and vertical augmentation procedures based on CBCT or panoramic radiographs coincided for 55-72% of the cases. A trend to a more invasive augmentation procedure was seen when planning was based on CBCT. Panoramic radiography revealed 57-63% (lateral) vs. 67% (vertical augmentation) congruent plans in agreement with surgery. Among the dissenting sites, there was a trend toward less invasive planning for lateral augmentation with panoramic radiographs, while vertical augmentation requirements were more frequently more invasive when based on CBCT. Vertical augmentation requirements can be adequately determined from panoramic radiographs. In difficult cases with a deficient lateral alveolar bone, the augmentation schedule may better be evaluated from CBCT to avoid underestimation, which occurs more frequently when based on panoramic radiographs only. However, overall, radiographic interpretation and diagnostic thinking accuracy seem to be mainly depending on the opinion of observers. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Merli, Mauro; Lombardini, Francesco; Esposito, Marco
2010-01-01
To compare the efficacy of two different techniques for vertical bone regeneration at implant placement with particulated autogenous bone at 3 years after loading: resorbable collagen barriers supported by osteosynthesis plates and nonresorbable titanium-reinforced expanded polytetrafluoroethylene barriers. Twenty-two partially edentulous patients requiring vertical bone augmentation were randomly allocated to two treatment groups, each composed of 11 patients. Prosthetic and implant failures, complications, the amount of vertically regenerated bone, and peri-implant marginal bone levels were recorded by independent and blinded assessors. The implant site requiring the most vertical bone regeneration was selected in each patient for bone level assessment. The follow-up time ranged from provisional loading to 3 years after loading. Analysis of covariance and paired t tests were conducted to compare means at the .05 level of significance. No patient dropped out or was excluded at the 3-year follow-up. No prosthetic failures and no implant failures or complications occurred after loading. There was no statistically significant difference in bone loss between the two groups at either 1 year or 3 years. Both groups had gradually lost a statistically significant amount of peri-implant bone at 1 and 3 years (P < .05). After 3 years, patients treated with resorbable barriers had lost a mean of 0.55 mm of bone; patients who had received nonresorbable barriers showed a mean of 0.53 mm of bone loss. Up to 3 years after implant loading, no failures or complications occurred and peri-implant marginal bone loss was minimal. Vertically regenerated bone can be successfully maintained after functional loading.
Ahn, Hyo-Won; Seo, Dong-Hwi; Kim, Seong-Hun; Park, Young-Guk; Chung, Kyu-Rhim; Nelson, Gerald
2016-10-01
Our aim in this study was to evaluate the effect of augmented corticotomy on the decompensation pattern of mandibular anterior teeth, alveolar bone, and surrounding periodontal tissues during presurgical orthodontic treatment. Thirty skeletal Class III adult patients were divided into 2 groups according to the application of augmented corticotomy labial to the anterior mandibular roots: experimental group (with augmented corticotomy, n = 15) and control group (without augmented corticotomy, n = 15). Lateral cephalograms and cone-beam computed tomography images were taken before orthodontic treatment and before surgery. The measurements included the inclination and position of the mandibular incisors, labial alveolar bone area, vertical alveolar bone height, root length, and alveolar bone thickness at 3 levels surrounding the mandibular central incisors, lateral incisors, and canines. The mandibular incisors were significantly proclined in both groups (P <0.001); however, the labial movement of the incisor tip was greater in the experimental group (P <0.05). Significant vertical alveolar bone loss was observed only in the control group (P <0.001). The middle and lower alveolar thicknesses and labial alveolar bone area increased in the experimental group. In the control group, the upper and middle alveolar thicknesses and labial alveolar bone area decreased significantly. There were no significant differences in dentoalveolar changes between the 3 kinds of anterior teeth in each group, except for root length in the experimental group (P <0.05). Augmented corticotomy provided a favorable decompensation pattern of the mandibular incisors, preserving the periodontal structures surrounding the mandibular anterior teeth for skeletal Class III patients. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Singh, Aparna; Daing, Anika; Anand, Vishal; Dixit, Jaya
2014-01-01
Background Ridge augmentation procedures require bone regeneration outside of the existing bony walls or housing and are therefore often considered to be the most challenging surgical procedures. The bony deficiencies can be managed with GBR techniques involving bone grafting material and membrane while vertical augmentation may require the use of space-creating support mechanisms. Non-degradable membranes have been used for ridge augmentation with encouraging results however; requirement of second surgery for its removal and associated infection on exposure may compromise the desired results. These problems can be overcome by employing resorbable collagen membranes. Different bone graft materials are also used in combination with resorbable membranes, for prevention of membrane collapse and maintenance of space, as they lack sufficient rigidity. Particulate hydroxyapatite bone graft may be better alternative, because it treats the underlying bone defect to restore the natural support of the tissue architecture. Moreover, its use avoids potential donor site complications associated with autogenous block grafts. Method Patient described in this report presented with missing right maxillary incisor with ridge deficiency. A treatment approach involving localised ridge augmentation with particulate hydroxyapatite and collagen membrane was used. Result Six month post-operative periapical radiograph demonstrated a significant vertical bone fill. Conclusion The clinical and radiographic findings of the present case suggests that HA in conjunction with a resorbable collagen membrane may be an acceptable alternative to the autogenous block graft and non-resorbable membrane in the treatment of compromised alveolar ridge deficiencies. PMID:25737935
Miyamoto, Shinji; Shinmyouzu, Kouhei; Miyamoto, Ikuya; Takeshita, Kenji; Terada, Toshihisa; Takahashi, Tetsu
2013-08-01
This study utilized the constitution and expression of Runx2/Cbfa1 to conduct 6-month-post-operation histomorphometrical and histochemical analysis of osteocalcin in bone regeneration following sinus-floor augmentation procedures using β-tricalcium phosphate (β-TCP) and autogenous cortical bone. Thirteen sinuses of nine patients were treated with sinus-floor augmentation using 50% β-TCP and 50% autogenous cancellous bone harvested from the ramus of the mandible. Biopsies of augmented sinuses were taken at 6 months for histomorphometric and immunohistochemical measurements. Runx2/Cbfa1- and osteocalcin-positive cells were found around TCP particles and on the bone surface. Approximately 60% of cells found around TCP particles stained positive for Runx2/Cbfa1. Fewer cells stained positive for osteocalcin. These positive cells decreased apically with increasing vertical distance from the maxillary bone surface. Histomorphometric analysis showed that the augmented site close to residual bone and periosteum contained approximately 42% bony tissue and 42% soft connective tissue, and the remaining 16% consisted of TCP particles. On the other hand, the augmented bone far from residual bone and periosteum contained 35% bony tissue and 50% soft connective tissue. Our data suggest that TCP particles attract osteoprogenitor cells that migrate into the interconnecting micropores of the bone-substitute material by 6 months. The augmented site close to residual bone contained a higher proportion of bony tissue and a lower proportion of soft connective tissue than did the augmented site far from residual bone. © 2012 John Wiley & Sons A/S.
Carrel, Jean-Pierre; Wiskott, Anselm; Scherrer, Susanne; Durual, Stéphane
2016-12-01
Osteoflux is a three-dimensional printed calcium phosphate porous structure for oral bone augmentation. It is a mechanically stable scaffold with a well-defined interconnectivity and can be readily shaped to conform to the bone bed's morphology. An animal experiment is reported whose aim was to assess the performance and safety of the scaffold in promoting vertical growth of cortical bone in the mandible. Four three-dimensional blocks (10 mm length, 5 mm width, 5 mm height) were affixed to edentulous segments of the dog's mandible and covered by a collagen membrane. During bone bed preparation, particular attention was paid not to create defects 0.5 mm or more so that the real potential of the three-dimensional block in driving vertical bone growth can be assessed. Histomorphometric analyses were performed after 8 weeks. At 8 weeks, the three-dimensional blocks led to substantial vertical bone growth up to 4.5 mm from the bone bed. Between 0 and 1 mm in height, 44% of the surface was filled with new bone, at 1 to 3 mm it was 20% to 35%, 18% at 3 to 4, and ca. 6% beyond 4 mm. New bone was evenly distributed along in mesio-distal direction and formed a new crest contour in harmony with the natural mandibular shape. After two months of healing, the three-dimensional printed blocks conducted new bone growth above its natural bed, up to 4.5 mm in a canine mandibular model. Furthermore, the new bone was evenly distributed in height and density along the block. These results are very promising and need to be further evaluated by a complete powerful study using the same model. © 2016 Wiley Periodicals, Inc.
Grimm, Wolf Dieter; Dannan, Aous; Giesenhagen, Bernd; Schau, Ingmar; Varga, Gabor; Vukovic, Mark Alexander; Sirak, Sergey Vladimirovich
2014-01-01
The management of facial defects has rapidly changed in the last decade. Functional and esthetic requirements have steadily increased along with the refinements of surgery. In the case of advanced atrophy or jaw defects, extensive horizontal and vertical bone augmentation is often unavoidable to enable patients to be fitted with implants. Loss of vertical alveolar bone height is the most common cause for a non primary stability of dental implants in adults. At present, there is no ideal therapeutic approach to cure loss of vertical alveolar bone height and achieve optimal pre-implantological bone regeneration before dental implant placement. Recently, it has been found that specific populations of stem cells and/or progenitor cells could be isolated from different dental resources, namely the dental follicle, the dental pulp and the periodontal ligament. Our research group has cultured palatal-derived stem cells (paldSCs) as dentospheres and further differentiated into various cells of the neuronal and osteogenic lineage, thereby demonstrating their stem cell state. In this publication will be shown whether paldSCs could be differentiated into the osteogenic lineage and, if so, whether these cells are able to regenerate alveolar bone tissue in vivo in an athymic rat model. Furthermore, using these data we have started a proof of principle clinical- and histological controlled study using stem cell-rich palatal tissues for improving the vertical alveolar bone augmentation in critical size defects. The initial results of the study demonstrate the feasibility of using stem cell-mediated tissue engineering to treat alveolar bone defects in humans. PMID:24921024
Clinical outcome of alveolar ridge augmentation with individualized CAD-CAM-produced titanium mesh.
Sagheb, K; Schiegnitz, E; Moergel, M; Walter, C; Al-Nawas, B; Wagner, W
2017-12-01
The augmentation of the jaw has been and continues to be a sophisticated therapy in implantology. Modern CAD-CAM technologies lead to revival of old and established augmentation techniques such as the use of titanium mesh (TM) for bone augmentation. The aim of this retrospective study was to evaluate the clinical outcome of an individualized CAD-CAM-produced TM based on the CT/DVT-DICOM data of the patients for the first time. In 17 patients, 21 different regions were augmented with an individualized CAD-CAM-produced TM (Yxoss CBR®, Filderstadt, Germany). For the augmentation, a mixture of autologous bone and deproteinized bovine bone mineral (DBBM) or autologous bone alone was used. Reentry with explantation of the TM and simultaneous implantation of 44 implants were performed after 6 months. Preoperative and 6-month postoperative cone beam computed tomographies (CBCT) were performed to measure the gained bone height. The success rate for the bone grafting procedure was 100%. Thirty-three percent of cases presented an exposure of the TM during the healing period. However, premature removal of these exposed meshes was not necessary. Exposure rate in augmentations performed with mid-crestal incisions was higher than in augmentations performed with a modified poncho incision (45.5 vs. 20%, p = 0.221). In addition, exposure rates in the maxilla were significantly higher than in the mandible (66.7 vs. 8.3%, p = 0.009). Gender, smoking, periodontal disease, gingiva type, used augmentation material, and used membrane had no significant influence on the exposure rate (p > 0.05). The mean vertical augmentation was 6.5 ± 1.7 mm, and the mean horizontal augmentation was 5.5 ± 1.9 mm. Implant survival rate after a mean follow-up of 12 ± 6 months after reentry was 100%. Within the limits of the retrospective character of this study, this study shows for the first time that individualized CAD-CAM TM provide a sufficient and safe augmentation technique, especially for vertical and combined defects. However, the soft tissue handling for sufficient mesh covering remains one of the most critical steps using this technique.
Veis, Alexander; Dabarakis, Nikolaos; Koutrogiannis, Christos; Barlas, Irodis; Petsa, Elina; Romanos, Georgios
2015-06-01
The aim of the present study was to evaluate histologically vertical bone regeneration outcomes after using bovine bone graft material in block and granular forms. The buccal bony plates of the outer mandibles of 10 New Zealand rabbits received Bio-Oss blocks that were immobilized using orthopedic mini-plates, and another 10 received granular forms that were gently packed and stabilized into the custom-made perforated metallic cubes. The mean graft area (GA), new bone area (NBA), bone-to-graft contact (BGC), and maximum vertical height reached by the new bone development (MVH) were histometrically evaluated and showed no significant differences between 2 graft types. The new bone was observed mostly close to the basal bone and developed penetrating the trabecular scaffold in the form of seams that covered the intralumen surfaces of the block type graft, while in the granular graft type the new bone was observed to grow between the graft particles usually interconnecting them. Either form of Bio-Oss was capable of providing considerable vertical bone augmentation.
Kaminaka, Akihiro; Nakano, Tamaki; Ono, Shinji; Kato, Tokinori; Yatani, Hirofumi
2015-10-01
This study evaluated changes in the horizontal and vertical dimensions of the buccal alveolar bone and soft tissue over a 1-year period following implant prosthesis. Thirty-three participants with no history of guided bone regeneration or soft tissue augmentation underwent dental implant placement with different types of connections. The dimensions of the buccal alveolar bone and soft tissue were evaluated immediately and at 1 year after prosthesis from reconstructions of cross-sectional cone-beam computed tomography images. The vertical and horizontal loss of buccal bone and soft tissue around implants with conical connections were lower than around those with external or internal connections. Statistically significant negative correlations were observed between initial horizontal bone thickness and changes in vertical bone and soft tissue height (p < .05), and between initial horizontal soft tissue thickness and the change in vertical soft tissue height (p < .05). Implants with a conical connection preserve peri-implant alveolar bone and soft tissue more effectively than other connection types. Furthermore, the initial buccal alveolar bone and soft tissue thickness around the implant platform may influence their vertical dimensional changes at 1 year after implant prosthesis. © 2014 Wiley Periodicals, Inc.
Fickl, Stefan; Zuhr, Otto; Wachtel, Hannes; Kebschull, Moritz; Hürzeler, Markus B
2009-10-01
The aim of this study was to histometrically assess alterations of the ridge following socket preservation alone and socket preservation with additional buccal overbuilding. In five beagle dogs four extraction sites were randomly subjected to one of the following treatments: Tx 1: The socket was filled with BioOss Collagen and covered with a free gingival graft from the palate. Tx 2: The buccal bone plate was augmented using the GBR-technique, the socket was filled with BioOss Collagen and covered with a free gingival graft. Tx 3: The buccal bone plate was forced into a buccal direction using a manual bone spreader. The socket was filled with BioOss Collagen and covered with a free gingival graft from the palate. Tx 4: The socket was filled with BioOss Collagen and a combined free gingival/connective tissue graft was used to cover the socket and for buccal tissue augmentation. For each experimental site, two histological sections were subjected to histometric analysis and evaluated for (i) vertical bone dimensions and (ii) horizontal bone dimensions. All treatment groups showed horizontal and vertical bone loss. The mean vertical bone loss of the buccal bone plate was significantly lower in Tx 4 than in the other groups, while no statistical significant differences could be detected among the groups in the horizontal dimension. Overbuilding the buccal aspect in combination with socket preservation does not seem to be a suitable technique to compensate for the alterations after tooth extraction.
Ciocca, L; Fantini, M; De Crescenzio, F; Corinaldesi, G; Scotti, R
2011-11-01
This study describes a protocol for the direct manufacturing of a customized titanium mesh using CAD-CAM procedures and rapid prototyping to augment maxillary bone and minimize surgery when severe atrophy or post-oncological deformities are present. Titanium mesh and particulate autogenous plus bovine demineralised bone were planned for patient rehabilitation. Bone augmentation planning was performed using the pre-op CT data set in relation to the prosthetic demands, minimizing the bone volume to augment at the minimum necessary for implants. The containment mesh design was used to prototype the 0.6 mm thickness customized titanium mesh, by direct metal laser sintering. The levels of regenerated bone were calculated using the post-op CT data set, through comparison with the pre-op CT data set. The mean vertical height difference of the crestal bone was 2.57 mm, while the mean buccal-palatal dimension of thickness difference was 3.41 mm. All planned implants were positioned after an 8 month healing period using two-step implant surgery, and finally restored with a partial fixed prosthesis. We present a viable and reproducible method to determine the correct bone augmentation prior to implant placement and CAD-CAM to produce a customized direct laser-sintered titanium mesh that can be used for bone regeneration.
Reuss, Jose M; Pi-Anfruns, Joan; Moy, Peter K
2018-04-01
The aim of this study was to assess the clinical effectiveness of alveolar distraction osteogenesis (ADO) versus recombinant human bone morphogenetic protein-2 (rh-BMP-2) for vertical ridge augmentation. Few data have been published on vertical bone regeneration using rh-BMP-2. The authors implemented a retrospective cohort study and enrolled a sample composed of patients with deficient alveolar vertical bone height. The primary predictor variable was vertical augmentation with BMP-2 and a titanium mesh or ADO. The primary outcome variable was gain in vertical bone height (millimeters) measured using computed tomography. The secondary outcome variable was postoperative complications, namely need for further grafting before or simultaneous with implant placement, soft tissue dehiscence, paresthesia, infection, implant failure, and pain. Other outcomes included implant stability at time of placement and follow-up (implant stability quotient by resonance frequency analysis), surgical time (minutes), and total treatment time until implant placement (weeks). Other study variables included location of reconstruction (maxilla or mandible). Appropriate bivariate statistics were computed and statistical significance was set a P value less than .05. The retrospective review yielded 21 patients in the BMP group and 19 in the ADO group. For the BMP-2 group, the average vertical bone gain was 2.96 ± 1.8 mm overall (maxilla, mean 3.6 ± 3.1 mm; mandible, mean 2.32 ± 1.8 mm). For the ADO group, this gain was 4 ± 1.69 mm overall (maxilla, mean 2.8 ± 1.94 mm; mandible, mean 5.2 ± 4.67 mm). For complications, group BMP showed a statistically minor tendency for more postoperative problems, such as wound dehiscence. For implant survival, group BMP showed a 92.2% survival rate versus 96.3% in group ADO at 3 to 45 months after delivery of the prosthesis (average, 22 months). The 2 techniques showed similar values in absolute vertical bone gain. Group ADO showed a slightly better outcome in outright vertical regenerative potential, albeit with a more frequent need for regrafting before and simultaneous with implant placement. Group BMP showed a lesser need for regrafting, despite having a higher postoperative complication rate. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Hsu, Yung-Ting; Al-Hezaimi, Khalid; Galindo-Moreno, Pablo; O'Valle, Francisco; Al-Rasheed, Abdulaziz; Wang, Hom-Lay
2017-09-01
Vertical bone augmentation (VBA) remains unpredictable and challenging for most clinicians. This study aims to compare hard tissue outcomes of VBA, with and without recombinant human bone morphogenetic protein (rhBMP)-2, under space-making titanium mesh in a canine model. Eleven male beagle dogs were used in the study. Experimental ridge defects were created to form atrophic ridges. VBA was performed via guided bone regeneration using titanium mesh and allografts. In experimental hemimandibles, rhBMP-2/absorbable collagen sponge was well mixed with allografts prior to procedures, whereas a control buffer was applied within controls. Dogs were euthanized after a 4-month healing period. Clinical and radiographic examinations were performed to assess ridge dimensional changes. In addition, specimens were used for microcomputed tomography (micro-CT) assessment and histologic analysis. Membrane exposure was found on five of 11 (45.5%) rhBMP-2-treated sites, whereas it was found on nine of 11 (81.8%) non-rhBMP-2-treated sites. Within 4 months of healing, rhBMP-2-treated sites showed better radiographic bone density, greater defect fill, and significantly more bone gain in ridge height (P <0.05) than controls. Experimental hemimandibles exhibited lower rates of membrane exposure and a noteworthy, ectopic bone formation above the mesh in 72% of sites. Results from micro-CT also suggested a trend of less vertical bone gain and bone mineral density in controls (P >0.05). Under light microscope, predominant lamellar patterns were found in the specimen obtained from rhBMP-2 sites. With inherent limitations of the canine model and the concern of such a demanding surgical technique, current findings suggest that the presence of rhBMP-2 in a composite graft allows an increase of vertical gain, with formation of ectopic bone over the titanium mesh in comparison with non-rhBMP-2 sites.
Guided bone augmentation using ceramic space-maintaining devices: the impact of chemistry
Anderud, Jonas; Abrahamsson, Peter; Jimbo, Ryo; Isaksson, Sten; Adolfsson, Erik; Malmström, Johan; Naito, Yoshihito; Wennerberg, Ann
2015-01-01
The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome. PMID:25792855
Esposito, Marco; Pellegrino, Gerardo; Pistilli, Roberto; Felice, Pietro
2011-01-01
To evaluate whether 5 mm short dental implants could be an alternative to augmentation with anorganic bovine bone and placement of at least 10 mm long implants in posterior atrophic jaws. Fifteen patients with bilateral atrophic mandibles (5-7 mm bone height above the mandibular canal), and 15 patients with bilateral atrophic maxillae (4-6 mm bone height below the maxillary sinus) and bone thickness of at least 8 mm, were randomised according to a splitmouth design to receive one to three 5 mm short implants or at least 10 mm long implants in augmented bone. Mandibles were vertically augmented with interpositional bone blocks and maxillary sinuses with particulated bone via a lateral window. Implants were placed after 4 months, submerged and loaded, after 4 months, with provisional prostheses. Four months later, definitive provisionally cemented prostheses were delivered. Outcome measures were: prosthesis and implant failures, any complication and peri-implant marginal bone level changes. In 5 augmented mandibles, the planned 10 mm long implants could not be placed and shorter implants (7 and 8.5 mm) had to be used instead. One year after loading no patient dropped out. Two long (8.5 mm in the mandible and 13 mm in the maxilla) implants and one 5 mm short maxillary implant failed. There were no statistically significant differences in failures or complications. Patients with short implants lost on average 1 mm of peri-implant bone and patients with longer implants lost 1.2 mm. This difference was statistically significant. This pilot study suggests that 1 year after loading, 5 mm short implants achieve similar if not better results than longer implants placed in augmented bone. Short implants might be a preferable choice to bone augmentation since the treatment is faster, cheaper and associated with less morbidity, however their long-term prognosis is unknown.
Periodontal Therapy in Dogs Using Bone Augmentation Products Marketed for Veterinary Use.
Angel, Molly
Periodontal disease is extremely common in companion animal practice. Patients presenting for a routine oral examination and prophylaxis may be found to have extensive periodontal disease and attachment loss. Vertical bone loss is a known sequela to periodontal disease and commonly involves the distal root of the mandibular first molar. This case report outlines two dogs presenting for oral examination and prophylaxis with general anesthesia. Both patients did not have any clinical symptoms of periodontal disease other than halitosis. Both patients were diagnosed with three-walled vertical bone loss defects of one or both mandibular first molars utilizing dental radiography as well as periodontal probing, measuring, and direct visual inspection. These defects were consistent with periodontal disease index stage 4 (>50% attachment loss). The lesions were treated with appropriate root planing and debridement. Bone augmentation products readily available and marketed for veterinary use were then utilized to fill the defects to promote both the re-establishment of normal alveolar bone height and periodontal ligament reattachment to the treated surface. Follow-up assessment and owner dedication is critical to treatment outcome. Both patients' 6 mo follow-up examinations radiographically indicated bone repair and replacement with visible periodontal ligament space.
Nissan, Joseph; Marilena, Vered; Gross, Ora; Mardinger, Ofer; Chaushu, Gavriel
2012-01-01
Grafting with bone blocks may be required to restore the alveolar process in extremely atrophic maxillae prior to implant placement to ensure both function and esthetics. The present study was conducted to histologically and histomorphometrically evaluate the application of allograft cancellous bone blocks for the augmentation of the anterior atrophic maxilla. Consecutive patients with severe atrophy in the anterior maxilla underwent augmentation with cancellous bone block allografts. Bony deficiencies of at least 3 mm horizontally and up to 3 mm vertically according to computed tomographic para-axial reconstructions served as inclusion criteria. After 6 months, implants were placed and a cylindric sample core from the graft area was collected. All specimens were prepared for histologic and histomorphometric examination. Forty patients were included in the study. Eighty-three implants were placed in bone that was augmented with 60 cancellous freeze-dried bone block allografts. The implant survival rate was 98.8%. Mean follow-up was 48 ± 22 months (range, 14 to 82 months). The mean percentage of newly formed bone was 33% ± 18%, that of the residual cancellous block allograft was 26% ± 17%, and marrow and connective tissue comprised 41% ± 2%. Statistically significant histomorphometric differences regarding newly formed bone and residual cancellous block allograft were found between younger (< 40 years) and older (≥ 40 years) patients, respectively. Age did not appear to influence the percentage of marrow and connective tissue. Cancellous bone block allograft is biocompatible and osteoconductive, permitting new bone formation following augmentation of extremely atrophic anterior maxillae in a two-stage implant placement procedure. New bone formation was age-dependent.
Nissan, Joseph; Marilena, Vered; Gross, Ora; Mardinger, Ofer; Chaushu, Gavriel
2011-06-15
The present study was conducted to histologically and histomorphometrically evaluate the application of cancellous bone-block allografts for the augmentation of the posterior atrophic mandible. Twenty-four consecutive patients underwent augmentation with cancellous bone-block allografts in the posterior mandible. A bony deficiency of at least 3 mm horizontally and/or vertically according to CT para-axial reconstruction served as inclusion criteria. Following 6 months, 85 implants were placed and a cylindrical sample core was collected. All specimens were prepared for histological and histomorphometrical examination. Implant survival rate was 95.3%. Follow-up ranged 12-66 months (mean 43 ± 19 months). The mean newly formed bone was 44 ± 28%, that of the residual cancellous bone-block allograft 29 ± 24%, and of the marrow and connective tissue 27 ± 21%. Statistically significant histomorphometric differences regarding newly formed bone (69% vs. 31%, p = 0.05) were found between younger (< 45 years) and older (> 45 years) patients, respectively. Histomorphometric differences regarding residual cancellous bone-block allograft (17% vs. 35%) and of the marrow and connective tissue (14% vs. 34%) were not statistically significant. Cancellous bone-block allograft is biocompatible and osteoconductive, permitting new bone formation following augmentation of extremely atrophic posterior mandible with a two-stage implant placement procedure. New bone formation was age-dependent. Copyright © 2011 Wiley Periodicals, Inc.
Kaner, Dogan; Zhao, Han; Terheyden, Hendrik; Friedmann, Anton
2015-06-01
We investigated the effect of soft tissue expansion (STE) on vertical ridge augmentation with regard to the incidence of wound dehiscences and the impairment of microcirculation in dogs, and the applicability of laser Doppler flowmetry (LDF) to explore the relation between microcirculation and wound healing. Bone defects were created on both mandibular sides in ten beagle dogs by extraction of premolars and removal of bone. Six weeks later, self-filling tissue expanders were implanted in randomly assigned test sites. After 5 weeks of expansion, vertical augmentation was carried out in test and control sites using calvarial onlay grafts side by side with granular biphasic calcium phosphate covered with a resorbable polyethylene glycol membrane. Microcirculation was evaluated with laser Doppler flowmetry (LDF). The incidence of wound dehiscences was evaluated after 2 weeks. The validity of LDF to predict dehiscences was evaluated by construction of receiver operating characteristic (ROC) curves. After augmentation, test sites showed significantly better perfusion than control sites without preceding STE (P = 0.012). Three days after surgery, perfusion was still significantly decreased in control sites (P = 0.005), while microcirculation in test sites had returned to pre-surgical levels. After 2 weeks, healing in test sites was good, whereas eight dehiscences were found in control sites (P = 0.002). ROC curves showed that microcirculation levels immediately after augmentation surgery significantly predicted subsequent wound dehiscences (AUC = 0.799, CI 0.642-0.955, P = 0.006). Laser Doppler flowmetry is suitable for evaluation of soft tissue microcirculation after ridge augmentation. STE reduced the impairment of microcirculation caused by vertical ridge augmentation and decreased the incidence of wound dehiscences in the investigated animal model. © 2014 The Authors. Clinical Oral Implants Research Published by John Wiley & Sons Ltd.
Wolf, Michael; Wurm, Alexander; Heinemann, Friedhelm; Gerber, Thomas; Reichert, Christoph; Jäger, Andreas; Götz, Werner
2014-01-01
Maxillary sinus floor augmentation is a treatment that has been proposed for patients in whom the alveolar bone height is insufficient. This procedure is commonly used in patients aged 40 to 70 years and older. However, little information exists whether the factor of age might influence the outcome of augmentation procedures. The aim of this study was to investigate whether the patient's age has an effect on bone formation and incorporation in maxillary sinus floor augmentation procedures. A fully synthetic nanocrystalline bone augmentation material (NanoBone, Artoss) was used for sinus floor augmentation in patients with a subantral vertical bone height of at least 3 mm and maximum of 7 mm. After 7 months healing time, biopsy specimens were taken and were divided into two groups according to the patient's age. Exclusion criteria were poor general health (eg, severe renal/and or liver disease), history of a radiotherapy in the head region, chemotherapy at the time of surgical procedure, noncompensated diabetes mellitus, symptoms of a maxillary sinus disease, active periodontal or systemic diseases, smoking, and poor oral hygiene. Histologic analyses with hematoxylin-eosin stain were performed. Multinucleated osteoclast-like cells were identified by histochemical staining (tartrate-resistant acid phosphatase [TRAP]). Quantitative and age-dependent assessment of bone formation, residual bone grafting material, and soft tissue formation following sinus augmentation was performed using histomorphometric analysis and the Bonferroni adjustment of the Student t test. Twenty biopsy specimens from 17 patients were taken and divided into two groups according to age (group 1: 41 to 52 years; group 2: 66 to 71 years) containing 10 specimens each, which were analyzed in triplicate resulting in a total of 30 specimens per group. A regeneration process with varying amounts of newly formed bone surrounded by marrow-like tissue was present in all augmented regions. No signs of inflammation or immune reactions were visible. Residual particles of the augmentation material could be observed within the specimens. An age-dependent difference in investigated parameters between the two age groups could not be documented. The histologic examinations confirm that the fully synthetic nanocrystalline bone augmentation material used in this study is biocompatible and allows maxillary sinus augmentation in patients aged 41 to 70 years.
Zuchuat, Jésica; Berli, Marcelo; Maldonado, Ysaí; Decco, Oscar
2017-12-26
Cr-Co-Mo (ASTM F75) alloy has been used in the medical environment, but its use as a rigid barrier membrane for supporting bone augmentation therapies has not been extensively investigated. In the present study, Cr-Co-Mo membranes of different heights were placed in New Zealand white, male rabbit tibiae to assess the quality and volume of new bone formation, without the use of additional factors. Animals were euthanized at 20, 30, 40, and 60 days. Bone formation was observed in all of the cases, although the tibiae implanted with the standard membranes reached an augmentation of bone volume that agreed with the density values over the timecourse. In all cases, plasmatic exudate was found under the membrane and in contact with the new bone. Histological analysis indicated the presence of a large number of chondroblasts adjacent to the inner membrane surface in the first stages, and osteoblasts and osteocytes were observed under them. The bone formation was appositional. The Cr-Co-Mo alloy provides a scaffold with an adequate microenvironment for vertical bone volume augmentation, and the physical dimensions and disposition of the membrane itself influence the new bone formation.
Zuchuat, Jésica; Berli, Marcelo; Maldonado, Ysaí; Decco, Oscar
2017-01-01
Cr-Co-Mo (ASTM F75) alloy has been used in the medical environment, but its use as a rigid barrier membrane for supporting bone augmentation therapies has not been extensively investigated. In the present study, Cr-Co-Mo membranes of different heights were placed in New Zealand white, male rabbit tibiae to assess the quality and volume of new bone formation, without the use of additional factors. Animals were euthanized at 20, 30, 40, and 60 days. Bone formation was observed in all of the cases, although the tibiae implanted with the standard membranes reached an augmentation of bone volume that agreed with the density values over the timecourse. In all cases, plasmatic exudate was found under the membrane and in contact with the new bone. Histological analysis indicated the presence of a large number of chondroblasts adjacent to the inner membrane surface in the first stages, and osteoblasts and osteocytes were observed under them. The bone formation was appositional. The Cr-Co-Mo alloy provides a scaffold with an adequate microenvironment for vertical bone volume augmentation, and the physical dimensions and disposition of the membrane itself influence the new bone formation. PMID:29278372
Macchi, Aldo; Luongo, Giuseppe
2016-01-01
Purpose. To present a computer-assisted-design/computer-assisted-manufacturing (CAD/CAM) technique for the design, fabrication, and clinical application of custom-made synthetic scaffolds, for alveolar ridge augmentation. Methods. The CAD/CAM procedure consisted of (1) virtual planning/design of the custom-made scaffold; (2) milling of the scaffold into the exact size/shape from a preformed synthetic bone block; (3) reconstructive surgery. The main clinical/radiographic outcomes were vertical/horizontal bone gain, any biological complication, and implant survival. Results. Fifteen patients were selected who had been treated with a custom-made synthetic scaffold for ridge augmentation. The scaffolds closely matched the shape of the defects: this reduced the operation time and contributed to good healing. A few patients experienced biological complications, such as pain/swelling (2/15: 13.3%) and exposure of the scaffold (3/15: 20.0%); one of these had infection and complete graft loss. In all other patients, 8 months after reconstruction, a well-integrated newly formed bone was clinically available, and the radiographic evaluation revealed a mean vertical and horizontal bone gain of 2.1 ± 0.9 mm and 3.0 ± 1.0 mm, respectively. Fourteen implants were placed and restored with single crowns. The implant survival rate was 100%. Conclusions. Although positive outcomes have been found with custom-made synthetic scaffolds in alveolar ridge augmentation, further studies are needed to validate this technique. PMID:28070512
Kim, Ji-Min; Sohn, Dong-Seok; Heo, Jeong-Uk; Park, Jun-Sub; Jung, Heui-Seung; Moon, Jee-Won; Lee, Ju-Hyoung; Park, In-Sook
2012-12-01
The purpose of this study was to evaluate the success rate of implants and vertical bone gain of edentulous posterior maxilla using ultrasonic piezoelectric vibration and hydraulic pressure, namely the hydrodynamic piezoelectric internal sinus elevation (HPISE) technique through a crestal approach. A total of 250 maxillary sinuses were augmented using HPISE and 353 implants (averaging 11.8 mm in length and 4.5 mm in diameter), with 12 different systems, were placed simultaneously with or without additional bone grafting. Plain radiograms and cone beam computed tomograms were taken in all patients to evaluate sinus augmentation. Membrane perforation was recorded at 10 of the 353 implant sites. The perforation rate was 2.83%. The total success rate of implantation was 97.2% after an average of 69.3 weeks of loading. The crestally approached sinus augmentation using ultrasonic piezoelectric vibration and hydraulic pressure is an additional method of maxillary sinus augmentation.
Nissan, Joseph; Kolerman, Roni; Chaushu, Liat; Vered, Marilena; Naishlos, Sarit; Chaushu, Gavriel
2018-02-01
An age-related decrease in the number of osteogenic progenitor cells may compromise bone augmentation. Histomorphometrical assessment of age-related new bone formation, following atrophic alveolar ridge reconstruction, using cancellous bone-block allografts. Ninety-three consecutive patients (58 females and 35 males) were referred for implant-supported restoration of 122 severe atrophic alveolar ridges. Alveolar ridge deficiency locations were classified as anterior maxilla (n = 58), posterior maxilla (n= 32), and posterior mandible (n = 32). A bony deficiency of at least 3 mm horizontally and up to 3 mm vertically according to computerized tomography (CT) in the posterior mandible and anterior maxilla, served as inclusion criteria. In the posterior maxilla, a residual alveolar ridge up to 4 mm vertically according to CT served as inclusion criteria. Augmentation was performed by the use of cancellous bone-block allografts. Bone biopsies (9-month posterior maxilla, 4 months anterior maxilla and posterior mandible) of young (≤40 years) versus older (>40 years) patients were histomorphometrically evaluated. In the posterior maxilla, no statistically significant histomorphometric differences were noted. While at the anterior maxilla and posterior mandible, statistically significant more newly formed bone was found in young versus older individuals, respectively (38.6% vs 19.8%, P = 0.04 and 69% vs 31%, P = .05). New bone formation following residual alveolar ridge bone grafting is age-related. Longer bone consolidation and healing time may be recommended for older individuals. © 2017 Wiley Periodicals, Inc.
Draenert, Florian G; Gebhart, Florian; Mitov, Gergo; Neff, Andreas
2017-06-01
Alveolar ridge and vertical augmentations are challenging procedures in dental implantology. Even material blocks with an interconnecting porous system are never completely resorbed. Shell techniques combined with autologous bone chips are therefore the gold standard. Using biopolymers for these techniques is well documented. We applied three-dimensional (3-D) techniques to create an individualized bending model for the adjustment of a plane biopolymer membrane made of polylactide. Two cases with a vertical alveolar ridge defect in the maxilla were chosen. The cone beam computed tomography data were processed with a 3-D slicer and the Autodesk Meshmixer to generate data about the desired augmentation result. STL data were used to print a bending model. A 0.2-mm poly-D, L-lactic acid membrane (KLS Matin Inc., Tuttlingen, Germany) was bended accordingly and placed into the defect via a tunnel approach in both cases. A mesh graft of autologous bone chips and hydroxylapatite material was augmented beneath the shell, which was fixed with osteosynthesis screws. The operative procedure was fast and without peri- or postoperative complications or complaints. The panoramic x-ray showed correct fitting of the material in the location. Bone quality at the time of implant placement was type II, resulting in good primary stability. A custom-made 3-D model for bending confectioned biomaterial pieces is an appropriate method for individualized adjustment in shell techniques. The advantages over direct printing of the biomaterial shell and products on the market, such as the Xyoss shell (Reoss Inc., Germany), include cost-efficiency and avoidance of regulatory issues. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of Alveolar Segmental Sandwich Osteotomy on Alveolar Height: A Preliminary Study.
Mehta, Karan S; Prasad, Kavitha; Shetty, Vibha; Ranganath, Krishnappa; Lalitha, R M; Dexith, Jayashree; Munoyath, Sejal K; Kumar, Vineeth
2017-12-01
Bone loss following extraction is maximum in horizontal dimension. Height is also reduced which is pronounced on the buccal aspect. Various surgical procedures are available to correct the bone volume viz. GBR, onlay bone grafting, alveolar distraction and sandwich osteotomy. Sandwich osteotomy has been found to increase the vertical alveolar bone height successfully. The objective of the study was to assess the effect of alveolar segmental sandwich osteotomy on alveolar height and crestal width. A prospective study was undertaken from December 2012 to August 2014. Seven patients with 12 implant sites with a mean age of 36 years were recruited. All seven patients with 12 implant sites underwent alveolar segmental sandwich osteotomy and interpositional bone grafting. Alveolar bone height was assessed radiographically preoperatively, immediate post-op, and at 3 months post-op. Alveolar bone width was assessed radiographically preoperatively and at 3 months post-op. Statistical significance was inferred at p < 0.05. The mean vertical augmentation at immediate post-op was 6.58 mm ( p = 0.001). The vertical augmentation that was achieved 3 months post-op was a mean of 3.75 mm which was statistically significant ( p = 0.004). The change in alveolar height from immediate post-op to 3 month post-op was a mean 1.69 mm. The mean change in alveolar crestal width at 3 months was a mean of -0.29 mm ( p = 0.57). Sandwich osteotomy can be used as an alternative technique to increase alveolar bone height prior to implant placement. Moderate alveolar deficiency can be predictably corrected by this technique.
Alagl, Adel S; Madi, Marwa
2018-05-01
Alveolar ridge deficiency is considered a major limitation for successful implant placement, as well as for the long-term success rate, especially in the anterior maxillary region. Various approaches have been developed to increase bone volume. Among those approaches, inlay and onlay grafts, alveolar ridge distraction, and guided bone regeneration have been suggested. The use of titanium mesh is a reliable method for ridge augmentation. We describe a patient who presented with a localized, combined, horizontal and vertical ridge defect in the anterior maxilla. The patient was treated using titanium mesh and alloplast material mixed with a nano-bone graft to treat the localized ridge deformity for future implant installation. The clinical and radiographic presentation, as well as relevant literature, are presented.
Al-Ardah, Aladdin; Alqahtani, Nasser; AlHelal, Abdulaziz; Goodacre, Brian; Swamidass, Rajesh; Garbacea, Antoanela; Lozada, Jaime
2018-05-02
This technique describes a novel approach for planning and augmenting a large bony defect using a titanium mesh (TiMe). A 3-dimensional (3D) surgical model was virtually created from a cone beam computed tomography (CBCT) and wax-pattern of the final prosthetic outcome. The required bone volume (horizontally and vertically) was digitally augmented and then 3D printed to create a bone model. The 3D model was then used to contour the TiMe in accordance with the digital augmentation. With the contoured / preformed TiMe on the 3D printed model a positioning jig was made to aid the placement of the TiMe as planned during surgery. Although this technique does not impact the final outcome of the augmentation procedure, it allows the clinician to virtually design the augmentation, preform and contour the TiMe, and create a positioning jig reducing surgical time and error.
Chasioti, Evdokia; Chiang, Tat Fai; Drew, Howard J
2013-01-01
Prosthetic guided implant surgery requires adequate ridge dimensions for proper implant placement. Various surgical procedures can be used to augment deficient alveolar ridges. Studies have examined new bone formation on deficient ridges, utilizing numerous surgical techniques and biomaterials. The goal is to develop time efficient techniques, which have low morbidity. A crucial factor for successful bone grafting procedures is space maintenance. The article discusses space maintenance tenting screws, used in conjunction with bone allografts and resorbable barrier membranes, to ensure uneventful guided bone regeneration (GBR) enabling optimal implant positioning. The technique utilized has been described in the literature to treat severely resorbed alveolar ridges and additionally can be considered in restoring the vertical and horizontal component of deficient extraction sites. Three cases are presented to illustrate the utilization and effectiveness of tenting screw technology in the treatment of atrophic extraction sockets and for deficient ridges.
Wang, Bo; Shen, Guofang; Fang, Bing; Yu, Hongbo; Wu, Yong; Sun, Liangyan
2014-03-01
To quantitatively evaluate lower incisor decompensation and the surrounding periodontal region after augmented corticotomy-assisted surgical orthodontics in patients with Class III malocclusion. This prospective study enrolled patients with severe Class III malocclusion who underwent augmented corticotomy in the lower anterior region before orthodontic surgery. Cone-beam computed tomograms and lateral cephalograms were obtained before treatment (T0), after presurgical orthodontic treatment (T1), and at removal of the orthodontic surgical appliances (T2). Repeated measures analysis of variance was used to compare variables at each time point: root length (RL), anterior vertical alveolar bone level at the labial side (AVBL), posterior vertical alveolar bone level at the lingual side (PVBL), labial alveolar bone thickness at the apex (LA), lingual alveolar bone thickness at the apex (LP), and angle of the incisor to the mandibular plane (L1-MP). In the 8 subjects studied, RL was maintained from T0 to T2 (P > .05), whereas AVBL and PVBL increased from T0 to T1 (P < .05) and then decreased from T1 to T2 (P < .05). LA and L1-MP increased from T0 to T1 (P < .001) but remained steady from T1 to T2 (P > .05). LP decreased from T0 to T1 (P < .05) but increased from T1 to T2 (P < .05) with no further change. Augmented corticotomy-assisted surgical orthodontics can achieve adequate tooth decompensation with minimal periodontal side-effects in the lower anterior region in patients with Class III malocclusion. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Fahmy, Rania A; Mahmoud, Naguiba; Soliman, Samia; Nouh, Samir R; Cunningham, Larry; El-Ghannam, Ahmed
2015-12-01
The aim of the present study was to evaluate the effect of a porous silica-calcium phosphate composite (SCPC50) loaded with and without recombinant human bone morphogenetic protein-2 (rhBMP-2) on alveolar ridge augmentation in saddle-type defects. Micro-granules of SCPC50 resorbable bioactive ceramic were coated with rhBMP-2 10 mg and then implanted into a saddle-type defect (12 × 7 mm) in a dog mandible and covered with a collagen membrane. Control groups included defects grafted with SCPC50 granules without rhBMP-2 and un-grafted defects. Bone healing was evaluated at 8 and 16 weeks using histologic and histomorphometric techniques. The increase in bone height and total defect fill were assessed for each specimen using the ImageJ 1.46 program. The release kinetics of rhBMP-2 was determined in vitro. The height of the bone in the grafted defects and the total defect fill were statistically analyzed. SCPC50 enhanced alveolar ridge augmentation as indicated by the increased vertical bone height, bone surface area, and bone volume after 16 weeks. SCPC50-rhBMP-2 provided a sustained release profile of a low effective dose (BMP-2 4.6 ± 1.34 pg/mL per hour) during the 1- to 21-day period. The slow rate of release of rhBMP-2 from SCPC50 accelerated synchronized complete bone regeneration and graft material resorption in 8 weeks. Successful rapid reconstruction of the alveolar ridge by SCPC50 and SCPC50-rhBMP-2 occurred without any adverse excessive bone formation, inflammation, or fluid-filled voids. Results of this study suggest that SCPC50 is an effective graft material to preserve the alveolar ridge after tooth extraction. Coating SCPC50-rhBMP-2 further accelerated bone regeneration and a considerable increase in vertical bone height. These findings make SCPC50 the primary choice as a carrier for rhBMP-2. SCPC50-rhBMP-2 can serve as an alternative to autologous bone grafting. Published by Elsevier Inc.
Implant-supported restoration of congenitally missing teeth using cancellous bone block-allografts.
Nissan, Joseph; Mardinger, Ofer; Strauss, Morris; Peleg, Michael; Sacco, Roberto; Chaushu, Gavriel
2011-03-01
Patients with congenitally missing teeth may present with undeveloped alveolar bone morphology, making implant reconstruction a challenge. The aim of the present study was to evaluate the outcome of dental implants after ridge augmentation with cancellous freeze-dried block bone allografts in patients with congenitally missing teeth. Twelve patients with a mean age of 21 ± 4 years, were included. Congenitally missing teeth included maxillary lateral incisors, a maxillary canine, and mandibular central and lateral incisors. A bony deficiency of ≥3 mm horizontally and ≤3 mm vertically according to computerized tomography served as inclusion criteria. Twenty-one implants were inserted after a healing period of 6 months. Five out of 21 implants were immediately restored. Bone measurements were taken before bone augmentation, during implant placement, and at second-stage surgery. Nineteen cancellous allogeneic bone-blocks were used. The mean follow-up time was 30 ± 16 months. Bone block and implant survival rates were 100% and 95.2%, respectively. Mean bone gain was statistically significant (P < .001): 5 ± 0.5 mm horizontally and 2 ± 0.5 mm vertically. All of the patients received a fixed implant-supported prosthesis. Soft tissue complications occurred in 4 patients (30%). Complications after cementation of the crowns were seen in 1 implant (4.8%). All implants remained clinically osseointegrated at the end of the follow-up examination. There was no crestal bone loss around the implants beyond the first implant thread. Cancellous bone block-allografts can be used successfully for implant-supported restorations in patients with congenitally missing teeth. Copyright © 2011 Mosby, Inc. All rights reserved.
Nogueira, Renato Luiz Maia; Osterne, Rafael Lima Verde; Abreu, Ricardo Teixeira; Araújo, Phelype Maia
2017-07-01
An alternative technique to reconstruct atrophic alveolar vertical bone after implant placement is presented. The technique consists of distraction osteogenesis or direct surgical repositioning of an implant-and-bone block segment after segmental osteotomies that can be used in esthetic or unesthetic cases. Initially, casts indicating the implant position are obtained and the future ideal prosthetic position is determined to guide the model surgery. After the model surgery, a new provisional prosthesis is fabricated, and an occlusal splint, which is used as a surgical guide and a device for distraction osteogenesis, is custom fabricated. Then, the surgery is performed. For mobilization of the implant-and-bone block segment, 2 vertical osteotomies are performed and then joined by a horizontal osteotomy. The implant-and-bone block segment is moved to the planned position. If a small movement is planned, then the implant-and-bone segment is stabilized; for larger movements, the implant-and-bone segment can be gradually moved to the final position by distraction osteogenesis. This technique has good predictability of the final position of the implant-and-bone segment and relatively fast esthetic rehabilitation. It can be considered for dental implants in regions of vertical bone atrophy. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Li, Dehua; Liu, Yanpu; Ma, Wei; Song, Yingliang
2011-10-01
Dental implants have proven to be a reliable modality for the rehabilitation of missing teeth. However, there are limited reports on managing anodontia related to ectodermal dysplasia in the scientific literature. The severely reduced bone quantity due to the congenital absence of multiple natural teeth is the biggest challenge for the surgeon. There are a variety of bone augmentation procedures to establish adequate bone quantity, and the surgical planning should be used on an individual case basis. This is a report of a 19-year-old male patient affected by hypohidrotic ectodermal dysplasia. Oligodontia associated with severe atrophy of jaws was the chief complaint for seeking treatment. Based on clinical and radiographic examinations, 2 bone augmentation procedures were used to obtain sufficient width of alveolus for implant placement by performing an onlay bone graft in the maxilla and vertical distraction osteogenesis in the mandible. The treatment planning was discussed and informed consent was obtained.
Implant site development by orthodontic forced extraction: a preliminary study.
Amato, Francesco; Mirabella, A Davide; Macca, Ugo; Tarnow, Dennis P
2012-01-01
To evaluate the soft and hard tissue response to orthodontic implant site development (OISD) (ie, forced extraction), to measure the amount of tissue that was regenerated and its relationship to the amount of orthodontic vertical tooth movement, to evaluate the tissue response in teeth with different degrees of periodontal attachment loss, to understand the limits of OISD, and to evaluate the implant survival rate. A total of 32 hopeless teeth were treated with OISD, and 27 implants were placed in 13 patients consecutively. The level of periodontal attachment on the teeth to be extracted, amount of augmented alveolar bone, changes in soft tissue volume, and the rate of orthodontic tooth movement were recorded. Mean values after OISD were as follows: orthodontic extrusive movement, 6.2 ± 1.4 mm; bone augmentation, 4 ± 1.4 mm; coronal movement of the gingival margin, 3.9 ± 1.5 mm; coronal movement of the mucogingival junction, 2.1 ± 1.3 mm; keratinized gingival augmentation, 1.8 ± 1.1 mm; gingival thickness (buccolingual dimension) augmentation, 0.7 ± 0.4 mm; recession, 1.8 ± 1.2 mm; bone augmentation/orthodontic movement ratio (efficacy), 68.9% ± 17.3%; gingival augmentation/orthodontic movement ratio (efficacy), 65.2% ± 19.9%; and pocket depth reduction, 1.8 ± 0.9 mm. The implant survival rate was 96.3%. OISD was a viable treatment for these hopeless teeth to regenerate hard and soft tissues. Its efficacy was about 70% for bone regeneration and 60% for gingival augmentation. The residual attachment level on the tooth was not a limitation. OISD might be a valuable treatment option to regenerate tissues for implant site development in patients in need of conventional orthodontic therapy.
Three-Dimensional Reconstruction of Post-Traumatic Deficient Anterior Maxilla.
Rachmiel, Adi; Shilo, Dekel; Aizenbud, Dror; Pen, Mark; Rachmiel, Dana; Emodi, Omri
2017-12-01
Maxillary retrognathism appears in 14.3% of patients exhibiting malocclusion after trauma treatment. This report describes the application of alveolar distraction osteogenesis (ADO) for treating the severely deficient anterior maxilla after trauma injuries in the vertical and anteroposterior planes. This is a retrospective study of patients exhibiting severe vertical and anteroposterior maxillary bone deficiency after trauma injuries and treated by ADO as a first stage with additional Le Fort I advancement when required. Predictor variables included ADO for alveolar augmentation and Le Fort I advancement for anteroposterior discrepancy after ADO. Outcome variables included dental implant failure and anteroposterior maxillary relations. Twelve patients with severe atrophic anterior maxilla secondary to trauma injuries were included and treated using ADO. In accordance to the size of the horizontal deficiency, 1 or 2 distractors were used. Vertical alveolar distraction was performed and the transported segments were elongated at a rate of 0.5 mm/day to a mean total of 13.9 mm (12 to 15 mm). In 4 of 12 cases, there was a severe anteroposterior discrepancy larger than 8 mm that could not be fully corrected using an anterior inclination during the vertical elongation. Therefore, a second stage of conventional Le Fort I advancement was performed. Thirty-eight dental implants were inserted, with a survival rate of 97.37% (median follow-up, 6.2 yr). This report describes treatment of the deficient anterior maxilla after trauma injuries in the vertical and anteroposterior planes, including implant-based dental rehabilitation. The main advantages include simultaneous bone and mucosa augmentation, no donor site morbidity, considerably higher vertical augmentation compared with other methods, and minimal relapse. Using an additional Le Fort I advancement in severe cases permits a useful method for proper repositioning of the maxilla, thus resulting in superior intermaxillary relations. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Nogami, Shinnosuke; Yamauchi, Kensuke; Shiiba, Shunji; Kataoka, Yoshihiro; Hirayama, Bunichi; Takahashi, Tetsu
2015-03-01
The purpose of this study was to evaluate the treatment modalities for neurosensory disturbances (NSDs) of the inferior alveolar nerve occurring after retromolar bone harvesting for bone augmentation procedures before implant placement. One hundred four patients, of which 49 and 55 exhibited vertical or horizontal alveolar ridge defects in the mandible and maxilla, respectively, were enrolled. Nineteen patients underwent block bone grafting, 38 underwent guided bone generation or autogenous bone grafting combined with titanium mesh reconstruction, and 47 underwent sinus floor augmentation. Using a visual analog scale, we examined subjective symptoms and discomfort related to sensory alteration within the area of the NSDs in these patients. NSDs were clinically investigated using a two-point discrimination test with blunt-tipped calipers. In addition, neurometry was used for evaluation of trigeminal nerve injury. We tested three treatment modalities for NSDs: follow-up observation (no treatment), medication, and stellate ganglion block (SGB). A week after surgery, 26 patients (25.0%) experienced NSDs. Five patients received no treatment, 10 patients received medication, and 11 patients received SGB. Three months after surgery, patients in the medication and SGB group achieved complete recovery. Current perception threshold values recovered to near-baseline values at 3 months: recovery was much earlier in this group than in the other two groups. SGB can accelerate recovery from NSDs. Our results justify SGB as a reasonable treatment modality for NSDs occurring after the harvesting of retromolar bone grafts. Wiley Periodicals, Inc.
Younes, F; Eghbali, A; De Troyer, S; De Bruyckere, T; Cleymaet, R; Cosyn, J
2016-09-01
Studies on the vertical stability of augmented bone after sinus lifting differ substantially. In addition, long healing periods are usually advocated prior to implant installation. The purpose of this case series study was to evaluate the changes in bone height after sinus lifting with a bovine-derived xenograft and to evaluate the clinical outcome of bone condensing implants installed after a short healing period. Patients treated during the years 2010-2013 were re-examined using peri-apical radiographs to evaluate the changes in augmented bone height (BH) and marginal bone loss (BL). Fifty-seven of 70 eligible subjects (28 male and 29 female, mean age 56 years) attended for reassessment. Data were available for 53 sinus lifts and 105 implants installed after a mean healing period of 4.6±1.5 months. Implant survival was 99% after a mean time in function of 19±9 months. Baseline BH, BH at implant placement, and final BH were on average 3.87±1.74mm, 13.75±2.12mm, and 13.11±2.12mm, respectively (P<0.001). Mean BL was 0.51±0.65mm. Only limited resorption is to be expected after sinus lifting in the short term. A bone condensing implant can be used in the early healing phase with successful outcomes in terms of implant survival and bone adaptation. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Urban, Istvan; Jovanovic, Sascha A; Buser, Daniel; Bornstein, Michael M
2015-01-01
The objective of this study was to assess implant therapy after a staged guided bone regeneration procedure in the anterior maxilla by lateralization of the nasopalatine nerve and vessel bundle. Neurosensory function following augmentative procedures and implant placement, assessed using a standardized questionnaire and clinical examination, were the primary outcome variables measured. This retrospective study included patients with a bone defect in the anterior maxilla in need of horizontal and/or vertical ridge augmentation prior to dental implant placement. The surgical sites were allowed to heal for at least 6 months before placement of dental implants. All patients received fixed implant-supported restorations and entered into a tightly scheduled maintenance program. In addition to the maintenance program, patients were recalled for a clinical examination and to fill out a questionnaire to assess any changes in the neurosensory function of the nasopalatine nerve at least 6 months after function. Twenty patients were included in the study from February 2001 to December 2010. They received a total of 51 implants after augmentation of the alveolar crest and lateralization of the nasopalatine nerve. The follow-up examination for questionnaire and neurosensory assessment was scheduled after a mean period of 4.18 years of function. None of the patients examined reported any pain, they did not have less or an altered sensation, and they did not experience a "foreign body" feeling in the area of surgery. Overall, 6 patients out of 20 (30%) showed palatal sensibility alterations of the soft tissues in the region of the maxillary canines and incisors resulting in a risk for a neurosensory change of 0.45 mucosal teeth regions per patient after ridge augmentation with lateralization of the nasopalatine nerve. Regeneration of bone defects in the anterior maxilla by horizontal and/or vertical ridge augmentation and lateralization of the nasopalatine nerve prior to dental implant placement is a predictable surgical technique. Whether or not there were clinically measurable impairments of neurosensory function, the patients did not report them or were not bothered by them.
Chaushu, Gavriel; Mardinger, Ofer; Calderon, Shlomo; Moses, Ofer; Nissan, Joseph
2009-03-01
The simultaneous placement of dental implants during sinus augmentation is advocated in cases in which >or=4 to 5 mm of alveolar bone exists coronally to the sinus floor. The aim of the present study was to assess the survival rate of dental implants placed during sinus augmentation and stabilized by the use of cancellous freeze-dried block allograft. Residual alveolar ridge height
De Stavola, Luca; Fincato, Andrea; Albiero, Alberto Maria
2015-01-01
During autogenous mandibular bone harvesting, there is a risk of damage to anatomical structures, as the surgeon has no three-dimensional control of the osteotomy planes. The aim of this proof-of-principle case report is to describe a procedure for harvesting a mandibular bone block that applies a computer-guided surgery concept. A partially dentate patient who presented with two vertical defects (one in the maxilla and one in the mandible) was selected for an autogenous mandibular bone block graft. The bone block was planned using a computer-aided design process, with ideal bone osteotomy planes defined beforehand to prevent damage to anatomical structures (nerves, dental roots, etc) and to generate a surgical guide, which defined the working directions in three dimensions for the bone-cutting instrument. Bone block dimensions were planned so that both defects could be repaired. The projected bone block was 37.5 mm in length, 10 mm in height, and 5.7 mm in thickness, and it was grafted in two vertical bone augmentations: an 8 × 21-mm mandibular defect and a 6.5 × 18-mm defect in the maxilla. Supraimposition of the preoperative and postoperative computed tomographic images revealed a procedure accuracy of 0.25 mm. This computer-guided bone harvesting technique enables clinicians to obtain sufficient autogenous bone to manage multiple defects safely.
Moussa, Mira; Carrel, Jean-Pierre; Scherrer, Susanne; Cattani-Lorente, Maria; Wiskott, Anselm; Durual, Stéphane
2015-01-01
Introduction: A 3D-printed construct made of orthogonally layered strands of tricalcium phosphate (TCP) and hydroxyapatite has recently become available. The material provides excellent osteoconductivity. We simulated a medium-term experiment in a sheep calvarial model by priming the blocks with BMP-2. Vertical bone growth/maturation and material resorption were evaluated. Materials and methods: Titanium hemispherical caps were filled with either bare- or BMP-2 primed constructs and placed onto the calvaria of adult sheep (n = 8). Histomorphometry was performed after 8 and 16 weeks. Results: After 8 weeks, relative to bare constructs, BMP-2 stimulation led to a two-fold increase in bone volume (Bare: 22% ± 2.1%; BMP-2 primed: 50% ± 3%) and a 3-fold decrease in substitute volume (Bare: 47% ± 5%; BMP-2 primed: 18% ± 2%). These rates were still observed at 16 weeks. The new bone grew and matured to a haversian-like structure while the substitute material resorbed via cell- and chemical-mediation. Conclusion: By priming the 3D construct with BMP-2, bone metabolism was physiologically accelerated, that is, enhancing vertical bone growth and maturation as well as material bioresorption. The scaffolding function of the block was maintained, leaving time for the bone to grow and mature to a haversian-like structure. In parallel, the material resorbed via cell-mediated and chemical processes. These promising results must be confirmed in clinical tests.
Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips
Moro, Alessandro; Foresta, Enrico; Falchi, Marco; De Angelis, Paolo; D'Amato, Giuseppe; Pelo, Sandro
2017-01-01
The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation. PMID:28246596
Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips.
Moro, Alessandro; Gasparini, Giulio; Foresta, Enrico; Saponaro, Gianmarco; Falchi, Marco; Cardarelli, Lorenzo; De Angelis, Paolo; Forcione, Mario; Garagiola, Umberto; D'Amato, Giuseppe; Pelo, Sandro
2017-01-01
The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.
Lin, Guo-Hao; Lim, Glendale; Chan, Hsun-Liang; Giannobile, William V; Wang, Hom-Lay
2016-11-01
To study the effect of the recombinant human bone morphogenetic protein 2 (rhBMP-2) on sinus volumetric and histometric changes after sinus floor augmentation compared to a conventional approach of non-biologic bone grafting materials. An electronic search of 4 databases (January 1990-February 2015), including PubMed/MEDLINE, EMBASE, Web of Science and Cochrane Central, and a hand search of peer-reviewed journals for relevant articles were performed. Human clinical trials with data on comparison of sinus volumetric and/or histometric outcomes with and without the use of rhBMP-2 in sinus grafting procedures, with ≥10 augmentation sites in each study group, and with a follow-up period of at least 6 months, were included. Random-effects meta-analyses were performed to analyze weighted mean difference (WMD) and confidence interval (CI) for the recorded variables according to PRISMA guidelines. Six randomized controlled trials (RCTs) were included. The results of the meta-analyses showed that the WMD of vertical bone height gain was -0.14 mm (95% CI = -1.91 to 1.62 mm, P = 0.87), the WMD of bone density was -142.42 mg/cm 3 (95% CI = -310.62-25.78 mg/cm 3 , P = 0.10), the WMD of the percentage of vital bone was -4.59% (95% CI = -11.73-2.56%, P = 0.21), and the WMD of the percentage of residual bone grafting materials was -9.90% (95% CI = -26.38-6.58%, P = 0.21). The comparison of implant survival rate presented an overall risk ratio of 1.00 (95% CI = 0.94-1.07). The two approaches (conventional bone grafting compared to BMPs) demonstrated comparable effectiveness for both clinical and histomorphometric measures. This systematic review revealed that the use of rhBMP-2 in maxillary sinus floor augmentation achieved similar clinical and histometric outcomes when compared to conventional sinus grafting procedures after a healing period of 6-9 months. However, previous studies showed the morbidity and other patient-reported outcomes were improved in rhBMP-2 approaches as compared to bone autograft procedures (both intraoral and extraoral bone harvesting because no donor site is required). Long-term studies are required to determine the cost-benefit of sinus floor augmentation procedures for patients requiring implant reconstruction. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Asa'ad, Farah; Giannì, Aldo Bruno; Giannobile, William V.; Rasperini, Giulio
2016-01-01
To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration. PMID:27366149
Beltrán, Víctor; Engelke, Wilfried; Prieto, Ruth; Valdivia-Gandur, Iván; Navarro, Pablo; Manzanares, María Cristina; Borie, Eduardo; Fuentes, Ramón
2014-01-01
The aim of this study was to histologically evaluate the performance of demineralized bone matrix (DBM) when compared with a blood clot in addition to an occlusive barrier in the bone regeneration process for bone defects in a rabbit model. Prefabricated metallic capsules with 4.5 mm and 3.5 mm dimensions were placed in five adult rabbit skulls. At the right side, the capsule was filled with DBM, and the clot was located on the left side. The barriers were supplied with a 0.5 mm horizontal peripheral flap and a vertical edge, fitting tightly into a circular slit prepared by a trephine in the skull. After a healing period of three months, the animals were sacrificed, and the samples were prepared for histological and histomorphometric analyses after capsule removal. Trabecular and medullar bone percentages were calculated from the different areas of the newly formed bone inside the metallic barriers, and non-parametric statistical analysis was used to describe the findings. The results showed a complete filling of newly formed bone inside the capsules of both groups. Less mature bone tissue was observed in the upper third of all samples, and a higher trabecular area was observed in the samples with DBM. The use of barriers resulted in the augmentation of newly formed bone in a three-month period. However, a higher trabecular area was observed in the barriers filled with DBM. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Jones, Richard B; Wright, Thomas W; Roche, Christopher P
2015-12-01
Large glenoid defects are a difficult reconstructive problem for surgeons performing reverse shoulder arthroplasty (rTSA). Options to address glenoid defects include eccentric reaming, bone grafting, and augmented glenoid baseplates. Augmented glenoid baseplates may provide a simpler, cost-effective, bone-preserving option compared to other techniques. No studies report the use of augmented baseplates to correct glenoid deformity in rTSA relative to the use of glenoid bone graft. We retrospectively reviewed 80 patients that received a primary rTSA and received either a structural bone graft or an augmented glenoid baseplate to address a significant glenoid defect. There were 39 patients in the augmented baseplate cohort and 41 patients in the bone graft cohort. The augmented baseplate cohort contained 24 8° posterior augment implants and 15 10° superior augment baseplates. The bone graft cohort consisted of 36 autograft humeral heads and 5 allograft femoral heads. The average follow-up for rTSA patients with an augmented baseplate was 28.3 ± 5.7 months, and the average follow-up for rTSA patients with glenoid bone graft was 34.1 ± 15.0 months. Each patient was scored preoperatively and at latest follow-up using the SST, UCLA, ASES, Constant, and SPADI metrics. Range of motion data was obtained as well. All patients demonstrated significant improvements in pain, ROM, and functional scores following treatment with rTSA using either augmented baseplates or glenoid bone graft to correct glenoid defects. The database contained no complications for the augmented glenoid baseplate cohort, and six complications (14.6%) for the glenoid bone graft cohort (including two glenoid loosenings and graft failures). Additionally, the augmented baseplate cohort showed a lower scapular notching rate of 10% as compared to the bone graft cohort which had a notching rate of 18.5%. The results of this study suggest that either augmented glenoid baseplates or glenoid bone graft can be used to address large glenoid defects during rTSA with significant improvement in outcomes. Augmented glenoid baseplates may achieve a lower complication and scapular notching rate, but additional and longer-term clinical follow-up is required to confirm these results.
Zhao, L P; Zhan, Y L; Hu, W J; Wang, H J; Wei, Y P; Zhen, M; Xu, T; Liu, Y S
2016-12-18
For ideal implant rehabilitation, an adequate bone volume, optical implant position, and stable and healthy soft tissue are required. The reduction of alveolar bone and changes in its morphology subsequent to tooth extraction will result in insufficient amount of bone and adversely affect the ability to optimally place dental implants in edentulous sites. Preservation of alveolar bone volume through ridge preservation has been demonstrated to reduce the vertical and horizontal contraction of the alveolar bone crest after tooth extraction and reduce the need for additional bone augmentation procedures during implant placement. In this case, a patient presented with a mandible molar of severe periodontal disease, the tooth was removed as atraumatically as possible and the graft material of Bio-Oss was loosely placed in the alveolar socket without condensation and covered with Bio-Gide to reconstruct the defects of the alveolar ridge. Six months later, there were sufficient height and width of the alveolar ridge for the dental implant, avoiding the need of additional bone augmentation and reducing the complexity and unpredictability of the implant surgery. Soft tissue defects, such as gingival and connective tissue, played crucial roles in long-term implant success. Peri-implant plastic surgery facilitated development of healthy peri-implant structure able to withstand occlusal forces and mucogingival stress. Six months after the implant surgery, the keratinized gingiva was absent in the buccal of the implant and the vestibular groove was a little shallow. The free gingival graft technique was used to solve the vestibulum oris groove supersulcus and the absence of keratinized gingiva around the implant. The deepening of vestibular groove and broadening of keratinized gingiva were conducive to the long-term health and stability of the tissue surrounding the implant. Implant installation and prosthetic restoration showed favorable outcome after six months.
Merli, Mauro; Moscatelli, Marco; Mariotti, Giorgia; Pagliaro, Umberto; Raffaelli, Eugenia; Nieri, Michele
2015-01-01
The objective of this parallel randomised controlled trial is to compare two bone substitutes and collagen membranes in a one-stage procedure for horizontal bone augmentation: anorganic bovine bone (Bio-Oss) and collagen porcine membranes (Bio-Gide) (BB group) versus a synthetic resorbable bone graft substitute made of pure β-tricalcium phosphate (Ceros TCP) and porcine pericardium collagen membranes (Jason) (CJ group). Patients in need of implant treatment having at least one site with horizontal osseous defects at a private clinic in Rimini (Italy) were included in this study. Patients were randomised to receive either the BB or CJ treatment. Randomisation was computer-generated with allocation concealment by opaque sequentially numbered sealed envelopes. Patients and the outcome assessor were blinded to group assignment. The main outcome measures were implant failure, complications, clinical bone gain at augmented sites, and complete filling of the bone defect. Secondary outcome measures were chair-time, postoperative pain and peri-implant marginal bone level changes. Twenty-five patients with 32 implants were allocated to the BB group and 25 patients with 29 implants to the CJ group. All 50 randomised patients received the treatment as allocated and there were no dropouts up to 6-months post-loading (12 months post-surgery). There were no failures and there were three complications in the BB group and three complications in the CJ group (relative risk: 1.00, 95% CI from 0.22 to 4.49, P = 1.00). The estimated difference between treatments in the vertical defect bone gain was -0.15 mm (95% CI from -0.65 to 0.35, P = 0.5504) favouring the BB group, and the estimated difference between treatments in the horizontal defect bone gain was -0.27 mm (95%CI from -0.73 to 0.19, P = 0.3851) favouring the BB group. There was no difference in the complete filling of the defect (relative risk: 0.88, 95%CI from 0.58 to 1.34, P = 0.7688). No significant differences were detected for chair-time (P = 0.3524), for VAS pain immediately after surgery (P = 0.5644), VAS pain after 1 week (P = 0.5074) and VAS pain after 2 weeks (P = 0.6950). A slight difference (0.24 mm, 95%CI from 0.0004 to 0.47, P = 0.0464) was detected in radiographic peri-implant bone loss favouring the CJ group. No significant differences, except for radiographic bone loss, were observed in this randomised controlled trial comparing anorganic bovine bone with collagen porcine membranes versus synthetic resorbable bone made of pure β-tricalcium phosphate with pericardium collagen membranes for horizontal augmentation.
Kang, Hyun-Joo; Jun, Choong-Man; Yun, Jeong-Ho
2016-01-01
In the present case report, the authors describe radiographic and histologic observations of a bone void that formed after a sinus augmentation using a graft material that contained recombinant human bone morphogenetic protein-2 (rhBMP-2) and discuss clinical and histologic implications of their findings. Sinus augmentation was performed using a graft material comprising 1 g of hydroxyapatite/β-tricalcium phosphate, which contained 1 mg of rhBMP-2. Radiographic evaluation was conducted with panoramic radiographs and computed tomography images of the augmented maxillary sinus, which were analyzed using a three-dimensional image-reconstruction program. Histologic evaluation was also performed on a biopsy specimen obtained 6 months after the sinus augmentation. The total augmented volume increased from 1,582.2 mm(3) immediately after the sinus augmentation to 3,344.9 mm3 at 6 months after the augmentation because of the formation of a bone void. Twenty-six months after the sinus augmentation, the bone void remained but had reduced in volume, with the total augmented volume reduced to 2,551.7 mm(3). Histologically, new bone was observed to be in contact with the grafted particles, and a fatty marrow-like tissue was present in the area of the bone void. This case report shows that the bone void that had formed after sinus augmentation resolved over time and seemed to be partially replaced with new bone. Furthermore, none of the implants failed, and clinical adverse events were not observed during the follow-up period.
Peñarrocha-Oltra, David; Aloy-Prósper, Amparo; Cervera-Ballester, Juan; Peñarrocha-Diago, Maria; Canullo, Luigi; Peñarrocha-Diago, Miguel
2014-01-01
To retrospectively compare the outcomes of implants placed in posterior mandibles vertically regenerated with onlay autogenous block bone grafts and short dental implants. Consecutive patients with vertical bone atrophy in edentulous mandibular posterior regions (7 to 8 mm of bone above the inferior alveolar nerve) were treated with either implants placed in regenerated bone using autologous block bone grafts (group 1) or short implants (with 5.5-mm intrabony length) in native bone (group 2) between 2005 and 2010 and followed for 12 months after loading. The procedure used was the established treatment protocol for this type of patient at the Oral Surgery Unit (University of Valencia, Spain) at the time of surgery. All grafts were obtained using piezosurgery. The outcomes assessed were: complications related to the procedure, implant survival, implant success, and peri-implant marginal bone loss. Statistical analysis was done using the Fisher exact test and the Mann-Whitney test. Thirty-seven patients were included, 20 (45 implants) in group 1 and 17 (35 implants) in group 2. In group 1, 13 implants were less than 10 mm long (2 were 7 mm and 11 were 8.5 mm), and 32 were 10 mm or longer; the diameter was 3.6 mm in 6 implants, 4.2 mm in 31, and 5.5 mm in 8. In group 2 all implants were 7 mm long; the diameter measured 4.2 mm in 14 implants and 5.5 mm in 21 implants. Complications related to the block bone grafting procedure were temporary hypoesthesia in one patient, wound dehiscence with graft exposure in three patients, and exposure of the osteosynthesis screw without bone graft exposure in one patient. After 12 months, implant survival rates were 95.6% in group 1 and 97.1 % in group 2; success rates were 91.1% and 97.1%, respectively. The average marginal bone loss was 0.7 ± 1.1 mm in group 1 and 0.6 ± 0.3 mm in group 2. When residual bone height over the mandibular canal is between 7 and 8 mm, short implants (with 5.5-mm intrabony length) might be a preferable treatment option over vertical augmentation, reducing chair time, expense, and morbidity.
Kanno, Takahiro; Mitsugi, Masaharu; Paeng, Jun-Young; Sukegawa, Shintaro; Furuki, Yoshihiko; Ohwada, Hiroyuki; Nariai, Yoshiki; Ishibashi, Hiroaki; Katsuyama, Hideaki; Sekine, Joji
2012-01-01
We retrospectively reviewed a new preimplantation regenerative augmentation technique for a severely atrophic posterior maxilla using sinus lifting with simultaneous alveolar distraction, together with long-term oral rehabilitation with implants. We also analyzed the regenerated bone histomorphologically. This study included 25 maxillary sinus sites in 17 patients. The technique consisted of alveolar osteotomy combined with simultaneous sinus lifting. After sufficient sinus lifting, a track-type vertical alveolar distractor was placed. Following a latent period, patient self-distraction was started. After the required augmentation was achieved, the distractor was left in place to allow consolidation. The distractor was then removed, and osseointegrated implants (average of 3.2 implants per sinus site, 80 implants) were placed. Bone for histomorphometric analysis was sampled from six patients and compared with samples collected after sinus lifting alone as controls (n = 4). A sufficient alveolus was regenerated, and all patients achieved stable oral rehabilitation. The implant survival rate was 96.3% (77/80) after an average postloading followup of 47.5 months. Good bone regeneration was observed in a morphological study, with no significant difference in the rate of bone formation compared with control samples. This new regenerative technique could be a useful option for a severely atrophic maxilla requiring implant rehabilitation. PMID:22792105
Hofmann-Fliri, Ladina; Nicolino, Tomas I; Barla, Jorge; Gueorguiev, Boyko; Richards, R Geoff; Blauth, Michael; Windolf, Markus
2016-02-01
Femoral neck fractures in the elderly are a common problem in orthopedics. Augmentation of screw fixation with bone cement can provide better stability of implants and lower the risk of secondary displacement. This study aimed to investigate whether cement augmentation of three cannulated screws in non-displaced femoral neck fractures could increase implant fixation. A femoral neck fracture was simulated in six paired human cadaveric femora and stabilized with three 7.3 mm cannulated screws. Pairs were divided into two groups: conventional instrumentation versus additional cement augmentation of screw tips with 2 ml TraumacemV+ each. Biomechanical testing was performed by applying cyclic axial load until failure. Failure cycles, axial head displacement, screw angle changes, telescoping and screw cut-out were evaluated. Failure (15 mm actuator displacement) occurred in the augmented group at 12,500 cycles (± 2,480) compared to 15,625 cycles (± 4,215) in the non-augmented group (p = 0.041). When comparing 3 mm vertical displacement of the head no significant difference (p = 0.72) was detected between the survival curves of the two groups. At 8,500 load-cycles (early onset failure) the augmented group demonstrated a change in screw angle of 2.85° (± 0.84) compared to 1.15° (± 0.93) in the non-augmented group (p = 0.013). The results showed no biomechanical advantage with respect to secondary displacement following augmentation of three cannulated screws in a non-displaced femoral neck fracture. Consequently, the indication for cement augmentation to enhance implant anchorage in osteoporotic bone has to be considered carefully taking into account fracture type, implant selection and biomechanical surrounding. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Decco, Oscar A; Beltrán, Víctor; Zuchuat, Jésica I; Cura, Andrea C; Lezcano, María F; Engelke, Wilfried
2015-07-30
Bone augmentation is a subject of intensive investigation in regenerative bone medicine and constitutes a clinical situation in which autogenous bone grafts or synthetic materials are used to aid new bone formation. Based on a non-critical defect, Co-Cr barrier membranes were placed on six adult Fauve de Bourgogne rabbits, divided into two groups: whole blood and PRP. Three densitometric controls were performed during the experiment. The animals were euthanized at 30, 45, 60, and 110 days. The presence of newly formed bone was observed. Samples for histological studies were taken from the augmentation center. External and internal bone tissue augmentation was observed in almost all cases. Significant differences between PRP- and whole blood-stimulated bone augmentation were not observed. At 60 days, bones with PRP presented higher angiogenesis, which may indicate more proliferation and cellular activity. PRP activates the bone regeneration process under optimized conditions by stimulation of osteoblast proliferation after six weeks, when a significant difference in cellular activity was observed. Membranes could stimulate bone augmentation at the site of placement and in the surrounding areas.
Arabmotlagh, Mohammad; Bachmaier, Samuel; Geiger, Florian; Rauschmann, Michael
2014-11-01
Polymethylmethacrylate (PMMA) is the most commonly used void filler for augmentation of osteoporotic vertebral fracture, but the differing mechanical features of PMMA and osteoporotic bone result in overload and failure of adjacent bone. The aim of this study was to compare fatigue failure of bone after augmentation with PMMA-nanocrystalline hydroxyapatite (HA) composite material or with plain PMMA in a sheep model. After characterization of the mechanical properties of a composite material consisting of PMMA and defined amounts (10, 20, and 30% volume fraction) of HA, the composite material with 30% volume fraction HA was implanted in one distal femur of sheep; plain PMMA was implanted in the other femur. Native non-augmented bone served as control. Three and 6 months after implantation, the augmented bone samples were exposed to cyclic loading and the evolution of damage was investigated. The fatigue life was highest for the ovine native bone and lowest for bone-PMMA specimens. Bone-composite specimens showed significantly higher fatigue life than the respective bone-PMMA specimens in both 3- and 6-month follow-up groups. These results suggest that modification of mechanical properties of PMMA by addition of HA to approximate those of cancellous bone retards fatigue failure of the surrounding bone compared to augmented bone with plain PMMA. © 2014 Wiley Periodicals, Inc.
Decco, Oscar A.; Beltrán, Víctor; Zuchuat, Jésica I.; Cura, Andrea C.; Lezcano, María F.; Engelke, Wilfried
2015-01-01
Background: Bone augmentation is a subject of intensive investigation in regenerative bone medicine and constitutes a clinical situation in which autogenous bone grafts or synthetic materials are used to aid new bone formation. Method: Based on a non-critical defect, Co-Cr barrier membranes were placed on six adult Fauve de Bourgogne rabbits, divided into two groups: whole blood and PRP. Three densitometric controls were performed during the experiment. The animals were euthanized at 30, 45, 60, and 110 days. The presence of newly formed bone was observed. Samples for histological studies were taken from the augmentation center. Results: External and internal bone tissue augmentation was observed in almost all cases. Significant differences between PRP- and whole blood–stimulated bone augmentation were not observed. At 60 days, bones with PRP presented higher angiogenesis, which may indicate more proliferation and cellular activity. Conclusion: PRP activates the bone regeneration process under optimized conditions by stimulation of osteoblast proliferation after six weeks, when a significant difference in cellular activity was observed. Membranes could stimulate bone augmentation at the site of placement and in the surrounding areas. PMID:28793476
Ladha, Komal; Sharma, Ankit; Tiwari, Bhawana; Bukya, Dwaraka N
2017-01-01
The aim of the present article is to review the success of bone augmentation performed as an adjunct to dental implant rehabilitation in patients with diabetes mellitus. A literature review was conducted in PubMed on this topic, which yielded a total of 102 publications. For inclusion, publications had to be human studies, written in English language and should report on the success of bone augmentation as an adjunct to dental implant rehabilitation in diabetic patients. After screening the titles and abstracts, 11 full texts publications were obtained, of which seven were included in the review. These studies provided data on various bone augmentation techniques such as sinus floor elevation (SFE), guided bone regeneration (GBR), and onlay bone grafting. Even though the current review revealed that there are not many studies reporting data relevant to the analyzed topic, the data obtained suggests that; (1) staged GBR technique should be considered more feasible and predictable for bone augmentation, (2) clinicians must take meticulous care when planning and conducting SFE, and (3) block bone augmentation technique should be avoided. PMID:29386810
Naenni, Nadja; Schneider, David; Jung, Ronald E; Hüsler, Jürg; Hämmerle, Christoph H F; Thoma, Daniel S
2017-10-01
To test whether or not one of two membranes is superior for peri-implant-guided bone regeneration in terms of clinical and histologic outcomes. In 27 patients, 27 two-piece dental implants were placed in single-tooth gaps in the esthetic area. Buccal dehiscence and/or fenestration-type defects were regenerated using demineralized bovine bone mineral and randomly covered with either a resorbable membrane (RES) or a titanium-reinforced non-resorbable membrane (N-RES). Clinical measurements included vertical defect resolution and the horizontal thickness of regenerated bone at implant placement and at 6 months. Statistics were performed by means of nonparametric testing. The remaining mean vertical defect measured 4 mm (±2.07) (RES) and 2.36 mm (±2.09) (N-RES) (P = 0.044) at baseline and 0.77 mm (±0.85) (RES) and 0.21 mm (±0.80) (N-RES) (P = 0.021) at re-entry. This translated into a defect resolution of 85% (RES) and 90.7% (N-RES) (P = 0.10). The horizontal thickness after augmentation measured 3.46 mm (±0.52) (RES) and 2.82 mm (±0.50) (N-RES) (P = 0.004). The mean loss in horizontal thickness from baseline to re-entry measured 2.23 mm (SD ±1.21) (RES) and 0.14 mm (±0.79) (N-RES) (P = 0.017). The horizontal changes in thickness at the implant shoulder level were statistically significant between the groups (P = 0.0001). Both treatment modalities were clinically effective in regenerating bone as demonstrated by a similar horizontal thickness and vertical defect fill at 6 months. The N-RES group exhibited significantly less horizontal bone thickness reduction from baseline to follow-up. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Belouka, Sofia-Maria; Strietzel, Frank Peter
To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and augmentation procedures.
