Science.gov

Sample records for vertical closed orbit

  1. Vertical orbital dystopia.

    PubMed

    Tan, S T; Ashworth, G; Czypionka, S; Poole, M D; Briggs, M

    1996-06-01

    Many pathologic processes may lead to vertical orbital dystopia. We reviewed 47 consecutive cases seen over a 13-year period. Twenty-nine patients underwent eye leveling procedures to improve cosmesis, 2 of these by camouflage procedures and 27 by orbital translocation. Ten patients had 16 secondary operations. There was one death, serious complications occurred in 3 patients, and nuisance complications occurred in 20 others. Seven patients developed diplopia postoperatively, and in 6 patients it was troublesome. In these, it resolved fully in 2 patients, improved to be of no consequence in 2, and in the remaining 2 troublesome symptoms persisted requiring inferior oblique muscle recession in 1. Binocular vision was never restored when not present preoperatively, and in 3 patients temporary loss occurred. There was an overall modest but significant improvement in appearance after surgery. It is concluded that vertical orbital translocation is rewarding and worthwhile.

  2. Closed Orbits in Phase Space

    NASA Astrophysics Data System (ADS)

    Murphy, Andrew; Haestad, Jace; Morgan, Thomas

    2015-09-01

    We report characteristics of closed classical orbits in an electric field in phase space produced in photoabsorption. Rydberg states of atomic and molecular hydrogen and helium are considered. The core potential used for the hydrogen molecule is an effective one electron one center core potential evaluated at the internuclear equilibrium distance. Poincare surfaces of section in phase space are generated by integrating the equations of motion in semiparabolic coordinates u = (r + z) 1 / 2 and v = (r - z) 1 / 2, and plotting the location in phase space (pv versus v) whenever u = 0, with the electric field in the z direction. Combination orbits produced by Rydberg electron core scattering are studied and the evolution in phase space of these combination orbits due to scattering from one closed orbit into another is investigated. Connections are made to measured laser photoabsorption experiments that excite Rydberg states (20 < n < 30) and produce accompanying scaled energy recurrence spectra. The phase space structures responsible for the spectra are identified.

  3. Vertical orbital dystopia--surgical correction.

    PubMed

    Edgerton, M T; Jane, J A

    1981-02-01

    The surgical correction of vertical malpositions of the human eye has been made relatively safe and reliable by recent surgical techniques. The authors define this condition as vertical orbital dystopia and review the etiology of this deformity in 38 recent consecutive cases that were surgically treated at the Craniofacial Anomalies Center of The University of Virginia. Some new and useful tests are described that are of value to the plastic surgeon in analysis of the facial deformity and in planning the appropriate surgical procedure to correct the vertical dystopia of one or both eyes. Several cases are illustrated that describe the principal surgical methods of moving the eye up or down without loss of vision. The vertical eye shifts in this series have been in the range of 2 to 3 mm to over 22 mm. No loss of vision was produced by these corrections. The most common difficulties and complications of orbital dystopia corrections are described. The implications of this type of surgery in terms of visual physiology are suggested. The authors conclude that surgical correction of vertical orbital dystopias is possible, safe, and rewarding to the patients. However, they advise that the correction is best performed in young children and by a specially trained team of plastic surgeons, neurosurgeons, and ophthalmologists.

  4. Close up view of the Orbiter Discovery in the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The view is a detail of the aft, starboard landing gear and a general view of the Thermal Protection System tiles around the landing-gear housing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. Vertical orbital dystopia: definition, classification and treatment.

    PubMed

    Wolfe, S A; Sassani, R

    1995-01-01

    Correction of vertical orbital dystopia is an important component part of providing facial symmetry in a number of conditions of varied etiology having facial imbalance and asymmetry. The most important step is the initial one of making a proper diagnosis, since some conditions represent globe dystopia rather than true orbital dystopia, and can be treated by extracranial procedures. However, if an intracranial procedure is felt indicated, it adds to the safety rather than the complexity of the procedure, and one should not hesitate advocating this to the patient.

  6. Closed-orbit correction of the NSLS VUV ring

    SciTech Connect

    Bozoki, E.; Bittner, J.; Blumberg, L.; Dickinson, T.; Galayda, J.