Kolerman, Roni; Tal, Haim; Moses, Ofer
2008-11-01
Maxillary sinus floor augmentation is the treatment of choice when insufficient alveolar bone height prevents placement of standard dental implants in the posterior edentulous maxilla. The objective of this study was to histologically and histometrically evaluate new bone formation after maxillary sinus floor augmentation using ground cortical bone allograft. Mineralized freeze-dried bone allograft (FDBA) was used for sinus floor augmentation. After 9 months, 23 biopsies were taken from 19 patients. Routine histologic processing using hematoxylin and eosin and Mallory staining was performed. Histologic evaluation revealed a mean of 29.1% newly formed bone, 51.9% connective tissue, and 19% residual graft material. Graft particles were mainly in close contact with newly formed bone, primarily with features of mature bone with numerous osteocytes, and, to a lesser extent, with marrow spaces. There was no evidence of acute inflammatory infiltrate. FDBA is biocompatible and osteoconductive when used in maxillary sinus-augmentation procedures, and it may be used safely without interfering with the normal reparative bone process.
Cassetta, Michele; Perrotti, Vittoria; Calasso, Sabrina; Piattelli, Adriano; Sinjari, Bruna; Iezzi, Giovanna
2015-10-01
The aim of this study was to perform a 2 months clinical and histological comparison of autologous bone, porcine bone, and a 50 : 50 mixture in maxillary sinus augmentation procedures. A total of 10 consecutive patients, undergoing two-stage sinus augmentation procedures using 100% autologous bone (Group A), 100% porcine bone (Group B), and a 50 : 50 mixture of autologous and porcine bone (Group C) were included in this study. After a 2-month healing period, at the time of implant insertion, clinical evaluation was performed and bone core biopsies were harvested and processed for histological analysis. The postoperative healing was uneventful regardless of the materials used for the sinus augmentation procedures. The histomorphometrical analysis revealed comparable percentages of newly formed bone, marrow spaces, and residual grafted material in the three groups. The clinical and histological results of this study indicated that porcine bone alone or in combination with autologous bone are biocompatible and osteoconductive materials and can be successfully used in sinus augmentation procedures. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Möller, Björn; Acil, Yahya; Birkenfeld, Falk; Behrens, Eleonore; Terheyden, Hendrik; Wiltfang, Jörg
2014-07-01
Sinus floor augmentation with autologous bone is an accepted treatment option in dental implantology. In this study, an entirely synthetic, nano-structured, hydroxyapatite-based bone substitute material (SBSM, NanoBone(®); Artoss, Rostock, Germany) was supplemented with a mixture of locally harvested bone to enhance osteogenesis. Bilateral sinus augmentation procedures were performed in eight domestic pigs using the lateral window technique. On the right side (control), 2.6 ml of SBSM was used, and on the left side (test), 2.6 ml of SBSM with additional 15% (390 μl) autologous bone was used. At the time of augmentation, a titanium implant (ITI(®)) was inserted from a laterocaudal direction. After 3 months, the sites of augmentation were removed and examined in non-decalcified sections by microradiography and fluorescence microscopy of sequentially labelled specimens and histometry. On both sides, a significant amount of newly formed bone was observed. However, a statistically significant difference in the bone-implant contact was observed in the control group (median, 28.9%) compared with the test side with the additional autologous bone (median, 40.6%) (P = 0.01). Different bone density was achieved from the coronal to apical surfaces (medians, 54.6%, 9.6%, and 27.5%) compared with the test side (medians, 55.2%, 40.6%, and 44.2%). The median of augmentation height was 8.6 mm on the control side and 11.5 mm on the test side (P = 0.01). Bone apposition was observed in both groups after 15 days. The SBSM shows acceptable results in sinus floor augmentation. The additional use of locally harvested autologous bone enhances bone density and osseointegration of the implants. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Röderer, Götz; Scola, Alexander; Schmölz, Werner; Gebhard, Florian; Windolf, Markus; Hofmann-Fliri, Ladina
2013-10-01
Proximal humerus fracture fixation can be difficult because of osteoporosis making it difficult to achieve stable implant anchorage in the weak bone stock even when using locking plates. This may cause implant failure requiring revision surgery. Cement augmentation has, in principle, been shown to improve stability. The aim of this study was to investigate whether augmentation of particular screws of a locking plate aimed at a region of low bone quality is effective in improving stability in a proximal humerus fracture model. Twelve paired human humerus specimens were included. Quantitative computed tomography was performed to determine bone mineral density (BMD). Local bone quality in the direction of the six proximal screws of a standard locking plate (PHILOS, Synthes) was assessed using mechanical means (DensiProbe™). A three-part fracture model with a metaphyseal defect was simulated and fixed with the plate. Within each pair of humeri the two screws aimed at the region of the lowest bone quality according to the DensiProbe™ were augmented in a randomised manner. For augmentation, 0.5 ml of bone cement was injected in a screw with multiple outlets at its tip under fluoroscopic control. A cyclic varus-bending test with increasing upper load magnitude was performed until failure of the screw-bone fixation. The augmented group withstood significantly more load cycles. The correlation of BMD with load cycles until failure and BMD with paired difference in load cycles to failure showed that augmentation could compensate for a low BMD. The results demonstrate that augmentation of screws in locked plating in a proximal humerus fracture model is effective in improving primary stability in a cyclic varus-bending test. The augmentation of two particular screws aimed at a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality could be more effective in enhancing the primary stability of a proximal humerus locking plate because the effect of augmentation can be exploited more effectively limiting it to the degree required. Copyright © 2013 Elsevier Ltd. All rights reserved.
Amoian, Babak; Moudi, Ehsan; Majidi, Maryam Seyed; Ali Tabatabaei, S M
2016-09-01
Several grafting materials have been used for alveolar ridge augmentation. The literature lacks researches to compare CenoBone to other grafting materials. The aim of this study was to compare CenoBone/CenoMembrane complex to Bio-Oss/Bio-Gide complex in lateral alveolar bone augmentation in terms of radiographic, histologic, and histomorphometric parameters. In this randomized controlled trial, ten patients who needed lateral ridge augmentation were selected and augmentations were done using either of CenoBone/CenoMembrane or Bio-Oss/Bio-Gide complexes. In the re-entry surgery in 6 months following augmentation, core biopsies were taken and clinical, radiographic, histologic, and histomorphometric evaluations were performed. No statistically significant difference was seen between groups except for the number of blood vessels and percentage of residual graft materials. CenoBone seems to present a comparable lateral ridge augmentation to Bio-Oss in.
Endoscopically assisted tunnel approach for minimally invasive corticotomies: a preliminary report.
Hernández-Alfaro, Federico; Guijarro-Martínez, Raquel
2012-05-01
The dental community has expressed low acceptance of traditional corticotomy techniques for corticotomy-facilitated orthodontics. These procedures are time consuming, entail substantial postoperative morbidity and periodontal risks, and are often perceived as highly invasive. A total of 114 interdental sites were treated in nine consecutive patients. Under local anesthesia, a tunnel approach requiring one to three vertical incisions per arch (depending on the targeted teeth) was used. Piezosurgical corticotomies and elective bone augmentation procedures were performed under endoscopic assistance. Postoperative cone-beam computerized tomography evaluation was used to confirm adequate corticotomy depth. Procedures were completed in a mean time of 26 minutes. Follow-up evaluations revealed no loss of tooth vitality, no changes in periodontal probing depth, good preservation of the papillae, and no gingival recession. No evidence of crestal bone height reduction or apical root resorption was detected. The tunnel approach minimizes soft-tissue debridement and permits effective cortical cuts. The combination of piezosurgery technique with endoscopic assistance provides a quick, reliable means to design and perform these corticotomies while maximizing root integrity preservation. Moreover, the sites needing bone augmentation are selected under direct vision. Compared to traditional corticotomies, this procedure has manifest advantages in surgical time, technical complexity, patient morbidity, and periodontium preservation.
Bone marrow concentrate promotes bone regeneration with a suboptimal-dose of rhBMP-2.
Egashira, Kazuhiro; Sumita, Yoshinori; Zhong, Weijian; I, Takashi; Ohba, Seigo; Nagai, Kazuhiro; Asahina, Izumi
2018-01-01
Bone marrow concentrate (BMC), which is enriched in mononuclear cells (MNCs) and platelets, has recently attracted the attention of clinicians as a new optional means for bone engineering. We previously reported that the osteoinductive effect of bone morphogenetic protein-2 (BMP-2) could be enhanced synergistically by co-transplantation of peripheral blood (PB)-derived platelet-rich plasma (PRP). This study aims to investigate whether BMC can effectively promote bone formation induced by low-dose BMP-2, thereby reducing the undesirable side-effects of BMP-2, compared to PRP. Human BMC was obtained from bone marrow aspirates using an automated blood separator. The BMC was then seeded onto β-TCP granules pre-adsorbed with a suboptimal-dose (minimum concentration to induce bone formation at 2 weeks in mice) of recombinant human (rh) BMP-2. These specimens were transplanted subcutaneously to the dorsal skin of immunodeficient-mice and the induction of ectopic bone formation was assessed 2 and 4 weeks post-transplantation. Transplantations of five other groups [PB, PRP, platelet-poor plasma (PPP), bone marrow aspirate (BM), and BM-PPP] were employed as experimental controls. Then, to clarify the effects on vertical bone augmentation, specimens from the six groups were transplanted for on-lay placement on the craniums of mice. The results indicated that BMC, which contained an approximately 2.5-fold increase in the number of MNCs compared to PRP, could accelerate ectopic bone formation until 2 weeks post-transplantation. On the cranium, the BMC group promoted bone augmentation with a suboptimal-dose of rhBMP-2 compared to other groups. Particularly in the BMC specimens harvested at 4 weeks, we observed newly formed bone surrounding the TCP granules at sites far from the calvarial bone. In conclusion, the addition of BMC could reduce the amount of rhBMP-2 by one-half via its synergistic effect on early-phase osteoinduction. We propose here that BMC transplantation facilitates the clinical use of rhBMP-2 as an alternative strategy for bone engineering.
Bone marrow concentrate promotes bone regeneration with a suboptimal-dose of rhBMP-2
Egashira, Kazuhiro; Zhong, Weijian; I, Takashi; Ohba, Seigo; Nagai, Kazuhiro; Asahina, Izumi
2018-01-01
Bone marrow concentrate (BMC), which is enriched in mononuclear cells (MNCs) and platelets, has recently attracted the attention of clinicians as a new optional means for bone engineering. We previously reported that the osteoinductive effect of bone morphogenetic protein-2 (BMP-2) could be enhanced synergistically by co-transplantation of peripheral blood (PB)-derived platelet-rich plasma (PRP). This study aims to investigate whether BMC can effectively promote bone formation induced by low-dose BMP-2, thereby reducing the undesirable side-effects of BMP-2, compared to PRP. Human BMC was obtained from bone marrow aspirates using an automated blood separator. The BMC was then seeded onto β-TCP granules pre-adsorbed with a suboptimal-dose (minimum concentration to induce bone formation at 2 weeks in mice) of recombinant human (rh) BMP-2. These specimens were transplanted subcutaneously to the dorsal skin of immunodeficient-mice and the induction of ectopic bone formation was assessed 2 and 4 weeks post-transplantation. Transplantations of five other groups [PB, PRP, platelet-poor plasma (PPP), bone marrow aspirate (BM), and BM-PPP] were employed as experimental controls. Then, to clarify the effects on vertical bone augmentation, specimens from the six groups were transplanted for on-lay placement on the craniums of mice. The results indicated that BMC, which contained an approximately 2.5-fold increase in the number of MNCs compared to PRP, could accelerate ectopic bone formation until 2 weeks post-transplantation. On the cranium, the BMC group promoted bone augmentation with a suboptimal-dose of rhBMP-2 compared to other groups. Particularly in the BMC specimens harvested at 4 weeks, we observed newly formed bone surrounding the TCP granules at sites far from the calvarial bone. In conclusion, the addition of BMC could reduce the amount of rhBMP-2 by one-half via its synergistic effect on early-phase osteoinduction. We propose here that BMC transplantation facilitates the clinical use of rhBMP-2 as an alternative strategy for bone engineering. PMID:29346436
Güleçyüz, Mehmet F; Kraus-Petersen, Michael; Schröder, Christian; Ficklscherer, Andreas; Wagenhäuser, Markus U; Braun, Christian; Müller, Peter E; Pietschmann, Matthias F
2018-02-01
The incidence of osteoporosis and rotator cuff tears increases with age. Cement augmentation of bones is an established method in orthopedic and trauma surgery. This study analyses if polymethylmethacrylate or bioabsorbable cement can improve the primary stability of a bioabsorbable suture anchor in vitro in comparison to a non-augmented suture anchor in osteoporotic human humeri. The trabecular bone mineral density was measured to ensure osteopenic human specimens. Then the poly-l-lactic acid Bio-Corkscrew® FT was implanted in the greater tuberosity footprint with polymethylmethacrylate Refobacin® cement augmentation ( n = 8), with Cerament™ Bone Void Filler augmentation ( n = 8) and without augmentation ( n = 8). Using a cyclic testing protocol, the failure loads, system displacement, and failure modes were recorded. The Cerament™ augmented Bio-Corkscrew® FT yielded the highest failure loads (206.7 N), followed by polymethylmethacrylate Refobacin® augmentation (206.1 N) and without augmentation (160.0 N). The system displacement was lowest for Cerament™ augmentation (0.72 mm), followed by polymethylmethacrylate (0.82 mm) and without augmentation (1.50 mm). Statistical analysis showed no significant differences regarding the maximum failure loads ( p = 0.1644) or system displacement ( p = 0.4199). The main mode of failure for all three groups was suture slippage. The primary stability of the Bio-Corkscrew® FT is not influenced by bone cement augmentation with polymethylmethacrylate Refobacin® or with bioabsorbable Cerament™ in comparison to the non-cemented anchors. The cement augmentation of rotator cuff suture anchors in osteoporotic bones remains questionable since biomechanical tests show no significant advantage.
Santagata, Mario; Cecere, Atirge; Prisco, Rosario V E; Tartaro, Gianpaolo; D'Amato, Salvatore
2017-01-01
The purpose of this study was to report the outcome of the management of both horizontal and vertical defects of alveolar crest using the bone slat technique approach in conjunction with third molar removal prior to implant placement in the aesthetic area. We present a 20-year-old female patient who lost a maxillary lateral incisor. The objective of treatment was to replace the lateral incisor with an implant-supported crown restoration without interfering with the integrity and topography of the adjacent gingival tissues. Because the future implant site showed horizontal and vertical bone defect the Authors decided to perform bone regeneration. The need for such bone augmentation in the younger patient often coincides with the timing for third molar removal. By combining third molar extraction with bone harvest and alveolar grafting, the patient undergoes only one surgical approach. The bone height (9.5 mm) and width (5.7 mm) were measured at the point of interest (tooth 12) both before and after implant placement in the reconstructed panoramic and parasagittal views by Cone Beam Computed Tomography (CBCT) scan. The final results demonstrated an increase in length of 5 mm after bone slat technique (from 9.5 mm to 13.5 mm) and an increase in width of 1 mm (from 5.7 mm to 6.7 mm). ISQ measurements were recorded at the time of implant placement (the mean was: 68.5) and immediately after individualized screw-retained provisional crown (the mean was: 77). This technique is reliable and aesthetic and functional results appear to be stable and respect this requisite: simple and fast graft harvesting and low risk of morbidity especially in conjunction with third molar removal.
Santagata, Mario; Cecere, Atirge; Prisco, Rosario V.E.; Tartaro, Gianpaolo
2017-01-01
Summary Background The purpose of this study was to report the outcome of the management of both horizontal and vertical defects of alveolar crest using the bone slat technique approach in conjunction with third molar removal prior to implant placement in the aesthetic area. Methods We present a 20-year-old female patient who lost a maxillary lateral incisor. The objective of treatment was to replace the lateral incisor with an implant-supported crown restoration without interfering with the integrity and topography of the adjacent gingival tissues. Because the future implant site showed horizontal and vertical bone defect the Authors decided to perform bone regeneration. The need for such bone augmentation in the younger patient often coincides with the timing for third molar removal. By combining third molar extraction with bone harvest and alveolar grafting, the patient undergoes only one surgical approach. The bone height (9.5 mm) and width (5.7 mm) were measured at the point of interest (tooth 12) both before and after implant placement in the reconstructed panoramic and parasagittal views by Cone Beam Computed Tomography (CBCT) scan. Results The final results demonstrated an increase in length of 5 mm after bone slat technique (from 9.5 mm to 13.5 mm) and an increase in width of 1 mm (from 5.7 mm to 6.7 mm). ISQ measurements were recorded at the time of implant placement (the mean was: 68.5) and immediately after individualized screw-retained provisional crown (the mean was: 77). Conclusions This technique is reliable and aesthetic and functional results appear to be stable and respect this requisite: simple and fast graft harvesting and low risk of morbidity especially in conjunction with third molar removal. PMID:29682225
Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A
2013-12-01
In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.
[Augmentation technique on the proximal humerus].
Scola, A; Gebhard, F; Röderer, G
2015-09-01
The treatment of osteoporotic fractures is still a challenge. The advantages of augmentation with respect to primary in vitro stability and the clinical use for the proximal humerus are presented in this article. In this study six paired human humeri were randomized into an augmented and a non-augmented group. Osteosynthesis was performed with a PHILOS plate (Synthes®). In the augmented group the two screws finding purchase in the weakest cancellous bone were augmented. The specimens were tested in a 3-part fracture model in a varus bending test. The augmented PHILOS plates withstood significantly more load cycles until failure. The correlation to bone mineral density (BMD) showed that augmentation could partially compensate for low BMD. The augmentation of the screws in locked plating in a proximal humerus fracture model is effective in improving the primary stability in a cyclic varus bending test. The targeted augmentation of two particular screws in a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality could be more effective in enhancing the primary stability of a proximal humerus locking plate because the effect of augmentation can be exploited more effectively limiting it to the degree required. The technique of augmentation is simple and can be applied in open and minimally invasive procedures. When the correct procedure is used, complications (cement leakage into the joint) can be avoided.
NASA Astrophysics Data System (ADS)
Ilgenstein, Bernd; Deyhle, Hans; Jaquiery, Claude; Kunz, Christoph; Stalder, Anja; Stübinger, Stefan; Jundt, Gernot; Beckmann, Felix; Müller, Bert; Hieber, Simone E.
2012-10-01
Bone augmentation is a vital part of surgical interventions of the oral and maxillofacial area including dental implantology. Prior to implant placement, sufficient bone volume is needed to reduce the risk of peri-implantitis. While augmentation using harvested autologous bone is still considered as gold standard, many surgeons prefer bone substitutes to reduce operation time and to avoid donor site morbidity. To assess the osteogenic efficacy of commercially available augmentation materials we analyzed drill cores extracted before implant insertion. In younger patients, distraction osteogenesis is successfully applied to correct craniofacial deformities through targeted bone formation. To study the influence of mesenchymal stem cells on bone regeneration during distraction osteogenesis, human mesenchymal stem cells were injected into the distraction gap of nude rat mandibles immediately after osteotomy. The distraction was performed over eleven days to reach a distraction gap of 6 mm. Both the rat mandibles and the drill cores were scanned using synchrotron radiation-based micro computed tomography. The three-dimensional data were manually registered and compared with corresponding two-dimensional histological sections to assess bone regeneration and its morphology. The analysis of the rat mandibles indicates that bone formation is enhanced by mesenchymal stem cells injected before distraction. The bone substitutes yielded a wide range of bone volume and degree of resorption. The volume fraction of the newly formed bone was determined to 34.4% in the computed tomography dataset for the augmentation material Geistlich Bio-Oss®. The combination of computed tomography and histology allowed a complementary assessment for both bone augmentation and distraction osteogenesis.
Di Stefano, Danilo Alessio; Gastaldi, Giorgio; Vinci, Raffaele; Polizzi, Elisabetta Maria; Cinci, Lorenzo; Pieri, Laura; Gherlone, Enrico
2016-01-01
The aim of this study was to investigate bone formation over time following maxillary sinus augmentation with an enzyme-deantigenic, bone collagen-preserving equine bone graft by retrospective assessment of histomorphometric data. Records of patients with atrophic ridges who underwent maxillary sinus augmentation with the enzyme-deantigenic equine bone graft and two-step implant placement between 3 and 12 months after the sinus-augmentation surgery were assessed retrospectively. The histomorphometric data were clustered in three classes according to time of collection from the augmentation surgery and analyzed to assess newly formed bone deposition and residual biomaterial degradation rates. Data concerning the 36-month clinical follow-up were also assessed. Records of 77 patients and 115 biopsy specimens were retrieved, and histomorphometric data were clustered (3 to 5 months, n = 33; 6 to 8 months, n = 57; 9 to 12 months, n = 25). Mean minimum atrophic ridge thickness was 4.9 ± 0.5 mm (range, 4.0 to 7.1 mm). The amount of newly formed bone and residual biomaterial did not significantly differ among the three clusters. Qualitative analysis showed a denser trabecular structure in late (> 8 months) samples. At the 36-month clinical follow-up, no differences were found among the implant success rates in the three groups, according to the Albrektsson and Zarb criteria for success. The overall implant success rate was 98.3%. Based upon this retrospective human study of 77 patients with 4 to 7 mm of residual bone, when enzyme-deantigenic equine bone is used for sinus augmentation, new bone formation occurs at an early time (< 3 months) after the grafting, and implant placement can be safely carried out as soon as 3 to 5 months after the augmentation surgery.
Alveolar socket preservation with demineralised bovine bone mineral and a collagen matrix
2017-01-01
Purpose The aim of the present study was to evaluate the healing of post-extraction sockets following alveolar ridge preservation clinically, radiologically, and histologically. Methods Overall, 7 extraction sockets in 7 patients were grafted with demineralised bovine bone mineral and covered with a porcine-derived non-crosslinked collagen matrix (CM). Soft tissue healing was clinically evaluated on the basis of a specific healing index. Horizontal and vertical ridge dimensional changes were assessed clinically and radiographically at baseline and 6 months after implant placement. For histological and histomorphometric analysis, bone biopsies were harvested from the augmented sites during implant surgery 6 months after the socket preservation procedure. Results Clinically, healing proceeded uneventfully in all the sockets. A trend towards reduced horizontal and vertical socket dimensions was observed from baseline to the final examination. The mean width and height of resorption were 1.21 mm (P=0.005) and 0.46 mm (P=0.004), respectively. Histologically, residual xenograft particles (31.97%±3.52%) were surrounded by either newly formed bone (16.02%±7.06%) or connective tissue (50.67%±8.42%) without fibrous encapsulation. The CM underwent a physiological substitution process in favour of well-vascularised collagen-rich connective tissue. Conclusions Socket preservation using demineralised bovine bone mineral in combination with CM provided stable dimensional changes of the alveolar ridge associated with good re-epithelialisation of the soft tissues during a 6-month healing period. PMID:28861284
Larsson, Sune; Procter, Philip
2011-09-01
When stabilising a fracture the contact between the screw and the surrounding bone is crucial for mechanical strength. Through development of screws with new thread designs, as well as optimisation of other properties, improved screw purchase has been gained. Other alternatives to improve screw fixation in osteoporotic bone, as well as normal bone if needed, includes the use of various coatings on the screw that will induce a bonding between the implant surface and the bone implant, as well as application of drugs such as bisphosphonates locally in the screw hole to induce improved screw anchorage through their anticatabolic effect on the bone tissue. As failure of internal fixation of fractures in osteoporotic bone typically occurs through breakage of the bone that surrounds the implant, rather than the implant itself, an alternative strategy in osteoporotic bone can include augmentation of the bone around the screw. This is useful when screws alone are being used for fixation, as it will increase pull-out resistance, but also when conventional plates and screws are used. In angularly stable plate-screw systems, screw back-out is not a problem if the locking mechanism between the screws and the plate works. However, augmentation that will strengthen the bone around the screws can also be useful in conjunction with angle-stable plate-screw systems, as the augmentation will provide valuable support when subjected to loading that might cause cut-out. For many years conventional bone cement, polymethylmethacrylate (PMMA), has been used for augmentation, but due to side effects--including great difficulties if removal becomes necessary--the use of PMMA has never gained wide acceptance. With the introduction of bone substitutes, such as calcium phosphate cement, it has been shown that augmentation around screws can be achieved without the drawbacks seen with PMMA. When dealing with fixation of fractures in osteoporotic bone where screw stability might be inadequate, it therefore seems an attractive option to include bone substitutes for augmentation around screws as part of the armamentarium. Clinical studies now are needed to determine the indications in which bone augmentation with bone-graft substitutes (BGSs) would merit clinical usage. Copyright © 2011. Published by Elsevier Ltd.
Aly, Lobna Abdel Aziz; Hammouda, Nelly
2016-01-01
Objects: Secondary alveolar bone grafting is a method that enables an excellent oral rehabilitation of the patients having alveolar cleft. The aim of this work is to report the closure of the alveolar cleft with the use of harvested autogenous bone graft combined with deproteinized anorganic bovine bone (Bio-Oss) under local anesthesia. Settings and Sample Population: Nine patients with age range, 8–11 years were consulted for their unilateral alveolar cleft. Materials and Methods: A combination of symphyseal bone and deproteinized bovine bone mineral (DBBM) was placed into the alveolar cleft defect. Clinical and radiographical assessments were performed at 1, 3, and 6 months postoperatively. Results: The healing period was uneventful in all cases, and no complications, such as membrane exposure, infection, or harvest site morbidity, were observed. All treated defect sites exhibited excellent bone formation, with an average of 5.45 mm (range, 2–9 mm; standard deviation 1.93 mm) of augmentation achieved overall. Conclusion: The treatment of vertically deficient alveolar ridges with guided bone regeneration using a mixture of autogenous bone and DBBM and resorbable collagen membrane can be considered successful, using this technique in an out-patient office setting. PMID:28299252
Ulm, Christian; Bertl, Kristina; Strbac, Georg D; Esfandeyari, Azadeh; Stavropoulos, Andreas; Zechner, Werner
2017-12-01
Sinus floor augmentation is a routinely used surgical technique for increasing the bone height/volume of the atrophic posterior maxilla. Optimal integration of the implanted augmentation material within the newly formed bone will-at least partly-depend on adequate vascularization to ensure sufficient recruitment of osteoblast and osteoclast precursor cells. The present technical note describes a modification intended to facilitate increased blood inflow into the augmented space. After preparation of the lateral window and elevation of the Schneiderian membrane, the cortical bone of the sinus floor is perforated several times either by using a piezoelectric device or a microsurgical handpiece with the corresponding tip or bur; these perforations should extend into the trabecular bone. The experiences with this modified technique after 12 patients are presented and discussed. It is expected that by means of this relatively simple technique, increased blood and cell inflow into the augmented space is achieved. This may, in turn, enhance new bone formation and improve the integration of the augmentation material.
Mardinger, Ofer; Chaushu, Gavriel; Ghelfan, Oded; Nissan, Joseph
2009-06-01
The normal bone resorption after tooth extraction can be significantly aggravated in the case of pre-existing severe bone loss and chronic infection. Bone augmentation procedures have been proposed, but they require adequate closure of soft tissues. We propose the use of intrasocket reactive tissue to cover extraction sites augmented by bovine bone mineral graft to promote the success of the graft procedure. The study included 24 patients with severe bone loss and chronic pathology in 27 sites. The intrasocket reactive soft tissue was elevated from the bony walls in a subperiosteal plane. Porous bovine or allograft bone mineral was placed in the extraction site without membranes, and the intrasocket reactive soft tissue was sutured over the grafting material to seal the coronal portion of the socket. Twenty-seven implants were placed 6 months after bone augmentation. Healing progressed uneventfully. Postoperative morbidity was minimal. There was no leakage or infection of the grafting material. The mean time to implant placement was 7.8 months. Supplemental augmentation was not needed. There were no implant failures. Follow-up ranged from 6 to 36 months (mean, 15 months). All implants were rehabilitated with fixed prostheses. Intrasocket reactive soft tissue can be used predictably to obtain primary closure of augmented extraction sites with severe bone loss with minimal postoperative morbidity.
Aimetti, Mario; Manavella, Valeria; Cricenti, Luca; Romano, Federica
2017-01-01
Background. Several clinical techniques and a variety of biomaterials have been introduced over the years in an effort to overcome bone remodeling and resorption after tooth extraction. However, the predictability of these procedures in sockets with severely resorbed buccal/lingual plate due to periodontal disease is still unknown. Case Description. A patient with advanced periodontitis underwent extraction of upper right lateral and central incisors. The central incisor exhibited complete buccal bone plate loss and a 9 mm vertical bone deficiency on its palatal side. The alveolar sockets were filled with collagen sponge and covered with a nonresorbable high-density PTFE membrane. Primary closure was not attained and any rigid scaffold material was not used. Histologic analysis provided evidence of new bone formation. At 12 months a cone-beam computed tomographic scan revealed enough bone volume to insert two conventional dental implants in conjunction with minor horizontal bone augmentation procedures. Clinical Implications. This case report would seem to support the potential of the proposed reconstructive approach in changing the morphology of severely resorbed alveolar sockets, minimizing the need for advanced bone regeneration procedures during implant placement.
2017-01-01
Background. Several clinical techniques and a variety of biomaterials have been introduced over the years in an effort to overcome bone remodeling and resorption after tooth extraction. However, the predictability of these procedures in sockets with severely resorbed buccal/lingual plate due to periodontal disease is still unknown. Case Description. A patient with advanced periodontitis underwent extraction of upper right lateral and central incisors. The central incisor exhibited complete buccal bone plate loss and a 9 mm vertical bone deficiency on its palatal side. The alveolar sockets were filled with collagen sponge and covered with a nonresorbable high-density PTFE membrane. Primary closure was not attained and any rigid scaffold material was not used. Histologic analysis provided evidence of new bone formation. At 12 months a cone-beam computed tomographic scan revealed enough bone volume to insert two conventional dental implants in conjunction with minor horizontal bone augmentation procedures. Clinical Implications. This case report would seem to support the potential of the proposed reconstructive approach in changing the morphology of severely resorbed alveolar sockets, minimizing the need for advanced bone regeneration procedures during implant placement. PMID:28250998
Kuchler, Ulrike; Rudelstorfer, Claudia M; Barth, Barbara; Tepper, Gabor; Lidinsky, Dominika; Heimel, Patrick; Watzek, Georg; Gruber, Reinhard
Recombinant human bone morphogenetic protein 2 (rhBMP-2) together with an absorbable collagen carrier (ACS) was approved for augmentation of the maxillary sinus prior to implant placement. The original registration trial was based on a lateral window approach. Clinical outcomes of crestal sinus augmentation with rhBMP-2 have not been reported so far. An uncontrolled pilot trial in which seven patients with a residual maxillary height below 5 mm were enrolled to receive crestal sinus augmentation with rhBMP-2/ACS was conducted. Elevation of the sinus mucosa was performed by gel pressure. Primary endpoints were the gain in augmentation height and volume measured by computed tomography after 6 months. Evaluation of bone quality at the time of implant placement was based on histology. Secondary endpoints were the clinical and radiologic evaluation of the implants and patient satisfaction by visual analog scale (VAS) at the 2-year follow-up. Median gain in augmentation height was 7.2 mm (range 0.0 to 17.5 mm). Five patients gained at least 5 mm of bone height. Two patients with a perforation of the sinus mucosa failed to respond to rhBMP-2/ACS and underwent lateral window augmentation. The median gain in augmentation volume of the five patients was 781.3 mm³ (range 426.9 to 1,242.8 mm³). Biopsy specimens showed a cancellous network consisting of primary plexiform bone with little secondary lamellar bone. After 2 years, implants were in function with no signs of inflammation or peri-implant bone loss. Patients were satisfied with the esthetic outcomes and chewing function. This pilot clinical trial supports the original concept that rhBMP-2/ACS supports bone formation, also in crestal sinus augmentation, and emphasizes the relevance of the integrity of the sinus mucosa to predict the bone gain.
Recombinant human bone morphogenetic protein 2 in augmentation procedures: case reports.
Luiz, Jaques; Padovan, Luis Eduardo Marques; Claudino, Marcela
2014-01-01
To successfully rehabilitate edentulous patients using endosseous implants, there must be enough available bone. Several techniques have been proposed for augmentation of sites with insufficient bone volume. Although autogenous bone has long been considered the gold standard for such procedures, the limited availability of graft material and a high morbidity rate are potential disadvantages of this type of graft. An alternative is to use recombinant human bone morphogenetic protein 2 (rhBMP-2), which is able to support bone regeneration in the oral environment. These cases demonstrate the applicability of rhBMP-2 in maxillary sinus elevation and augmentation procedures in the maxilla to enable dental implant placement. The use of rhBMP-2 in alveolar augmentation procedures had several clinical benefits for these patients.
Fienitz, Tim; Moses, Ofer; Klemm, Christoph; Happe, Arndt; Ferrari, Daniel; Kreppel, Matthias; Ormianer, Zeev; Gal, Moti; Rothamel, Daniel
2017-04-01
The objective of this study is to histologically and radiologically compare a sintered and a non-sintered bovine bone substitute material in sinus augmentation procedures. Thirty-three patients were included in the clinically controlled randomized multicentre study resulting in a total of 44 treated sinuses. After lateral approach, sinuses were filled with either a sintered (SBM, Alpha Bio's Graft ® ) or a non-sintered (NSBM, Bio Oss ® ) deproteinized bovine bone substitute material. The augmentation sites were radiologically assessed before and immediately after the augmentation procedure as well as prior to implant placement. Bone trephine biopsies for histological analysis were harvested 6 months after augmentation whilst preparing the osteotomies for implant placement. Healing was uneventful in all patients. After 6 months, radiological evaluation of 43 sinuses revealed a residual augmentation height of 94.65 % (±2.74) for SBM and 95.76 % (±2.15) for NSBM. One patient left the study for personal reasons. Histological analysis revealed a percentage of new bone of 29.71 % (±13.67) for SBM and 30.57 % (±16.07) for NSBM. Residual bone substitute material averaged at 40.68 % (±16.32) for SBM compared to 43.43 % (±19.07) for NSBM. All differences between the groups were not statistically significant (p > 0.05, Student's t test). Both xenogeneic bone substitute materials showed comparable results regarding new bone formation and radiological height changes in external sinus grafting procedures. Both bone substitute materials allow for a predictable new bone formation following sinus augmentation procedures.
Ferner, Felix; Dickschas, Joerg; Ostertag, Helmut; Poske, Ulrich; Schwitulla, Judith; Harrer, Joerg; Strecker, Wolf
2016-01-01
Medial open-wedge high tibial osteotomy (MOWHTO) is an established method to treat unicompartimental osteoarthritis of the knee joint. However, augmentation of the created tibial gap after osteotomy is controversially discussed. We performed a prospective investigation of 49 consecutive cases of MOWHTO at our department. Patients were divided into two groups: group A consisted of 19 patients while group B consisted of 30 patients. In group A, the augmentation of the opening gap after osteotomy was filled with a synthetic bone graft, whereas group B received no augmentation. As an indicator for bone healing we investigated the non-union rate in our study population and compared the non-union-rate between the two groups. The non-union rate was 28% in group A (five of 19 patients had to undergo revision) which received synthetic augmentation, while it was 3.3% in group B (one of 30 patients had to undergo revision) which received no augmentation. The difference between the groups was statistically significant (p-value 0.027). With regard to bone healing after MOWHTO, synthetic augmentation was not superior to no augmentation in terms of non-union rates after surgery. In fact, we registered a significantly higher rate of non-union after augmentation with synthetic bone graft. III. Copyright © 2015 Elsevier B.V. All rights reserved.
Nissan, Joseph; Gross, Ora; Mardinger, Ofer; Ghelfan, Oded; Sacco, Roberto; Chaushu, Gavriel
2011-12-01
To prospectively evaluate the outcome of dental implants placed in the post-traumatic anterior maxilla after ridge augmentation with cancellous freeze-dried block bone allografts. Patients presenting with a history of anterior dentoalveolar trauma with bony deficiencies in the sagittal (≥3 mm) and vertical (<3 mm) planes according to computed tomography were included. The recipient sites were reconstructed with cancellous bone block allografts. After 6 months of healing, implants were placed. The primary outcomes of interest were 1) bone measurements taken before grafting, at the time of implant placement, and at stage 2 operations; 2) implant survival; and 3) complications. The sample was composed of 20 consecutive patients with a mean age of 25 ± 7 years. We used 28 cancellous allogeneic bone blocks, and 31 implants were inserted. Of the 31 implants, 12 were immediately restored. The mean follow-up was 42 ± 15 months. Graft and implant survival rates were 92.8% and 96.8%, respectively. Mean bone gain in the sagittal and vertical planes was 5 ± 0.5 mm horizontally and 2 ± 0.5 mm (P < .001). Successful restoration was achieved in all patients with fixed implant-supported prostheses. Soft tissue complications occurred in 7 patients (35%). Complications after cementation of the crowns were seen in 3 implants (9.6%). All implants remained clinically osseointegrated at the end of the follow-up examination. There was no crestal bone loss around the implants beyond the first implant thread. Cancellous block allograft can be used successfully for post-traumatic implant-supported restoration in the anterior maxilla. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Patient-specific finite element modeling for femoral bone augmentation
Basafa, Ehsan; Armiger, Robert S.; Kutzer, Michael D.; Belkoff, Stephen M.; Mears, Simon C.; Armand, Mehran
2015-01-01
The aim of this study was to provide a fast and accurate finite element (FE) modeling scheme for predicting bone stiffness and strength suitable for use within the framework of a computer-assisted osteoporotic femoral bone augmentation surgery system. The key parts of the system, i.e. preoperative planning and intraoperative assessment of the augmentation, demand the finite element model to be solved and analyzed rapidly. Available CT scans and mechanical testing results from nine pairs of osteoporotic femur bones, with one specimen from each pair augmented by polymethylmethacrylate (PMMA) bone cement, were used to create FE models and compare the results with experiments. Correlation values of R2 = 0.72–0.95 were observed between the experiments and FEA results which, combined with the fast model convergence (~3 min for ~250,000 degrees of freedom), makes the presented modeling approach a promising candidate for the intended application of preoperative planning and intraoperative assessment of bone augmentation surgery. PMID:23375663
Kiyak, Gorkem; Balikci, Tevfik; Heydar, Ahmed Majid; Bezer, Murat
2018-02-01
Mechanical study. To compare the pullout strength of different screw designs and augmentation techniques in an osteoporotic bone model. Adequate bone screw pullout strength is a common problem among osteoporotic patients. Various screw designs and augmentation techniques have been developed to improve the biomechanical characteristics of the bone-screw interface. Polyurethane blocks were used to mimic human osteoporotic cancellous bone, and six different screw designs were tested. Five standard and expandable screws without augmentation, eight expandable screws with polymethylmethacrylate (PMMA) or calcium phosphate augmentation, and distal cannulated screws with PMMA and calcium phosphate augmentation were tested. Mechanical tests were performed on 10 unused new screws of each group. Screws with or without augmentation were inserted in a block that was held in a fixture frame, and a longitudinal extraction force was applied to the screw head at a loading rate of 5 mm/min. Maximum load was recorded in a load displacement curve. The peak pullout force of all tested screws with or without augmentation was significantly greater than that of the standard pedicle screw. The greatest pullout force was observed with 40-mm expandable pedicle screws with four fins and PMMA augmentation. Augmented distal cannulated screws did not have a greater peak pullout force than nonaugmented expandable screws. PMMA augmentation provided a greater peak pullout force than calcium phosphate augmentation. Expandable pedicle screws had greater peak pullout forces than standard pedicle screws and had the advantage of augmentation with either PMMA or calcium phosphate cement. Although calcium phosphate cement is biodegradable, osteoconductive, and nonexothermic, PMMA provided a significantly greater peak pullout force. PMMA-augmented expandable 40-mm four-fin pedicle screws had the greatest peak pullout force.
Tamimi, Faleh; Torres, Jesus; Al-Abedalla, Khadijeh; Lopez-Cabarcos, Enrique; Alkhraisat, Mohammad H; Bassett, David C; Gbureck, Uwe; Barralet, Jake E
2014-07-01
Onlay grafts made of monolithic microporous monetite bioresorbable bioceramics have the capacity to conduct bone augmentation. However, there is heterogeneity in the graft behaviour in vivo that seems to correlate with the host anatomy. In this study, we sought to investigate the metabolic activity of the regenerated bone in monolithic monetite onlays by using positron emission tomography-computed tomography (PET-CT) in rats. This information was used to optimize the design of monetite onlays with different macroporous architecture that were then fabricated using a 3D-printing technique. In vivo, bone augmentation was attempted with these customized onlays in rabbits. PET-CT findings demonstrated that bone metabolism in the calvarial bone showed higher activity in the inferior and lateral areas of the onlays. Histological observations revealed higher bone volume (up to 47%), less heterogeneity and more implant osseointegration (up to 38%) in the augmented bone with the customized monetite onlays. Our results demonstrated for the first time that it is possible to achieve osseointegration of dental implants in bone augmented with 3D-printed synthetic onlays. It was also observed that designing the macropore geometry according to the bone metabolic activity was a key parameter in increasing the volume of bone augmented within monetite onlays. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Feng; Zhou, Wenjie; Monje, Alberto; Huang, Wei; Wang, Yueping; Wu, Yiqun
2017-04-01
To investigate the influence of maturation timing upon histological, histomorphometric and clinical outcomes when deproteinized bovine bone mineral (DBBM) was used as a sole biomaterial for staged maxillary sinus floor augmentation (MSFA). Patients with a posterior edentulous maxillary situation and a vertical bone height ≤ 4 mm were included in this study. A staged MSFA was carried out. After MSFA with DBBM as a sole grafting material, biopsy cores were harvested with simultaneous implant placement followed by a healing period of 5, 8, and 11 months, respectively. Micro-CT, histologic and histomorphometric analyses were performed. Forty-one patients were enrolled and 38 bone core biopsies were harvested. Significantly greater BV/TV was observed between 5- and 8-month healing from micro-CT analysis. Histomorphometric analyses showed the ratio of mineralized newly formed bone increased slightly from 5 to 11 months; however, no statistically significant difference was reached (p = .409). Residual bone substitute decreased from 37.3 ± 5.04% to 20.6 ± 7.45%, achieving a statistical significant difference from of 5 up to 11 months (p < .01). Moreover, no implant failure, biological or technical complication occurred after 12-month follow-up of functional loading. DBBM utilized as sole grafting material in staged MSFA demonstrated to be clinically effective regardless of the healing period. Histomorphometrical and micro-CT assessments revealed that at later stages of healing (8 and 11 months) there is a higher proportion of newly-bone formation compared to earlier stages (5 months). Moreover, the longer the maturation period, the substantially lesser remaining biomaterial could be expected. Even though, these facts did not seem to negatively impact on the implant prognosis 1-year after loading. © 2016 Wiley Periodicals, Inc.
Fan, Haitao T; Zhang, Renjie J; Shen, Cailiang L; Dong, Fulong L; Li, Yong; Song, Peiwen W; Gong, Chen; Wang, Yijin J
2016-03-01
The biomechanics of pedicle screw fixation combined with trajectory cement augmentation with various filling volumes were measured by pull-out, periodic antibending, and compression fatigue tests. To investigate the biomechanical properties of the pedicle screw fixation combined with trajectory bone cement (polymethylmethacrylate) augmentation in osteoporotic vertebrae and to explore the optimum filling volume of the bone cement. Pedicle screw fixation is considered to be the most effective posterior fixation method. The decrease of the bone mineral density apparently increases the fixation failure risk caused by screw loosening and displacement. Trajectory bone cement augmentation has been confirmed to be an effective method to increase the bone intensity and could markedly increase the stability of the fixation interface. Sixteen elderly cadaveric 1-5 lumbar vertebral specimens were diagnosed with osteoporosis. The left and right vertebral pedicles were alternatively randomized for treatment in all groups, with the contralateral pedicles as control. The study groups included: group A (pedicle screw fixation with full trajectory bone cement augmentation), group B (75% filling), group C (50% filling), and group D (25% filling). Finally, the bone cement leakage and dispersion were assessed and the mechanical testing was conducted. The bone cement was well dispersed around the pedicle screw. The augmented bone intensity, pull-out strength, periodic loading times, and compression fatigue performance were markedly higher than those of the control groups. With the increase in trajectory bone cement, the leakage was also increased (P<0.05). The pull-out strength of the pedicle screw was increased with an increase in bone mineral density and trajectory bone cement. It peaked at 75% filling, with the largest power consumption. The optimal filling volume of the bone cement was 75% of the trajectory volume (about 1.03 mL). The use of excessive bone cement did not increase the fixation intensity but increased the risk of leakage.
Ueno, Daisuke; Nakamura, Kei; Kojima, Kousuke; Toyoshima, Takeshi; Tanaka, Hideaki; Ueda, Kazuhiko; Koyano, Kiyoshi; Kodama, Toshiro
2018-04-01
Simultaneous vertical ridge augmentation (VRA) can reduce treatment procedures and surgery time, but the concomitant reduction in primary stability (PS) of a shallow-placed implant imparts risk to its prognosis. Although several studies have reported improvements in PS, there is little information from any simultaneous VRA model. This study aimed to evaluate whether tapered implants with stepwise under-prepared osteotomy could improve the PS of shallow-placed implants in an in vitro model of simultaneous VRA. Tapered implants (Straumann ® Bone Level Tapered implant; BLT) and hybrid implants (Straumann ® Bone Level implant; BL) were investigated in this study. A total of 80 osteotomies of different depths (4, 6, 8, 10 mm) were created in rigid polyurethane foam blocks, and each BLT and BL was inserted by either standard (BLT-S, BL-S) or a stepwise under-prepared (BLT-U, BL-U) osteotomy protocol. The PS was evaluated by measuring maximum insertion torque (IT), implant stability quotient (ISQ), and removal torque (RT). The significance level was set at P < 0.05. There were no significant differences in IT, ISQ or RT when comparing BLT-S and BL-S or BLT-U and BL-U at placement depths of 6 and 8 mm. When comparison was made between osteotomy protocols, IT was significantly greater in BLT-U than in BLT-S at all placement depths. A stepwise under-prepared osteotomy protocol improves initial stability of a tapered implant even in a shallow-placed implant model. BLT-U could be a useful protocol for simultaneous VRA.
Smeets, Ralf; Kolk, Andreas; Gerressen, Marcus; Driemel, Oliver; Maciejewski, Oliver; Hermanns-Sachweh, Benita; Riediger, Dieter; Stein, Jamal M
2009-01-01
The aim of the present study was to analyze the osteogenic potential of a biphasic calcium composite material (BCC) with a negative surface charge for maxillary sinus floor augmentation. In a 61 year old patient, the BCC material was used in a bilateral sinus floor augmentation procedure. Six months postoperative, a bone sample was taken from the augmented regions before two titanium implants were inserted at each side. We analyzed bone neoformation by histology, bone density by computed tomography, and measured the activity of voltage-activated calcium currents of osteoblasts and surface charge effects. Control orthopantomograms were carried out five months after implant insertion. The BCC was biocompatible and replaced by new mineralized bone after being resorbed completely. The material demonstrated a negative surface charge (negative Zeta potential) which was found to be favorable for bone regeneration and osseointegration of dental implants. PMID:19523239
Computerized tomography-assisted calculation of sinus augmentation volume.
Krennmair, Gerald; Krainhöfner, Martin; Maier, Harald; Weinländer, Michael; Piehslinger, Eva
2006-01-01
This study was intended to calculate the augmentation volume for a sinus lift procedure based on cross-sectional computerized tomography (CT) scans for 2 different augmentation heights. Based on area calculations of cross-sectional CT scans, the volume of additional bone needed was calculated for 44 sinus lift procedures. The amount of bone volume needed to raise the sinus floor to heights of both 12 and 17 mm was calculated. To achieve a sinus floor height of 12 mm, it was necessary to increase the height by a mean of 7.2+/-2.1 mm (range, 3.0 to 10.5 mm), depending on the residual ridge height; to achieve a height of 17 mm, a mean of 12.4+/-2.0 mm (range, 8.5 to 15.5 mm) was required (P < .01). The calculated augmentation volume for an augmentation height of 12 mm was 1.7+/-.9 cm3; for an augmentation height of 17 mm, the volume required was 3.6+/-1.5 cm3. Increasing the height of the sinus lift by 5 mm, ie, from 12 mm to 17 mm augmentation height, increased the augmentation volume by 100%. A significant correlation was found between augmentation height and the calculated sinus lift augmentation volume (r = 0. 78, P < .01). Detailed preoperative knowledge of sinus lift augmentation volume is helpful as a predictive value in deciding on a donor site for harvesting autogenous bone and on the ratio of bone to bone substitute to use. Calculation of the augmentation size can help determine the surgical approach and thus perioperative treatment and the costs of the surgery for both patients and clinicians.
Pripatnanont, P; Balabid, F; Pongpanich, S; Vongvatcharanon, S
2015-05-01
This study evaluated the effect of a modified Hyrax device and platelet-rich fibrin (PRF) on osteogenic periosteal distraction (OPD). Twelve adult male New Zealand white rabbits were separated into two main groups (six in each) according to the duration of the consolidation period (4 or 8 weeks). In each main group, the animals underwent OPD of the left and right sides of the mandible and were divided into four subgroups (three animals per group): device vs. device+PRF, and PRF vs. sham. Radiographic, histological, histomorphometric, and micro-computed tomography (micro-CT) analyses were performed. New bone formation was observed on the lateral and vertical sides of the mandible of all groups. Micro-CT and histomorphometry showed that the device+PRF group presented the highest percentages of bone volume and bone area at 4 weeks (56.67 ± 12.67%, 41.37 ± 7.57%) and at 8 weeks (49.67 ± 8.33%, 55.46 ± 10.67%; significantly higher than the other groups, P<0.001), followed by the device group at 4 weeks (33.00 ± 1.73%, 33.21 ± 11.00%) and at 8 weeks (30.00 ± 3.00%, 23.25 ± 5.46%). In conclusion, the modified Hyrax device was used successfully for OPD in a rabbit model to gain vertical ridge augmentation, and greater bone maturation was achieved with the addition of PRF. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Retrospective analysis of survival rates and marginal bone loss on short implants in the mandible.
Draenert, Florian G; Sagheb, Keyvan; Baumgardt, Katharina; Kämmerer, Peer W
2012-09-01
Short implants have become an interesting alternative to bone augmentation in dental implantology. Design of shorter implants and longer surveillance times are a current research issue. The goal of this study was to show the survival rates of short implants below 9 mm in the partly edentulous mandibular premolar and molar regions with fixed prosthetics. Marginal vertical and 2D bone loss was evaluated additionally. Different implant designs are orientationally evaluated. A total of 247 dental implants with fixed prosthetics (crowns and bridges) in the premolar and molar region of the mandible were evaluated; 47 implants were 9 mm or shorter. Patient data were evaluated to acquire implant survival rates, implant diameter, gender and age. Panoramic X-rays were analysed for marginal bone loss. Average surveillance time was 1327 days. Cumulative survival rate (CSR) of short implants was 98% (1 implants lost) compared to 94% in the longer implants group without significance. Thirty-five of the short implants were Astratech (0 losses) and 12 were Camlog Screw Line Promote Plus (1 loss). Early vertical and two-dimensional marginal bone loss was not significantly different in short and regular length implant group with an average of 0.6 mm and 0.7 mm(2) in short implants over the observation period. Within the limitations of this study, we conclude that short implants with a length of 9 mm or less have equal survival rates compared with longer implants over the observation period of 1-3 years. © 2011 John Wiley & Sons A/S.
Kühl, Sebastian; Brochhausen, Christoph; Götz, Hermann; Filippi, Andreas; Payer, Michael; d'Hoedt, Bernd; Kreisler, Matthias
2013-03-01
This study aims to evaluate the effect of adding bone substitute materials (BSM) to particulated autogenous bone (PAB) on the volume fraction (Vf) of newly formed bone after maxillary sinus augmentation. Thirty healthy patients undergoing maxillary sinus augmentation were included. PAB (N = 10), mixtures of PAB and beta-tricalciumphosphate (PAB/β-TCP) (N = 10), as well as PAB and β-TCP and hydroxyapatite (PAB/HA/β-TCP) (N = 10) were randomly used for sinus augmentation. A sample of the graft material was maintained from each patient at time of maxillary sinus augmentation, and Vfs of the PAB and/or BSM in the samples were determined by means of microcomputerized tomography (μ-CT). Five months later, samples of the grafted areas were harvested during implantation using a trephine bur. μ-CT analysis of these samples was performed, and the Vf of bone and BSM were compared with the data obtained 5 months earlier from the original material. The mean Vf of the bone showed a statistically significant increase (p < 0.05) in all groups after a healing period of 5 months without statistically significant difference between the groups. With regard to the increase of bone volume, it is not relevant if PAB is used alone or combined with β-TCP or HA/β-TCP. The amount of PAB and associated donor site morbidity may be reduced by adding BSM for maxillary sinus augmentation.
Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J; Kovács, Adorján F; Ghanaati, Shahram; Sader, Robert A
2016-01-01
In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss ® , BO) and a synthetic (NanoBone ® , NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials.
Comparison of two kinds of bovine bone in maxillary sinus augmentation: a histomorphometric study.
Moon, Jee-Won; Sohn, Dong-Seok; Heo, Jeung-Uk; Kim, Jin Sun
2015-02-01
The purpose of this study was to compare the histomorphometric from sinus augmentation with calcium-phosphate nanocrystal-coated bovine bone (Biocera) and anorganic bovine bone matrix (Bio-Oss). Bilateral maxillary sinus augmentations were performed on 5 patients with delayed placement of implants. The lateral bony window was created using a piezoelectric saw, and the sinus membrane was elevated to make a new compartment. Bio-Oss was grafted in one sinus as the control group and Biocera was grafted in the opposite sinus as the test group. The bony window was repositioned over the bone graft. In all cases, samples were taken for biopsy at the time of implant placement, 6 to 8 months after the grafting procedure. Independent t tests were used to examine between-group differences. None of the 5 patients had complications during healing period. Histomorphometrically, the Bio-Oss group showed 28.46% (±5.28%) of newly formed bone. Biocera group showed 29.94% (±8.72%) of newly formed bone. Newly formed bone along inner surface of repositioned bony window area showed more mature and dense bone structure than new bone formed along bone graft. This study revealed that both bovine bone grafts were considered as suitable bone graft materials for maxillary sinus augmentation.
Implant site development by orthodontic forced eruption of nontreatable teeth: a case report.
Rokn, Amir Reza; Saffarpour, Anna; Sadrimanesh, Rouzbeh; Iranparvar, Kaveh; Saffarpour, Aida; Mahmoudzadeh, Majid; Soolari, Ahmad
2012-01-01
Loss of bone and soft tissue attachment are common sequelae of periodontitis that may jeopardize the aesthetic outcome and compromise the functional and aesthetic outcomes of treatment. The following case report describes one of the most predictable techniques of vertical ridge augmentation, which is orthodontic extrusion or forced eruption of hopeless teeth. A 34-year-old woman who presented with severe attachment loss and deep pockets was diagnosed with generalized aggressive periodontitis. The mobile maxillary incisors were consequently extracted and were replaced with dental implants. However, prior to extraction, orthodontic extrusion of the hopeless incisors was performed to correct vertical ridge defects. Following extrusion and extraction of the maxillary incisors, to prevent soft tissue collapse and to preserve the papillae during socket healing, the crowns of the extracted teeth were used as pontics on a removable partial provisional denture. After 8 weeks, the implants were placed, and an immediate functional restoration was delivered. After 4 months of healing, a fixed definitive partial prosthesis was fabricated and delivered. After periodontal treatment, over a 2-year period, the progression of aggressive periodontitis was controlled. The mean vertical movement of marginal bone was 3.6 mm. The use of the crowns of extracted teeth appears to be an effective method to maintain papillae. Orthodontic extrusion is a predictable method for the correction of vertical ridge defects. Orthodontic treatment does not aggravate or hasten the progression of aggressive periodontitis.
Variability of the pullout strength of cancellous bone screws with cement augmentation.
Procter, P; Bennani, P; Brown, C J; Arnoldi, J; Pioletti, D P; Larsson, S
2015-06-01
Orthopaedic surgeons often face clinical situations where improved screw holding power in cancellous bone is needed. Injectable calcium phosphate cements are one option to enhance fixation. Paired screw pullout tests were undertaken in which human cadaver bone was augmented with calcium phosphate cement. A finite element model was used to investigate sensitivity to screw positional placement. Statistical analysis of the data concluded that the pullout strength was generally increased by cement augmentation in the in vitro human cadaver tests. However, when comparing the individual paired samples there were surprising results with lower strength than anticipated after augmentation, in apparent contradiction to the generally expected conclusion. Investigation using the finite element model showed that these strength reductions could be accounted for by small screw positional changes. A change of 0.5mm might result in predicted pullout force changes of up to 28%. Small changes in screw position might lead to significant changes in pullout strength sufficient to explain the lower than expected individual pullout values in augmented cancellous bone. Consequently whilst the addition of cement at a position of low strength would increase the pullout strength at that point, it might not reach the pullout strength of the un-augmented paired test site. However, the overall effect of cement augmentation produces a significant improvement at whatever point in the bone the screw is placed. The use of polymeric bone-substitute materials for tests may not reveal the natural variation encountered in tests using real bone structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Klijn, R J; van den Beucken, J J J P; Bronkhorst, E M; Berge, S J; Meijer, G J; Jansen, J A
2012-04-01
No studies are available that provide predictive parameters regarding the expected amount of resorption after maxillary sinus augmentation surgery using autologous bone grafts. Therefore, the aim of this study was to determine parameters influencing the outcome of the bone graft resorption process. In 20 patients, three-dimensional analysis of alveolar ridge dimensions and bone graft volume change in the atrophic posterior maxilla was performed by Cone-Beam Computerized Tomography imaging. Ridge dimensions were assessed before maxillary sinus augmentation surgery. Bone graft volumes were compared after maxillary sinus floor augmentation surgery and a graft healing interval of several months. To analyze the relation between bone volume changes with the independent variables, patients' gender, age, alveolar crest height and width, and graft healing time interval, a multi-level extension of linear regression was applied. A residual bone height of 6.0 mm (SD = 3.6 mm) and 6.2 mm (SD = 3.6 mm) was found at the left and right sides, respectively. Moreover, alveolar bone widths of 6.5 mm (SD = 2.2 mm) and 7.0 mm (SD = 2.3 mm) at the premolars, and 8.8 mm (SD = 2.2 mm) and 8.9 mm (SD = 2.5 mm) at the molars regions were found at the left and right site, respectively. Bone graft volume decreased by 25.0% (SD = 21.0%) after 4.7 months (SD = 2.7, median = 4.0 months) of healing time. The variables "age" (P = 0.009) and mean alveolar crest "bone height" (P = 0.043), showed a significant influence on bone graft resorption. A decrease of 1.0% (SE = 0.3%) of bone graft resorption was found for each year the patient grew older, and an increase in bone graft resorption of 1.8% (SE = 0.8%) was found for each mm of original bone height before sinus floor augmentation. Graft resorption occurs when using autologous bone grafts for maxillary sinus augmentation. Alveolar crest bone height and patient age have a significant effect on graft resorption, with increased resorption for higher alveolar crest bone height and decreased resorption for older patients. Consequently, patient characteristics that affect the process of bone graft resorption should be given full consideration, when performing sinus augmentation surgery. © 2011 John Wiley & Sons A/S.
Meijndert, Caroliene M; Raghoebar, Gerry M; Meijndert, Leo; Stellingsma, Kees; Vissink, Arjan; Meijer, Henny J A
2017-04-01
The aim of this randomized controlled trial was to assess the 10-year effects of three different augmentation techniques (augmentation with chin bone, augmentation with chin bone plus a membrane and augmentation with a bone substitute plus a membrane) for implant-supported restorations in the maxillary aesthetic region regarding clinical and radiographic parameters, and patient-centred outcomes. Ninety-three patients requesting single tooth replacement and presenting with a horizontal bone deficiency were included. After augmentation, 93 implants were placed. Clinical variables, standardized radiographs and photographs and patient questionnaires were analysed to assess the impact of the various augmentation techniques 1 month (T 1 ), 12 months (T 12 ) and 120 months (T 120 ) after final crown placement. 10-years implant survival was 95.7% and did not differ between the groups neither were significant differences observed in the other treatment outcomes assessed. Peri-implant bone loss was low, viz. 0.48 ± 1.19 mm (mesial) and 0.30 ± 1.24 mm (distal) at T 120 . Loss of midbuccal marginal gingival level at T 120 was 0.32 ± 0.83 mm. Mean overall satisfaction at T 120 was 8.6 with 98.6% of the patients satisfied. Clinical, radiographic, aesthetic and patient centred outcomes were very favourable after 10 years and did not differ between the groups with different bone augmentation techniques. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jensen, Simon S; Bosshardt, Dieter D; Gruber, Reinhard; Buser, Daniel
2014-11-01
Contour augmentation around early-placed implants (Type 2 placement) using autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) and a collagen barrier membrane has been documented to predictably provide esthetically satisfactory clinical outcomes. In addition, recent data from cone beam computed tomography studies have shown the augmented volume to be stable long-term. However, no human histologic data are available to document the tissue reactions to this bone augmentation procedure. Over an 8-year period, 12 biopsies were harvested 14 to 80 months after implant placement with simultaneous contour augmentation in 10 patients. The biopsies were subjected to histologic and histomorphometric analysis. The biopsies consisted of 32.0% ± 9.6% DBBM particles and 40.6% ± 14.6% mature bone. 70.3% ± 14.5% of the DBBM particle surfaces were covered with bone. On the remaining surface, multinucleated giant cells with varying intensity of tartrate-resistant acid phosphatase staining were regularly present. No signs of inflammation were visible, and no tendency toward a decreasing volume fraction of DBBM over time was observed. The present study confirms previous findings that osseointegrated DBBM particles do not tend to undergo substitution over time. This low substitution rate may be the reason behind the clinically and radiographically documented long-term stability of contour augmentation using a combination of autogenous bone chips, DBBM particles, and a collagen membrane.
The Palatal Window for Treating an Incompletely Augmented Maxillary Sinus.
Florio, Salvatore; Suzuki, Takanori; Cho, Sang-Choon
2017-04-01
Maxillary sinus augmentation through a lateral window is reported as one of the most predictable bone augmentation procedures before implant placement. The elevation of the membrane represents a delicate and crucial step that allows the creation of the space for the bone graft material. If the elevation is not completed, the regenerated bone might be inadequate for the implant placement. In this case, a new intervention will be necessary to complete the bone augmentation. Reaccessing from a lateral window, however, would be challenging due to thickness of the buccal boney wall because of the first grafting procedure; therefore, a different approach has to be used. The aim of this case report is to present the palatal window technique for treating incompletely augmented maxillary sinus. The detailed step-by-step diagnostic and surgical procedures are described, and the advantages and limitations of the technique are discussed through a review of the literature.
Clinical applications of cell-based approaches in alveolar bone augmentation: a systematic review.
Shanbhag, Siddharth; Shanbhag, Vivek
2015-01-01
Cell-based approaches, utilizing adult mesenchymal stem cells (MSCs), are reported to overcome the limitations of conventional bone augmentation procedures. The study aims to systematically review the available evidence on the characteristics and clinical effectiveness of cell-based ridge augmentation, socket preservation, and sinus-floor augmentation, compared to current evidence-based methods in human adult patients. MEDLINE, EMBASE, and CENTRAL databases were searched for related literature. Both observational and experimental studies reporting outcomes of "tissue engineered" or "cell-based" augmentation in ≥5 adult patients alone, or in comparison with non-cell-based (conventional) augmentation methods, were eligible for inclusion. Primary outcome was histomorphometric analysis of new bone formation. Effectiveness of cell-based augmentation was evaluated based on outcomes of controlled studies. Twenty-seven eligible studies were identified. Of these, 15 included a control group (8 randomized controlled trials [RCTs]), and were judged to be at a moderate-to-high risk of bias. Most studies reported the combined use of cultured autologous MSCs with an osteoconductive bone substitute (BS) scaffold. Iliac bone marrow and mandibular periosteum were frequently reported sources of MSCs. In vitro culture of MSCs took between 12 days and 1.5 months. A range of autogenous, allogeneic, xenogeneic, and alloplastic scaffolds was identified. Bovine bone mineral scaffold was frequently reported with favorable outcomes, while polylactic-polyglycolic acid copolymer (PLGA) scaffold resulted in graft failure in three studies. The combination of MSCs and BS resulted in outcomes similar to autogenous bone (AB) and BS. Three RCTs and one controlled trial reported significantly greater bone formation in cell-based than conventionally grafted sites after 3 to 8 months. Based on limited controlled evidence at a moderate-to-high risk of bias, cell-based approaches are comparable, if not superior, to current evidence-based bone grafting methods, with a significant advantage of avoiding AB harvesting. Future clinical trials should additionally evaluate patient-based outcomes and the time-/cost-effectiveness of these approaches. © 2013 Wiley Periodicals, Inc.
Er, Mehmet Serhan; Altinel, Levent; Eroglu, Mehmet; Verim, Ozgur; Demir, Teyfik; Atmaca, Halil
2014-08-22
The purpose of the present study was to compare the results of various types of anchor applications with or without augmentation in both osteopenic and severely osteoporotic bone models. Two different types of suture anchors were tested in severely osteoporotic (SOP) and osteopenic polyurethane (PU) foam blocks using an established protocol. An Instron machine applied static loading parallel to the axis of insertion until failure, and the mean anchor failure strengths were calculated. The mode of failure (anchor pullout, suture tear) was recorded. The anchors tested included the Corkscrew (CS) (Arthrex Inc., Naples, FL, USA) (without augmentation, polymethylmethacrylate (PMMA)-augmented, and bioabsorbable tricalcium phosphate (TCP) cement-augmented) and Corkscrew FT II (CS FT II) 5.5 mm (without augmentation as used routinely). The mean failure loads for both SOP and osteopenic PU foam blocks, respectively, were as follows: CS, 16.2 and 212.4 N; CS with TCP, 75.2 and 396 N; CS with PMMA, 101.2 and 528.8 N; CS FT II, 13.8 and 339.8 N. Augmentation of CS with TCP or PMMA would be essential to SOP bones. In the osteopenic bone model, although anchor fixation augmented with PMMA is the best fixation method, CS augmented with TCP cement or CS FT II without any need for augmentation may also be used as an alternative.
Socket augmentation using a commercial collagen-based product--an animal study in pigs.
Kunert-Keil, Christiane; Gredes, Tomasz; Heinemann, Friedhelm; Dominiak, Marzena; Botzenhart, Ute; Gedrange, Tomasz
2015-01-01
The aim of the present study was to identify properties of pure collagen for augmentation techniques and compare to a proved xenogenic material and natural bone regeneration. For that the osteogenesis of extraction alveoli after augmentation with a collagen cone covered with an absorbable collagen membrane in a single product (PARASORB Sombrero®, Resorba) was evaluated in a pig model. Extraction alveoli were treated with the collagen cone and the collagen membrane in a single product (test group; n=7) or demineralized bovine bone mineral and a collagen membrane (two separate products; positive control; n=7). Untreated alveoli were used (n=6) as negative controls.(1) Bone specimens were extracted 1 and 3 months after teeth extraction. Serial longitudinal sections were stained with Masson Goldner trichrome. Furthermore, bone specimens were examined using X-ray analyses. Significant differences of bone atrophy were detected 12 weeks after material insertion using X-ray analyses. The bone atrophy was reduced by approximately 32% after insertion of the positive control (P=0.046). Bone atrophy reached 37.6% of those from untreated alveoli (P=0.002) using the test group. After 4 weeks, bone formation was noticeable in most sites, whereas after 12 weeks of healing, specimens of all groups exhibited nearly complete osseous organization of the former defected area. The mandibulary bone texture showed typical spongious bone structures. Histomorphometric analyses revealed after 4 and 12 weeks significant higher levels of bone marrow in test and negative control than in positive control. Quantification of bone tissue and osteoid does not show any significant difference. The present study confirms reduced bone resorption following socket augmentation with an absorbable collagen membrane with collagen cone while the resulting bone structure is similar to natural bone regeneration. Pure collagen can be used for bone augmentation, and shows over other xenogenic materials, a clear advantage with respect to the bone density and structure. Copyright © 2014 Elsevier B.V. All rights reserved.
Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J.; Kovács, Adorján F.; Ghanaati, Shahram; Sader, Robert A.
2016-01-01
Background: In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. Aims: The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss®, BO) and a synthetic (NanoBone®, NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Methods: Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Results: Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. Conclusion: The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials. PMID:28299254
The Use of Recombinant Human Platelet-Derived Growth Factor for Maxillary Sinus Augmentation.
Kubota, Atsushi; Sarmiento, Hector; Alqahtani, Mohammed Saad; Llobell, Arturo; Fiorellini, Joseph P
The maxillary sinus augmentation procedure has become a predictable treatment to regenerate bone for implant placement. The purpose of this study was to evaluate the effect of recombinant human platelet-derived growth factor BB (rhPDGF-BB) combined with a deproteinized cancellous bovine bone graft for sinus augmentation. The lateral window approach was used for maxillary sinuses with minimal residual bone. After a healing period of 4 months, dental implants were placed and then restored following a 2-month osseointegration period. The result demonstrated increased bone height and ISQ values and a 100% survival rate. This study indicates that the addition of rhPDGF-BB to deproteinized cancellous bovine bone accelerated the healing period in maxillary sinuses with minimal native bone.
Wang, Shaoyi; Zhang, Zhiyuan; Xia, Lunguo; Zhao, Jun; Sun, Xiaojuan; Zhang, Xiuli; Ye, Dongxia; Uludağ, Hasan; Jiang, Xinquan
2010-01-01
The objective of this study is to systematically evaluate the effects of a tissue-engineered bone complex for maxillary sinus augmentation in a canine model. Twelve sinus floor augmentation surgeries in 6 animals were performed bilaterally and randomly repaired with the following 3 groups of grafts: group A consisted of tissue-engineered osteoblasts/beta-TCP complex (n=4); group B consisted of beta-TCP alone (n=4); group C consisted of autogenous bone obtained from iliac crest as a positive control (n=4). All dogs had uneventful healings following the surgery. Sequential polychrome fluorescent labeling, maxillofacial CT, microhardness tests, as well as histological and histomorphometric analyses indicated that the tissue-engineered osteoblasts/beta-TCP complex dramatically promoted bone formation and mineralization and maximally maintained the height and volume of elevated maxillary sinus. By comparison, both control groups of beta-TCP or autologous iliac bone showed considerable resorption and replacement by fibrous or fatty tissue. We thus conclude that beta-TCP alone could barely maintain the height and volume of the elevated sinus floor, and that the transplantation of autogenous osteoblasts on beta-TCP could promote earlier bone formation and mineralization, maximally maintain height, volume and increase the compressive strength of augmented maxillary sinus. This tissue engineered bone complex might be a better alternative to autologous bone for the clinical edentulous maxillary sinus augmentation. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Chaushu, Gavriel; Vered, Marilena; Mardinger, Ofer; Nissan, Joseph
2010-08-01
Cancellous bone-block allografts may contribute to improved initial implant stability during sinus augmentation in cases with posterior atrophic maxillary ridge height < or =4 mm. The present study histologically and histomorphometrically evaluates the application of cancellous bone-block allografts for maxillary sinus-floor augmentation. Thirty-one consecutive patients, 16 females and 15 males (age range, 25 to 65 years; mean age: 54 +/- 9 years) underwent sinus augmentation with simultaneous implant placement with cancellous bone-block allografts. After 9 months, a second-stage surgery was performed. The previous window location was determined. A cylindrical sample core was collected. All specimens were prepared for histologic and histomorphometric examinations. Seventy-two of 76 implants were clinically osseointegrated (94.7%). All patients received a fixed implant-supported prosthesis. The mean t values of newly formed bone, residual cancellous bone-block allograft, marrow and connective tissue were 26.1% +/- 15% (range: 10% to 58%); 24.7% +/- 19.4% (range: 0.6% to 71%), and 49.2% +/- 20.4% (range: 14.9% to 78.9%), respectively. No statistically significant histomorphometric differences regarding newly formed bone were found between genders (27.02% in males versus 25.68% in females; P = 0.446), ages (29.82% in subjects < or =40 years old versus 24.43% in subjects >40 years old; P = 0.293), presence of membrane perforations (25.5% in non-perforated sinuses versus 27.3% in perforated sinuses; P = 0.427), and residual alveolar bone height (25.85% for residual alveolar bone height <2 mm versus 26.48% for residual alveolar bone height of 2 to 4 mm; P = 0.473). The cancellous bone-block allograft is biocompatible and osteoconductive and permits new bone formation in sinus augmentations with simultaneous implant-placement procedures in extremely atrophic posterior maxillae.
Nevins, Myron; Heinemann, Friedhelm; Janke, Ulrich W; Lombardi, Teresa; Nisand, David; Rocchietta, Isabella; Santoro, Giacomo; Schupbach, Peter; Kim, David M
2013-01-01
The objective of this proof-of-principle multicenter case series was to examine the bone regenerative potential of a newly introduced equine-derived bone mineral matrix (Equimatrix) to provide human sinus augmentation for the purpose of implant placement in the posterior maxilla. There were 10 patients requiring 12 maxillary sinus augmentations enrolled in this study. Histologic results at 6 months demonstrated abundant amounts of vital new bone in intimate contact with residual graft particles. Active bridging between residual graft particles with newly regenerated bone was routinely observed in intact core specimens. A mean value of 23.4% vital bone formation was observed at 6 months. This compared favorably with previous results using xenografts to produce bone in the maxillary sinus for the purpose of dental implant placement. Both the qualitative and quantitative results of this case series suggest comparable bone regenerative results at 6 months to bovine-derived xenografts.
Myelopotentiating effect of curcumin in tumor-bearing host: Role of bone marrow resident macrophages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishvakarma, Naveen Kumar; Kumar, Anjani; Kumar, Ajay
2012-08-15
The present investigation was undertaken to study if curcumin, which is recognized for its potential as an antineoplastic and immunopotentiating agent, can also influence the process of myelopoiesis in a tumor-bearing host. Administration of curcumin to tumor-bearing host augmented count of bone marrow cell (BMC) accompanied by an up-regulated BMC survival and a declined induction of apoptosis. Curcumin administration modulated expression of cell survival regulatory molecules: Bcl2, p53, caspase-activated DNase (CAD) and p53-upregulated modulator of apoptosis (PUMA) along with enhanced expression of genes of receptors for M-CSF and GM-CSF in BMC. The BMC harvested from curcumin-administered hosts showed an up-regulatedmore » colony forming ability with predominant differentiation into bone marrow-derived macrophages (BMDM), responsive for activation to tumoricidal state. The number of F4/80 positive bone marrow resident macrophages (BMM), showing an augmented expression of M-CSF, was also augmented in the bone marrow of curcumin-administered host. In vitro reconstitution experiments indicated that only BMM of curcumin-administered hosts, but not in vitro curcumin-exposed BMM, augmented BMC survival. It suggests that curcumin-dependent modulation of BMM is of indirect nature. Such prosurvival action of curcumin is associated with altered T{sub H1}/T{sub H2} cytokine balance in serum. Augmented level of serum-borne IFN-γ was found to mediate modulation of BMM to produce enhanced amount of monokines (IL-1, IL-6, TNF-α), which are suggested to augment the BMC survival. Taken together the present investigation indicates that curcumin can potentiate myelopoiesis in a tumor-bearing host, which may have implications in its therapeutic utility. Highlights: ► Curcumin augments myelopoiesis in tumor-bearing host. ► Bone marrow resident macrophages mediate curcumin-dependent augmented myelopoiesis. ► Serum borne cytokine are implicated in modulation of bone marrow resident macrophages.« less
2014-01-01
Background The purpose of the present study was to compare the results of various types of anchor applications with or without augmentation in both osteopenic and severely osteoporotic bone models. Methods Two different types of suture anchors were tested in severely osteoporotic (SOP) and osteopenic polyurethane (PU) foam blocks using an established protocol. An Instron machine applied static loading parallel to the axis of insertion until failure, and the mean anchor failure strengths were calculated. The mode of failure (anchor pullout, suture tear) was recorded. The anchors tested included the Corkscrew® (CS) (Arthrex Inc., Naples, FL, USA) (without augmentation, polymethylmethacrylate (PMMA)-augmented, and bioabsorbable tricalcium phosphate (TCP) cement-augmented) and Corkscrew® FT II (CS FT II) 5.5 mm (without augmentation as used routinely). Results The mean failure loads for both SOP and osteopenic PU foam blocks, respectively, were as follows: CS, 16.2 and 212.4 N; CS with TCP, 75.2 and 396 N; CS with PMMA, 101.2 and 528.8 N; CS FT II, 13.8 and 339.8 N. Conclusions Augmentation of CS with TCP or PMMA would be essential to SOP bones. In the osteopenic bone model, although anchor fixation augmented with PMMA is the best fixation method, CS augmented with TCP cement or CS FT II without any need for augmentation may also be used as an alternative. PMID:25148925
Streckbein, Philipp; Kähling, Christopher; Wilbrand, Jan-Falco; Malik, Christoph-Yves; Schaaf, Heidrun; Howaldt, Hans-Peter; Streckbein, Roland
2014-07-01
The use of autologous block bone grafts for horizontal alveolar ridge augmentation in dental implantology is a common surgical procedure. Typically, bone grafts are individually moulded. The aim of this paper is to introduce an innovative procedure in lateral bone augmentation, where the recipient side is adjusted to the graft, not vice versa as in common procedures. Our initial clinical experience of twenty-five consecutive cases is presented. Adjusted trephine drills were used to harvest partly cylindrical grafts from the retromolar region of the mandible. After preparing the recipient site with accurately fitting grinding drills, the bone grafts were transplanted. The horizontally compromised alveolar ridges were successfully augmented and treated with dental implants. No major complication occurred during transplantation, the healing period, and subsequent implant therapy in our experimental setting with 25 patients and 38 augmentation procedures. One out of twenty-five patients presented with temporary dysaesthesia of the inferior alveolar nerve. The new method presented is an effective treatment option for horizontal alveolar ridge augmentation prior to single implant installation. Further studies should evaluate the donor site morbidity and long-term outcome on a larger population. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Wang, Xin; Zakaria, Osama; Madi, Marwa; Kasugai, Shohei
2015-01-01
This study evaluated the quantity and quality of newly formed vertical bone induced by sputtered hydroxyapatite-coated titanium implants compared with sandblasted acid-etched implants after dura mater elevation. Hydroxyapatite-coated and non-coated implants (n = 20/group) were used and divided equally into two groups. All implants were randomly placed into rabbit calvarial bone (four implants for each animal) emerging from the inferior cortical layer, displacing the dura mater 3 mm below the original bone. Animals were sacrificed at 4 (n = 5) and 8 (n = 5) weeks post-surgery. Vertical bone height and area were analyzed histologically and radiographically below the original bone. Vertical bone formation was observed in both groups. At 4 and 8 weeks, vertical bone height reached a significantly higher level in the hydroxyapatite compared with the non-coated group (p < 0.05). Vertical bone area was significantly larger in the hydroxyapatite compared with the non-coated group at 4 and 8 weeks (p < 0.05). This study indicates that vertical bone formation can be induced by dura mater elevation and sputtered hydroxyapatite coating can enhance vertical bone formation.
Boner, Vanessa; Kuhn, Philipp; Mendel, Thomas; Gisep, Armando
2009-08-01
The use of polymethylmethacrylate (PMMA) bone cement to augment hip screws reduces cut-out risk but is associated with an exothermic reaction. This in vitro investigation evaluated the risk of thermal necrosis when augmenting the implant purchase with PMMA. A pilot study analyzed the effects of different PMMA layer thicknesses on temperatures around an implant. The main study used either 3.0 or 6.0 cc PMMA for hip screw augmentation in human femoral heads. The risk of thermal necrosis was estimated according to critical values reported in literature. Highest temperatures were measured inside the PMMA with a significant drop of average maximum temperatures from the center of the PMMA to the PMMA/bone interface. Risk of thermal necrosis exists with PMMA layer thicknesses greater than 5.0 mm. In the main study, we found no risk of thermal necrosis at the PMMA/bone interface or in the surrounding bone, neither with 3.0 nor 6.0 cc PMMA. The results of the two studies were consistent regarding average peak temperatures related to associated cement layer thicknesses. The results of this in vitro study reduce objections concerning the risk of thermal necrosis when augmenting cancellous bone around hip screws with up to 6.0 cc PMMA.
Facial skeletal augmentation using hydroxyapatite cement.
Shindo, M L; Costantino, P D; Friedman, C D; Chow, L C
1993-02-01
This study investigates the use of a new calcium phosphate cement, which sets to solid, microporous hydroxyapatite, for facial bone augmentation. In six dogs, the supraorbital ridges were augmented bilaterally with this hydroxyapatite cement. On one side, the hydroxyapatite cement was placed directly onto the bone within a subperiosteal pocket. On the opposite side, the cement was contained within a collagen membrane tubule and then inserted into a subperiosteal pocket. The use of collagen tubules facilitated easy, precise placement of the cement. All implants maintained their original augmented height throughout the duration of the study. They were well tolerated without extrusion or migration, and there was no significant sustained inflammatory response. Histologic studies, performed at 3, 6, and 9 months revealed that when the cement was placed directly onto bone, progressive replacement of the implant by bone (osseointegration of the hydroxyapatite with the underlying bone) without a loss of volume was observed. In contrast, when the cement-collagen tubule combination was inserted, primarily a fibrous union was noted. Despite such fibrous union, the hydroxyapatite-collagen implant solidly bonded to the underlying bone, and no implant resorption was observed. Hydroxyapatite cement can be used successfully for the experimental augmentation of the craniofacial skeleton and may be applicable for such uses in humans.
[Subantral augmentation with porous titanium in experiment and clinic].
Sirak, S V; Shchetinin, E V; Sletov, A A
2016-01-01
The article discusses the use of porous titanium for subantral augmentation. Experimental study was conducted on 12 yearling rams. Subantral augmentation using porous titanium was performed in 33 patients. In the control group consisting of 14 patients calcium phosphates and bone collagen based agents ("Bio-Оss" and "Collost") were used. In the main and control groups 46 and 32 implant were placed, respectively. Pilot histological and clinical studies proved that the granules of porous titanium are biocompatible with bone tissue, provide the optimal surface microrelief, thus creating good conditions for adhesion, expansion and migration of osteoforming cells, have negligible kinetics of resorption, are porous to ensure effective neovascularization of de novo formed bone tissue. Porous titanium is an effective alternative material for subantral bone augmentation for dental implantation and reconstructive operations on the maxillary sinus.
Zellner, Johannes; Grechenig, Stephan; Pfeifer, Christian G; Krutsch, Werner; Koch, Matthias; Welsch, Goetz; Scherl, Madeleine; Seitz, Johannes; Zeman, Florian; Nerlich, Michael; Angele, Peter
2017-11-01
Large osteochondral defects of the knee are a challenge for regenerative treatment. While matrix-guided autologous chondrocyte transplantation (MACT) represents a successful treatment for chondral defects, the treatment potential in combination with bone grafting by cancellous bone or bone block augmentation for large and deep osteochondral defects has not been evaluated. To evaluate 1- to 3-year clinical outcomes and radiological results on magnetic resonance imaging (MRI) after the treatment of large osteochondral defects of the knee with bone augmentation and MACT. Special emphasis is placed on different methods of bone grafting (cancellous bone grafting or bone block augmentation). Case series; Level of evidence, 4. Fifty-one patients were included. Five patients were lost to follow-up. This left 46 patients (mean age, 28.2 years) with a median follow-up time of 2 years. The 46 patients had 47 deep, large osteochondral defects of the knee joint (1 patient with bilateral defects; mean defect size, 6.7 cm 2 ). The origin of the osteochondral defects was osteochondritis dissecans (n = 34), osteonecrosis (n = 8), or subchondral cysts (n = 5). Depending on the depth, all defects were treated by cancellous bone grafting (defect depth ≤10 mm; n = 16) or bone block augmentation (defect depth >10 mm; n = 31) combined with MACT. Clinical outcomes were followed at 3 months, 6 months, 1 year, 2 years, and 3 years and evaluated using the International Knee Documentation Committee (IKDC) score and Cincinnati score. A magnetic resonance imaging (MRI) evaluation was performed at 1 and 2 years, and the magnetic resonance observation of cartilage repair tissue (MOCART) score with additional specific subchondral bone parameters (bone regeneration, bone signal quality, osteophytes, sclerotic areas, and edema) was analyzed. The clinical outcome scores revealed a significant increase at follow-up (6 months to 3 years) compared with the preclinical results. The median IKDC score increased from 42.6 preoperatively to 75.3 at 1 year, 79.7 at 2 years, and 84.3 at 3 years. The median Cincinnati score significantly increased from 39.8 preoperatively to 72.0 at 1 year, 78.0 at 2 years, and 80.3 at 3 years. The MRI evaluation revealed a MOCART score of 82.6 at 1 year without a deterioration at the later follow-up time point. Especially, the subchondral bone analysis showed successful regeneration. All bone blocks and cancellous bone grafts were integrated in the bony defects, and no chondrocyte transplant failure could be detected throughout the follow-up. Large and deep osteochondral defects of the knee joint can be treated successfully with bone augmentation and MACT. The treatment of shallow bony defects with cancellous bone grafting and deep bony defects with bone block augmentation shows promising results.
Dragonas, Panagiotis; Palin, Charles; Khan, Saba; Gajendrareddy, Praveen K; Weiner, Whitney D
2017-10-01
This case report aims to describe in detail a complication associated with resorption of regenerated bone following implant placement and ridge augmentation using recombinant human bone morphogenic protein-2 (rhBMP-2) in combination with allograft and xenograft. Bilateral maxillary sinus and ridge augmentation procedures were completed using rhBMP-2 combined with allograft and xenograft. Five months later, significant bone augmentation was achieved, which allowed for the placement of 4 implants. Upon stage 2 surgery, significant dehiscence was noted in all implants. Treatment steps to address this complication included implant removal, guided bone regeneration with xenograft only, and placement of new implants followed by soft-tissue grafting. At the time of publication, this patient is status 1½ years post case completion with maintenance of therapy outcomes. Off-label use of rhBMP-2 has gained significant acceptance in implant dentistry. However, there is limited evidence regarding the bone maturation process when rhBMP-2 is combined with other biomaterials. More research may be needed regarding the timing and process of bone healing in the presence of rhBMP-2, in an effort to avoid surgical complications.
Yu, Bin-Sheng; Yang, Zhan-Kun; Li, Ze-Min; Zeng, Li-Wen; Wang, Li-Bing; Lu, William Weijia
2011-08-01
An in vitro biomechanical cadaver study. To evaluate the pull-out strength after 5000 cyclic loading among 4 revision techniques for the loosened iliac screw using corticocancellous bone, longer screw, traditional cement augmentation, and boring cement augmentation. Iliac screw loosening is still a clinical problem for lumbo-iliac fusion. Although many revision techniques using corticocancellous bone, larger screw, and polymethylmethacrylate (PMMA) augmentation were applied in repairing pedicle screw loosening, their biomechanical effects on the loosened iliac screw remain undetermined. Eight fresh human cadaver pelvises with the bone mineral density values ranging from 0.83 to 0.97 g/cm were adopted in this study. After testing the primary screw of 7.5 mm diameter and 70 mm length, 4 revision techniques were sequentially established and tested on the same pelvis as follows: corticocancellous bone, longer screw with 100 mm length, traditional PMMA augmentation, and boring PMMA augmentation. The difference of the boring technique from traditional PMMA augmentation is that PMMA was injected into the screw tract through 3 boring holes of outer cortical shell without removing the screw. On an MTS machine, after 5000 cyclic compressive loading of -200∼-500 N to the screw head, axial maximum pull-out strengths of the 5 screws were measured and analyzed. The pull-out strengths of the primary screw and 4 revised screws with corticocancellous bone, longer screw and traditional and boring PMMA augmentation were 1167 N, 361 N, 854 N, 1954 N, and 1820 N, respectively. Although longer screw method obtained significantly higher pull-out strength than corticocancellous bone (P<0.05), the revised screws using these 2 techniques exhibited notably lower pull-out strength than the primary screw and 2 PMMA-augmented screws (P<0.05). Either traditional or boring PMMA screw showed obviously higher pull-out strength than the primary screw (P<0.05); however, no significant difference of pull-out strength was detected between the 2 PMMA screws (P>0.05). Wadding corticocancellous bone and increasing screw length failed to provide sufficient anchoring strength for a loosened iliac screw; however, both traditional and boring PMMA-augmented techniques could effectively increase the fixation strength. On the basis of the viewpoint of minimal invasion, the boring PMMA augmentation may serve as a suitable salvage technique for iliac screw loosening.
Perdijk, F B T; Meijer, G J; Soehardi, A; Koole, R
2013-07-01
As with other techniques, vertical distraction osteogenesis (VDO) can also induce complications. The case of a patient with a residual alveolar ridge in the symphyseal area of 8 mm is presented. After performing VDO, the patient returned at 1-day postoperatively complaining of pain and dislocation of the distractor device, due to a fracture of the lower mandibular segment on the right side. After removal of the distractor device and application of osteosynthesis plates, the patient returned 2 weeks later due to a second fracture of the lower segment, yet on the left side. After removing the osteosynthesis material, stabilization of the mandible was achieved with an acrylic splint, which was fixated with peri-mandibular wiring. Finally, reconstruction was accomplished by lower border onlay grafting, limited to the symphyseal area, in preparation for implant insertion. Ultimately, after a healing period of 5 months, two endosseous implants were installed. The patient's function has remained satisfactory for 3 years. Reinforcement of the extreme resorbed edentulous mandible after fracture healing by lower border bone augmentation can be a reliable method to allow implant installation in a second stage. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Chou, Yu-Hsiang; Du, Je-Kang; Chou, Szu-Ting; Hu, Kai-Fang; Tsai, Chi-Cheng; Ho, Kun-Yen; Wu, Yi-Min; Ho, Ya-Ping
2013-02-01
Periodontal disease often results in severely bony defects around the teeth and leads to eventual extraction. Remaining bone morphology often compromises ideally restoration-driven positions and deteriorates the success rates for dental implants. The present investigation illustrates the clinical outcome of immediately installing an implant following orthodontic forced eruption and atraumatic extraction. The subject of this study is a 40-year-old Asian female with a right mandibular first molar that had a deep probing depth on the mesial side and mobility. Via the aid of radiographic examination, the tooth that had an angular bony defect and apical lesion was diagnosed as having deep caries and chronic periodontitis with a poor prognosis. After consultation with the patient, we developed a treatment plan incorporating a forced eruption with immediate implantation, intended to augment the alveolar bone volume and increase the width of keratinized gingivae, in a nonsurgical manner. Following 12 months of orthodontic treatment, the tooth was successfully moved occlusally in conjunction with an 8 mm vertical interdental bone augmentation. Because of sufficient volume of bone and satisfactory gingival dimensions, the implant showed adequate initial stability in the correct position to facilitate physiological and aesthetic prerequisites. After 6 months of osteointegration, a customized impression coping was utilized to transfer the established emergence profile to a definitive cast for the fabrication of a customized abutment. The final prosthesis was made using a customized metal abutment and ceramometal crown. In the face of difficult clinical challenges, meticulous inspection and a comprehensive treatment plan were crucial. Interdisciplinary treatment through the careful integration of multiple specialists suggests the possibility of optimal results with high predictability. © 2011 Wiley Periodicals, Inc.
Wähnert, Dirk; Hofmann-Fliri, Ladina; Richards, R. Geoff; Gueorguiev, Boyko; Raschke, Michael J.; Windolf, Markus
2014-01-01
Abstract The increasing problems in the field of osteoporotic fracture fixation results in specialized implants as well as new operation methods, for example, implant augmentation with bone cement. The aim of this study was to determine the biomechanical impact of augmentation in the treatment of osteoporotic distal femur fractures. Seven pairs of osteoporotic fresh frozen distal femora were randomly assigned to either an augmented or nonaugmented group. In both groups, an Orthopaedic Trauma Association 33 A3 fractures was fixed using the locking compression plate distal femur and cannulated and perforated screws. In the augmented group, additionally, 1 mL of polymethylmethacrylate cement was injected through the screw. Prior to mechanical testing, bone mineral density (BMD) and local bone strength were determined. Mechanical testing was performed by cyclic axial loading (100 N to 750 N + 0.05N/cycle) using a servo-hydraulic testing machine. As a result, the BMD as well as the axial stiffness did not significantly differ between the groups. The number of cycles to failure was significantly higher in the augmented group with the BMD as a significant covariate. In conclusion, cement augmentation can significantly improve implant anchorage in plating of osteoporotic distal femur fractures. PMID:25415673
Benic, Goran I; Ge, Yanjun; Gallucci, German O; Jung, Ronald E; Schneider, David; Hämmerle, Christoph H F
2017-02-01
To test whether implant placement with simultaneous guided bone regeneration (GBR) differs from implant placement without GBR regarding the change in marginal mucosal contour. In 28 patients, single implants were placed >4 months after tooth extraction. Eighteen implants were completely surrounded by native bone, and no bone augmentation was performed. At 10 implant sites, bone defects and thin bone plates were grafted with deproteinized bovine-derived bone mineral and covered with collagen membrane. Impressions were taken prior to implant placement (baseline), at 3 months before abutment connection, at 6 months immediately after crown insertion, at 1 year, and at 3 years. Models were optically scanned and 3D images were superimposed for the evaluation of mucosal contour changes at the mid-buccal aspect. The nonparametric Mann-Whitney U-test was applied to detect differences. From baseline to 6 months, horizontal contour change at the level 1 and 2 mm apical to the mucosal margin measured 0.65 ± 0.74 mm and 0.55 ± 0.56 mm at sites without GBR, and 1.92 ± 0.87 mm and 1.76 ± 0.70 mm at sites with GBR (P < 0.05). In the period from baseline to 1 year, the corresponding values amounted to 0.81 ± 0.67 mm and 0.60 ± 0.55 mm in the group without GBR, and to 1.81 ± 0.86 mm and 1.37 ± 0.62 mm in the group with GBR (P < 0.05). From baseline to 6 months, mucosal margin moved 0.16 ± 0.49 mm in the coronal direction in the group without GBR and 0.82 ± 0.65 mm in the group with GBR (P < 0.05). In the period from baseline to 1 year, vertical change of mucosal margin amounted to 0.64 ± 0.54 mm in the group without GBR and to 1.17 ± 0.53 mm in the GBR group (P < 0.05). From 1 to 3 years, the mucosal contours remained stable. Implant placement with simultaneous GBR resulted in more gain of buccal soft tissue contour in comparison with implant placement without GBR. Abutment connection increased the contour of the marginal mucosa at the augmented and the nonaugmented sites. GBR procedure contributed more to the contour gain than did the abutment connection. The augmented and the nonaugmented ridges exhibited stable peri-implant mucosal contour over a 3-year period. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lindgren, Christer; Mordenfeld, Arne; Hallman, Mats
2012-03-01
The technique of using bone grafts or different biomaterials for augmentation of the maxillary sinus prior to implant placement is well accepted by clinicians. However, clinical documentation of some bone substitutes is still lacking. This prospective study was designed to evaluate the success rate of implants placed after maxillary sinus augmentation with a novel synthetic biphasic calcium phosphate (BCP) or deproteinized bovine bone (DBB), the latter acting as control. Nine edentulous patients and two partially edentulous patients with a mean age of 67 years with a bilateral need for sinus augmentation, < 5 mm residual bone in the floor of the sinus and a crestal width ≥ 4 mm, were included in the study. After bilateral elevation of the Schneiderian membrane, all patients were randomized for augmentation with synthetic BCP in one side and DBB in the contralateral side. After 8 months of graft healing, 62 implants with an SLActive surface were placed. Implant survival, graft resorption, plaque index, bleeding on probing, sulcus bleeding index, probing pocket depth, and implant success rate were evaluated after 1 year of functional loading. After a mean of 118 days, all patients received their fixed prosthetic constructions. One implant was lost in each biomaterial, giving an overall survival rate of 96.8%. Success rates for implants placed in BCP and DBB were 91.7 and 95.7%, respectively. No significant difference in marginal bone loss was found around implants placed in BCP, DBB, or residual bone, respectively. The mean graft resorption was 0.43 mm (BCP) and 0.29 mm (DBB). In this limited study, implant success rate was not dependent on the biomaterial used for maxillary sinus augmentation. Similar results were found after 1 year of functional loading for implants placed after sinus augmentation using BCP or DBB. © 2010 Wiley Periodicals, Inc.
Mordenfeld, Arne; Lindgren, Christer; Hallman, Mats
2016-10-01
Straumann® BoneCeramic™ is a synthetic biphasic calcium phosphate (BCP) aimed for sinus floor augmentation. Long-term follow-up of implants placed in BCP after sinus augmentation is still missing. The primary aim of the study was to compare survival rates and marginal bone loss of Straumann SLActive implants placed in either BCP (test) or Bio-Oss® (DBB) (control) after sinus floor augmentation. The secondary aim was to calculate graft sinus height at different time points. Bilateral sinus floor augmentation was performed in a split mouth model. Eleven patients (mean age 67 years) received 100% BCP on one side and 100% DBB on the contralateral side. After 8 months of graft healing, 62 Straumann SLActive implants were placed. After 5 years of functional loading (6 years after augmentation) of implants, marginal bone levels and grafted sinus height were measured, and implant survival and success rates were calculated. After 5 years of loading, all prosthetic constructions were in function although two implants were lost in each grafting material. The overall implant survival rate was 93.5% (91.7% for BCP, 91.3% for DBB, and 100% for residual bone). The success rates were 83.3% and 91.3% for BCP and DBB, respectively. There was no statistically significant difference in mean marginal bone level after 5 years between BCP (1.4 ± 1.2 mm) and DBB (1.0 ± 0.7 mm). Graft height reduction (GHR) after 6 years was limited to 6.6% for BCP and 5.8% for DBB. In this limited RCT study, the choice of biomaterial used for sinus floor augmentation did not seem to have any impact on survival rates and marginal bone level of the placed implants after 5 years of functional loading and GHR was minimal. © 2015 Wiley Periodicals, Inc.
Alveolar ridge and maxillary sinus augmentation using rhBMP-2: a systematic review.
Freitas, Rubens Moreno de; Spin-Neto, Rubens; Marcantonio Junior, Elcio; Pereira, Luís Antônio Violin Dias; Wikesjö, Ulf M E; Susin, Cristiano
2015-01-01
The aim of this systematic review was to evaluate clinical and safety data for recombinant human bone morphogenetic protein-2 (rhBMP-2) in an absorbable collagen sponge (ACS) carrier when used for alveolar ridge/maxillary sinus augmentation in humans. Clinical studies/case series published 1980 through June 2012 using rhBMP-2/ACS were searched. Studies meeting the following criteria were considered eligible for inclusion: >10 subjects at baseline and maxillary sinus or alveolar ridge augmentation not concomitant with implant placement. Seven of 69 publications were eligible for review. rhBMP-2/ACS yielded clinically meaningful bone formation for maxillary sinus augmentation that would allow placement of regular dental implants without consistent differences between rhBMP-2 concentrations. Nevertheless, the statistical analysis showed that sinus augmentation following autogenous bone graft was significantly greater (mean bone height: 1.6 mm, 95% CI: 0.5-2.7 mm) than for rhBMP-2/ACS (rhBMP-2 at 1.5 mg/mL). In extraction sockets, rhBMP-2/ACS maintained alveolar ridge height while enhancing alveolar ridge width. Safety reports did not represent concerns for the proposed indications. rhBMP-2/ACS appears a promising alternative to autogenous bone grafts for alveolar ridge/maxillary sinus augmentation; dose and carrier optimization may expand its efficacy, use, and clinical application. © 2013 Wiley Periodicals, Inc.
Schiegnitz, Eik; Al-Nawas, Bilal; Tegner, Alexander; Sagheb, Keyvan; Berres, Manfred; Kämmerer, Peer W; Wagner, Wilfried
2016-08-01
Tapered implant designs aim to improve primary stability and implant survival in soft bone. However, respective clinical long-term data are scarce. Therefore, a clinical and radiological evaluation of the long-term success of a transgingival-supracrestal inserted tapered implant system with special emphasis on the influence of augmentation procedures was conducted. In a retrospective study design, all in the Department of Oral and Maxillofacial Surgery of the University Medical Centre, Mainz, Germany, between May 2002 and March 2012, placed tapered implants (Straumann TE®, Basel, Switzerland) were analyzed. In this time period, a total of one hundred ninety-seven tapered implants were inserted in 90 patients. For patients available for clinical recall, success criteria according to Albrektsson and Buser were evaluated. The in situ rate was 96.3% after an average time in situ of 62 ± 31 months. In one hundred twenty-seven sites, bone augmentation procedures were performed. Hereof, 96 sites were sinus augmentation procedures and 31 sites were alveolar ridge augmentations. For patients with sinus augmentation procedures, implant survival was 97.9% and for patients with alveolar ridge augmentations, implant survival was 93.5% after 5 years, indicating a higher implant survival for sinus augmentation, however not statistically different (p = .194). Implant diameter and timing of implant placement had no significant impact on implant survival (p > .05). Mean marginal bone loss was -0.50 ± 1.54 mm for patients receiving maxillary sinus augmentation and -1.16 ± 1.13 mm for patients with alveolar ridge augmentations, indicating a lower marginal bone loss in patients receiving maxillary sinus augmentation (p = .046). Implant success rates ranged between 88% and 92% after a mean follow-up of 6 years. Within the limits of the retrospective character of this study, the tapered soft tissue level implant showed especially in maxillary sinus augmentation promising long-term survival and success rates and a low peri-implant bone resorption compared with the literature. © 2015 Wiley Periodicals, Inc.
Mordenfeld, Arne; Albrektsson, Tomas; Hallman, Mats
2014-06-01
There is a need for prospective, long-term follow-up studies of implants placed after maxillary sinus floor augmentation (MSFA). The aim of the present study was to determine whether deprotenized bovine bone (DPBB) used for MSFA may result in long-term stability of placed dental implants. Fourteen of the 20 patients included in the study were followed throughout the 10 years study period. These patients had 53 implants placed in 22 (6 unilateral and 8 bilateral) maxillary sinuses augmented with a mixture of 80% DPBB and 20% autogenous bone (80:20), and 15 implants placed in non-grafted sites. Clinical and radiographic examinations of the implants and grafts were performed. After 10 years of functional loading 15 of the initially placed 108 implants had been lost giving a cumulative survival rate of 86%. The mean marginal bone loss was 1.6 ± 1.0 mm. There were no statistically significant differences in marginal bone level, pocket depth, or ISQ-values between implants placed in residual or grafted bone or between smokers or non-smokers at 10 years follow-up. There was a statistically significant reduction (p < .01) in graft height between 3 months and 2 years but no further significant reduction up to 10 years. The first 2 years after placement of implants with turned surfaces placed in sites after sinus floor augmentation with DPBB and autogenous bone seem to be critical for implant survival. At 10 years follow-up, the remaining implants presented excellent clinical and radiological results regardless of smoking habits or implant sites (augmented or residual bone). © 2012 Wiley Periodicals, Inc.
Bone augmentation of the osteo-odonto alveolar lamina in MOOKP--will it delay laminar resorption?
Iyer, Geetha; Srinivasan, Bhaskar; Agarwal, Shweta; Rishi, Ekta; Rishi, Pukhraj; Rajan, Gunaseelan; Shanmugasundaram, Shanmugasundaram
2015-07-01
We aimed to describe a new technique and analyse the early outcomes of augmenting the canine tooth using a mandibular bone graft in an attempt to delay or retard the process of laminar resorption following the modified osteo odonto keratoprosthesis (MOOKP) procedure. This was a retrospective case series. Eyes that underwent the bone augmentation procedure between December 2012 and February 2014 were retrospectively analysed. The procedure, performed by the oromaxillofacial surgeon, involved securing a mandibular bone graft beneath the periosteum on the labial aspect of the canine tooth chosen to be harvested for the MOOKP procedure. This procedure was performed simultaneously with the Stage 1 A of the MOOKP. Three months later, the tooth was harvested and fashioned into the osteo-odonto alveolar lamina similar to the method described in the Rome-Vienna Protocol. The bone augmentation procedure was performed in 11 eyes (five SJS/ six chemical injuries). The mean follow-up after Stage 2 of MOOKP procedure in these eyes was 7.45 months (2 to 20 months). Complications noted were peripheral laminar exposure (three eyes-SJS) and bone graft exposure and necrosis in the mouth (nine-SJS). No evidence of clinical laminar resorption was noted in any of the eyes. Laminar resorption in MOOKP can lead to vision and globe threatening complications due to the consequent cylinder instability and chances of extrusion. Augmenting the bone on the labial aspect of the canine tooth might have a role to play in delaying or preventing laminar resorption.
Peker, Elif; Karaca, Inci Rana; Yildirim, Benay
2016-01-01
The aim of this study was an experimental evaluation of the effectiveness of demineralized bone matrix (DBM) and collagenated heterologous bone graft (CHBG) used alone or in combination with platelet-rich fibrin on bone healing in sinus floor augmentation procedures. In this study, 36 New Zealand rabbits were used. The bilateral sinus elevation was performed, and 72 defects were obtained. The rabbit maxillary sinuses were divided into four groups according to the augmentation biomaterials obtained: demineralized bone matrix (Grafton DBM Putty, Osteotech; DBM group), DBM combined with platelet-rich fibrin (PRF; DBM + PRF group), collagenated heterologous bone graft (CHBG; Apatos Mix, OsteoBiol, Tecnoss; CHBG group), CHBG combined with PRF (CHBG + PRF group). All groups were sacrificed at 2, 4, and 8 weeks after surgery for histologic, histomorphometric, and immunohistochemical analyses. The inflammatory reaction was moderate to intense at the second week in all groups and declined from 2 to 8 weeks. New bone formation was started at the second week and increased from 2 to 8 weeks in all groups. There was no significant difference in bone formation between the experimental groups that used PRF mixed graft material and control groups that used only graft material. The percentage of new bone formation showed a significant difference in DBM groups and DBM + PRF groups compared with other groups. There were osteoclasts around all the bone graft materials used, but the percentage of residual graft particles was significantly higher in CHBG groups and CHBG + PRF groups at the eighth week. There is no beneficial effect of the application of PRF in combination with demineralized bone matrix or collagenated heterologous bone graft on bone formation in sinus floor augmentation. The results of this study showed that both collagenated heterologous bone graft and demineralized bone matrix have osteoconductive properties, but demineralized bone matrix showed more bone formation than collagenated heterologous bone graft.
Sbordone, Ludovico; Levin, Liran; Guidetti, Franco; Sbordone, Carolina; Glikman, Ari; Schwartz-Arad, Devorah
2011-05-01
A re-pneumatization phenomenon was recorded in sinuses grafted with different materials. The specific aims of this paper were to assess the dental implant survival rate and the behavior of marginal and apical bone remodeling around dental implants placed following sinus augmentation. A retrospective study was conducted on consecutive patients treated in two surgical centers. Different surgical techniques were adopted for sinus augmentation: simultaneous or delayed dental implant insertion with bovine bone-material augmentation or autologous bone grafting (chin and iliac crest). Survival rates were recorded for the overall number of implants (patients of group A). Apical and marginal bone levels (ABL and MBL, respectively) were radiographically measured, and statistical analysis was performed in implants of a subgroup of patients (group B). A total of 282 dental implants were positioned. Recorded cumulative survival rates (CSRs) were 95.6% and 100% for autogenous and bovine bone material, respectively, while CSRs at 2-year follow-up for immediate and delayed procedures were 99.3% and 96.5%. For the subgroup B, 57 sinus augmentation procedures were performed in 39 patients, with the positioning of 154 implants. Generally, the apical- and marginal-bone resorption of the bovine bone-material group was less than that of the autogenous group. The differences between the ABL values of the bovine bone-material and iliac-crest groups were statistically significant at 1 year, whereas this significance disappeared at the 2-year follow-up; tests showed that a statistical difference was recorded in the bovine bone-material group between the 1- and 2-year follow-ups. With regard to MBL comparisons between simultaneous and delayed implantation, the differences maintained their significance at the 2-year follow-up also. Differences regarding apical bone alteration between autogenous bone from the iliac crest and bovine bone material at the 1- and 2-year follow-ups, as well as in the bovine bone-material group between the 1- and 2-year follow-ups, attested to slower but more prolonged physiologic bone remodeling in the bovine-graft-material group than in the autogenous-bone group. The MBL analysis showed that remodeling in the delayed implant group demonstrated a greater resorption in the cervical portion than was seen in the simultaneous implant group. © 2010 John Wiley & Sons A/S.
Koch, Felix P; Becker, Jürgen; Terheyden, Hendrik; Capsius, Björn; Wagner, Wilfried
2010-11-01
The aim of this prospective, randomized clinical trial was to investigate the potential of recombinant human growth and differentiation factor-5 (rhGDF-5) coated onto β-tricalcium phosphate (β-TCP) (rhGDF-5/β-TCP) to support bone formation after sinus lift augmentation. In total, 31 patients participated in this multicenter clinical trial. They required a two-stage unilateral maxillary sinus floor augmentation (residual bone height <5 mm). According to a parallel-group design, the patients were randomized to three treatment groups: (a) augmentation with rhGDF-5/β-TCP and a 3-month healing period, (b) augmentation with rhGDF-5/β-TCP and a 4-month healing period and (c) medical device β-TCP mixed with autologous bone and a 4-month healing period. The primary study objective was the area of newly formed bone within the augmented area as assessed by histomorphometric evaluation of trephine bur biopsies. The osseous regeneration was similar in each treatment group; the amount of newly formed bone ranged between 28% (± 15.5%) and 31.8% (± 17.9%). Detailed analysis of histological data will be published elsewhere. As secondary efficacy variables, the augmentation height at the surgery site was measured by radiography. The largest augmentation was radiologically achieved in the rhGDF-5/β-TCP - 3-month and the rhGDF-5/β-TCP - 4-month treatment groups. As safety parameters, adverse events were recorded and anti-drug antibody levels were evaluated. Most of the adverse events were judged as unrelated to the study medication. Four out of 47 (8.5%) implants failed in patients treated with rhGDF-5/β-TCP, a result that is in agreement with the general implant failure rate of 5-15%. Transiently very low amounts of anti-rhGDF-5 antibodies were detected in some patients who received rhGDF-5, which was not related to the bone formation outcome. rhGDF-5/β-TCP was found to be effective and safe as the control treatment with autologous bone mixed β-TCP in sinus floor augmentation. Thus, further investigation regarding efficacy and safety will be carried out in larger patient populations. © 2010 John Wiley & Sons A/S.
Yuasa, Masato; Yamada, Tsuyoshi; Taniyama, Takashi; Masaoka, Tomokazu; Xuetao, Wei; Yoshii, Toshitaka; Horie, Masaki; Yasuda, Hiroaki; Uemura, Toshimasa; Okawa, Atsushi; Sotome, Shinichi
2015-01-01
We evaluated whether dexamethasone augments the osteogenic capability of bone marrow-derived stromal cells (BMSCs) and muscle tissue-derived stromal cells (MuSCs), both of which are thought to contribute to ectopic bone formation induced by bone morphogenetic protein-2 (BMP-2), and determined the underlying mechanisms. Rat BMSCs and MuSCs were cultured in growth media with or without 10-7 M dexamethasone and then differentiated under osteogenic conditions with dexamethasone and BMP-2. The effects of dexamethasone on cell proliferation and osteogenic differentiation, and also on ectopic bone formation induced by BMP-2, were analyzed. Dexamethasone affected not only the proliferation rate but also the subpopulation composition of BMSCs and MuSCs, and subsequently augmented their osteogenic capacity during osteogenic differentiation. During osteogenic induction by BMP-2, dexamethasone also markedly affected cell proliferation in both BMSCs and MuSCs. In an in vivo ectopic bone formation model, bone formation in muscle-implanted scaffolds containing dexamethasone and BMP-2 was more than two fold higher than that in scaffolds containing BMP-2 alone. Our results suggest that dexamethasone potently enhances the osteogenic capability of BMP-2 and may thus decrease the quantity of BMP-2 required for clinical application, thereby reducing the complications caused by excessive doses of BMP-2. Highlights: 1. Dexamethasone induced selective proliferation of bone marrow- and muscle-derived cells with higher differentiation potential. 2. Dexamethasone enhanced the osteogenic capability of bone marrow- and muscle-derived cells by altering the subpopulation composition. 3. Dexamethasone augmented ectopic bone formation induced by bone morphogenetic protein-2. PMID:25659106
Wu, Yiqun; Zhang, Chenping; Squarize, Cristiane H; Zou, Duohong
2015-09-01
The oral conditions of adult edentulous patients with ectodermal dysplasia (ED) often lead to decreased physical and psychological health, and the negative effects can become as extreme as social and psychological isolation. However, restoring oral function of adult edentulous patients with ED using zygomatic implants (ZIs) or conventional implants (CIs) remains challenging for dentists because of the severe atrophy of these patients' alveolar ridges. This report describes 2 cases of adult edentulous siblings with ED; they exhibited severe alveolar bone atrophy and were treated with ZIs and CIs as bases to augment the bone in their anterior jaws. For these patients, bone augmentation was completed with an autogenous fibular graft. Although there was mild evidence of bone graft resorption in the maxilla, the bone augmentation procedures were successful in the 2 patients. Effective osseointegration of the implants was obtained. After placement, the functional and esthetic results of the oral rehabilitation were acceptable. More importantly, restoration of the patients' oral function enhanced their self-confidence and self-esteem. Therefore, restoring oral function in adult patients with ED and edentulous jaws using ZIs and CIs as the bases for bone augmentation is an effective approach. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Yi, Seong; Rim, Dae-Cheol; Park, Seoung Woo; Murovic, Judith A; Lim, Jesse; Park, Jon
2015-06-01
In vertebrae with low bone mineral densities pull out strength is often poor, thus various substances have been used to fill screw holes before screw placement for corrective spine surgery. We performed biomechanical cadaveric studies to compare nonaugmented pedicle screws versus hydroxyapatite, calcium phosphate, or polymethylmethacrylate augmented pedicle screws for screw tightening torques and pull out strengths in spine procedures requiring bone screw insertion. Seven human cadaveric T10-L1 spines with 28 vertebral bodies were examined by x-ray to exclude bony abnormalities. Dual-energy x-ray absorptiometry scans evaluated bone mineral densities. Twenty of 28 vertebrae underwent ipsilateral fluoroscopic placement of 6-mm holes augmented with hydroxyapatite, calcium phosphate, or polymethylmethacrylate, followed by transpedicular screw placements. Controls were pedicle screw placements in the contralateral hemivertebrae without augmentation. All groups were evaluated for axial pull out strength using a biomechanical loading frame. Mean pedicle screw axial pull out strength compared with controls increased by 12.5% in hydroxyapatite augmented hemivertebrae (P = 0.600) and by 14.9% in calcium phosphate augmented hemivertebrae (P = 0.234), but the increase was not significant for either method. Pull out strength of polymethylmethacrylate versus hydroxyapatite augmented pedicle screws was 60.8% higher (P = 0.028). Hydroxyapatite and calcium phosphate augmentation in osteoporotic vertebrae showed a trend toward increased pedicle screw pull out strength versus controls. Pedicle screw pull out force of polymethylmethacrylate in the insertion stage was higher than that of hydroxyapatite. However, hydroxyapatite is likely a better clinical alternative to polymethylmethacrylate, as hydroxyapatite augmentation, unlike polymethylmethacrylate augmentation, stimulates bone growth and can be revised. Copyright © 2015 Elsevier Inc. All rights reserved.
Kolerman, Roni; Samorodnitzky-Naveh, Gili R; Barnea, Eitan; Tal, Haim
2012-02-01
Deproteinized bovine bone mineral (DBBM) and human freeze-dried bone allograft (FDBA) were compared in five patients undergoing bilateral maxillary sinus floor augmentation using DBBM on one side and FDBA on the contralateral side. After 9 months, core biopsy specimens were harvested. Mean newly formed bone values were 31.8% and 27.2% at FDBA and DBBM sites, respectively (P = .451); mean residual graft particle values were 21.5% and 24.2%, respectively (P = .619); and mean connective tissue values were 46.7% and 48.6%, respectively (P = .566). Within the limits of the present study, it is suggested that both graft materials are equally suitable for sinus augmentation.
Urban, Istvan A; Lozada, Jaime L
2010-01-01
The aims of this prospective study were to: (1) determine clinical and radiographic success and survival rates of implants placed in a staged procedure after sinus augmentation; and (2) compare the success and survival rate of implants in two patient groups with different ridge height prior to treatment (those with minimal residual crestal bone [⋜ 3.5 mm] below the sinus and those with moderate residual crestal bone [> 3.5 mm]). The study used anorganic bovine bone-derived mineral and autogenous bone for the sagittal sandwich bone augmentation technique, a collagen membrane to protect the sinus window, and a staged approach for implant placement; all implants featured an anodized surface. Two hundred forty-five implants were placed in 100 sinus sites (79 patients), and 244 have survived to date. The cumulative success and survival rates of all implants overall at 5 years were 96.5% (SE 2.0%) and 99.6% (SE 0.4%), respectively. The overall success and survival rates at 5 years for implants placed into minimal residual crestal bone were 94.1% (SE 3.4%) and 99.4% (SE 0.6%), respectively. For implants placed into moderate crestal bone, overall success and survival rates were both 100.0% (SE 0.0%). Success of implants placed after sinus augmentation appears similar to implants placed in native bone when a classical submerged implant healing time of 6 months is used. The success and survival rates and crestal bone remodeling of implants placed in minimal residual crestal bone were comparable to those of implants placed in moderate residual crestal bone.
Mardinger, Ofer; Vered, Marilena; Chaushu, Gavriel; Nissan, Joseph
2012-06-01
Intrasocket reactive soft tissue can be used for primary closure during augmentation of infected extraction sites exhibiting severe bone loss prior to implant placement. The present study evaluated the histological characteristics of the initially used intrasocket reactive soft tissue, the overlying soft tissue, and the histomorphometry of the newly formed bone during implant placement. Thirty-six consecutive patients (43 sites) were included in the study. Extraction sites demonstrating extensive bone loss on preoperative periapical and panoramic radiographs served as inclusion criteria. Forty-three implants were inserted after a healing period of 6 months. Porous bovine xenograft bone mineral was used as a single bone substitute. The intrasocket reactive soft tissue was sutured over the grafting material to seal the coronal portion of the socket. Biopsies of the intrasocket reactive soft tissue at augmentation, healed mucosa, and bone cores at implant placement were retrieved and evaluated. The intrasocket reactive soft tissue demonstrated features compatible with granulation tissue and long junctional epithelium. The mucosal samples at implant placement demonstrated histopathological characteristics of keratinized mucosa with no residual elements of granulation tissue. Histomorphometrically, the mean composition of the bone cores was - vital bone 40 ± 19% (13.7-74.8%); bone substitute 25.7 ± 13% (0.6-51%); connective tissue 34.3 ± 15% (13.8-71.9%). Intrasocket reactive soft tissue used for primary closure following ridge augmentation is composed of granulation tissue and long junctional epithelium. At implant placement, clinical and histological results demonstrate its replacement by keratinized gingiva. The histomorphometrical results reveal considerable bone formation. Fresh extraction sites of hopeless teeth demonstrating chronic infection and severe bone loss may be grafted simultaneously with their removal. © 2010 Wiley Periodicals, Inc.
Horizontal alveolar bone loss: A periodontal orphan
Jayakumar, A.; Rohini, S.; Naveen, A.; Haritha, A.; Reddy, Krishnanjeneya
2010-01-01
Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician’s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs) (of patients diagnosed with chronic periodontitis and seeking periodontal care), which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm) or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36%) OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2%) teeth, and vertical defects were found only in 264 (7.8%) of the teeth, which was statistically significant (P<.001). Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3%) have addressed vertical bone loss, and 18 (3.7%) have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment modalities for this type of bone loss. This study should be an impetus for greater attention to an otherwise ubiquitous periodontal challenge. PMID:21760673
Lorenz, Jonas; Korzinskas, Tadas; Chia, Poju; Maawi, Sarah Al; Eichler, Katrin; Sader, Robert A; Ghanaati, Shahram
2018-02-01
The present prospective randomized split-mouth trial reports on the 3-year clinical and radiological follow-up investigation of implants placed 7 months after sinus augmentation with 2 different bone substitute materials. The aim of the study was to complete the histologic observation of cellular reactions by analyses of the implants and the volumetric changes of the augmented bone substitute materials. A sinus augmentation split-mouth trial was performed in 14 patients with the synthetic bone substitute material Nanobone (NB) and the xenogeneic Bio-Oss (BO). Changes in volume and density of the augmented biomaterials were investigated by analysis of computed tomography scans, taken immediately after augmentation and after 7 months. Clinical implant parameters were assessed after 3 years of loading. Both bone substitute materials underwent nonsignificant volume reduction and significant increase in bone density over an integration period of 7 months. No significant differences concerning volume and bone density were observed between the groups. Three years after loading, 51 of 53 implants were in situ with no peri-implant infections, and only a few soft-tissue variations were present. The present prospective randomized study showed that no differences could be observed clinically and radiologically. Accordingly, it seems that both biomaterials, independent of their physicochemical composition, enable clinical success and long-time stability for dental implants. Interestingly, the histological results showed distinct differences in cellular reactions: While the xenogeneic BO induced a mild tissue reaction with only few multinucleated giant cells and comparably low vascularization, the synthetic NB induced a multinucleated giant cell-triggered tissue reaction with an increase of vascularization. Thus, the present study showed that a combination analysis-histological, clinical, and radiological-is necessary for a detailed assessment of a biomaterial's quality for clinical application.
Dursun, Ceyda Kanli; Dursun, Erhan; Eratalay, Kenan; Orhan, Kaan; Tatar, Ilkan; Baris, Emre; Tözüm, Tolga Fikret
2016-03-01
The aim of this randomized controlled study was to comparatively analyze the new bone (NB), residual bone, and graft-bone association in bone biopsies retrieved from augmented maxillary sinus sites by histomorphometry and microcomputed tomography (MicroCT) in a split-mouth model to test the efficacy of porous titanium granules (PTG) in maxillary sinus augmentation. Fifteen patients were included in the study and each patient was treated with bilateral sinus augmentation procedure using xenograft (equine origine, granule size 1000-2000 μm) and xenograft (1 g) + PTG (granule size 700-1000 μm, pore size >50 μm) (1 g), respectively. After a mean of 8.4 months, 30 bone biopsies were retrieved from the implant sites for three-dimensional MicroCT and two-dimensional histomorphometric analyses. Bone volume and vital NB percentages were calculated. Immediate after core biopsy, implants having standard dimensions were placed and implant stability quotient values were recorded at baseline and 3 months follow-up. There were no significant differences between groups according to residual bone height, residual bone width, implant dimensions, and implant stability quotient values (baseline and 3 months). According to MicroCT and two-dimensional histomorphometric analyses, the volume of newly formed bone was 57.05% and 52.67%, and 56.5% and 55.08% for xenograft + PTG and xenograft groups, respectively. No statistically significant differences found between groups according to NB percentages and higher Hounsfield unit values were found for xenograft + PTG group. The findings of the current study supports that PTG, which is a porous, permanent nonresorbable bone substitute, may have a beneficial osteoconductive effect on mechanical strength of NB in augmented maxillary sinus.
Biomechanical evaluation of bone screw fixation with a novel bone cement.
Juvonen, Tiina; Nuutinen, Juha-Pekka; Koistinen, Arto P; Kröger, Heikki; Lappalainen, Reijo
2015-07-30
Bone cement augmentation is commonly used to improve the fixation stability of orthopaedic implants in osteoporotic bone. The aim of this study was to evaluate the effect of novel bone cements on the stability of bone screw fixation by biomechanical testing and to compare them with a conventional Simplex(®)P bone cement and requirements of the standards. Basic biomechanical properties were compared with standard tests. Adhesion of bone cements were tested with polished, glass blasted and corundum blasted stainless steel surfaces. Screw pullout testing with/without cement was carried out using a synthetic bone model and cancellous and cortical bone screws. All the tested bone cements fulfilled the requirements of the standard for biomechanical properties and improved the screw fixation stability. Even a threefold increase in shear and tensile strength was achieved with increasing surface roughness. The augmentation improved the screw pullout force compared to fixation without augmentation, 1.2-5.7 times depending on the cement and the screw type. The good biomechanical properties of novel bone cement for osteoporotic bone were confirmed by experimental testing. Medium viscosity of the bone cements allowed easy handling and well-controlled penetration of bone cement into osteoporotic bone. By proper parameters and procedures it is possible to achieve biomechanically stable fixation in osteoporotic bone. Based on this study, novel biostable bone cements are very potential biomaterials to enhance bone screw fixation in osteoporotic bone. Novel bone cement is easy to use without hand mixing using a dual syringe and thus makes it possibility to use it as required during the operation.
Garg, Ravi K; Afifi, Ahmed M; Gassner, Jennifer; Hartman, Michael J; Leverson, Glen; King, Timothy W; Bentz, Michael L; Gentry, Lindell R
2015-05-01
The broad spectrum of frontal bone fractures, including those with orbital and skull base extension, is poorly understood. We propose a novel classification scheme for frontal bone fractures. Maxillofacial CT scans of trauma patients were reviewed over a five year period, and frontal bone fractures were classified: Type 1: Frontal sinus fracture without vertical extension. Type 2: Vertical fracture through the orbit without frontal sinus involvement. Type 3: Vertical fracture through the frontal sinus without orbit involvement. Type 4: Vertical fracture through the frontal sinus and ipsilateral orbit. Type 5: Vertical fracture through the frontal sinus and contralateral or bilateral orbits. We also identified the depth of skull base extension, and performed a chart review to identify associated complications. 149 frontal bone fractures, including 51 non-vertical frontal sinus (Type 1, 34.2%) and 98 vertical (Types 2-5, 65.8%) fractures were identified. Vertical fractures penetrated the middle or posterior cranial fossa significantly more often than non-vertical fractures (62.2 v. 15.7%, p = 0.0001) and had a significantly higher mortality rate (18.4 v. 0%, p < 0.05). Vertical fractures with frontal sinus and orbital extension, and fractures that penetrated the middle or posterior cranial fossa had the strongest association with intracranial injuries, optic neuropathy, disability, and death (p < 0.05). Vertical frontal bone fractures carry a worse prognosis than frontal bone fractures without a vertical pattern. In addition, vertical fractures with extension into the frontal sinus and orbit, or with extension into the middle or posterior cranial fossa have the highest complication rate and mortality. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Maxillary anterior ridge augmentation with recombinant human bone morphogenetic protein 2.
Edmunds, Ryan K; Mealey, Brian L; Mills, Michael P; Thoma, Daniel S; Schoolfield, John; Cochran, David L; Mellonig, Jim
2014-01-01
No human studies exist on the use of recombinant human bone morphogenetic protein 2 (rhBMP-2) on an absorbable collagen sponge (ACS) as a sole graft material for lateral ridge augmentation in large ridge defect sites. This series evaluates the treatment outcome of maxillary anterior lateral ridge augmentation with rhBMP-2/ACS. Twenty patients were treated with rhBMP-2/ACS and fixation screws for space maintenance. Cone beam volumetric tomography measurements were used to determine gain in ridge width, and a bone core biopsy was obtained. The mean horizontal ridge gain was 1.2 mm across sites, and every site gained width.
Healing of ungrafted and grafted extraction sockets after 12 weeks: a prospective clinical study.
Heberer, Susanne; Al-Chawaf, Bassem; Jablonski, Carlo; Nelson, John J; Lage, Hermann; Nelson, Katje
2011-01-01
In this prospective study, bone formation in human extraction sockets augmented with Bio-Oss Collagen after a 12-week healing period was quantified and compared to bone formation in unaugmented extraction sockets. Selected patients with four-walled extraction sockets were included in this prospective study. After extraction, the sockets were randomly augmented using Bio-Oss Collagen or left to heal unfilled without raising a mucoperiosteal flap. At the time of implant placement, histologic specimens were obtained from the socket and analyzed. Statistical analysis was performed using the Wilcoxon signed-rank test. Twenty-five patients with a total of 39 sockets (20 augmented, 19 unaugmented) were included in the study and the histologic specimens analyzed. All specimens were free of inflammatory cells. The mean overall new bone formation in the augmented sites was 25% (range, 8%-41%) and in the unaugmented sockets it was 44% (range, 3%-79%). There was a significant difference in the rate of new bone formation between the grafted and ungrafted sockets and a significant difference in the bone formation rate in the apical compared to the coronal regions of all sockets, independent of the healing mode. This descriptive study demonstrated that bone formation in Bio-Oss Collagen-grafted human extraction sockets was lower than bone formation in ungrafted sockets. Bone formation occurred in all specimens with varying degrees of maturation independent of the grafting material and was initiated from the apical region.
Angelo, Troedhan; Marcel, Wainwright; Andreas, Kurrek; Izabela, Schlichting
2015-01-01
Introduction. Bone regenerates mainly by periosteal and endosteal humoral and cellular activity, which is given only little concern in surgical techniques and choice of bone grafts for guided bone regeneration. This study investigates on a clinical level the biomechanical stability of augmented sites in maxillary bone when a new class of moldable, self-hardening calcium-phosphate biomaterials (SHB) is used with and without the addition of Platelet Rich Fibrin (aPRF) in the Piezotome-enhanced subperiosteal tunnel-technique (PeSPTT). Material and Methods. 82 patients with horizontal atrophy of anterior maxillary crest were treated with PeSPTT and randomly assigned biphasic (60% HA/40% bTCP) or monophasic (100% bTCP) SHB without or with addition of aPRF. 109 implants were inserted into the augmented sites after 8.3 months and the insertion-torque-value (ITV) measured as clinical expression of the (bio)mechanical stability of the augmented bone and compared to ITVs of a prior study in sinus lifting. Results. Significant better results of (bio)mechanical stability almost by two-fold, expressed by higher ITVs compared to native bone, were achieved with the used biomaterials and more constant results with the addition of aPRF. Conclusion. The use of SHB alone or combined with aPRF seems to be favourable to achieve a superior (bio)mechanical stable restored alveolar bone. PMID:25954758
Kelly, Mick P; Vaughn, Olushola L Akinshemoyin; Anderson, Paul A
2016-05-01
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is approved by the Food and Drug Administration as a viable alternative to bone graft in spinal fusion and maxillary sinus lift. The research questions for meta-analysis were: Is rhBMP-2 an effective bone graft substitute in localized alveolar ridge augmentation and maxillary sinus floor augmentation? What are the potential adverse events? A search of MEDLINE from January 1980 to January 2014 using PubMed, the Cochrane Database of Systematic Reviews and Controlled Trials, CINAHL, and EMBASE was performed. Searches were performed from Medical Subject Headings. The quality of each study included was graded by Review Manager software. The primary outcome variable was bone formation measured as change in bone height on computed tomogram. A systematic review of adverse events also was performed. A random-effects model was chosen. Continuous variables were calculated using the standardized mean difference and 95% confidence intervals (CIs) comparing improvement from baseline of the experimental group with that of the control group. Change in bone height was calculated using logarithmic odds ratio. Test of significance used the Z statistic with a P value of .05. Ten studies met the criteria for systematic review; 8 studies were included in the meta-analysis. Five studies assessed localized alveolar ridge augmentation and resulted in an overall standardized mean difference of 0.56 (CI, 0.20-0.92) in favor of BMP; this result was statistically important. Three studies assessed maxillary sinus floor augmentation and resulted in an overall standardized mean difference of -0.50 (CI, -0.93 to -0.09), which was meaningfully different in favor of the control group. Adverse events were inconsistently reported, ranging from no complications to widespread adverse events. For localized alveolar ridge augmentation, this meta-analysis showed that rhBMP-2 substantially increases bone height. However, rhBMP-2 does not perform as well as the autograft or allograft in maxillary sinus floor augmentation. Long-term clinical success and adverse events need to be reported with more consistency before definitive conclusions can be made. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Bone augmentation for cancellous bone- development of a new animal model
2013-01-01
Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals. The harvesting and evaluative methods assured a standardized analysis of all samples. Conclusions This experimental animal model provides an excellent basis for testing new biomaterials for their suitability as bone augmentation materials. Concomitantly, similar cardiovascular changes occur during vertebroplasties as in humans, thus making it a suitable animal model for studies related to vertebroplasty. PMID:23819858
Bone augmentation for cancellous bone- development of a new animal model.
Klein, Karina; Zamparo, Enrico; Kronen, Peter W; Kämpf, Katharina; Makara, Mariano; Steffen, Thomas; von Rechenberg, Brigitte
2013-07-02
Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (Ø 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals. The harvesting and evaluative methods assured a standardized analysis of all samples. This experimental animal model provides an excellent basis for testing new biomaterials for their suitability as bone augmentation materials. Concomitantly, similar cardiovascular changes occur during vertebroplasties as in humans, thus making it a suitable animal model for studies related to vertebroplasty.
Puisys, Algirdas; Vindasiute, Egle; Linkevciene, Laura; Linkevicius, Tomas
2015-04-01
To evaluate the efficiency of acellular dermal matrix membrane to augment vertical peri-implant soft tissue thickness during submerged implant placement. Forty acellular dermal matrix-derived allogenic membranes (AlloDerm, BioHorizons, Birmingham, AL, USA) and 42 laser-modified surface internal hex implants (BioHorizons Tapered Laser Lok, Birmingham, AL, USA) were placed in submerged approach in 40 patients (15 males and 25 females, mean age 42.5 ± 1.7) with a thin vertical soft tissue thickness of 2 mm or less. After 3 months, healing abutments were connected to implants, and the augmented soft tissue thickness was measured with periodontal probe. The gain in vertical soft tissue volume was calculated. Mann-Whitney U-test was applied and significance was set to 0.05. All 40 allografts healed successfully. Thin soft tissue before augmentation had an average thickness of 1.54 ± 0.51 mm SD (range, 0.5-2.0 mm, median 1.75 mm), and after soft tissue augmentation with acellular dermal matrix, thickness increased to 3.75 ± 0.54 mm SD (range, 3.0-5.0 mm, median 4.0 mm) at 3 months after placement. This difference between medians was found to be statistically significant (P < 0.001). Mean increase in soft tissue thickness was 2.21 ± 0.85 mm SD (range, 1.0-4.5 mm, median 2.0 mm). It can be concluded that acellular dermal matrix membrane can be successfully used for vertical soft tissue augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Laser Sintered Porous Ti-6Al-4V Implants Stimulate Vertical Bone Growth.
Cheng, Alice; Cohen, David J; Kahn, Adrian; Clohessy, Ryan M; Sahingur, Kaan; Newton, Joseph B; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi
2017-08-01
The objective of this study was to examine the ability of 3D implants with trabecular-bone-inspired porosity and micro-/nano-rough surfaces to enhance vertical bone ingrowth. Porous Ti-6Al-4V constructs were fabricated via laser-sintering and processed to obtain micro-/nano-rough surfaces. Male and female human osteoblasts were seeded on constructs to analyze cell morphology and response. Implants were then placed on rat calvaria for 10 weeks to assess vertical bone ingrowth, mechanical stability and osseointegration. All osteoblasts showed higher levels of osteocalcin, osteoprotegerin, vascular endothelial growth factor and bone morphogenetic protein 2 on porous constructs compared to solid laser-sintered controls. Porous implants placed in vivo resulted in an average of 3.1 ± 0.6 mm 3 vertical bone growth and osseointegration within implant pores and had significantly higher pull-out strength values than solid implants. New bone formation and pull-out strength was not improved with the addition of demineralized bone matrix putty. Scanning electron images and histological results corroborated vertical bone growth. This study indicates that Ti-6Al-4V implants fabricated by additive manufacturing to have porosity based on trabecular bone and post-build processing to have micro-/nano-surface roughness can support vertical bone growth in vivo, and suggests that these implants may be used clinically to increase osseointegration in challenging patient cases.
Manavella, Valeria; Romano, Federica; Corano, Lisa; Bignardi, Cristina; Aimetti, Mario
The primary aim of the study was to describe a novel technique to evaluate volumetric hard tissue dimensional changes after ridge augmentation procedures. The secondary aim was to apply this newly developed measuring method to compromised alveolar sockets grafted with a slowly resorbing biomaterial covered with a collagen membrane. Eleven patients (6 men and 5 women, mean age 52.7 ± 8.3 years) requiring extraction of one hopeless tooth for severe periodontitis in the maxillary anterior area were consecutively treated with a ridge augmentation procedure. All experimental sockets showed advanced buccal bone plate deficiency and were grafted with deproteinized bovine bone mineral with 10% collagen covered with a collagen membrane. Sockets healed by secondary intention. Three-dimensional volumetric alveolar bone changes were calculated by superimposing cone beam computed tomography scans obtained before and 12 months after the augmentation procedure. After 12 months, the alveolar mineralized tissue filled 91.20% ± 7.96% of the maximum volume for regeneration. The augmentation procedure appeared not only to compensate for bone remodeling in most alveolar regions but also to repair a significant portion of the buccal wall. The most significant ridge width changes occurred 1 mm apical to the bone crest (2.33 ± 1.46 mm, P < .001). Within present limitations, this radiographic measuring methodology can be a useful tool to evaluate changes in socket volume. A ridge preservation technique performed with collagenated bovine bone and a collagen membrane was able to improve ridge shape and dimensions in compromised alveolar sockets.
Shi, Brendan Y; Diaz, Miguel; Belkoff, Stephen M; Srikumaran, Uma
2017-12-01
Obtaining strong fixation in low-density bone is increasingly critical in surgical repair of rotator cuff tears because of the aging population. To evaluate two new methods of improving pullout strength of transosseous rotator cuff repair in low-density bone, we analyzed the effects of 1) using 2-mm suture tape instead of no. 2 suture and 2) augmenting the lateral tunnel with cement. Eleven pairs of osteopenic or osteoporotic cadaveric humeri were identified by dual-energy x-ray absorptiometry. One bone tunnel and one suture were placed in the heads of 22 specimens. Five randomly selected pairs were repaired with no. 2 suture; the other six pairs were repaired with 2-mm suture tape. One side of each pair received lateral tunnel cement augmentation. Specimens were tested to suture pullout. Data were fitted to multivariate models that accounted for bone mineral density and other specimen characteristics. Two specimens were excluded because of knot-slipping during testing. Use of suture tape versus no. 2 suture conferred a 75-N increase (95% CI: 37, 113) in pullout strength (P<0.001). Cement augmentation conferred a 42-N improvement (95% CI: 10, 75; P=0.011). Other significant predictors of pullout strength were age, sex, and bone mineral density. We show two methods of improving the fixation strength of transosseous rotator cuff repairs in low-density bone: using 2-mm suture tape instead of no. 2 suture and augmenting the lateral tunnel with cement. These methods may improve the feasibility of transosseous repairs in an aging patient population. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hadzik, Jakub; Botzenhart, Ute; Krawiec, Maciej; Gedrange, Tomasz; Heinemann, Friedhelm; Vegh, Andras; Dominiak, Marzena
2017-09-01
Short dental implants can be an alternative method of treatment to a vertical bone augmentation procedure at sites of reduced alveolar height. However, for successful treatment, an implant system that causes a minimal marginal bone loss (MBL) should be taken into consideration. The aim of the study has been to evaluate implantation effectiveness for bone level and tissue level short implants provided in lateral aspects of partially edentulous mandible and limited alveolar ridge height. The MBL and primary as well as secondary implant stability were determined in the study. Patients were randomly divided into two groups according to the method of treatment provided. Sixteen short Bone Level Implants (OsseoSpeed TX, Astra tech) and 16 short Tissue Level Implants (RN SLActive ® , Straumann) were successfully placed in the edentulous part of the mandible. The determination of the marginal bone level was based on radiographic evaluation after 12 and 36 weeks. Implant stability was measured immediately after insertion and after 12 weeks. The marginal bone level of Bone Level Implants was significantly lower compared to Tissue Level Implants. Furthermore, the Bone Level Implants had greater primary and secondary stability in comparison with Tissue Level Implants (Primary: 77.8 ISQ versus 66.5 ISQ; Secondary: 78.9 ISQ versus 73.9 ISQ, respectively). Since short Bone Level Implants showed a significantly decreased MBL 12 and 36 weeks after implantation as well as better results for the primary stability compared to Tissue Level Implants, they should preferentially be used for this mentioned indication. Copyright © 2017 Elsevier GmbH. All rights reserved.
Mirković, Sinisa; Budak, Igor; Puskar, Tatjana; Tadić, Ana; Sokac, Mario; Santosi, Zeljko; Djurdjević-Mirković, Tatjana
2015-12-01
An autologous bone (bone derived from the patient himself) is considered to be a "golden standard" in the treatment of bone defects and partial atrophic alveolar ridge. However, large defects and bone losses are difficult to restore in this manner, because extraction of large amounts of autologous tissue can cause donor-site problems. Alternatively, data from computed tomographic (CT) scan can be used to shape a precise 3D homologous bone block using a computer-aided design-computer-aided manufacturing (CAD-CAM) system. A 63-year old male patient referred to the Clinic of Dentistry of Vojvodina in Novi Sad, because of teeth loss in the right lateral region of the lower jaw. Clinical examination revealed a pronounced resorption of the residual ridge of the lower jaw in the aforementioned region, both horizontal and vertical. After clinical examination, the patient was referred for 3D cone beam (CB)CT scan that enables visualization of bony structures and accurate measurement of dimensions of the residual alveolar ridge. Considering the large extent of bone resorption, the required ridge augmentation was more than 3 mm in height and 2 mm in width along the length of some 2 cm, thus the use of granular material was excluded. After consulting prosthodontists and engineers from the Faculty of Technical Sciences in Novi Sad we decided to fabricate an individual (custom) bovine-derived bone graft designed according to the obtained-3D CBCT scan. Application of 3D CBCT images, computer-aided systems and software in manufacturing custom bone grafts represents the most recent method of guided bone regeneration. This method substantially reduces time of recovery and carries minimum risk of postoperative complications, yet the results fully satisfy the requirements of both the patient and the therapist.
Varga, Peter; Inzana, Jason A; Schwiedrzik, Jakob; Zysset, Philippe K; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus
2017-05-01
High incidence and increased mortality related to secondary, contralateral proximal femoral fractures may justify invasive prophylactic augmentation that reinforces the osteoporotic proximal femur to reduce fracture risk. Bone cement-based approaches (femoroplasty) may deliver the required strengthening effect; however, the significant variation in the results of previous studies calls for a systematic analysis and optimization of this method. Our hypothesis was that efficient generalized augmentation strategies can be identified via computational optimization. This study investigated, by means of finite element analysis, the effect of cement location and volume on the biomechanical properties of fifteen proximal femora in sideways fall. Novel cement cloud locations were developed using the principles of bone remodeling and compared to the "single central" location that was previously reported to be optimal. The new augmentation strategies provided significantly greater biomechanical benefits compared to the "single central" cement location. Augmenting with approximately 12ml of cement in the newly identified location achieved increases of 11% in stiffness, 64% in yield force, 156% in yield energy and 59% in maximum force, on average, compared to the non-augmented state. The weaker bones experienced a greater biomechanical benefit from augmentation than stronger bones. The effect of cement volume on the biomechanical properties was approximately linear. Results of the "single central" model showed good agreement with previous experimental studies. These findings indicate enhanced potential of cement-based prophylactic augmentation using the newly developed cementing strategy. Future studies should determine the required level of strengthening and confirm these numerical results experimentally. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hasturk, Hatice; Kantarci, Alpdogan; Ghattas, Mazen; Dangaria, Smit J.; Abdallah, Rima; Morgan, Elise F.; Diekwisch, Thomas G.H.; Ashman, Arthur; Van Dyke, Thomas
2015-01-01
Background This report is the second part of the previously published study on the impact of light/chemical hardening technology and a newly formulated composite graft material for crestal augmentation during immediate implant placement. Methods A total of 48 implants were placed into the sockets of the mesial roots of freshly extracted mandibular premolar teeth in three minipigs. Crestal areas and intrabony spaces were randomly augmented with light-hardened graft materials including a composite graft consisting of polymethylmethacrylate, polyhydroxylethylmethacrylate, and calcium hydroxide (PPCH) plus polyanhydride (PA); PPCH graft; and PA graft, or left untreated. Distal sockets not receiving implants and the sockets of first molars (n = 60) were randomly treated with one of the graft materials or left empty. In addition, two molar sockets were treated with the original PPCH graft material. Quantitative microcomputed tomography (micro-CT) was used to assess alveolar bone structure and tissue compositions. Histologic evaluations included descriptive histology to assess the peri-implant wound healing, as well as histomorphometric measurements to determine bone-to-implant contact (BIC). Results Both trabecular and cortical bone measurements by micro-CT did not reveal any significant differences among the groups. Sites augmented with PPCH+PA resulted in significantly greater BIC surface than PPCH alone and no-graft-treated implants (P <0.05) histologically. Stained ground sections showed complete bone formation between bone and implant surface in the PPCH+PA group, whereas sites without augmentation showed large gaps between bone and implant surfaces, indicating a slower bone apposition and less BIC surface compared to all other groups. Similar to implant sections, all materials showed positive outcome on trabecular and cortical bone formation in extraction sockets with an intact crestal cortical bone. Conclusion Histologic evaluations supported the previous findings on implant stability and function and confirmed that PPCH+PA provides a greater BIC with a well-organized implant–bone interface and is useful in crestal augmentation during immediate implant placement. PMID:24502615
Hasturk, Hatice; Kantarci, Alpdogan; Ghattas, Mazen; Dangaria, Smit J; Abdallah, Rima; Morgan, Elise F; Diekwisch, Thomas G H; Ashman, Arthur; Van Dyke, Thomas
2014-09-01
This report is the second part of the previously published study on the impact of light/chemical hardening technology and a newly formulated composite graft material for crestal augmentation during immediate implant placement. A total of 48 implants were placed into the sockets of the mesial roots of freshly extracted mandibular premolar teeth in three minipigs. Crestal areas and intrabony spaces were randomly augmented with light-hardened graft materials including a composite graft consisting of polymethylmethacrylate, polyhydroxylethylmethacrylate, and calcium hydroxide (PPCH) plus polyanhydride (PA); PPCH graft; and PA graft, or left untreated. Distal sockets not receiving implants and the sockets of first molars (n = 60) were randomly treated with one of the graft materials or left empty. In addition, two molar sockets were treated with the original PPCH graft material. Quantitative microcomputed tomography (micro-CT) was used to assess alveolar bone structure and tissue compositions. Histologic evaluations included descriptive histology to assess the peri-implant wound healing, as well as histomorphometric measurements to determine bone-to-implant contact (BIC). Both trabecular and cortical bone measurements by micro-CT did not reveal any significant differences among the groups. Sites augmented with PPCH+PA resulted in significantly greater BIC surface than PPCH alone and no-graft-treated implants (P <0.05) histologically. Stained ground sections showed complete bone formation between bone and implant surface in the PPCH+PA group, whereas sites without augmentation showed large gaps between bone and implant surfaces, indicating a slower bone apposition and less BIC surface compared to all other groups. Similar to implant sections, all materials showed positive outcome on trabecular and cortical bone formation in extraction sockets with an intact crestal cortical bone. Histologic evaluations supported the previous findings on implant stability and function and confirmed that PPCH+PA provides a greater BIC with a well-organized implant-bone interface and is useful in crestal augmentation during immediate implant placement.
Seppel, G; Lenich, A; Imhoff, A B
2014-06-01
Reposition and fixation of unstable distal clavicle fractures with a low profile locking plate (Acumed, Hempshire, UK) in conjunction with a button/suture augmentation cerclage (DogBone/FibreTape, Arthrex, Naples, FL, USA). Unstable fractures of the distal clavicle (Jäger and Breitner IIA) in adults. Unstable fractures of the distal clavicle (Jäger and Breitner IV) in children. Distal clavicle fractures (Jäger and Breitner I, IIB or III) with marked dislocation, injury of nerves and vessels, or high functional demand. Patients in poor general condition. Fractures of the distal clavicle (Jäger and Breitner I, IIB or III) without marked dislocation or vertical instability. Local soft-tissue infection. Combination procedure: Initially the lateral part of the clavicle is exposed by a 4 cm skin incision. After reduction of the fracture, stabilization is performed with a low profile locking distal clavicle plate. Using a special guiding device, a transclavicular-transcoracoidal hole is drilled under arthroscopic view. Additional vertical stabilization is arthroscopically achieved by shuttling the DogBone/FibreTape cerclage from the lateral portal cranially through the clavicular plate. The two ends of the FibreTape cerclage are brought cranially via adjacent holes of the locking plate while the DogBone button is placed under the coracoid process. Thus, plate bridging is achieved. Finally reduction is performed and the cerclage is secured by surgical knotting. Use of an arm sling for 6 weeks. Due to the fact that the described technique is a relatively new procedure, long-term results are lacking. In the short term, patients postoperatively report high subjective satisfaction without persistent pain.
Thoma, Daniel S; Jung, Ui-Won; Park, Jin-Young; Bienz, Stefan P; Hüsler, Jürg; Jung, Ronald E
2017-07-01
The aim of the study was to test whether or not the use of a polyethylene glycol (PEG) hydrogel with or without the addition of an arginylglycylaspartic acid (RGD) sequence applied as a matrix in combination with hydroxyapatite/tricalciumphosphate (HA/TCP) results in similar peri-implant bone regeneration as traditional guided bone regeneration procedures. In 12 beagle dogs, implant placement and peri-implant bone regeneration were performed 2 months after tooth extraction in the maxilla. Two standardized box-shaped defects were bilaterally created, and dental implants were placed in the center of the defects with a dehiscence of 4 mm. Four treatment modalities were randomly applied: i)HA/TCP mixed with a synthetic PEG hydrogel, ii)HA/TCP mixed with a synthetic PEG hydrogel supplemented with an RGD sequence, iii)HA/TCP covered with a native collagen membrane (CM), iv)and no bone augmentation (empty). After a healing period of 8 or 16 weeks, micro-CT and histological analyses were performed. Histomorphometric analysis revealed a greater relative augmented area for groups with bone augmentation (43.3%-53.9% at 8 weeks, 31.2%-42.8% at 16 weeks) compared to empty controls (22.9% at 8 weeks, 1.1% at 16 weeks). The median amount of newly formed bone was greatest in group CM at both time-points. Regarding the first bone-to-implant contact, CM was statistically significantly superior to all other groups at 8 weeks. Bone can partially be regenerated at peri-implant buccal dehiscence defects using traditional guided bone regeneration techniques. The use of a PEG hydrogel applied as a matrix mixed with a synthetic bone substitute material might lack a sufficient stability over time for this kind of defect. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mandelaris, George A; Spagnoli, Daniel B; Rosenfeld, Alan L; McKee, James; Lu, Mei
2015-01-01
This case report describes a tissue-engineered reconstruction with recombinant human bone morphogenetic protein 2/acellular collagen sponge (rhBMP-2/ ACS) + cancellous allograft and space maintenance via Medpor Contain mesh in the treatment of a patient requiring maxillary and mandibular horizontal ridge augmentation to enable implant placement. The patient underwent a previously unsuccessful corticocancellous bone graft at these sites. Multiple and contiguous sites in the maxilla and in the mandibular anterior, demonstrating advanced lateral ridge deficiencies, were managed using a tissue engineering approach as an alternative to autogenous bone harvesting. Four maxillary and three mandibular implants were placed 9 and 10 months, respectively, after tissue engineering reconstruction, and all were functioning successfully after 24 months of follow-up. Histomorphometric analysis of a bone core obtained at the time of the maxillary implant placement demonstrated a mean of 76.1% new vital bone formation, 22.2% marrow/cells, and 1.7% residual graft tissue. Tissue engineering for lateral ridge augmentation with combination therapy requires further research to determine predictability and limitations.
Lorenz, Jonas; Al-Maawi, Sarah; Sader, Robert; Ghanaati, Shahram
2018-05-21
Autologous bone transfer is regarded as the gold standard for ridge augmentation before dental implantation, especially in severe bony defects caused by tumor resection or atrophy. In addition to the advantages of autologous bone, transplantation has several disadvantages, such as secondary operation, increased morbidity and pain. The present study reports, for the first time, a combination of a xenogeneic bone substitute (BO) with platelet-rich fibrin (PRF), which is a fully autologous blood concentrate derived from the patient's own peripheral blood by centrifugation. Solid A-PRF+TM and liquid i-PRFTM together with an individualized 3-D planned titanium mesh were used for reconstruction of a severe tumor-related bony defect within the mandible of a former head and neck cancer patient. The BO enriched with regenerative components from PRF allowed the reconstruction of the mandibular resective defect under the 3-D-mesh without autologous bone transplantation. Complete rehabilitation and restoration of the patient´s oral function were achieved. Histological analysis of extracted bone biopsies confirmed that the new bone within the augmented region originated from the residual bone. Within the limitations of the presented case, the applied concept appears to be a promising approach to increase the regenerative capacity of a bone substitute material, as well as decrease the demand for autologous bone transplantation, even in cases in which autologous bone is considered the golden standard. PRF can be considered a reliable source for increasing the biological capacities of bone substitute materials.
Pullout strength of standard vs. cement-augmented rotator cuff repair anchors in cadaveric bone.
Aziz, Keith T; Shi, Brendan Y; Okafor, Louis C; Smalley, Jeremy; Belkoff, Stephen M; Srikumaran, Uma
2018-05-01
We evaluate a novel method of rotator cuff repair that uses arthroscopic equipment to inject bone cement into placed suture anchors. A cadaver model was used to assess the pullout strength of this technique versus anchors without augmentation. Six fresh-frozen matched pairs of upper extremities were screened to exclude those with prior operative procedures, fractures, or neoplasms. One side from each pair was randomized to undergo standard anchor fixation with the contralateral side to undergo anchor fixation augmented with bone cement. After anchor fixation, specimens were mounted on a servohydraulic testing system and suture anchors were pulled at 90° to the insertion to simulate the anatomic pull of the rotator cuff. Sutures were pulled at 1 mm/s until failure. The mean pullout strength was 540 N (95% confidence interval, 389 to 690 N) for augmented anchors and 202 N (95% confidence interval, 100 to 305 N) for standard anchors. The difference in pullout strength was statistically significant (P < 0.05). This study shows superior pullout strength of a novel augmented rotator cuff anchor technique. The described technique, which is achieved by extruding polymethylmethacrylate cement through a cannulated in situ suture anchor with fenestrations, significantly increased the ultimate failure load in cadaveric human humeri. This novel augmented fixation technique was simple and can be implemented with existing instrumentation. In osteoporotic bone, it may substantially reduce the rate of anchor failure. Copyright © 2018 Elsevier Ltd. All rights reserved.
Percutaneous osteoplasty with a bone marrow nail for fractures of long bones: experimental study.
Nakata, Kouhei; Kawai, Nobuyuki; Sato, Morio; Cao, Guang; Sahara, Shinya; Tanihata, Hirohiko; Takasaka, Isao; Minamiguchi, Hiroyuki; Nakai, Tomoki
2010-09-01
To develop percutaneous osteoplasty with the use of a bone marrow nail for fixation of long-bone fractures, and to evaluate its feasibility and safety in vivo and in vitro. Six long bones in three healthy swine were used in the in vivo study. Acrylic cement was injected through an 11-gauge bone biopsy needle and a catheter into a covered metallic stent placed within the long bone, creating a bone marrow nail. In the in vitro study, we determined the bending, tug, and compression strengths of the acrylic cement nails 9 cm long and 8 mm in diameter (N = 10). The bending strength of the artificially fractured bones (N = 6) restored with the bone marrow nail and cement augmentation was then compared with that of normal long bones (N = 6). Percutaneous osteoplasty with a bone marrow nail was successfully achieved within 1 hour for all swine. After osteoplasty, all swine regained the ability to run until they were euthanized. Blood tests and pathologic findings showed no adverse effects. The mean bending, tug, and compression strengths of the nail were 91.4 N/mm(2) (range, 75.0-114.1 N/mm(2)), 20.9 N/mm(2) (range, 6.6-30.4 N/mm(2)), and 103.0 N/mm(2) (range, 96.3-110.0 N/mm(2)), respectively. The bending strength ratio of artificially fractured bones restored with bone marrow nail and cement augmentation to normal long bone was 0.32. Percutaneous osteoplasty with use of a bone marrow nail and cement augmentation appears to have potential in treating fractures of non-weight-bearing long bones. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.
Nha, Kyung Wook; Shetty, Gautam M; Ahn, Jin Hwan; Lee, Yong Seuk; Chae, Dong Ju; Nam, Hyok Woo; Lee, Dae Hee
2010-01-01
The use of autologous quadrupled hamstring tendon graft is a well-known technique for anterior cruciate ligament reconstruction. In cases where the diameter of the graft is inadequate, the stability of graft fixation and subsequent bone to tendon healing may be compromised. We describe a new technique to augment the autologous double looped hamstring tendon graft during anterior cruciate ligament reconstruction using cancellous bone chips. This simple technique effectively enhances graft fixation and stability.
Emam, Hany; Beheiri, Galal; Elsalanty, Mohammed; Sharawy, Mohamed
2011-01-01
Anorganic bovine hydroxyapatite matrix (ABM), when coupled with synthetic cell-binding peptide (P15), mimics the cell-binding region of type 1 collagen and is commercially available suspended in a sodium hyaluronate carrier. The aim of the present study, therefore, was to test the efficacy of ABM/P-15 Putty (DENTSPLY Friadent CeraMed) as a sole graft material for sinus augmentation in patients with severely resorbed posterior maxillae. Sinus augmentation was performed in 10 patients using ABM/P-15 Putty and two provisional dental implants (3.0 mm in diameter). The graft and implants were placed simultaneously with the aid of a surgical stent. After 8 or 16 weeks, the implants were removed using a 4.25-mm trephine bur; this was followed by immediate placement of wider-diameter (5.5-mm) implants. All 20 implants were scanned by microcomputed tomography to determine bone mineral density (BMD), percent bone volume (PBV), and percent bone contact (PBC). There was a significant increase in the BMD of bone around the implants at 8 weeks and 16 weeks compared to native residual (control) bone. There was no significant difference in PBV or PBC between 8 weeks and 16 weeks. The average increase in bone height at 16 weeks was 9.63 ± 1 mm. Microcomputed tomographic images and histologic sections showed dense graft particles surrounded by vital trabecular bone. BMD increases as early as 8 weeks and does not show an additional increase after 16 weeks. PepGen P-15 Putty was found to be a promising osteoconductive graft for sinus augmentation, supporting immediate placement of implants.
Rüger, Matthias; Sellei, Richard M.; Stoffel, Marcus; von Rüden, Christian
2015-01-01
Study Design Cohort study. Objective Expandable anterolateral plates facilitate the reduction of posttraumatic deformities of thoracolumbar spine injuries and are commonly used in cases of unstable injuries or compromised bone quality. In this in vitro study, the craniocaudal yield load of the osseous fixation of an anterior angular stable plate fixation system and the effect of polymethyl methacrylate (PMMA) screw augmentation on the primary stability of the screw–bone interface during kyphosis reduction was evaluated in 12 osteoporotic human thoracolumbar vertebrae. Methods The anterolateral stabilization device used for this study is comprised of two swiveling flanges and an expandable midsection. It facilitates the controlled reduction of kyphotic deformities in situ with a geared distractor. Single flanges were attached to 12 thoracolumbar vertebrae. Six specimens were augmented with PMMA by means of cannulated bone screws. The constructs were subjected to static, displacement-controlled craniocaudal loading to failure in a servohydraulic testing machine. Results The uncemented screws cut out at a mean 393 ± 66 N, whereas the cemented screws showed significantly higher yield load of 966 ± 166 N (p < 0.02). We detected no significant correlation between bone mineral density and yield load in this setting. Conclusion Our results indicate that PMMA augmentation is an effective method to increase two- to threefold the primary stability of the screw–bone interface of an anterolateral spine stabilization system in osteoporotic bone. We recommend it in cases of severely compromised bone quality to reduce the risk of screw loosening during initial kyphosis correction and to increase long-term construct stability. PMID:26835201
Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
Yoshida, T; Miyaji, H; Otani, K; Inoue, K; Nakane, K; Nishimura, H; Ibara, A; Shimada, A; Ogawa, K; Nishida, E; Sugaya, T; Sun, L; Fugetsu, B; Kawanami, M
2015-04-01
Beta-tricalcium phosphate (β-TCP), a bio-absorbable ceramic, facilitates bone conductivity. We constructed a highly porous three-dimensional scaffold, using β-TCP, for bone tissue engineering and coated it with co-poly lactic acid/glycolic acid (PLGA) to improve the mechanical strength and biological performance. The aim of this study was to examine the effect of implantation of the PLGA/β-TCP scaffold loaded with fibroblast growth factor-2 (FGF-2) on bone augmentation. The β-TCP scaffold was fabricated by the replica method using polyurethane foam, then coated with PLGA. The PLGA/β-TCP scaffold was characterized by scanning electron miscroscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, compressive testing, cell culture and a subcutaneous implant test. Subsequently, a bone-forming test was performed using 52 rats. The β-TCP scaffold, PLGA-coated scaffold, and β-TCP and PLGA-coated scaffolds loaded with FGF-2, were implanted into rat cranial bone. Histological observations were made at 10 and 35 d postsurgery. SEM and TEM observations showed a thin PLGA layer on the β-TCP particles after coating. High porosity (> 90%) of the scaffold was exhibited after PLGA coating, and the compressive strength of the PLGA/β-TCP scaffold was six-fold greater than that of the noncoated scaffold. Good biocompatibility of the PLGA/β-TCP scaffold was found in the culture and implant tests. Histological samples obtained following implantation of PLGA/β-TCP scaffold loaded with FGF-2 showed significant bone augmentation. The PLGA coating improved the mechanical strength of β-TCP scaffolds while maintaining high porosity and tissue compatibility. PLGA/β-TCP scaffolds, in combination with FGF-2, are bioeffective for bone augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rüger, Matthias; Sellei, Richard M; Stoffel, Marcus; von Rüden, Christian
2016-02-01
Study Design Cohort study. Objective Expandable anterolateral plates facilitate the reduction of posttraumatic deformities of thoracolumbar spine injuries and are commonly used in cases of unstable injuries or compromised bone quality. In this in vitro study, the craniocaudal yield load of the osseous fixation of an anterior angular stable plate fixation system and the effect of polymethyl methacrylate (PMMA) screw augmentation on the primary stability of the screw-bone interface during kyphosis reduction was evaluated in 12 osteoporotic human thoracolumbar vertebrae. Methods The anterolateral stabilization device used for this study is comprised of two swiveling flanges and an expandable midsection. It facilitates the controlled reduction of kyphotic deformities in situ with a geared distractor. Single flanges were attached to 12 thoracolumbar vertebrae. Six specimens were augmented with PMMA by means of cannulated bone screws. The constructs were subjected to static, displacement-controlled craniocaudal loading to failure in a servohydraulic testing machine. Results The uncemented screws cut out at a mean 393 ± 66 N, whereas the cemented screws showed significantly higher yield load of 966 ± 166 N (p < 0.02). We detected no significant correlation between bone mineral density and yield load in this setting. Conclusion Our results indicate that PMMA augmentation is an effective method to increase two- to threefold the primary stability of the screw-bone interface of an anterolateral spine stabilization system in osteoporotic bone. We recommend it in cases of severely compromised bone quality to reduce the risk of screw loosening during initial kyphosis correction and to increase long-term construct stability.
Kutkut, Ahmad M; Andreana, Sebastiano; Kim, Hyeong-Ll; Monaco, Edward
2011-12-01
To propose a clinical recommendation based on anatomy of maxillary sinus before sinus augmentation procedure using presurgical computerized axial tomography (CAT) scan images. CAT scan images were randomly selected from previous completed implant cases. Proposed area for the lateral window osteotomy was outlined on the panorex image of the CAT scan. Sagittal section on the CAT scan that was in the center of the outlined window was selected for sinus measurement analysis. On CAT scan, 2 lines were drawn to measure the dimensions of sinus. One line measured the horizontal width and the other line measured the vertical height. Based on the measurement data, a classification of the maxillary sinus anatomy was proposed. Narrow sinus cavity indicates favorable type anatomy in terms of bone regeneration healing and wide sinus cavity as less favorable anatomy for patient treatment planning. A narrow sinus and greater exposure to the blood supply should require shorter healing times after grafting. Conversely, wider sinus cavities and less exposure to the blood supply would require a longer healing time before implant placement.