    1983-01-01

    We describe the results obtained from the orbit correction system in the NSLS VUV storage ring which consists of 24 PUE stations and 16 horizontal and vertical correction dipoles. The data were obtained by the PUEREAL module of the RING control program which provides automatic switching of the signal from individual electrodes of the PUE stations and provides a readout at harmonic of the rf frequency. The closed orbit is then calculated and corrected by measured displacements of the PUE's from the adjacent quadrupoles. The ORBIT module of the RING program was used to minimize the RMS orbit deviations choosing the most effective correctors and calculating their strengths. For the horizontal case, the correction was accomplished using 3 correctors in two iterations starting with RMS values X = 2.9 mm to X = 0.9 mm. Vertically three iterations and 6 correctors were required to correct the RMS value from Z = 6.8 nm to Z = 0.8 mm.

  7. Closed orbit correction in the SSC

    SciTech Connect

    Bourianoff, G.; Cole, B.; Ferede, H.; Pilat, F.

    1991-05-01

    A global correction scheme proposed for use in the SSC is described. Various features of the SSC lattice that impact the ability to correct the orbit are discussed. Typical results for the residual RMS closed orbit in the arc is calculated to be 0.65mm with peak values of 3mm. 3 refs., 1 fig., 2 tabs.

  8. Closed orbit distortion and the beam-beam interaction

    SciTech Connect

    Furman, M.; Chin, Y.H.; Eden, J.; Kozanecki, W. |; Tennyson, J.; Ziemann, V.

    1992-06-01

    We study the applicability of beam-beam deflection techniques as a tuning tool for the SLAC/LBL/LLNL B factory, PEP-II. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the IP, provide distinct coordinate- or frequency-space signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed.

  9. Closed Orbit Distortion and the Beam-Beam Interaction

    SciTech Connect

    Furman, M.; Chin, Y.; Eden, J.; Kozanecki, W.; Tennyson, J.L.; Ziemann, V.; /SLAC

    2007-02-23

    We study the applicability of beam-beam deflection techniques as a tuning tool for the SLAC/LBL/LLNL B factory, PEP-II. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the IP, provide distinct coordinate- or frequency-space signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed.

  10. Orbits Close to Asteroid 4769 Castalia

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.; Ostro, S. J.; Hudson, R. S.; Werner, R. A.

    1996-01-01

    We use a radar-derived physical model of 4769 Castalia (1989 PB) to investigate close orbit dynamics around that kilometer- sized, uniformly rotating asteroid. Our methods of analysis provide a basis for systematic studies of particle dynamics close to any uniformly rotating asteroid. We establish that a Jacobi integral exists for particles orbiting this asteroid, examine the attendant zero-velocity surfaces, find families of periodic orbits, and determine their stability. All synchronous orbits and direct orbits within approx. 3 mean radii of Castalia are unstable and are subject to impact or escape from Castalia. Retrograde orbits are mostly stable and allow particles to orbit close to the asteroid surface. We derive a model which allows us to predict the escape conditions of a particle in orbit about Castalia and the (temporary) capture conditions for a hyperbolic interloper. Orbits within 1.5 km of Castalia are subject to immediate ejection from the system. Hyperbolic orbits with a V(sub infinity) less than 0.4 m/sec can potentially be captured by Castalia if their periapsis radius Is within approx. 2 km. For Castalia this capture region is small, but the results also apply to larger asteroids whose capture regions would also be larger. We determine bounds on ejecta speeds which either ensure ejecta escape or re-impact as functions of location on Castalia's surface. The speeds that ensure escape range from 0.28 to 0.84 m/sec and the speeds that ensure re-impact range from 0 to 0.18 m/sec. Speeds between these two bounds lead either to escape, re-impact, or potentially finite-time stable orbits. We develop a simple criterion which can establish whether a particle could have been ejected from the asteroid in the past and if it will impact the surface in the future.

  11. Closed loop orbit trim using GPS

    NASA Technical Reports Server (NTRS)

    Parkinson, B. W.; Axelrad, P.

    1989-01-01

    This paper describes an onboard closed-loop navigation and control system capable of executing extremely precise orbit maneuvers. It uses information from the Global Positioning System (GPS) and an onboard controller to perform orbit adjustments. As a result, the system circumvents the need for extensive ground support. The particular application considered is an orbit injection system for NASA's Gravity Probe B (GP-B) spacecraft. Eccentricity adjustments of 0.0004 to 0.005, and inclination and node changes of 0.001 to 0.01 deg are demonstrated. The same technique can be adapted to other satellite missions.