Ayranci, Ferhat; Gungormus, Metin; Omezli, Mehmet Melih; Gundogdu, Betul
2015-12-01
Increasing sinus pneumatization and the accompanying alveolar bone resorption complicate dental implant placement. This problem can be overcome today by raising the maxillary sinus floor with graft materials. Bisphosphonates are commonly used to accelerate the recovery of the graft materials and to prevent resorption. The purpose of this study is to investigate whether systemic administration of a bisphosphonate (alendronate) would improve new bone formation and reduce fibrous tissue formation over a 6-week follow-up in rabbits treated with two different grafting materials for maxillary sinus floor augmentation. This experimental animal study was conducted at the Experimental Medical Application and Research Center at Erzurum/ Turkey. Twelve New Zealand rabbits, each weighing between 2.7 and 3.3 kg, were used. Twenty-four maxillary sinus floor elevation operations were performed, two on each animal (n = 24). Each elevation was repaired with either deproteinized bovine bone (xenograft) or autogenous bone graft obtained from the iliac crest. Both groups were divided into 2 subgroups: saline-treated and alendronate-treated. All groups underwent the same surgical procedures and evaluation, and were sacrificed at the 6th postoperative week. Sinuses augmented with deproteinized bovine bone (xenograft) and autogenous bone graft were examined histopathologically and histomorphometrically. At 6 weeks, the bone area was significantly larger in the Xenograft-Alendronate group (33.0% ± 5.0%) than in the Xenograft-Saline group (20.8% ± 4.9%) and the bone area was significantly larger in the Autogenous-Alendronate group (43.3% ± 3.8%) than in the Autogenous-Saline group (37.5% ± 6.6%) (P = 0.001). The histomorphometric and histopathological results consistently showed that alendronate stimulated bone formation and reduced fibrous tissue formation in maxillary sinus augmentation grafts, especially in the deproteinized bovine bone group (xenograft). Alendronate may be considered a therapeutic option for improving the bone formation process and reducing resorption in different bone grafting procedures. Further detailed studies should focus on dosage and time-dependent effects of alendronate on bone remodeling.
Ayranci, Ferhat; Gungormus, Metin; Omezli, Mehmet Melih; Gundogdu, Betul
2015-01-01
Background: Increasing sinus pneumatization and the accompanying alveolar bone resorption complicate dental implant placement. This problem can be overcome today by raising the maxillary sinus floor with graft materials. Bisphosphonates are commonly used to accelerate the recovery of the graft materials and to prevent resorption. Objectives: The purpose of this study is to investigate whether systemic administration of a bisphosphonate (alendronate) would improve new bone formation and reduce fibrous tissue formation over a 6-week follow-up in rabbits treated with two different grafting materials for maxillary sinus floor augmentation. Materials and Methods: This experimental animal study was conducted at the Experimental Medical Application and Research Center at Erzurum/ Turkey. Twelve New Zealand rabbits, each weighing between 2.7 and 3.3 kg, were used. Twenty-four maxillary sinus floor elevation operations were performed, two on each animal (n = 24). Each elevation was repaired with either deproteinized bovine bone (xenograft) or autogenous bone graft obtained from the iliac crest. Both groups were divided into 2 subgroups: saline-treated and alendronate-treated. All groups underwent the same surgical procedures and evaluation, and were sacrificed at the 6th postoperative week. Sinuses augmented with deproteinized bovine bone (xenograft) and autogenous bone graft were examined histopathologically and histomorphometrically. Results: At 6 weeks, the bone area was significantly larger in the Xenograft-Alendronate group (33.0% ± 5.0%) than in the Xenograft-Saline group (20.8% ± 4.9%) and the bone area was significantly larger in the Autogenous-Alendronate group (43.3% ± 3.8%) than in the Autogenous-Saline group (37.5% ± 6.6%) (P = 0.001). The histomorphometric and histopathological results consistently showed that alendronate stimulated bone formation and reduced fibrous tissue formation in maxillary sinus augmentation grafts, especially in the deproteinized bovine bone group (xenograft). Conclusions: Alendronate may be considered a therapeutic option for improving the bone formation process and reducing resorption in different bone grafting procedures. Further detailed studies should focus on dosage and time-dependent effects of alendronate on bone remodeling. PMID:26756022
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelekis, A., E-mail: akelekis@med.uoa.gr; Filippiadis, D., E-mail: dfilippiadis@yahoo.gr; Anselmetti, G., E-mail: gc.anselmetti@fastwebnet.it
PurposeTo evaluate clinical efficacy/safety of augmented peripheral osteoplasty in oncologic patients with long-term follow-up.Materials and MethodsPercutaneous augmented peripheral osteoplasty was performed in 12 patients suffering from symptomatic lesions of long bones. Under extensive local sterility measures, anesthesiology care, and fluoroscopic guidance, direct access to lesion was obtained and coaxially a metallic mesh consisting of 25–50 medical grade stainless steel micro-needles (22 G, 2–6 cm length) was inserted. PMMA for vertebroplasty was finally injected under fluoroscopic control. CT assessed implant position 24-h post-treatment.ResultsClinical evaluation included immediate and delayed follow-up studies of patient’s general condition, NVS pain score, and neurological status. Imaging assessedmore » implant’s long-term stability. Mean follow-up was 16.17 ± 10.93 months (range 2–36 months). Comparing patients’ scores prior (8.33 ± 1.67 NVS units) and post (1.42 ± 1.62 NVS units) augmented peripheral osteoplasty, there was a mean decrease of 6.92 ± 1.51 NVS units. Overall mobility improved in 12/12 patients. No complication was observed.ConclusionPercutaneous augmented peripheral osteoplasty (rebar concept) for symptomatic malignant lesions in long bones seems to be a possible new technique for bone stabilization. This combination seems to provide necessary stability against shearing forces applied in long bones during weight bearing.« less
Omi, Rei; Gingery, Anne; Steinmann, Scott P.; Amadio, Peter C.; An, Kai-Nan; Zhao, Chunfeng
2016-01-01
Hypothesis A composite of multilayer tendon slices (COMTS) seeded with bone marrow stromal cells (BMSCs) may impart mechanical and biologic augmentation effects on supraspinatus tendon repair under tension, thereby improving the healing process after surgery in rats. Methods Adult female Lewis rats (n = 39) underwent transection of the supraspinatus tendon and a 2-mm tendon resection at the distal end, followed by immediate repair to its bony insertion site under tension. Animals received 1 of 3 treatments at the repair site: (1) no augmentation, (2) COMTS augmentation alone, or (3) BMSC-seeded COMTS augmentation. BMSCs were labeled with a fluorescent cell marker. Animals were euthanized 6 weeks after surgery, and the extent of healing of the repaired supraspinatus tendon was evaluated with biomechanical testing and histologic analysis. Results Histologic analysis showed gap formation between the repaired tendon and bone in all specimens, regardless of treatment. Robust fibrous tissue was observed in rats with BMSC-seeded COMTS augmentation; however, fibrous tissue was scarce within the gap in rats with no augmentation or COMTS-only augmentation. Labeled transplanted BMSCs were observed throughout the repair site. Biomechanical analysis showed that the repairs augmented with BMSC-seeded COMTS had significantly greater ultimate load to failure and stiffness compared with other treatments. However, baseline (time 0) data showed that COMTS-only augmentation did not increase mechanical strength of the repair site. Conclusion Although the COMTS scaffold did not increase the initial repair strength, the BMSC-seeded scaffold increased healing strength and stiffness 6 weeks after rotator cuff repair in a rat model. Level of evidence Basic Science Study, Animal Model. PMID:26387915
Lehmann, Fritz-Olaf; Pick, Simon
2007-04-01
Flying insects may enhance their flight force production by contralateral wing interaction during dorsal stroke reversal ('clap-and-fling'). In this study, we explored the forces and moments due to clap-and-fling at various wing tip trajectories, employing a dynamically scaled electromechanical flapping device. The 17 tested bio-inspired kinematic patterns were identical in stroke amplitude, stroke frequency and angle of attack with respect to the horizontal stroke plane but varied in heaving motion. Clap-and-fling induced vertical force augmentation significantly decreased with increasing vertical force production averaged over the entire stroke cycle, whereas total force augmentation was independent from changes in force produced by a single wing. Vertical force augmentation was also largely independent of forces produced due to wing rotation at the stroke reversals, the sum of rotational circulation and wake capture force. We obtained maximum (17.4%) and minimum (1.4%) vertical force augmentation in two types of figure-eight stroke kinematics whereby rate and direction of heaving motion during fling may explain 58% of the variance in vertical force augmentation. This finding suggests that vertical wing motion distinctly alters the flow regime at the beginning of the downstroke. Using an analytical model, we determined pitching moments acting on an imaginary body of the flapping device from the measured time course of forces, the changes in length of the force vector's moment arm, the position of the centre of mass and body angle. The data show that pitching moments are largely independent from mean vertical force; however, clap-and-fling reinforces mean pitching moments by approximately 21%, compared to the moments produced by a single flapping wing. Pitching moments due to clap-and-fling significantly increase with increasing vertical force augmentation and produce nose-down moments in most of the tested patterns. The analytical model, however, shows that algebraic sign and magnitude of these moments may vary distinctly depending on both body angle and the distance between the wing hinge and the animal's centre of mass. Altogether, the data suggest that the benefit of clap-and-fling wing beat for vertical force enhancement and pitch balance may change with changing heaving motion and thus wing tip trajectory during manoeuvring flight. We hypothesize that these dependencies may have shaped the evolution of wing kinematics in insects that are limited by aerodynamic lift rather than by mechanical power of their flight musculature.
Does bone cement in percutaneous vertebroplasty act as a stress riser?
Aquarius, René; van der Zijden, Astrid Maria; Homminga, Jasper; Verdonschot, Nico; Tanck, Esther
2013-11-15
An in vitro cadaveric study. To determine whether percutaneous vertebroplasty (PVP) with a clinically relevant amount of bone cement is capable of causing stress peaks in adjacent-level vertebrae. It is often suggested that PVP of a primary spinal fracture causes stress peaks in adjacent vertebrae, thereby leading to additional fractures. The in vitro studies that demonstrated this relationship, however, use bigger volumes of bone cement used clinically. Ten fresh-frozen vertebrae were loaded until failure, while registering force and displacement as well as the pressure under the lower endplate. After failure, the vertebrae were augmented with clinically relevant amounts of bone cement and then again loaded until failure. The force, displacement, and pressure under the lower endplate were again registered. Stress peaks were not related to the location of the injected bone cement. Both failure load and stiffness were significantly lower after augmentation. On the basis of our findings, we conclude that vertebral augmentation with clinically relevant amounts of bone cement does not lead to stress peaks under the endplate. It is therefore unlikely that PVP, in itself, causes detrimental stresses in the adjacent vertebrae, leading to new vertebral fractures. N/A.
Basafa, Ehsan; Murphy, Ryan J; Kutzer, Michael D; Otake, Yoshito; Armand, Mehran
2013-01-01
Femoroplasty is a potential preventive treatment for osteoporotic hip fractures. It involves augmenting mechanical properties of the femur by injecting Polymethylmethacrylate (PMMA) bone cement. To reduce the risks involved and maximize the outcome, however, the procedure needs to be carefully planned and executed. An important part of the planning system is predicting infiltration of cement into the porous medium of cancellous bone. We used the method of Smoothed Particle Hydrodynamics (SPH) to model the flow of PMMA inside porous media. We modified the standard formulation of SPH to incorporate the extreme viscosities associated with bone cement. Darcy creeping flow of fluids through isotropic porous media was simulated and the results were compared with those reported in the literature. Further validation involved injecting PMMA cement inside porous foam blocks - osteoporotic cancellous bone surrogates - and simulating the injections using our proposed SPH model. Millimeter accuracy was obtained in comparing the simulated and actual cement shapes. Also, strong correlations were found between the simulated and the experimental data of spreading distance (R(2) = 0.86) and normalized pressure (R(2) = 0.90). Results suggest that the proposed model is suitable for use in an osteoporotic femoral augmentation planning framework.
Long-term outcomes of bone augmentation on soft and hard-tissue stability: a systematic review.
Lutz, Rainer; Neukam, Friedrich W; Simion, Massimo; Schmitt, Christian M
2015-09-01
Peri-implant hard-tissue augmentation is a widely used clinical procedure. The present review aimed to analyse the current literature regarding medium- and long-term data concerning the stability of peri-implant tissues after hard-tissue augmentation prior or immediately with implant placement. An electronic literature search was performed using Medline (PubMed) databases detecting clinical studies focusing on hard- and soft-tissue stability around dental implants placed either in augmented alveolar ridges or simultaneously with peri-implant bone grafting. The search was limited to articles published between 1995 and December 2014, focusing on clinical studies with a prospective study design assessing peri-implant bone and soft tissue stability over time with a minimum follow-up of 12 months. Recent publications were also searched manually to find any relevant studies that might have been missed using the search criteria noted above. Thirty-seven articles met the inclusion criteria and were included in this systematic review. Since the outcome measures and methods, as well as types of grafts and implants used were so heterogeneous, the performance of meta-analysis was impossible. The highest level of evidence was achieved by randomized clinical trials. Different hard-tissue augmentation procedures seem to show stable peri-implant tissues, although, up to now, long-term stability of the augmented buccal bone is assessed by only few studies. Further research should concentrate on combining three-dimensional radiographic data with non-invasive methods as digital surface measuring techniques or ultrasound evaluation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mangano, Carlo; Sinjari, Bruna; Shibli, Jamil A; Mangano, Francesco; Hamisch, Sabine; Piattelli, Adriano; Perrotti, Vittoria; Iezzi, Giovanna
2015-06-01
By mixing hydroxyapatite (HA) and tricalcium phosphate (TCP), biphasic calcium phosphate ceramics can be obtained, and by varying their ratio it is possible to tailor the characteristics of the biomaterial. The aim of the present human study was to evaluate the histological and radiographical aspects of bone formation in maxillary sinus augmentation using a 30/70 HA-beta-TCP with a reticular structure. A total of 12 patients, undergoing two-stage sinus augmentation procedure using HA-beta-TCP at a ratio of 30/70, were included in the present study. After a 6-month healing period, during implant insertion, radiographical analysis was performed, and then the bone core biopsies were harvested and processed for histology. At radiographic evaluation, the bone gain was on average 6.85 ± 0.60 mm. HA-beta-TCP 30/70 appeared to be lined by newly formed bone, with no gaps at the interface. The histomorphometric analysis revealed 26 ± 2% of residual grafted biomaterial, 29 ± 3% of newly formed bone, and 45 ± 2% of marrow spaces. The present results indicate histologically the high biocompatibility and osteoconductivity of HA-beta-TCP 30/70, and clinically its successful use for sinus augmentation procedures. © 2013 Wiley Periodicals, Inc.
Quantitation of mandibular symphysis volume as a source of bone grafting.
Verdugo, Fernando; Simonian, Krikor; Smith McDonald, Roberto; Nowzari, Hessam
2010-06-01
Autogenous intramembranous bone graft present several advantages such as minimal resorption and high concentration of bone morphogenetic proteins. A method for measuring the amount of bone that can be harvested from the symphysis area has not been reported in real patients. The aim of the present study was to intrasurgically quantitate the volume of the symphysis bone graft that can be safely harvested in live patients and compare it with AutoCAD (version 16.0, Autodesk, Inc., San Rafael, CA, USA) tomographic calculations. AutoCAD software program quantitated symphysis bone graft in 40 patients using computerized tomographies. Direct intrasurgical measurements were recorded thereafter and compared with AutoCAD data. The bone volume was measured at the recipient sites of a subgroup of 10 patients, 6 months post sinus augmentation. The volume of bone graft measured by AutoCAD averaged 1.4 mL (SD 0.6 mL, range: 0.5-2.7 mL). The volume of bone graft measured intrasurgically averaged 2.3 mL (SD 0.4 mL, range 1.7-2.8 mL). The statistical difference between the two measurement methods was significant. The bone volume measured at the recipient sites 6 months post sinus augmentation averaged 1.9 mL (SD 0.3 mL, range 1.3-2.6 mL) with a mean loss of 0.4 mL. AutoCAD did not overestimate the volume of bone that can be safely harvested from the mandibular symphysis. The use of the design software program may improve surgical treatment planning prior to sinus augmentation.
2017-01-01
Purpose To retrospectively evaluate the relationship between the vertical position of the implant-abutment interface and marginal bone loss over 3 years using radiological analysis. Methods In total, 286 implant surfaces of 143 implants from 61 patients were analyzed. Panoramic radiographic images were taken immediately after implant installation and at 6, 12, and 36 months after loading. The implants were classified into 3 groups based on the vertical position of the implant-abutment interface: group A (above bone level), group B (at bone level), and group C (below bone level). The radiographs were analyzed by a single examiner. Results Changes in marginal bone levels of 0.99±1.45, 1.13±0.91, and 1.76±0.78 mm were observed at 36 months after loading in groups A, B, and C, respectively, and bone loss was significantly greater in group C than in groups A and B. Conclusions The vertical position of the implant-abutment interface may affect marginal bone level change. Marginal bone loss was significantly greater in cases where the implant-abutment interface was positioned below the marginal bone. Further long-term study is required to validate our results. PMID:28861287
Thoma, Daniel S.
2017-01-01
The aim of this study was to determine whether N-methyl-2-pyrrolidone (NMP) can decrease the dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) in sinus augmentation of rabbits. In each of 15 rabbits, 2 sinuses were randomly grafted using 1 of 3 treatment modalities: (i) biphasic calcium phosphate (BCP; control), (ii) rhBMP-2-coated BCP (BMP), or (iii) rhBMP-2-coated BCP soaked in NMP solution (BMP/NMP). The rabbits were sacrificed 2 weeks postoperatively. Histologic and histomorphometric analyses were performed. Bone formation in all groups was predominantly located close to the access window and the lateral walls. Newly formed bone within the total augmented area (NBTA) was greatest in BMP/NMP (1.94 ± 0.69 mm2), followed by BMP (1.50 ± 0.72 mm2) and BCP (1.28 ± 0.52 mm2) (P > 0.05). In the center of the augmentation (NBROI_C) and the area close to the sinus membrane (NBROI_M), BMP/NMP produced the largest area of NB (NBROI_C: 0.10 ± 0.11 mm2; NBROI_M: 0.17 ± 0.08 mm2); the corresponding NB values for BCP were 0.05 ± 0.05 mm2 and 0.08 ± 0.09 mm2, respectively (P > 0.05 for all comparisons). The effect of NMP on bone regeneration was inconsistent between the specimens. Adding NMP as an adjunct to rhBMP-2-coated BCP produced inconsistent effects on bone regeneration, resulting in no significant benefit compared to controls. PMID:28680881
Lim, Hyun-Chang; Thoma, Daniel S; Yoon, So-Ra; Cha, Jae-Kook; Lee, Jung-Seok; Jung, Ui-Won
2017-01-01
The aim of this study was to determine whether N-methyl-2-pyrrolidone (NMP) can decrease the dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) in sinus augmentation of rabbits. In each of 15 rabbits, 2 sinuses were randomly grafted using 1 of 3 treatment modalities: (i) biphasic calcium phosphate (BCP; control), (ii) rhBMP-2-coated BCP (BMP), or (iii) rhBMP-2-coated BCP soaked in NMP solution (BMP/NMP). The rabbits were sacrificed 2 weeks postoperatively. Histologic and histomorphometric analyses were performed. Bone formation in all groups was predominantly located close to the access window and the lateral walls. Newly formed bone within the total augmented area (NB TA ) was greatest in BMP/NMP (1.94 ± 0.69 mm 2 ), followed by BMP (1.50 ± 0.72 mm 2 ) and BCP (1.28 ± 0.52 mm 2 ) ( P > 0.05). In the center of the augmentation (NB ROI_C ) and the area close to the sinus membrane (NB ROI_M ), BMP/NMP produced the largest area of NB (NB ROI_C : 0.10 ± 0.11 mm 2 ; NB ROI_M : 0.17 ± 0.08 mm 2 ); the corresponding NB values for BCP were 0.05 ± 0.05 mm 2 and 0.08 ± 0.09 mm 2 , respectively ( P > 0.05 for all comparisons). The effect of NMP on bone regeneration was inconsistent between the specimens. Adding NMP as an adjunct to rhBMP-2-coated BCP produced inconsistent effects on bone regeneration, resulting in no significant benefit compared to controls.
The Use of Structural Allograft in Primary and Revision Knee Arthroplasty with Bone Loss
Kuchinad, Raul A.; Garbedian, Shawn; Rogers, Benedict A.; Backstein, David; Safir, Oleg; Gross, Allan E.
2011-01-01
Bone loss around the knee in the setting of total knee arthroplasty remains a difficult and challenging problem for orthopaedic surgeons. There are a number of options for dealing with smaller and contained bone loss; however, massive segmental bone loss has fewer options. Small, contained defects can be treated with cement, morselized autograft/allograft or metal augments. Segmental bone loss cannot be dealt with through simple addition of cement, morselized autograft/allograft, or metal augments. For younger or higher demand patients, the use of allograft is a good option as it provides a durable construct with high rates of union while restoring bone stock for future revisions. Older patients, or those who are low demand, may be better candidates for a tumour prosthesis, which provides immediate ability to weight bear and mobilize. PMID:21991418
Bone Graft Substitute Provides Metaphyseal Fixation for a Stemless Humeral Implant.
Kim, Myung-Sun; Kovacevic, David; Milks, Ryan A; Jun, Bong-Jae; Rodriguez, Eric; DeLozier, Katherine R; Derwin, Kathleen A; Iannotti, Joseph P
2015-07-01
Stemless humeral fixation has become an alternative to traditional total shoulder arthroplasty, but metaphyseal fixation may be compromised by the quality of the trabecular bone that diminishes with age and disease, and augmentation of the fixation may be desirable. The authors hypothesized that a bone graft substitute (BGS) could achieve initial fixation comparable to polymethylmethacrylate (PMMA) bone cement. Fifteen fresh-frozen human male humerii were randomly implanted using a stemless humeral prosthesis, and metaphyseal fixation was augmented with either high-viscosity PMMA bone cement (PMMA group) or a magnesium-based injectable BGS (OsteoCrete; Bone Solutions Inc, Dallas, Texas) (OC group). Both groups were compared with a control group with no augmentation. Initial stiffness, failure load, failure displacement, failure cycle, and total work were compared among groups. The PMMA and OC groups showed markedly higher failure loads, failure displacements, and failure cycles than the control group (P<.01). There were no statistically significant differences in initial stiffness, failure load, failure displacement, failure cycle, or total work between the PMMA and OC groups. The biomechanical properties of magnesium-based BGS fixation compared favorably with PMMA bone cement in the fixation of stemless humeral prostheses and may provide sufficient initial fixation for this clinical application. Future work will investigate the long-term remodeling characteristics and bone quality at the prosthetic-bone interface in an in vivo model to evaluate the clinical efficacy of this approach. Copyright 2015, SLACK Incorporated.
Augmentation of the posterior maxilla: a proposed hierarchy of treatment selection.
Fugazzotto, Paul A
2003-11-01
Literature is reviewed that discusses treatment results following Cauldwel Luc approach sinus augmentation therapy or osteotome sinus augmentation therapy, with and without simultaneous implant placement. A hierarchy of treatment selection for the augmentation of the posterior maxilla, based upon quantity and position of residual alveolar bone crestal to the floor of the sinus, is proposed.
Analysis of complications following augmentation with cancellous block allografts.
Chaushu, Gavriel; Mardinger, Ofer; Peleg, Michael; Ghelfan, Oded; Nissan, Joseph
2010-12-01
Bone grafting may be associated with soft and hard tissue complications. Recipient site complications encountered using cancellous block allografts for ridge augmentation are analyzed. A total of 101 consecutive patients (62 females and 39 males; mean age 44 ± 17 years) were treated with implant-supported restoration of 137 severe atrophic alveolar ridges augmented with cancellous bone-block allografts. Alveolar ridge deficiency locations were classified as anterior maxilla (n = 58); posterior maxilla (n = 32 sinuses); posterior mandible (n = 32); and anterior mandible (n = 15). A total of 271 rough-surface implants were placed. Recipient site complications associated with block grafting (infection, membrane exposure, incision line opening, perforation of mucosa over the grafted bone, partial graft failure, total graft failure, and implant failure) were recorded. Partial and total bone-block graft failure occurred in 10 (7%) and 11 (8%) of 137 augmented sites, respectively. Implant failure rate was 12 (4.4%) of 271. Soft tissue complications included membrane exposure (42 [30.7%] of 137); incision line opening (41 [30%] of 137); and perforation of the mucosa over the grafted bone (19 [14%] of 137). Infection of the grafted site occurred in 18 (13%) of 137 bone blocks. Alveolar ridge deficiency location had a statistically significant effect on the outcome of recipient site complications. More complications were noted in the mandible compared to the maxilla. Age and gender had no statistically significant effect. Failures caused by complications were rarely noted in association with cancellous block grafting. The incidence of complications in the mandible was significantly higher. Soft tissue complications do not necessarily result in total loss of cancellous block allograft.
Hong, Ji-Youn; Kim, Min-Soo; Lim, Hyun-Chang; Lee, Jung-Seok; Choi, Seong-Ho; Jung, Ui-Won
2016-12-01
The aim of the study was to elucidate the efficacy of bone regeneration at the early stage of healing in rabbit sinuses grafted with a biphasic calcium phosphate (BCP) carrier soaked in a high concentration of recombinant human bone morphogenetic protein-2 (rhBMP-2). Both maxillary sinuses of eight male rabbits were used. The sinus on one side (assigned randomly) was grafted with BCP loaded with rhBMP-2 (1.5 mg/ml; test group) using a soaking method, while the other was grafted with saline-soaked BCP (control group). After a 2-week healing period, the sinuses were analyzed by micro-computed tomography and histomorphometry. The total augmented area and soft tissue space were significantly larger in the test group than in the control group, whereas the opposite was true for the area of residual material and newly formed bone. Most of the new bone in the test group was localized to the Schneiderian membrane (SM), while very little bone formation was observed in the window and center regions of the sinus. New bone was distributed evenly in the control group sinuses. Within the limitations of this study, it appeared that application of a high concentration of rhBMP-2 soaked onto a BCP carrier inhibited bone regeneration from the pristine bone and increased soft tissue swelling and inflammatory response at the early healing stage of sinus augmentation, although osteoinductive potential was found along the SM. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cho, Jae-Woo; Kim, Jinil; Cho, Won-Tae; Gujjar, Pranay H; Oh, Chang-Wug; Oh, Jong-Keon
2018-02-01
We present the surgical technique of rim-plate-augmented separate vertical wiring for comminuted inferior pole fracture of the patella and report the clinical outcomes. Between July 2013 and January 2016, 13 patients (7 male and 6 female) who were diagnosed with comminuted inferior pole fracture of the patella in preoperative computed tomography and underwent a minimum of 1 year of follow-up were enrolled in this study. Mean patient age was 57.7 years (range 28-72 years). All patients underwent open reduction and internal fixation by rim-plate-augmented separate vertical wiring. Bony union, complications, range of motion and Bostman score were the clinical outcomes. Bony union was achieved in all cases at an average of 10 weeks after surgery (range 8-12). There was no loss of reduction and fixative failure during follow-up. The average range of motion was 127° (range 120°-130°). The mean Bostman score at last follow-up was 29.6 points (range 27-30) and graded excellent in 12 patients. Rim-plate-augmented separate vertical wiring demonstrated secure fixation and favorable clinical outcomes. This study provides evidence for its effectiveness as a fixation method for treating displaced, comminuted inferior pole fracture of the patella.
Chaudhary, Milind Madhav
2017-01-01
Infected nonunions of tibia pose many challenges to the treating surgeon and the patient. Challenges include recalcitrant infection, complex deformities, sclerotic bone ends, large bone gaps, shortening, and joint stiffness. They are easy to diagnose and difficult to treat. The ASAMI classification helps decide treatment. The nonunion severity score proposed by Calori measures many parameters to give a prognosis. The infection severity score uses simple clinical signs to grade severity of infection. This determines number of surgeries and allows choice of hardware, either external or internal for definitive treatment. Co-morbid factors such as smoking, diabetes, nonsteroidal anti-inflammatory drug use, and hypovitaminosis D influence the choice and duration of treatment. Thorough debridement is the mainstay of treatment. Removal of all necrotic bone and soft tissue is needed. Care is exercised in shaping bone ends. Internal fixation can help achieve union if infection was mild. Severe infections need external fixation use in a second stage. Compression at nonunion site achieves union. It can be combined with a corticotomy lengthening at a distant site for equalization. Soft tissue deficit has to be covered by flaps, either local or microvascular. Bone gaps are best filled with the reliable technique of bone transport. Regenerate bone may be formed proximally, distally, or at both sites. Acute compression can fill bone gaps and may need a fibular resection. Gradual reduction of bone gap happens with bone transport, without need for fibulectomy. When bone ends dock, union may be achieved by vertical or horizontal compression. Biological stimulus from iliac crest bone grafts, bone marrow aspirate injections, and platelet concentrates hasten union. Bone graft substitutes add volume to graft and help fill defects. Addition of rh-BMP-7 may help in healing albeit at a much higher cost. Regeneration may need stimulation and augmentation. Induced membrane technique is an alternative to bone transport to fill gaps. It needs large amounts of bone graft from iliac crest or femoral canal. This is an expensive method physiologically and economically. Infection can resorb the graft and cause failure of treatment. It can be done in select cases after thorough eradication of infection. Patience and perseverance are needed for successful resolution of infection and achieving union. PMID:28566776
Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones.
Pieske, Oliver; Wittmann, Alexandra; Zaspel, Johannes; Löffler, Thomas; Rubenbauer, Bianka; Trentzsch, Heiko; Piltz, Stefan
2009-12-15
Non-unions are severe complications in orthopaedic trauma care and occur in 10% of all fractures. The golden standard for the treatment of ununited fractures includes open reduction and internal fixation (ORIF) as well as augmentation with autologous-bone-grafting. However, there is morbidity associated with the bone-graft donor site and some patients offer limited quantity or quality of autologous-bone graft material. Since allogene bone-grafts are introduced on the market, this comparative study aims to evaluate healing characteristics of ununited bones treated with ORIF combined with either iliac-crest-autologous-bone-grafting (ICABG) or demineralized-bone-matrix (DBM). From 2000 to 2006 out of sixty-two consecutive patients with non-unions presenting at our Level I Trauma Center, twenty patients had ununited diaphyseal fractures of long bones and were treated by ORIF combined either by ICABG- (n = 10) or DBM-augmentation (n = 10). At the time of index-operation, patients of the DBM-group had a higher level of comorbidity (ASA-value: p = 0.014). Mean duration of follow-up was 56.6 months (ICABG-group) and 41.2 months (DBM-group). All patients were clinically and radiographically assessed and adverse effects related to bone grafting were documented. The results showed that two non-unions augmented with ICABG failed osseous healing (20%) whereas all non-unions grafted by DBM showed successful consolidation during the first year after the index operation (p = 0.146). No early complications were documented in both groups but two patients of the ICABG-group suffered long-term problems at the donor site (20%) (p = 0.146). Pain intensity were comparable in both groups (p = 0.326). However, patients treated with DBM were more satisfied with the surgical procedure (p = 0.031). With the use of DBM, the costs for augmentation of the non-union-site are more expensive compared to ICABG (calculated difference: 160 euro/case). Nevertheless, this study demonstrated that the application of DBM compared to ICABG led to an advanced outcome in the treatment of non-unions and simultaneously to a decreased quantity of adverse effects. Therefore we conclude that DBM should be offered as an alternative to ICABG, in particular to patients with elevated comorbidity and those with limited availability or reduced quality of autologous-bone graft material.
Platelet-Rich Fibrin Promotes Periodontal Regeneration and Enhances Alveolar Bone Augmentation
Li, Qi; Pan, Shuang; Dangaria, Smit J.; Gopinathan, Gokul; Kolokythas, Antonia; Chu, Shunli; Geng, Yajun; Zhou, Yanmin; Luan, Xianghong
2013-01-01
In the present study we have determined the suitability of platelet-rich fibrin (PRF) as a complex scaffold for periodontal tissue regeneration. Replacing PRF with its major component fibrin increased mineralization in alveolar bone progenitors when compared to periodontal progenitors, suggesting that fibrin played a substantial role in PRF-induced osteogenic lineage differentiation. Moreover, there was a 3.6-fold increase in the early osteoblast transcription factor RUNX2 and a 3.1-fold reduction of the mineralization inhibitor MGP as a result of PRF application in alveolar bone progenitors, a trend not observed in periodontal progenitors. Subcutaneous implantation studies revealed that PRF readily integrated with surrounding tissues and was partially replaced with collagen fibers 2 weeks after implantation. Finally, clinical pilot studies in human patients documented an approximately 5 mm elevation of alveolar bone height in tandem with oral mucosal wound healing. Together, these studies suggest that PRF enhances osteogenic lineage differentiation of alveolar bone progenitors more than of periodontal progenitors by augmenting osteoblast differentiation, RUNX2 expression, and mineralized nodule formation via its principal component fibrin. They also document that PRF functions as a complex regenerative scaffold promoting both tissue-specific alveolar bone augmentation and surrounding periodontal soft tissue regeneration via progenitor-specific mechanisms. PMID:23586051
Herr, Yeek; Kwon, Young-Hyuk; Kim, Seong-Hun; Kim, Eun-Cheol
2014-01-01
This prospective randomized split-mouth study was performed to examine the effects of absorbable collagen membrane (ACM) application in augmented corticotomy using deproteinized bovine bone mineral (DBBM), during orthodontic buccal tipping movement in the dog. After buccal circumscribing corticotomy and DBBM grafting into the decorticated area, flaps were repositioned and sutured on control sides. ACM was overlaid and secured with membrane tacks, on test sides only, and the flaps were repositioned and sutured. Closed coil springs were used to apply 200 g orthodontic force in the buccolingual direction on the second and third premolars, immediately after primary flap closure. The buccal tipping angles were 31.19 ± 14.60° and 28.12 ± 11.48° on the control and test sides, respectively. A mean of 79.5 ± 16.0% of the buccal bone wall was replaced by new bone on the control side, and on the test side 78.9 ± 19.5% was replaced. ACM application promoted an even bone surface. In conclusion, ACM application in augmented corticotomy using DBBM might stimulate periodontal tissue reestablishment, which is useful for rapid orthodontic treatment or guided bone regeneration. In particular, ACM could control the formation of mesenchymal matrix, facilitating an even bone surface. PMID:25276824
Platelet-rich fibrin promotes periodontal regeneration and enhances alveolar bone augmentation.
Li, Qi; Pan, Shuang; Dangaria, Smit J; Gopinathan, Gokul; Kolokythas, Antonia; Chu, Shunli; Geng, Yajun; Zhou, Yanmin; Luan, Xianghong
2013-01-01
In the present study we have determined the suitability of platelet-rich fibrin (PRF) as a complex scaffold for periodontal tissue regeneration. Replacing PRF with its major component fibrin increased mineralization in alveolar bone progenitors when compared to periodontal progenitors, suggesting that fibrin played a substantial role in PRF-induced osteogenic lineage differentiation. Moreover, there was a 3.6-fold increase in the early osteoblast transcription factor RUNX2 and a 3.1-fold reduction of the mineralization inhibitor MGP as a result of PRF application in alveolar bone progenitors, a trend not observed in periodontal progenitors. Subcutaneous implantation studies revealed that PRF readily integrated with surrounding tissues and was partially replaced with collagen fibers 2 weeks after implantation. Finally, clinical pilot studies in human patients documented an approximately 5 mm elevation of alveolar bone height in tandem with oral mucosal wound healing. Together, these studies suggest that PRF enhances osteogenic lineage differentiation of alveolar bone progenitors more than of periodontal progenitors by augmenting osteoblast differentiation, RUNX2 expression, and mineralized nodule formation via its principal component fibrin. They also document that PRF functions as a complex regenerative scaffold promoting both tissue-specific alveolar bone augmentation and surrounding periodontal soft tissue regeneration via progenitor-specific mechanisms.
NASA Astrophysics Data System (ADS)
Durazo, Juan A.; Kostelich, Eric J.; Mahalov, Alex
2017-09-01
We propose a targeted observation strategy, based on the influence matrix diagnostic, that optimally selects where additional observations may be placed to improve ionospheric forecasts. This strategy is applied in data assimilation observing system experiments, where synthetic electron density vertical profiles, which represent those of Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa satellite 3, are assimilated into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model using the local ensemble transform Kalman filter during the 26 September 2011 geomagnetic storm. During each analysis step, the observation vector is augmented with five synthetic vertical profiles optimally placed to target electron density errors, using our targeted observation strategy. Forecast improvement due to assimilation of augmented vertical profiles is measured with the root-mean-square error (RMSE) of analyzed electron density, averaged over 600 km regions centered around the augmented vertical profile locations. Assimilating vertical profiles with targeted locations yields about 60%-80% reduction in electron density RMSE, compared to a 15% average reduction when assimilating randomly placed vertical profiles. Assimilating vertical profiles whose locations target the zonal component of neutral winds (Un) yields on average a 25% RMSE reduction in Un estimates, compared to a 2% average improvement obtained with randomly placed vertical profiles. These results demonstrate that our targeted strategy can improve data assimilation efforts during extreme events by detecting regions where additional observations would provide the largest benefit to the forecast.
Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H
2016-05-01
Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fiorellini, Joseph P; Norton, Michael R; Luan, Kevin WanXin; Kim, David Minjoon; Wada, Kei; Sarmiento, Hector L
2018-02-14
The objective of this study was to evaluate the effectiveness of precise three-dimensional hydroxyapatite printed micro- and macrochannel devices for alveolar ridge augmentation in a canine model. All grafts induced minimal inflammatory and fibrotic reactions. Examination of undecalcified sections revealed that both types of grafts demonstrated bone ingrowth. The majority of the bone growth into the block graft was into the channels, though a portion grew directly into the construct in the form of small bony spicules. In conclusion, bone ingrowth was readily demonstrated in the middle of the implanted printed devices.
Sumanont, Sermsak; Nopamassiri, Supachoke; Boonrod, Artit; Apiwatanakul, Punyawat; Boonrod, Arunnit; Phornphutkul, Chanakarn
2018-03-20
Suspension suture button fixation was frequently used to treat acromioclavicular joint (ACJ) dislocation. However, there were many studies reporting about complications and residual horizontal instability after fixation. Our study compared the stability of ACJ after fixation between coracoclavicular (CC) fixation alone and CC fixation combined with ACJ repair by using finite element analysis (FEA). A finite element model was created by using CT images from the normal shoulder. The model 1 was CC fixation with suture button alone, and the model 2 was CC fixation with suture button combined with ACJ repair. Three different forces (50, 100, 200 N) applied to the model in three planes; inferior, anterior and posterior direction load to the acromion. The von Mises stress of the implants and deformation at ACJs was recorded. The ACJ repair in the model 2 could reduce the peak stress on the implant after applying the loading forces to the acromion which the ACJ repair could reduce the peak stress of the FiberWire at suture button about 90% when compared to model 1. And, the ACJ repair could reduce the deformation of the ACJ after applying the loading forces to the acromion in both vertical and horizontal planes. This FEA supports that the high-grade injuries of the ACJ should be treated with CC fixation combined with ACJ repair because this technique provides excellent stability in both vertical and horizontal planes and reduces stress to the suture button.
Custom Titanium Ridge Augmentation Matrix (CTRAM): A Case Report.
Connors, Christopher A; Liacouras, Peter C; Grant, Gerald T
2016-01-01
This is a case report of a custom titanium ridge augmentation matrix (CTRAM). Using cone beam computed tomography (CBCT), a custom titanium space-maintaining device was developed. Alveolar ridges were virtually augmented, a matrix was virtually designed, and the CTRAM was additively manufactured with titanium (Ti6Al4V). Two cases are presented that resulted in sufficient increased horizontal bone volume with successful dental implant placement. The CTRAM design allows for preoperative planning for increasing alveolar ridge dimensions to support dental implants, reduces surgical time, and prevents the need for a second surgical site to gain sufficient alveolar ridge bone volume for dental implant therapy.
Kuroshima, Shinichiro; Al-Salihi, Zeina; Yamashita, Junro
2013-02-01
The quality and quantity of bone formed in tooth extraction sockets impact implant therapy. Therefore, the establishment of a new approach to enhance bone formation and to minimize bone resorption is important for the success of implant therapy. In this study, we investigated whether intermittent parathyroid hormone (PTH) therapy enhanced bone formation in grafted sockets. Tooth extractions of the maxillary first molars were performed in rats, and the sockets were grafted with xenograft. Intermittent PTH was administered either for 7 days before extractions, for 14 days after extractions, or both. The effect of PTH therapy on bone formation in the grafted sockets was assessed using microcomputed tomography at 14 days after extractions. PTH therapy for 7 days before extractions was not effective to augment bone fill, whereas PTH therapy for 14 days after operation significantly augmented bone formation in the grafted sockets. Intermittent PTH therapy starting right after tooth extractions significantly enhanced bone fill in the grafted sockets, suggesting that PTH therapy can be a strong asset for the success of the ridge preservation procedure.
Hendler, Karen; Pineles, Stacy L.; Demer, Joseph L.; Yang, Dawn; Velez, Federico G.
2014-01-01
Background Vertical rectus transposition (VRT) is useful in abduction deficiencies. Posterior fixation sutures enhance the effect of VRT, but usually preclude the use of adjustable sutures. Augmentation of VRT by resection of the transposed muscles allows for an adjustable technique that can reduce induced vertical deviations and overcorrections. Methods We retrospectively reviewed the records of all patients undergoing adjustable partial or full tendon VRT augmented by resection of the transposed muscles. Ciliary vessels were preserved in most of the patients by either splitting the transposed muscle or by dragging the transposed muscle without disrupting the muscle insertion. Results Seven patients with abducens palsy and one with esotropic Duane syndrome were included. Both vertical rectus muscles were symmetrically resected by 3–5 mm. Preoperative central gaze esotropia of 30.6 ± 12.9Δ (range, 17–50Δ) decreased to 10.6 ± 8.8Δ (range, 0–25Δ) at the final visit (p = 0.003). Three patients required postoperative adjustment by recession of one of the transposed muscles due to an induced vertical deviation (mean 9.3Δ reduced to 0Δ), coupled with overcorrection (mean exotropia 11.3Δ reduced to 0 in two patients and exophoria 2Δ in one patient). At the final follow-up visit 3.8 ± 2.6 months postoperatively, one patient had a vertical deviation <4Δ, and none had overcorrection or anterior segment ischemia. Three patients required further surgery for recurrent esotropia. Conclusions Augmentation of VRT by resection of the transposed muscles can be performed with adjustable sutures and vessel-sparing technique. This allows for postoperative control of overcorrections and induced vertical deviations as well as less risk of anterior segment ischemia. PMID:24738948
Hendler, Karen; Pineles, Stacy L; Demer, Joseph L; Yang, Dawn; Velez, Federico G
2014-06-01
Vertical rectus transposition (VRT) is useful in abduction deficiencies. Posterior fixation sutures enhance the effect of VRT, but usually preclude the use of adjustable sutures. Augmentation of VRT by resection of the transposed muscles allows for an adjustable technique that can reduce induced vertical deviations and overcorrections. We retrospectively reviewed the records of all patients undergoing adjustable partial or full tendon VRT augmented by resection of the transposed muscles. Ciliary vessels were preserved in most of the patients by either splitting the transposed muscle or by dragging the transposed muscle without disrupting the muscle insertion. Seven patients with abducens palsy and one with esotropic Duane syndrome were included. Both vertical rectus muscles were symmetrically resected by 3-5 mm. Preoperative central gaze esotropia of 30.6 ± 12.9Δ (range, 17-50Δ) decreased to 10.6 ± 8.8Δ (range, 0-25Δ) at the final visit (p = 0.003). Three patients required postoperative adjustment by recession of one of the transposed muscles due to an induced vertical deviation (mean 9.3Δ reduced to 0Δ), coupled with overcorrection (mean exotropia 11.3Δ reduced to 0 in two patients and exophoria 2Δ in one patient). At the final follow-up visit 3.8 ± 2.6 months postoperatively, one patient had a vertical deviation <4Δ, and none had overcorrection or anterior segment ischemia. Three patients required further surgery for recurrent esotropia. Augmentation of VRT by resection of the transposed muscles can be performed with adjustable sutures and vessel-sparing technique. This allows for postoperative control of overcorrections and induced vertical deviations as well as less risk of anterior segment ischemia.
Dottore, Alexandre M; Kawakami, Paulo Y; Bechara, Karen; Rodrigues, Jose Augusto; Cassoni, Alessandra; Figueiredo, Luciene C; Piattelli, Adriano; Shibli, Jamil Awad
2014-06-01
This prospective, controlled split-mouth study evaluated the stability of dental implants placed in the augmented mandibular areas with alveolar segmental "sandwich" osteotomies using nonceramic hydroxyapatite (ncHA) or autogenous bone. This study included 11 bilaterally partially edentulous mandibular patients in a split-mouth design. Alveolar augmentation osteotomies were performed bilaterally with interpositional ncHA graft (test group) or interpositional intraoral autogenous bone graft (control group). After 6 months of healing, four implants (two implants in each side) were placed in each patient. Forty-four implants were inserted and loaded after 6-month healing period. At 1-year follow-up, radiographic, prosthetic, and resonance frequency analysis parameters were assessed. Success criteria included absence of pain, sensitivity, suppuration, and implant mobility; absence of continuous peri-implant radiolucency; and distance between the implant shoulder and the first visible bone contact (DIB) < 2 mm. After a 1-year loading period, the overall implant survival rate was 95.45%, with two implant losses (one of each group). Among the surviving implants (42 out of 44), two did not fulfill the success criteria; therefore, the implant success was 90.90%. DIB was 0.71 ± 0.70 and 0.84 ± 0.72 mm for ncHA and autogenous bone grafts, respectively (p > .05). Implant stability measurements were similar between the groups during the 12-month follow-up (p > .05). Within the limits of this study, the implants placed either in sites augmented with ncHA or autogenous bone seem to represent a safe and successful procedure, at least, after 12-month follow-up. © 2012 Wiley Periodicals, Inc.
Treatment of Unicameral Bone Cysts of the Calcaneus: A Systematic Review.
Levy, David M; Gross, Christopher E; Garras, David N
2015-01-01
The calcaneus is the most common tarsal affected by unicameral bone cysts (UBCs); however, the treatment of calcaneal UBCs remains controversial. The purpose of the present systematic review was to evaluate the treatment modalities for calcaneal UBCs. A systematic review was performed using clinical studies of calcaneal UBCs with a minimum of 1 year of follow-up and level I to IV evidence. Ten studies with 171 patients (181 cysts) were selected. Heel pain and radiographic cyst consolidation were the primary outcomes. A series of Z tests were used to compare the outcomes in the nonoperative and operative groups, cannulated screw and bone augmentation groups, and autografting and allografting groups. All patients treated with open curettage and bone augmentation had significant improvements in heel pain (p < .001). Only 1.1% ± 1.0% of the cysts treated conservatively had healed on radiographs compared with 93.0% ± 13.0% of the cysts after surgery (p < .001). A greater percentage of patients treated with bone augmentation had preoperative heel pain and resolution of that pain than did patients treated with cannulated screws (p < .001). Autografting had a significantly greater percentage of radiographic cyst consolidation than did allografting (97.4% ± 11.1% versus 85.1% ± 15.8%, p < .001, Z = 3.5). Objective outcomes data on calcaneal UBCs are relatively sparse. The results of the present review suggest that open curettage with autograft bone augmentation is the most effective procedure. We would encourage future comparative clinical studies to elucidate differences in UBC treatment modalities. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Sicilia, Alberto; Quirynen, Marc; Fontolliet, Alain; Francisco, Helena; Friedman, Anton; Linkevicius, Tomas; Lutz, Rainer; Meijer, Henny J; Rompen, Eric; Rotundo, Roberto; Schwarz, Frank; Simion, Massimo; Teughels, Wim; Wennerberg, Ann; Zuhr, Otto
2015-09-01
Several surgical techniques and prosthetic devices have been developed in the last decades, aiming to improve aesthetic, hygienic and functional outcomes that may affect the peri-implant tissues, such as procedures of bone and soft tissue augmentation and the use of custom-made abutments of titanium and zirconium. Three systematic reviews, based on randomized clinical trials and prospective studies covering the above reported topics were analysed, and the detected evidence was exposed to interactive experts' discussion during the group's and general assembly's meetings of the 4th EAO Consensus Conference. The results are reported using the following abbreviations: S-T: short-term evidence, M-T: medium-term evidence; L-T: long-term evidence; LE: limited evidence. Soft tissue augmentation procedures may be indicated for the increase of soft tissue thickness and keratinized tissue, the reduction of interproximal peri-implant bone loss, and the coverage of shallow peri-implant soft tissue recessions (S-T, LE), L-T is lacking. Guided bone regeneration approaches (GBR) showed efficacy when used for ridge reconstruction after the complete healing of the soft tissues (S-T & L-T), and the stability of the augmented bone may play a role in the maintenance of the soft tissue position and dimensions (LE). No significant differences were observed between titanium and zirconia abutments when evaluating probing pocket depth, bleeding on probing, marginal bone levels and mucosal recessions. Zirconia abutments were associated with more biological complications but demonstrated superiority in terms of achieving natural soft tissue colour (S-T). © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Filardo, Giuseppe; Tampieri, Anna; Cabezas-Rodríguez, Rafael; Di Martino, Alessandro; Fini, Milena; Giavaresi, Gianluca; Lelli, Marco; Martínez-Fernández, Julian; Martini, Lucia; Ramírez-Rico, Joaquin; Salamanna, Francesca; Sandri, Monica; Sprio, Simone; Marcacci, Maurilio
2014-01-01
Bone loss is still a major problem in orthopedics. The purpose of this experimental study is to evaluate the safety and regenerative potential of a new scaffold based on a bio-ceramization process for bone regeneration in long diaphyseal defects in a sheep model. The scaffold was obtained by transformation of wood pieces into porous biomorphic silicon carbide (BioSiC®). The process enabled the maintenance of the original wood microstructure, thus exhibiting hierarchically organized porosity and high mechanical strength. To improve cell adhesion and osseointegration, the external surface of the hollow cylinder was made more bioactive by electrodeposition of a uniform layer of collagen fibers that were mineralized with biomimetic hydroxyapatite, whereas the internal part was filled with a bio-hybrid HA/collagen composite. The final scaffold was then implanted in the metatarsus of 15 crossbred (Merinos-Sarda) adult sheep, divided into 3 groups: scaffold alone, scaffold with platelet-rich plasma (PRP) augmentation, and scaffold with bone marrow stromal cells (BMSCs) added during implantation. Radiological analysis was performed at 4, 8, 12 weeks, and 4 months, when animals were sacrificed for the final radiological, histological, and histomorphometric evaluation. In all tested treatments, these analyses highlighted the presence of newly formed bone at the bone scaffolds' interface. Although a lack of substantial effect of PRP was demonstrated, the scaffold+BMSC augmentation showed the highest value of bone-to-implant contact and new bone growth inside the scaffold. The findings of this study suggest the potential of bio-ceramization processes applied to vegetable hierarchical structures for the production of wood-derived bone scaffolds, and document a suitable augmentation procedure in enhancing bone regeneration, particularly when combined with BMSCs. PMID:24099033
Canullo, Luigi; Dellavia, Claudia; Heinemann, Friedhelm
2012-03-20
The aim of this case series is to histologically examine a new hydroxyapatite in sinus lift procedure after 3 months. Ten 2-stage sinus lifts were performed in 10 healthy patients having initial bone height of 1-2mm and bone width of 5mm, asking for a fixed implant-supported rehabilitation. After graft material augmentation, a rough-surfaced mini-implant was inserted to maintain stability of the sinus widow. A bioptical core containing a mini-implant was retrieved 3 months after maxillary sinus augmentation with NanoBone(®) and processed for undecalcified histology. From the histomorphometric analysis, NanoBone(®) residuals accounted for the 38.26% ± 8.07% of the bioptical volume, marrow spaces for the 29.23% ± 5.18% and bone for the 32.51% ± 4.96% (new bone: 20.64% ± 2.96%, native bone: 11.87% ± 3.27%). Well-mineralized regenerated bone with lamellar parallel-fibred structure and Haversian systems surrounded the residual NanoBone(®) particles. The measured bone-to-implant contact amounted to 26.02% ± 5.46%. No connective tissue was observed at the implant boundary surface. In conclusion, the tested material showed good histological outcomes also 3 months after surgery. In such critical conditions, the use of a rough-surfaced mini-implant showed BIC values supposed to be effective also in case of functional loading. Although longer follow-up and a wider patient size are needed, these preliminary results encourage further research on this biomaterial for implant load also under early stage and critical conditions. Copyright © 2011 Elsevier GmbH. All rights reserved.
Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo
2016-01-01
The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Control-Volume Analysis Of Thrust-Augmenting Ejectors
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1990-01-01
New method of analysis of transient flow in thrust-augmenting ejector based on control-volume formulation of governing equations. Considered as potential elements of propulsion subsystems of short-takeoff/vertical-landing airplanes.
Advances in biologic augmentation for rotator cuff repair
Patel, Sahishnu; Gualtieri, Anthony P.; Lu, Helen H.; Levine, William N.
2016-01-01
Rotator cuff tear is a very common shoulder injury that often necessitates surgical intervention for repair. Despite advances in surgical techniques for rotator cuff repair, there is a high incidence of failure after surgery because of poor healing capacity attributed to many factors. The complexity of tendon-to-bone integration inherently presents a challenge for repair because of a large biomechanical mismatch between the tendon and bone and insufficient regeneration of native tissue, leading to the formation of fibrovascular scar tissue. Therefore, various biological augmentation approaches have been investigated to improve rotator cuff repair healing. This review highlights recent advances in three fundamental approaches for biological augmentation for functional and integrative tendon–bone repair. First, the exploration, application, and delivery of growth factors to improve regeneration of native tissue is discussed. Second, applications of stem cell and other cell-based therapies to replenish damaged tissue for better healing is covered. Finally, this review will highlight the development and applications of compatible biomaterials to both better recapitulate the tendon–bone interface and improve delivery of biological factors for enhanced integrative repair. PMID:27750374
Maiorana, C; Speroni, S; Herford, A S; Cicciù, M
2012-01-01
Approaching bone defects of jaws treatments, hard and soft tissue augmentation could be considered as a goal for clinicians when performing dental implant placement. The increase in patients who want cosmetic treatment puts practitioners in an awkward position when choosing the best therapy to obtain the most desirable results. A private dentist referred a young patient to the Department of Implantology in Milan in order to place implants in the upper jaw. Radiographic evaluation of the two upper anterior incisors confirmed that the teeth had a poor prognosis The anterior ridge volume was clinically analyzed and several therapeutic choices were evaluated. Rapid extractions and immediate implant positioning were not considered due to the vertical and horizontal components of the bone defect. Therefore, the surgical team decided on increasing the bone volume by using slow orthodontic teeth extrusion technique. After 3 months of orthodontic treatment, the angular intra-bony defects of 1.1 tooth was completely healed. Implant guided positioning, associated with a small bone graft, showed optimal results at the time of healing screw placement. The soft tissue conditioning was obtained by a provisional acrylic crown. The final application of two integral ceramic crowns showed excellent aesthetic results. Radiographic investigation at a 24 month follow-up confirmed the integration of the dental implants and the recovery of the bone defects. Several safe surgical techniques are available today for reconstructing atrophic jaws. However, the same technique applied on the posterior area did not give the same predictable results as in the anterior areas of the jaw. PMID:23056158
β-Ecdysone Augments Peak Bone Mass in Mice of Both Sexes.
Dai, Weiwei; Zhang, HongLiang; Zhong, Zhendong A; Jiang, Li; Chen, Haiyan; Lay, Yu-An Evan; Kot, Alexander; Ritchie, Robert O; Lane, Nancy E; Yao, Wei
2015-08-01
One of the strongest predictors for osteoporosis is peak bone mass. Interventions to augment peak bone mass have yet to be developed. β-Ecdysone (βEcd), a natural steroid-like compound produced by arthropods to initiate metamorphosis, is believed to have androgenic effects and so may be used to augment bone mass. The purpose of this study was to use both male and female (1) gonadal-sufficient; and (2) -insufficient mice to investigate sex differences in terms of bone development and structure after βEcd administration. Two-month-old male and female Swiss-Webster mice were randomized to receive either vehicle or βEcd (0.5 mg/kg) for 3 weeks. In a separate experiment to evaluate the effects of βEcd on sex hormone-deficient mice, gonadectomy was performed in male (orchiectomy [ORX]) and female mice (ovariectomy [OVX]). Sham-operated and the ORX/OVX mice were then treated for 3 weeks with βEcd. Primary endpoints for the study were trabecular bone structure and bone strength. In male mice, the trabecular bone volume was 0.18±0.02 in the placebo-treated (PL) and 0.23±0.02 in the βEcd-treated group (p<0.05 versus PL); and 0.09±0.01 in the ORX group (p<0.05 versus PL) and 0.12±0.01 in the ORX+βEcd group. Vertebral bone strength (maximum load) was 43±2 in PL and 51±1 in the βEcd-treated group (p<0.05 versus PL); and 30±4 in the ORX group (p<0.05 versus PL) and 37±3 in the ORX+βEcd group. In female mice, trabecular bone volume was 0.23±0.02 in PL and 0.26±0.02 in the βEcd-treated group (p<0.05 versus PL); and 0.15±0.01 in the OVX group (p<0.05 versus PL) and 0.14±0.01 in the OVX+βEcd group. Maximum load of the vertebrae was 45±2 in PL and 48±4 in the βEcd-treated group; and 39±4 in the OVX group (p<0.05 versus PL) and 44±4 in the OVX+βEcd group. These findings suggest the potential use of βEcd in the augmentation of bone mass in growing male and female mice. It may also partially prevent the detrimental effects of gonadectomy on trabecular bone. Our results support the potential use of βEcd or nature products that are rich in βEcd to augment peak bone mass. βEcd may differ from the other anabolic hormone treatments that may have severe side effects such as serious cardiac complications. However, its effects on humans remain to be determined.
Production of New Trabecular Bone in Osteopenic Ovariectomized Rats by Prostaglandin E2
NASA Technical Reports Server (NTRS)
Mori, S.; Jee, W. S. S.; Li, X. J.
1992-01-01
Serum chemistry and bone morphometry of the proximal tibial metaphysis were performed in 3 month-old double fluorescent-labeled, female Sprague-Dawley rats subjected to bilateral ovariectomy or sham surgery for 4 months prior to treatment with 0, 0.3, 1,3, or 6 mg of prostaglandin E2 (PGE2)/kg/day subcutaneously for 30 days. The 4 month postovariectomized rats possessed an osteopenic proximal tibial metaphysis with 7% trabecular area compared with controls (19%). PGE2 treatment elevated osteocalcin levels and augmented proximal tibial metaphyseal bone area in ovariectomized and sham-operated rats. Osteopenic, ovariectomized rats treated with 6 mg (PGE2)/kg/day for 30 days restored bone area to levels of agematched sham-operated rats. Morphometric analyses showed increased woven and lamellar bone area, fluorescent-labeled perimeter (osteoblastic recruitment), mineral apposition rate (osteoblastic activity), bone formation rate (BFR/BV), and longitudinal bone growth. These dramatic bone changes were all significantly increased at the doseresponse manner. This study showed that in vivo PGE2 is a powerful activator of bone remodeling, it increases both bone resorption and bone formation, and produces an anabolic effect by shifting bone balance to the positive direction. Furthermore, PGE2-induced augmentation of metaphyseal bone area in ovariectomized rats was at least two times greater than in sham-operated rats.
Diaphyseal long bone nonunions - types, aetiology, economics, and treatment recommendations.
Rupp, Markus; Biehl, Christoph; Budak, Matthäus; Thormann, Ulrich; Heiss, Christian; Alt, Volker
2018-02-01
The intention of the current article is to review the epidemiology with related socioeconomic costs, pathophysiology, and treatment options for diaphyseal long bone delayed unions and nonunions. Diaphyseal nonunions in the tibia and in the femur are estimated to occur 4.6-8% after modern intramedullary nailing of closed fractures with an even much higher risk in open fractures. There is a high socioeconomic burden for long bone nonunions mainly driven by indirect costs, such as productivity losses due to long treatment duration. The classic classification of Weber and Cech of the 1970s is based on the underlying biological aspect of the nonunion differentiating between "vital" (hypertrophic) and "avital" (hypo-/atrophic) nonunions, and can still be considered to represent the basis for basic evaluation of nonunions. The "diamond concept" units biomechanical and biological aspects and provides the pre-requisites for successful bone healing in nonunions. For humeral diaphyseal shaft nonunions, excellent results for augmentation plating were reported. In atrophic humeral shaft nonunions, compression plating with stimulation of bone healing by bone grafting or BMPs seem to be the best option. For femoral and tibial diaphyseal shaft fractures, dynamization of the nail is an atraumatic, effective, and cheap surgical possibility to achieve bony consolidation, particularly in delayed nonunions before 24 weeks after initial surgery. In established hypertrophic nonunions in the tibia and femur, biomechanical stability should be addressed by augmentation plating or exchange nailing. Hypotrophic or atrophic nonunions require additional biological stimulation of bone healing for augmentation plating.
Aludden, H C; Mordenfeld, A; Hallman, M; Dahlin, C; Jensen, T
2017-08-01
The objective of this systematic review was to test the hypothesis of no difference in implant treatment outcomes when using Bio-Oss alone or Bio-Oss mixed with particulate autogenous bone grafts for lateral ridge augmentation. A search of the MEDLINE, Cochrane Library, and Embase databases in combination with a hand-search of relevant journals was conducted. Human studies published in English from 1 January 1990 to 1 May 2016 were included. The search provided 337 titles and six studies fulfilled the inclusion criteria. Considerable variation prevented a meta-analysis from being performed. The two treatment modalities have never been compared within the same study. Non-comparative studies demonstrated a 3-year implant survival of 96% with 50% Bio-Oss mixed with 50% autogenous bone graft. Moreover, Bio-Oss alone or Bio-Oss mixed with autogenous bone graft seems to increase the amount of newly formed bone as well as the width of the alveolar process. Within the limitations of this systematic review, lateral ridge augmentation with Bio-Oss alone or in combination with autogenous bone graft seems to induce newly formed bone and increase the width of the alveolar process, with high short-term implant survival. However, long-term studies comparing the two treatment modalities are needed before final conclusions can be drawn. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Minimally invasive plate augmentation in the treatment of long-bone non-unions.
Park, Ki-Chul; Oh, Chang-Wug; Kim, Joon-Woo; Park, Kyeong-Hyeon; Oh, Jong-Keon; Park, Il-Hyung; Kyung, Hee-Soo; Heo, Jeong
2017-11-01
Exchange nailing is most acceptable for treating hypertrophic non-union of the long bones, requiring the removal of previously fixed implant. However, its main effect of mechanical stabilization is controversial in non-isthmal area. We hypothesized that minimally invasive plate augmentation over the non-union site may have a better option, without the need of bone grafting or removing pre-existing implants. Seventeen patients with hypertrophic non-union of the long bones between 2010 and 2014 on radiography who previously underwent intramedullary (IM) nailing or plate osteosynthesis for long-bone fractures were included. A locking compression plate was inserted with at least three mono- or bicortical screws at each proximal and distal segment. Broken or loosened interlocking screws of IM nail were simultaneously re-fixed. Fracture site exposure, pre-fixed implant removal, and bone grafting were not performed. We investigated whether union occurred and analyzed functional outcomes and complications. Eleven femoral and six tibial non-unions were prospectively included. In the pre-existing implants, 13 nails and 4 plates were found. All cases achieved union at a mean 22.7 weeks. One case of superficial infection was managed with oral antibiotics. Deep infection or implant failure did not occur. Minimally invasive plate augmentation can achieve additional stability and promote healing of hypertrophic non-union of the long bones. When indicated, this technique is the least invasive alternative to exchange nailing and reduces surgical risks in the treatment of diaphyseal non-union.
Payer, Michael; Lohberger, Birgit; Strunk, Dirk; Reich, Karoline M; Acham, Stephan; Jakse, Norbert
2014-04-01
Aim of the pilot trial was to evaluate applicability and effects of directly autotransplanted tibial bone marrow (BM) aspirates on the incorporation of porous bovine bone mineral in a sinus lift model and on the osseointegration of dental implants. Six edentulous patients with bilaterally severely resorbed maxillae requiring sinus augmentation and implant treatment were included. During surgery, tibial BM was harvested and added to bone substitute material (Bio-Oss(®) ) at the randomly selected test site. At control sites, augmentation was performed with Bio-Oss(®) alone. The cellular content of each BM aspirate was checked for multipotency and surface antigen expression as quality control. Histomorphometric analysis of biopsies from the augmented sites after 3 and 6 months (during implantation) was used to evaluate effects on bone regeneration. Osseointegration of implants was evaluated with Periotest(®) and radiographic means. Multipotent cellular content in tibial BM aspirates was comparable to that in punctures from the iliac crest. No significant difference in amount of new bone formation and the integration of bone substitute particles was detected histomorphometrically. Periotest(®) values and radiographs showed successful osseointegration of inserted implants at all sites. Directly autotransplanted tibial BM aspirates did not show beneficial regenerative effects in the small study population (N = 6) of the present pilot trial. However, the proximal tibia proved to be a potential donor site for small quantities of BM. Future trials should clarify whether concentration of tibial BM aspirates could effect higher regenerative potency. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hof, M; Pommer, B; Strbac, G D; Sütö, D; Watzek, G; Zechner, W
2013-08-01
Autologous bone augmentation to rebuild compromised alveolar ridge contour prior to implant placement allows for favorable three-dimensional implant positioning to achieve optimum implant esthetics. The aim of the present study was to evaluate peri-implant soft tissue conditions around single-tooth implants following bone grafts in the esthetic zone of the maxilla. Sixty patients underwent autologous bone augmentation of deficient maxillary sites prior to placement of 85 implants in the esthetic zone. In case of multiple implants per patient, one implant was randomly selected. Objective evaluation of 60 single-tooth implants was performed using the Pink-Esthetic-Score (PES) and Papilla Index (PI) and supplemented by subjective patient evaluation, as well as clinical and radiologic examination. Objective ratings of implant esthetics were satisfactory (median PES: 11, median PI: 2) and significantly correlated with high patient satisfaction (mean VAS score: 80%). Both esthetic indices demonstrated respectable levels of inter- as well as intra-observer agreement. Poor implant esthetics (low PES and PI ratings) were significantly associated with increased anatomic crown height, while no influence of horizontal implant-tooth distance could be found. The present investigation indicates that favorable esthetic results may be achieved in the augmented anterior maxilla. However, bony reconstruction of compromised alveolar ridges does not guarantee optimum implant esthetics. © 2011 John Wiley & Sons A/S.
Kuhns, Craig A; Reiter, Michael; Pfeiffer, Ferris; Choma, Theodore J
2014-02-01
Study Design Biomechanical study of pedicle screw fixation in osteoporotic bone. Objective To investigate whether it is better to tap or not tap osteoporotic bone prior to placing a cement-augmented pedicle screw. Methods Initially, we evaluated load to failure of screws placed in cancellous bone blocks with or without prior tapping as well as after varying the depths of tapping prior to screw insertion. Then we evaluated load to failure of screws placed in bone block models with a straight-ahead screw trajectory as well as with screws having a 23-degree cephalad trajectory (toward the end plate). These techniques were tested with nonaugmented (NA) screws as well as with bioactive cement (BioC) augmentation prior to screw insertion. Results In the NA group, pretapping decreased fixation strength in a dose-dependent fashion. In the BioC group, the tapped screws had significantly greater loads to failure (p < 0.01). Comparing only the screw orientation, the screws oriented at 23 degrees cephalad had a significantly higher failure force than their respective counterparts at 0 degrees (p < 0.01). Conclusions Standard pedicle screw fixation is often inadequate in the osteoporotic spine, but this study suggests tapping prior to cement augmentation will substantially improve fixation when compared with not tapping. Angulating screws more cephalad also seems to enhance aging spine fixation.
Martín-Fernández, M; López-Herradón, A; Piñera, A R; Tomé-Bermejo, F; Duart, J M; Vlad, M D; Rodríguez-Arguisjuela, M G; Alvarez-Galovich, L
2017-08-01
Dramatic increases in the average life expectancy have led to increases in the variety of degenerative changes and deformities observed in the aging spine. The elderly population can present challenges for spine surgeons, not only because of increased comorbidities, but also because of the quality of their bones. Pedicle screws are the implants used most commonly in spinal surgery for fixation, but their efficacy depends directly on bone quality. Although polymethyl methacrylate (PMMA)-augmented screws represent an alternative for patients with osteoporotic vertebrae, their use has raised some concerns because of the possible association between cement leakages (CLs) and other morbidities. To analyze potential complications related to the use of cement-augmented screws for spinal fusion and to investigate the effectiveness of using these screws in the treatment of patients with low bone quality. A retrospective single-center study. This study included 313 consecutive patients who underwent spinal fusion using a total of 1,780 cement-augmented screws. We analyzed potential complications related to the use of cement-augmented screws, including CL, vascular injury, infection, screw extraction problems, revision surgery, and instrument failure. There are no financial conflicts of interest to report. A total of 1,043 vertebrae were instrumented. Cement leakage was observed in 650 vertebrae (62.3%). There were no major clinical complications related to CL, but two patients (0.6%) had radicular pain related to CL at the S1 foramina. Of the 13 patients (4.1%) who developed deep infections requiring surgical debridement, two with chronic infections had possible spondylitis that required instrument removal. All patients responded well to antibiotic therapy. Revision surgery was performed in 56 patients (17.9%), most of whom had long construction. A total of 180 screws were removed as a result of revision. There were no problems with screw extraction. These results demonstrate the efficacy and safety of cement-augmented screws for the treatment of patients with low bone mineral density. Copyright © 2017 Elsevier Inc. All rights reserved.
Cho, Ah-Reum; Cho, Sang-Bong; Lee, Jae-Ho; Kim, Kyung-Hoon
2015-11-01
Vertebroplasty is an effective treatment for osteoporotic vertebral fractures, which are one of the most common fractures associated with osteoporosis. However, clinical observation has shown that the risk of adjacent vertebral body fractures may increase after vertebroplasty. The mechanism underlying adjacent vertebral body fracture after vertebroplasty is not clear; excessive stiffness resulting from polymethyl methacrylate has been suspected as an important mechanism. The aim of our study was to compare the effects of bone cement stiffness on adjacent vertebrae after osteoporotic vertebroplasty under load-controlled versus displacement-controlled conditions. An experimental computer study using a finite element analysis. Medical research institute, university hospital, Korean. A three-dimensional digital anatomic model of L1/2 bone structure was reconstructed from human computed tomographic images. The reconstructed three-dimensional geometry was processed for finite element analysis such as meshing elements and applying material properties. Two boundary conditions, load-controlled and displacement-controlled methods, were applied to each of 5 deformation modes: compression, flexion, extension, lateral bending, and torsion. The adjacent L1 vertebra, irrespective of augmentation, revealed nearly similar maximum von Mises stresses under the load-controlled condition. However, for the displacement-controlled condition, the maximum von Mises stresses in the cortical bone and inferior endplate of the adjacent L1 vertebra increased significantly after cement augmentation. This increase was more significant than that with stiffer bone cement under all modes, except the torsion mode. The finite element model was simplified, excluding muscular forces and incorporating a large volume of bone cement, to more clearly demonstrate effects of bone cement stiffness on adjacent vertebrae after vertebroplasty. Excessive stiffness of augmented bone cement increases the risk of adjacent vertebral fractures after vertebroplasty in an osteoporotic finite element model. This result was most prominently observed using the displacement-controlled method.
Magrin, Gabriel Leonardo; Sigua-Rodriguez, Eder Alberto; Goulart, Douglas Rangel; Asprino, Luciana
2015-01-01
The piezosurgery has been used with increasing frequency and applicability by health professionals, especially those who deal with dental implants. The concept of piezoelectricity has emerged in the nineteenth century, but it was applied in oral surgery from 1988 by Tomaso Vercellotti. It consists of an ultrasonic device able to cut mineralized bone tissue, without injuring the adjacent soft tissue. It also has several advantages when compared to conventional techniques with drills and saws, such as the production of a precise, clean and low bleed bone cut that shows positive biological results. In dental implants surgery, it has been used for maxillary sinus lifting, removal of bone blocks, distraction osteogenesis, lateralization of the inferior alveolar nerve, split crest of alveolar ridge and even for dental implants placement. The purpose of this paper is to discuss the use of piezosurgery in bone augmentation procedures used previously to dental implants placement. PMID:26966469
... Medicine Acupuncture Herbal Supplements Surgical Options Anterior Cervical Fusion Artifical Disc Replacement (ADR) Bone Graft Alternatives Bone ... Percutaneous Vertebral Augmentation (PVA) Posterior Cervical Foraminotomy Spinal ... Nonsurgical Treatments Activity Modification Chiropractic – A Conversation with ...
Perfusion pressure of a new cannulating fenestrated pedicle screw during cement augmentation.
Wang, Zhirong; Zhang, Wen; Xu, Hao; Lu, Aiqing; Yang, Huilin; Luo, Zong-Ping
2018-06-18
Cannulating fenestrated pedicle screws are effective for fixating osteoporotic vertebrae. However, a major limitation is the excessive pressure required to inject a sufficient amount of cement into the vertebral body through the narrow hole of a pedicle screw. We have recently proposed a new cannulating fenestrated pedicle screw with a large hole diameter and a matched inner pin for screw-strength maintenance. Our purpose was to determine whether the new screw can significantly reduce bone-cement perfusion pressure during cement augmentation, METHODS: Two different methods were used to examine perfusion pressure. Hagen-Poisseuille's flow model in a tube was used to calculate pressure drop in the bone-cement channel. Experimentally, both Newtonian silicone oil and bone-cement (polymethyl methacrylate) were tested using a cement pusher through the cannulating screw at a constant rate of 2 ml/min. The internal hollow portion of the screw was the bottleneck of the perfusion, and the new design significantly reduced the perfusion pressure. Specifically, perfusion pressure dropped by 59% (P < 0.05) when diameter size was doubled. The new design effectively improved the application of bone-cement augmentation with the ease of bone-cement perfusion, thereby enhancing operational safety. Copyright © 2018. Published by Elsevier Ltd.
[Foster Modification of Full Tendon Transposition of Vertical Rectus Muscles for Sixth Nerve Palsy].
Heede, Santa
2018-04-11
Since 1907 a variety of muscle transposition procedures for the treatment of abducens nerve palsy has been established internationally. Full tendon transposition of the vertical rectus muscle was initially described by O'Connor 1935 and then augmented by Foster 1997 with addition of posterior fixation sutures on the vertical rectus muscle. Full tendon transposition augmented by Foster belongs to the group of the most powerful surgical techniques to improve the abduction. Purpose of this study was to evaluate the results of full tendon vertical rectus transposition augmented with lateral fixation suture for patients with abducens nerve palsy. Full tendon transpositions of vertical rectus muscles augmented with posterior fixation suture was performed in 2014 on five patients with abducens nerve palsy. Two of the patients received Botox injections in the medial rectus muscle: one of them three months after the surgery and another during the surgery. One of the patients had a combined surgery of the horizontal muscles one year before. On three of the patients, who received a pure transposition surgery, the preoperative deviation at the distance (mean: + 56.6 pd; range: + 40 to + 80 pd) was reduced by a mean of 39.6 pd (range 34 to 50 pd), the abduction was improved by a mean of 3 mm (range 2 to 4 mm). The other two patients, who received besides the transposition procedure additional surgeries of the horizontal muscles, the preoperative deviation at the distance (+ 25 and + 126 pd respectively) was reduced by 20 and 81 pd respectively. The abduction was improved by 4 and 8 mm respectively. After surgery two patients developed a vertical deviation with a maximum of 4 pd. None of the patients had complications or signs of anterior segment ischemia. The elevation and/or depression was only marginally affected. There was no diplopia in up- or downgaze. Full tendon transposition of vertical rectus muscles, augmented with lateral posterior fixation suture is a safe and effective treatment method for abducens nerve palsy and in most cases recession of the medial rectus can be avoided. Upgaze and downgaze are affected very slightly. Diverse studies have shown that the risk of anterior segment ischemia is low. Georg Thieme Verlag KG Stuttgart · New York.
Thoma, Daniel S; Payer, Michael; Jakse, Norbert; Bienz, Stefan P; Hüsler, Jürg; Schmidlin, Patrick R; Jung, Ui-Won; Hämmerle, Christoph H F; Jung, Ronald E
2018-02-01
To test whether or not the use of a xenogeneic block loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) results in different bone quantity and quality compared to an autogenous bone block. Twenty-four patients with insufficient bone volume for implant placement were randomly assigned to two treatment modalities: a xenogeneic bone block loaded with rhBMP-2 (test) and an autogenous bone block (control). The horizontal ridge width was evaluated prior to augmentation, after augmentation and at 4 months. Patient-reported outcome measures (PROMs) were assessed at suture removal and at 4 months. Biopsies were obtained at 4 months and histologically evaluated. Intergroup comparisons were tested by a two-sided Wilcoxon-Mann-Whitney test, intra-group comparisons were performed with Wilcoxon-signed rank test, and all categorical variables were tested with Chi-squared tests. One autogenous bone block failed. This patient was replaced, and in all subsequently treated 24 patients, implant placement was possible 4 months later. The median ridge width increased from 4.0 mm (Q1 = 2.0; Q3 = 4.0) (test) and 2.0 mm (Q1 = 2.0; Q3 = 3.0) (control) to 7.0 mm (Q1 = 6.0; Q3 = 8.0) (test) and 7.0 mm (Q1 = 6.0; Q3 = 8.0) (control) at 4 months (intergroup p > .05). A higher morbidity was reported at the augmented site in the control group during surgery. Sensitivity was more favourable in the test than that in the control group at 4 months. The biopsies revealed more mineralized tissue in the control group (p < .0043). Both treatment modalities were successful in regenerating bone to place dental implants. PROMs did not reveal any significant differences between the groups except for pain during surgery at the recipient site (in favour of the test group). Histologically, a higher amount of mineralized tissue was observed for the control group at 4 months. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lindgren, Christer; Mordenfeld, Arne; Johansson, Carina B; Hallman, Mats
2012-01-01
The aims of the present study were to compare a novel biphasic calcium phosphate (BCP) with deproteinized bovine bone (DBB) for maxillary sinus floor augmentation in a split-mouth design and to perform a clinical follow-up of dental implants placed in the augmented sinuses. Partially or completely edentulous patients requiring bilateral sinus augmentation were included in the study. The patients were randomized for augmentation with BCP (test) and DBB (control) in the contralateral side. Eight months after grafting, dental implants were placed. After 3 years of graft healing, core biopsy specimens were obtained from the grafted areas for histologic and histomorphometric analyses. After 3 years of functional implant loading, implant survival/success rates and clinical indices were assessed and radiographic examination and resonance frequency analysis were performed. Nine completely edentulous patients and two partially edentulous patients (mean age, 67 years) who required bilateral sinus augmentation were included in the study, and 62 implants were placed. The mean values for the area of newly formed bone in the retrieved specimens were 29% ± 14.3% and 32% ± 18.0% for BCP and DBB, respectively; the percentage of graft particles in contact with bone was 38% ± 10.9% in the BCP group and 44% ± 12.1% in the DBB group (no statistical significant differences between groups). The mean values for the area of BCP particles and DBB particles were 20% ± 7.5% and 24% ± 13.5%, respectively (difference not significant). One dental implant was lost from each group, resulting in an overall implant survival rate of 96.8% after 3 years of loading. After 3 years, a similar amount of newly formed bone was present regardless of the biomaterial used. The choice of biomaterial did not seem to influence implant survival rates.
Orthobiologics in the augmentation of osteoporotic fractures.
Watson, J Tracy; Nicolaou, Daemeon A
2015-02-01
Many orthobiologic adjuvants are available and widely utilized for general skeletal restoration. Their use for the specific task of osteoporotic fracture augmentation is less well recognized. Common conductive materials are reviewed for their value in this patient population including the large group of allograft adjuvants categorically known as the demineralized bone matrices (DBMs). Another large group of alloplastic materials is also examined-the calcium phosphate and sulfate ceramics. Both of these materials, when used for the proper indications, demonstrate efficacy for these patients. The inductive properties of bone morphogenic proteins (BMPs) and platelet concentrates show no clear advantages for this group of patients. Systemic agents including bisphosphonates, receptor activator of nuclear factor κβ ligand (RANKL) inhibitors, and parathyroid hormone augmentation all demonstrate positive effects with this fracture cohort. Newer modalities, such as trace ion bioceramic augmentation, are also reviewed for their positive effects on osteoporotic fracture healing.
2011-01-01
Background The operative treatment of adult degenerative scoliosis combined with osteoporosis increase following the epidemiological development. Studies have confirmed that screws in osteoporotic spines have significant lower-screw strength with more frequent screw movements within the vertebra than normal spines. Screws augmented with Polymethylmethacrylate (PMMA) or with autogenous bone can offer more powerful corrective force and significant advantages. Methods A retrospective analysis was conducted on 31 consecutive patients with degenerative lumbar scoliosis combined with osteoporosis who had surgery from December 2000. All had a minimum of 2-year follow-up. All patients had posterior approach surgery. 14 of them were fixed with pedicle screw by augmentation with Polymethylmethacrylate (PMMA) and the other 17 patients with autogenous bone. Age, sex and whether smoking were similar between the two groups. Surgical time, blood loss, blood transfusion, medical cost, post surgery ICU time, hospital day, length of oral pain medicines taken, Pre-and postoperative Oswestry disability index questionnaire and surgical revision were documented and compared. Preoperative, postoperative and final follow up Cobb angle, sagittal lumbar curve, correction rate, and Follow up Cobb loss were also compared. Results No significant differences were found between the autogenous bone group and Polymethylmethacrylate group with regards to all the targets above except for length of oral pain medicines taken and surgery cost. 2 patients were seen leakage during operation, but there is neither damage of nerve nor symptom after operation. No revision was needed. Conclusion Both augmentation pedicle screw with Polymethylmethacrylate (PMMA) and autogenous bone treating degenerative lumbar scoliosis combined with osteoporosis can achieve a good surgical result. Less oral pain medicines taken are the potential benefits of Polymethylmethacrylate augmentation, but that is at the cost of more medical spending. PMID:22188765
Xie, Yang; Fu, Qiang; Chen, Zi-qiang; Shi, Zhi-cai; Zhu, Xiao-dong; Wang, Chuan-feng; Li, Ming
2011-12-21
The operative treatment of adult degenerative scoliosis combined with osteoporosis increase following the epidemiological development. Studies have confirmed that screws in osteoporotic spines have significant lower-screw strength with more frequent screw movements within the vertebra than normal spines. Screws augmented with polymethylmethacrylate (PMMA) or with autogenous bone can offer more powerful corrective force and significant advantages. A retrospective analysis was conducted on 31 consecutive patients with degenerative lumbar scoliosis combined with osteoporosis who had surgery from December 2000. All had a minimum of 2-year follow-up. All patients had posterior approach surgery. 14 of them were fixed with pedicle screw by augmentation with polymethylmethacrylate (PMMA) and the other 17 patients with autogenous bone. Age, sex and whether smoking were similar between the two groups. Surgical time, blood loss, blood transfusion, medical cost, post surgery ICU time, hospital day, length of oral pain medicines taken, Pre-and postoperative Oswestry disability index questionnaire and surgical revision were documented and compared. Preoperative, postoperative and final follow up Cobb angle, sagittal lumbar curve, correction rate, and Follow up Cobb loss were also compared. No significant differences were found between the autogenous bone group and polymethylmethacrylate group with regards to all the targets above except for length of oral pain medicines taken and surgery cost. 2 patients were seen leakage during operation, but there is neither damage of nerve nor symptom after operation. No revision was needed. Both augmentation pedicle screw with polymethylmethacrylate (PMMA) and autogenous bone treating degenerative lumbar scoliosis combined with osteoporosis can achieve a good surgical result. Less oral pain medicines taken are the potential benefits of polymethylmethacrylate augmentation, but that is at the cost of more medical spending.
Long-term effects of vertebroplasty: adjacent vertebral fractures.
Baroud, Gamal; Vant, Christianne; Wilcox, Ruth
2006-01-01
In today's aging population, osteoporosis-related fractures are an ever-growing concern. Vertebroplasty, a promising yet cost-effective treatment for vertebral compression fractures, has an increasing role. The first vertebroplasty procedures were reported by Deramond and Galibert in France in 1987, and international interest grew with continued development of clinical techniques and augmentation materials in Europe and the United States. Initial publications and presentations at peer review meetings demonstrated 60-90% success rates in providing immediate and significant pain relief. The objective of this review is to assemble experimental and computational biomechanical research whose goal is determining and preventing the negative long-term effects ofvertebroplasty, with a specific focus on adjacent vertebral fractures. Biomechanical studies using isolated cancellous bone cylinders have shown that osteoporotic cancellous bone samples augmented by the rigid bone cement were at least 12 times stiffer and 35 times stronger than the untreated osteoporotic cancellous bone samples. The biomechanical efficacy of the procedure to repair the fractured vertebrae and prevent further collapse is determined using single-vertebra models. The strength or load-bearing capacity of a single vertebra is significantly increased following augmentation when compared to the intact strength. However, there is no dear result regarding the overall stiffness of the single vertebra, with studies reporting contradictorily that the stiffness increases, decreases, or does not significantly alter following augmentation. The effects of vertebroplasty on adjacent structures are studied via multisegment models, whose results plainly oppose the findings of the single-vertebra and intravertebral models. Here, augmentation was shown to decrease the overall segment strength by 19% when compared to the matched controls. As well, there is a significant increase in disc pressure compared to the pre-augmentation measurements. This translates to a high hydrostatic pressure adjacent to the augmented vertebra, representing the first evidence of increased loading. Computational finite element (FE) models have found that the rigid cement augmentation results in an increase in loading in the structures adjacent to the augmented vertebra. The mechanism of the increase of the loading is predicted to be the pillar effect of the rigid cement. The cement inhibits the normal endplate bulge into the augmented vertebra and thus pressurizes the adjacent disc, which subsequently increases the loading of the untreated vertebra. The mechanism for adjacent vertebral fractures is still unclear, but from experimental and computational studies, it appears that the change in mechanical loading following augmentation is responsible. The pillar effect of injected cement is hypothesized to decrease the endplate bulge in the augmented vertebra causing an increase in adjacent disc pressure that is communicated to the adjacent vertebra. To confirm the viability of the pillar effect as the responsible mechanism, endplate bulge and disc pressure should be directly measured before and after augmentation. Future studies should be concerned with quantifying the current and ideal mechanical response of the spine and subsequently developing cements that can achieve this optimum response.
Dental implants typically help retain peri-implant vertical bone height: evidence-based analysis.
Greenstein, Gary; Cavallaro, John
2013-01-01
The dental literature is assessed regarding the ability of dental implants to maintain vertical bone height after various implant placement scenarios: immediate, delayed, insertion into partially and fully edentate healed ridges, and under overdentures. Studies are also reviewed to determine if bone loss after implant insertion is continuous. Numerous investigations that support the concept that implants preserve bone height are identified. In addition, the data indicate that a minuscule amount of annual bone loss usually persists after implant placement, but it is often clinically imperceptible.
Hard and soft tissue augmentation in a postorthodontic patient: a case report.
Bonacci, Fred J
2011-02-01
A combination of hard and soft tissue grafting is used to augment a thin biotype. A 26-year-old woman with mandibular anterior flaring and Miller Class I and III recessions requested interceptive treatment. Surgery included a full-thickness buccal flap, intramarrow penetrations, bone graft placement, and primary flap closure. Postoperative visits were at 2 and 4 weeks and 2, 3, and 6 months. Stage-two surgery consisted of submerged connective tissue graft placement. Postoperative visits were completed at 2, 4, 6, and 8 weeks and 1 year. Follow-up was completed 3 years after the initial surgery. Interradicular concavities were resolved and gingival biotype was augmented. Soft tissue recession remained at 6 months. Reentry revealed clinical labial plate augmentation; 2 mm was achieved at the lateral incisors and the left central incisor and 3 mm was achieved at the right canine. No bone augmentation was achieved on the left canine and right central incisor. The dehiscence at the right central incisor appeared narrower. Overall, a 2- to 3-mm gain in alveolar bone thickness/height was observed. Two months after stage-two surgery, near complete root coverage was achieved; 1 mm of recession remained on the left central incisor. There was a soft tissue thickness gain of 2 mm without any visual difference in keratinized tissue height. Interradicular concavities were eliminated; the soft tissue was augmented and the gingival biotype was altered. Interdental soft tissue craters remained. One year after connective tissue graft placement, there was near complete root coverage at the left central incisor, which at 2 months experienced residual recession. Interradicular concavities and interdental soft tissue craters were eliminated with soft tissue augmentation, including clinical reestablishment of the mucogingival junction. Clinical stability remained 3 years after the initial surgery, with the patient noting comfort during mastication and routine oral hygiene. A clinical increase in labial plate thickness, in conjunction with soft tissue augmentation, appears to provide for continued stability and decreased potential for future clinical attachment loss.
Han, Ji-Deuk; Cho, Seong-Ho; Jang, Kuk-Won; Kim, Seong-Gwang; Kim, Jung-Han; Kim, Bok-Joo; Kim, Chul-Hun
2017-08-01
This case series study demonstrates the possibility of successful implant rehabilitation without bone augmentation in the atrophic posterior maxilla with cystic lesion in the sinus. Sinus lift without bone graft using the lateral approach was performed. In one patient, the cyst was aspirated and simultaneous implantation under local anesthesia was performed, whereas the other cyst was removed under general anesthesia, and the sinus membrane was elevated in a second process, followed by implantation. In both cases, tapered 11.5-mm-long implants were utilized. With all of the implants, good stability and appropriate bone height were achieved. The mean bone level gain was 5.73 mm; adequate bone augmentation around the implants was shown, the sinus floor was moved apically, and the cyst was no longer radiologically detected. Completion of all of the treatments required an average of 12.5 months. The present study showed that sufficient bone formation and stable implantation in a maxilla of insufficient bone volume are possible through sinus lift without bone materials. The results serve to demonstrate, moreover, that surgical treatment of mucous retention cyst can facilitate rehabilitation. These techniques can reduce the risk of complications related to bone grafts, save money, and successfully treat antral cyst.
2017-01-01
This case series study demonstrates the possibility of successful implant rehabilitation without bone augmentation in the atrophic posterior maxilla with cystic lesion in the sinus. Sinus lift without bone graft using the lateral approach was performed. In one patient, the cyst was aspirated and simultaneous implantation under local anesthesia was performed, whereas the other cyst was removed under general anesthesia, and the sinus membrane was elevated in a second process, followed by implantation. In both cases, tapered 11.5-mm-long implants were utilized. With all of the implants, good stability and appropriate bone height were achieved. The mean bone level gain was 5.73 mm; adequate bone augmentation around the implants was shown, the sinus floor was moved apically, and the cyst was no longer radiologically detected. Completion of all of the treatments required an average of 12.5 months. The present study showed that sufficient bone formation and stable implantation in a maxilla of insufficient bone volume are possible through sinus lift without bone materials. The results serve to demonstrate, moreover, that surgical treatment of mucous retention cyst can facilitate rehabilitation. These techniques can reduce the risk of complications related to bone grafts, save money, and successfully treat antral cyst. PMID:28875144
Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan
2018-01-01
Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may still produce a significant improvement in screw pull-out force. When the correlation strength of all the tested models were compared both cement porosity and compressive strength accurately predicted pull-out force (R 2 =1.00, R 2 =0.808), though prediction accuracy depended upon the strength of the material surrounding the Sawbone. The correlations strength was low for bone with no, or weak, cortical fixation (R 2 =0.56, 0.36). Higher strength and lower porosity CPCs also produced greater pull-out force (1-1.5kN) than commercial CPC (0.2-0.5kN), but lower pull-out force than PMMA (2-3kN). The results of this study suggest that the likelihood of screw fixation failure may be reduced by selecting calcium phosphate cements with lower porosity and higher compressive strength, in patients with healthy bone mineral density and/or sufficient cortical thickness. This is of particular clinical relevance when fixation with metal plates is indicated, or where the augmentation volume is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.
Herberg, Samuel; Kondrikova, Galina; Periyasamy-Thandavan, Sudharsan; Howie, R. Nicole; Elsalanty, Mohammed E.; Weiss, Lee; Campbell, Phil; Hill, William D.; Cray, James J.
2014-01-01
Background A major problem in craniofacial surgery is non-healing bone defects. Autologous reconstruction remains the standard of care for these cases. Bone morphogenetic protein-2 (BMP-2) therapy has proven its clinical utility, although non-targeted adverse events occur due to the high milligram-level doses used. Ongoing efforts explore the use of different growth factors, cytokines, or chemokines, as well as co-therapy to augment healing. Methods Here we utilize inkjet-based biopatterning to load acellular DermaMatrix delivery matrices with nanogram-level doses of BMP-2, stromal cell-derived factor-1β (SDF-1β), transforming growth factor-β1 (TGF-β1), or co-therapies thereof. We tested the hypothesis that bioprinted SDF-1β co-delivery enhances BMP-2 and TGF-β1-driven osteogenesis both in-vitro and in-vivo using a mouse calvarial critical size defect (CSD) model. Results Our data showed that BMP-2 bioprinted in low-doses induced significant new bone formation by four weeks post-operation. TGF-β1 was less effective compared to BMP-2, and SDF-1β therapy did not enhance osteogenesis above control levels. However, co-delivery of BMP-2 + SDF-1β was shown to augment BMP-2-induced bone formation compared to BMP-2 alone. In contrast, co-delivery of TGF-β1 + SDF-1β decreased bone healing compared to TGF-β1 alone. This was further confirmed in vitro by osteogenic differentiation studies using MC3T3-E1 pre-osteoblasts. Conclusions Our data indicates that sustained release delivery of a low-dose growth factor therapy using biopatterning technology can aid in healing CSD injuries. SDF-1β augments the ability for BMP-2 to drive healing, a result confirmed in vivo and in vitro; however, because SDF-1β is detrimental to TGF-β1-driven osteogenesis, its’ effect on osteogenesis is not universal. PMID:25016095
Wu, Yiqun; Wang, Xu Dong; Wang, Feng; Huang, Wei; Zhang, Zhiyong; Zhang, Zhiyuan; Kaigler, Darnell; Zou, Duohong
2015-10-01
Therapy with zygomatic implants (ZIs) or conventional implants (CIs) has proven to be an effective method to restore oral function for systemically healthy patients. However, it is still a major challenge to fully restore oral function to edentulous adult patients with ectodermal dysplasia (ED). The aim of this study was to determine an effective treatment protocol for restoring oral function using ZIs and CIs to edentulous adult ED patients. Ten edentulous adult ED patients were treated in this study. The treatment protocol involved the following: (1) bone augmentation in the region of the anterior teeth; (2) placement of two ZIs and four CIs in the maxilla, and four CIs in the mandible; (3) fabrication of dental prosthesis; and (4) psychological and oral education. Following treatment of these patients, implant success rates, biological complications, patient satisfaction, and psychological changes were recorded. Although there was evidence of bone graft resorption in the maxilla, bone augmentation of the mandible was successful in all patients. Nine CIs in the maxilla failed and were removed. All ZIs were successful, and the CIs success rates were 77.50% in the maxilla and 100% in the mandible, with a mean of 88.75%. The mean peri-implant bone resorption for the CIs ranged from 1.3 ± 0.4 mm to 1.8 ± 0.6 mm, and four cases exhibited gingival hyperplasia in the maxilla and mandible. One hundred percent of the patients were satisfied with the restoration of their oral function, and >50% of the patients exhibited enhanced self-confidence and self-esteem. This study demonstrates that oral function can be restored in edentulous adult ED patients using a comprehensive and systematic treatment protocol involving psychological and oral education, bone augmentation, implant placement, and denture fabrication. Despite these positive outcomes, bone augmentation remains challenging in the anterior region of the maxilla for edentulous adult ED patients. © 2015 Wiley Periodicals, Inc.
Lundgren, Dan; Slotte, Christer; Gröndahl, Kerstin
2013-08-01
Alternative implant designs may reduce the need for complicated and costly bone augmentation procedures in situations with limited bone height. Wide dental tube implants have been manufactured and tested in three patients and followed for 5 years to evaluate if such implants are capable to support fixed prosthetic constructions with good prognosis in areas with limited bone height. Four machined-tube implants with a height of 6 mm, an outer diameter of 7.4 mm, and an inner diameter of 6.0 mm were placed in three patients. After a healing period of 3 months, ceramometal suprastructures were constructed to supply the implants. Annual clinical and radiographical follow-ups were done up to 5 years. At the 5-year follow-up, all three patients were examined with a cone beam computed tomography technique. All implants and the suprastructures were clinically stable after 5 years. In one patient, vertical bone loss and a 6-mm deep pocket appeared after 1 year. The pocket has remained throughout the observation period and has been regularly debrided and kept it free from clinical signs of inflammation. In the other two patients, the soft tissue surrounding the implants was in good health with no or only slight inflammation throughout all observations. Pocket probing revealed no or slight bleeding and pocket depths amounting to less than 3 mm. It was shown that this new type of implant will function excellent during follow-up times of several years. Further studies should be done to explore in more detail indications for such implants. © 2011 Wiley Periodicals, Inc.
Rai, Rakesh K; Vishvakarma, Naveen K; Mohapatra, Tribhuban M; Singh, Sukh Mahendra
2012-09-01
This study investigates the effect of Listeria administration on differentiation of macrophages from precursor bone marrow cells and functional status of tumor-associated macrophages (TAM). Listeria administration not only resulted in an augmented infiltration of tumor by F4/80 macrophages but also repolarized the functional status of TAM displaying features of some M1 macrophage subtype with upregulated phagocytosis and tumoricidal activity accompanied by altered expression of monocarboxylate transporter-1, toll-like receptor-2, surface markers: CD11c, interleukin-2 receptor, CD62L, and secreted molecules: nitric oxide, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor. Declined tumor cell survival and modulated repertoire of cytokines: interferon-γ, IL-6, IL-10, and transforming growth factor-β in tumor microenvironment indicated their role in polarization of TAM towards proinflammatory state. Bone marrow cell of Listeria-administered tumor-bearing mice showed augmented survival, declined expression of p53 upregulated modulator of apoptosis with an upregulated differentiation into activation responsive bone marrow-derived macrophages along with altered expression of macrophage-colony stimulating factor, macrophage-colony stimulating factor receptor, and granulocyte macrophage-colony stimulating factor receptor. These findings indicate that Listeria infection is associated with an augmented differentiation of macrophages accompanied by tumoricidal activation of TAM.
Sinus floor elevation with a crestal approach using a press-fit bone block: a case series.
Isidori, M; Genty, C; David-Tchouda, S; Fortin, T
2015-09-01
This prospective study aimed to provide detailed clinical information on a sinus augmentation procedure, i.e., transcrestal sinus floor elevation with a bone block using the press-fit technique. A bone block is harvested with a trephine burr to obtain a cylinder. This block is inserted into the antrum via a crestal approach after creation of a circular crestal window. Thirty-three patients were treated with a fixed prosthesis supported by implants placed on 70 cylindrical bone blocks. The mean bone augmentation was 6.08±2.87 mm, ranging from 0 to 12.7 mm. Only one graft failed before implant placement. During surgery and the subsequent observation period, no complications were recorded, one implant was lost, and no infection or inflammation was observed. This proof-of-concept study suggests that the use of a bone block inserted into the sinus cavity via a crestal approach can be an alternative to the sinus lift procedure with the creation of a lateral window. It reduces the duration of surgery, cost of treatment, and overall discomfort. Copyright © 2015. Published by Elsevier Ltd.
Novel Approach in the Use of Plasma Spray: Preparation of Bulk Titanium for Bone Augmentations
Fousova, Michaela; Vojtech, Dalibor; Jablonska, Eva; Fojt, Jaroslav; Lipov, Jan
2017-01-01
Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young′s modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability. PMID:28837101
Experimental rotator cuff repair. A preliminary study.
Gerber, C; Schneeberger, A G; Perren, S M; Nyffeler, R W
1999-09-01
The repair of chronic, massive rotator cuff tears is associated with a high rate of failure. Prospective studies comparing different repair techniques are difficult to design and carry out because of the many factors that influence structural and clinical outcomes. The objective of this study was to develop a suitable animal model for evaluation of the efficacy of different repair techniques for massive rotator cuff tears and to use this model to compare a new repair technique, tested in vitro, with the conventional technique. We compared two techniques of rotator cuff repair in vivo using the left shoulders of forty-seven sheep. With the conventional technique, simple stitches were used and both suture ends were passed transosseously and tied over the greater tuberosity of the humerus. With the other technique, the modified Mason-Allen stitch was used and both suture ends were passed transosseously and tied over a cortical-bone-augmentation device. This device consisted of a poly(L/D-lactide) plate that was fifteen millimeters long, ten millimeters wide, and two millimeters thick. Number-3 braided polyester suture material was used in all of the experiments. In pilot studies (without prevention of full weight-bearing), most repairs failed regardless of the technique that was used. The simple stitch always failed by the suture pulling through the tendon or the bone; the suture material did not break or tear. The modified Mason-Allen stitch failed in only two of seventeen shoulders. In ten shoulders, the suture material failed even though the stitches were intact. Thus, we concluded that the modified Mason-Allen stitch is a more secure method of achieving suture purchase in the tendon. In eight of sixteen shoulders, the nonaugmented double transosseous bone-fixation technique failed by the suture pulling through the bone. The cortical-bone-augmentation technique never failed. In definite studies, prevention of full weight-bearing was achieved by fixation of a ten-centimeter-diameter ball under the hoof of the sheep. This led to healing in eight of ten shoulders repaired with the modified Mason-Allen stitch and cortical-bone augmentation. On histological analysis, both the simple-stitch and the modified Mason-Allen technique caused similar degrees of transient localized tissue damage. Mechanical pullout tests of repairs with the new technique showed a failure strength that was approximately 30 percent of that of an intact infraspinatus tendon at six weeks, 52 percent of that of an intact tendon at three months, and 81 percent of that of an intact tendon at six months. The repair technique with a modified Mason-Allen stitch with number-3 braided polyester suture material and cortical-bone augmentation was superior to the conventional repair technique. Use of the modified Mason-Allen stitch and the cortical-bone-augmentation device transferred the weakest point of the repair to the suture material rather than to the bone or the tendon. Failure to protect the rotator cuff post-operatively was associated with an exceedingly high rate of failure, even if optimum repair technique was used. Different techniques for rotator cuff repair substantially influence the rate of failure. A modified Mason-Allen stitch does not cause tendon necrosis, and use of this stitch with cortical-bone augmentation yields a repair that is biologically well tolerated and stronger in vivo than a repair with the conventional technique. Unprotected repairs, however, have an exceedingly high rate of failure even if optimum repair technique is used. Postoperative protection from tension overload, such as with an abduction splint, may be necessary for successful healing of massive rotator cuff tears.
The effect of in situ augmentation on implant anchorage in proximal humeral head fractures.
Unger, Stefan; Erhart, Stefanie; Kralinger, Franz; Blauth, Michael; Schmoelz, Werner
2012-10-01
Fracture fixation in patients suffering from osteoporosis is difficult as sufficient implant anchorage is not always possible. One method to enhance implant anchorage is implant/screw augmentation with PMMA-cement. The present study investigated the feasibility of implant augmentation with PMMA-cement to enhance implant anchorage in the proximal humerus. A simulated three part humeral head fracture was stabilised with an angular stable plating system in 12 pairs of humeri using six head screws. In the augmentation group the proximal four screws were treated with four cannulated screws, each augmented with 0.5ml of PMMA-cement, whereas the contra lateral side served as a non-augmented control. Specimens were loaded in varus-bending or axial-rotation using a cyclic loading protocol with increasing load magnitude until failure of the osteosynthesis occurred. Augmented specimens showed a significant higher number of load cycles until failure than non-augment specimens (varus-bending: 8516 (SD 951.6) vs. 5583 (SD 2273.6), P=0.014; axial-rotation: 3316 (SD 348.8) vs. 2050 (SD 656.5), P=0.003). Non-augmented specimens showed a positive correlation of load cycles until failure and measured bone mineral density (varus-bending: r=0.893, P=0.016; axial-rotation: r=0.753, P=0.084), whereas no correlation was present in augmented specimens (varus-bending: r=0,258, P=0.621; axial-rotation r=0.127, P=0.810). These findings suggest that augmentation of cannulated screws is a feasible method to enhance implant/screw anchorage in the humeral head. The improvement of screw purchase is increasing with decreasing bone mineral density. Copyright © 2012 Elsevier Ltd. All rights reserved.
Schmoelz, W; Mayr, R; Schlottig, F; Ivanovic, N; Hörmann, R; Goldhahn, J
2016-03-01
Screw anchorage in osteoporotic bone is still limited and makes treatment of osteoporotic fractures challenging for surgeons. Conventional screws fail in poor bone quality due to loosening at the screw-bone interface. A new technology should help to improve this interface. In a novel constant amelioration process technique, a polymer sleeve is melted by ultrasound in the predrilled screw hole prior to screw insertion. The purpose of this study was to investigate in vitro the effect of the constant amelioration process platform technology on primary screw anchorage. Fresh frozen femoral heads (n=6) and vertebrae (n=6) were used to measure the maximum screw insertion torque of reference and constant amelioration process augmented screws. Specimens were cut in cranio-caudal direction, and the screws (reference and constant amelioration process) were implanted in predrilled holes in the trabecular structure on both sides of the cross section. This allowed the pairwise comparison of insertion torque for constant amelioration process and reference screws (femoral heads n=18, vertebrae n=12). Prior to screw insertion, a micro-CT scan was made to ensure comparable bone quality at the screw placement location. The mean insertion torque for the constant amelioration process augmented screws in both, the femoral heads (44.2 Ncm, SD 14.7) and the vertebral bodies (13.5 Ncm, SD 6.3) was significantly higher than for the reference screws of the femoral heads (31.7 Ncm, SD 9.6, p<0.001) and the vertebral bodies (7.1 Ncm, SD 4.5, p<0.001). The interconnection of the melted polymer sleeve with the surrounding trabecular bone in the constant amelioration process technique resulted in a higher screw insertion torque and can improve screw anchorage in osteoporotic trabecular bone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Fang; Li, Qiong; Wang, Zuolin
2017-08-01
To compare the effects of Bio-Oss ® in combination with concentrated growth factors (CGFs) and bone marrow-derived mesenchymal stem cells (BMSCs) on bone regeneration for maxillary sinus floor augmentation in beagle dogs. Six beagle dogs received bilateral maxillary sinus floor augmentation. Venous blood drawn from dogs was collected and centrifuged to obtain CGFs. BMSCs derived from canine bone marrow were cultured using density gradient centrifugation. The suspension of BMSCs was added onto Bio-Oss ® granules at a density of 2 × 10 6 cells/ml, and the BMSCs/Bio-Oss ® constructs were incubated for an additional 4 h before use. Twelve sinuses were grafted with a mixture of CGFs/Bio-Oss ® , BMSCs/Bio-Oss ® construct, or Bio-Oss ® alone. Six months later, the bone formation of bilateral sinuses was evaluated by Micro-CT, microhardness test, histological examination, and histomorphometry. No adverse effect was found in these dogs. The dome-shaped augmentation protruded into the sinus cavity. Micro-CT revealed that there was significant difference in BV/TV but not in Tb. N, between groups A, B, and C. The extent of microhardness in groups A and B was significantly higher than in group C. The proportion of newly formed bone in groups A and B showed significant difference when compared to group C (P ≤ 0.01). The amount of residual grafts in groups A and B was significantly lower than in group C. Grafting with Bio-Oss ® in combination with CGFs can increase new bone formation more efficiently than using Bio-Oss ® alone in a canine model. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Vierra, Matthew; Mau, Lian Ping; Huynh-Ba, Guy; Schoolfield, John; Cochran, David L
2016-01-01
To evaluate guided bone regeneration outcomes in defects protected with an in situ formed polyethylene glycol (PEG) hydrogel membrane as compared to a non-cross-linked collagen membrane (CM). Four mandibular alveolar ridge defects were created in eight hound dogs. Regenerative procedures were randomly allocated to one of four groups consisting of freeze-dried bone allograft, which is referred to in this study as freeze-dried bone xenograft (FDBX) + PEG, autogenous bone (AB) + PEG, AB + CM, and AB alone. After 8 weeks, titanium dental implants were placed into augmented sites. After 8 weeks of allowed time for osseointegration, the animals were sacrificed to harvest block specimens for bone-to-implant contact (BIC) and ridge width histomorphometric analysis. Polyethylene glycol membranes had an exposure rate of 50% as compared to 12.5% for sites grafted with CM. Regenerative outcomes with respect to implant placement were least favorable for FDBX + PEG which had implants placed in 37.5% of augmented sites compared to 100% implant placement for all other groups. No statistically significant differences were noted between groups for ridge width measurements in implant and non-implant histologic sections (P > 0.05). Buccal BIC (%) values between treatment groups also failed to reach statistical significant difference (FDBX + PEG [60.2 ± 9.4]; AB + PEG [58.8 ± 8.5]; AB + CM [57.9 ± 12.8]; AB [61.0 ± 10.2]). When used in conjunction with FDBX, PEG had unpredictable bone formation and in most cases negatively impacted future implant placement. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Augmented reality in bone tumour resection: An experimental study.
Cho, H S; Park, Y K; Gupta, S; Yoon, C; Han, I; Kim, H-S; Choi, H; Hong, J
2017-03-01
We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p < 0.05, one-way analysis of variance). The probabilities of a surgeon obtaining a 10 mm surgical margin with a 3 mm tolerance were 90.2% in AR-assisted resections, and 70.7% in conventional resections. We demonstrated that the accuracy of tumour resection was satisfactory with the help of the AR navigation system, with the tumour shown as a virtual template. In addition, this concept made the navigation system simple and available without additional cost or time. Cite this article: H. S. Cho, Y. K. Park, S. Gupta, C. Yoon, I. Han, H-S. Kim, H. Choi, J. Hong. Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137-143. © 2017 Cho et al.
Augmented reality in bone tumour resection
Park, Y. K.; Gupta, S.; Yoon, C.; Han, I.; Kim, H-S.; Choi, H.; Hong, J.
2017-01-01
Objectives We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. Methods We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. Results The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p < 0.05, one-way analysis of variance). The probabilities of a surgeon obtaining a 10 mm surgical margin with a 3 mm tolerance were 90.2% in AR-assisted resections, and 70.7% in conventional resections. Conclusion We demonstrated that the accuracy of tumour resection was satisfactory with the help of the AR navigation system, with the tumour shown as a virtual template. In addition, this concept made the navigation system simple and available without additional cost or time. Cite this article: H. S. Cho, Y. K. Park, S. Gupta, C. Yoon, I. Han, H-S. Kim, H. Choi, J. Hong. Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137–143. PMID:28258117
Shin, Hong-In; Sohn, Dong-Seok
2005-12-01
To augment the atrophic posterior maxilla, a sinus bone graft has been widely used for sinus floor augmentation. Various bone substitutes have been developed and grafted in the maxillary sinus with and without membranes perforation, although autogenous bone is recommended as a gold standard of grafting materials. Membrane perforation is the most common complication associated with sinus bone graft. To repair a perforation, various methods have been developed. This case report is focused on histologic findings of 1 bovine hydroxyapatite (Bio-Oss; Geistlich Pharma AG, Wolhusen, Switzerland) and 2 kinds of human mineral allograft- Tutoplast cancellous microchips (TutoGen Medical GmbH, Neunkirchen am. Brand Germany), and irradiated allogeniccancellous bone and marrow (ICB; Rocky Mountain Tissue Bank, Aurora, CO) used for sinus graft in the same patient with membrane perforation after various healing periods. Mineral allograft showed favorable new bone regeneration with the repair of membrane perforation. This case report also describes a technique regarding how to repair completely perforated sinus membrane after the removal of a mucocele using human collagen membrane (Tutoplast pericardium; TutoGen Medical GmbH) and fibrin adhesive (Greenplast; Green Cross Co., Youngin, Korea) to stabilize collagen membrane.
Niemeyer, Philipp; Becher, Christoph; Buhs, Matthias; Fickert, Stefan; Gelse, Kolja; Günther, Daniel; Kaelin, Raphael; Kreuz, Peter; Lützner, Jörg; Nehrer, Stefan; Madry, Henning; Marlovits, Stefan; Mehl, Julian; Ott, Henning; Pietschmann, Matthias; Spahn, Gunther; Tischer, Thomas; Volz, Martin; Walther, Markus; Welsch, Götz; Zellner, Johannes; Zinser, Wolfgang; Angele, Peter
2018-06-18
Surgical principles for treatment of full-thickness cartilage defects of the knee include bone marrow stimulation techniques (i.e. arthroscopic microfracturing) and transplantation techniques (i.e. autologous chondrocyte implantation and osteochondral transplantation). On the basis of increasing scientific evidence, indications for these established therapeutical concepts have been specified and clear recommendations for practical use have been given. Within recent years, matrix-augmented bone marrow stimulation has been established as a new treatment concept for chondral lesions. To date, scientific evidence is limited and specific indications are still unclear. The present paper gives an overview of available products as well as preclinical and clinical scientific evidence. On the basis of the present evidence and an expert consensus from the "Working Group on Tissue Regeneration" of the German Orthopaedic and Trauma Society (DGOU), indications are specified and recommendations for the use of matrix-augmented bone marrow stimulation are given. In principle, it can be stated that the various products offered in this field differ considerably in terms of the number and quality of related studies (evidence level). Against the background of the current data situation, their application is currently seen in the border area between cell transplantation and bone marrow stimulation techniques, but also as an improvement on traditional bone marrow stimulation within the indication range of microfracturing. The recommendations of the Working Group have preliminary character and require re-evaluation after improvement of the study situation. Georg Thieme Verlag KG Stuttgart · New York.
Heinemann, F; Mundt, T; Biffar, R; Gedrange, T; Goetz, W
2009-12-01
The aims of this case series was to evaluate the success rate of implants and their restorations, the sinus bone graft resorption, and the marginal bone loss around the implants when nanocristalline HA embedded in a silica matrix was exclusively used as grafting material. In 13 partially edentulous patients of a private practice having missing teeth in the posterior maxilla and a subantral bone height between 3 and 7 mm, 19 sinus augmentations (100% Nanobone, Artoss, Rostock, Germany) by the lateral lift technique were performed. The implants (Tiolox/Tiologic Implants, Dentaurum, Ispringen, Germany) were simultaneously placed. After 6 to 9 months 37 implants were restored with fixed dental prostheses. The clinical evaluation included peri-implant parameters, periotest measurements and the restorations. The radiographic bone heights over time were estimated with linear mixed models. The implant success rate was 100% after three years. The periotest values (between -7 and -6) after implant abutment connection indicated a solid osseointegration. The mean rates of the marginal bone loss over the first year were higher (mesial: -0.55, distal: -0.51 mm) than the annual rates thereafter (mesial: -0.09 mm, distal: -0.08 mm). The mean rates of changes in the total bone height were neglectable (<0.2 mm) and not significant. The prosthodontic and esthetic evaluation revealed a successful outcome. Within the limits of this clinical report it may be concluded that maxillary sinus augmentation using 100% nanocristalline HA embedded in a silica matrix to support implants is a reliable procedure.
On-Command Exoskeleton for Countermeasure Microgravity Effects on Muscles and Bones
NASA Astrophysics Data System (ADS)
Bar-Cohen, Y.; Bao, X.; Badescu, M.; Sherrit, S.; Mavroidis, C.; Unluhisarcikh, O.; Pietrusinski, M.; Rajulu, S.; Berka, R.; Cowley, M.
2012-06-01
On-command exoskeleton with impeding and augmenting elements would support the operation of astronauts traveling to Mars. Thus, countermeasure deleterious effects on the muscles and bones during travel and assist their physical activity on Mars.
A hybrid technique for sinus floor elevation in the severely resorbed posterior maxilla
Jung, Ui-Won; Hong, Ji-Youn; Lee, Jung-Seok; Kim, Chang-Sung; Cho, Kyoo-Sung
2010-01-01
Purpose This study aimed to evaluate the effectiveness of the modified sinus floor elevation technique described hereafter as a "hybrid technique," in 11 patients with severely resorbed posterior maxillae. Methods Eleven patients who received 22 implants in the maxillary premolar and molar areas by the hybrid technique were enrolled in this study. A slot-shaped osteotomy for access was prepared on the lateral wall along the lower border of the sinus floor. The Schneiderian membrane was fully reflected through the lateral slot. Following drilling with the membrane protected by a periosteal elevator, the bone was grafted. All implants were placed simultaneously with sinus augmentation. The cumulative success rate was calculated and clinical parameters were recorded. Radiographic measurements were performed. Results All implants were well maintained at last follow up (cumulative success rate=100%). The mean residual bone height, augmented bone height, crown-to-implant ratio, and marginal bone loss were 4.1±1.64 mm, 8.76±1.77 mm, 1.21±0.33 mm, and 0.34±0.72 mm, respectively. Conclusions Simultaneous implant placement with sinus augmentation by hybrid technique showed successful clinical results over a 2-year observation period and may be a reliable modality for reconstruction of a severely resorbed posterior maxilla. PMID:20498764
Quantitation of mandibular ramus volume as a source of bone grafting.
Verdugo, Fernando; Simonian, Krikor; Smith McDonald, Roberto; Nowzari, Hessam
2009-10-01
When alveolar atrophy impairs dental implant placement, ridge augmentation using mandibular ramus graft may be considered. In live patients, however, an accurate calculation of the amount of bone that can be safely harvested from the ramus has not been reported. The use of a software program to perform these calculations can aid in preventing surgical complications. The aim of the present study was to intra-surgically quantify the volume of the ramus bone graft that can be safely harvested in live patients, and compare it to presurgical computerized tomographic calculations. The AutoCAD software program quantified ramus bone graft in 40 consecutive patients from computerized tomographies. Direct intra-surgical measurements were recorded thereafter and compared to software data (n = 10). In these 10 patients, the bone volume was also measured at the recipient sites 6 months post-sinus augmentation. The mandibular second and third molar areas provided the thickest cortical graft averaging 2.8 +/- 0.6 mm. The thinnest bone was immediately posterior to the third molar (1.9 +/- 0.3 mm). The volume of ramus bone graft measured by AutoCAD averaged 0.8 mL (standard deviation [SD] 0.2 mL, range: 0.4-1.2 mL). The volume of bone graft measured intra-surgically averaged 2.5 mL (SD 0.4 mL, range: 1.8-3.0 mL). The difference between the two measurement methods was significant (p < 0.001). The bone volume measured 6 months post-sinus augmentation averaged 2.2 mL (SD 0.4 mL, range: 1.6-2.8 mL) with a mean loss of 0.3 mL in volume. The mandibular second molar area provided the thickest cortical graft. A cortical plate of 2.8 mm in average at combined second and third molar areas provided 2.5 mL particulated volume. The use of a design software program can improve surgical treatment planning prior to ramus bone grafting. The AutoCAD software program did not overestimate the volume of bone that can be safely harvested from the mandibular ramus.
Lorenz, Jonas; Barbeck, Mike; Sader, Robert A; Kirkpatrick, Charles J; Russe, Philippe; Choukroun, Joseph; Ghanaati, Shahram
2016-06-01
Bone substitute materials of different origin and chemical compositions are frequently used in augmentation procedures to enlarge the local bone amount. However, relatively little data exist on the long-term tissue reactions. The presented case reports for the first time histological and histomorphometrical analyses of a nanocrystaline hydroxyapatite-based bone substitute material implanted in the human sinus cavity after an integration period of 3 years. The extracted biopsy was analyzed histologically and histomorphometrically with focus on the tissue reactions, vascularization, new bone formation, and the induction of a foreign body reaction. A comparably high rate of connective tissue (48.25%) surrounding the remaining bone substitute granules (42.13%) was observed. Accordingly, the amount of bone tissue (9.62%) built the smallest fraction within the biopsy. Further, tartrate-resistant acid phosphatase-positive and -negative multinucleated giant cells (4.35 and 3.93 cells/mm(2), respectively) were detected on the material-tissue interfaces. The implantation bed showed a mild vascularization of 10.03 vessels/mm(2) and 0.78%. The present case report shows that after 3 years, a comparable small amount of bone tissue was observable. Thus, the foreign body response to the bone substitute seems to be folded without further degradation or regeneration.
Ahmadi, Roya Shariatmadar; Sayar, Ferena; Rakhshan, Vahid; Iranpour, Babak; Jahanbani, Jahanfar; Toumaj, Ahmad; Akhoondi, Nasrin
2017-06-01
Horizontal ridge augmentation with allografts has attracted notable attention because of its proper success rate and the lack of disadvantages of autografts. Corticocancellous block allografts have not been adequately studied in humans. Therefore, this study clinically and histomorphometrically evaluated the increase in ridge width after horizontal ridge augmentation using corticocancellous block allografts as well as implant success after 12 to 18 months after implantation. In 10 patients receiving implants (3 women, 7 men; mean age = 45 years), defective maxillary alveolar ridges were horizontally augmented using freeze-dried bone allograft blocks. Ridge widths were measured before augmentation, immediately after augmentation, and ∼6 months later in the reentry surgery for implantation. This was done at points 2 mm (A) and 5 mm (B) apically to the crest. Biopsy cores were acquired from the implantation site. Implant success was assessed 15.1 ± 2.7 months after implantation (range = 12-18 months). Data were analyzed using Friedman and Dunn tests (α = 0.05). At point A, ridge widths were 2.77 ± 0.37, 8.02 ± 0.87, and 6.40 ± 0.66 mm, respectively, before surgery, immediately after surgery, and before implantation. At point B, ridge widths were 3.40 ± 0.39, 9.35 ± 1.16, and 7.40 ± 1.10 mm, respectively, before surgery, immediately after surgery, and before implantation. The Friedman test showed significant increases in ridge widths, both at point A and point B (both P = .0000). Postaugmentation resorption was about 1.5-2 mm and was statistically significant at points A and B (P < .05, Dunn). The percentage of newly formed bone, residual graft material, and soft tissue were 33.0% ± 11.35% (95% confidence interval [CI] = 24.88%-41.12%), 37.50% ± 19.04% (95% CI = 23.88%-51.12%), and 29.5%, respectively. The inflammation was limited to grades 1 or zero. Twelve to 18 months after implantation, no implants caused pain or showed exudates or pockets. Radiographic bone loss was 2.0 ± 0.7 mm (range = 1-3). It can be concluded that lateral ridge augmentation with corticocancellous allograft blocks might be successful both clinically and histologically. Implants might have a proper clinical success after a minimum of 12 months.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-29
..., and vote on information related to the premarket approval application (PMA) for the Augment Bone Graft, sponsored by Biomimetic Therapeutics, Inc. The intended use of the device is as an alternative bone grafting substitute to autologous bone graft in applications to facilitate fusion in the ankle and foot without...
Separate Vertical Wirings for the Extra-articular Fractures of the Distal Pole of the Patella.
Kim, Young Mo; Yang, Jun Young; Kim, Kyung Cheon; Kang, Chan; Joo, Yong Bum; Lee, Woo Yong; Hwang, Jung Mo
2011-12-01
To evaluate the usefulness of separate vertical wirings for extra-articular fracture of distal pole of patella. We have analyzed the clinical results of 18 cases that underwent separate vertical wirings for extra-articular fracture of distal pole of the patella from March 2005 to March 2010, by using the range of motion and Bostman score. Occurrence of complication was also evaluated. Additionally, by taking simple radiographs, the correlation between the postoperative degree of anterior transposition of bone fragment and the time of bone fusion, preoperative length of bone fragment, and occurrence of comminuted fracture were investigated. It took an average of 13.8 weeks for radiological bone union after separate vertical wiring fixation. Flexion contracture was an average of 0.8 degrees and further flexion was an average of 127.6°, and Bostman score was an average of 27.5 points (excellent in 12 cases, and good in 6 cases). On the first postoperative year, average flexion contracture was 0.6 degrees and further flexion was an average of 136.3°, which exhibited increased joint motion and recovery to normal range of motion, and Bostman score was an average of 28.7 points (excellent in 16 cases, and good in 2 cases). There was no statistically significant difference between the preoperative bone fragment length and presence of comminution, and degree of anterior transposition of bone fragment after fracture union on simple radiograph (p=0.175, p=0.146). We were able to obtain satisfactory clinical results, while preserving the bone fragment by separate vertical wiring fixation for extra-articular fracture of distal pole of patella. Moreover, the method is easy to perform, which is also considered as a useful surgical method for extra-articular fracture of distal pole of patella.
Aradya, Anupama; Kumar, U Krishna; Chowdhary, Ramesh
2016-01-01
The study was designed to evaluate and compare stress distribution in transcortical section of bone with normal abutment and platform switched abutment under vertical and oblique forces in posterior mandible region. A three-dimensional finite element model was designed using ANSYS 13.0 software. The type of bone selection for the model was made of type II mandibular bone, having cortical bone thickness ranging from 0.595 mm to 1.515 mm with the crestal region measuring 1.5 mm surrounding dense trabecular bone. The implant will be modulated at 5 mm restorative platform and tapering down to 4.5 mm wide at the threads, 13 mm long with an abutment 3 mm in height. The models will be designed for two situations: (1) An implant with a 5 mm diameter abutment representing a standard platform in the posterior mandible region. (2) An implant with a 4.5 mm diameter abutment representing platform switching in the posterior mandible region. Force application was performed in both oblique and vertical conditions using 100 N as a representative masticatory force. For oblique loading, a force of 100 N was applied at 15° from the vertical axis. von Mises stress analysis was evaluated. The results of the study showed cortical stress in the conventional and platform switching model under oblique forces were 59.329 MPa and 39.952 MPa, respectively. Cortical stress in the conventional and platform switching model under vertical forces was 13.914 MPa and 12.793 MPa, respectively. Results from this study showed the platform switched abutment led to relative decrease in von Mises stress in transcortical section of bone compared to normal abutment under vertical and oblique forces in posterior mandible region.
Application of Satellite Based Augmentation Systems to Altitude Separation
NASA Astrophysics Data System (ADS)
Magny, Jean Pierre
This paper presents the application of GNSS1, or more precisely of Satellite Based Augmentation Systems (SBAS), to vertical separation for en-route, approach and landing operations. Potential improvements in terms of operational benefit and of safety are described for two main applications. First, vertical separation between en-route aircraft, which requires a system available across wide areas. SBAS (EGNOS, WAAS, and MSAS) are very well suited for this purpose before GNSS2 becomes available. And secondly, vertical separation from the ground during approach and landing, for which preliminary design principles of instrument approach procedures and safety issues are presented. Approach and landing phases are the subject of discussions within ICAO GNSS-P. En-route phases have been listed as GNSS-P future work and by RTCA for development of new equipments.
Rakhmatia, Yunia Dwi; Ayukawa, Yasunori; Furuhashi, Akihiro; Koyano, Kiyoshi
2014-01-01
The objective of this study was to evaluate the optimal thickness and porosity of novel titanium mesh membranes to enhance bone augmentation, prevent soft tissue ingrowth, and prevent membrane exposure. Six types of novel titanium meshes with different thicknesses and pore sizes, along with three commercially available membranes, were used to cover surgically created calvarial defects in 6-week-old Sprague-Dawley rats. The animals were killed after 4 or 8 weeks. Microcomputed tomographic analyses were performed to analyze the three-dimensional bone volume and bone mineral density. Soft tissue ingrowth was also evaluated histologically and histomorphometrically. The novel titanium membranes used in this study were as effective at augmenting bone in the rat calvarial defect model as the commercially available membranes. The greatest bone volume was observed on 100-μm-thick membranes with larger pores, although these membranes promoted growth of bone with lower mineral density. Soft tissue ingrowth when 100-μm membranes were used was increased at 4 weeks but decreased again by 8 weeks to a level not statistically significantly different from other membranes. Membrane thickness affects the total amount of new bone formation, and membrane porosity is an essential factor for guided bone regeneration, especially during the initial healing period, although the final bone volume obtained is essentially the same. Newly developed titanium mesh membranes of 100 μm in thickness and with large pores appear to be optimal for guided bone regeneration.
Recent biological trends in management of fracture non-union
Emara, Khaled M; Diab, Ramy Ahmed; Emara, Ahmed Khaled
2015-01-01
Bone regeneration is a complex, well-orchestrated physiological process of bone formation, which can be seen during normal fracture healing, and is involved in continuous remodelling throughout adult life. Currently, there is a plethora of different strategies to augment the impaired or “insufficient” bone-regeneration process, including the “gold standard” autologous bone graft, free fibula vascularised graft, allograft implantation, and use of growth factors, osteoconductive scaffolds, osteoprogenitor cells and distraction osteogenesis. Improved “local” strategies in terms of tissue engineering and gene therapy, or even “systemic” enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible, to accelerate the overall regeneration process, or even to address systemic conditions, such as skeletal disorders and osteoporosis. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications. PMID:26396938
An analysis of a candidate control algorithm for a ride quality augmentation system
NASA Technical Reports Server (NTRS)
Suikat, Reiner; Donaldson, Kent; Downing, David R.
1987-01-01
This paper presents a detailed analysis of a candidate algorithm for a ride quality augmentation system. The algorithm consists of a full-state feedback control law based on optimal control output weighting, estimators for angle of attack and sideslip, and a maneuvering algorithm. The control law is shown to perform well by both frequency and time domain analysis. The rms vertical acceleration is reduced by about 40 percent over the whole mission flight envelope. The estimators for the angle of attack and sideslip avoid the often inaccurate or costly direct measurement of those angles. The maneuvering algorithm will allow the augmented airplane to respond to pilot inputs. The design characteristics and performance are documented by the closed-loop eigenvalues; rms levels of vertical, lateral, and longitudinal acceleration; and representative time histories and frequency response.
Impact of Posterior Wear on Muscle Length with Reverse Shoulder Arthroplasty.
Roche, Christopher P; Diep, Phong; Hamilton, Matthew A; Wright, Thomas W; Flurin, Pierre-Henri; Zuckerman, Joseph D; Routman, Howard D
2015-12-01
The use of reverse total shoulder arthroplasty (rTSA) in patients with posterior glenoid wear can be challenging. Implanting a baseplate in the correct version may require significant eccentric reaming, which further medializes the joint line and results in greater rotator cuff muscle shortening. To restore the joint line, bone graft may be required, though it is associated with additional risks. As an alternative solution, augmented glenoid baseplates offer the potential to restore the joint line and improve rotator cuff muscle tensioning without the need for eccentric reaming or supplemental bone graft. To that end, this computer analysis quantifies the rotator cuff muscle length for standard and augmented rTSA when used in a normal and posteriorly worn glenoid. These results demonstrate that shortening of the rotator cuff occurred for both the standard and posterior augmented reverse shoulder designs with additional muscle shortening occurring in scapula with posteriorly worn glenoids. More anatomic rotator cuff muscle tensioning was observed with augmented glenoid baseplates. The use of posterior augmented glenoid baseplates has the potential to improve stability and better restore active internal and external rotation, a current limitation of rTSA. However, clinical follow-up is necessary to confirm these favorable biomechanical results.
Deeb, George R; Laskin, Daniel M; Deeb, Janina Golob
2017-03-01
The purpose of this study was to confirm the efficiency of using a lateral ramus block graft taken at the time of impacted mandibular third molar removal for horizontal ridge augmentation and implant placement. Ten patients had grafts obtained from the lateral aspect of the mandible during impacted third molar removal and placed in areas of horizontal ridge deficiency. Measurements made on cone-beam computerized tomograms after 4 months showed gains of 2.7 to 3.5 mm and 16 implants were placed successfully. In patients with impacted third molars requiring dental implants, simultaneous harvest of a lateral block bone graft is an efficient way of obtaining bone for horizontal ridge augmentation. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Zijderveld, Steven A; Zerbo, Ilara R; van den Bergh, Johan P A; Schulten, Engelbert A J M; ten Bruggenkate, Chris M
2005-01-01
A prospective human clinical study was conducted to determine the clinical and histologic bone formation ability of 2 graft materials, a beta-tricalcium phosphate (Cerasorb; Curasan, Kleinostheim, Germany) and autogenous chin bone, in maxillary sinus floor elevation surgery. Ten healthy patients underwent a bilateral (n = 6) or unilateral (n = 4) maxillary sinus floor elevation procedure under local anesthesia. In each case, residual posterior maxillary bone height was between 4 and 8 mm. In cases of bilateral sinus floor elevation, the original bone was augmented with a split-mouth design with 100% beta-tricalcium phosphate on the test side and 100% chin bone on the contralateral control side. The unilateral cases were augmented with 100% beta-tricalcium phosphate. After a healing period of 6 months, ITI full body screw-type implants (Straumann, Waldenburg, Switzerland) were placed. At the time of implant surgery, biopsy samples were removed with a 3.5-mm trephine drill. Sixteen sinus floor elevations were performed. Forty-one implants were placed, 26 on the test side and 15 on the control side. The clinical characteristics at the time of implantation differed, especially regarding clinical appearance and drilling resistance. The increase in height was examined radiographically prior to implantation and was found to be sufficient in all cases. After a mean of nearly 1 year of follow-up, no implant losses or failures had occurred. The promising clinical results of the present study and the lack of implant failures are probably mainly the result of requiring an original bone height of at least 4 mm at the implant location. Although autogenous bone grafting is still the gold standard, according to the clinical results, the preimplantation sinus floor elevation procedure used, which involved a limited volume of beta-tricalcium phosphate, appeared to be a clinically reliable procedure in this patient population.
Zuffetti, Francesco; Esposito, Marco; Capelli, Matteo; Galli, Fabio; Testori, Tiziano; Del Fabbro, Massimo
2013-01-01
To evaluate whether grafting with additional anorganic bovine bone to augment horizontally the buccal plate (internal and external grafting [IEG]) at single post-extractive implants preserves the alveolar ridge, improving aesthetics, better than internal socket grafting alone (ISGA). A total of 78 patients, treated in four Italian private practices, requiring a single immediate post-extractive implant, having at least 1 mm of implant-to-buccal bone gap after implant insertion and a preserved buccal bone, had the residual bone-to-implant gap filled with anorganic bovine bone. Thirty-nine randomly allocated patients received additional buccal horizontal augmentation of about 2 mm thickness with the same bone substitute (IEG group) covered with collagen resorbable membranes. Implants were submerged for 4 months before being loaded with provisional acrylic crowns. Definitive crowns were delivered after 6 months. Outcome measures were crown/implant failures, complications and aesthetics recorded by blinded assessors 6 months after initial loading, at delivery of definitive crowns. Six months after initial loading, 8 patients dropped out, did not complete the treatment or were treated twice and therefore had to be excluded (4 from each group). There were no statistically significant differences for implant failures and complications between the two groups. Two implants failed in the IEG group versus 1 in the ISGA group. Four complications occurred, 2 in each group. The mean implant aesthetic score (IAS) was 7.8 at ISGA sites and 8.0 at IEG sites. There were no statistically significant differences between the two groups (P = 0.492; difference 0.2 mm; 95% CI -0.769, 0.369) for IAS score. There were no statistically significant differences in the outcomes between the centres. The use of adjunctive anorganic bovine bone placed buccally at preserved buccal sites of immediate post-extractive implants may not improve the aesthetic outcome, however additional research is needed to confirm or reject these preliminary findings.
Plakwicz, Paweł; Czochrowska, Ewa Monika; Milczarek, Anna; Zadurska, Malgorzata
2014-01-01
A retained permanent mandibular first molar caused arrested development and a defect of the alveolar bone in a 16-year-old girl. Extraction of the ankylosed tooth was immediately followed by autotransplantation of the developing maxillary third molar. At the 3-year follow-up examination the interproximal bone level at the autotransplanted molar was equal to that of the neighboring teeth. Cone beam computed tomography showed bone at the labial aspect of the transplant. The eruption of the autotransplanted tooth stimulated vertical alveolar bone development and repaired the bone defect. Additionally, there was closure of the posterior open bite that was initially present at the ankylosed molar site.
Ho, Kuo-Ning; Lee, Sheng-Yang; Huang, Haw-Ming
2017-08-03
The purpose of this study was to evaluate the feasibility of using damping ratio (DR) analysis combined with resonance frequency (RF) and periotest (PTV) analyses to provide additional information about natural tooth stability under various simulated degrees of alveolar vertical bone loss and various root types. Three experimental tooth models, including upper central incisor, upper first premolar, and upper first molar were fabricated using Ti6Al4V alloy. In the tooth models, the periodontal ligament and alveolar bone were simulated using a soft lining material and gypsum, respectively. Various degrees of vertical bone loss were simulated by decreasing the surrounding bone level apically from the cementoenamel junction in 2-mm steps incrementally downward for 10 mm. A commercially available RF analyzer was used to measure the RF and DR of impulse-forced vibrations on the tooth models. The results showed that DRs increased as alveolar vertical bone height decreased and had high coefficients of determination in the linear regression analysis. The damping ratio of the central incisor model without a simulated periodontal ligament were 11.95 ± 1.92 and 27.50 ± 0.67% respectively when their bone levels were set at 2 and 10 mm apically from the cementoenamel junction. These values significantly changed to 28.85 ± 2.54% (p = 0.000) and 51.25 ± 4.78% (p = 0.003) when the tooth model was covered with simulated periodontal ligament. Moreover, teeth with different root types showed different DR and RF patterns. Teeth with multiple roots had lower DRs than teeth with single roots. Damping ratio analysis combined with PTV and RF analysis provides more useful information on the assessment of changes in vertical alveolar bone loss than PTV or RF analysis alone.
Interactions between MSCs and Immune Cells: Implications for Bone Healing
Kovach, Tracy K.; Dighe, Abhijit S.; Lobo, Peter I.; Cui, Quanjun
2015-01-01
It is estimated that, of the 7.9 million fractures sustained in the United States each year, 5% to 20% result in delayed or impaired healing requiring therapeutic intervention. Following fracture injury, there is an initial inflammatory response that plays a crucial role in bone healing; however, prolonged inflammation is inhibitory for fracture repair. The precise spatial and temporal impact of immune cells and their cytokines on fracture healing remains obscure. Some cytokines are reported to be proosteogenic while others inhibit bone healing. Cell-based therapy utilizing mesenchymal stromal cells (MSCs) is an attractive option for augmenting the fracture repair process. Osteoprogenitor MSCs not only differentiate into bone, but they also exert modulatory effects on immune cells via a variety of mechanisms. In this paper, we review the current literature on both in vitro and in vivo studies on the role of the immune system in fracture repair, the use of MSCs in the enhancement of fracture healing, and interactions between MSCs and immune cells. Insight into this paradigm can provide valuable clues in identifying cellular and noncellular targets that can potentially be modulated to enhance both natural bone healing and bone repair augmented by the exogenous addition of MSCs. PMID:26000315
Mechanical model of orthopaedic drilling for augmented-haptics-based training.
Pourkand, Ashkan; Zamani, Naghmeh; Grow, David
2017-10-01
In this study, augmented-haptic feedback is used to combine a physical object with virtual elements in order to simulate anatomic variability in bone. This requires generating levels of force/torque consistent with clinical bone drilling, which exceed the capabilities of commercially available haptic devices. Accurate total force generation is facilitated by a predictive model of axial force during simulated orthopaedic drilling. This model is informed by kinematic data collected while drilling into synthetic bone samples using an instrumented linkage attached to the orthopaedic drill. Axial force is measured using a force sensor incorporated into the bone fixture. A nonlinear function, relating force to axial position and velocity, was used to fit the data. The normalized root-mean-square error (RMSE) of forces predicted by the model compared to those measured experimentally was 0.11 N across various bones with significant differences in geometry and density. This suggests that a predictive model can be used to capture relevant variations in the thickness and hardness of cortical and cancellous bone. The practical performance of this approach is measured using the Phantom Premium haptic device, with some required customizations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Amoian, Babak; Seyedmajidi, Maryam; Safipor, Hamidreza; Ebrahimipour, Sediqe
2016-01-01
Aims and Objectives: Alveolar ridge reduction caused after tooth extraction can be minimized through ridge preservation and application of graft materials. The aim of this study was to compare the histologic and histomorphometric aspects of bone particulated allografts, Cenobone and ITB-MBA, in the reconstruction of vertical alveolar ridge after maxillary sinus augmentation. Materials and Methods: This clinical trial was performed among 20 patients. The participants were randomly divided into two groups of 10 participants. The first group received Cenobone and the second group received ITB-MBA. Tissue samples were prepared 6 months later at the time of implant installation and after successful maxillary sinus floor augmentation. Tissue sections were examined under a light microscope. The data were analyzed by Chi-square and t-test. Results: The mean trabecular thickness of the samples in the Cenobone group was 13.61 ± 7.47 μm compared to 13.73 ± 7.37 μm in the ITB-MBA group (P = 0.93). A mild inflammation process (Grade 1) was detected in both the groups. The amount of remaining biomaterial in the Cenobone group was estimated to be 8 ± 19% vs. 7 ± 12% in the ITB-MBA group (P = 0.30). Bone formation was reported 49.71% in the Cenobone group vs. 40.76% in the ITB-MBA group (P = 0.68). The mean newly formed vessel in the Cenobone group was 0.64 ± 0.7 vs. 1.5 ± 2.3 in the ITB-MBA group (P = 0.14). Conclusions: There was no significant difference between the two groups of patients regarding trabecular thickness, remaining biomaterial allograft, and the density of blood vessels after sinus floor elevation; hence, there was no difference between the two groups regarding implant outcome. More designed studies as randomized controlled trials and controlled clinical trials, which evaluate the long-term implant outcome; comparing the different bone graft materials is also required to improve evidence on survival and success rate. PMID:27891316
Goetzen, Michael; Hofmann-Fliri, Ladina; Arens, Daniel; Zeiter, Stephan; Stadelmann, Vincent; Nehrbass, Dirk; Richards, R Geoff; Blauth, Michael
2015-01-01
Augmentation of implants with polymethylmethacrylate (PMMA) bone cement in osteoporotic fractures is a promising approach to increase implant purchase. Side effects of PMMA for the metaphyseal bone, particularly for the adjacent subchondral bone plate and joint cartilage, have not yet been studied. The following experimental study investigates whether subchondral PMMA injection compromises the homeostasis of the subchondral bone and/or the joint cartilage.Ten mature sheep were used to simulate subchondral PMMA injection. Follow-ups of 2 (4 animals) and 4 (6 animals) months were chosen to investigate possible cartilage damage and subchondral plate alterations in the knee. Evaluation was completed by means of high-resolution peripheral quantitative computed tomography (HRpQCT) imaging, histopathological osteoarthritis scoring, and determination of glycosaminoglycan content in the joint cartilage. Results were compared with the untreated contralateral knee and statistically analyzed using nonparametric tests.Evaluation of the histological osteoarthritis score revealed no obvious cartilage damage for the treated knee; median histological score after 2 months 0 (range 4), after 4 months 1 (range 5). There was no significant difference when compared with the untreated control site after 2 and 4 months (P = 0.23 and 0.76, respectively). HRpQCT imaging showed no damage to the metaphyseal trabeculae. Glycosaminoglycan measurements of the treated joint cartilage after 4 months revealed no significant difference compared with the untreated cartilage (P = 0.24).The findings of this study support initial clinical observation that PMMA implant augmentation of metaphyseal fractures appears to be a safe procedure for fixation without harming the subchondral bone plate and adjacent joint cartilage.
Roukis, Thomas S; Kang, Rachel B
2016-01-01
Tibiotalocalcaneal arthrodesis stabilized with retrograde intramedullary nail fixation is associated with a high incidence of complications. This is especially true when performed with a bulk structural allograft and poor soft tissue quality. In select high-risk limb salvage cases, we have augmented tibiotalocalcaneal arthrodesis procedures stabilized using retrograde intramedullary nail fixation with a vascularized pedicled fibular onlay bone graft. We present the data from 10 such procedures with a mean follow-up period of 10.9 ± 5.4 (range 6 to 20) months involving 10 patients (9 males and 1 female). The etiology was avascular osteonecrosis of the talus and/or distal tibia and a resultant large volume cavitary bone defect (8 ankles), severe equinocavovarus contracture (1 ankle), and failed total ankle replacement (1 ankle). A frozen femoral head bulk allograft was used twice, a whole frozen talus allograft once, and a freeze-dried calcaneal allograft once. The fibula was mobilized with intact musculoperiosteal perforating branches of the peroneal artery as a vascularized pedicle onlay bone graft fixated with a screw and washer construct. The mean fibular graft length was 10.2 ± 2.3 cm. The mean interval to radiographic fusion was 2.6 ± 0.6 months and to weightbearing was 3.1 ± 1.4 months. Two stable bulk allograft-host bone and fibular graft-host bone nonunions occurred after intramedullary nail hardware failure. Tibiotalocalcaneal arthrodesis augmented by vascularized pedicled fibular graft stabilized with retrograde compression intramedullary nail fixation offers a reliable option for complex salvage situations when few other options exist. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bazlov, V. A.; Mamuladze, T. Z.; Pavlov, V. V.; Prohorenko, V. M.; Sadovoy, M. A.; Fomichev, N. G.; Efimenko, M. V.; Mamonova, E. V.; Aronov, A. M.
2017-09-01
The paper proposed a method of replacement of bone defects of a basin with individual 3D-printed implants of medical titanium LPW-TI64-GD23-TYPE5 ASTM F136. The design of the implant was carried out in view of determining the density of the surrounding bone tissue by Hounsfield's scale. We used the method of volume printing by type multiselecting laser sintering. A clinical example of using the method of individual contouring of the defect of bones of a basin with the assessment of bone density by Hounsfield's scale was given. The method of individual contouring of the defect of the basin bones with the assessment of bone density by Hounsfield's scale enables the surgeon to more accurately determine the tactics of surgical intervention: opting for bone grafting or the use of augmented. In the case of manufacturing an individual 3D augment, this method gives the possibility to adjust its geometry taking into account the density of the bone tissue, thereby giving it additional stability. If there is a need for screws—we can preadjust the length and direction of stroke so that the main part of the screw might pass in the support ability area of the bone tissue. We believe that the software and the approach to preoperative planning we have used can make surgery more convenient for the surgeon and personnel of the medical institution.
Pan, Hsin Chuan; Lee, Soonchul; Ting, Kang; Shen, Jia; Wang, Chenchao; Nguyen, Alan; Berthiaume, Emily A; Zara, Janette N; Turner, A Simon; Seim, Howard B; Kwak, Jin Hee; Zhang, Xinli; Soo, Chia
2017-07-01
Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Hartmann, Amely; Welte-Jzyk, Claudia; Seiler, Marcus; Daubländer, Monika
2017-08-01
Neurophysiological changes after oral and maxillofacial surgery remain one of the topics of current research. This study evaluated if implant placement associated with augmentation procedures increases the possibility of sensory disturbances or result in impaired quality of life during the healing period. Patients who had obtained an implant placement in the lower jaw in combination with augmentation procedures were examined by implementing a comprehensive Quantitative Sensory Testing (QST) protocol for extra- and intraoral use. As augmentation procedures, we used Guided Bone Regeneration (Group A) and Customized Bone Regeneration (Group B) techniques. Patients were tested bilaterally at the chin and mucosal lower lip. Results were compared to a group without augmentation procedures (Group C). Patients' quality of life and psychological comorbidity after the surgical procedures was assessed with the Oral Health Impact Profile and the Hospital Anxiety and Depression Scale. For groups A (n = 20) and B (n = 8), mechanical QST parameters showed no significant differences in all qualities of the inferior alveolar nerve compared to the contralateral side and compared to the nonaugmentation control group (n = 32) as well. Evaluation of quality of life and psychological factors showed no statistical differences. Augmentation procedures did not increase sensory disturbances, indicating no changes in the neurophysiological pathways. Extended augmentation procedures did not lead to sensory changes either or result in an impaired quality of life or modified anxiety and depression scores. © 2017 Wiley Periodicals, Inc.
Yoon, Kyung-Ho; Kim, Su-Gwan; Lee, Jeong-Hoon; Suh, Seung-Woo
2011-10-01
The effect of stress levels and distributions around the internal nonsubmerged type implants after vertical bone resorption was investigated in this study. An HSII implant was placed in 4 cylindrical alveolar bone models with differing degrees of thread exposures. The load applied to each implant was von Mises stress and principal stress, 250 N in axial direction and 30 degrees lateral pressure. The difference in the load between the bone and the connective portion of the implant was obtained using ANSYS analysis. Bone loss in the cervical area of the implant was more obvious under lateral pressure. When more threads were exposed, bone level decreased and the maximum load applied on the fixture increased. It was concluded that higher bone level has a biomechanical advantage with respect to stress concentration.
Scotti, Roberto; Pellegrino, Gerardo; Marchetti, Claudio; Corinaldesi, Guiseppe; Ciocca, Leonardo
2010-01-01
To test if using a CAD/CAM system might reduce the necessity of bone augmentation in patients with atrophic maxillary arches before implant therapy. Twenty male and female patients consecutively scheduled for bone augmentation of the jaw before implant surgery were included in this study, with a total of 29 jaws (maxillary and mandibular) to analyze for the implant-supported fixed prosthesis group and 19 maxillary arches for the implant-supported removable prosthesis group. NobelGuide System (Nobel Biocare), Autocad System (Autodesk), and routine manual CT measurements of available bone were used in this study. The total results of the mean values of the fixed prosthesis group plus the mean values of the removable prosthesis group showed a statistically significant difference between the NobelGuide intervention score and both manual (P = .004) and Autocad (P = .001) measurements. The NobelGuide System represents a viable diagnostic device to reduce the entity or avoid bone reconstructive surgery before implant placements in the atrophic maxilla and mandible.
Radionuclide bone imaging in the evaluation of osseous allograft systems. Scientific report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, J.F.; Cagle, J.D.; Stevenson, J.S.
1975-02-01
Evaluation of the progress of osteogenic activity in mandibular bone grafts in dogs by a noninvasive, nondestructive radionuclide method is feasible. The method provides a meaningful sequential interpretation of osseous repair more sensitive than conventional radiography. It is presumed that accumulating hydroxyapatite is being labelled by the imaging agent technetium diphosphonate. The osseous allograft systems studied were comparable to or exceeded autografts in their repair activity in mandibular discontinuity defects as judged by radionuclide imaging. A lyophilized mandibular allograft segment augmented with autologous cancellous marrow was more active than autograft controls at 3 and 6 weeks and was the mostmore » active system studied. Allograft segments augmented with lyophilized crushed cortical allogeneic bone particles were equal to controls at 3 weeks and more active than controls at 6 weeks. Lyophilized crushed cortical allogeneic bone particles retained in a Millipore filter while not clinically stable at 6 weeks did show osteogenic activity equal to control autografts at this interval. (GRA)« less
Kumar, Sanjay; Ponnazhagan, Selvarangan
2012-04-01
Although the number of mesenchymal stem cells (MSC) in the bone marrow is sufficient to maintain skeletal homeostasis, in osteopenic pathology, aggravated osteoclast activity or insufficient osteoblast numbers ensue, affecting normal bone remodeling. Most of the currently available therapies are anti-resorptive with limited osteogenic potential. Since mobilization of stem/progenitors from the BM is a prerequisite for their participation in tissue repair, amplification of endogenous stem cells may provide an alternative approach in these conditions. The present study determined the potential of MSC mobilization in vivo, using combinations of different growth factors with the CXCR4 antagonist, AMD3100, in a mouse model of segmental bone defect. Results indicated that among several factors tested IGF1 had maximum proliferative ability of MSC in vitro. Results of the in vivo studies indicated that the combination of IGF1 and AMD3100 provided significant augmentation of bone growth as determined by DXA, micro-CT and histomorphometry in mice bearing segmental fractures. Further, characterization of MSC isolated from mice treated with IGF1 and AMD3100 indicated Akt/PI3K, MEK1/2-Erk1/2 and smad2/3 as key signaling pathways mediating this effect. These data indicate the potential of in vivo stem cell mobilization as a novel alternative for bone healing. Copyright © 2012 Elsevier Inc. All rights reserved.
A novel role for cathepsin K in periosteal osteoclast precursors during fracture repair.
Walia, Bhavita; Lingenheld, Elizabeth; Duong, Le; Sanjay, Archana; Drissi, Hicham
2018-03-01
Osteoporosis management is currently centered around bisphosphonates, which inhibit osteoclast (OC) bone resorption but do not affect bone formation. This reduces fracture risk, but fails to restore healthy bone remodeling. Studies in animal models showed that cathepsin K (CatK) inhibition by genetic deletion or chemical inhibitors maintained bone formation while abrogating resorption during bone remodeling and stimulated periosteal bone modeling. Recently, periosteal mononuclear tartrate-resistant acid phosphatase-positive (TRAP + ) osteoclast precursors (OCPs) were shown to augment angiogenesis-coupled osteogenesis. CatK gene deletion increased osteoblast differentiation via enhanced OCP and OC secretion of platelet-derived growth factor (PDGF)-BB and sphingosine 1 phosphate. The effects of periosteum-derived OCPs on bone remodeling are unknown, particularly with regard to fracture repair. We hypothesized that periosteal OCPs derived from CatK-null (Ctsk -/- ) mice may enhance periosteal bone formation during fracture repair. We found fewer periosteal OCPs in Ctsk -/- mice under homeostatic conditions; however, after fracture, this population increased in number relative to that seen in wild-type (WT) mice. Enhanced TRAP staining and greater expression of PDGF-BB were observed in fractured Ctsk -/- femurs relative to WT femurs. This early pattern of augmented PDGF-BB expression in Ctsk -/- mice may contribute to improved fracture healing by enhancing callus mineralization in Ctsk -/- mice. © 2018 New York Academy of Sciences.
A new synthetic granular calcium phosphate compound induces new bone in a sinus lift rabbit model.
Trbakovic, Amela; Hedenqvist, Patricia; Mellgren, Torbjörn; Ley, Cecilia; Hilborn, Jöns; Ossipov, Dmitri; Ekman, Stina; Johansson, Carina B; Jensen-Waern, Marianne; Thor, Andreas
2018-03-01
The aim of this study was to investigate if a synthetic granular calcium phosphate compound (CPC) and a composite bisphosphonate-linked hyaluronic acid-calcium phosphate hydrogel (HABP·CaP) induced similar or more amount of bone as bovine mineral in a modified sinus lift rabbit model. Eighteen adult male New Zeeland White rabbits, received randomly one of the two test materials on a random side of the face, and bovine mineral as control on the contralateral side. In a sinus lift, the sinus mucosa was elevated and a titanium mini-implant was placed in the alveolar bone. Augmentation material (CPC, HABP·CaP or bovine bone) was applied in the space around the implant. The rabbits were euthanized three months after surgery and qualitative and histomorphometric evaluation were conducted. Histomorphometric evaluation included three different regions of interest (ROIs) and the bone to implant contact on each installed implant. Qualitative assessment (p = <.05), histomorphometric evaluations (p = < .01), and implant incorporation (p = <.05) showed that CPC and bovine mineral induced similar amount of bone and more than the HABP·CaP hydrogel. CPC induced similar amount of bone as bovine mineral and both materials induced more bone than HABP·CaP hydrogel. The CPC is suggested as a synthetic alternative for augmentations in the maxillofacial area. Copyright © 2017 Elsevier Ltd. All rights reserved.
Postl, L K; Ahrens, P; Beirer, M; Crönlein, M; Imhoff, A B; Foehr, P; Burgkart, R; Braun, C; Kirchhoff, Chlodwig
2016-08-01
Osteoporosis is a highly focused issue in current scientific research and clinical treatment. Especially in rotator cuff repair, the low bone quality of patients suffering from osteoporosis is an important issue. In this context, non-biological solutions using PMMA for anchor augmentation have been developed in the recent past. The aim of this study was to evaluate whether augmentation of suture anchors using bio-absorbable osteoconductive fiber-reinforced calcium phosphate results in improved failure load of suture anchors as well. Altogether 24 suture anchors (Corkscrew FT 1 Suture Anchors, Arthrex, Naples, FL, USA) were evaluated by applying traction until pullout in 12 paired fresh frozen human cadaver humeri using a servo-hydraulic testing machine. Inclusion criteria were an age of more than 64 years, a macroscopically intact RC and an intact bone. The anchors were evaluated at the anterolateral and posteromedial aspect of the greater tuberosity. 12 suture anchors were augmented and 12 suture anchors were conventionally inserted. The failure load was significantly enhanced by 66.8 % by the augmentation method. The fiber-reinforced calcium phosphate could be easily injected and applied. The bio-absorbable cement in this study could be a promising augmentation material for RC reconstructions, but further research is necessary-the material has to be evaluated in vivo.
El Hage, Marc; Abi Najm, Semaan; Bischof, Mvark; Nedir, Rabah; Carrel, Jean-Pierre; Bernard, Jean-Pierre
2012-06-01
The aims of this study were (1) to evaluate the vertical shrinkage percentage of nanocrystalline hydroxyapatite embedded in silica gel used for maxillary sinus floor elevation (SFE) and (2) to determine the survival rate of the implants 1 year after placement in the healed grafted sinuses. Eleven maxillary sinuses were augmented in eight patients with NanoBone. After a healing period averaging 14.42 months, 19 implants were placed and followed up with clinical and radiographic evaluation. Panoramic radiographs were taken immediately after SFE and at 12 months after grafting. Measurements of changes in height were made by a computerized measuring technique using an image editing software. The mean graft height shrinkage percentage at 12 months after surgery was 8.84% (±5.32). One implant was lost before loading. All the 18 remaining osseointegrated implants received the prosthetic rehabilitation and were controlled after 3 months of functional loading. The implant survival rate at the 1-year interval was 94.74%. A 100% NanoBone alloplastic graft used in lateral SFE procedures presented limited height shrinkage. Implants placed in these grafted sinuses showed survival rates similar to those found in published data. These results should be interpreted cautiously considering the study's reduced sample size.
Pyriform Aperture Augmentation as An Adjunct to Rhinoplasty.
Yaremchuk, Michael J; Vibhakar, Dev
2016-01-01
Skeletal deficiency in the central midface impacts nasal aesthetics. This lack of lower face projection can be corrected by alloplastic augmentation of the pyriform aperture. Creating convexity in the deficient midface will make the nose seem less prominent. Augmentation of the pyriform aperture is, therefore, often a useful adjunct during the rhinoplasty procedure. Augmenting the skeleton in this area can alter the projection of the nasal base, the nasolabial angle, and the vertical plane of the lip. The implant design and surgical techniques described here are extensions of others' previous efforts to improve paranasal aesthetics. Copyright © 2016 Elsevier Inc. All rights reserved.
Osteotomy in direct sinus lift. A comparative study of the rotary technique and ultrasound
Peñarrocha-Diago, Miguel; Sanchez-Recio, Cristina; Peñarrocha-Oltra, David; Romero-Millán, Javier
2012-01-01
Purpose: The present study investigates sinus membrane rupture in direct maxillary sinus lift with the rotary technique and with ultrasound, examining the survival of implants placed after sinus augmentation, and analyzing the bone gain obtained after the operation and 12 months after placement of the prosthetic restoration. Material and Methods: A retrospective study was made of 45 patients requiring maxillary sinus lift or augmentation for implant-prosthetic rehabilitation. Use was made of the hand piece and ostectomy drills for the rotary technique, and of specific tips for ultrasound. The implant success criteria were based on those developed by Buser. The bone gain obtained as a result of sinus lift was calculated from the postoperative panoramic X-rays. Results: A total of 57 direct elevations of the maxillary sinus were carried out: 32 with the rotary technique and 25 with ultrasound. Perforations of Schneider’s membrane with the rotary technique and ultrasound occurred in 7% and 1.7% of the cases, respectively, with membrane integrity being preserved in 91.2%. Of the 100 implants placed, 5 failed after one year of follow-up in the rotary technique group, while one implant failed in the ultrasound group. The rotary technique in turn afforded a bone gain of 5.9 mm, versus 6.7 mm with ultrasound. Conclusions: Perforations of the membrane sinusal in direct lift were more frequent with the rotary technique (7%) than with ultrasound (1.7%). Implant survival and bone gain were both greater when ultrasound was used. Key words:Bone sectioning, maxillary sinus augmentation, piezosurgery. PMID:22143735
Troedhan, Angelo; Schlichting, Izabela; Kurrek, Andreas; Wainwright, Marcel
2014-01-01
Implant-Insertion-Torque-Value (ITV) proved to be a significant clinical parameter to predict long term implant success-rates and to decide upon immediate loading. The study evaluated ITVs, when four different and commonly used biomaterials were used in sinuslift-procedures compared to natural subantral bone in two-stage-implant-procedures. The tHUCSL-INTRALIFT-method was chosen for sinuslifting in 155 sinuslift-sites for its minimal invasive transcrestal approach and scalable augmentation volume. Four different biomaterials were inserted randomly (easy-graft CRYSTAL n = 38, easy-graft CLASSIC n = 41, NanoBone n = 42, BioOss n = 34), 2 ccm in each case. After a mean healing period of 8,92 months uniform tapered screw Q2-implants were inserted and Drill-Torque-Values (DTV) and ITV were recorded and compared to a group of 36 subantral sites without need of sinuslifting. DTV/ITV were processed for statistics by ANOVA-tests. Mean DTV/ITV obtained in Ncm were: Control Group 10,2/22,2, Bio-Oss 12,7/26,2, NanoBone 17,5/33,3, easy-graft CLASSIC 20,3/45,9, easy-graft CRYSTAL 23,8/56,6 Ncm, significance-level of differences throughout p < 0,05. Within the limits of this study the results suggest self-hardening solid-block-like bone-graft-materials to achieve significantly better DTV/ITV than loose granulate biomaterials for its suspected improvement of vascularization and mineralization of the subantral scaffold by full immobilization of the augmentation site towards pressure changes in the human sinus at normal breathing. PMID:25073446
Reichert, Christoph; Wenghoefer, Matthias; Kutschera, Eric; Götz, Werner; Jäger, Andreas
2014-01-01
Gingival invaginations develop after tooth extraction and subsequent orthodontic space closure. Aetiological factors and long-term effects of gingival invaginations on oral health are nearly unknown. In addition, preventive or therapeutic strategies are rare. This prospective clinical study employing the split mouth technique was performed to investigate the effect of extraction socket augmentation with a synthetic nanocrystalline hydroxyapatite (NanoBone(®) Artoss, Rostock, Germany) on the incidence and degree of gingival invaginations. A total of 10 orthodontic patients with need for symmetric premolar extractions offering a total of 28 extractions were included in this trial. The study plan provided one extraction site to be augmented with synthetic nanocrystalline hydroxyapatite (NanoBone(®)), the other served as control. After primary wound healing, space closure was performed under defined biomechanical conditions. After space closure was accomplished, occurrence and degree of gingival invaginations as well as probing depths of the adjacent teeth mesial and distal to the extractions were determined and dental radiographs were taken. The degree of gingival invaginations and probing depths mesial and distal of the extraction were significantly reduced on NanoBone(®) augmented extraction sites. In addition, 70% of the radiographs revealed translucent and hyperdense areas on the intervention side after space closure. Apical root resorption was found in 2 patients on both the NanoBone(®) side and the control side. Ridge preservation with NanoBone(®) appeared to reduce the severity of gingival invaginations. Further investigation on long-term effects is mandatory to eliminate the appearance of adverse effects.
Troedhan, Angelo; Schlichting, Izabela; Kurrek, Andreas; Wainwright, Marcel
2014-07-30
Implant-Insertion-Torque-Value (ITV) proved to be a significant clinical parameter to predict long term implant success-rates and to decide upon immediate loading. The study evaluated ITVs, when four different and commonly used biomaterials were used in sinuslift-procedures compared to natural subantral bone in two-stage-implant-procedures. The tHUCSL-INTRALIFT-method was chosen for sinuslifting in 155 sinuslift-sites for its minimal invasive transcrestal approach and scalable augmentation volume. Four different biomaterials were inserted randomly (easy-graft CRYSTAL n = 38, easy-graft CLASSIC n = 41, NanoBone n = 42, BioOss n = 34), 2 ccm in each case. After a mean healing period of 8,92 months uniform tapered screw Q2-implants were inserted and Drill-Torque-Values (DTV) and ITV were recorded and compared to a group of 36 subantral sites without need of sinuslifting. DTV/ITV were processed for statistics by ANOVA-tests. Mean DTV/ITV obtained in Ncm were: Control Group 10,2/22,2, Bio-Oss 12,7/26,2, NanoBone 17,5/33,3, easy-graft CLASSIC 20,3/45,9, easy-graft CRYSTAL 23,8/56,6 Ncm, significance-level of differences throughout p < 0,05. Within the limits of this study the results suggest self-hardening solid-block-like bone-graft-materials to achieve significantly better DTV/ITV than loose granulate biomaterials for its suspected improvement of vascularization and mineralization of the subantral scaffold by full immobilization of the augmentation site towards pressure changes in the human sinus at normal breathing.
Rearick, Timothy; Charlton, Timothy P; Thordarson, David
2014-08-01
Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been used to augment bone healing and fusion in a variety of orthopaedic conditions. However, there is a paucity of data evaluating the potential benefits of its use in foot and ankle surgery. The purpose of this study was to investigate the effectiveness and associated complications with the use of rhBMP-2 in high-risk foot and ankle fusions and fracture nonunions. A total of 51 cases in 48 patients undergoing foot and ankle fusions or fracture nonunion revisions and considered at high risk for subsequent nonunion were identified through a retrospective review in which rhBMP-2 was used as an augment for bone healing. Rate of union, time to union, and associated complications were evaluated. Forty-seven of 51 high-risk cases treated with rhBMP-2 united for a per-case union rate of 92.2%. Seventy-eight of 82 individual sites treated with rhBMP-2 united for a per-site union rate of 95.1%. Of the successful unions, the mean time to union was 111 days (95% confidence interval, 101-121). There were no statistically significant differences in time to union with regard to supplementation with bone allograft or autograft or size of rhBMP-2 kit used. Complication rates were low. rhBMP-2 was a safe and apparently effective adjunct to bony union in high-risk foot and ankle surgeries. Further randomized controlled trials are warranted. Level IV, retrospective case series. © The Author(s) 2014.