  12. Closed orbit response to quadrupole strength variation

    SciTech Connect

    Wolski, Andrzej; Zimmermann, Frank

    2004-01-20

    We derive two formulae relating the variation in closed orbit in a storage ring to variations in quadrupole strength, neglecting nonlinear and dispersive effects. These formulae correct results previously reported [1,2,3]. We compare the results of the formulae applied to the ATF with simulations using MAD, and consider their application to beam-based alignment.

  13. Beam-Beam Diagnostics from Closed-Orbit Distortion

    SciTech Connect

    Furman, M.; Chin, Y.-H.; Eden, J.; Kozanecki, W.; Tennyson, J.; Ziemann, V.

    1992-07-01

    The authors study the applicability of beam-beam deflection techniques as a tuning tool for asymmetric B factories, focusing on PEP-II as an example. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, they calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the interaction point (IP), provide distinct signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed. Because of their two-ring structure, asymmetric B factories are likely to require more diagnostics and feedback mechanisms than single-ring colliders in order to guarantee head-on collisions. In addition to the traditional techniques, however, the independence of the two beams allows one to envisage other kinds of beam diagnostics. In this article they investigate one such possibility, by looking at the closed orbit distortion produced by the beam-beam interaction when the beams do not collide exactly head-on. They base this investigation on an analytic model and strong-strong multiparticle simulations. Although the discussion uses the PEP-II design as an example, the conclusion is that this technique is quite a promising diagnostics tool for asymmetric colliders in general.

  14. Detail view of the vertical stabilizer of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the vertical stabilizer of the Orbiter Discovery as it sits at Launch Complex 39 A at Kennedy Space Center being prepared for its launch. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Accurate orbit propagation with planetary close encounters

    NASA Astrophysics Data System (ADS)

    Baù, Giulio; Milani Comparetti, Andrea; Guerra, Francesca

    2015-08-01

    We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).

  16. Dynamics of Orbits Close to Asteroid 4179 Toutatis

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.; Ostro, S. J.; Hudson, R. S.; DeJong, E. M.; Suzuki, S.

    1998-01-01

    We use a radar-derived physical model of 4179 Toutatis to investigate close-orbit dynamics around that irregularly shaped, non-principal-axis rotator. The orbital dynamics about this body are markedly different than the dynamics about uniformly rotating asteroids. The results of this paper have a wider application to orbit dynamics about bodies in a non-principal-axis rotation state.

  17. Detail view of the vertical stabilizer of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the vertical stabilizer of the Orbiter Discovery Discovery showing the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation (AFSI) Blanket and the black High-temperature Reusable Surface Insulation (HRSI) tiles along the outer edges . The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view also a good detailed view of the two-piece rudder which is used to control the yaw position of orbiter on approach and landing in earth's atmosphere and upon landing the two-piece rudder splays open to both sides of the stabilizer to act as an air brake to help slow the craft to a stop. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. Detail view of the vertical stabilizer of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the vertical stabilizer of the Orbiter Discovery looking at the two-piece rudder which is used to control the yaw position of orbiter on approach and landing in earth's atmosphere and upon landing the two-piece rudder splays open to both sides of the stabilizer to act as an air brake to help slow the craft to a stop. Note the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation Blanket and the black High-temperature Reusable Surface Insulation tiles along the outer edges (HRSI tiles). The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. The late treatment of vertical orbital dystopia resulting from an orbital roof fracture.

    PubMed

    Horowitz, J H; Persing, J A; Winn, H R; Edgerton, M T

    1984-12-01

    Traumatic fracture of the orbital roof is uncommon and it may be unrecognized at the time of injury. In this article we describe a patient with progressive vertical orbital dystopia four years after he sustained a fracture of his "frontal" bone. Surgical exploration revealed an orbital roof fracture complicated by a chronic dural leak. An intracranial-extracranial approach through a modified frontal craniotomy provided excellent visualization to elevate the bony orbit and globe safely and repair the dural tear. Our study illustrates the need to correct residual soft tissue deformity at a second operation. Orbital roof fracture is a complex injury and is best treated by a multispecialty team using the methods learned from the treatment of patients with congenital orbital dystopia.