Lorenz, Jonas; Kubesch, Alica; Korzinskas, Tadas; Barbeck, Mike; Landes, Constantin; Sader, Robert A; Kirkpatrick, Charles J; Ghanaati, Shahram
2015-12-01
This study compared the material-specific tissue response to the synthetic, hydroxyapatite-based bone substitute material NanoBone (NB) with that of the xenogeneic, bovine-based bone substitute material Bio-Oss (BO). The sinus cavities of 14 human patients were augmented with NB and BO in a split-mouth design. Six months after augmentation, bone biopsies were extracted for histological and histomorphometric investigation prior to dental implant insertion. The following were evaluated: the cellular inflammatory pattern, the induction of multinucleated giant cells, vascularization, the relative amounts of newly formed bone, connective tissue, and the remaining bone substitute material. NB granules were well integrated in the peri-implant tissue and were surrounded by newly formed bone tissue. Multinucleated giant cells were visible on the surfaces of the remaining granules. BO granules were integrated into the newly formed bone tissue, which originated from active osteoblasts on their surface. Histomorphometric analysis showed a significantly higher number of multinucleated giant cells and blood vessels in the NB group compared to the BO group. No statistical differences were observed in regard to connective tissue, remaining bone substitute, and newly formed bone. The results of this study highlight the different cellular reactions to synthetic and xenogeneic bone substitute materials. The significantly higher number of multinucleated giant cells within the NB implantation bed seems to have no effect on its biodegradation. Accordingly, the multinucleated giant cells observed within the NB implantation bed have characteristics more similar to those of foreign body giant cells than to those of osteoclasts.
Fee, L
2017-04-21
Socket preservation maintains bone volume post-extraction in anticipation of an implant placement or fixed partial denture pontic site. This procedure helps compensate for the resorption of the facial bone wall. Socket preservation should be considered when implant placement needs to be delayed for patient or site-related reasons. The ideal healing time before implant placement is six months. Socket preservation can reduce the need for later bone augmentation. By reducing bone resorption and accelerating bone formation it increases implant success and survival. Biomaterials for socket grafting including autograft, allograft, xenograft and alloplast. A bone substitute with a low substitution rate is recommended.
Schopper, C; Moser, D; Wanschitz, F; Watzinger, F; Lagogiannis, G; Spassova, E; Ewers, R
1999-01-01
Sinus grafting, a popular and standard treatment for maxillary atrophy, uses a variety of grafting materials. In this study, specimens obtained 6 months after sinus grafting with Algipore were evaluated under light microscopy and showed osseoformation, xenograft degradation, and bone ingrowth into particles. Osteoblastic cells were embedded in the intracorpuscular bone matrix, which indicated that xenograft particles are an osseoconductive scaffold and stimulate matrix deposition. Acute inflammatory responses after insertion of Algipore did not occur. Particles were degraded during physiologic bone remodeling, and newly formed bone gradually replaced resorbed biomaterial.
Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De
2016-05-01
The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (P<0.05). Multivariate analysis showed that the main factors influencing bone cement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are independent risk factors associated with bone cement leakage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Xue; Department of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Seiryo-machi, Aoba-ku, Sendai 980-8575; Yu Zhiqian
2006-05-15
Nitrogen-containing bisphosphonates (N-BPs), powerful anti-bone-resorptive drugs, have inflammatory side effects, while histamine is not only an inflammatory mediator, but also an immuno-modifier. In murine models, a single intraperitoneal injection of an N-BP induces various inflammatory reactions, including the induction of the histamine-forming enzyme histidine decarboxylase (HDC) in tissues important in immune responses (such as liver, lungs, spleen, and bone marrow). Lipopolysaccharide (LPS) and the proinflammatory cytokines IL-1 and TNF are also capable of inducing HDC. We reported previously that in mice (i) the inflammatory actions of N-BPs depend on IL-1 (ii) N-BP pretreatment augments both LPS-stimulated IL-1 production and HDCmore » induction, and (iii) the co-administration of clodronate (a non-N-BP) with an N-BP inhibits the latter's inflammatory actions (including HDC induction). Here, we add the new findings that (a) pretreatment with alendronate (a typical N-BP) augments both IL-1- and TNF-induced HDC elevations, (b) LPS pretreatment augments the alendronate-induced HDC elevation, (c) co-administration of clodronate with alendronate abolishes these augmentations, (d) alendronate does not induce HDC in IL-1-deficient mice even if they are pretreated with LPS, and (e) alendronate increases IL-1{beta} in all tissues tested, but not in the serum. These results suggest that (1) there are mutual augmentations between alendronate and immuno-stimulants (IL-1, TNF, and LPS) in HDC induction, (2) tissue IL-1{beta} is important in alendronate-stimulated HDC induction, and (3) combination use of clodronate may have the potential to reduce the inflammatory effects of alendronate (we previously found that clodronate, conveniently, does not inhibit the anti-bone-resorptive activity of alendronate)« less
Nasal Floor Augmentation for the Reconstruction of the Atrophic Maxilla: A Case Series
El-Ghareeb, Moustafa; Pi-Anfruns, Joan; Khosousi, Mohammed; Aghaloo, Tara; Moy, Peter
2012-01-01
Purpose The severely atrophic edentulous maxilla imposes a challenge for dental implant rehabilitation. Nasal floor augmentation (NFA) is a method of augmenting bone height in the anterior maxilla. Autogenous bone has been commonly used as a graft material. Because of variations in results and lack of insufficient studies reporting the use of bone substitutes to graft the nasal floor, this study aims to evaluate the survival and success of dental implants placed in nasally grafted maxillae with osteoconductive bone substitutes. Materials and Methods Six patients with completely edentulous maxillae and inadequate height in the anterior to support implants underwent NFA. The nasal floor was exposed through an intraoral approach and grafted with osteoconductive bone graft substitutes. Twenty-four dental implants were placed, restored with a bar-retained implant-supported overdenture after a traditional healing period, and followed up after prosthetic loading. Patient satisfaction was evaluated with a questionnaire, and responses were expressed on a visual analog scale from 1 to 10. Bone levels were quantified radiographically based on a score ranging from 1 to 3, where 3 represented the highest bone support. Implants were evaluated for thread exposure and soft tissue health and were considered successful if the following criteria were met: absence of mobility; lack of symptoms; bone score of 3; and healthy peri-implant soft tissue without thread exposure. Results The age of patients ranged from 48 to 84 years, with a mean of 71.2 years. Three patients underwent NFA and simultaneous implant placement, whereas the other 3 had a mean healing period of 6.5 months before implant placement. Post-loading follow-up ranged from 4 to 29 months, with a mean of 14.2 months. The implant survival rate was 100%, with no complications. Ninety-three percent of the responses to the treatment satisfaction questionnaire had a score of 7 or greater. Bone scores ranged from 2 to 3, with 87.5% of implants having a score of 3 and 12.5% having a score of 2. None of the implants had a bone score of 1. Conclusions The use of osteoconductive bone substitutes for NFA, as shown in this small case series, is a reliable method for reconstruction of the anterior atrophic maxilla for implant-supported overdentures. PMID:22177805
Ejectors , * Thrust augmentation , * Thrust augmentor nozzles, *Mathematical models, Equations, Supersonic characteristics, Inlets, Exits, Aerodynamics, Vertical takeoff aircraft, Short takeoff aircraft, Workshops
Takeuchi, Yasuhiro
Disorders in bone and calcium metabolism associated with aging are based on secondary hyperparathyroidism due to impaired intestinal calcium absorption caused by insufficient vitamin D actions and augmented bone resorption due to sex hormone deficiency. Both of them are involved in the development of osteoporosis that increases risk of fractures. Therefore, the most important thing for management of disorders in bone and calcium metabolism associated with aging is to prevent fractures with appropriate drugs for osteoporosis.
Segmenting the Femoral Head and Acetabulum in the Hip Joint Automatically Using a Multi-Step Scheme
NASA Astrophysics Data System (ADS)
Wang, Ji; Cheng, Yuanzhi; Fu, Yili; Zhou, Shengjun; Tamura, Shinichi
We describe a multi-step approach for automatic segmentation of the femoral head and the acetabulum in the hip joint from three dimensional (3D) CT images. Our segmentation method consists of the following steps: 1) construction of the valley-emphasized image by subtracting valleys from the original images; 2) initial segmentation of the bone regions by using conventional techniques including the initial threshold and binary morphological operations from the valley-emphasized image; 3) further segmentation of the bone regions by using the iterative adaptive classification with the initial segmentation result; 4) detection of the rough bone boundaries based on the segmented bone regions; 5) 3D reconstruction of the bone surface using the rough bone boundaries obtained in step 4) by a network of triangles; 6) correction of all vertices of the 3D bone surface based on the normal direction of vertices; 7) adjustment of the bone surface based on the corrected vertices. We evaluated our approach on 35 CT patient data sets. Our experimental results show that our segmentation algorithm is more accurate and robust against noise than other conventional approaches for automatic segmentation of the femoral head and the acetabulum. Average root-mean-square (RMS) distance from manual reference segmentations created by experienced users was approximately 0.68mm (in-plane resolution of the CT data).
Allograft for maxillary sinus floor augmentation: a retrospective study of 90 cases.
Guerrero, Jaime S; Al-Jandan, Badr A
2012-04-01
The aim of this study is to demonstrate the clinical applicability and efficacy of an allograft for maxillary sinus augmentations in patients requiring placement of dental implants. Sixty consecutive patients underwent a total of 90 sinus augmentations. Twenty-nine were women and 31 men, with a mean age of 54 years. Twenty-six patients received a bilateral procedure and 34 unilateral. All cases were treated with the lateral wall technique. Allograft consisted of demineralized freeze-dried blocks in 6 cases, particulate in 82 cases, and a combination of both in 2 cases. In 30 patients, it was combined with platelet-rich plasma. A total of 84 implants were inserted. Bone samples of grafted areas were obtained in two patients for histological examination. Seventy-three implants were clinically successful at the reentry time. Eleven implants in seven patients were removed between 15 days and 6 months after their placement. Seven of these implants were replaced and received prostheses as well, for an overall postloading success rate of 95.2%. Follow-up for all patients after final restoration was between 12 and 96 months. Specimen's histological evaluation revealed bone formation and evidence of inflammatory infiltrate. Based on the findings of this study, it can be suggested that the use of the demineralized freeze-dried bone allograft from the Banco de Huesos y Tejidos Fundación Cosme y Damian for sinus augmentation is effective and constitutes a feasible therapeutic alternative for implant placement.
Spinato, Sergio; Galindo-Moreno, Pablo; Bernardello, Fabio; Zaffe, Davide
This retrospective study quantitatively analyzed the minimum prosthetic abutment height to eliminate bone loss after 4.7-mm-diameter implant placement in maxillary bone and how grafting techniques can affect the marginal bone loss in implants placed in maxillary areas. Two different implant types with a similar neck design were singularly placed in two groups of patients: the test group, with platform-switched implants, and the control group, with conventional (non-platform-switched) implants. Patients requiring bone augmentation underwent unilateral sinus augmentation using a transcrestal technique with mineralized xenograft. Radiographs were taken immediately after implant placement, after delivery of the prosthetic restoration, and after 12 months of loading. The average mesial and distal marginal bone loss of the control group (25 patients) was significantly more than twice that of the test group (26 patients), while their average abutment height was similar. Linear regression analysis highlighted a statistically significant inverse relationship between marginal bone loss and abutment height in both groups; however, the intercept of the regression line, both mesially and distally, was 50% lower for the test group than for the control group. The marginal bone loss was annulled with an abutment height of 2.5 mm for the test group and 3.0 mm for the control group. No statistically significant differences were found regarding marginal bone loss of implants placed in native maxillary bone compared with those placed in the grafted areas. The results suggest that the shorter the abutment height, the greater the marginal bone loss in cement-retained prostheses. Abutment height showed a greater influence in platform-switched than in non-platform-switched implants on the limitation of marginal bone loss.
Yu, Weilin; Sun, Tuan-Wei; Qi, Chao; Ding, Zhenyu; Zhao, Huakun; Zhao, Shichang; Shi, Zhongmin; Zhu, Ying-Jie; Chen, Daoyun; He, Yaohua
2017-01-01
Biomaterials with high osteogenic activity are desirable for sufficient healing of bone defects resulting from trauma, tumor, infection, and congenital abnormalities. Synthetic materials mimicking the structure and composition of human trabecular bone are of considerable potential in bone augmentation. In the present study, a zinc (Zn)-doped mesoporous hydroxyapatite microspheres (Zn-MHMs)/collagen scaffold (Zn-MHMs/Coll) was developed through a lyophilization fabrication process and designed to mimic the trabecular bone. The Zn-MHMs were synthesized through a microwave-hydrothermal method by using creatine phosphate as an organic phosphorus source. Zn-MHMs that consist of hydroxyapatite nanosheets showed relatively uniform spherical morphology, mesoporous hollow structure, high specific surface area, and homogeneous Zn distribution. They were additionally investigated as a drug nanocarrier, which was efficient in drug delivery and presented a pH-responsive drug release behavior. Furthermore, they were incorporated into the collagen matrix to construct a biomimetic scaffold optimized for bone tissue regeneration. The Zn-MHMs/Coll scaffolds showed an interconnected pore structure in the range of 100–300 μm and a sustained release of Zn ions. More importantly, the Zn-MHMs/Coll scaffolds could enhance the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Finally, the bone defect repair results of critical-sized femoral condyle defect rat model demonstrated that the Zn-MHMs/Coll scaffolds could enhance bone regeneration compared with the Coll or MHMs/Coll scaffolds. The results suggest that the biomimetic Zn-MHMs/Coll scaffolds may be of enormous potential in bone repair and regeneration. PMID:28392688
Yu, Weilin; Sun, Tuan-Wei; Qi, Chao; Ding, Zhenyu; Zhao, Huakun; Zhao, Shichang; Shi, Zhongmin; Zhu, Ying-Jie; Chen, Daoyun; He, Yaohua
2017-01-01
Biomaterials with high osteogenic activity are desirable for sufficient healing of bone defects resulting from trauma, tumor, infection, and congenital abnormalities. Synthetic materials mimicking the structure and composition of human trabecular bone are of considerable potential in bone augmentation. In the present study, a zinc (Zn)-doped mesoporous hydroxyapatite microspheres (Zn-MHMs)/collagen scaffold (Zn-MHMs/Coll) was developed through a lyophilization fabrication process and designed to mimic the trabecular bone. The Zn-MHMs were synthesized through a microwave-hydrothermal method by using creatine phosphate as an organic phosphorus source. Zn-MHMs that consist of hydroxyapatite nanosheets showed relatively uniform spherical morphology, mesoporous hollow structure, high specific surface area, and homogeneous Zn distribution. They were additionally investigated as a drug nanocarrier, which was efficient in drug delivery and presented a pH-responsive drug release behavior. Furthermore, they were incorporated into the collagen matrix to construct a biomimetic scaffold optimized for bone tissue regeneration. The Zn-MHMs/Coll scaffolds showed an interconnected pore structure in the range of 100-300 μm and a sustained release of Zn ions. More importantly, the Zn-MHMs/Coll scaffolds could enhance the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Finally, the bone defect repair results of critical-sized femoral condyle defect rat model demonstrated that the Zn-MHMs/Coll scaffolds could enhance bone regeneration compared with the Coll or MHMs/Coll scaffolds. The results suggest that the biomimetic Zn-MHMs/Coll scaffolds may be of enormous potential in bone repair and regeneration.
Ho, Ming-Hua; Yao, Chih-Jung; Liao, Mei-Hsiu; Lin, Pei-I; Liu, Shing-Hwa; Chen, Ruei-Ming
2015-01-01
Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline phosphatase and osteocalcin gene expressions. Our results suggest the potential of chitosan nanofiber scaffolds for therapy of bone diseases, including bone defects and bone fractures. PMID:26451104
Bone regeneration assessment by optical coherence tomography and MicroCT synchrotron radiation
NASA Astrophysics Data System (ADS)
Negrutiu, Meda L.; Sinescu, Cosmin; Canjau, Silvana; Manescu, Adrian; Topalá, Florin I.; Hoinoiu, Bogdan; Romînu, Mihai; Márcáuteanu, Corina; Duma, Virgil; Bradu, Adrian; Podoleanu, Adrian G.
2013-06-01
Bone grafting is a commonly performed surgical procedure to augment bone regeneration in a variety of orthopaedic and maxillofacial procedures, with autologous bone being considered as the "gold standard" bone-grafting material, as it combines all properties required in a bone-graft material: osteoinduction (bone morphogenetic proteins - BMPs - and other growth factors), osteogenesis (osteoprogenitor cells) and osteoconduction (scaffold). The problematic elements of bone regenerative materials are represented by their quality control methods, the adjustment of the initial bone regenerative material, the monitoring (noninvasive, if possible) during their osteoconduction and osteointegration period and biomedical evaluation of the new regenerated bone. One of the research directions was the interface investigation of the regenerative bone materials and their behavior at different time periods on the normal femoral rat bone. 12 rat femurs were used for this investigation. In each ones a 1 mm diameter hole were drilled and a bone grafting material was inserted in the artificial defect. The femurs were removed after one, three and six months. The defects repaired by bone grafting material were evaluated by optical coherence tomography working in Time Domain Mode at 1300 nm. Three dimensional reconstructions of the interfaces were generated. The validations of the results were evaluated by microCT. Synchrotron Radiation allows achieving high spatial resolution images to be generated with high signal-to-noise ratio. In addition, Synchrotron Radiation allows acquisition of volumes at different energies and volume subtraction to enhance contrast. Evaluation of the bone grafting material/bone interface with noninvasive methods such as optical coherence tomography could act as a valuable procedure that can be use in the future in the usual clinical techniques. The results were confirmed by microCT. Optical coherence tomography can be performed in vivo and can provide a qualitative and quantitative evaluation of the bone augmentation procedure.
The Biomechanical Role of Scaffolds in Augmented Rotator Cuff Tendon Repairs
2012-01-01
failure loads of a human dermal allograft rotator cuff augmentation. Arthroscopy 2008;24:20-4. doi:10.1016/j.arthro.2007.07.013 5. Bartolozzi A...of the cuff. J Bone Joint Surg Am 1991;73-A:982-9. 17. Ide J, Maeda S, Takagi K. A comparison of arthroscopic and open rotator cuff repair. Arthroscopy
Kurkcu, Mehmet; Benlidayi, M Emre; Cam, Burcu; Sertdemir, Yasar
2012-09-01
The choice of augmentation material is a crucial factor in sinus augmentation surgery. Bovine-derived hydroxyapatite (BHA) and beta-tricalcium phosphate (β-TCP) have been used successfully in sinus augmentation procedures. Choosing one of these materials for sinus augmentation is still controversial. The aim of this clinical study was to compare the biological performance of the new BHA graft material and the well-known synthetic β-TCP material in the sinus augmentation procedure. The study consisted of 23 patients (12 male and 11 female) who were either edentulous or partially edentulous in the posterior maxilla and required implant placement. A total of 23 two-step sinus-grafting procedures were performed. BHA was used in 13 patients, and β-TCP was used in 10 patients. After an average of 6.5 months of healing, bone biopsies were taken from the grafted areas. Undecalcified sections were prepared for histomorphometric analysis. The mean new bone formation was 30.13% ± 3.45% in the BHA group and 21.09% ± 2.86% in the β-TCP group (P = .001). The mean percentage of residual graft particle area was 31.88% ± 6.05% and 34.05% ± 3.01% for the BHA group and β-TCP group, respectively (P = .047). The mean percentage of soft-tissue area was 37.99% ± 5.92% in the BHA group and 44.86% ± 4.28% in the β-TCP group (P = .011). Both graft materials demonstrated successful biocompatibility and osteoconductivity in the sinus augmentation procedure. However, BHA appears to be more efficient in osteoconduction when compared with β-TCP.
Ting, Miriam; Rice, Jeremy G; Braid, Stanton M; Lee, Cameron Y S; Suzuki, Jon B
2017-06-01
The objective of this systemic review was to perform a comprehensive overview of systematic reviews and meta-analyses of the maxillary sinus augmentation procedure for implant rehabilitation in humans. The following were evaluated in this overview: (1) anatomic variables affecting sinus augmentation, (2) histomorphometric analysis of the grafted sinus, (3) volumetric changes after sinus grafting, and (4) implant survival beyond 1 year. Electronic databases were searched for systematic reviews and meta-analyses of implant-related sinus augmentation published from 1976 to September 2015. The studies selected must identify itself as a systemic review or meta-analysis in the title or abstract and must pertain to sinus augmentation. Thirty-three publications fulfilled the review criteria. The AMSTAR ratings for the 33 chosen reviews scored greater than 3 of 11, with 8 reviews scoring greater or equal to 8 of 11. The outcome of this overview suggested that the following will increase the success of sinus augmentation and survival of implants placed in the grafted sinus: (1) the use of barrier membranes over the lateral window when using a lateral approach to graft the sinus, (2) the use of particulate autogenous bone with or without other substitute graft materials, (3) sinus augmentation without the use of grafting materials may be considered provided that the space between the sinus membrane and floor can be maintained, (4) the use of rough-surfaced implants, (5) simultaneous implant placement with residual bone height greater than 4 mm, and (6) the cessation of smoking.
Mihatovic, Ilja; Becker, Jürgen; Golubovic, Vladimir; Hegewald, Andrea; Schwarz, Frank
2012-03-01
To assess the influence of two barrier membranes and two bone graft substitutes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Saddle-type defects were prepared in the lower jaws of 6 fox hounds and randomly filled with a natural bone mineral (NBM) and a biphasic calcium phosphate (SBC) and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, respectively, dissected blocks were processed for histomorphometrical analysis (e.g., mineralized tissue [MT], bone-to-implant contact [BIC]). The mean MT values (mm2) and BIC values (%) tended to be higher in the PEG groups (MT: NBM [3.4±1.7]; SBC [4.2±2]/BIC: NBM [67.7±16.9]; SBC [66.9±17.8]) when compared with the corresponding CM groups (MT: NBM [2.5±0.8]; SBC [2.3±1.6]/BIC: NBM [54.1±22.6]; SBC [61±8.7]). These differences, however, did not reach statistical significance. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. © 2011 John Wiley & Sons A/S.
Dahlin, C; Simion, M; Hatano, N
2010-12-01
In the present prospective study, bone augmentation by guided bone regeneration (GBR) in combination with bovine hydroxyapatite (BHA) as filling material was evaluated with regard to soft and hard tissue stability over time. Implant survival, radiologic bone level (marginal bone level [MBL]), and clinical soft tissue parameters (marginal soft tissue level [MSTL]) were observed. Twenty patients received a total of 41 implants (Brånemark System, Nobel Biocare, Göteborg, Sweden) in conjunction with GBR treatment. The end point of the study was after 5 years following implant placement. The cumulative implant survival rate was 97.5% corresponding to one implant failure. The radiologic evaluation of the MBL demonstrated a crestal bone height above the level of the fixture head. The bone height decreased from -3.51 to -2.38 mm (p < .001). The MSTL was -1.52 mm at baseline and -1.15 mm at the 5-year follow-up (p < .04) demonstrating a stable submucosal crown margin throughout the study period. GBR treatment in combination with a xenogeneic filling material (BHA) is a viable treatment option in order to maintain stable hard and soft tissue levels in conjunction with augmentative procedure related to oral implant treatment. © 2009, Copyright the Authors. Journal Compilation © 2010, Wiley Periodicals, Inc.
An evidence-based concept of implant dentistry. Utilization of short and narrow platform implants.
Ruiz, Jose-Luis
2012-09-01
As a profession, we must remember that tooth replacement is not a luxury; it is often a necessity for health reasons. Although bone augmentation and CBCT and expensive surgical guides are often indicated for complex cases, they are being overused. Simple or straightforward implant cases, when there is sufficient natural bone for narrow or shorter implant, can be predictable performed by well-trained GPs and other trained specialists. Complex cases requiring bone augmentation and other complexities as described herein, should be referred to a surgical specialist. Implant courses and curricula have to be based on the level of complexity of implant surgery that each clinician wishes to provide to his or her patients. Using a "logical approach" to implant dentistry keeps cases simple or straightforward, and more accessible to patients by the correct use of narrow and shorter implants.
Significance of maxillary sinus mucosal thickening in patients with periodontal disease.
Ren, Song; Zhao, Haijiao; Liu, Jingbo; Wang, Qingxuan; Pan, Yaping
2015-12-01
To characterise and measure the Schneiderian membranes of individuals with periodontal diseases in China and to analyse the factors impacting maxillary sinus mucosal thickness using cone-beam computed tomography (CBCT). A cohort of 221 patients with periodontal disease was subjected to cross-sectional CBCT examination. Various parameters, including age, sex, alveolar bone loss, furcation lesions and vertical infrabony pockets, were analysed as correlates of mucosal thickening (MT). Sinus mucosal thickness ≥ 2 mm qualified as MT. MT was detected in 103 (48.9%) patients, increasing in frequency as the degree of alveolar bone loss advanced (mild, 14.5%; moderate, 29.5%; severe, 87.9%). The association between MT and vertical infrabony pockets was statistically significant (P < 0.001). The likelihood of MT increased with moderate [odds ratio (OR) = 1.02] and severe (OR = 4.62) periodontal bone loss (P < 0.001), as well as with furcation lesions (OR = 2.76) and vertical infrabony pockets (OR = 13.58). Relative to the case in patients with periodontitis and normal mucosa, the probability of MT increased dramatically as alveolar bone loss worsened. Periodontal pathologies (i.e. furcation lesions and vertical infrabony pockets) were also more likely to coincide with MT. © 2015 FDI World Dental Federation.
Mertens, Christian; Freudlsperger, Christian; Bodem, Jens; Engel, Michael; Hoffmann, Jürgen; Freier, Kolja
2016-11-01
Treatment of post-resective defects of the maxilla can be challenging and usually requires dental obturation or microvascular reconstruction. As compared to soft-tissue microvascular grafts, bone reconstruction can additionally allow for facial support and retention of dental implants. The aim of this study was to evaluate scapular tip grafts with respect to their applicability for maxillary reconstruction and their potential to retain dental implants for later dental rehabilitation. In this retrospective study, 14 patients with hemimaxillectomy defects were reconstructed with free scapular tip grafts, oriented horizontally, to rebuild the palate and alveolar ridge. After bone healing, three-dimensional virtual implant planning was performed, and a radiographic guide was fabricated to enable implant placement in the optimal anatomic and prosthetic position. All patients' mastication and speech were evaluated, along with the extent of defect closure, suitability of the graft sites for implant placement, and soft-tissue stability. Pre- and postsurgical radiographs were also evaluated. A good postoperative outcome was achieved in all patients, with complete closure of maxillary defects that were class II, according to the system of Brown and Shaw. Additional bone augmentation was necessary in two patients in order to increase vertical bone height. Patients were subsequently treated with 50 dental implants to retain dental prostheses. In all cases, additional soft-tissue surgery was necessary to achieve a long-term stable periimplant situation. No implants were lost during the mean observation period of 34 months. Due to its specific form, the scapular tip graft is well suited to reconstruct the palate and maxillary alveolar ridge and to enable subsequent implant-retained rehabilitation. Due to the limited bone volume, an accurate three-dimensional graft orientation is essential. Furthermore, most cases require additional soft-tissue surgery to achieve a long-term stable periimplant situation. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice.
Jähn, Katharina; Saito, Hiroaki; Taipaleenmäki, Hanna; Gasser, Andreas; Hort, Norbert; Feyerabend, Frank; Schlüter, Hartmut; Rueger, Johannes M; Lehmann, Wolfgang; Willumeit-Römer, Regine; Hesse, Eric
2016-05-01
Intramedullary stabilization is frequently used to treat long bone fractures. Implants usually remain unless complications arise. Since implant removal can become technically very challenging with the potential to cause further tissue damage, biodegradable materials are emerging as alternative options. Magnesium (Mg)-based biodegradable implants have a controllable degradation rate and good tissue compatibility, which makes them attractive for musculoskeletal research. Here we report for the first time the implantation of intramedullary nails made of an Mg alloy containing 2% silver (Mg2Ag) into intact and fractured femora of mice. Prior in vitro analyses revealed an inhibitory effect of Mg2Ag degradation products on osteoclast differentiation and function with no impair of osteoblast function. In vivo, Mg2Ag implants degraded under non-fracture and fracture conditions within 210days and 133days, respectively. During fracture repair, osteoblast function and subsequent bone formation were enhanced, while osteoclast activity and bone resorption were decreased, leading to an augmented callus formation. We observed a widening of the femoral shaft under steady state and regenerating conditions, which was at least in part due to an uncoupled bone remodeling. However, Mg2Ag implants did not cause any systemic adverse effects. These data suggest that Mg2Ag implants might be promising for intramedullary fixation of long bone fractures, a novel concept that has to be further investigated in future studies. Biodegradable implants are promising alternatives to standard steel or titanium implants to avoid implant removal after fracture healing. We therefore developed an intramedullary nail using a novel biodegradable magnesium-silver-alloy (Mg2Ag) and investigated the in vitro and in vivo effects of the implants on bone remodeling under steady state and fracture healing conditions in mice. Our results demonstrate that intramedullary Mg2Ag nails degrade in vivo over time without causing adverse effects. Importantly, radiographs, μCT and bone histomorphometry revealed a significant increase in callus size due to an augmented bone formation rate and a reduced bone resorption in fractures supported by Mg2Ag nails, thereby improving bone healing. Thus, intramedullary Mg2Ag nails are promising biomaterials for fracture healing to circumvent implant removal. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Iundusi, Riccardo; Gasbarra, Elena; D'Arienzo, Michele; Piccioli, Andrea; Tarantino, Umberto
2015-05-13
Reduction of tibial plateau fractures and maintain a level of well aligned congruent joint is key to a satisfactory clinical outcome and is important for the return to pre-trauma level of activity. Stable internal fixation support early mobility and weight bearing. The augmentation with bone graft substitute is often required to support the fixation to mantain reduction. For these reasons there has been development of novel bone graft substitutes for trauma applications and in particular synthetic materials based on calcium phosphates and/or apatite combined with calcium sulfates. Injectable bone substitutes can optimize the filling of irregular bone defects. The purpose of this study was to assess the potential of a novel injectable bone substitute CERAMENT™|BONE VOID FILLER in supporting the initial reduction and preserving alignment of the joint surface until fracture healing. From June 2010 through May 2011 adult patients presenting with acute, closed and unstable tibial plateau fractures which required both grafting and internal fixation, were included in a prospective study with percutaneous or open reduction and internal fixation (ORIF) augmented with an injectable ceramic biphasic bone substitute CERAMENT™|BONE VOID FILLER (BONESUPPORT™, Lund, Sweden) to fill residual voids. Clinical follow up was performed at 1, 3, 9 and 12 months and any subsequent year; including radiographic analysis and Rasmussen system for knee functional grading. Twenty four patients, balanced male-to-female, with a mean age of 47 years, were included and followed with an average of 44 months (range 41-52 months). Both Schatzker and Müller classifications were used and was type II or 41-B3 in 7 patients, type III or 41-B2 in 12 patients, type IV or 41-C1 in 2 patients and type VI or 41-C3 in 3 patients, respectively. The joint alignement was satisfactory and manteined within a range of 2 mm, with an average of 1.18 mm. The mean Rasmussen knee function score was 26.5, with 14 patients having an excellent result and the remaining 10 with a good result. It can be concluded that radiological and clinical outcome was satisfactory and obtained in all cases without complications. This injectable novel biphasic hydroxyapatite and calcium sulfate ceramic material is a valuable armamentarium in the treatment of trauma where bone graft is required.
Development of Bone Remodeling Model for Spaceflight Bone Physiology Analysis
NASA Technical Reports Server (NTRS)
Pennline, James A.; Werner, Christopher R.; Lewandowski, Beth; Thompson, Bill; Sibonga, Jean; Mulugeta, Lealem
2015-01-01
Current spaceflight exercise countermeasures do not eliminate bone loss. Astronauts lose bone mass at a rate of 1-2% a month (Lang et al. 2004, Buckey 2006, LeBlanc et al. 2007). This may lead to early onset osteoporosis and place the astronauts at greater risk of fracture later in their lives. NASA seeks to improve understanding of the mechanisms of bone remodeling and demineralization in 1g in order to appropriately quantify long term risks to astronauts and improve countermeasures. NASA's Digital Astronaut Project (DAP) is working with NASA's bone discipline to develop a validated computational model to augment research efforts aimed at achieving this goal.
Synthetic Parathyroid Hormone May Augment Bone Volume in Autogenous Grafts: A Study in Rats.
dos Santos, Rodrigo A B; Ferreira, Marcelo S; Mafra, Carlos Eduardo S; Holzhausen, Marinella; de Lima, Luiz Antônio Pugliesi Alves; Mendes Pannuti, Cláudio; César Neto, João Batista
2016-01-01
Synthetic parathyroid hormone [PTH(1-34)] has been investigated for its benefits on bone healing and osteoporosis treatment; however, there is little information regarding bone grafts. This study therefore investigates the effect of PTH(1-34) on autogenous bone graft healing. Bone grafts were harvested from the calvarium of rats with a trephine bur (3-mm internal diameter) and placed on the cortex near the mandible angle with a titanium screw. Animals were randomly assigned to group 1 (control): subcutaneous injections of saline solution, three times a week (n = 15); group 2: 2 μg/kg PTH(1-34), three times a week (n = 15); and group 3: 40 μg/kg PTH(1-34), three times a week (n = 15). Thirty days postoperatively, the animals were killed, and specimens (implant + bed + graft) were removed and used for undecalcified sections. The following histometric parameters were evaluated: total bone thickness (TT) (bed + gap + graft), graft thickness (GT) (adjacent to the implant), bone-to-implant contact (BIC), and bone area (BA) (within the limits of the threads). Five additional animals were sacrificed immediately after surgery (zero hour) to register bed and graft sizes before healing. Group 3 showed significantly greater bone gain compared with groups 1 and 2 (TT and GT, P <0.05). In relation to initial thickness (zero hour), groups 1 and 2 showed a total decrease in volume of 15.91% and 20.83%, respectively, whereas group 3 showed a slight bone gain (1.21%). Data analysis revealed a significant difference for group 3 compared with groups 1 and 2 (P <0.01). No differences were observed for BIC and BA (P >0.05). Systemic administration of PTH(1-34) augmented bone volume in autogenous grafts.
Blume, Oliver; Hoffmann, Lisa; Donkiewicz, Phil; Wenisch, Sabine; Back, Michael; Franke, Jörg; Schnettler, Reinhard
2017-01-01
The objective of this case report is to introduce a customized CAD/CAM freeze-dried bone allograft (FDBA) block for its use in Guided Bone Regeneration (GBR) procedures for severely deficient maxillary bones. Additionally, a special newly developed remote incision technique is presented to avoid wound dehiscence. The results show optimal integration behavior of the FDBA block after six months and the formation of new vital bone. Thus, the results of the present case report confirm the use of the customized CAD/CAM bone block for augmentation of complex defects in the maxillary aesthetic zone as a successful treatment concept. PMID:29065477
Blume, Oliver; Hoffmann, Lisa; Donkiewicz, Phil; Wenisch, Sabine; Back, Michael; Franke, Jörg; Schnettler, Reinhard; Barbeck, Mike
2017-10-21
The objective of this case report is to introduce a customized CAD/CAM freeze-dried bone allograft (FDBA) block for its use in Guided Bone Regeneration (GBR) procedures for severely deficient maxillary bones. Additionally, a special newly developed remote incision technique is presented to avoid wound dehiscence. The results show optimal integration behavior of the FDBA block after six months and the formation of new vital bone. Thus, the results of the present case report confirm the use of the customized CAD/CAM bone block for augmentation of complex defects in the maxillary aesthetic zone as a successful treatment concept.
Kim, Hae-Young; Yang, Jin-Yong; Chung, Bo-Yoon; Kim, Jeong Chan; Yeo, In-Sung
2013-04-01
The aim of this study was to measure the peri-implant bone length surrounding implants that penetrate the sinus membrane at the posterior maxilla and to evaluate the survival rate of these implants. Treatment records and orthopantomographs of 39 patients were reviewed and analyzed. The patients had partial edentulism at the posterior maxilla and limited vertical bone height below the maxillary sinus. Implants were inserted into the posterior maxilla, penetrating the sinus membrane. Four months after implant insertion, provisional resin restorations were temporarily cemented to the abutments and used for one month. Then, a final impression was taken at the abutment level, and final cement-retained restorations were delivered with mutually protected occlusion. The complications from the implant surgery were examined, the number of failed implants was counted, and the survival rate was calculated. The peri-implant bone lengths were measured using radiographs. The changes in initial and final peri-implant bone lengths were statistically analyzed. Nasal bleeding occurred after implant surgery in three patients. No other complications were found. There were no failures of the investigated implants, resulting in a survival rate of 100%. Significantly more bone gain around the implants (estimated difference=-0.6 mm, P=0.025) occurred when the initial residual bone height was less than 5 mm compared to the >5 mm groups. No significant change in peri-implant bone length was detected when the initial residual bone height was 5 mm or larger. This study suggests that implants penetrating the sinus membrane at the posterior maxilla in patients with limited vertical bone height may be safe and functional.
Radiographic analysis of the transcrestal sinus floor elevation: short-term observations.
Diserens, Valérie; Mericske, Ernoe; Mericske-Stern, Regina
2005-01-01
There are some limitations for implant placement in the posterior maxilla when there is an extended sinus. Various techniques for sinus floor elevation allow an increase in implant length. The aim of the present radiographic study was to assess the augmented site in the sinus around implants that were installed by means of an osteotome-mediated transcrestal sinus floor elevation. Thirty-three patients with 44 implants were available. In 39% of the implants the sinus floor elevation was performed exclusively with bone chips. Bone fill material (Bio-Oss, Geistlich Söhne AG, Wolhusen, Switzerland) was additionally used to increase the volume and stability of the lifted area at 61% of the implants. The visibility and morphology of the augmentation were assessed and compared by means of intraoral radiography (long-cone technique). All implants were stable and were considered to be successful when they were reexamined in the context of the present study. The mean residual bone height was 5.78 +/- 1.4 mm. The increase of the implant length as compared to the original bone height resulted in a mean value of 3.87 +/- 2.0 mm. The volume and density of the lifted area were more visible if Bio-Oss was added. A shrinkage and/or condensation of the grafted material was visible at 37% of the implants after a minimum loaded period of 200 days. Equally, a decreased visibility of the original sinus floor was noted at 61% of implants. The formation of a cortical bone layer at the apex of the implants was detected at 35% of implants. The surgical procedure appears to be a safe method with rare complications. Radiographic assessment of the augmentation procedure proved to be difficult, and measurements are not fully reliable.
Yu, Huajie; Qiu, Lixin
2017-10-01
Implant failures are more common when multiple missing posterior teeth need lateral sinus floor elevation owing to inadequate tissue maturation after grafting. Effects of lateral window dimensions on vital bone formation have rarely been compared. To compare endo-sinus bone formation between two- and solo-window techniques to rehabilitate multiple missing posterior teeth that need substantial augmentation. Patients with severely atrophic posterior maxilla were randomized to receive lateral sinus floor elevation via solo or two bony windows. Bone core specimens harvested from lateral aspect of the augmentation sites were histomorphometrically analyzed. Proportions of mineralized bone (MB), bone substitute materials (BS), and nonmineralized tissue (NMT) were quantified. Twenty-one patients underwent 23 maxillary sinus augmentations. One patient in each group dropped out during the follow-up period. Lateral window dimensions were 81.65 ± 4.59 and 118.04 ± 19.53 mm 2 in the test and control groups, respectively. Histomorphometric analysis revealed mean MB of 42.32% ± 13.07% and 26.00% ± 15.23%, BS of 40.34% ± 9.52% and 60.03% ± 10.13%, and NMT of 18.14% ± 14.24% and 14.75% ± 10.38% in test and control groups, respectively, with significant differences. The two-window technique could facilitate faster maturation and consolidation of the grafted volume and is an effective alternative for rehabilitation of severely atrophic posterior maxilla with multiple missing posterior teeth. © 2017 Wiley Periodicals, Inc.
Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle.
Phan, Hoang Vu; Au, Thi Kim Loan; Park, Hoon Cheol
2016-12-01
This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the vertical force.
Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle
Phan, Hoang Vu; Au, Thi Kim Loan
2016-01-01
This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the vertical force. PMID:28083112
Janner, Simone F M; Bosshardt, Dieter D; Cochran, David L; Chappuis, Vivianne; Huynh-Ba, Guy; Jones, Archie A; Buser, Daniel
2017-11-01
To evaluate the effect of a resorbable collagen membrane and autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) on the healing of buccal dehiscence-type defects. The second incisors and the first premolars were extracted in the maxilla of eight mongrels. Reduced diameter, bone-level implants were placed 5 weeks later. Standardized buccal dehiscence-type defects were created and grafted at implant surgery. According to an allocation algorithm, the graft composition of each of the four maxillary sites was DBBM + membrane (group D + M), autogenous bone chips + DBBM + membrane (group A + D + M), DBBM alone (group D) or autogenous bone chips + DBBM (group A + D). Four animals were sacrificed after 3 weeks of healing and four animals after 12 weeks. Histological and histomorphometric analyses were performed on oro-facial sections. The pattern of bone formation and resorption within the grafted area showed high variability among the same group and healing time. The histomorphometric analysis of the 3-week specimens showed a positive effect of autogenous bone chips on both implant osseointegration and bone formation into the grafted region (P < 0.05). The presence of the collagen membrane correlated with greater bone formation around the DBBM particles and greater bone formation in the grafted region after 12 weeks of healing (P < 0.05). The oro-facial width of the augmented region at the level of the implant shoulder was significantly reduced in cases where damage of the protection splints occurred in the first week of healing (P < 0.05). The addition of autogenous bone chips and the presence of the collagen membrane increased bone formation around DBBM particles. Wound protection from mechanical noxa during early healing may be critical for bone formation within the grafted area. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Miceli, Ana Lucia Carpi; Pereira, Livia Costa; Torres, Thiago da Silva; Calasans-Maia, Mônica Diuana; Louro, Rafael Seabra
2017-12-01
Autogenous bone grafts are the gold standard for reconstruction of atrophic jaws, pseudoarthroses, alveolar clefts, orthognathic surgery, mandibular discontinuity, and augmentation of sinus maxillary. Bone graft can be harvested from iliac bone, calvarium, tibial bone, rib, and intraoral bone. Proximal tibia is a common donor site with few reported problems compared with other sites. The aim of this study was to evaluate the use of proximal tibia as a donor area for maxillofacial reconstructions, focusing on quantifying the volume of cancellous graft harvested by a lateral approach and to assess the complications of this technique. In a retrospective study, we collected data from 31 patients, 18 women and 13 men (mean age: 36 years, range: 19-64), who were referred to the Department of Oral and Maxillofacial Surgery at the Servidores do Estado Federal Hospital. Patients were treated for sequelae of orthognathic surgery, jaw fracture, nonunion, malunion, pathology, and augmentation of bone volume to oral implant. The technique of choice was lateral access of proximal tibia metaphysis for graft removal from Gerdy tubercle under general anesthesia. The mean volume of bone harvested was 13.0 ± 3.7 mL (ranged: 8-23 mL). Only five patients (16%) had minor complications, which included superficial infection, pain, suture dehiscence, and unwanted scar. However, none of these complications decreases the result and resolved completely. We conclude that proximal tibia metaphysis for harvesting cancellous bone graft provides sufficient volume for procedures in oral and maxillofacial surgery with minimal postoperative morbidity.
Valenzuela, Saúl; Miralles, Rodolfo; Ravera, María José; Zúñiga, Claudia; Santander, Hugo; Ferrer, Marcelo; Nakouzi, Jorge
2005-07-01
The aim of this study was to evaluate the associations between head posture (head extension, normal head posture, and head flexion) and anteroposterior head position, hyoid bone position, and the sternocleidomastoid integrated electromyographic (IEMG) activity in a sample of young adults. The study included 50 individuals with natural dentition and bilateral molar support. A lateral craniocervical radiograph was taken for each subject and a cephalometric analysis was performed. Head posture was measured by means of the craniovertebral angle formed by the MacGregor plane and the odontoid plane. According to the value of this angle, the sample was divided into the following three groups: head extension (less than 95 degrees); normal head posture (between 95 degrees and 106 degrees); and head flexion (more than 106 degrees). The following cephalometric measurements were taken to compare the three groups: anteroposterior head position (true vertical plane/pterygoid distance), anteroposterior hyoid bone position (true vertical plane-Ha distance), vertical hyoid bone position (H-H' distance in the hyoid triangle), and CO-C2 distance. In the three groups, IEMG recordings at rest and during swallowing of saliva and maximal voluntary clenching were performed by placing bipolar surface electrodes on the right and left sternocleidomastoid muscles. In addition, the condition with/without craniomandibular dysfunction (CMD) in each group was also assessed. Head posture showed no significant association with anteroposterior head position, anteroposterior hyoid bone position, vertical hyoid bone position, or sternocleidomastoid IEMG activity. There was no association to head posture with/without the condition of CMD. Clinical relevance of the results is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Xue; Tamai, Riyoko; Endo, Yasuo
2009-02-15
Nitrogen-containing bisphosphonates (NBPs) are anti-bone-resorptive drugs with inflammatory side effects that include osteomyelitis and osteonecrosis of the jaw. Oral bacteria have been considered to be a trigger for these NBP-associated jaw bone diseases. The present study examined the effects of alendronate (a typical NBP) and clodronate (a non-NBP) on the production of proinflammatory cytokines by macrophages infected with Porphyromonas gingivalis and Tannerella forsythia, which are important pathogens of periodontal diseases. Pretreatment with alendronate augmented IL-1{beta}, but not TNF{alpha}, production by macrophages infected with P. gingivalis or T. forsythia. This augmentation of IL-1{beta} production was inhibited by clodronate. Furthermore, caspase-1, amore » promoter of IL-1{beta} production, was activated by treatment with alendronate, and caspase-1 inhibitor reduced the production of IL-1{beta} induced by alendronate and P. gingivalis. These results suggest that NBPs augment periodontal pathogenic bacteria-induced IL-1{beta} release via caspase-1 activation, and this phenomenon may contribute to the development of NBP-associated inflammatory side effects including jaw osteomyelitis. Co-treatment with clodronate may prevent and/or reduce these inflammatory effects induced by NBPs.« less
Chang, Moontaek; Wennström, Jan L
2012-06-01
To evaluate longitudinal changes in tooth/implant relationship and bone topography at single implants with a microthreaded, conical marginal portion (Astra Tech ST® implants, Astra Tech AB, Mölndal, Sweden). Thirty-one subjects with single implant-supported restorations in the esthetic zone were included. Radiographs obtained at crown installation and 1, 5, and 8 years of follow-up were analyzed with regard to changes in (1) bone level at the implant and adjacent teeth and (2) vertical position of adjacent teeth relative to the single implant. The mean marginal bone loss amounted to 0.1 mm at both implants and adjacent teeth during the 8 years of follow-up. Regression analysis failed to identify significant explanatory factors for observed variance in bone level change at the adjacent tooth surfaces. Vertical change in position of the teeth relative to the implants was more frequent and significantly greater in incisor compared with premolar tooth region but not associated with gender or age. The marginal bone level at teeth adjacent to single implants with a microthreaded conical marginal part was not influenced by horizontal and vertical tooth-implant distances. Continuous eruption of adjacent teeth may result in infraocclusal positioning of a single-implant restoration. © 2010 Wiley Periodicals, Inc.
Aoyama, Tomoki; Fujita, Yasuko; Madoba, Katsuyuki; Nankaku, Manabu; Yamada, Minoru; Tomita, Motoko; Goto, Koji; Ikeguchi, Ryosuke; Kakinoki, Ryosuke; Matsuda, Shuichi; Nakamura, Takashi; Toguchida, Junya
2015-03-01
To determine the feasibility and safety of implementing a 12-week rehabilitation program after mesenchymal stromal cell (MSC) transplantation augmented by vascularized bone grafting for idiopathic osteonecrosis (ION) of the femoral head. A prospective case series. University clinical research laboratory. Participants (N=10) with ION who received MSC transplantation augmented by vascularized bone grafting. A 12-week exercise program, which included range-of-motion (ROM) exercises, muscle-strengthening exercises, and aerobic training. Measures of ROM, muscle strength, Timed Up and Go test, and Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) were collected before surgery and again at 6 and 12 months after surgery. All participants completed the 12-week program. External rotation ROM as well as extensor and abductor muscle strength significantly improved 6 months after treatment compared with that before treatment (P<.05). Significant improvements were also seen in physical function, role physical, and bodily pain subgroup scores of the SF-36 (P<.05). No serious adverse events occurred. This study demonstrates the feasibility and safety of a multiplex rehabilitation program after MSC transplantation and provides support for further study on the benefits of rehabilitation programs in regenerative medicine. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Froum, Stuart J; Wallace, Stephen; Cho, Sang-Choon; Rosenburg, Edwin; Froum, Scott; Schoor, Robert; Mascarenhas, Patrick; Tarnow, Dennis P; Corby, Patricia; Elian, Nicolas; Fickl, Stefan; Ricci, John; Hu, Bin; Bromage, Timothy; Khouly, Ismael
2013-01-01
The purpose of this study was to assess vital bone formation at 4 to 5 months and 7 to 9 months following sinus augmentation with anorganic bovine bone matrix (ABBM) with and without recombinant human platelet-derived growth factor (rhPDGF). Twenty-four subjects received bilateral sinus elevation surgery with ABBM on one side and ABBM and rhPDGF on the contralateral side. Twelve patients had core sampling at 4 to 5 months and 12 patients at 7 to 9 months postoperatively. In subjects with cores taken at 4 to 5 months, mean vital bone, connective tissue, and residual graft were 11.8%, 54.1%, and 33.6%, respectively, with ABBM alone. Cores of sinuses filled with ABBM and rhPDGF showed mean 21.1% vital bone, 51.4% connective tissue, and 24.8% residual graft. Paired t test showed a statistically significant difference in vital bone. In cores taken at 7 to 9 months, the values for ABBM alone and ABBM + rhPDGF were 21.4% vs 19.5% vital bone, 28.4% vs 44.2% connective tissue, and 40.3% residual graft vs 35.5%. There was no statistically significant difference in vital bone at 7 to 9 months after surgery. Test and control groups showed clinically acceptable levels of vital bone both at 4 to 5 months and 7 to 9 months postsurgery. However, vital bone formation was significantly greater in the 4- to 5-month sections of ABBM + rhPDGF vs the Bio-Oss alone. In the 7- to 9-month specimens, this difference disappeared. More rapid formation of vital bone with the addition of rhPDGF may allow for earlier implant placement.
Henrich, D; Seebach, C; Verboket, R; Schaible, A; Marzi, I; Bonig, H
2018-03-06
Bone marrow mononuclear cells (BMC) seeded on a scaffold of β-tricalcium phosphate (β-TCP) promote bone healing in a critical-size femur defect model. Being BMC a mixed population of predominantly mature haematopoietic cells, which cell type(s) is(are) instrumental for healing remains elusive. Although clinical therapies using BMC are often dubbed as stem cell therapies, whether stem cells are relevant for the therapeutic effects is unclear and, at least in the context of bone repair, seems dubious. Instead, in light of the critical contribution of monocytes and macrophages to tissue development, homeostasis and injury repair, in the current study it was hypothesised that BMC-mediated bone healing derived from the stem cell population. To test this hypothesis, bone remodelling studies were performed in an established athymic rats critical-size femoral defect model, with β-TCP scaffolds augmented with complete BMC or BMC immunomagnetically depleted of stem cells (CD34+) or monocytes/macrophages (CD14+). Bone healing was assessed 8 weeks after transplantation. Compared to BMC-augmented controls, when CD14- BMC, but not CD34- BMC were transplanted into the bone defect, femora possessed dramatically decreased biomechanical stability and new bone formation was markedly reduced, as measured by histology. The degree of vascularisation did not differ between the two groups. It was concluded that the monocyte fraction within the BMC provided critical osteo-inductive cues during fracture healing. Which factors were responsible at the molecular levels remained elusive. However, this study marked a significant progress towards elucidating the mechanisms by which BMC elicit their therapeutic effects, at least in bone regeneration.
Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Iida, Ryuji; Wang, Qilong; Zou, Ming-Hui; Barlic-Dicen, Jana
2012-01-01
The major event initiating atherosclerosis is hypercholesterolemia-induced disruption of vascular endothelium integrity. In settings of endothelial damage, endothelial progenitor cells (EPCs) are mobilized from bone marrow into circulation and home to sites of vascular injury where they aid endothelial regeneration. Given the beneficial effects of EPCs in vascular repair, we hypothesized that these cells play a pivotal role in atherosclerosis regression. We tested our hypothesis in the atherosclerosis-prone mouse model in which hypercholesterolemia, one of the main factors affecting EPC homeostasis, is reversible (Reversa mice). In these mice normalization of plasma lipids decreased atherosclerotic burden; however, plaque regression was incomplete. To explore whether endothelial progenitors contribute to atherosclerosis regression, bone marrow EPCs from a transgenic strain expressing green fluorescent protein under the control of endothelial cell-specific Tie2 promoter (Tie2-GFP+) were isolated. These cells were then adoptively transferred into atheroregressing Reversa recipients where they augmented plaque regression induced by reversal of hypercholesterolemia. Advanced plaque regression correlated with engraftment of Tie2-GFP+ EPCs into endothelium and resulted in an increase in atheroprotective nitric oxide and improved vascular relaxation. Similarly augmented plaque regression was also detected in regressing Reversa mice treated with the stem cell mobilizer AMD3100 which also mobilizes EPCs to peripheral blood. We conclude that correction of hypercholesterolemia in Reversa mice leads to partial plaque regression that can be augmented by AMD3100 treatment or by adoptive transfer of EPCs. This suggests that direct cell therapy or indirect progenitor cell mobilization therapy may be used in combination with statins to treat atherosclerosis. PMID:23081735
Kurkcu, Mehmet; Benlidayi, Mehmet Emre; Cam, Burcu; Sertdemir, Yasar
2012-05-22
Abstract AbstractIntroduction: The choice of augmentation material is a crucial factor in sinus augmentation surgery. Bovine-derived hydroxyapatite (BHA) and beta-tricalcium phosphate (β-TCP) have been used successfully in sinus augmentation procedures. Choosing one of these materials for sinus augmentation is still controversial. The aim of this clinical study was to compare the biological performance of the new BHA graft material and the well known synthetic β-TCP material in sinus augmentation procedure.Material and Methods: The study consisted of 23 patients (12 male and 11 female) who were either edentulous or partially edentulous in the posterior maxilla and required implant placement. A total of 23 two-step sinus grafting procedures were performed. BHA was used in 13 patients and β-TCP was used in 10 patients. After average of 6.5 months of healing bone biopsies were taken from the grafted areas. Undecalcified sections were prepared for histomorphometric analysis. Results: The mean new bone formation was 30.13±3.45% in BHA group and 21.09±2.86% in β-TCP group (p=0.001). The mean percentage of residual graft particle area was 31.88±6.05% and 34.05±3.01% for BHA group and β-TCP group, respectively (p=0.047). The mean percentage of soft tissue area was 37.99±5.92% in BHA group and 44.86±4.28% in β-TCP group (p=0.011).Conclusion: Both graft materials demonstrated successful biocompatibility and osteoconductivity in sinus augmentation procedure. However, BHA appears to be more efficient in osteoconduction when compared to β-TCP.
Alkalay, Ron N; von Stechow, Dietrich; Hackney, David B
2015-07-01
Lytic spinal lesions reduce vertebral strength and may result in their fracture. Vertebral augmentation is employed clinically to provide mechanical stability and pain relief for vertebrae with lytic lesions. However, little is known about its efficacy in strengthening fractured vertebrae containing lytic metastasis. Eighteen unembalmed human lumbar vertebrae, having simulated uncontained lytic defects and tested to failure in a prior study, were augmented using a transpedicular approach and re-tested to failure using a wedge fracture model. Axial and moment based strength and stiffness parameters were used to quantify the effect of augmentation on the structural response of the failed vertebrae. Effects of cement volume, bone mineral density and vertebral geometry on the change in structural response were investigated. Augmentation increased the failed lytic vertebral strength [compression: 85% (P<0.001), flexion: 80% (P<0.001), anterior-posterior shear: 95%, P<0.001)] and stiffness [(40% (P<0.05), 53% (P<0.05), 45% (P<0.05)]. Cement volume correlated with the compressive strength (r(2)=0.47, P<0.05) and anterior-posterior shear strength (r(2)=0.52, P<0.05) and stiffness (r(2)=0.45, P<0.05). Neither the geometry of the failed vertebrae nor its pre-fracture bone mineral density correlated with the volume of cement. Vertebral augmentation is effective in bolstering the failed lytic vertebrae compressive and axial structural competence, showing strength estimates up to 50-90% of historical values of osteoporotic vertebrae without lytic defects. This modest increase suggests that lytic vertebrae undergo a high degree of structural damage at failure, with strength only partially restored by vertebral augmentation. The positive effect of cement volume is self-limiting due to extravasation. Copyright © 2015. Published by Elsevier Ltd.
Spinato, Sergio; Bernardello, Fabio; Galindo-Moreno, Pablo; Zaffe, Davide
2015-12-01
Cone-beam computed tomography (CBCT) and radiographic outcomes of crestal sinus elevation, performed using mineralized human bone allograft, were analyzed to correlate results with maxillary sinus size. A total of 60 sinus augmentations in 60 patients, with initial bone ≤5 mm, were performed. Digital radiographs were taken at surgical implant placement time up to post-prosthetic loading follow-up (12-72 months), when CBCT evaluation was carried out. Marginal bone loss (MBL) was radiographically analyzed at 6 months and follow-up time post-loading. Sinus size (BPD), implant distance from palatal (PID) and buccal wall (BID), and absence of bone coverage of implant (intra-sinus bone loss--IBL) were evaluated and statistically evaluated by ANOVA and linear regression analyses. MBL increased as a function of time. MBL at final follow-up was statistically associated with MBL at 6 months. A statistically significant correlation of IBL with wall distance and of IBL/mm with time was identified with greater values in wide sinuses (WS ≥ 13.27 mm) than in narrow sinuses (NS < 13.27 mm). This study is the first quantitative and statistically significant confirmation that crestal technique with residual ridge height <5 mm is more appropriate and predictable, in terms of intra-sinus bone coverage, in narrow than in WS. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Liang, Fan; Leland, Hyuma; Jedrzejewski, Breanna; Auslander, Allyn; Maniskas, Seija; Swanson, Jordan; Urata, Mark; Hammoudeh, Jeffrey; Magee, William
2018-05-01
Alveolar cleft reconstruction has historically relied on autologous iliac crest bone grafting (ICBG), but donor site morbidity, pain, and prolonged hospitalization have prompted the search for bone graft substitutes. The authors evaluated bone graft substitutes with the highest levels of evidence, and highlight the products that show promise in alveolar cleft repair and in maxillary augmentation. This comprehensive review guides the craniofacial surgeon toward safe and informed utilization of biomaterials in the alveolar cleft.A literature search was performed to identify in vitro human studies that fulfilled the following criteria: Level I or Level II of evidence, ≥30 subjects, and a direct comparison between a autologous bone graft and a bone graft substitute. A second literature search was performed that captured all studies, regardless of level of evidence, which evaluated bone graft substitutes for alveolar cleft repair or alveolar augmentation for dental implants. Adverse events for each of these products were tabulated as well.Sixteen studies featuring 6 bone graft substitutes: hydroxyapatite, demineralized bone matrix (DBM), β-tricalcium phosphate (TCP), calcium phosphate, recombinant human bone morphogenic protein-2 (rhBMP-2), and rhBMP7 fit the inclusion criteria for the first search. Through our second search, the authors found that DBM, TCP, rhBMP-2, and rhBMP7 have been studied most extensively in the alveolar cleft literature, though frequently in studies using less rigorous methodology (Level III evidence or below). rhBMP-2 was the best studied and showed comparable efficacy to ICBG in terms of volume of bone regeneration, bone density, and capacity to accommodate tooth eruption within the graft site. Pricing for products ranged from $290 to $3110 per 5 mL.The balance between innovation and safety is a complex process requiring constant vigilance and evaluation. Here, the authors profile several bone graft substitutes that demonstrate the most promise in alveolar cleft reconstruction.
Lee, Soo Hyang; Koo, Mun Geun; Kang, Eun Taek
2017-04-01
Septal extension grafts are an effective means of extending nasal length in patients with a short nose. However, such grafts can be challenging in patients who only have small quantities of weak septal cartilage, such as some East Asian patients. We developed a rhinoplasty technique using ethmoid bone to create a cartilage-bone complex to overcome this issue, allowing adequate nasal lengthening. Sixty-four women with short noses and inadequate septal cartilage determined by preoperative computed tomography underwent septal extension grafting with a cartilage-bone complex between January 2009 and December 2014. Septal cartilage and ethmoid bone were harvested during open rhinoplasty and secured to the septal cartilage. Most patients were in their twenties or thirties. All patients underwent septal extension grafting using a cartilage-bone complex and dorsal augmentation with silicone implants. Short nasal length, decreased nasolabial angle and increased nostril show, were rectified. There was no recurrence during a mean follow-up period of 12.3 months, although one patient (1.5%) requested revision surgery. Septal extension grafting with a cartilage-bone complex can be used to correct a short nose, especially in Asians who have relatively small amounts of septal cartilage. The ethmoid bone augments the inadequate septum and provides structural support. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Ranganathan, Murugan; Balaji, M; Krishnaraj, R; Narayanan, Vivek; Thangavelu, Annamalai
2017-11-01
Alveolar bone resorption is a significant clinical problem. Bone loss in third molar region following extraction or surgical removal not only leads to periodontal problems in second molar region but also it may lead to some serious problems like increased incidence of angle fractures. In order to reduce the risks following third molar surgery, the socket should be augmented with bone grafts. In recent days guided tissue regeneration is the most accepted and successful technique followed many authors and its efficacy has been proved. Based upon our clinical experience, the use of bio absorbable collagen wound dressing such as CollaPlug TN has achieved quick healing and more primary wound coverage. Amongst the graft materials collagen is preferable due to its high biocompatibility and hemostatic ability. This study was done to assess the regeneration of bone in the extracted third molar sockets using xenograft (CollaPlug TN -Zimmer) which was compared with the normal healing on the contra lateral side. The assessment was done to analyze post-operative healing complications and to compare the bone density formed between control site and implant site radiologically. On this basis of this study, the use of collaplugTN appears to be beneficial to the patient in postoperative wound healing and also for better bone formation. The use of this material was advantageous because of its simplicity of application cost effectiveness and availability. There is enhanced wound healing and early bone formation.
Forehead augmentation with a methyl methacrylate onlay implant using an injection-molding technique.
Park, Dong Kwon; Song, Ingook; Lee, Jin Hyo; You, Young June
2013-09-01
The forehead, which occupies about one third of the face, is one of the major determinants of a feminine or masculine look. Various methods have been used for the augmentation of the forehead using autologous fat grafts or alloplastic materials. Methylmethacrylate (MMA) is the most appropriate material for augmentation of the forehead, and we have used an injection-molding technique with MMA to achieve satisfactory results. Under local anesthesia with intravenous (IV) sedation, an incision was made on the scalp and a meticulous and delicate subperiosteal dissection was then performed. MMA monomers and polymers were mixed, the dough was injected into the space created, and manual molding was performed along with direct inspection. This surgery was indicated for patients who wanted to correct an unattractive appearance by forehead augmentation. Every patient in this study visited our clinics 3 months after surgery to evaluate the results. We judged the postoperative results in terms of re-operation rates caused by the dissatisfaction of the patients and complications. During a 13-year period, 516 patients underwent forehead augmentation with MMA. With the injection-molding technique, the inner surface of the MMA implant is positioned close to the underlying frontal bone, which minimizes the gap between the implant and bone. The borders of the implant should be tapered sufficiently until no longer palpable or visible. Only 28 patients (5.4%) underwent a re-operation due to an undesirable postoperative appearance. The injection-molding technique using MMA is a simple, safe, and ideal method for the augmentation of the forehead.
Forehead Augmentation with a Methyl Methacrylate Onlay Implant Using an Injection-Molding Technique
Park, Dong Kwon; Song, Ingook; Lee, Jin Hyo
2013-01-01
Background The forehead, which occupies about one third of the face, is one of the major determinants of a feminine or masculine look. Various methods have been used for the augmentation of the forehead using autologous fat grafts or alloplastic materials. Methylmethacrylate (MMA) is the most appropriate material for augmentation of the forehead, and we have used an injection-molding technique with MMA to achieve satisfactory results. Methods Under local anesthesia with intravenous (IV) sedation, an incision was made on the scalp and a meticulous and delicate subperiosteal dissection was then performed. MMA monomers and polymers were mixed, the dough was injected into the space created, and manual molding was performed along with direct inspection. This surgery was indicated for patients who wanted to correct an unattractive appearance by forehead augmentation. Every patient in this study visited our clinics 3 months after surgery to evaluate the results. We judged the postoperative results in terms of re-operation rates caused by the dissatisfaction of the patients and complications. Results During a 13-year period, 516 patients underwent forehead augmentation with MMA. With the injection-molding technique, the inner surface of the MMA implant is positioned close to the underlying frontal bone, which minimizes the gap between the implant and bone. The borders of the implant should be tapered sufficiently until no longer palpable or visible. Only 28 patients (5.4%) underwent a re-operation due to an undesirable postoperative appearance. Conclusions The injection-molding technique using MMA is a simple, safe, and ideal method for the augmentation of the forehead. PMID:24086816
Schröter, S; Krämer, M; Welke, B; Hurschler, C; Russo, R; Herbst, M; Stöckle, U; Ateschrang, A; Maiotti, M
2016-10-01
Anterior shoulder dislocation is common. The treatment of recurrence with glenoid bone defect is still considered controversial. A new arthroscopic subscapularis augmentation has recently been described that functions to decrease the anterior translation of the humeral head. The purpose of the presented study was to examine the biomechanical effect on glenohumeral joint motion and stability. Eight fresh frozen cadaver shoulders were studied by use of a force guided industrial robot fitted with a six-component force-moment sensor to which the humerus was attached. The testing protocol includes measurement of glenohumeral translation in the anterior, anterior-inferior and inferior directions at 0°, 30° and 60° of glenohumeral abduction, respectively, with a passive humerus load of 30N in the testing direction. The maximum possible external rotation was measured at each abduction angle applying a moment of 1Nm. Each specimen was measured in a physiologic state, as well as after Bankart lesion with an anterior bone defect of 15-20% of the glenoid, after arthroscopic subscapularis augmentation and after Bankart repair. The arthroscopic subscapularis augmentation decreased the anterior and anterior-inferior translation. The Bankart repair did not restore the mechanical stability compared to the physiologic shoulder group. External rotation was decreased after arthroscopic subscapularis augmentation compared to the physiologic state, however, the limitation of external rotation was decreased at 60° abduction. The arthroscopic subscapularis augmentation investigated herein was observed to restore shoulder stability in an experimental model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Karius, T; Deborre, C; Wirtz, D C; Burger, C; Prescher, A; Fölsch, A; Kabir, K; Pflugmacher, R; Goost, H
2017-01-01
PMMA-augmentation of pedicle screws strengthens the bone-screw-interface reducing cut-out risk. Injection of fluid cement bears a higher risk of extravasation, with difficulty of application because of inconsistent viscosity and limited injection time. To test a new method of cement augmentation of pedicle screws using radiofrequency-activated PMMA, which is suspected to be easier to apply and have less extravasations. Twenty-seven fresh-frozen human cadaver lumbar spines were divided into 18 osteoporotic (BMD ≤ 0.8 g/cm2) and 9 non-osteoporotic (BMD > 0.8 g/cm2) vertebral bodies. Bipedicular cannulated pedicle screws were implanted into the vertebral bodies; right screws were augmented with ultra-high viscosity PMMA, whereas un-cemented left pedicle screws served as negative controls. Cement distribution was controlled with fluoroscopy and CT scans. Axial pullout forces of the screws were measured with a material testing machine, and results were analyzed statistically. Fluoroscopy and CT scans showed that in all cases an adequately big cement depot with homogenous form and no signs of extravasation was injected. Pullout forces showed significant differences (p < 0.001) between the augmented and non-augmented pedicle screws for bone densities below 0.8 g/cm2 (661.9 N ± 439) and over 0.8 g/cm2 (744.9 N ± 415). Pullout-forces were significantly increased in osteoporotic as well as in non-osteoporotic vertebral bodies without a significant difference between these groups using this standardized, simple procedure with increased control and less complications like extravasation.
Sönmez, Tolga Taha; Bayer, Andreas; Cremer, Tillman; Hock, Jennifer Vanessa Phi; Lethaus, Bernd; Kweider, Nisreen; Wruck, Christoph Jan; Drescher, Wolf; Jahr, Holger; Lippross, Sebastian; Pufe, Thomas; Tohidnezhad, Mersedeh
2017-11-01
Chronic alcohol consumption is a known limiting factor for bone healing. One promising strategy to improve bone augmentation techniques with Bio-Oss ® in oral and maxillofacial surgery might be the supportive application of platelet-concentrated biomaterials as platelet-released growth factor (PRGF). To address this matter, we performed an in vitro study investigating the protective effects of PRGF and Bio-Oss ® in ethanol (EtOH) treated osteoblasts. The SAOS-2 osteosarcoma cell line, with and without EtOH pretreatment was used. The cell viability, proliferation and alkali phosphatase activity (ALP) after application of 0%, 5% and 10% PRGF and Bio-Oss ® were assessed. The application of PRGF and Bio-Oss ® in EtOH impaired osteoblasts showed a significant beneficial influence increasing the viability of the osteoblasts in cell culture. The synergistic effect of Bio-Oss ® and 5% PRGF on the proliferation of osteoblasts was also demonstrated. Bio-Oss ® only in combination with PRGF increases the alkaline phosphatase (ALP) activity in EtOH pretreated cells. These results indicate that the simultaneous application of PRGF and Bio-Oss ® inhibits EtOH induced bone healing impairment. Furthermore, in the cells, PRGF induced a protective mechanism which might promote bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.
Multi-protein Delivery by Nanodiamonds Promotes Bone Formation
Moore, L.; Gatica, M.; Kim, H.; Osawa, E.; Ho, D.
2013-01-01
Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE® for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation. PMID:24045646
Multi-protein delivery by nanodiamonds promotes bone formation.
Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D
2013-11-01
Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation.
Taschieri, Silvio; Corbella, Stefano; Saita, Massimo; Tsesis, Igor; Del Fabbro, Massimo
2012-01-01
Implant rehabilitation of the edentulous posterior maxilla may be a challenging procedure in the presence of insufficient bone volume for implant placement. Maxillary sinus augmentation with or without using grafting materials aims to provide adequate bone volume. The aim of the present study was to systematically review the existing literature on transalveolar maxillary sinus augmentation without grafting materials and to propose and describe an osteotome-mediated approach in postextraction sites in combination with platelet derivative. The systematic review showed that high implant survival rate (more than 96% after 5 years) can be achieved even without grafting the site, with a low rate of complications. Available alveolar bone height before surgery was not correlated to survival rate. In the described case report, three implants were placed in posterior maxilla after extraction of two teeth. An osteotome-mediated sinus lifting technique was performed with the use of platelet derivative (PRGF); a synthetic bone substitute was used to fill the gaps between implant and socket walls. No complications occurred, and implants were successfully in site after 1 year from prosthetic loading. The presented technique might represent a viable alternative for the treatment of edentulous posterior maxilla with atrophy of the alveolar bone though it needs to be validated by studies with a large sample size. PMID:22792108
Baba, Rikiya; Onodera, Tomohiro; Matsuoka, Masatake; Hontani, Kazutoshi; Joutoku, Zenta; Matsubara, Shinji; Homan, Kentaro; Iwasaki, Norimasa
2018-05-01
The optimal treatment for a medium- or large-sized cartilage lesion is still controversial. Since an ultrapurified alginate (UPAL) gel enhances cartilage repair in animal models, this material is expected to improve the efficacy of the current treatment strategies for cartilage lesions. The bone marrow stimulation technique (BMST) augmented by UPAL gel can induce hyaline-like cartilage repair. Controlled laboratory study. Two cylindrical osteochondral defects were created in the patellar groove of 27 beagle dogs. A total of 108 defects were divided into 3 groups: defects without intervention (control group), defects with the BMST (microfracture group), and defects with the BMST augmented by implantation of UPAL gel (combined group). At 27 weeks postoperatively, macroscopic and histological evaluations, micro-computed tomography assessment, and mechanical testing were performed for each reparative tissue. The defects in the combined group were almost fully covered with translucent reparative tissues, which consisted of hyaline-like cartilage with well-organized collagen structures. The macroscopic score was significantly better in the combined group than in the control group ( P < .05). The histological scores in the combined group were significantly better than those in the control group ( P < .01) and microfracture group ( P < .05). Although the repaired subchondral bone volumes were not influenced by UPAL gel augmentation, the mechanical properties of the combined group were significantly better than those of the microfracture group ( P < .05). The BMST augmented by UPAL gel elicited hyaline-like cartilage repair that had characteristics of rich glycosaminoglycan and matrix immunostained by type II collagen antibody in a canine osteochondral defect model. The present results suggest that the current technique has the potential to be one of the autologous matrix-induced chondrogenesis techniques of the future and to expand the operative indications for the BMST without loss of its technical simplicity. The data support the clinical reality of 1-step minimally invasive cartilage-reparative medicine with UPAL gel without harvesting donor cells.
Targeted delivery of mesenchymal stem cells to the bone.
Yao, Wei; Lane, Nancy E
2015-01-01
Osteoporosis is a disease of excess skeletal fragility that results from estrogen loss and aging. Age related bone loss has been attributed to both elevated bone resorption and insufficient bone formation. We developed a hybrid compound, LLP2A-Ale in which LLP2A has high affinity for the α4β1 integrin on mesenchymal stem cells (MSCs) and alendronate has high affinity for bone. When LLP2A-Ale was injected into mice, the compound directed MSCs to both trabecular and cortical bone surfaces and increased bone mass and bone strength. Additional studies are underway to further characterize this hybrid compound, LLP2A-Ale, and how it can be utilized for the treatment of bone loss resulting from hormone deficiency, aging, and inflammation and to augment bone fracture healing. This article is part of a Special Issue entitled "Stem Cells and Bone". Copyright © 2014 Elsevier Inc. All rights reserved.
Overdenture retaining bar stress distribution: a finite-element analysis.
Caetano, Conrado Reinoldes; Mesquita, Marcelo Ferraz; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; Dos Santos, Mateus Bertolini Fernandes
2015-05-01
Evaluate the stress distribution on the peri-implant bone tissue and prosthetic components of bar-clip retaining systems for overdentures presenting different implant inclinations, vertical misfit and framework material. Three-dimensional models of a jaw and an overdenture retained by two implants and a bar-clip attachment were modeled using specific software (SolidWorks 2010). The studied variables were: latero-lateral inclination of one implant (-10°, -5°, 0°, +5°, +10°); vertical misfit on the other implant (50, 100, 200 µm); and framework material (Au type IV, Ag-Pd, Ti cp, Co-Cr). Solid models were imported into mechanical simulation software (ANSYS Workbench 11). All nodes on the bone's external surface were constrained and a displacement was applied to simulate the settling of the framework on the ill-fitted component. Von Mises stress for the prosthetic components and maximum principal stress to the bone tissue were evaluated. The +10° inclination presented the worst biomechanical behavior, promoting the highest stress values on the bar framework and peri-implant bone tissue. The -5° group presented the lowest stress values on the prosthetic components and the lowest stress value on peri-implant bone tissue was observed in -10°. Increased vertical misfit caused an increase on the stress values in all evaluated structures. Stiffer framework materials caused a considerable stress increase in the framework itself, prosthetic screw of the fitted component and peri-implant bone tissue. Inclination of one implant associated with vertical misfit caused a relevant effect on the stress distribution in bar-clip retained overdentures. Different framework materials promoted increased levels of stress in all the evaluated structures.
Sbordone, Carolina; Toti, Paolo; Guidetti, Franco; Califano, Luigi; Bufo, Pantaleo; Sbordone, Ludovico
2013-04-01
To evaluate long-term bone remodelling of autografts over time (annually, for 6 years), comparing the block and particulate bone procedures for sinus floor elevation, as well as to evaluate the survival of positioned dental implants. Twenty-three sinus lift procedures with autogenous bone were performed: seven sinus lift procedures using particulate graft and 10 with block autogenous bone were performed in 17 patients. Employing a software program, pre- and post-surgical computerized tomography (CT) scans were used to compare the volume (V) and density (D) of inlay grafts over time (up to 6 years), and to determine the percentage of remaining bone (%R). All variable (V, D and %R) measurements were then compared statistically. At the 6-year survey for block form, a resorption of 21.5% was seen, whereas for particulate grafts there was a resorption of 39.2%. Both groups exhibited bone remodelling between the first and second follow-up which was significant regarding volume for the block form and regarding density for the particulate group. During the initial period of healing, the cortico-cancellous block bone grafted into the maxillary sinus underwent a negative remodelling of the volume, which is most probably due to graft cortex resorption, coupled with, primarily, an increase in density in the spongious area; for the particulate grafts, significant augmentations in density were obtained. The lack of significant differences among volumes was due to the wide degree of dispersion of the data. The rough data presented in this paper seem to support the use of a bone-block grafting procedure in maxillary sinus augmentation. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Schwarz, Frank; Mihatovic, Ilja; Golubovic, Vladimir; Hegewald, Andrea; Becker, Jürgen
2012-01-01
To assess the influence of two barrier membranes and two bone graft substitutes mixed with autogenous bone (AB) on staged guided bone regeneration and osseointegration of titanium implants in dogs. Four saddle-type defects each were prepared in the upper jaw of six fox hounds and randomly filled with a natural bone mineral (NBM)+AB and a biphasic calcium phosphate (SBC)+AB and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, dissected blocks were processed for histomorphometrical analysis (e.g., treated area [TA], bone-to-implant contact [BIC]). The mean TA values (mm(2) ) and BIC values (%) tended to be higher in the PEG groups(TA: NBM+AB [10.4 ± 2.5]; SBC+AB [10.4 ± 5.8]/BIC: NBM+AB [86.4 ± 20.1]; SBC+AB [80.1 ± 21.5]) when compared with the corresponding CM groups (TA: NBM+AB [9.7 ± 4.8]; SBC+AB [7.8 ± 4.3]/BIC: NBM+AB [71.3 ± 20.8]; SBC+AB [72.4 ± 20.3]). A significant difference was observed for the mean TA values in the SBC+AB groups. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. However, the application of PEG may be associated with increased TA values. © 2011 John Wiley & Sons A/S.
Cephalometric Evaluation of the Hyoid Bone Position in Lebanese Healthy Young Adults.
Daraze, Antoine
2018-05-01
The objectives of this study are to assess hyoid sagittal and vertical position, and potential correlations with gender, skeletal class, and anthropometrics. Twenty-seven cephalometric linear, angular, and ratio measurements for the hyoid were recorded on lateral cephalograms obtained from 117 healthy young Lebanese adults. Anthropometric parameters including height, weight, body mass index (BMI), and neck circumference (NC) were measured. Statistically significant gender differences were demonstrated for 21 out of 27 parameters considered. All linear and two out of three angular measurements defining the vertical hyoid position were larger in males compared with females. Five linear, one angular, and two ratio measurements showed differences in the sagittal dimension. Skeletal classes did not influence the sagittal and vertical hyoid position. Anthropometric variables as height were strongly correlated to the vertical hyoid position, while weight correlated more sagittally. Cephalometric norms for hyoid position were established, sexual dimorphism and ethnic differences were demonstrated. Skeletal patterns did not influence the sagittal and vertical hyoid bone position. Anthropometric parameters, such as BMI correlated the least to both vertical and sagittal hyoid position measurements, while the impact of height and weight as separate entities made a paradigm shift providing accurate and strong correlation of the vertical hyoid position to the height, and the sagittal hyoid position to the weight of individuals. The cephalometric norms for the hyoid bone position in the Lebanese population established in the present study are of paramount clinical importance and should be considered in planning combined orthodontic and breathing disorders treatments.
Kammerlander, Christian; Hem, Einar S; Klopfer, Tim; Gebhard, Florian; Sermon, An; Dietrich, Michael; Bach, Olaf; Weil, Yoram; Babst, Reto; Blauth, Michael
2018-04-22
New implant designs like the Proximal Femoral Nail Antirotation (PFNA) were developed to reduce failure rates in unstable pertrochanteric fractures in the elderly. Standardized implant augmentation with up to 6 mL of polymethylmethacrylate (PMMA) cement has been introduced to enhance implant anchorage by increasing the implant-bone interface in osteoporotic bone conditions. Biomechanically, loads to failure were significantly higher with augmentation. The primary objective of this study was to compare the mobility of patients with closed unstable trochanteric fractures treated by PFNA either with or without cement augmentation. A prospective multicentre, randomized, patient-blinded trial was conducted with ambulatory patients aged 75 or older who sustained a closed, unstable trochanteric fracture. Surgical fixation had to be performed within 72 h after admission. Outcomes were evaluated at baseline, during surgery, 3 to 14 days after surgery, 3 months, 6 months, and 12 months after surgery. To evaluate the primary objective, patients' walking speed was assessed by the Timed Up and Go (TUG) test. Secondary objectives included the analysis of implant migration assessed on radiographs, quality of life measured by the Barthel Index, mobility measured by the Parker Mobility Score, and complications. Of 253 randomized patients, 223 patients were eligible: 105 patients were allocated to the PFNA Augmentation group and 118 to PFNA group. At 3 to 14 days after surgery, there was no statistical significant difference in mean walking speed between the treatment groups. For the secondary objectives, also no statistical significant differences were found. However, no patient in the PFNA Augmentation group had a reoperation due to mechanical failure or symptomatic implant migration compared to 6 patients in the PFNA group. Augmentation of the PFNA blade did not improve patients' walking ability compared to the use of a non-augmented PFNA but might have the potential to prevent reoperations by strengthening the osteosynthesis construct. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Merıç, Gökçe; Erkmen, Erkan; Kurt, Ahmet; Eser, Atilim; özden, Ahmet Utku
2011-11-01
The purpose of the study was to compare the effects of two distinct collar geometries of implants on stress distribution in the bone around the implants supporting cantilever fixed partial dentures (CFPDs) as well as in the implant-abutment complex and superstructures. The three-dimensional finite element method was selected to evaluate the stress distribution. CFPDs which was supported by microthread collar structured (MCS) and non-microthread collar structured (NMCS) implants was modeled; 300 N vertical, 150 N oblique and 60 N horizontal forces were applied to the models separately. The stress values in the bone, implant-abutment complex and superstructures were calculated. In the MCS model, higher stresses were located in the cortical bone and implant-abutment complex in the case of vertical load while decreased stresses in cortical bone and implant-abutment complex were noted within horizontal and oblique loading. In the case of vertical load, decreased stresses have been noted in cancellous bone and framework. Upon horizontal and oblique loading, a MCS model had higher stress in cancellous bone and framework than the NMCS model. Higher von Mises stresses have been noted in veneering material for NMCS models. It has been concluded that stress distribution in implant-supported CFPDs correlated with the macro design of the implant collar and the direction of applied force.