  20. Close up detail of the underside of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up detail of the underside of the Orbiter Discovery in the Vehicle Assembly Building at NASA's Kennedy Space Center. This view is from underneath the aft section looking forward. It is a close-up view of the High-temperature Reusable Surface Insulation tiles showing the wear patterns from the heat of reentry, consequential replacement of worn and damaged tiles. The wear and replacement patters are unique to each Orbiter which can serve as their particular "fingerprint". - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Autogenous orbital reconstruction in a child with congenital abnormalities of the orbital roof and vertical orbital dystopia.

    PubMed

    Moore, Forrest O; Thornton, Brian P; Zabel, David D; Vasconez, Henry C

    2004-11-01

    Congenital anomalies of the orbital roof are rare occurrences. The case of a 2-year-old child with vertical orbital dystopia and abnormalities of the right bony orbit is presented. The patient underwent right orbital reconstruction to restore facial symmetry. A coronal approach with a frontal craniotomy was used for intracranial exposure. The abnormal angulation of the roof was corrected, and the defect was reconstructed with a split-calvarial bone graft harvested from the parietal region. The bone graft was secured with resorbable plate fixation. To preserve vision, reconstruction of this type must be done at an early age, preferably before the age of 4 years. In this patient, there is good facial symmetry and normal globe positioning 5 years after surgery.

  2. Spin tune dependence on closed orbit in RHIC

    SciTech Connect

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-05-23

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  3. Close up view under the Orbiter Discovery in the Vehicle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view under the Orbiter Discovery in the Vehicle Assembly Building at NASA's Kennedy Space Center. The view is under the port wing looking forward toward the main fuselage showing a detail of the landing gear and landing gear door. This view also shows the patterns of worn and replaced High-temperature Reusable Surface Insulation tiles. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. A Simplified, Closed-Form Method for Screening Spacecraft Orbital Heating Variations

    NASA Technical Reports Server (NTRS)

    Rickman, S. L.

    2002-01-01

    A closed-form analytical technique has been developed to screen orbital average heating variations as a function of beta angle, altitude, surface area, and surface optical properties. Using planetary view factor equations for surfaces parallel-to and normal-to the local vertical, a cylindrical umbral shadow approximation, and a simplified albedo flux model, heating rate equations are formulated and then integrated to obtain orbital average heating. The results are compared to detailed analytical predictions using Monte Carlo integration and an assessment of error is presented.

  5. Topological angular momentum and radiative heat transport in closed orbits

    NASA Astrophysics Data System (ADS)

    Silveirinha, Mário G.

    2017-03-01

    We study the role of topological edge states of light in the transport of thermally generated radiation in a closed cavity at a thermodynamic equilibrium. It is shown that even in the zero temperature limit—when the field fluctuations are purely quantum mechanical—there is a persistent flow of electromagnetic momentum in the cavity in closed orbits, deeply rooted in the emergence of spatially separated unidirectional edge state channels. It is highlighted that the electromagnetic orbital angular momentum of the system is nontrivial, and that the energy circulation is towards the same direction as that determined by incomplete cyclotron orbits near the cavity walls. Our findings open inroads in topological photonics and suggest that topological states of light can determine novel paradigms in the context of radiative heat transport.

  6. Solar orbiter - Close-up view of the sun

    NASA Astrophysics Data System (ADS)

    Marsden, Richard G.; Müller, Daniel; StCyr, O. Chris

    2013-06-01

    Solar Orbiter, the first Medium-class mission of ESA's Cosmic Vision 2015-2025 programme, is designed to study the Sun and inner heliosphere in greater detail than ever before. At the closest point on its heliocentric orbit, the Solar Orbiter spacecraft will be about 0.28 AU from the Sun, closer than any other satellite to date. In addition to providing high-resolution images of the solar surface, perihelion passes at these distances allow the instruments to track features on the solar surface for significantly longer than from Earth orbit. The mission profile also includes a latitude cranking phase that will enable observations from up to 34° above the solar equator. The combination of near-Sun and out-of-ecliptic observations by a suite of complementary remote-sensing and in-situ instruments makes Solar Orbiter a unique platform for studying the links between the Sun and inner heliosphere. Planned for launch in January 2017, the mission will be carried out in collaboration with NASA. In this paper we present a brief overview of the mission and its scientific objectives, and examine those areas where Solar Orbiter is expected to make major contributions with emphasis on close-up and high-latitude observations.