Chronic sinusitis associated with the use of unrecognized bone substitute: a case report.
Beklen, Arzu; Pihakari, Antti; Rautemaa, Riina; Hietanen, Jarkko; Ali, Ahmed; Konttinen, Yrjö T
2008-05-01
Bone grafts are used for bone augmentation to ensure optimal implant placement. However, this procedure may sometimes cause sinusitis. The case of a 44-year-old woman with the diagnosis of recurrent and chronic sinusitis of her right maxillary sinus with a history of dental implant surgery is presented. After several attempts with normal standard sinusitis therapy, unrecognized bone substitute was removed from the sinus cavity, which finally led to resolution of the sinusitis. This case reiterates the importance of a careful examination, consultation, and second opinion for the selection of optimal treatment.
Outcomes of acute Achilles tendon rupture repair with bone marrow aspirate concentrate augmentation.
Stein, Benjamin E; Stroh, David Alex; Schon, Lew C
2015-05-01
Optimal treatment of acute Achilles tendon ruptures remains controversial. Positive results using stem-cell-bearing concentrates have been reported with other soft-tissue repairs, but no studies exist on outcomes of bone marrow aspirate concentrate (BMAC) augmentation in primary Achilles tendon repair. We reviewed patients with sport-related Achilles tendon ruptures treated via open repair augmented with BMAC injection from 2009 to 2011. Data on operative complications, strength, range of motion, rerupture, calf circumference and functional improvement through progressive return to sport and the Achilles tendon Total Rupture Score (ATRS) were analysed. A total of 27 patients (28 tendons) treated with open repair and BMAC injection were identified (mean age 38.3 ± 9.6 years). At mean follow-up of 29.7 ± 6.1 months, there were no reruptures. Walking without a boot was at 1.8 ± 0.7 months, participation in light activity was at 3.4 ± 1.8 months and 92% (25 of 27) of patients returned to their sport at 5.9 ± 1.8 months. Mean ATRS at final follow-up was 91 (range 72-100) points. One case of superficial wound dehiscence healed with local wound care. No soft-tissue masses, bone formation or tumors were observed in the operative extremity. Excellent results, including no re-ruptures and early mobilisation, were observed in this small cohort with open Achilles tendon repair augmented by BMAC. No adverse outcomes of biologic treatment were observed with this protocol. The efficacy of BMAC in the operative repair of acute Achilles tendon ruptures warrants further study. IV - Therapeutic.
Nam, J W; Khureltogtokh, S; Choi, H M; Lee, A R; Park, Y B; Kim, H J
2017-10-01
The aim of this randomised controlled clinical trial was to assess the early efficacy of bone morphogenetic protein-2 with hydroxyapatite granules (BMP-2/hydroxyapatite) on augmentation of the alveolar ridge, by comparing changes in volume with those associated with the use of an inorganic bovine-derived xenograft (BDX). We studied 20 patients who were divided into two groups using a table of random numbers, and BMP-2/hydroxyapatite and BDX were applied accordingly. Computed tomographic (CT) images and panoramic radiographs were obtained immediately after operation and four months later. CT images were reconstructed in three dimensions to measure volumetric changes, and linear measurements were made on panoramic images. The mean (SD) absorption rates for BMP-2/hydroxyapatite and BDX were 13.2 (8.8)% and 13.8 (20.5)%, respectively. While the mean value did not differ significantly between the two materials, the SD was higher in the BDX group than in the BMP-2/hydroxyapatite group. No clinically important complications occurred in either group. We conclude that both BMP-2/hydroxyapatite and BDX were effective in augmenting the alveolar ridge, but BMP-2/hydroxyapatite seemed to be more useful in complicated bone defects. Copyright © 2017 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Giannobile, William V; Jung, Ronald E; Schwarz, Frank
2018-03-01
The goal of Working Group 1 at the 2nd Consensus Meeting of the Osteology Foundation was to comprehensively assess the effects of soft tissue augmentation procedures on peri-implant health or disease. A systematic review and meta-analysis on the effects of soft tissue augmentation procedures included a total of 10 studies (mucosal thickness: n = 6; keratinized tissue: n = 4). Consensus statements, clinical recommendations, and implications for future research were based on structured group discussions and a plenary session approval. Soft tissue grafting to increase the width of keratinized tissue around implants was associated with greater reductions in gingival and plaque indices when compared to non-augmented sites. Statistically significant differences were noted for final marginal bone levels in favor of an apically positioned flap plus autogenous graft vs. all standard-of-care control treatments investigated. Soft tissue grafting (i.e., autogenous connective tissue) to increase the mucosal thickness around implants in the aesthetic zone was associated with significantly less marginal bone loss over time, but no significant changes in bleeding on probing, probing depths, or plaque scores when compared to sites without grafting. The limited evidence available supports the use of soft tissue augmentation procedures to promote peri-implant health. © 2018 The Authors. Clinical Oral Implants Research Published by John Wiley & Sons Ltd.
Kovacevic, David; Fox, Alice J; Bedi, Asheesh; Ying, Liang; Deng, Xiang-Hua; Warren, Russell F; Rodeo, Scott A
2011-04-01
Rotator cuff tendon heals by formation of an interposed zone of fibrovascular scar tissue. Recent studies demonstrate that transforming growth factor-beta 3 (TGF-β(3)) is associated with tissue regeneration and "scarless" healing, in contrast to scar-mediated healing that occurs with TGF-β(1). Delivery of TGF-β(3) in an injectable calcium-phosphate matrix to the healing tendon-bone interface after rotator cuff repair will result in increased attachment strength secondary to improved bone formation and collagen organization and reduced scar formation of the healing enthesis. Controlled laboratory study. Ninety-six male Sprague-Dawley rats underwent unilateral detachment of the supraspinatus tendon followed by acute repair using transosseous suture fixation. Animals were allocated into 1 of 3 groups: (1) repair alone (controls, n = 32), (2) repair augmented by application of an osteoconductive calcium-phosphate (Ca-P) matrix only (n = 32), or (3) repair augmented with Ca-P matrix + TGF-β(3) (2.75 µg) at the tendon-bone interface (n = 32). Animals were euthanized at either 2 weeks or 4 weeks postoperatively. Biomechanical testing of the supraspinatus tendon-bone complex was performed at 2 and 4 weeks (n = 8 per group). Microcomputed tomography was utilized to quantitate bone microstructure at the repair site. The healing tendon-bone interface was evaluated with histomorphometry and immunohistochemical localization of collagen types I (COLI) and III (COLIII). Statistical analysis was performed using 2-way analysis of variance with significance set at P < .05. There was significantly greater load to failure of the Ca-P matrix + TGF-β(3) group compared with matrix alone or untreated controls at 4 weeks postoperatively (P = .04). At 2 weeks, microcomputed tomography revealed a larger volume of newly formed bone present at the healing enthesis in both experimental groups compared with the control group. By 4 weeks, this newly formed, woven bone had matured into calcified, lamellar bone. Histomorphometric analysis demonstrated significantly greater fibrocartilage and increased collagen organization at the healing tendon-bone insertion site in both experimental groups compared with the control group at 2 weeks (P = .04). Over time, TGF-β(3) delivery led to greater COLI expression compared with COLIII at the healing enthesis, indicating a more favorable COLI to COLIII ratio with administration of TGF-β(3). Augmentation with an osteoconductive Ca-P matrix at the tendon-bone repair site is associated with new bone formation, increased fibrocartilage, and improved collagen organization at the healing tendon-bone interface in the early postoperative period after rotator cuff repair. The addition of TGF-β(3) significantly improved strength of the repair at 4 weeks postoperatively and resulted in a more favorable COLI/COLIII ratio. The delivery of TGF-β(3) with an injectable Ca-P matrix at the supraspinatus tendon footprint has promise to improve healing after soft tissue repair.
Tsuka, T; Ooshita, K; Sugiyama, A; Osaki, T; Okamoto, Y; Minami, S; Imagawa, T
2012-01-01
Computed tomography (CT) was performed on 400 claws (200 inner and 200 outer claws) of 100 pairs of bovine hind limbs to investigate the etiological theory that an exacerbating factor for ulceration is exostosis of the tuberculum flexorium within the distal phalanx. A variety of morphological changes of the tuberculum flexorium of bovine hind limb claws was visualized by 3-dimensional CT, and the geometry of these claws suggested a growth pattern of bone development with respect to the assumed daily loading patterns. This growth occurs initially at the abaxial caudal aspect of the distal phalanx and is followed by horizontal progression toward the axial aspect. The length of downward bone development on the solar face of the distal phalanx was 2.73±1.32 mm in the outer claws, significantly greater than in the inner claws (2.38±0.96 mm). Ratios of downward (vertical) bone development to the thickness of the subcutis and the corium (VerBD ratios) did not differ between the outer and inner claws (36.7 vs. 38.3%, respectively). Ratios of horizontal bone development to the axial-to-abaxial line of the tuberculum flexorium (HorBD ratios) were approximately 60% for both outer and inner claws. These quantitative measures regarding horizontal and vertical bone development within the distal phalanx were positively correlated with age and VerBD ratios (r=0.53 and r=0.36 for the inner and outer claws, respectively). Correlations between claw width of the outer claw and length of vertical bone development (r=0.43), the HorBD ratio (r=0.51), and the VerBD ratio (r=0.42) suggested that the relative size difference between the inner and outer claws enhances bone development in the outer claw. Correlation coefficients between VerBD and HorBD ratios (r=0.52 and 0.63 for the inner and outer claws, respectively) suggested that horizontal and vertical bone development occurs as a synchronized process within the tuberculum flexorium. This age-related progress of bone development within the tuberculum flexorium is associated with increased exposure to several exacerbating factors and the laminitic process. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Flügge, Tabea; Nelson, Katja; Nack, Claudia; Stricker, Andres; Nahles, Susanne
2015-04-01
This study identified the soft tissue changes of the alveolar ridge at different time points within 12 weeks after tooth extraction with and without socket augmentation. In 38 patients with single tooth extractions, 40 sockets were augmented and 39 extraction sockets were not augmented. At 2, 4, 6, 8 and 12 weeks impressions were taken and casts digitized with a laser scanner. The horizontal and vertical changes were compared between augmented and non-augmented sites. A p-value <0.05 was considered statistically significant. The mean changes of augmented sockets were between 0.4 mm (2 weeks) and 0.8 mm (12 weeks). In non-augmented sockets changes of 0.7 mm (2 weeks) and of 1.0 mm (12 weeks) were demonstrated. The mean values differed significantly between the buccal and oral region (p < 0.01). Overall, there were significant differences of the mean dimensional changes regarding time (p < 0.01) and augmentation (p < 0.01). Augmented sockets showed less resorption within 4 weeks after extraction compared to non-augmented sockets. Non-augmented sockets showed a continuous dimensional loss with a great variation over 12 weeks whereas augmented sockets had the highest degree of resorption between 4 and 6 weeks. At 12 weeks a comparable resorption in augmented and non-augmented sockets was observed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Vertical Guidance Performance Analysis of the L1–L5 Dual-Frequency GPS/WAAS User Avionics Sensor
Jan, Shau-Shiun
2010-01-01
This paper investigates the potential vertical guidance performance of global positioning system (GPS)/wide area augmentation system (WAAS) user avionics sensor when the modernized GPS and Galileo are available. This paper will first investigate the airborne receiver code noise and multipath (CNMP) confidence (σair). The σair will be the dominant factor in the availability analysis of an L1–L5 dual-frequency GPS/WAAS user avionics sensor. This paper uses the MATLAB Algorithm Availability Simulation Tool (MAAST) to determine the required values for the σair, so that an L1–L5 dual-frequency GPS/WAAS user avionics sensor can meet the vertical guidance requirements of APproach with Vertical guidance (APV) II and CATegory (CAT) I over conterminous United States (CONUS). A modified MAAST that includes the Galileo satellite constellation is used to determine under what user configurations WAAS could be an APV II system or a CAT I system over CONUS. Furthermore, this paper examines the combinations of possible improvements in signal models and the addition of Galileo to determine if GPS/WAAS user avionics sensor could achieve 10 m Vertical Alert Limit (VAL) within the service volume. Finally, this paper presents the future vertical guidance performance of GPS user avionics sensor for the United States’ WAAS, Japanese MTSAT-based satellite augmentation system (MSAS) and European geostationary navigation overlay service (EGNOS). PMID:22319263
Lorenzetti, Massimo; Vono, Maurizio; Lorenzetti, Virginia
2018-02-16
A total of six patients treated from 2010 to 2014, having a knife-edge ridge (Cawood-Howell Class IV resorbed ridges) and requiring an implant-prosthetic rehabilitation, were selected. Tomographic measurement of the edentulous ridges was performed before grafting and after implant placement. At 6 months postgraft, a total of 41 implants had been inserted, 17 in the posterior region, 12 in the central region, and 12 in the anterior region. No surgical or healing complications were recorded, and the prostheses were loaded 6 to 9 months after implant placement. The tomographic measurements demonstrated an increased area in all the sites where bone augmentation had been performed, corresponding to 11.1% in the anterior region, 94.7% in the central region, and 760.2% in the posterior region. Histology was performed in 2 patients, one at 1 year and the other at 5 years postgrafting, and demonstrated the presence of mature lamellar bone tissue and newly formed bone without morphologic signs of necrosis or inflammation and a reduction of 50% to 30% of the grafted material. Although this study included a small number of clinical cases, it demonstrated how management of the atrophic maxillary ridge, with the goal of implant placement, may be handled using a technique that requires a single anorganic bovine bone-derived mineral treatment combined with a plasma rich in growth factors and resorbable collagen membrane.
Mumith, A; Coathup, M; Chimutengwende-Gordon, M; Aston, W; Briggs, T; Blunn, G
2017-02-01
Massive endoprostheses rely on extra-cortical bone bridging (ECBB) to enhance fixation. The aim of this study was to investigate the role of selective laser sintered (SLS) porous collars in augmenting the osseointegration of these prostheses. The two novel designs of porous SLS collars, one with small pores (Ø700 μm, SP) and one with large pores (Ø1500 μm, LP), were compared in an ovine tibial diaphyseal model. Osseointegration of these collars was compared with that of a clinically used solid, grooved design (G). At six months post-operatively, the ovine tibias were retrieved and underwent radiological and histological analysis. Porous collars provided a significantly greater surface (p < 0.001) for the ingrowth of bone than the standard grooved design. Significantly greater extracortical pedicle formation was seen radiologically around the grooved design (length p = 0.002, thickness p < 0.001, surface area p = 0.002) than around the porous collars. However, the ingrowth of bone occurred from the transection site into the porous structure of both types of collar. A fivefold increase in integration was seen with the SP and a threefold increase in the LP design when compared with G (p < 0.001). SLS porous collars allow the direct ingrowth of more bone and are better than current designs which rely on surface ongrowth and ECBB. Cite this article: Bone Joint J 2017;99-B:276-82. ©2017 The British Editorial Society of Bone & Joint Surgery.
Efficacy of different bone volume expanders for augmenting lumbar fusions.
Epstein, Nancy E
2008-01-01
A wide variety of bone volume expanders are being used in performing posterolateral lumbar noninstrumented and instrumented lumbar fusions. This article presents a review of their efficacy based on fusion rates, complications, and outcomes. Lumbar noninstrumented and instrumented fusions frequently use laminar autografts and different bone graft expanders. This review presents the utility of multiple forms/ratios of DBMs containing allografts. It also discusses the efficacy of artificial bone graft substitutes, including HA and B-TCP. Dynamic x-ray and/or CT examinations were used to document fusion in most series. Outcomes were variously assessed using Odom's criteria or different outcome questionnaires (Oswestry Questionnaire, SF-36, Dallas Pain Questionnaire, and/or Low Back Pain Rating Scale). Performing noninstrumented and instrumented lumbar posterolateral fusions resulted in comparable fusion rates in many series. Similar outcomes were also documented based on Odom's criteria or the multiple patient-based questionnaires. However, in some studies, the addition of spinal instrumentation increased the reoperation rate, operative time, blood loss, and cost. Various forms of DBMs, applied in different ratios to autografts, effectively supplemented spinal fusions in animal models and patient series. beta-Tricalcium phosphate, which is used to augment autograft fusions addressing idiopathic scoliosis or lumbar disease, also proved to be effective. Different types of bone volume expanders, including various forms of allograft-based DBMs, and artificial bone graft substitutes (HA and B-TCP) effectively promote posterolateral lumbar noninstrumented and instrumented fusions when added to autografts.
Kettenberger, Ulrike; Luginbuehl, Vera; Procter, Philip; Pioletti, Dominique P
2017-07-01
Locally applied bisphosphonates, such as zoledronate, have been shown in several studies to inhibit peri-implant bone resorption and recently to enhance peri-implant bone formation. Studies have also demonstrated positive effects of hydroxyapatite (HA) particles on peri-implant bone regeneration and an enhancement of the anti-resorptive effect of bisphosphonates in the presence of calcium. In the present study, both hydroxyapatite nanoparticles (nHA) and zoledronate were combined to achieve a strong reinforcing effect on peri-implant bone. The nHA-zoledronate combination was first investigated in vitro with a pre-osteoclastic cell assay (RAW 264.7) and then in vivo in a rat model of postmenopausal osteoporosis. The in vitro study confirmed that the inhibitory effect of zoledronate on murine osteoclast precursor cells was enhanced by loading the drug on nHA. For the in vivo investigation, either zoledronate-loaded or pure nHA were integrated in hyaluronic acid hydrogel. The gels were injected in screw holes that had been predrilled in rat femoral condyles before the insertion of miniature screws. Micro-CT-based dynamic histomorphometry and histology revealed an unexpected rapid mineralization of the hydrogel in vivo through formation of granules, which served as scaffold for new bone formation. The delivery of zoledronate-loaded nHA further inhibited a degradation of the mineralized hydrogel as well as a resorption of the peri-implant bone as effectively as unbound zoledronate. Hyaluronic acid with zoledronate-loaded nHA, thanks to its dual effect on inducing a rapid mineralization and preventing resorption, is a promising versatile material for bone repair and augmentation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Hermida, Juan C; Flores-Hernandez, Cesar; Hoenecke, Heinz R; D'Lima, Darryl D
2014-03-01
This study undertook a computational analysis of a wedged glenoid component for correction of retroverted glenoid arthritic deformity to determine whether a wedge-shaped glenoid component design with a built-in correction for version reduces excessive stresses in the implant, cement, and glenoid bone. Recommendations for correcting retroversion deformity are asymmetric reaming of the anterior glenoid, bone grafting of the posterior glenoid, or a glenoid component with posterior augmentation. Eccentric reaming has the disadvantages of removing normal bone, reducing structural support for the glenoid component, and increasing the risk of bone perforation by the fixation pegs. Bone grafting to correct retroverted deformity does not consistently generate successful results. Finite element models of 2 scapulae models representing a normal and an arthritic retroverted glenoid were implanted with a standard glenoid component (in retroversion or neutral alignment) or a wedged component. Glenohumeral forces representing in vivo loading were applied and stresses and strains computed in the bone, cement, and glenoid component. The retroverted glenoid components generated the highest compressive stresses and decreased cyclic fatigue life predictions for trabecular bone. Correction of retroversion by the wedged glenoid component significantly decreased stresses and predicted greater bone fatigue life. The cement volume estimated to survive 10 million cycles was the lowest for the retroverted components and the highest for neutrally implanted glenoid components and for wedged components. A wedged glenoid implant is a viable option to correct severe arthritic retroversion, reducing the need for eccentric reaming and the risk for implant failure. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Studer, S; Naef, R; Schärer, P
1997-12-01
Esthetically correct treatment of a localized alveolar ridge defect is a frequent prosthetic challenge. Such defects can be overcome not only by a variety of prosthetic means, but also by several periodontal surgical techniques, notably soft tissue augmentations. Preoperative classification of the localized alveolar ridge defect can be greatly useful in evaluating the prognosis and technical difficulties involved. A semiquantitative classification, dependent on the severity of vertical and horizontal dimensional loss, is proposed to supplement the recognized qualitative classification of a ridge defect. Various methods of soft tissue augmentation are evaluated, based on initial volumetric measurements. The roll flap technique is proposed when the problem is related to ridge quality (single-tooth defect with little horizontal and vertical loss). Larger defects in which a volumetric problem must be solved are corrected through the subepithelial connective tissue technique. Additional mucogingival problems (eg, insufficient gingival width, high frenum, gingival scarring, or tattoo) should not be corrected simultaneously with augmentation procedures. In these cases, the onlay transplant technique is favored.
Reddy, Pathakota Krishnajaneya; Bolla, Vijayalakshmi; Koppolu, Pradeep; Srujan, Peruka
2015-01-01
Replacement of missing maxillary anterior tooth with localized residual alveolar ridge defect is challenging, considering the high esthetic demand. Various soft and hard tissue procedures were proposed to correct alveolar ridge deformities. Novel techniques have evolved in treating these ridge defects to improve function and esthetics. In the present case reports, a novel technique using long palatal connective tissue rolled pedicle graft with demineralized freeze-dried bone allografts (DFDBAs) plus Platelet-rich fibrin (PRF) combination was proposed to correct the Class III localized anterior maxillary anterior alveolar ridge defect. The present technique resulted in predictable ridge augmentation, which can be attributed to the soft and hard tissue augmentation with a connective tissue pedicle and DFDBA plus PRF combination. This technique suggests a variation in roll technique with DFDBA plus PRF and appears to promise in gaining predictable volume in the residual ridge defect and can be considered for the treatment of moderate to severe maxillary anterior ridge defects. PMID:26015679
Augmentation of Rotator Cuff Repair With Soft Tissue Scaffolds
Thangarajah, Tanujan; Pendegrass, Catherine J.; Shahbazi, Shirin; Lambert, Simon; Alexander, Susan; Blunn, Gordon W.
2015-01-01
Background Tears of the rotator cuff are one of the most common tendon disorders. Treatment often includes surgical repair, but the rate of failure to gain or maintain healing has been reported to be as high as 94%. This has been substantially attributed to the inadequate capacity of tendon to heal once damaged, particularly to bone at the enthesis. A number of strategies have been developed to improve tendon-bone healing, tendon-tendon healing, and tendon regeneration. Scaffolds have received considerable attention for replacement, reconstruction, or reinforcement of tendon defects but may not possess situation-specific or durable mechanical and biological characteristics. Purpose To provide an overview of the biology of tendon-bone healing and the current scaffolds used to augment rotator cuff repairs. Study Design Systematic review; Level of evidence, 4. Methods A preliminary literature search of MEDLINE and Embase databases was performed using the terms rotator cuff scaffolds, rotator cuff augmentation, allografts for rotator cuff repair, xenografts for rotator cuff repair, and synthetic grafts for rotator cuff repair. Results The search identified 438 unique articles. Of these, 214 articles were irrelevant to the topic and were therefore excluded. This left a total of 224 studies that were suitable for analysis. Conclusion A number of novel biomaterials have been developed into biologically and mechanically favorable scaffolds. Few clinical trials have examined their effect on tendon-bone healing in well-designed, long-term follow-up studies with appropriate control groups. While there is still considerable work to be done before scaffolds are introduced into routine clinical practice, there does appear to be a clear indication for their use as an interpositional graft for large and massive retracted rotator cuff tears and when repairing a poor-quality degenerative tendon. PMID:26665095
Wang, Yingxu; Mori, Ryuji; Ozoe, Nobuaki; Nakai, Takahisa; Uchio, Yuji
2009-11-01
Screws with strong pull-out strength have been sought for the treatment of cancellous bone. We hypothesized that an obliquely angled screw thread has advantages over conventional vertical thread with a minimal proximal half angle. Metal and bone screws were made of stainless steel and porcine cortical bone. Their proximal half angle was set at 0 degrees , 30 degrees , or 60 degrees . The screws were inserted into porcine cancellous bone. At 0 degrees , the thread faced the recipient bone vertically. Pullout tests at a rate of 30 mm/min (n=40, each screw type) and microcomputed tomography (n=6) were conducted. The pull-out strength of the screws was maximal at 30 degrees ; 348.8 (SD, 44.1)N with metal and 326.6 (39.4)N with bone. It was intermediate at 0 degrees ; 301.9 (35.9)N with metal and 278.2 (30.6)N with bone. It was minimal at 60 degrees; 126.5 (39.0)N with metal and 174.8 (29.7)N with bone. Cancellous bone was damaged between the threads at 30 degrees , while intact cancellous bone was preserved between the threads at 0 degrees. A proximal half angle of around 30 degrees is appropriate because the pullout force is applied to the recipient bone evenly. Commercial cancellous screws can be improved by changing the thread shape to minimize the damage to recipient bone.
Popelka, V; Zamborský, R
2017-01-01
The aim of this publication is to present a case report of a 38-year-old patient with traumatic astragalectomy and resultant foot reconstruction surgery using a combination of talus compensation by vertically placed tricortical autograft and pantalar arthrodesis with a retrograde calcaneotibial nail (hindfoot nail). The advantage of this treatment is based on a solid, stable osteosynthesis, while maintaining the length of the limb. Key words: traumatic talar extrusion, tibiocalcaneal arthrodesis, hindfoot nail, bone graft, pantalar arthrodesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolski, M., E-mail: marcin.wolski@curtin.edu.au; Podsiadlo, P.; Stachowiak, G. W.
Purpose: To develop directional fractal signature methods for the analysis of trabecular bone (TB) texture in hand radiographs. Problems associated with the small size of hand bones and the orientation of fingers were addressed. Methods: An augmented variance orientation transform (AVOT) and a quadrant rotating grid (QRG) methods were developed. The methods calculate fractal signatures (FSs) in different directions. Unlike other methods they have the search region adjusted according to the size of bone region of interest (ROI) to be analyzed and they produce FSs defined with respect to any chosen reference direction, i.e., they work for arbitrary orientation ofmore » fingers. Five parameters at scales ranging from 2 to 14 pixels (depending on image size and method) were derived from rose plots of Hurst coefficients, i.e., FS in dominating roughness (FS{sub Sta}), vertical (FS{sub V}) and horizontal (FS{sub H}) directions, aspect ratio (StrS), and direction signatures (StdS), respectively. The accuracy in measuring surface roughness and isotropy/anisotropy was evaluated using 3600 isotropic and 800 anisotropic fractal surface images of sizes between 20 × 20 and 64 × 64 pixels. The isotropic surfaces had FDs ranging from 2.1 to 2.9 in steps of 0.1, and the anisotropic surfaces had two dominating directions of 30° and 120°. The methods were used to find differences in hand TB textures between 20 matched pairs of subjects with (cases: approximate Kellgren-Lawrence (KL) grade ≥2) and without (controls: approximate KL grade <2) radiographic hand osteoarthritis (OA). The OA Initiative public database was used and 20 × 20 pixel bone ROIs were selected on 5th distal and middle phalanges. The performance of the AVOT and QRG methods was compared against a variance orientation transform (VOT) method developed earlier [M. Wolski, P. Podsiadlo, and G. W. Stachowiak, “Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early osteoarthritis in knee radiographs,” Proc. Inst. Mech. Eng., Part H 223, 211–236 (2009)]. Results: The AVOT method correctly quantified the isotropic and anisotropic surfaces for all image sizes and scales. Values of FS{sub Sta} were significantly different (P < 0.05) between the isotropic surfaces. Using the VOT and QRG methods no differences were found at large scales for the isotropic surfaces that are smaller than 64 × 64 and 48 × 48 pixels, respectively, and at some scales for the anisotropic surfaces with size 48 × 48 pixels. Compared to controls, using the AVOT and QRG methods the authors found that OA TB textures were less rough (P < 0.05) in the dominating and horizontal directions (i.e., lower FS{sub Sta} and FS{sub H}), rougher in the vertical direction (i.e., higher FS{sub V}) and less anisotropic (i.e., higher StrS) than controls. No differences were found using the VOT method. Conclusions: The AVOT method is well suited for the analysis of bone texture in hand radiographs and it could be potentially useful for early detection and prediction of hand OA.« less
Baas, Jorgen; Vestermark, Marianne; Jensen, Thomas; Bechtold, Joan; Soballe, Kjeld; Jakobsen, Thomas
2017-04-01
Bone allograft is used in total joint arthroplasties in order to enhance implant fixation. BMPs are known to stimulate new bone formation within allograft, but also known to accelerate graft resorption. Bisphosphonates are strong inhibitor of bone resorption. The aim of this study was to investigate whether the bisphosphonate zoledronate was able to counteract the accelerated graft resorption without interfering with the BMP induced bone formation. In the present study the two drugs alone and in combination were studied in our canine model of impaction bone grafting. We included 10 dogs in this study. Cancellous allograft bone grafts were soaked in either saline or zoledronate solution (0.005mg/mL) and then vehicle or BMP2 (0.15mg rhBMP2) was added. This produced four treatment groups: A) control, B) BMP2, C) zoledronate and D) BMP2+zoledronate. The allograft treated with A, B, C or D was impacted into a circumferential defect of 2.5mm around HA-coated porous Ti implants. Each dog received all four treatment groups with two implants in the distal part of each femur. The group with allograft soaked in zoledronate (C) showed better biomechanical fixation than all other groups (p<0.05). It had less allograft resorption compared to all other groups (p<0.005) without any statistically significant change in new bone formation. The addition of BMP2 to the allograft did not increase new bone formation significantly, but did accelerate allograft resorption. This was also the case where the allograft was treated with BMP2 and zoledronate in combination (D). This caused a decrease in mechanical implant fixation in both these groups compared to the control group, however only statistically significant for the BMP2 group compared to control. The study shows that topical zoledronate can be a valuable tool for augmenting bone grafts when administered optimally. The use of BMP2 in bone grafting procedures seems associated with a high risk of bone resorption and mechanical weakening. Copyright © 2017 Elsevier Inc. All rights reserved.
Baas, Jorgen; Vestermark, Marianne; Jensen, Thomas; Bechtold, Joan; Soballe, Kjeld; Jakobsen, Thomas
2017-01-01
Bone allograft is used in total joint artroplasties in order to enhance implant fixation. BMPs are known to stimulate new bone formation within allograft, but also known to accelerate graft resorption. Bisphosphonates are strong inhibitor of bone resorption. The aim of this study was to investigate whether the bisphosphonate zoledronate was able to counteract the accelerated graft resorption without interfering with the BMP induced bone formation. In the present study the two drugs alone and in combination were studied in our canine model of impaction bone grafting. We included 10 dogs in this study. Cancellous allograft bone grafts were soaked in either saline or zoledronate solution (0.005 mg/mL) and then vehicle or BMP2 (0.15 mg rhBMP2) was added. This produced four treatment groups: A) control B) BMP2 C) zoledronate and D) BMP2+ zoledronate. The allograft treated with A,B,C or D was impacted into a circumferential defect of 2.5 mm around HA-coated porous Ti implants. Each dog received all four treatment groups with two implants in the distal part of each femur. The group with allograft soaked in zoledronate (C) showed better biomechanical fixation than all other groups (p<0.05). It had less allograft resorption compared to all other groups (p<0.005) without any statistically significant change in new bone formation. The addition of BMP2 to the allograft did not increase new bone formation significantly, but did accelerate allograft resorption. This was also the case where the allograft was treated with BMP2 and zoledronate in combination (D). This caused a decrease in mechanical implant fixation in both these groups compared to the control group, however only statistically significant for the BMP2 group compared to control. The study shows that topical zoledronate can be a valuable tool for augmenting bone grafts when administered optimally. The use of BMP2 in bone grafting procedures seems associated with a high risk of bone resorption and mechanical weakening. PMID:28082076
Zhang, Bo; Xie, Qing-yun; Wang, Cai-ru; Liu, Jin-biao; Liao, Dong-fa; Jiang, Kai; Lei, Wei; Pan, Xian-ming
2013-01-01
Background It was reported that expansive pedicle screw (EPS) and polymethylmethacrylate-augmented pedicle screw (PMMA-PS) could be used to increase screw stability in osteoporosis. However, there are no studies comparing the two kinds of screws in vivo. Thus, we aimed to compare biomechanical and interfacial performances of EPS and PMMA-PS in osteoporotic sheep spine. Methodology/Principal Findings After successful induction of osteoporotic sheep, lumbar vertebrae in each sheep were randomly divided into three groups. The conventional pedicle screw (CPS) was inserted directly into vertebrae in CPS group; PMMA was injected prior to insertion of CPS in PMMA-PS group; and the EPS was inserted in EPS group. Sheep were killed and biomechanical tests, micro-CT analysis and histological observation were performed at both 6 and 12 weeks post-operation. At 6-week and 12-week, screw stabilities in EPS and PMMA-PS groups were significantly higher than that in CPS group, but there were no significant differences between EPS and PMMA-PS groups at two study periods. The screw stability in EPS group at 12-week was significantly higher than that at 6-week. The bone trabeculae around the expanding anterior part of EPS were more and denser than that in CPS group at 6-week and 12-week. PMMA was found without any degradation and absorption forming non-biological “screw-PMMA-bone” interface in PMMA-PS group, however, more and more bone trabeculae surrounded anterior part of EPS improving local bone quality and formed biological “screw-bone” interface. Conclusions/Significance EPS can markedly enhance screw stability with a similar effect to the traditional method of screw augmentation with PMMA in initial surgery in osteoporosis. EPS can form better biological interface between screw and bone than PMMA-PS. In addition, EPS have no risk of thermal injury, leakage and compression caused by PMMA. We propose EPS has a great application potential in augmentation of screw stability in osteoporosis in clinic. PMID:24086381
Results of cement augmentation and curettage in aneurysmal bone cyst of spine
Basu, Saumyajit; Patel, Dharmesh R; Dhakal, Gaurav; Sarangi, T
2016-01-01
Aneurysmal bone cyst (ABC) is a vascular tumor of the spine. Management of spinal ABC still remains controversial because of its location, vascular nature and incidence of recurrence. In this manuscript, we hereby describe two cases of ABC spine treated by curettage, vertebral cement augmentation for control of bleeding and internal stabilization with two years followup. To the best of our knowledge, this is the first case report in the literature describing the role of cement augmentation in spinal ABC in controlling vascular bleeding in curettage of ABC of spine. Case 1: A 22 year old male patient presented with chronic back pain. On radiological investigation, there were multiple, osteolytic septite lesions at L3 vertebral body without neural compression or instability. Percutaneous transpedicular biopsy of L3 from involved pedicle was done. This was followed by cement augmentation through the uninvolved pedicle. Next, transpedicular complete curettage was done through involved pedicle. Case 2: A 15-year-old female presented with nonradiating back pain and progressive myelopathy. On radiological investigation, there was an osteolytic lesion at D9. At surgery, decompression, pedicle screw-rod fixation and posterolateral fusion from D7 to D11 was done. At D9 level, through normal pedicle cement augmentation was added to provide anterior column support and to control the expected bleeding following curettage. Transpedicular complete curettage was done through the involved pedicle with controlled bleeding at the surgical field. Cement augmentation was providing controlled bleeding at surgical field during curettage, internal stabilization and control of pain. On 2 years followup, pain was relieved and there was a stable spinal segment with well filled cement without any sign of recurrence in computed tomography scan. In selected cases of spinal ABC with single vertebral, single pedicle involvement; cement augmentation of vertebra through normal pedicle has an important role in surgery aimed for curettage of vertebra. PMID:26955184
Kim, Sung-Jin; Kim, Jin-Wook; Choi, Tae-Hyun; Lee, Kee-Joon
2015-04-01
An impacted mandibular first molar tends to cause serious bone defects of the adjacent teeth. When choosing between the 2 typical treatment options-extraction or orthodontic relocation of the impacted tooth-the decision should be based on assessment of the prognosis. A 22-year-old man with severe mesioangulation and impaction of the mandibular first molar and a related vertical bone defect on the distal side of the second premolar was treated with extraction of the second molar and orthodontic relocation of the first molar with a retromolar miniscrew. Comprehensive orthodontic treatment involving premolar extraction was conducted. Strategic extraction of the molar and adequate orthodontic movement helped to restore the bone structure on the affected side. This case report suggests the effectiveness of restoration of bone defects by using viable periodontal tissues around the impacted tooth for the longevity of the periodontium. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Mordenfeld, Arne; Johansson, Carina B; Albrektsson, Tomas; Hallman, Mats
2014-03-01
The aim of the study was to radiologically and histologically evaluate the graft healing and volumetric changes after lateral augmentation with two different compositions of deproteinized bovine bone (DPBB) and autogenous bone (AB). Thirteen patients with a mean age of 59.6 ± 12.1 years (six men and seven women) were included in this randomized and controlled trial, designed as a split-mouth study. Ten edentulous and four partially edentulous jaws with an alveolar ridge width of ≤4 mm were laterally augmented with a graft composition of 60 : 40 (DPBB/AB) on one side and 90 : 10 (DPBB/AB) on the contralateral side. Cone beam computed tomography (CB/CT) was obtained immediately postoperatively and after a healing period of 7.5 months. Width changes were measured on CB/CT scans. After a mean healing period of 8.1 months (range, 7.9-8.3), biopsies were retrieved perpendicular to the crest from each graft by means of a trephine bur. Histomorphometry was performed, and the following variables were recorded: Ingrowth of new bone (percentage of total graft width), percentage of DPBB, bone and soft tissue, and percentage of DPBB particles in contact with bone. The mean gained width of the alveolar crest after 7.5 months was significantly more for the 60 : 40 mixture compared with the 90 : 10 mixture, 3.5 (±1.3) mm and 2.9 (±1.3) mm, respectively. There was a significant difference in graft width reduction between 60 : 40 and 90 : 10 after 7.5 months, 37 (±19.9)% and 46.9 (±23.5)%, respectively. New bone ingrowth had occurred in 82.1 (±23.3)% and 82.3 (±26.6)% of the graft, respectively. There were no statistical differences between fractions of different tissues between the 90 : 10 and 60 : 40 compositions. However, there were significantly more soft tissue and less new bone formation closer to the periosteum compared with the graft portion closer to the residual bone in both 60 : 40 and 90 : 10 compositions. There was significantly less graft width reduction with a mixture of 60 : 40 (DPBB/AB) compared with a mixture of 90 : 10 composition, but the results from the histomorphometry showed no statistical differences comparing the groups. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Steinmetz, G. G.
1983-01-01
Vertical-motion cues supplied by a g-seat to augment platform motion cues in the other five degrees of freedom were evaluated in terms of their effect on objective performance measures obtained during simulated transport landings under visual conditions. In addition to evaluating the effects of the vertical cueing, runway width and magnification effects were investigated. The g-seat was evaluated during fixed base and moving-base operations. Although performance with the g-seat only improved slightly over that with fixed-base operation, combined g-seat platform operation showed no improvement over improvement over platform-only operation. When one runway width at one magnification factor was compared with another width at a different factor, the visual results indicated that the runway width probably had no effect on pilot-vehicle performance. The new performance differences that were detected may be more readily attributed to the extant (existing throughout) increase in vertical velocity induced by the magnification factor used to change the runway width, rather than to the width itself.
Assunção, Wirley Gonçalves; Gomes, Erica Alves; Rocha, Eduardo Passos; Delben, Juliana Aparecida
2011-01-01
Three-dimensional finite element analysis was used to evaluate the effect of vertical and angular misfit in three-piece implant-supported screw-retained fixed prostheses on the biomechanical response in the peri-implant bone, implants, and prosthetic components. Four three-dimensional models were fabricated to represent a right posterior mandibular section with one implant in the region of the second premolar (2PM) and another in the region of the second molar (2M). The implants were splinted by a three-piece implant-supported metal-ceramic prosthesis and differed according to the type of misfit, as represented by four different models: Control = prosthesis with complete fit to the implants; UAM (unilateral angular misfit) = prosthesis presenting unilateral angular misfit of 100 μm in the mesial region of the 2M; UVM (unilateral vertical misfit) = prosthesis presenting unilateral vertical misfit of 100 μm in the mesial region of the 2M; and TVM (total vertical misfit) = prosthesis presenting total vertical misfit of 100 μm in the platform of the framework in the 2M. A vertical load of 400 N was distributed and applied on 12 centric points by the software Ansys, ie, a vertical load of 150 N was applied to each molar in the prosthesis and a vertical load of 100 N was applied at the 2PM. The stress values and distribution in peri-implant bone tissue were similar for all groups. The models with misfit exhibited different distribution patterns and increased stress magnitude in comparison to the control. The highest stress values in group UAM were observed in the implant body and retention screw. The groups UVM and TVM exhibited high stress values in the platform of the framework and the implant hexagon, respectively. The three types of misfit influenced the magnitude and distribution of stresses. The influence of misfit on peri-implant bone tissue was modest. Each type of misfit increased the stress values in different regions of the system.
Marincola, Mauro; Lombardo, Giorgio; Pighi, Jacopo; Corrocher, Giovanni; Mascellaro, Anna; Lehrberg, Jeffrey; Nocini, Pier Francesco
2015-01-01
The functional and aesthetic restoration of teeth compromised due to aggressive periodontitis presents numerous challenges for the clinician. Horizontal bone loss and soft tissue destruction resulting from periodontitis can impede implant placement and the regeneration of an aesthetically pleasing gingival smile line, often requiring bone augmentation and mucogingival surgery, respectively. Conservative approaches to the treatment of aggressive periodontitis (i.e., treatments that use minimally invasive tools and techniques) have been purported to yield positive outcomes. Here, we report on the treatment and five-year follow-up of patient suffering from aggressive periodontitis using a minimally invasive surgical technique and implant system. By using the methods described herein, we were able to achieve the immediate aesthetic and functional restoration of the maxillary incisors in a case that would otherwise require bone augmentation and extensive mucogingival surgery. This technique represents a conservative and efficacious alternative to the aesthetic and functional replacement of teeth compromised due to aggressive periodontitis. PMID:26649207
Tyllianakis, Minos E; Panagopoulos, Andreas; Giannikas, Dimitrios; Megas, Panagiotis; Lambiris, Elias
2006-02-01
This article compares the functional and radiographic outcomes of intraarticular distal radial fractures treated with augmented external fixation in which autologous cancellous bone grafting or Norian SRS (Norian Corp, Cupertino, Calif) was used for filling the metaphyseal void. Thirty non-randomized patients, 15 in each group, with AO type C distal radius fractures (20 men and 10 women; average age: 48 years) were operatively treated between 1998-2000 and retrospectively evaluated. Radial inclination, radial length, volar tilt, and Modified Mayo Wrist Score were assessed at the most recent follow-up evaluation (average: 33.3 months). Overall, 12 (80%) patients in the Norian group had an excellent or good result, 2 had fair, and 1 had poor. In the autologous iliac bone graft group, the results were excellent or good in 11 (73.3%) patients, fair in 1, and poor in 2. No statistical difference between the two types of grafting was noted. Norian SRS is equally effective to cancellous bone as supplementary graft in comminuted distal radial fractures treated by external and Kirschner-wire fixation.
NASA Technical Reports Server (NTRS)
Chung, W. W.; Mcneill, W. E.; Stortz, M. W.
1993-01-01
The nonlinear inverse transformation flight control system design method is applied to the Lockheed Ft. Worth Company's E-7D short takeoff and vertical land (STOVL) supersonic fighter/attack aircraft design with a modified General Electric F110 engine which has augmented propulsive lift capability. The system is fully augmented to provide flight path control and velocity control, and rate command attitude hold for angular axes during the transition and hover operations. In cruise mode, the flight control system is configured to provide direct thrust command, rate command attitude hold for pitch and roll axes, and sideslip command with turn coordination. A control selector based on the nonlinear inverse transformation method is designed specifically to be compatible with the propulsion system's physical configuration which has a two dimensional convergent-divergent aft nozzle, a vectorable ventral nozzle, and a thrust augmented ejector. The nonlinear inverse transformation is used to determine the propulsive forces and nozzle deflections, which in combination with the aerodynamic forces and moments (including propulsive induced contributions), and gravitational force, are required to achieve the longitudinal and vertical acceleration commands. The longitudinal control axes are fully decoupled within the propulsion system's performance envelope. A piloted motion-base flight simulation was conducted on the Vertical Motion Simulator (VMS) at NASA Ames Research Center to examine the handling qualities of this design. Based on results of the simulation, refinements to the control system have been made and will also be covered in the report.
Halim, Ahmad Sukari; Chai, Siew Cheng; Wan Ismail, Wan Faisham; Wan Azman, Wan Sulaiman; Mat Saad, Arman Zaharil; Wan, Zulmi
2015-12-01
Reconstruction of massive bone defects in bone tumors with allografts has been shown to have significant complications including infection, delayed or nonunion of allograft, and allograft fracture. Resection compounded with soft tissue defects requires skin coverage. A composite osteocutaneous free fibula offers an optimal solution where the allografts can be augmented mechanically and achieve biological incorporation. Following resection, the cutaneous component of the free osteocutaneous fibula flaps covers the massive soft tissue defect. In this retrospective study, the long-term outcome of 12 patients, who underwent single-stage limb reconstruction with massive allograft and free fibula osteocutaneous flaps instead of free fibula osteal flaps only, was evaluated. This study included 12 consecutive patients who had primary bone tumors and had follow-up for a minimum of 24 months. The mean age at the time of surgery was 19.8 years. A total of eight patients had primary malignant bone tumors (five osteosarcomas, two chondrosarcomas and one synovial sarcoma), and four patients had benign bone tumors (two giant-cell tumors, one aneurysmal bone cyst, and one neurofibromatosis). The mean follow-up for the 12 patients was 63 months (range 24-124 months). Out of the 10 patients, nine underwent lower-limb reconstruction and ambulated with partial weight bearing and full weight bearing at an average of 4.2 months and 8.2 months, respectively. In conclusion, augmentation of a massive allograft with free fibula osteocutaneous flap is an excellent alternative for reducing the long-term complication of massive allograft and concurrently addresses the soft tissue coverage. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Esfahanizadeh, N.; Rokn, A. R.; Paknejad, M.; Motahari, P.; Daneshparvar, H.; Shamshiri, AR.
2012-01-01
Objective: The aim of this study was to compare the lateral window and osteotome techniques for sinus lifting using histological and histomorphometric methods. Materials and Methods: In this clinical trial 10 patients (a total number of 14 sinus areas) who needed implant treatment in the atrophic posterior maxilla were enrolled. In all the cases the residual bone height between the sinus floor and the alveolar crest was less than 5 mm. Sinus augmentation was performed. The treatment modality for a given residual bone height was selected randomly and Bio-Oss was applied in all the cases as the graft material. After a healing period of about 10 months, in all the cases, the implants were placed and biopsies of alveolar crestal bone were obtained at the same time; biopsy specimens were evaluated using histological and histomorphometric methods. Fisher’s exact and Mann-Whitney U tests were used to compare distribution of variables in the two groups. Statistical significance was defined at P<0.05. Results: The new bone was located in direct contact with the biomaterial without any gaps. This viable bone consisted of lacunae containing osteocytes. Infiltration of inflammatory cells did not exhibit any significant differences between the two techniques. Foreign body reaction was not observed in any cases. Histomorphometric evaluations demonstrated that The mean values of the new bone in the lateral window and osteotome techniques were 30±6.0 and 25.2±5.2, respectively, with no significant differences between the two groups.. Moreover, the average quantity of residual biomaterial and connective tissue were similar for the two groups. Conclusion: The nature and the volume of the new bone in lateral window and osteotome techniques were the same. PMID:23119133
Hedenqvist, Patricia; Trbakovic, Amela; Thor, Andreas; Ley, Cecilia; Ekman, Stina; Jensen-Waern, Marianne
2016-08-01
In connection with bilateral maxillary sinus augmentation, the acute effects of the nonsteroidal anti-inflammatory drug carprofen on facial expressions and long-term effects on bone formation were evaluated in 18 male New Zealand White rabbits. A 10×10mm bone window was drilled in the maxilla, the sinus membrane elevated and a titanium mini-implant inserted. One of two test materials was randomly inserted unilaterally and bovine bone chips (control) on the contralateral side in the created space. Rabbits were randomly allocated to receive buprenorphine plus carprofen (n=9) or buprenorphine plus saline (n=9) postoperatively. Buprenorphine was administered subcutaneously every 6h for 3days in a tapered dose (0.05-0.01mg/kg) and carprofen (5mg/kg) or saline administered subcutaneously 1h before, and daily for 4days postoperatively. To assess pain, clinical examination, body weight recording and scoring of facial expressions from photos taken before, and 6-13h after surgery were performed. Twelve weeks after surgery the rabbits were euthanized and sections of maxillary bones and sinuses were analysed with histomorphometry and by qualitative histology. Carprofen had no effect on mean facial expression scores, which increased from 0.0 to 3.6 (carprofen) and 4.3 (saline), of a maximum of 8.0. Neither did carprofen have an effect on bone formation or implant incorporation, whereas the test materials had. In conclusion, treatment with 5mg/kg carprofen once daily for 5days did not reduce facial expression scores after maxillary sinus augmentation in buprenorphine treated rabbits and did not affect long term bone formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Wen P.; Armand, Mehran; Otake, Yoshito; Taylor, Russell H.
2011-03-01
Percutaneous femoroplasty [1], or femoral bone augmentation, is a prospective alternative treatment for reducing the risk of fracture in patients with severe osteoporosis. We are developing a surgical robotics system that will assist orthopaedic surgeons in planning and performing a patient-specific, augmentation of the femur with bone cement. This collaborative project, sponsored by the National Institutes of Health (NIH), has been the topic of previous publications [2],[3] from our group. This paper presents modifications to the pose recovery of a fluoroscope tracking (FTRAC) fiducial during our process of 2D/3D registration of X-ray intraoperative images to preoperative CT data. We show improved automata of the initial pose estimation as well as lower projection errors with the advent of a multiimage pose optimization step.
Yu, Huajie; He, Danqing; Qiu, Lixin
2017-12-01
Maturation of the grafted volume after lateral sinus elevation is crucial for the long-term survival of dental implants. To compare endo-sinus histomorphometric bone formation between the solo- and two-window maxillary sinus augmentation techniques with or without membrane coverage for the rehabilitation of multiple missing posterior teeth. Patients with severely atrophic posterior maxillae were randomized to receive lateral sinus floor elevation via the solo-window technique with membrane coverage (Control Group) or the two-window technique without coverage (Test Group). Six months after surgery, bone core specimens harvested from the lateral aspect were histomorphometrically analyzed. Ten patients in each group underwent 21 maxillary sinus augmentations. Histomorphometric analysis revealed mean newly formed bone values of 26.08 ± 16.23% and 27.14 ± 18.11%, mean connective tissue values of 59.34 ± 12.42% and 50.03 ± 17.13%, and mean residual graft material values of 14.6 ± 14.56% and 22.78 ± 10.83% in the Test and Control Groups, respectively, with no significant differences. The two-window technique obtained comparative maturation of the grafted volume even without membrane coverage, and is a viable alternative for the rehabilitation of severely atrophic posterior maxillae with multiple missing posterior teeth. © 2017 Wiley Periodicals, Inc.
Song, Hyung Keun; Yoo, Je Hyun; Byun, Young Soo; Yang, Kyu Hyun
2014-05-01
Among patients over 50 years of age, separate vertical wiring alone may be insufficient for fixation of fractures of the inferior pole of the patella. Therefore, mechanical and clinical studies were performed in patients over the age of 50 to test the strength of augmentation of separate vertical wiring with cerclage wire (i.e., combined technique). Multiple osteotomies were performed to create four-part fractures in the inferior poles of eight pairs of cadaveric patellae. One patella from each pair was fixed with the separate wiring technique, while the other patella was fixed with a combined technique. The ultimate load to failure and stiffness of the fixation were subsequently measured. In a clinical study of 21 patients (average age of 64 years), comminuted fractures of the inferior pole of the patellae were treated using the combined technique. Operative parameters were recorded from which post-operative outcomes were evaluated. For cadaveric patellae, whose mean age was 69 years, the mean ultimate loads to failure for the separate vertical wiring technique and the combined technique were 216.4±72.4 N and 324.9±50.6 N, respectively (p=0.012). The mean stiffness for the separate vertical wiring technique and the combined technique was 241.1±68.5 N/mm and 340.8±45.3 N/mm, respectively (p=0.012). In the clinical study, the mean clinical score at final follow-up was 28.1 points. Augmentation of separate vertical wiring with cerclage wire provides enough strength for protected early exercise of the knee joint and uneventful healing.
Zhao, Kai; Wang, Feng; Huang, Wei; Wu, Yiqun
The aim of this study was to evaluate the clinical outcomes of vertical distraction osteogenesis (VDO) for patients with vertically deficient alveolar ridges in terms of (1) the cumulative implant survival rate, (2) bone gain, (3) bone resorption before and after implant insertion, and (4) complications. An electronic search was conducted via MEDLINE (PubMed), EMBASE, and the Cochrane Library, complemented by manual searches, to identify eligible clinical studies of VDO before dental implantation. Two reviewers independently performed the study selection and data extraction. The implant survival rate, mean bone gain, and bone resorption amount, with 95% confidence intervals (CIs), were pooled separately. A random-effects model or fixed-effects model was chosen based on the heterogeneity. A funnel plot and Egger's test were performed to identify publication bias. Of the 4,391 records after removal of duplicates, 113 full-text articles were obtained for further analysis, and 12 articles were ultimately included in the analysis. Two studies were defined as low quality. The estimated cumulative implant survival rate was 98.00% (95% CI: 96.02% to 99.40%), with a mean follow-up of 3.52 years. The bone gain was 7.92 mm (95% CI: 6.27 to 9.57 mm), with a range from 4 to 20 mm, and the level of bone relapse between the end of the distraction and the implant insertion was 0.97 mm (95% CI: 0.68 to 1.26 mm). The complication rate was high, with rates of 0.728 per site and 0.821 per patient. The most common major complication was basal bone fracture, with a rate of 2.27%, and the most common minor complication was displacement of the transport segments, with a rate of 16.71%. Vertical alveolar defects could be rehabilitated successfully with distraction osteogenesis, and the implant placed in the distraction sites showed a high cumulative survival rate. However, the high complication rate necessitates caution. Due to the observed heterogeneity, the results of this meta-analysis should be interpreted with caution.
Hernigou, Philippe; Flouzat Lachaniette, Charles Henri; Delambre, Jerome; Zilber, Sebastien; Duffiet, Pascal; Chevallier, Nathalie; Rouard, Helene
2014-09-01
The purpose of this study was to evaluate the efficiency of biologic augmentation of rotator cuff repair with iliac crest bone marrow-derived mesenchymal stem cells (MSCs). The prevalence of healing and prevention of re-tears were correlated with the number of MSCs received at the tendon-to-bone interface. Forty-five patients in the study group received concentrated bone marrow-derived MSCs as an adjunct to single-row rotator cuff repair at the time of arthroscopy. The average number of MSCs returned to the patient was 51,000 ± 25,000. Outcomes of patients receiving MSCs during their repair were compared to those of a matched control group of 45 patients who did not receive MSCs. All patients underwent imaging studies of the shoulder with iterative ultrasound performed every month from the first postoperative month to the 24th month. The rotator cuff healing or re-tear was confirmed with MRI postoperatively at three and six months, one and two years and at the most recent follow up MRI (minimum ten-year follow-up). Bone marrow-derived MSC injection as an adjunctive therapy during rotator cuff repair enhanced the healing rate and improved the quality of the repaired surface as determined by ultrasound and MRI. Forty-five (100 %) of the 45 repairs with MSC augmentation had healed by six months, versus 30 (67 %) of the 45 repairs without MSC treatment by six months. Bone marrow concentrate (BMC) injection also prevented further ruptures during the next ten years. At the most recent follow-up of ten years, intact rotator cuffs were found in 39 (87 %) of the 45 patients in the MSC-treated group, but just 20 (44 %) of the 45 patients in the control group. The number of transplanted MSCs was determined to be the most relevant to the outcome in the study group, since patients with a loss of tendon integrity at any time up to the ten-year follow-up milestone received fewer MSCs as compared with those who had maintained a successful repair during the same interval. This study showed that significant improvement in healing outcomes could be achieved by the use of BMC containing MSC as an adjunct therapy in standard of care rotator cuff repair. Furthermore, our study showed a substantial improvement in the level of tendon integrity present at the ten-year milestone between the MSC-treated group and the control patients. These results support the use of bone marrow-derived MSC augmentation in rotator cuff repair, especially due to the enhanced rate of healing and the reduced number of re-tears observed over time in the MSC-treated patients.
Bacchi, Ataís; Consani, Rafael Leonardo Xediek; Mesquita, Marcelo Ferraz; Dos Santos, Mateus Bertolini Fernandes
2013-09-01
This study evaluated the influence of framework material and vertical misfit on stress created in an implant-supported partial prosthesis under load application. The posterior part of a severely reabsorbed jaw with a fixed partial prosthesis above two osseointegrated titanium implants at the place of the second premolar and second molar was modeled using SolidWorks 2010 software. Finite element models were obtained by importing the solid model into an ANSYS Workbench 11 simulation. The models were divided into 15 groups according to their prosthetic framework material (type IV gold alloy, silver-palladium alloy, commercially pure titanium, cobalt-chromium alloy or zirconia) and vertical misfit level (10 µm, 50 µm and 100 µm). After settlement of the prosthesis with the closure of the misfit, simultaneous loads of 110 N vertical and 15 N horizontal were applied on the occlusal and lingual faces of each tooth, respectively. The data was evaluated using Maximum Principal Stress (framework, porcelain veneer and bone tissue) and a von Mises Stress (retention screw) provided by the software. As a result, stiffer frameworks presented higher stress concentrations; however, these frameworks led to lower stresses in the porcelain veneer, the retention screw (faced to 10 µm and 50 µm of the misfit) and the peri-implant bone tissues. The increase in the vertical misfit resulted in stress values increasing in all of the prosthetic structures and peri-implant bone tissues. The framework material and vertical misfit level presented a relevant influence on the stresses for all of the structures evaluated.
Can we improve fixation and outcomes? Use of bone substitutes.
Moroni, Antonio; Larsson, Sune; Hoang Kim, Amy; Gelsomini, Letizia; Giannoudis, Peter V
2009-07-01
Hip fractures secondary to osteoporosis are common in the elderly. Stabilizing these fractures until union is achieved is a challenge due to poor bone stock and insufficient purchase of the implant to the bone. The reported high rate of complications has prompted extensive research in the development of fixation techniques. Furthermore, manipulation of both the local fracture environment in terms of application of growth factors, scaffolds, and mesenchymal cells and the systemic administration of agents promoting bone formation and bone strength has been considered as a treatment option with promising results. There are only a few evidence-based studies reporting on fixation augmentation techniques. This article reports on the efficacy of bone graft substitutes for the fixation of hip fractures, in particular calcium phosphates, which have been used as granules, cements, and implant coatings.
Hainich, J; von Rechenberg, B; Jakubietz, R G; Jakubietz, M G; Giovanoli, P; Grünert, J G
2014-02-01
Surgical treatment of osteoporotic distal radius fractures with locking plates does not completely prevent loss of reduction. Additional bone deficit stabilisation with the use of bone substitute materials is receiving increased attention. Most knowledge on the in vivo behavior of bone substitutes originates from a small number of animal models after its implantation in young, good vascularized bone. This paper investigates the osteoconductivity, resorption and biocompatibility of beta-tricalcium phosphate as a temporary bone replacement in osteoporotic type distal radius fractures. 15 bone samples taken from the augmented area of the distal radius of elderly people during metal removal were examined. The material was found to be osteoconductive, good degradable, and biocompatible. Degrading process and remodelling to woven bone seem to require more time than in available comparative bioassays. The material is suitable for temporary replacement of lost, distal radius bone from the histological point of view. © Georg Thieme Verlag KG Stuttgart · New York.
Sabesan, Vani; Callanan, Mark; Sharma, Vinay
2014-07-01
Total shoulder arthroplasty is technically demanding in regard to implantation of the glenoid component, especially in the setting of increased glenoid deformity and posterior glenoid wear. Augmented glenoid implants are an important and innovative option; however, there is little evidence accessible to surgeons to guide in the selection of the appropriate size augmented glenoid. Solid computer models of commercially available augmented glenoid components (+3, +5, +7) contained within the software allowed placement of the best fit glenoid component within the three-dimensional reconstruct of each patient's scapula. Peg perforation, amount of bone reamed, and amount of medialization were recorded for each augment size. There was strong correlation between the medialization of the joint line and the glenoid retroversion for each augmented component at neutral correction and correction to 6° of retroversion. At neutral, the range of retroversion that restored the anatomic joint line was -3° to -17° with use of the +3 augmented glenoid, -5° to -24° with the +5 augmented glenoid, and -9° to -31° with the +7 augmented glenoid. At 6° of retroversion, the range of retroversion that restored the anatomic joint line was -4° to -21° with use of the +3 augmented glenoid, -7° to -27° with the +5 augmented glenoid, and -9° to -34° with the +7 augmented glenoid. There was a strong correlation between glenoid retroversion and medialization for all augment sizes, supporting the recommendation for glenoid retroversion as the primary guide in selecting the amount of augmentation. Copyright © 2014. Published by Mosby, Inc.
Flight investigation of a vertical-velocity command system for VTOL aircraft
NASA Technical Reports Server (NTRS)
Kelly, J. R.; Niessen, F. R.; Yenni, K. R.; Person, L. H., Jr.
1977-01-01
A flight investigation was undertaken to assess the potential benefits afforded by a vertical-velocity command system (VVCS) for VTOL (vertical take-off and landing) aircraft. This augmentation system was conceived primarily as a means of lowering pilot workload during decelerating approaches to a hover and/or landing under category III instrument meteorological conditions. The scope of the investigation included a determination of acceptable system parameters, a visual flight evaluation, and an instrument flight evaluation which employed a 10 deg, decelerating, simulated instrument approach task. The results indicated that the VVCS, which decouples the pitch and vertical degrees of freedom, provides more accurate glide-path tracking and a lower pilot workload than does the unaugmented system.
Boileau, Pascal; Morin-Salvo, Nicolas; Gauci, Marc-Olivier; Seeto, Brian L; Chalmers, Peter N; Holzer, Nicolas; Walch, Gilles
2017-12-01
Glenoid deficiency and erosion (excessive retroversion/inclination) must be corrected in reverse shoulder arthroplasty (RSA) to avoid prosthetic notching or instability and to maximize function, range of motion, and prosthesis longevity. This study reports the results of RSA with an angled, autologous glenoid graft harvested from the humerus (angled BIO-RSA). A trapezoidal bone graft, harvested from the humeral head and fixed with a long-post baseplate and screws, was used to compensate for residual glenoid bone loss/erosion. For simple to moderate (<25°) glenoid defects, standardized instrumentation combined with some eccentric reaming (<15°) was used to reconstruct the glenoid and obtain neutral implant alignment. For severe (>25°) and complex (multiplanar) glenoid bone defects, patient-specific grafts and guides were used after 3-dimensional planning. Patients were reviewed with minimum 2 years of follow-up. Mean follow-up was 36 months (range, 24-81 months). Preoperative and postoperative measurements of inclination and version were performed in the plane of the scapula on computed tomography images. The study included 54 patients (41 women, 13 men; mean 73 years old). Fifteen patients had combined vertical and horizontal glenoid bone deficiency. Among E2/E3 glenoids, inclination improved from 37° (range, 14° to 84°) to 10.2° (range -28° to 36°, P < .001). Among B2/C glenoids, retroversion improved from -21° (range, -49° to 0°) to -10.6° (-32° to 4°, P = .06). Complete radiographic incorporation of the graft occurred in 94% (51 of 54). Complications included infection in 1 and clinical aseptic baseplate loosening in 2. Mild notching occurred in 25% (13 of 51) of patients. Constant-Murley and Subjective Shoulder Value assessments increased from 31 to 68 and from 30% to 83%, respectively (P < .001). Angled BIO-RSA predictably corrects glenoid deficiency, including severe (>25°) multiplanar deformity. Graft incorporation is predictable. Advantages of using an autograftharvested in situ include bone stock augmentation, lateralization, low donor-site morbidity, low relative cost, and flexibility needed to simultaneously correct posterior and superior glenoid defects. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Scolozzi, Paolo; Herzog, Georges
2014-05-01
Although its pathogenesis remains obscure, Parry-Romberg syndrome (PRS) has been associated with the linear scleroderma en coup de sabre. PRS is characterized by unilateral facial atrophy of the skin, subcutaneous tissue, muscles, and bones with at least 1 dermatome supplied by the trigeminal nerve. Facial asymmetry represents the most common sequela and can involve the soft tissues, craniomaxillofacial skeleton, dentoalveolar area, and temporomandibular joint. Although orthognathic procedures have been reported for skeletal reconstruction, treatment of facial asymmetry has been directed to augmentation of the soft tissue volume on the atrophic side using different recontouring or volumetric augmentation techniques. Total mandibular subapical osteotomy has been used in the management of dentofacial deformities, such as open bite and mandibular dentoalveolar retrusion or protrusion associated with an imbalance between the lower lip and the chin. Management of orthognathic procedures has been improved by the recent introduction of stereolithographic surgical splints using computer-aided design (CAD) and computer-aided manufacturing (CAM) technology and piezosurgery. Piezosurgery has increased security during surgery, especially for delicate procedures associated with a high risk of nerve injury. The present report describes a combined total mandibular subapical osteotomy and Le Fort I osteotomy using piezosurgery and surgical splints fabricated using CAD and CAM for the correction of severe mouth asymmetry related to vertical dentoalveolar disharmony in a patient with PRS. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Overdentures on implants placed in bone augmented with fresh frozen bone.
Rigo, L; Viscioni, A; Franco, M; Lucchese, A; Zollino, I; Brunelli, G; Carinci, F
2011-01-01
In the last decade several studies have been performed to evaluate the clinical outcome of one or two stage loaded implants supporting overdentures. Since fresh frozen bone (FFB) has an ever-increasing number of clinical applications and few reports are available on implants inserted into FFB, we performed a retrospective study on fixtures inserted in FFB and bearing overdentures. In the period between December 2003 and December 2006, 17 patients (14 females and 3 males with a median age of about 56 years) were grafted and 60 implants inserted thereafter. A total of 17 overdentures were delivered: 8 in the mandible and 9 in the maxilla. Multiple implant systems were used: 22 Double etched, 7 SLA, 9 Anodic oxidized, and 22 CaPo4 ceramic-blasted. Implant diameter ranged from 3.25 to 4.3 mm and length from 11.5 to 16.0 mm. Implants were inserted to replace 23 incisors, 9 cuspids, 20 premolars and 8 molars. No implants were lost (i.e., survival rate=100%) and no differences were detected among the studied variables. Kaplan Meier algorithm and Cox regression did not reveal any statistical differences among the studied variables also as regards the success rate. Implants inserted FFB and bearing overdentures have a high survival rate and success rates, which are comparable to those of implants inserted in non-grafted bone. FFB bone is a reliable material for alveolar ridge augmentation. No difference was detected among removable prostheses supported by two or more implants.
Repair of insertional achilles tendinosis with a bone-quadriceps tendon graft.
Philippot, Rémi; Wegrzyn, Julien; Grosclaude, Sophie; Besse, Jean Luc
2010-09-01
While conservative treatment may be successful in most cases, partial rupture at the calcaneal insertion point is a significant concern with insertional Achilles tendinopathy. We report on the outcomes of a surgical technique for Achilles tendon augmentation using a bone-tendon graft harvested from the knee extensor system. Our retrospective case series includes 25 surgical procedures performed in 24 patients, 19 males and five females, with a mean age of 47 (range, 30 to 59) years, 18 of whom were athletes. The mean followup period was 52 (range, 12 to 156) months. All patients underwent MRI examination prior to surgery which showed partial Achilles tendon rupture. The Achilles tendon was debrided through a posterolateral approach. The bone-quadriceps tendon graft was harvested, then the bone plug of the graft was inserted into a blind tunnel drilled into the calcaneus and fixed with an interference screw. The fibers of the quadriceps tendon were sutured to the residual part of the Achilles tendon with the foot at an angle of 90 degrees. Patients were able to resume their sporting activity after an average of 6.7 months. At last followup examination, physical activity was scored 5.2 on the 10-point Tegner Scale; the mean AOFAS score was 98.4. MRI examination showed good graft integration 1 year postoperatively. The bone-quadriceps tendon grafting technique was a good alternative for the insertional Achilles lesions with partial detachment which we felt required augmentation.
Knabe, Christine; Adel Khattab, Doaa; Kluk, Esther; Struck, Rainer; Stiller, Michael
2017-01-01
This study examines the effect of a hyaluronic acid (HyAc) containing tricalcium phosphate putty scaffold material (TCP-P) and of a particulate tricalcium phosphate (TCP-G) graft on bone formation, volume stability and osteogenic marker expression in biopsies sampled 6 months after bilateral sinus floor augmentation (SFA) in 7 patients applying a split-mouth design. 10% autogenous bone chips were added to the grafting material during surgery. The grain size of the TCP granules was 700 to 1400 µm for TCP-G and 125 to 250 µm and 500 to 700 µm (ratio 1:1) for TCP-P. Biopsies were processed for immunohistochemical analysis of resin-embedded sections. Sections were stained for collagen type I (Col I), alkaline phosphatase (ALP), osteocalcin (OC) and bone sialoprotein (BSP). Furthermore, the bone area and biomaterial area fraction were determined histomorphometrically. Cone-beam CT data recorded after SFA and 6 months later were used for calculating the graft volume at these two time points. TCP-P displayed more advantageous surgical handling properties and a significantly greater bone area fraction and smaller biomaterial area fraction. This was accompanied by significantly greater expression of Col I and BSP and in osteoblasts and osteoid and a less pronounced reduction in grafting volume with TCP-P. SFA using both types of materials resulted in formation of sufficient bone volume for facilitating stable dental implant placement with all dental implants having been in function without any complications for 6 years. Since TCP-P displayed superior surgical handling properties and greater bone formation than TCP-G, without the HyAc hydrogel matrix having any adverse effect on bone formation or graft volume stability, TCP-P can be regarded as excellent grafting material for SFA in a clinical setting. The greater bone formation observed with TCP-P may be related to the difference in grain size of the TCP granules and/or the addition of the HyAc. PMID:28758916
Pereira, Eugénio; Messias, Ana; Dias, Ricardo; Judas, Fernando; Salvoni, Alexander; Guerra, Fernando
2015-01-01
Background Reliable implant-supported rehabilitation of an alveolar ridge needs sufficient volume of bone. In order to achieve a prosthetic-driven positioning, bone graft techniques may be required. Purpose This prospective cohort study aims to clinically evaluate the amount of resorption of corticocancellous fresh-frozen allografts bone blocks used in the reconstruction of the severe atrophic maxilla. Materials and Methods Twenty-two partial and totally edentulous patients underwent bone augmentation procedures with fresh-frozen allogenous blocks from the iliac crest under local anesthesia. Implants were inserted into the grafted sites after a healing period of 5 months. Final fixed prosthesis was delivered ± 4 months later. Ridge width analysis and measurements were performed with a caliper before and after grafting and at implant insertion. Bone biopsies were performed in 16 patients. Results A total of 98 onlay block allografts were used in 22 patients with an initial mean alveolar ridge width of 3.41 ± 1.36 mm. Early exposure of blocks was observed in four situations and one of these completely resorbed. Mean horizontal bone gain was 3.63 ± 1.28 mm (p < .01). Mean buccal bone resorption between allograph placement and the reopening stage was 0.49 ± 0.54 mm, meaning approximately 7.1% (95% confidence interval: [5.6%, 8.6%]) of total ridge width loss during the integration period. One hundred thirty dental implants were placed with good primary stability (≥ 30 Ncm). Four implants presented early failure before the prosthetic delivery (96.7% implant survival). All patients were successfully rehabilitated. Histomorphometric analysis revealed 20.9 ± 5.8% of vital bone in close contact to the remaining grafted bone. A positive strong correlation (adjusted R2 = 0.44, p = .003) was found between healing time and vital bone percentage. Conclusions Augmentation procedures performed using fresh-frozen allografts from the iliac crest are a suitable alternative in the reconstruction of the atrophic maxilla with low resorption rate at 5 months, allowing proper stability of dental implants followed by fixed prosthetic rehabilitation. PMID:25346211
Augmented virtuality for arthroscopic knee surgery.
Li, John M; Bardana, Davide D; Stewart, A James
2011-01-01
This paper describes a computer system to visualize the location and alignment of an arthroscope using augmented virtuality. A 3D computer model of the patient's joint (from CT) is shown, along with a model of the tracked arthroscopic probe and the projection of the camera image onto the virtual joint. A user study, using plastic bones instead of live patients, was made to determine the effectiveness of this navigated display; the study showed that the navigated display improves target localization in novice residents.
Minardi, Silvia; Corradetti, Bruna; Taraballi, Francesca; Sandri, Monica; Van Eps, Jeffrey; Cabrera, Fernando J; Weiner, Bradley K; Tampieri, Anna; Tasciotti, Ennio
2015-09-01
Augmentation of regenerative osteogenesis represents a premier clinical need, as hundreds of thousands of patients are left with insufficient healing of bony defects related to a host of insults ranging from congenital abnormalities to traumatic injury to surgically-induced deficits. A synthetic material that closely mimics the composition and structure of the human osteogenic niche represents great potential to successfully address this high demand. In this study, a magnesium-doped hydroxyapatite/type I collagen scaffold was fabricated through a biologically-inspired mineralization process and designed to mimic human trabecular bone. The composition of the scaffold was fully characterized by XRD, FTIR, ICP and TGA, and compared to human bone. Also, the scaffold microstructure was evaluated by SEM, while its nano-structure and nano-mechanical properties were evaluated by AFM. Human bone marrow-derived mesenchymal stem cells were used to test the in vitro capability of the scaffold to promote osteogenic differentiation. The cell/scaffold constructs were cultured up to 7 days and the adhesion, organization and proliferation of the cells were evaluated. The ability of the scaffold to induce osteogenic differentiation of the cells was assessed over 3 weeks and the correlate gene expression for classic genes of osteogenesis was assessed. Finally, when tested in an ectopic model in rabbit, the scaffold produced a large volume of trabecular bone in only two weeks, that subsequently underwent maturation over time as expected, with increased mature cortical bone formation, supporting its ability to promote bone regeneration in clinically-relevant scenarios. Altogether, these results confirm a high level of structural mimicry by the scaffold to the composition and structure of human osteogenic niche that translated to faster and more efficient osteoinduction in vivo--features that suggest such a biomaterial may have great utility in future clinical applications where bone regeneration is required. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Anitua, Eduardo; Prado, Roberto; Orive, Gorka
2012-03-01
The purpose of this study was to evaluate the potential effects of plasma rich in growth factors (PRGF) technology and its autologous formulations in five consecutive patients in which bilateral sinus lift augmentation was carried out. Five consecutive patients received bilateral sinus floor augmentation. All patients presented a residual bone height of class D (1-3 mm). The effects of PRGF combined with bovine anorganic bone (one side) were compared with the biomaterial alone (contralateral side). The effects of using liquid PRGF to maintain the bone window and autologous fibrin membrane to seal the defect were evaluated. A complete histological and histomorphometrical analysis was performed 5 months after surgery. One patient was excluded from the study as the Schneiderian membrane of the control side was perforated during the surgery. In two patients, the biopsies obtained from the control sides 5 months postsurgery were not acceptable for processing. PRGF technology facilitated the surgical approach of sinus floor elevation. The control area was more inflamed than the area treated with PRGF technology. Patients referred also to an increased sensation of pain in the control area. PRGF-treated samples had more new vital bone than controls. In patient number 1, image processing revealed 21.4% new vital bone in the PRGF area versus 8.4% in the control area, whereas in patient number 2, 28.4% new vital bone was quantified in the PRGF area compared with the 8.2% of the control side. The immunohistochemical processing of the biopsies revealed that the number of blood vessels per square millimeter of connective tissue was 116 vessels in the PRGF sample versus 7 in the control biopsy. These preliminary results suggest that from a practical point of view, PRGF may present a role in reducing tissue inflammation after surgery, increasing new bone formation and promoting the vascularization of bone tissue. © 2010 Wiley Periodicals, Inc.
Wiesner, Günter; Esposito, Marco; Worthington, Helen; Schlee, Markus
2010-01-01
Nothing to declare. To evaluate whether connective tissue grafts performed at implant placement could be effective in augmenting peri-implant soft tissues. Ten partially edentulous patients requiring at least one single implant in the premolar or molar areas of both sides of the mandible were randomised to have one side augmented at implant placement with a connective soft tissue graft harvested from the palate or no augmentation. After 3 months of submerged healing, abutments were placed and within 1 month definitive crowns were permanently cemented. Outcome measures were implant success, any complications, peri-implant marginal bone level changes, patient satisfaction and preference, thickness of the soft tissues and aesthetics (pink aesthetic score) evaluated by an independent and blinded assessor 1 year after loading. One year after loading, no patients dropped out, no implants failed and no complications occurred. Both groups lost statistically significant amounts of peri-implant bone 1 year after loading (0.8 mm in the grafted group and 0.6 mm in the non-grafted group), but there was no statistically significant difference between groups. Soft tissues at augmented sites were 1.3 mm thicker (P < 0.001) and had a significantly better pink aesthetic score (P < 0.001). Patients were highly satisfied (no statistically significant differences between treatments) though they preferred the aesthetics of the augmented sites (P = 0.031). However, five patients would not undergo the grafting procedure again and two were uncertain. Connective tissue grafts are effective in increasing soft tissue thickness, thus improving aesthetics. Longer follow-ups are needed to evaluate the stability of peri-implant tissues over time.
Bacchi, Ataís; Consani, Rafael L X; Mesquita, Marcelo F; dos Santos, Mateus B F
2013-09-01
The purpose of this study was to evaluate the influence of superstructure material and vertical misfits on the stresses created in an implant-supported partial prosthesis. A three-dimensional (3-D) finite element model was prepared based on common clinical data. The posterior part of a severely resorbed jaw with two osseointegrated implants at the second premolar and second molar regions was modeled using specific modeling software (SolidWorks 2010). Finite element models were created by importing the solid model into mechanical simulation software (ANSYS Workbench 11). The models were divided into groups according to the prosthesis framework material (type IV gold alloy, silver-palladium alloy, commercially pure titanium, cobalt-chromium alloy, or zirconia) and vertical misfit level (10 µm, 50 µm, and 100 µm) created at one implant-prosthesis interface. The gap of the vertical misfit was set to be closed and the stress values were measured in the framework, porcelain veneer, retention screw, and bone tissue. Stiffer materials led to higher stress concentration in the framework and increased stress values in the retention screw, while in the same circumstances, the porcelain veneer showed lower stress values, and there was no significant difference in stress in the peri-implant bone tissue. A considerable increase in stress concentration was observed in all the structures evaluated within the misfit amplification. The framework material influenced the stress concentration in the prosthetic structures and retention screw, but not that in bone tissue. All the structures were significantly influenced by the increase in the misfit levels.
Li, YuePing; Sun, LiLi; Zhang, Wei; Zhao, KanXing
2016-10-01
To compare surgical results of augmented and nonaugmented modified Knapp procedure, for the treatment of nonrestrictive double elevator palsies (DEP). The medical records of patients with congenital DEP were reviewed retrospectively. Patients were divided into three treatment groups: standard transposition (group A), Foster transposition (group B), and resection transposition (group C). Pre- and postoperative vertical deviation in primary position, ocular motility, and binocular vision were compared. Thirty patients were enrolled. The pre- and postoperative deviations in group A were 34.7 Δ ± 8.6 Δ and 6.5 Δ ± 6.5 Δ ; in group B, 38.6 Δ ± 14.6 Δ and 5.7 Δ ± 9.3 Δ ; and in group C, 43.1 Δ ± 10.3 Δ and 8.5 Δ ± 6.1 Δ . The corrected vertical deviation of group B (32.9 Δ ± 5.7 Δ ) and group C (34.6 Δ ± 5.0 Δ ) were greater than that of group A (28.1 Δ ± 3.6 Δ ; P = 0.03, 0.002). The pre- and postoperative measures of upgaze in group A were -3.7 and -1.8; in group B, -4.0 and -1.3; and in group C, -3.6 and -2.0. The average improved upgaze in group B (2.6 ± 0.5) was statistically significantly better than that in group A (1.9 ± 0.6) and group C (1.5 ± 0.5; P = 0.03, 0.002). There was no significant difference in the surgical effect on downgaze in three groups (P > 0.05). The surgical outcome was satisfactory in 19 (63.3%) patients with preoperative vertical devation of ≤40 Δ . All transpositions are reasonably effective in treating vertical deviations of <35 Δ without obviously limiting downgaze in DEP. Augmented procedures could correct greater vertical deviation of 30 Δ -40 Δ . The Foster transposition demonstrates the strongest effect in improving upgaze. Copyright © 2016 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.
Soft Tissue Alterations in Esthetic Postextraction Sites: A 3-Dimensional Analysis.
Chappuis, V; Engel, O; Shahim, K; Reyes, M; Katsaros, C; Buser, D
2015-09-01
Dimensional alterations of the facial soft and bone tissues following tooth extraction in the esthetic zone play an essential role to achieve successful outcomes in implant therapy. This prospective study is the first to investigate the interplay between the soft tissue dimensions and the underlying bone anatomy during an 8-wk healing period. The analysis is based on sequential 3-dimensional digital surface model superimpositions of the soft and bone tissues using digital impressions and cone beam computed tomography during an 8-wk healing period. Soft tissue thickness in thin and thick bone phenotypes at extraction was similar, averaging 0.7 mm and 0.8 mm, respectively. Interestingly, thin bone phenotypes revealed a 7-fold increase in soft tissue thickness after an 8-wk healing period, whereas in thick bone phenotypes, the soft tissue dimensions remained unchanged. The observed spontaneous soft tissue thickening in thin bone phenotypes resulted in a vertical soft tissue loss of only 1.6 mm, which concealed the underlying vertical bone resorption of 7.5 mm. Because of spontaneous soft tissue thickening, no significant differences were detected in the total tissue loss between thin and thick bone phenotypes at 2, 4, 6, and 8 wk. More than 51% of these dimensional alterations occurred within 2 wk of healing. Even though the observed spontaneous soft tissue thickening in thin bone phenotypes following tooth extraction conceals the pronounced underlying bone resorption pattern by masking the true bone deficiency, spontaneous soft tissue thickening offers advantages for subsequent bone regeneration and implant therapies in sites with high esthetic demand (Clinicaltrials.gov NCT02403700). © International & American Associations for Dental Research.