  7. Can brown dwarfs survive on close orbits around convective stars?

    NASA Astrophysics Data System (ADS)

    Damiani, C.; Díaz, R. F.

    2016-05-01

    Context. The mass range of brown dwarfs extends across the planetary domain to stellar objects. There is a relative paucity of brown dwarfs companions around FGKM-type stars compared to exoplanets for orbital periods of less than a few years, but most of the short-period brown dwarf companions that are fully characterised by transits and radial velocities are found around F-type stars. Aims: We examine the hypothesis that brown dwarf companions could not survive on close orbit around stars with important convective envelopes because the tides and angular momentum loss, the result of magnetic braking, would lead to a rapid orbital decay with the companion being quickly engulfed. Methods: We use a classical Skumanich-type braking law and constant time-lag tidal theory to assess the characteristic timescale for orbital decay for the brown dwarf mass range as a function of the host properties. Results: We find that F-type stars may host massive companions for a significantly longer time than G-type stars for a given orbital period, which may explain the paucity of G-type hosts for brown dwarfs with an orbital period less than five days. On the other hand, we show that the small radius of early M-type stars contributes to orbital decay timescales that are only half those of F-type stars, despite their more efficient tidal dissipation and magnetic braking. For fully convective later type M-dwarfs, orbital decay timescales could be orders of magnitude greater than for F-type stars. Moreover, we find that, for a wide range of values of tidal dissipation efficiency and magnetic braking, it is safe to assume that orbital decay for massive companions can be neglected for orbital periods greater than ten days. Conclusions: For orbital periods greater than ten days, brown dwarf occurrence should largely be unaffected by tidal decay, whatever the mass of the host. On closer orbital periods, the rapid engulfment of massive companions could explain the lack of G and K-type hosts

  8. On orbital circulation in late-type close binaries

    NASA Astrophysics Data System (ADS)

    Tassoul, Jean-Louis

    1995-05-01

    In a coeval sample of late-type binary stars, all close binaries with periods shorter than a cutoff period have circular orbits, whereas close binaries with larger periods display eccentric orbits. The observed cutoff periods are found to increase monotonically with the evolutionary age of the sample. The three theories based on the tidal-torque mechanism are quite ineffective during the main-sequence lifetime of a late-type binary, being operative during the pre-main-sequence contraction phase only. On the contrary, the observed distribution of cutoff periods with age is consistent with the hydrodynamical mechanism, since it is the only one that meets the test of absolute calibration for late-type binaries evolving on the main sequence - i.e., given plausible values for the Reynolds number in the surface layers, the theoretical circularization time does not exceed the sample age at cutoff period. However, because this mechanism may not be equally efficient during a contraction phase, it is pointed out that the tidal-torque mechanism can be responsible for orbital circularization during the pre-main-sequence phase - the hydrodynamical mechanism being fully responsible for orbital circularization during the main-sequence phase. Such a solution, which has been hitherto ignored, is quite a plausible one since the two competing mechanisms are not mutually exclusive - each one being operative for different values of the parameters.

  9. Quasi-closed orbit in a harmonically perturbed magnetic field

    SciTech Connect

    Stupakov, G.V. )

    1992-11-01

    The paper generalizes a notion of the closed orbit for the case when the accelertor lattice is perturbed by a time-dependent harmonic dipole field. The problem is motivated by effects of current ripple in a proton accelerator. Our result allows to estimate the amplitude of the beam excursions as a function of the amplitude and the frequency of the perturbation. It predicts that the deviation of the beam increases as the frequency of the ripple approaches the sideband betatron frequency.

  10. Characterizing omega-limit sets which are closed orbits

    NASA Astrophysics Data System (ADS)

    Bautista, S.; Morales, C.

    Let X be a vector field in a compact n-manifold M, n⩾2. Given Σ⊂M we say that q∈M satisfies (P) Σ if the closure of the positive orbit of X through q does not intersect Σ, but, however, there is an open interval I with q as a boundary point such that every positive orbit through I intersects Σ. Among those q having saddle-type hyperbolic omega-limit set ω(q) the ones with ω(q) being a closed orbit satisfy (P) Σ for some closed subset Σ. The converse is true for n=2 but not for n⩾4. Here we prove the converse for n=3. Moreover, we prove for n=3 that if ω(q) is a singular-hyperbolic set [C. Morales, M. Pacifico, E. Pujals, On C robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris Sér. I 26 (1998) 81-86], [C. Morales, M. Pacifico, E. Pujals, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math. (2) 160 (2) (2004) 375-432], then ω(q) is a closed orbit if and only if q satisfies (P) Σ for some Σ closed. This result improves [S. Bautista, Sobre conjuntos hiperbólicos-singulares (On singular-hyperbolic sets), thesis Uiversidade Federal do Rio de Janeiro, 2005 (in Portuguese)] and [C. Morales, M. Pacifico, Mixing attractors for 3-flows, Nonlinearity 14 (2001) 359-378].