Song, Hyung Keun; Yoo, Je Hyun; Byun, Young Soo
2014-01-01
Purpose Among patients over 50 years of age, separate vertical wiring alone may be insufficient for fixation of fractures of the inferior pole of the patella. Therefore, mechanical and clinical studies were performed in patients over the age of 50 to test the strength of augmentation of separate vertical wiring with cerclage wire (i.e., combined technique). Materials and Methods Multiple osteotomies were performed to create four-part fractures in the inferior poles of eight pairs of cadaveric patellae. One patella from each pair was fixed with the separate wiring technique, while the other patella was fixed with a combined technique. The ultimate load to failure and stiffness of the fixation were subsequently measured. In a clinical study of 21 patients (average age of 64 years), comminuted fractures of the inferior pole of the patellae were treated using the combined technique. Operative parameters were recorded from which post-operative outcomes were evaluated. Results For cadaveric patellae, whose mean age was 69 years, the mean ultimate loads to failure for the separate vertical wiring technique and the combined technique were 216.4±72.4 N and 324.9±50.6 N, respectively (p=0.012). The mean stiffness for the separate vertical wiring technique and the combined technique was 241.1±68.5 N/mm and 340.8±45.3 N/mm, respectively (p=0.012). In the clinical study, the mean clinical score at final follow-up was 28.1 points. Conclusion Augmentation of separate vertical wiring with cerclage wire provides enough strength for protected early exercise of the knee joint and uneventful healing. PMID:24719149
Oberkircher, Ludwig; Krüger, Antonio; Hörth, Dominik; Hack, Juliana; Ruchholtz, Steffen; Fleege, Christoph; Rauschmann, Michael; Arabmotlagh, Mohammad
2018-03-01
In the operative treatment of osteoporotic vertebral body fractures, a dorsal stabilization in combination with a corpectomy of the fractured vertebral body might be necessary with respect to the fracture morphology, whereby the osteoporotic bone quality may possibly increase the risk of implant failure. To achieve better stability, it is recommended to use cement-augmented screws for dorsal instrumentation. Besides careful end plate preparation, cement augmentation of the adjacent end plates has also been reported to lead to less reduction loss. The aim of the study was to evaluate biomechanically under cyclic loading whether an additional cement augmentation of the adjacent end plates leads to improved stability of the inserted cage. Methodical cadaver study. Fourteen fresh frozen human thoracic spines with proven osteoporosis were used (T2-T7). After removal of the soft tissues, the spine was embedded in Technovit (Kulzer, Germany). Subsequently, a corpectomy of T5 was performed, leaving the dorsal ligamentary structures intact. After randomization with respect to bone quality, two groups were generated: Dorsal instrumentation (cemented pedicle screws, Medtronic, Minneapolis, MN, USA)+cage implantation (CAPRI Corpectomy Cage, K2M, Leesburg, VA, USA) without additional cementation of the adjacent endplates (Group A) and dorsal instrumentation+cage implantation with additional cement augmentation of the adjacent end plates (Group B). The subsequent axial and cyclic loading was performed at a frequency of 1 Hz, starting at 400 N and increasing the load within 200 N after every 500 cycles up to a maximum of 2,200 N. Load failure was determined when the cages sintered macroscopically into the end plates (implant failure) or when the maximum load was reached. One specimen in Group B could not be clamped appropriately into the test bench for axial loading because of a pronounced scoliotic misalignment and had to be excluded. The mean strength for implant failure was 1,000 N±258.2 N in Group A (no cement augmentation of the adjacent end plates, n=7); on average, 1,622.1±637.6 cycles were achieved. In Group B (cement augmentation of the adjacent end plates, n=6), the mean force at the end of loading was 1,766.7 N±320.4 N; an average of 3,572±920.6 cycles was achieved. Three specimens reached a load of 2,000 N. The differences between the two groups were significant (p=.006 and p=.0047) regarding load failure and number of cycles. Additional cement augmentation of the adjacent end plates during implantation of a vertebral body replacement in osteoporotic bone resulted in a significant increased stability of the cage in the axial cyclic loading test. Copyright © 2017 Elsevier Inc. All rights reserved.
Porous polymethylmethacrylate as bone substitute in the craniofacial area.
Bruens, Marco L; Pieterman, Herman; de Wijn, Joost R; Vaandrager, J Michael
2003-01-01
In craniofacial surgery, alloplastic materials are used for correcting bony defects. Porous polymethylmethacrylate (PMMA) is a biocompatible and nondegradable bone cement. Porous PMMA is formed by the classic bone cement formulation of methylmethacrylate liquid and PMMA powder in which an aqueous biodegradable carboxymethylcellulose gel is dispersed to create pores in the cement when cured. Pores give bone the opportunity to grow in, resulting in a better fixation of the prostheses. We evaluated the long-term results (n = 14), up to 20 years, of augmentations and defect fillings in the craniofacial area, with special interest in possible side effects and bone ingrowth. The evaluation consisted of a questionnaire, a physical examination, and a computed tomography (CT) scan. There were no side effects that could be ascribed to the porous PMMA. Twelve CT scans showed bone ingrowth into the prostheses, proving the validity behind the concept of porous PMMA.
Cellular therapy in bone-tendon interface regeneration
Rothrauff, Benjamin B; Tuan, Rocky S
2014-01-01
The intrasynovial bone-tendon interface is a gradual transition from soft tissue to bone, with two intervening zones of uncalcified and calcified fibrocartilage. Following injury, the native anatomy is not restored, resulting in inferior mechanical properties and an increased risk of re-injury. Recent in vivo studies provide evidence of improved healing when surgical repair of the bone-tendon interface is augmented with cells capable of undergoing chondrogenesis. In particular, cellular therapy in bone-tendon healing can promote fibrocartilage formation and associated improvements in mechanical properties. Despite these promising results in animal models, cellular therapy in human patients remains largely unexplored. This review highlights the development and structure-function relationship of normal bone-tendon insertions. The natural healing response to injury is discussed, with subsequent review of recent research on cellular approaches for improved healing. Finally, opportunities for translating in vivo findings into clinical practice are identified. PMID:24326955
NASA Astrophysics Data System (ADS)
Hirata, Eri; Ménard-Moyon, Cécilia; Venturelli, Enrica; Takita, Hiroko; Watari, Fumio; Bianco, Alberto; Yokoyama, Atsuro
2013-11-01
Multi-walled carbon nanotubes (MWCNTs) were functionalized with fibroblast growth factor (FGF) and the advantages of their use as scaffolds for bone augmentation were evaluated in vitro and in vivo. The activity of FGF was assessed by measuring the effect on the proliferation of rat bone marrow stromal cells (RBMSCs). The presence of FGF enhanced the proliferation of RBMSCs and the FGF covalently conjugated to the nanotubes (FGF-CNT) showed the same effect as FGF alone. In addition, FGF-CNT coated sponges were implanted between the parietal bone and the periosteum of rats and the formation of new bone was investigated. At day 14 after implantation, a larger amount of newly formed bone was clearly observed in most pores of FGF-CNT coated sponges. These findings indicated that MWCNTs accelerated new bone formation in response to FGF, as well as the integration of particles into new bone during its formation. Scaffolds coated with FGF-CNT could be considered as promising novel substituting materials for bone regeneration in future tissue engineering applications.
Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration
Short, Aaron R.; Koralla, Deepthi; Deshmukh, Ameya; Wissel, Benjamin; Stocker, Benjamin; Calhoun, Mark; Dean, David; Winter, Jessica O.
2015-01-01
Bone defects can originate from a variety of causes, including trauma, cancer, congenital deformity, and surgical reconstruction. Success of the current “gold standard” treatment (i.e., autologous bone grafts) is greatly influenced by insufficient or inappropriate bone stock. There is thus a critical need for the development of new, engineered materials for bone repair. This review describes the use of natural and synthetic hydrogels as scaffolds for bone tissue engineering. We discuss many of the advantages that hydrogels offer as bone repair materials, including their potential for osteoconductivity, biodegradability, controlled growth factor release, and cell encapsulation. We also discuss the use of hydrogels in composite devices with metals, ceramics, or polymers. These composites are useful because of the low mechanical moduli of hydrogels. Finally, the potential for thermosetting and photo-cross-linked hydrogels as three-dimensionally (3D) printed, patient-specific devices is highlighted. Three-dimensional printing enables controlled spatial distribution of scaffold materials, cells, and growth factors. Hydrogels, especially natural hydrogels present in bone matrix, have great potential to augment existing bone tissue engineering devices for the treatment of critical size bone defects. PMID:26693013
Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration.
Short, Aaron R; Koralla, Deepthi; Deshmukh, Ameya; Wissel, Benjamin; Stocker, Benjamin; Calhoun, Mark; Dean, David; Winter, Jessica O
2015-10-28
Bone defects can originate from a variety of causes, including trauma, cancer, congenital deformity, and surgical reconstruction. Success of the current "gold standard" treatment (i.e., autologous bone grafts) is greatly influenced by insufficient or inappropriate bone stock. There is thus a critical need for the development of new, engineered materials for bone repair. This review describes the use of natural and synthetic hydrogels as scaffolds for bone tissue engineering. We discuss many of the advantages that hydrogels offer as bone repair materials, including their potential for osteoconductivity, biodegradability, controlled growth factor release, and cell encapsulation. We also discuss the use of hydrogels in composite devices with metals, ceramics, or polymers. These composites are useful because of the low mechanical moduli of hydrogels. Finally, the potential for thermosetting and photo-cross-linked hydrogels as three-dimensionally (3D) printed, patient-specific devices is highlighted. Three-dimensional printing enables controlled spatial distribution of scaffold materials, cells, and growth factors. Hydrogels, especially natural hydrogels present in bone matrix, have great potential to augment existing bone tissue engineering devices for the treatment of critical size bone defects.
Mandelaris, George A; Neiva, Rodrigo; Chambrone, Leandro
2017-10-01
The aim of this systematic review is to evaluate whether cone-beam computed tomography (CBCT) imaging can be used to assess dentoalveolar anatomy critical to the periodontist when determining risk assessment for patients undergoing orthodontic therapy using fixed or removable appliances. Both observational and interventional trials reporting on the use of CBCT imaging assessing the impact of orthodontic/dentofacial orthopedic treatment on periodontal tissues (i.e., alveolar bone) were included. Changes in the alveolar bone thickness and height around natural teeth as well as treatment costs were evaluated. MEDLINE (via PubMed) and EMBASE databases were searched for articles published in the English language, up to and including July 2016, and extracted data were organized into evidence tables. Thirteen studies were included in this systematic review describing the positive or deleterious changes on the alveolar bone surrounding natural teeth undergoing orthodontic tooth movement or influenced by orthopedic forces through fixed appliances. Clinical recommendation summaries presenting the strengths and weaknesses of the evidence in terms of benefits and harms were generated. CBCT imaging can improve the periodontal diagnostic acumen regarding alveolar bone alterations influenced by orthodontic tooth movement and can help determine risk assessment prior to such intervention. Clinicians are also better informed to determine risk assessment and develop preventative or plan interceptive periodontal augmentation (soft tissue and/or bone augmentation) therapies for patients undergoing orthodontic tooth movement. These considerations are recognized as being especially critical for treatment approaches in patients where buccal tooth movement (expansion) is planned in the anterior mandible or involving the maxillary premolars.
Dierckman, Brian D; Ni, Jake J; Karzel, Ronald P; Getelman, Mark H
2018-01-01
This study evaluated the repair integrity and patient clinical outcomes following arthroscopic rotator cuff repair of medium to large rotator cuff tears using a single-row technique consisting of medially based, triple-loaded anchors augmented with bone marrow vents in the rotator cuff footprint lateral to the repair. This is a retrospective study of 52 patients (53 shoulders) comprising 36 males and 16 females with a median age of 62 (range 44-82) with more than 24-month follow-up, tears between 2 and 4 cm in the anterior-posterior dimension and utilizing triple-loaded anchors. Mann-Whitney test compared Western Ontario Rotator Cuff (WORC) outcome scores between patients with healed and re-torn cuff repairs. Multivariate logistic regression analysed association of variables with healing status and WORC score. Cuff integrity was assessed on MRI, read by a musculoskeletal fellowship-trained radiologist. Magnetic resonance imaging (MRI) demonstrated an intact repair in 48 of 53 shoulders (91%). The overall median WORC score was 95.7 (range 27.6-100.0). A significant difference in WORC scores were seen between patients with healed repairs 96.7 (range 56.7-100.0) compared with a re-tear 64.6 (27.6-73.8), p < 0.00056. Arthroscopic repair of medium to large rotator cuff tears using a triple-loaded single-row repair augmented with bone marrow vents resulted in a 91% healing rate by MRI and excellent patient reported clinical outcomes comparable to similar reported results in the literature. IV.
Lafzi, Ardeshir; Shirmohammadi, Adileh; Faramarzi, Masoumeh; Jabali, Sahar; Shayan, Arman
2013-01-01
Background and aims Plasma rich in growth factors (PRGF) is a concentrated suspension of growth factors, which is used to promote periodontal tissue regeneration. The aim of this randomized, controlled, clinical trial was to evaluate of the treatment of grade II mandibular molar furcation involvement using autogenous bone graft with and without PRGF. Materials and methods In this double-blind clinical trial, thirty mandibular molars with grade II furcation involvement in 30 patients were selected. The test group received bone graft combined with PRGF, while the control group was treated with bone graft only. Clinical parameters included clinical probing depth (CPD), vertical clinical attachment level (V-CAL), horizontal clinical attachment level (H-CAL), location of gingival margin (LGM), surgically exposed horizontal probing depth of bony defect (E-HPD), vertical depth of bone crest (V-DBC), vertical depth of the base of bony defect (V-DBD), and length of the intrabony defect (LID). After six months, a re-entry surgery was performed. Data were analyzed by SPSS 14, using Kolmogorov, Mann-Whitney U, and paired t-test. Results After 6 months, both treatment methods led to significant improvement in V-CAL and H-CAL and significant decreases in CPD, E-HPD, V-DBD and LID; there was no significant difference in LGM and V-DBC in any of the treated groups compared to the baseline values. Also, none of the parameters showed significant differences between the study groups. Conclusion Although autogenous bone grafts, with or without PRGF, were successful in treating grade II furcation involvement, no differences between the study groups were observed. PMID:23486928
iPSC-Derived MSCs that Are Genetically Engineered for Systemic Bone Augmentation
2012-08-01
culture. This observation, together with similar reports in publications, calls upon a caution for the use of lentivirus generated iPSCs for therapy . As...developed in this study contributed to the publication of a paper in Molecular Therapy . This grant supported a technician. CONCLUSION We have...FGF2 Expression to the Marrow after Hematopoietic Stem Cell Gene Therapy and Leads to Enhanced Endosteal Bone Formation. PLoS One 7, e37569 (2012). 26
Clinical outcomes of implant therapy in ectodermal dysplasia patients: a systematic review.
Wang, Y; He, J; Decker, A M; Hu, J C; Zou, D
2016-08-01
The purpose of this review was to determine the outcome of oral function reconstruction in ectodermal dysplasia (ED) patients who have received dental implant therapy. A search was made of the PubMed and Web of Science databases; key words used were "(ectodermal dysplasia) AND (implant OR implants)", with supplementary retrieval key words "dental implant", "zygomatic implant", "anodontia", and "edentulous". Patient age, use of bone graft, implant site, type of implant, and survival rate of the implants were included in the subsequent data analysis. Forty-five articles published between 1988 and October 2015 were included in this analysis. The cases of a total of 96 patients were retrieved (22 children and 74 adults); these patients received a total of 701 implants. Fourteen implants were removed during a median follow-up time of 24 months. The 24-month implant survival rate was 97.9% in adult subjects and 98.6% in children. Sixty-eight percent of adult patients underwent bone augmentation prior to implant placement. Based on this review, dental implants are commonly used in the oral reconstruction of ED patients. However, long-term data on bone augmentation and implant success are needed, as well as additional clinical evidence on bone resorption, the esthetic outcomes of implant therapy, and physiological considerations in ED patients. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Effectiveness of exchange K-nail and augmented plating in aseptic femoral diaphyseal non-union.
Sancheti, K H; Pradhan, Chetan; Patil, Atul; Puram, Chetan; Bharti, Parkalp; Sancheti, Parag; Shyam, Ashok
2017-08-01
Femoral diaphyseal non-unions present difficult scenario to manage. There are multiple options but most of them still report varying incidences of failure. We combined the principles of augmented plating and exchange nailing and aim to study the effectiveness of this technique. A retrospective study at a tertiary trauma centre was conducted. Seventy patients (60 men, 10 women), average age 40.7±15.27 years (range 18-81 years) with diaphyseal femoral fracture non-unions treated between July 2010 and January 2015 were reviewed. The average interval between first and the last surgery was 18.07±17.65 months (range 4-96 months). Forty six patients had hypertrophic non-union and 24 patients had atrophic non-union. Twenty one patients had undergone a prior surgery for non-union, 13 dynamisation, 4 bone grafting, 1 augmented plating and 3 exchange nailing. Non-unions were treated with implant removal, freshening of bone edges and exchange K-nailing and augmented plating. Autologous bone grafting and raising of osteoperiosteal flaps was done in all cases. Outcome measures were radiographic evidence of fracture union at minimum three out of four cortices, knee range of motion as compared to opposite knee, and study of complications. All patients demonstrated radiographic evidence of fracture union with an average time of 16.77±2.38 weeks (range 12-26 weeks). Mean knee range of motion of unaffected limb was 126±9.76° (range 90-140°) while in operated limb it was 121.1±11.36° (range 80-140°), p>0.01. Patients with hypertrophic non-unions, prior surgery for non-union and supra- or infra-isthmal non-unions had shorter union time. Two patients had superficial infection which was managed by superficial debridement and two patients had pain at proximal nail tip site which was managed by anti-inflammatory medication. None of the patients required additional surgery for implant removal. Exchange K nailing with Bone graft and additional plating technique for non-union diaphyseal femur fracture achieved good union rates with minimal complication. In our series none of the patient required revision and the technique probably will further minimise the revision rates compared to current options for non-union femur. © 2017 Elsevier Ltd. All rights reserved.
Bone physiology in human grafted and non-grafted extraction sockets--an immunohistochemical study.
Nahles, Susanne; Nack, Claudia; Gratecap, Kerrin; Lage, Hermann; Nelson, John J; Nelson, Katja
2013-07-01
The aim of the present immunohistological investigation was to define and compare the osteogenic potential with the vascularization of the provisional matrix in grafted and ungrafted extraction sockets after 4 and 12 weeks of healing. A total of 33 Patients (15 women, 18 men) with 65 extraction sites with a mean age of 54.4 years (30-73 years) participated in this study. After tooth extraction, the sockets were augmented with Bio-Oss collagen or non-augmented. At implant placement after 4 or 12 weeks bone biopsies were obtained. Within the specimens the osteogenic and endothelial potential of mesenchymal cells was analyzed in the provisional matrix using immunohistochemical analysis with three monoclonal antibodies Cbfa1/Runx2, Osteocalcin (OC), and CD31. Statistical analysis was performed using Mann-Whitney U-test, Spearman's rank-order correlation coefficient, and the two-factorial analysis for repeated measurements. Of the 65 extraction sockets, 25 (13 non-augmented, 12 augmented) sites after 4 weeks healing time and 40 (19 non-augmented, 21 augmented) sites after 12 weeks healing time were involved in the study. No signs of acute or chronic inflammation were noted in any specimens. After 4 weeks, a median amount of 56% (10-85%) of Cbfa1 positive cells and a median amount of cells expressing OC of 21% (5-42%) were measured. A median CD31 score of 5 was observed. After 12 weeks, a median amount of 61% (19-90%) positive cells expressed by Cbfa1/Runx2 staining a median amount of OC positive cells of 9% (2-17%) was measured. The results at 12 weeks revealed a median score of CD31 positive cells of 3. Osteoblastic activity in the provisional matrix was highest after 4 weeks of healing period. The active zone of bone formation is found in the apical region of the extraction socket during the early healing phase, shifting to the coronal region after 12 weeks. A peak of osteoblast activity within the first weeks is followed by a reduction in mature osteoblasts with osteoblasts remaining in an inactive stage. The vascularity changed in likewise fashion to the maturation of osteoblasts within the observation period. The results have shown that with increasing age a decreasing endothelial potential was observed not after 4 weeks, but after 12 weeks, thus it suggests that angiogenesis is diminished in older patients in the later phase of healing in extraction sockets. © 2012 John Wiley & Sons A/S.
Nouda, Shinya; Tomita, Seiji; Kin, Akihiro; Kawahara, Kunihiko; Kinoshita, Mitsuo
2009-11-15
A biomechanical study using human cadaveric thoracolumbar spinal columns. To compare the effect of treatment by vertebroplasty (VP) with polymethylmethacrylate cement and VP with calcium phosphate cement on the creation of adjacent vertebral body fracture following VP. Adjacent vertebral body fractures have been reported as a complication following VP. Twenty-four spinal columns (T10-L2) from human cadavers were subjected to dual energy radiograph absorptiometry to assess bone mineral density. They were divided into the P group and C group, and experimental vertebral compression fractures were created at T12 vertebrae. T12 vertebrae were augmented with polymethylmethacrylate and calcium phosphate cement in the P group and C group, respectively. Each spinal column was compressed until a new fracture occurred at any vertebra, and the location of newly fractured vertebra and failure load was investigated. There was no significant difference in bone mineral density at each level within each group. In the P group, a new fracture occurred at T10 in 2 specimens, T11 in 8, and L1 in 2. In the C group, it occurred at T10 in 1 specimen, T11 in 2, L1 in 1, and T12 (treated vertebra) in 8. The failure loads of the spinal column were 1774.8+/-672.3 N and 1501.2+/-556.5 N in the P group and C group, respectively. There was no significant difference in the failure load of the spinal column between each group. New vertebral fractures occurred at the vertebra adjacent to augmented vertebrae in the P group and in the augmented vertebrae in the C group. The difference in the fractured site may be because of the difference in strength between the 2 bone filler materials. Therefore, the strength of bone filler materials is considered a risk factor in developing adjacent vertebral body fractures after VP.
Shin, Sung Joon; Lee, Ji-Ho; Lee, Jae Hyup
2017-07-01
A prospective, within-patient, left-right comparative study. To evaluate the efficacy of hydroxyapatite (HA) stick augmentation method by comparing the insertional torque of the pedicle screw in osteoporotic and nonosteoporotic patients. Unsatisfactory clinical outcomes after spine surgery in osteoporotic patients are related to pedicle screw loosening or pull-outs. HA, as a bone graft extender, has a possibility to enhance the fixation strength at the bone-screw interface. From November 2009 to December 2010, among patients who required bilateral pedicle screw fixation for lumbar spine surgery, 22 patients were enrolled, who recieved unilateral HA stick augmentation and completed intraoperative insertional torque measurement of each pedicle screws. On the basis of preoperative evaluation of bone mineral density, patients with osteoporosis had 2 HA sticks inserted unilaterally, and 1 stick for patients without osteoporosis. Pedicle screw loosening and pull-outs were assessed using 12-month postoperative CT scans and follow-up radiographs. Clinical evaluation was done preoperatively and at 1 year postoperatively, based on Visual Analog Scale score, Oswestry Disability Index, and Short Form-36 Health Survey. Regardless of bone mineral density, the average torque value of all pedicle screws with HA stick insertion (HA stick inserted group) was significantly higher than that of all pedicle screws without HA insertion (control group) (P<0.0001). Same results were seen in the HA stick inserted subgroups and the control subgroups within both of the osteoporosis group (P=0.009) and the nonosteoporosis group (P=0.0004). There was no statistically significant difference of the rate of pedicle screw loosening in between the HA stick inserted group and the control group. Clinical evaluation also showed no statistically significant difference in between patients with loosening and those without. The enhancement of initial pedicle screw fixation strength in osteoporotic patients can be achieved by HA stick augmentation.
Augmented Endoscopic Images Overlaying Shape Changes in Bone Cutting Procedures.
Nakao, Megumi; Endo, Shota; Nakao, Shinichi; Yoshida, Munehito; Matsuda, Tetsuya
2016-01-01
In microendoscopic discectomy for spinal disorders, bone cutting procedures are performed in tight spaces while observing a small portion of the target structures. Although optical tracking systems are able to measure the tip of the surgical tool during surgery, the poor shape information available during surgery makes accurate cutting difficult, even if preoperative computed tomography and magnetic resonance images are used for reference. Shape estimation and visualization of the target structures are essential for accurate cutting. However, time-varying shape changes during cutting procedures are still challenging issues for intraoperative navigation. This paper introduces a concept of endoscopic image augmentation that overlays shape changes to support bone cutting procedures. This framework handles the history of the location of the measured drill tip as a volume label and visualizes the remains to be cut overlaid on the endoscopic image in real time. A cutting experiment was performed with volunteers, and the feasibility of this concept was examined using a clinical navigation system. The efficacy of the cutting aid was evaluated with respect to the shape similarity, total moved distance of a cutting tool, and required cutting time. The results of the experiments showed that cutting performance was significantly improved by the proposed framework.
Stress Distribution Around Single Short Dental Implants: A Finite Element Study.
Vidya Bhat, S; Premkumar, Priyanka; Kamalakanth Shenoy, K
2014-12-01
Bone height restrictions are more common in the posterior regions of the mandible, because of either bone resorption resulting from tooth loss or even anatomic limitations, such as the position of the inferior alveolar nerve. In situations where adequate bone height is not available in the posterior mandible region, smaller lengths of implants may have to be used but it has been reported that the use of long implants (length ≥10 mm) is a positive factor in osseointegration and authors have reported failures with short implants. Hence knowledge about the stress generated on the bone with different lengths of implants needs scientific evaluation. The purpose of this study was to compare and evaluate the influence of different lengths of implants on stress upon bone in mandibular posterior area. A 3 D finite element model was made of the posterior mandible using the details from a CT scan, using computer software (ANSYS 12). Four simulated implants with lengths 6 mm, 8 mm, 10 mm and 13 mm were placed in the centre of the bone. A static vertical force of 250 N and a static horizontal force of 100 N were applied. The stress generated in the cortical and cancellous bone around the implant were recorded and evaluated with the help of ANSYS. In this study, Von Mises stress on a 6 mm implant under a static vertical load of 250 N appeared to be almost in the same range of 8 and 10 mm implant which were more as compared to 13 mm implant. Von Mises stress on a 6mm implant under a static horizontal load of 100 N appeared to be less when compared to 8, 10 and 13 mm implants. From the results obtained it may be inferred that under static horizontal loading conditions, shorter implants receive lesser load and thus may tend to transfer more stresses to the surrounding bone. While under static vertical loading the shorter implants bear more loads and comparatively transmit lesser load to the surrounding bone.
Königshausen, M; Jettkant, B; Sverdlova, N; Ehlert, C; Gessmann, J; Schildhauer, T A; Seybold, D
2015-01-01
There is no biomechanical basis to determine the influence of different length of the central peg of the baseplate anchored within the native scapula in glenoid defect reconstruction in cases of degenerative or posttraumatic glenoid bone loss in reversed shoulder arthroplasty. The purpose of this study was to analyse the stability of different peg lengths used in glenoid bone loss in reversed shoulder arthroplasty. Different lengths of metaglene pegs with different depths of peg anchorage performed with or without metaglene screws in sawbone foam blocks were loaded in vertical and horizontal directions for differentiating load capacities. Simulated physiological loadings were then applied to the peg implants to determine the limits of loading in each depth of anchorage. The loading capacity of the implant was reduced as less of the peg was anchored. The vertically loaded implants showed a significantly higher stability, in contrast to those loaded horizontally at a corresponding peg length and depth of anchorage (p < 0.05). The tests revealed that the metaglene screws are more essential for primary stability than is the peg particularly in the vertically directed loadings (2/3 anchored: peg contributed to 28% of the stability, 1/3 anchorage: peg contributed to 12%). Under the second test conditions, the lowest depth of peg anchorage (1/3) resulted in 322 Newtons [N] in the long peg with a vertical loading direction, and in 130 N in the long peg with a horizontal loading direction (p < 0.05). The pegs should be anchored as deeply as possible into the native scapula bone stock. The metaglene screws play a major role in the initial stability, in contrast to the peg, and they become more important when the depth of the peg anchorage is reduced. If possible, four metaglene screws should be used in cases of uncontained bone loss to guarantee the highest stability.
Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration
Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.
2012-01-01
The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with preprogrammed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering. PMID:22342771
Wähnert, D; Roos, A; Glasbrenner, J; Ilting-Reuke, K; Ohrmann, P; Hempel, G; Duning, T; Roeder, N; Raschke, M J
2017-02-01
Recent data show that 20-80% of surgery patients are affected by delirium during inpatient clinical treatment. The medical consequences are often dramatic and include a 20 times higher mortality and treatment expenses of the medical unit increase considerably. At the University Hospital of Münster a multimodal and interdisciplinary concept for prevention and management of delirium was developed: all patients older than 65 years admitted for surgery are screened by a specialized team for the risk of developing delirium and treated by members of the team if there is a risk of delirium. Studies proved that by this multimodal approach the incidence of delirium was lowered and therefore the quality of medical care improved.When surgical treatment of fractures in the elderly is required, limited bone quality as well as pre-existing implants can complicate the procedure. Secondary loss of reduction after osteosynthesis and avulsion of the implant in particular must be prevented. Augmentation of the osteosynthetic implant with bone cement can increase the bone-implant interface and therefore stability can be improved. Additional intraoperative 3D imaging can be necessary depending on the localization of the fracture. In biomechanical studies we could prove greater stability in the osteosynthesis of osteoporotic fractures of the distal femur when using additional bone cement; therefore, the use of bone cement is an important tool, which helps to prevent complications in the surgical treatment of fractures in the elderly. Nevertheless, special implants and technical skills are required and some safety aspects should be considered.
Wei, Wei; Motoike, Toshiyuki; Krzeszinski, Jing Y.; Jin, Zixue; Xie, Xian-Jin; Dechow, Paul C.; Yanagisawa, Masashi; Wan, Yihong
2014-01-01
SUMMARY Orexin neuropeptides promote arousal, appetite, reward, and energy expenditure. However, whether orexin affects bone mass accrual is unknown. Here we show that orexin functions centrally through orexin receptor 2 (OX2R) in the brain to enhance bone formation. OX2R-null mice exhibit low-bone-mass owing to elevated circulating leptin; whereas central administration of an OX2R-selective agonist augments bone mass. Conversely, orexin also functions peripherally through orexin receptor 1 (OX1R) in the bone to suppress bone formation. OX1R-null mice exhibit high-bone-mass owing to a mesenchymal stem cell differentiation shift from adipocyte to osteoblast that results from higher osseous ghrelin expression. The central action is dominant over the peripheral action because bone mass is reduced in orexin-null and OX1R2R-double-null mice but enhanced in orexin over-expressing transgenic mice. These findings reveal orexin as a critical rheostat of skeletal homeostasis that exerts a yin-yang dual regulation, and highlight orexin as a therapeutic target for osteoporosis. PMID:24794976
Schaffer, Joseph Christopher; Adib, Farshad; Cui, Quanjun
2014-06-01
Osteonecrosis (ON) of the femoral head, without timely intervention, often progresses to debilitating hip arthritis. Core decompression (CD) with bone grafting was used to treat patients with early-stage ON. In 3 cases, intraoperative oxygen saturation, end-tidal carbon dioxide fluctuations, and/or vital sign fluctuations were observed during insertion of the graft, a mixture of bone marrow and demineralized bone matrix. In 1 case, continued postoperative pulmonary symptoms required admission to intensive care. In this article, we describe these cases and provide supporting evidence that they were caused by fat emboli secondary to forceful insertion of bone graft. We review the literature and present complications data. Although no cases of fat emboli were reported as complications of any CD series with or without bone grafting, CD augmented with bone graft may carry risks not seen before in CD alone. Care should be taken to avoid these complications, possibly through technique modification.
Myer, Gregory D; Stroube, Benjamin W; DiCesare, Christopher A; Brent, Jensen L; Ford, Kevin R; Heidt, Robert S; Hewett, Timothy E
2013-03-01
There is a current need to produce a simple, yet effective method for screening and targeting possible deficiencies related to increased anterior cruciate ligament (ACL) injury risk. Frontal plane knee angle (FPKA) during a drop vertical jump will decrease upon implementing augmented feedback into a standardized sport training program. Controlled laboratory study. Thirty-seven female participants (mean ± SD: age, 14.7 ± 1.5 years; height, 160.9 ± 6.8 cm; weight, 54.5 ± 7.2 kg) were trained over 8 weeks. During each session, each participant received standardized training consisting of strength training, plyometrics, and conditioning. They were also videotaped running on a treadmill at a standardized speed and performing a repeated tuck jump for 10 seconds. Study participants were randomized into 2 groups and received augmented feedback on either their jumping (AF) or sprinting (CTRL) form. Average (mean of 3 trials) and most extreme (trial with greatest knee abduction) FPKA were calculated from 2-dimensional video captured during performance of the drop vertical jump. After testing, a main effect of time was noted, with the AF group reducing their FPKA average by 37.9% over the 3 trials while the CTRL group demonstrated a 26.7% reduction average across the 3 trials (P < .05). Conversely, in the most extreme drop vertical jump trial, a significant time-by-group interaction was noted (P < .05). The AF group reduced their most extreme FPKA by 6.9° (pretest, 18.4° ± 12.3°; posttest, 11.4° ± 10.1°) on their right leg and 6.5° (pretest, 16.3° ± 14.5°; posttest, 9.8° ± 10.7°) on their left leg, which represented a 37.7% and 40.1% reduction in FPKA, respectively. In the CTRL group, no similar changes were noted in the right (pretest, 16.9° ± 14.3°; posttest, 14.0° ± 12.3°) or left leg (pretest, 9.8° ± 11.1°; posttest, 7.2° ± 9.2°) after training. Providing athletes with augmented feedback on deficits identified by the tuck jump assessment has a positive effect on their biomechanics during a different drop vertical jump task that is related to increased ACL injury risk. The ability of the augmented feedback to support the transfer of skills and injury risk factor reductions across different tasks provides exciting new evidence related to how neuromuscular training may ultimately cross over into retained biomechanics that reduce ACL injuries during sport. The tuck jump assessment's ease of use makes it a timely and economically favorable method to support ACL prevention strategies in young girls.
Ohlson, Blake L; Shatby, Meena W; Parks, Brent G; White, Kacey L; Schon, Lew C
2011-02-01
Augmented retrograde intramedullary (IM) nail fixation was compared with augmented periarticular locking- plate fixation for tibiotalocalcaneal arthrodesis. Specimens in 10 matched pairs were randomly assigned to a fixation construct and loaded cyclically in dorsiflexion. The groups did not differ in initial or final stiffness, load to failure, or construct deformation. No correlation was found between bone mineral density and construct deformation for either group. A humeral locking plate may be a viable alternative to an IM nail for tibiotalocalcaneal fixation in cases not amenable to IM nailing.
Khurana, Pardeep; Sharma, Arun; Sodhi, Kiranmeet Kaur
2013-12-01
The aims of this study were to investigate the effect of implant fine threads on crestal bone stress compared to a standard smooth implant collar and to analyze how different abutment diameters influenced the crestal bone stress level. Three-dimensional finite element imaging was used to create a cross-sectional model in SolidWorks 2007 software of an implant (5-mm platform and 10 mm in length) placed in the premolar region of the mandible. The implant model was created to resemble a commercially available fine thread implant. Abutments of different diameters (5.0 mm: standard, 4.5 mm, 4.0 mm, and 3.5 mm) were loaded with a force of 100 N at 90° vertical and 40° oblique angles. Finite element analysis was done in COSMOSWorks software, which was used to analyze the stress patterns in bone, especially in the crestal region. Upon loading, the fine thread implant model had greater stress at the crestal bone adjacent to the implant than the smooth neck implant in both vertical and oblique loading. When the abutment diameter decreased progressively from 5.0 mm to 4.5 mm to 4 mm and to 3.5 mm the thread model showed a reduction of stress at the crestal bone level from 23.2 MPa to 15.02 MPa for fine thread and from 22.7 to 13.5 MPa for smooth collar implant group after vertical loading and from 43.7 MPa to 33.1 MPa in fine thread model and from 36.9 to 20.5 MPa in smooth collar implant model after oblique loading. Fine threads increase crestal stress upon loading. Reduced abutment diameter that is platform switching resulted in less stress translated to the crestal bone in the fine thread and smooth neck.
Bostelmann, Richard; Keiler, Alexander; Steiger, Hans Jakob; Scholz, Armin; Cornelius, Jan Frederick; Schmoelz, Werner
2017-01-01
Augmentation of pedicle screws is recommended in selected indications (for instance: osteoporosis). Generally, there are two techniques for pedicle screw augmentation: inserting the screw in the non cured cement and in situ-augmentation with cannulated fenestrated screws, which can be applied percutaneously. Most of the published studies used an axial pull out test for evaluation of the pedicle screw anchorage. However, the loading and the failure mode of pullout tests do not simulate the cranio-caudal in vivo loading and failure mechanism of pedicle screws. The purpose of the present study was to assess the fixation effects of different augmentation techniques (including percutaneous cement application) and to investigate pedicle screw loosening under physiological cyclic cranio-caudal loading. Each of the two test groups consisted of 15 vertebral bodies (L1-L5, three of each level per group). Mean age was 84.3 years (SD 7.8) for group 1 and 77.0 years (SD 7.00) for group 2. Mean bone mineral density was 53.3 mg/cm 3 (SD 14.1) for group 1 and 53.2 mg/cm 3 (SD 4.3) for group 2. 1.5 ml high viscosity PMMA bone cement was used for all augmentation techniques. For test group 1, pedicles on the right side of the vertebrae were instrumented with solid pedicle screws in standard fashion without augmentation and served as control group. Left pedicles were instrumented with cannulated screws (Viper cannulated, DePuy Spine) and augmented. For test group 2 pedicles on the left side of the vertebrae were instrumented with cannulated fenestrated screws and in situ augmented. On the right side solid pedicle screws were augmented with cement first technique. Each screw was subjected to a cranio-caudal cyclic load starting at 20-50 N with increasing upper load magnitude of 0.1 N per cycle (1 Hz) for a maximum of 5000 cycles or until total failure. Stress X-rays were taken after cyclic loading to evaluate screw loosening. Test group 1 showed a significant higher number of load cycles until failure for augmented screws compared to the control (4030 cycles, SD 827.8 vs. 1893.3 cycles, SD 1032.1; p < 0.001). Stress X-rays revealed significant less screw toggling for the augmented screws (5.2°, SD 5.4 vs. 16.1°, SD 5.9; p < 0.001). Test group 2 showed 3653.3 (SD 934) and 3723.3 (SD 560.6) load cycles until failure for in situ and cement first augmentation. Stress X-rays revealed a screw toggling of 5.1 (SD 1.9) and 6.6 (SD 4.6) degrees for in situ and cement first augmentation techniques (p > 0.05). Augmentation of pedicle screws in general significantly increased the number of load cycles and failure load comparing to the nonaugmented control group. For the augmentation technique (cement first, in situ augmented, percutaneously application) no effect could be exhibited on the failure of the pedicle screws. By the cranio-caudal cyclic loading failure of the pedicle screws occurred by screw cut through the superior endplate and the characteristic "windshield-wiper effect", typically observed in clinical practice, could be reproduced.
Nasal base, maxillary, and infraorbital implants--alloplastic.
Hinderer, U T
1991-01-01
The aesthetic surgery of the facial skeletal contour requires either the performance of ostectomies of excessively prominent segments or the augmentation of retruded segments with organic or synthetic material, in order to achieve balanced tridimensional relations of each segment with regard to the total facial unit. Craniomaxillofacial surgeries are necessary in major malformations or in those combined with malocclusion. In the nasal dorsum or tip, the author prefers the use of cartilage, because synthetic materials need adequate soft-tissue bulk for cover to be inserted without tension and absence of passive mobility of the reception site. For malar augmentation, first proposed by the author and independently by Spadafora in 1971, for chin augmentation up to 8 mm, and for augmentation of the mandibular angle, the author prefers silicone implants because they do not change in shape or volume, may be premanufactured or custom-made, have a similar consistency to that of bone, and do not support bacterial growth. On the other hand, autologous bone grafts adapt less to curved bony surfaces, have an erratic rate of resorption, and need an additional surgical step for removal with the corresponding morbidity and scar. Subperiosteal insertion is preferred because it confers greater stability and the cavity is easier to dissect without soft-tissue damage. Although bone erosion may occur, with over 1200 implants clinically no major change in the soft-tissue contour has been observed, nor has the author been consulted for late complication. In the malar region this may be due to the large surface of the implant and absence of muscular pressure. In the chin, an insertion over the site of the dental roots is avoided. For midface augmentation the following implants are used: (1) The premaxillary lower nasal base implant, proposed in 1971, is indicated to correct a concave midfacial profile, frequent in Asian, black, and Mestizo patients from Latin America and in Caucasian patients with maxillonasal dysplasia or Binder's syndrome, after trauma, with excessive septum and nasal spine resections, and in nasal-maxillary sequels in cleft patients. In case of dental malocclusion, orthognathic surgery is the technique of choice. A prototype implant is available in two sizes, to be inserted through a lateral incision at the base of the columella. In 108 patients two implants have been partially removed. After the first month the patient is usually well adapted to the foreign body.(ABSTRACT TRUNCATED AT 400 WORDS)
TV audio and video on the same channel
NASA Technical Reports Server (NTRS)
Hopkins, J. B.
1979-01-01
Transmitting technique adds audio to video signal during vertical blanking interval. SIVI (signal in the vertical interval) is used by TV networks and stations to transmit cuing and automatic-switching tone signals to augment automatic and manual operations. It can also be used to transmit one-way instructional information, such as bulletin alerts, program changes, and commercial-cutaway aural cues from the networks to affiliates. Additonally, it can be used as extra sound channel for second-language transmission to biligual stations.
A potential-energy surface study of the 2A1 and low-lying dissociative states of the methoxy radical
NASA Technical Reports Server (NTRS)
Jackels, C. F.
1985-01-01
Accurate, ab initio quantum chemical techniques are applied in the present study of low lying bound and dissociative states of the methoxy radical at C3nu conformations, using a double zeta quality basis set that is augmented with polarization and diffuse functions. Excitation energy estimates are obtained for vertical excitation, vertical deexcitation, and system origin. The rate of methoxy photolysis is estimated to be too small to warrant its inclusion in atmospheric models.
Rodríguez-Tizcareño, Mario H; Barajas, Lizbeth; Pérez-Gásque, Marisol; Gómez, Salvador
2012-06-01
This report presents a protocol used to transfer the virtual treatment plan data to the surgical and prosthetic reality and its clinical application, bone site augmentation with computer-custom milled bovine bone graft blocks to their ideal architecture form, implant insertion based on image-guided stent fabrication, and the restorative manufacturing process through computed tomography-based software programs and navigation systems and the computer-aided design and manufacturing techniques for the treatment of the edentulous maxilla.
Froum, Stuart J; Wallace, Stephen; Cho, Sang-Choon; Khouly, Ismael; Rosenberg, Edwin; Corby, Patricia; Froum, Scott; Mascarenhas, Patrick; Tarnow, Dennis P
2014-01-01
The purpose of this study was to radiographically evaluate, then analyze, bone height, volume, and density with reference to percentage of vital bone after maxillary sinuses were grafted using two different doses of recombinant human bone morphogenetic protein 2/acellular collagen sponge (rhBMP-2/ACS) combined with mineralized cancellous bone allograft (MCBA) and a control sinus grafted with MCBA only. A total of 18 patients (36 sinuses) were used for analysis of height and volume measurements, having two of three graft combinations (one in each sinus): (1) control, MCBA only; (2) test 1, MCBA + 5.6 mL of rhBMP-2/ACS (containing 8.4 mg of rhBMP-2); and (3) test 2, MCBA + 2.8 mL of rhBMP-2/ACS (containing 4.2 mg of rhBMP-2). The study was completed with 16 patients who also had bilateral cores removed 6 to 9 months following sinus augmentation. A computer software system was used to evaluate 36 computed tomography scans. Two time points where selected for measurements of height: The results indicated that height of the grafted sinus was significantly greater in the treatment groups compared with the control. However, by the second time point, there were no statistically significant differences. Three weeks post-surgery bone volume measurements showed similar statistically significant differences between test and controls. However, prior to core removal, test group 1 with the greater dose of rhBMP-2 showed a statistically significant greater increase compared with test group 2 and the control. There was no statistically significant difference between the latter two groups. All three groups had similar volume and shrinkage. Density measurements varied from the above results, with the control showing statistically significant greater density at both time points. By contrast, the density increase over time in both rhBMP groups was similar and statistically higher than in the control group. There were strong associations between height and volume in all groups and between volume and new vital bone only in the control group. There were no statistically significant relationships observed between height and bone density or between volume and bone density for any parameter measured. More cases and monitoring of the future survival of implants placed in these augmented sinuses are needed to verify these results.
Cai, You-Zhi; Zhang, Chi; Jin, Ri-Long; Shen, Tong; Gu, Peng-Cheng; Lin, Xiang-Jin; Chen, Jian-De
2018-05-01
Due to the highly organized tissue and avascular nature of the rotator cuff, rotator cuff tears have limited ability to heal after the tendon is reinserted directly on the greater tubercle of the humerus. Consequently, retears are among the most common complications after rotator cuff repair. Augmentation of rotator cuff repairs with patches has been an active area of research in recent years to reduce retear rate. Graft augmentation with 3D collagen could prevent retears of the repaired tendon and improve tendon-bone healing in moderate to large rotator cuff tears. Randomized controlled study; Level of evidence, 2. A prospective, randomized controlled study was performed in a consecutive series of 112 patients age 50 to 85 years who underwent rotator cuff repair with the suture-bridge technique (58 patients, control group) or the suture-bridge technique augmented with 3-dimensional (3D) collagen (54 patients, study group). All patients were followed for 28.2 months (range, 24-36 months). Visual analog scale score for pain, University of California Los Angeles (UCLA) shoulder score, and Constant score were determined. Magnetic resonance imaging was performed pre- and postoperatively (at a minimum of 24 months) to evaluate the integrity of the rotator cuff and the retear rate of the repaired tendon. Three patients in each group had biopsies at nearly 24 months after surgery with histological assessment and transmission electron microscopy. A total of 104 patients completed the final follow-up. At the 12-month follow-up, the UCLA shoulder score was 28.1 ± 1.9 in the study group, which was significantly better than that in the control group (26.9 ± 2.1, P = .002). The Constant score was also significantly better in the study group (87.1 ± 3.2) than in the control group (84.9 ± 4.2, P = .003). However, at the final follow-up, no significant differences were found in the UCLA shoulder scores (29.4 ± 1.9 in the control group and 30.0 ± 1.6 in the study group, P = .052) or Constant scores (89.9 ± 3.2 in the control group and 90.8 ± 3.5 in the study group, P = .18). In terms of structural integrity, more patients in the study group had a favorable type I retear grade (18/51) than in the control group (10/53) ( P = .06). The postoperative retear rate was 34.0% in the control group and 13.7% in the study group, thus indicating a significantly lower retear rate in the study group ( P = .02). Biopsy specimens of the tendon-bone interface in 6 patients revealed more bone formation and more aligned fibers with larger diameters in the study group than in the control group. No intraoperative or postoperative complications were noted in either group. 3D collagen augmentation could provide effective treatment of moderate to large rotator cuff tears, providing substantial functional improvement, and could reduce the retear rate. This technique could also promote new tendon-bone formation, thus exerting a prominent effect on tendon-bone healing.
Sex Determination by Biometry of Anterior Features of Human Hip Bones in South Indian Population.
Rajasekhar, Sssn; Vasudha, T K; Aravindhan, K
2017-06-01
Sex determination is the first step in establishing the identity of skeletal remains. Many studies included biometry of posterior features of hip bone. Very few studies are reported involving the biometry of anterior features of the hip bone. Anterior features of hip bone are important especially, if there is damage to the posterior features of hip bone in cases involving deliberate disfigurement of the body to resist identification of the crime in medicolegal cases. The present study was done to evaluate the effectiveness of anterior border parameters of the hip bone for prediction of sex using discriminant function analysis in South Indian population. A total of 206 dry bones were used (121 male and 85 female) and parameters like the distance between pubic tubercle and anterior rim of acetabulum, vertical acetabular diameter, transverse acetabular diameter, and the distance between pubic tubercle to highest point on the iliopubic eminence were measured using Vernier calipers. Normally distributed variables were compared using Students t-test to analyse the significance. There was significant difference between the male and female hip bones of the observed variables with p-value less than 0.05. In parameters like the distance between pubic tubercle to anterior rim of acetabulum and distance between the highest points on iliopubic eminence to pubic tubercle; the values were more in female when compared to males. In parameters like vertical and transverse acetabular diameters; the values in males were more when compared to females. These parameters of hip bone can be utilised for sex determination in South Indian population.
Windisch, Péter; Szendroi-Kiss, Dóra; Horváth, Attila; Suba, Zsuzsanna; Gera, István; Sculean, Anton
2008-09-01
Treatment of intrabony periodontal defects with a combination of a natural bone mineral (NBM) and guided tissue regeneration (GTR) has been shown to promote periodontal regeneration in intrabony defects. In certain clinical situations, the teeth presenting intrabony defects are located at close vicinity of the resorbed alveolar ridge. In these particular cases, it is of clinical interest to simultaneously reconstruct both the intrabony periodontal defect and the resorbed alveolar ridge, thus allowing insertion of endosseous dental implants. The aim of the present study was to present the clinical and histological results obtained with a new surgical technique designed to simultaneously reconstruct the intrabony defect and the adjacently located resorbed alveolar ridge. Eight patients with chronic advanced periodontitis displaying intrabony defects located in the close vicinity of resorbed alveolar ridges were consecutively enrolled in the study. After local anesthesia, mucoperiosteal flaps were raised, the granulation tissue removed, and the roots meticulously scaled and planed. A subepithelial connective tissue graft was harvested from the palate and sutured to the oral flap. The intrabony defect and the adjacent alveolar ridge were filled with a NBM and subsequently covered with a bioresorbable collagen membrane (GTR). At 11-20 months (mean, 13.9+/-3.9 months) after surgery, implants were placed, core biopsies retrieved, and histologically evaluated. Mean pocket depth reduction measured 3.8+/-1.7 mm and mean clinical attachment level gain 4.3+/-2.2 mm, respectively. Reentry revealed in all cases a complete fill of the intrabony component and a mean additional vertical hard tissue gain of 1.8+/-1.8 mm. The histologic evaluation indicated that most NBM particles were surrounded by bone. Mean new bone and mean graft area measured 17.8+/-2.8% and 32.1+/-8.3%, respectively. Within their limits, the present findings indicate that the described surgical approach may be successfully used in certain clinical cases to simultaneously treat intrabony defects and to reconstruct the resorbed alveolar ridge.
Window classification of brain CT images in biomedical articles.
Xue, Zhiyun; Antani, Sameer; Long, L Rodney; Demner-Fushman, Dina; Thoma, George R
2012-01-01
Effective capability to search biomedical articles based on visual properties of article images may significantly augment information retrieval in the future. In this paper, we present a new method to classify the window setting types of brain CT images. Windowing is a technique frequently used in the evaluation of CT scans, and is used to enhance contrast for the particular tissue or abnormality type being evaluated. In particular, it provides radiologists with an enhanced view of certain types of cranial abnormalities, such as the skull lesions and bone dysplasia which are usually examined using the " bone window" setting and illustrated in biomedical articles using "bone window images". Due to the inherent large variations of images among articles, it is important that the proposed method is robust. Our algorithm attained 90% accuracy in classifying images as bone window or non-bone window in a 210 image data set.
Distinct bone marrow blood vessels differentially regulate haematopoiesis.
Itkin, Tomer; Gur-Cohen, Shiri; Spencer, Joel A; Schajnovitz, Amir; Ramasamy, Saravana K; Kusumbe, Anjali P; Ledergor, Guy; Jung, Yookyung; Milo, Idan; Poulos, Michael G; Kalinkovich, Alexander; Ludin, Aya; Kollet, Orit; Shakhar, Guy; Butler, Jason M; Rafii, Shahin; Adams, Ralf H; Scadden, David T; Lin, Charles P; Lapidot, Tsvee
2016-04-21
Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols.
Schwarz, Frank; Mihatovic, Ilja; Ghanaati, Shahram; Becker, Jürgen
2017-08-01
To assess the clinical safety and performance of collagenated xenogeneic bone block (CXBB) for lateral alveolar ridge augmentation and two-stage implant placement. In ten patients exhibiting a single-tooth gap, the surgical procedure included the preparation of mucoperiosteal flaps, a rigid fixation of CXBB (Geistlich Bio-Graft ® ) using an osteosynthesis screw, and contour augmentation. After 24 weeks of submerged healing, the primary endpoint was defined as the final ridge width sufficient to place an adequately dimensioned titanium implant at the respective sites. Secondary outcomes included, for example, the gain in ridge width (mm). Clinical parameters (e.g., bleeding on probing - BOP, probing depth - PD, mucosal recession - MR) were assessed immediately after the cementation of the crown and at the final visit. At 24 weeks, implant placement could be achieved in 8 of 10 patients exhibiting a mean gain in ridge width (mean ± SD) of 3.88 ± 1.75 mm. Histological analysis has pointed to a homogeneous osseous organization of CXBB. The changes of mean BOP, PD, and MR values at the final visit amounted to 16.62 ± 32.02%, 0.04 ± 0.21 mm, and -0.04 ± 0.12 mm, respectively. CXBB may be successfully used to support lateral alveolar ridge augmentation and two-stage implant placement. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Montalvany-Antonucci, C C; Zicker, M C; Macari, S; Pereira, T S F; Diniz, I M A; Andrade, I; Ferreira, A V M; Silva, T A
2018-02-01
The impact of high-refined carbohydrate (HC) diet on fat accumulation, adipokines secretion and systemic inflammation is well described. However, it remains unclear whether these processes affect bone remodeling. To investigate the effects of HC diet in the alveolar bone and femur parameters. BalbC mice were fed with conventional chow or HC diet for 12 weeks. After experimental time maxillae, femur, blood and white adipose tissue samples were collected. The animals feed with HC diet exhibited considerable increase of adiposity index and adipose tissue levels of TNF-α, IL-6, IL-10, IL-1β, TGF-β and leptin. Microtomography analysis of maxillary bone revealed horizontal alveolar bone loss and disruption of trabecular bone in mice feed with HC diet. These deleterious effects were correlated with a disturbance in bone cells and an augmented expression of Rankl/Opg ratio. Consistently, similar effects were observed in femurs, which also exhibited a reduction in bone maximum load and stiffness. Our data indicates that HC diet consumption disrupts bone remodeling process, favoring bone loss. Underlying mechanisms relies on fat tissue accumulation and also in systemic and local inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Badiali, Giovanni; Ferrari, Vincenzo; Cutolo, Fabrizio; Freschi, Cinzia; Caramella, Davide; Bianchi, Alberto; Marchetti, Claudio
2014-12-01
We present a newly designed, localiser-free, head-mounted system featuring augmented reality as an aid to maxillofacial bone surgery, and assess the potential utility of the device by conducting a feasibility study and validation. Our head-mounted wearable system facilitating augmented surgery was developed as a stand-alone, video-based, see-through device in which the visual features were adapted to facilitate maxillofacial bone surgery. We implement a strategy designed to present augmented reality information to the operating surgeon. LeFort1 osteotomy was chosen as the test procedure. The system is designed to exhibit virtual planning overlaying the details of a real patient. We implemented a method allowing performance of waferless, augmented-reality assisted bone repositioning. In vitro testing was conducted on a physical replica of a human skull, and the augmented reality system was used to perform LeFort1 maxillary repositioning. Surgical accuracy was measured with the aid of an optical navigation system that recorded the coordinates of three reference points (located in anterior, posterior right, and posterior left positions) on the repositioned maxilla. The outcomes were compared with those expected to be achievable in a three-dimensional environment. Data were derived using three levels of surgical planning, of increasing complexity, and for nine different operators with varying levels of surgical skill. The mean error was 1.70 ± 0.51 mm. The axial errors were 0.89 ± 0.54 mm on the sagittal axis, 0.60 ± 0.20 mm on the frontal axis, and 1.06 ± 0.40 mm on the craniocaudal axis. The simplest plan was associated with a slightly lower mean error (1.58 ± 0.37 mm) compared with the more complex plans (medium: 1.82 ± 0.71 mm; difficult: 1.70 ± 0.45 mm). The mean error for the anterior reference point was lower (1.33 ± 0.58 mm) than those for both the posterior right (1.72 ± 0.24 mm) and posterior left points (2.05 ± 0.47 mm). No significant difference in terms of error was noticed among operators, despite variations in surgical experience. Feedback from surgeons was acceptable; all tests were completed within 15 min and the tool was considered to be both comfortable and usable in practice. We used a new localiser-free, head-mounted, wearable, stereoscopic, video see-through display to develop a useful strategy affording surgeons access to augmented reality information. Our device appears to be accurate when used to assist in waferless maxillary repositioning. Our results suggest that the method can potentially be extended for use with many surgical procedures on the facial skeleton. Further, our positive results suggest that it would be appropriate to proceed to in vivo testing to assess surgical accuracy under real clinical conditions. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Khetarpal, Shaleen; Chouksey, Ajay; Bele, Anand; Vishnoi, Rahul
2018-01-01
Favorable esthetics is one of the most important treatment outcomes in dentistry, and to achieve this, interdisciplinary approaches are often required. Ridge deficiencies can be corrected for both, soft- and hard-tissue discrepancies. To overcome such defects, not only a variety of prosthetic options are at our disposal but also several periodontal plastic surgical techniques are available as well. Various techniques have been described and revised, over the year to correct ridge defects. For enhancing soft-tissue contours in the anterior region, the subepithelial connective tissue graft is the treatment of choice. A combination of alloplastic bone graft in adjunct to connective tissue graft optimizes ridge augmentation and minimizes defects. The present case report describes the use of vascular interpositional connective tissue graft in combination with alloplastic bone graft for correction of Seibert's Class III ridge deficiency followed by a fixed partial prosthesis to achieve a better esthetic outcome.
Khetarpal, Shaleen; Chouksey, Ajay; Bele, Anand; Vishnoi, Rahul
2018-01-01
Favorable esthetics is one of the most important treatment outcomes in dentistry, and to achieve this, interdisciplinary approaches are often required. Ridge deficiencies can be corrected for both, soft- and hard-tissue discrepancies. To overcome such defects, not only a variety of prosthetic options are at our disposal but also several periodontal plastic surgical techniques are available as well. Various techniques have been described and revised, over the year to correct ridge defects. For enhancing soft-tissue contours in the anterior region, the subepithelial connective tissue graft is the treatment of choice. A combination of alloplastic bone graft in adjunct to connective tissue graft optimizes ridge augmentation and minimizes defects. The present case report describes the use of vascular interpositional connective tissue graft in combination with alloplastic bone graft for correction of Seibert's Class III ridge deficiency followed by a fixed partial prosthesis to achieve a better esthetic outcome. PMID:29568176
Biomaterials based strategies for rotator cuff repair.
Zhao, Song; Su, Wei; Shah, Vishva; Hobson, Divia; Yildirimer, Lara; Yeung, Kelvin W K; Zhao, Jinzhong; Cui, Wenguo; Zhao, Xin
2017-09-01
Tearing of the rotator cuff commonly occurs as among one of the most frequently experienced tendon disorders. While treatment typically involves surgical repair, failure rates to achieve or sustain healing range from 20 to 90%. The insufficient capacity to recover damaged tendon to heal to the bone, especially at the enthesis, is primarily responsible for the failure rates reported. Various types of biomaterials with special structures have been developed to improve tendon-bone healing and tendon regeneration, and have received considerable attention for replacement, reconstruction, or reinforcement of tendon defects. In this review, we first give a brief introduction of the anatomy of the rotator cuff and then discuss various design strategies to augment rotator cuff repair. Furthermore, we highlight current biomaterials used for repair and their clinical applications as well as the limitations in the literature. We conclude this article with challenges and future directions in designing more advanced biomaterials for augmentation of rotator cuff repair. Copyright © 2017 Elsevier B.V. All rights reserved.
Laviv, Amir; Ringeman, Jason; Debecco, Meir; Jensen, Ole T; Casap, Nardy
2014-01-01
This study sought to confirm, through histologic evaluation, the vitality and viability of the island osteoperiosteal flap (i-flap) in a rabbit tibia model. In four rabbits, an osteotomy was performed on the tibial aspect of the right leg. A bone flap was raised, but the periosteal attachment was kept intact. The free-floating i-flap was separated from the rest of the bone by a silicone sheet. The rabbits were to be sacrificed after 1, 2, 4, and 8 weeks and histologic samples examined. All surgeries were accomplished successfully; however, three animals showed fractured tibiae within a few days after surgery and were sacrificed immediately after the fractures were discovered. The fourth rabbit was sacrificed at 4 weeks. Histologic specimens showed vital new bone in the i-flap area and signs of remodeling in the transition zone and the original basal bone. The i-flap remained vital. This suggests potential for use in bone augmentation strategies, particularly for the alveolar split procedure.
Ocak, Hakan; Kutuk, Nukhet; Demetoglu, Umut; Balcıoglu, Esra; Ozdamar, Saim; Alkan, Alper
2017-06-01
Numerous grafting materials have been used to augment the maxillary sinus floor for long-term stability and success for implant-supported prosthesis. To enhance bone formation, adjunctive blood-born growth factor sources have gained popularity during the recent years. The present study compared the use of platelet-rich fibrin (PRF) and bovine-autogenous bone mixture for maxillary sinus floor elevation. A split-face model was used to apply 2 different filling materials for maxillary sinus floor elevation in 22 healthy adult sheep. In group 1, bovine and autogenous bone mixture; and in group 2, PRF was used. The animals were killed at 3, 6, and 9 months. Histologic and histomorphologic examinations revealed new bone formation in group 1 at the third and sixth months. In group 2, new bone formation was observed only at the sixth month, and residual PRF remnants were identified. At the ninth month, host bone and new bone could not be distinguished from each other in group 1, and bone formation was found to be proceeding in group 2. PRF remnants still existed at the ninth month. In conclusion, bovine bone and autogenous bone mixture is superior to PRF as a grafting material in sinus-lifting procedures.
Romanos, Georgios E
2014-01-01
There are benefits to be derived from the use of advanced surgical protocols in conjunction with immediate functional loading using various dental implant designs and implant-abutment connections. Clinical protocols with simultaneous bone grafting, immediate implant placement, and/or sinus augmentations when a shortened treatment period is needed are included in this report, with the aim of providing understanding of the main protocol characteristics and prerequisites for long-term success in implant dentistry. This article presents three clinical cases that illustrate possibilities for advanced immediate loading using different implant designs. It demonstrates treatment of severe bone defects and the facilitation of placing implants in regenerated bone that can be immediately loaded.
Leake, D L; Habal, M B
1977-04-01
Our experience using a new technique for reconstructing contour defects of facial bones has been presented. It employs particulate, cancellous bone and an implantable prosthesis accurately fabricated of polyether urethane and polyethylene terephthalate cloth mesh which can be produced in a variety of configurations. A mannequin made of these materials displaying the various parts of the craniofacial complex that have been restored or are currently under investigation is shown in Figure 10. Large cranial vault defects, orbital floors, mandibles including chin augmentation, and nasal bone deformities have been successfully restored in man. Restoration of the pinna of the ear is currently being evaluated in laboratory animals.
Hey, Hwee Weng Dennis; Hwee Weng, Dennis Hey; Tan, Jun Hao; Jun, Hao Tan; Tan, Chuen Seng; Chuen, Seng Tan; Tan, Hsi Ming Bryan; Ming, Bryan Tan Hsi; Lau, Puang Huh Bernard; Huh, Bernard Lau Puang; Hee, Hwan Tak; Hwan, Tak Hee
2015-12-01
A case-control study. In this study, we investigated the correlation between level-specific preoperative bone mineral density and subsequent vertebral fractures. We also identified factors associated with subsequent vertebral fractures. Complications of cement augmentation of the spine include subsequent vertebral fractures, leading to unnecessary morbidity and more treatment. Ability to predict at-risk vertebra will help guide management. We studied all patients with osteoporotic compression fractures who underwent cement augmentation in a single institution from November 2001 to December 2010 by a single surgeon. Association between level-specific bone mineral density T-scores and subsequent fractures was assessed. Multivariable analysis was performed to identify significant factors associated with subsequent vertebral fractures. 93 patients followed up for a mean duration of 25.1 months (12-96) had a mean age of 76.8 years (47-99). Vertebroplasty was performed in 58 patients (62.4%) on 68 levels and kyphoplasty in 35 patients (37.6%) on 44 levels. Refracture was seen in 16 patients (17.2%). The time to subsequent fracture post cement augmentation was 20.5 months (2-90). For refracture cases, 43.8% (7/16) fractured in the adjacent vertebrae. Subsequently fractured vertebra had a mean T-score of -2.860 (95% confidence interval -3.268 to -2.452) and nonfractured vertebra had a mean T-score of -2.180 (95% confidence interval -2.373 to -1.986). A T-score of -2.2 or lower is predictive of refracture at that vertebra (P = 0.047). Odds ratio increases with decreasing T-scores from -2.2 or lower to -2.6 or lower. A T-score of -2.6 or lower gives no additional predictive advantage. After multivariable analysis, age (P = 0.049) and loss of preoperative anterior vertebral height (P = 0.017) are associated with refracture. Level-specific T-scores are predictive of subsequent fractures and the odds ratio increases with lower T-scores from -2.2 or less to -2.6 or less. They have a low positive predictive value, but a high negative predictive value for subsequent fractures. Other significant associations with subsequent refractures include age and anterior vertebral height. 4.
Angulated Dental Implants in Posterior Maxilla FEA and Experimental Verification.
Hamed, Hamed A; Marzook, Hamdy A; Ghoneem, Nahed E; El-Anwar, Mohamed I
2018-02-15
This study aimed to evaluate the effect of different implant angulations in posterior maxilla on stress distribution by finite element analysis and verify its results experimentally. Two simplified models were prepared for an implant placed vertically and tilted 25° piercing the maxillary sinus. Geometric models' components were prepared by Autodesk Inventor then assembled in ANSYS for finite element analysis. The results of finite element analysis were verified against experimental trials results which were statistically analysed using student t-test (level of significance p < 0.05). Implant - abutment complex absorbed the load energy in case of vertical implant better than the case of angulated one. That was reflected on cortical bone stress, while both cases showed stress levels within the physiological limits. Comparing results between FEA and experiment trials showed full agreement. It was found that the tilted implant by 25° can be utilised in the posterior region maxilla for replacing maxillary first molar avoiding sinus penetration. The implant-bone interface and peri-implant bones received the highest Von Mises stress. Implant - bone interface with angulated implant received about 66% more stresses than the straight one.
Henriksen, K; Leeming, D J; Byrjalsen, I; Nielsen, R H; Sorensen, M G; Dziegiel, M H; Martin, T John; Christiansen, C; Qvist, P; Karsdal, M A
2007-06-01
We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling of aged bones. Osteoclasts resorb aging bone in order to repair damage and maintain the quality of bone. The mechanism behind the targeting of aged bone for remodeling is not clear. We investigated whether bones endogenously possess the ability to control osteoclastic resorption. To biochemically distinguish aged and young bones; we measured the ratio between the age-isomerized betaCTX fragment and the non-isomerized alphaCTX fragment. By measurement of TRACP activity, CTX release, number of TRACP positive cells and pit area/pit number, we evaluated osteoclastogenesis as well as osteoclast resorption on aged and young bones. We found that the alphaCTX/betaCTX ratio is 3:1 in young compared to aged bones, and we found that both alpha and betaCTX are released by osteoclasts during resorption. Osteoclastogenesis was augmented on aged compared to young bones, and the difference was enhanced under low serum conditions. We found that mature osteoclasts resorb more on aged than on young bone, despite unchanged adhesion and morphology. These data indicate that the age of the bone plays an important role in controlling osteoclast-mediated resorption, with significantly higher levels of osteoclast differentiation and resorption on aged bones when compared to young bones.
Liu, Jingyin; Pan, Shaoxia; Dong, Jing; Mo, Zhongjun; Fan, Yubo; Feng, Hailan
2013-03-01
The aim of this study was to evaluate strain distribution in peri-implant bone, stress in the abutments and denture stability of mandibular overdentures anchored by different numbers of implants under different loading conditions, through three-dimensional finite element analysis (3D FEA). Four 3D finite element models of mandibular overdentures were established, using between one and four Straumann implants with Locator attachments. Three types of load were applied to the overdenture in each model: 100N vertical and inclined loads on the left first molar and a 100N vertical load on the lower incisors. The biomechanical behaviours of peri-implant bone, implants, abutments and overdentures were recorded. Under vertical load on the lower incisors, the single-implant overdenture rotated over the implant from side to side, and no obvious increase of strain was found in peri-implant bone. Under the same loading conditions, the two-implant-retained overdenture showed more apparent rotation around the fulcrum line passing through the two implants, and the maximum equivalent stress in the abutments was higher than in the other models. In the three-implant-supported overdenture, no strain concentration was found in cortical bone around the middle implant under three loading conditions. Single-implant-retained mandibular overdentures do not show damaging strain concentration in the bone around the only implant and may be a cost-effective treatment option for edentulous patients. A third implant can be placed between the original two when patients rehabilitated by two-implant overdentures report constant and obvious denture rotation around the fulcrum line. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ramos-Infante, Samuel Jesús; Ten-Esteve, Amadeo; Alberich-Bayarri, Angel; Pérez, María Angeles
2018-01-01
This paper proposes a discrete particle model based on the random-walk theory for simulating cement infiltration within open-cell structures to prevent osteoporotic proximal femur fractures. Model parameters consider the cement viscosity (high and low) and the desired direction of injection (vertical and diagonal). In vitro and in silico characterizations of augmented open-cell structures validated the computational model and quantified the improved mechanical properties (Young's modulus) of the augmented specimens. The cement injection pattern was successfully predicted in all the simulated cases. All the augmented specimens exhibited enhanced mechanical properties computationally and experimentally (maximum improvements of 237.95 ± 12.91% and 246.85 ± 35.57%, respectively). The open-cell structures with high porosity fraction showed a considerable increase in mechanical properties. Cement augmentation in low porosity fraction specimens resulted in a lesser increase in mechanical properties. The results suggest that the proposed discrete particle model is adequate for use as a femoroplasty planning framework.
Nocini, Pier Francesco; Castellani, Roberto; Zanotti, Guglielmo; Gelpi, Federico; Covani, Ugo; Marconcini, Simone; de Santis, Daniele
2014-05-01
The aim of this study was to test a new collagen matrix (Mucoderm) positioned during oral implant abutment connection. A patient previously treated with Le Fort I for bone augmentation and 8 implants showing minimal amount of keratinized tissue was selected for an extensive keratinized tissue augmentation and deepening of the oral vestibule by apically positioning a split palatal flap and palatal grafting with Mucoderm. Clinical data at 9 and 14 days and 1 and 2 months showed resorption of the collagen graft, augmentation of the keratinized tissue around the implants, and deepening of the vestibule, with minimal morbidity and reduced surgical treatment time. However, some vestibular keratinized tissue contraction was evident. The new collagen matrix may be a promising material as a substitute for an autologous gingival/connective tissue graft. Despite the preliminary results of this innovative article, before drawing any general conclusion, the benefit of the procedure should be further evaluated by prospective clinical trials.
Improving BeiDou real-time precise point positioning with numerical weather models
NASA Astrophysics Data System (ADS)
Lu, Cuixian; Li, Xingxing; Zus, Florian; Heinkelmann, Robert; Dick, Galina; Ge, Maorong; Wickert, Jens; Schuh, Harald
2017-09-01
Precise positioning with the current Chinese BeiDou Navigation Satellite System is proven to be of comparable accuracy to the Global Positioning System, which is at centimeter level for the horizontal components and sub-decimeter level for the vertical component. But the BeiDou precise point positioning (PPP) shows its limitation in requiring a relatively long convergence time. In this study, we develop a numerical weather model (NWM) augmented PPP processing algorithm to improve BeiDou precise positioning. Tropospheric delay parameters, i.e., zenith delays, mapping functions, and horizontal delay gradients, derived from short-range forecasts from the Global Forecast System of the National Centers for Environmental Prediction (NCEP) are applied into BeiDou real-time PPP. Observational data from stations that are capable of tracking the BeiDou constellation from the International GNSS Service (IGS) Multi-GNSS Experiments network are processed, with the introduced NWM-augmented PPP and the standard PPP processing. The accuracy of tropospheric delays derived from NCEP is assessed against with the IGS final tropospheric delay products. The positioning results show that an improvement in convergence time up to 60.0 and 66.7% for the east and vertical components, respectively, can be achieved with the NWM-augmented PPP solution compared to the standard PPP solutions, while only slight improvement in the solution convergence can be found for the north component. A positioning accuracy of 5.7 and 5.9 cm for the east component is achieved with the standard PPP that estimates gradients and the one that estimates no gradients, respectively, in comparison to 3.5 cm of the NWM-augmented PPP, showing an improvement of 38.6 and 40.1%. Compared to the accuracy of 3.7 and 4.1 cm for the north component derived from the two standard PPP solutions, the one of the NWM-augmented PPP solution is improved to 2.0 cm, by about 45.9 and 51.2%. The positioning accuracy for the up component improves from 11.4 and 13.2 cm with the two standard PPP solutions to 8.0 cm with the NWM-augmented PPP solution, an improvement of 29.8 and 39.4%, respectively.
Desai, Shrikar R; Singh, Rika; Karthikeyan, I
2013-09-01
The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm-diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45°) to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. The results of total deformation (micro-movement) and Von mises stress were found to be lower for tapered long implant (10 mm) than short implant (6 mm) while using both vertical as well as oblique loading. Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results.
Analysis of occlusal vertical dimension and mandibular Basal bone height in a nigerian population.
Akinbami, Babatunde O; Nsirim, Prince E
2014-01-01
Background. The actual basal bone height of the reconstructed mandible is relevant to achieve normal occlusal vertical dimension for the prosthesis fabricated. The purpose of the study was to determine the mean and baseline values of the occlusal vertical dimension and height of the mandibular basal bone in a Nigerian population. Method. Each participant was asked to bring the upper and lower teeth into contact, while the distance between the nasal sill and dimple on the lower lip was measured (OVD). The skin at lower border of the mandible was marked and the distance between this point and the landmark on the lower lip was measured, MBH. Result. 200 subjects were evaluated. Age range was 16-30 years, mean ± (SD), 21.6 ± (3.1) years. Males had mean ± (SD) of 42.10 ± (5.34) mm for OVD and females 39.72 ± (5.25) mm; acceptable baseline range of OVD for any population will be 34-48 mm (3.4-4.8) cm. All the males had a mean ± (SD), 30.54 ± (6.13) mm for MBH, and all the females 29.63 ± (5.23) mm. Acceptable baseline range of MBH for any population will be 24-37 mm (2.4-3.7) cm. Conclusion. To reconstruct the mandible and still maintain the OVD, heights of bone grafts must not be less than 2 cm or greater than 4 cm.
Cagáňová, Veronika; Borský, Jiří; Smahel, Zbyněk; Velemínská, Jana
2014-01-01
To describe the effect of secondary alveolar bone grafting in patients with unilateral cleft lip and palate by comparison with a sample of patients who have undergone primary periosteoplasty. Cephalometric analysis of lateral x-ray films in a retrospective semilongitudinal study. Lateral x-ray films of 18 secondary alveolar bone grafting patients and 48 primary periosteoplasty patients at 10 years of age and again at 15 years of age. The treatment of secondary alveolar bone grafting patients included lip repair according to Tennison, palatoplasty including retropositioning, pharyngeal flap surgery, and secondary alveolar bone grafting. The lips of primary periosteoplasty patient were repaired using the methods of Tennison and Veau, followed by primary periosteoplasty, palatoplasty including retropositioning, and pharyngeal flap surgery. Lateral radiographs were assessed using classical morphometry. There were few significant differences at 10 years of age between the secondary alveolar bone grafting and primary periosteoplasty patients. At 15 years of age, there were several significant differences. Compared with primary periosteoplasty patients, subsequent development in patients who had undergone secondary alveolar bone grafting was characterized by a significantly better position of the upper and lower dentoalveolar components in relation to the facial plane, a higher increase in the global convexity of the soft profile, a significantly better maxillary inclination, and a more favorable development of vertical intermaxillary relationships. Craniofacial development in secondary alveolar bone grafting patients was better than that in primary periosteoplasty patients due to the more marked facial convexity, the increased prominence of the nose, and better vertical intermaxillary relationships.
Popp, Kristin L; McDermott, William; Hughes, Julie M; Baxter, Stephanie A; Stovitz, Steven D; Petit, Moira A
2017-01-01
To determine differences in bone geometry, estimates of bone strength, muscle size and bone strength relative to load, in women runners with and without a history of stress fracture. We recruited 32 competitive distance runners aged 18-35, with (SFX, n=16) or without (NSFX, n=16) a history of stress fracture for this case-control study. Peripheral quantitative computed tomography (pQCT) was used to assess volumetric bone mineral density (vBMD, mg/mm 3 ), total (ToA) and cortical (CtA) bone areas (mm 2 ), and estimated compressive bone strength (bone strength index; BSI, mg/mm 4 ) at the distal tibia. ToA, CtA, cortical vBMD, and estimated strength (section modulus; Zp, mm 3 and strength strain index; SSIp, mm 3 ) were measured at six cortical sites along the tibia. Mean active peak vertical (pkZ) ground reaction forces (GRFs), assessed from a fatigue run on an instrumented treadmill, were used in conjunction with pQCT measurements to estimate bone strength relative to load (mm 2 /N∗kg -1 ) at all cortical sites. SSIp and Zp were 9-11% lower in the SFX group at mid-shaft of the tibia, while ToA and vBMD did not differ between groups at any measurement site. The SFX group had 11-17% lower bone strength relative to mean pkZ GRFs (p<0.05). These findings indicate that estimated bone strength at the mid-tibia and mean pkZ GRFs are lower in runners with a history of stress fracture. Bone strength relative to load is also lower in this same region suggesting that strength deficits in the middle 1/3 of the tibia and altered gait biomechanics may predispose an individual to stress fracture. Copyright © 2016. Published by Elsevier Inc.
Oztürkmen, Yusuf; Caniklioğlu, Mustafa; Karamehmetoğlu, Mahmut; Sükür, Erhan
2010-01-01
We aimed to evaluate the clinical and radiological outcomes of open reduction and internal fixation augmented with calcium phosphate cement (CPC) in the treatment of depressed tibial plateau fractures. Twenty-eight knees of 28 patients [19 males and 9 females; mean age, 41.2 years (range 22-72 years)] who had open reduction and internal fixation combined with CPC augmentation were included in this study. Seventeen fractures were Schatzker type II, 5 were type III, 3 were type IV, 2 were type V, and 1 was type VI. CPC was used to fill the subchondral bone defects in all knees. Fixation of the fragments was done with screws in 3 knees (10%). Standard proximal tibial plates or buttress plates were used in 25 knees (90%) with an additional split fragment extending distally to achieve internal fixation. Full weight-bearing was allowed in 6.4 weeks (range 6-12 weeks) after surgery. Resorption of CPC granules was defined as the decrease in the size and density of grafting material on radiographs. Rasmussen's radiological and clinical scores were determined postoperatively. Functionality was assessed with Lysholm knee scoring system. Activity was graded with Tegner's activity scale. Union was achieved in all patients with a mean follow-up of 22.2 months (range 6-36 months). There were no intraoperative complications. At the latest follow-up radiographs, resorption of the graft was observed in 25 knees (89%). Rasmussen's radiologic score was excellent in 17 patients (61%), good in 9 patients (32%), and fair in 2 patients (7%). Rasmussen's clinical score was excellent in 9 patients (32%), good in 18 patients (64%), and fair in 1 patient (4%). According to the Lysholm knee score, functional results were excellent in 16 patients (57%), good in 8 patients (29%), and fair in 4 patients (14%). Twenty-two patients (78%) achieved the preoperative activity level after surgery, and there was no significant difference between the mean preoperative and postoperative Tegner scores (4.11±0.68 and 4.04±0.64, respectively, p=0.161). CPC is a safe biomaterial with many advantages in augmenting the open reduction and internal fixation of depressed tibial plateau fractures, including elimination of morbidity associated with bone graft harvesting, the unlimited supply of bone substitute, the optimum filling of irregular bone defects, and shortening of the postoperative full weight-bearing time.
Draenert, Florian Guy; Huetzen, Dominic; Kämmerer, Peer; Wagner, Wilfried
2011-09-01
Bone transplants are mostly prepared with cutting drills, chisels, and rasps. These techniques are difficult for unexperienced surgeons, and the implant interface is less precise due to unstandardized preparation. Cylindrical bone transplants are a known alternative. Current techniques include fixation methods with osteosynthesis screws or the dental implant. A new bone cylinder transplant technique is presented using a twin-drill principle resulting in a customized pressfit of the transplant without fixation devices and combining this with the superior grinding properties of a diamond coating. New cylindrical diamond hollow drills are used for customized press fit bone transplants in a case series of five patients for socket reconstruction in the front and molar region of maxilla and mandibula with and without simultaneous implant placement. The technical approach was successful without intra or postoperative complications during the acute healing phase. The customized press fit completes a technological trias of bone cylinder transplant techniques adding to the assisted press fit with either osteosynthesis screws or the dental implant itself. © 2009 Wiley Periodicals, Inc.
Boix, D; Weiss, P; Gauthier, O; Guicheux, J; Bouler, J-M; Pilet, P; Daculsi, G; Grimandi, G
2006-11-01
The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute on the prevention of alveolar ridge resorption after tooth extraction. Maxillary and mandibular premolars were extracted from 3 Beagle dogs with preservation of alveolar bone. Thereafter, distal sockets were filled with an injectable bone substitute (IBS), obtained by combining a polymer solution and granules of a biphasic calcium phosphate (BCP) ceramic. As a control, the mesial sockets were left unfilled. After a 3 months healing period, specimens were removed and prepared for histomorphometric evaluation with image analysis. Histomorphometric study allowed to measure the mean and the maximal heights of alveolar crest modifications. Results always showed an alveolar bone resorption in unfilled sockets. Resorption in filled maxillary sites was significantly lower than in control sites. Interestingly, an alveolar ridge augmentation was measured in mandibular filled sockets including 30% of newly-formed bone. It was concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate can significantly increase alveolar ridge preservation after tooth extraction.
Muscle: a source of progenitor cells for bone fracture healing.
Henrotin, Yves
2011-12-22
Bone repair failure is a major complication of open fracture, leading to non-union of broken bone extremities and movement at the fracture site. This results in a serious disability for patients. The role played by the periosteum and bone marrow progenitors in bone repair is now well documented. In contrast, limited information is available on the role played by myogenic progenitor cells in bone repair. In a recent article published in BMC Musculoskeletal Disorders, Liu et al. compared the presence of myogenic progenitor (MyoD lineage cells) in closed and open fractures. They showed that myogenic progenitors are present in open, but not closed fractures, suggesting that muscle satellite cells may colonize the fracture site in the absence of intact periosteum. Interestingly, these progenitors sequentially expressed a chondrogenic and, thereafter, an osteoblastic phenotype, suggestive of a functional role in the repair process. This finding opens up new perspectives for the research of orthopedic surgical methods, which could maximize myogenic progenitor access and mobilization to augment bone repair. Please see related article: http://www.biomedcentral.com/1471-2474/12/288.