  11. Induced Orbital Paramagnetism and Paratropism in Closed-Shell Molecules

    NASA Astrophysics Data System (ADS)

    Pelloni, Stefano; Lazzeretti, Paolo; Zanasi, Riccardo

    2009-07-01

    Three-dimensional models of the quantum-mechanical current density induced by a uniform magnetic field in the electron cloud have been obtained for closed-shell systems BeH-, BH, and CH+, characterized by induced orbital paramagnetism, and in planar unsaturated hydrocarbons C4H4 and clamped C8H8, exhibiting π paramagnetism. It is shown that, even for these paramagnetic systems, the paramagnetic contributions to magnetic susceptibilities and nuclear magnetic shielding, customarily taken into account in perturbation theory approaches, can formally be eliminated via the procedure of continuous transformation of the origin of the current density-paramagnetic zero. The definition of magnetic response properties can therefore be recast as a sum of two formally "diamagnetic" terms for any molecule, including systems showing strong induced orbital paramagnetism. It is shown that the paramagnetism in the compounds studied arises from the nodal topology of the electronic wave function. In particular, paratropic vortices circulate about stagnation lines at the intersection of nodal surfaces of the highest-occupied zero-order molecular orbital and corresponding first-order orbital.

  12. Induced orbital paramagnetism and paratropism in closed-shell molecules.

    PubMed

    Pelloni, Stefano; Lazzeretti, Paolo; Zanasi, Riccardo

    2009-12-31

    Three-dimensional models of the quantum-mechanical current density induced by a uniform magnetic field in the electron cloud have been obtained for closed-shell systems BeH(-), BH, and CH(+), characterized by induced orbital paramagnetism, and in planar unsaturated hydrocarbons C(4)H(4) and clamped C(8)H(8), exhibiting pi paramagnetism. It is shown that, even for these paramagnetic systems, the paramagnetic contributions to magnetic susceptibilities and nuclear magnetic shielding, customarily taken into account in perturbation theory approaches, can formally be eliminated via the procedure of continuous transformation of the origin of the current density-paramagnetic zero. The definition of magnetic response properties can therefore be recast as a sum of two formally "diamagnetic" terms for any molecule, including systems showing strong induced orbital paramagnetism. It is shown that the paramagnetism in the compounds studied arises from the nodal topology of the electronic wave function. In particular, paratropic vortices circulate about stagnation lines at the intersection of nodal surfaces of the highest-occupied zero-order molecular orbital and corresponding first-order orbital.

  13. Improving Touschek lifetime in ultralow-emittance lattices through systematic application of successive closed vertical dispersion bumps

    NASA Astrophysics Data System (ADS)

    Breunlin, J.; Leemann, S. C.; Andersson, Å.

    2016-06-01

    In present ultralow-emittance storage ring designs the emittance coupling required for the production of vertically diffraction-limited synchrotron radiation in the hard x-ray regime is achieved and in many cases surpassed by a correction of the orbit and the linear optics alone. However, operating with a vertical emittance lower than required is disadvantageous, since it decreases Touschek lifetime and reduces brightness due to the transverse emittance increase from intrabeam scattering. In this paper we present a scheme consisting of closed vertical dispersion bumps successively excited in each arc of the storage ring by skew quadrupoles that couple horizontal dispersion into the vertical plane to a desired level and thereby raise the vertical emittance in a controlled fashion. A systematic approach to vertical dispersion bumps has been developed that suppresses dispersion and betatron coupling in the straight sections in order to maintain a small projected emittance for insertion devices. In this way, beam lifetime can be significantly increased without negatively impacting insertion device source properties and hence brightness. Using simulation results for the MAX IV 3 GeV storage ring including magnet and alignment imperfections we demonstrate that Touschek lifetime can be increased by more than a factor 2 by adjusting the vertical emittance from 1.3 pm rad (after orbit correction) to 8 pm rad (after application of dispersion bumps) using two to three independent skew quadrupole families all the while ensuring deviations from design optics are restrained to a minimum.

  14. Weighted SVD algorithm for close-orbit correction and 10 Hz feedback in RHIC

    SciTech Connect

    Liu C.; Hulsart, R.; Marusic, A.; Michnoff, R.; Minty, M.; Ptitsyn, V.

    2012-05-20

    Measurements of the beam position along an accelerator are typically treated equally using standard SVD-based orbit correction algorithms so distributing the residual errors, modulo the local beta function, equally at the measurement locations. However, sometimes a more stable orbit at select locations is desirable. In this paper, we introduce an algorithm for weighting the beam position measurements to achieve a more stable local orbit. The results of its application to close-orbit correction and 10 Hz orbit feedback are presented.

  15. Optimization and closed loop guidance of drag modulated aeroassisted orbital transfer

    NASA Technical Reports Server (NTRS)

    Kechichian, J. A.; Cruz, M. I.; Rinderle, E. A.; Vinh, N. X.

    1983-01-01

    An analysis of optimal and near optimal atmospheric flight trajectories for drag modulated aeroassisted orbital transfer is presented. An explicit and adaptive closed loop guidance approach for this mode of orbit transfer is also presented with performance near the optimal nominal trajectories. The orbital transfer of interest is for return from high earth orbit to low earth orbit. Most of what is discussed in this paper concerns the aeroassisted or atmospheric segment which lowers the apogee of the high earth orbit to the apogee of the low earth orbit. Minimization of the total impulsive delta-V at this low earth orbit apogee is the optimization criterion. Control about this impulse due to a number of potential error sources in atmospheric braking is the requirement imposed on closed loop guidance.

  16. Vertical stability of circular orbits in relativistic razor-thin disks

    NASA Astrophysics Data System (ADS)

    Vieira, Ronaldo S. S.; Ramos-Caro, Javier; Saa, Alberto

    2016-11-01

    During the last few decades, there has been a growing interest in exact solutions of Einstein equations describing razor-thin disks. Despite the progress in this area, the analytical study of geodesic motion crossing the disk plane in these systems has not yet been well developed. In the present work, we propose a definite vertical stability criterion for circular equatorial timelike geodesics in static, axially symmetric thin disks, possibly surrounded by other structures preserving axial symmetry. It turns out that the strong energy condition for the disk stress-energy content is sufficient for the vertical stability of these orbits. Moreover, adiabatic invariance of the vertical action variable gives us an approximate third integral of motion for oblique orbits that deviate slightly from the equatorial plane. This new approximate third integral certainly points to a better understanding of the analytical properties of these orbits. The results presented here, derived for static spacetimes, may be a starting point to study the motion around rotating, stationary razor-thin disks. Our results also allow us to conjecture that the strong energy condition should be sufficient to assure transversal stability of periodic orbits for any singular timelike hypersurface, provided it is invariant under the geodesic flow.

  17. Constant covariance in local vertical coordinates for near-circular orbits

    NASA Technical Reports Server (NTRS)

    Shepperd, Stanley W.

    1991-01-01

    A method is presented for devising a covariance matrix that either remains constant or grows in keeping with the presence of a period error in a rotating local-vertical coordinate system. The solution presented may prove useful in the initialization of simulation covariance matrices for near-circular-orbit problems. Use is made of the Clohessy-Wiltshire equations and the travelling-ellipse formulation.

  18. Stability and Bifurcation of a Class of Stochastic Closed Orbit Equations

    NASA Astrophysics Data System (ADS)

    Luo, Chaoliang; Guo, Shangjiang

    In this paper, by using Lyapunov functions and exponents, Feller's scale functions, and the Fokker-Planck equations, we investigate the stability and bifurcation of stochastic closed orbit equations with singular diffusion coefficients.

  19. ORBITAL DISTRIBUTIONS OF CLOSE-IN PLANETS AND DISTANT PLANETS FORMED BY SCATTERING AND DYNAMICAL TIDES

    SciTech Connect

    Nagasawa, M.; Ida, S.

    2011-12-01

    We investigated the formation of close-in planets (hot Jupiters) by a combination of mutual scattering, Kozai effect, and tidal circularization, through N-body simulations of three gas giant planets, and compared the results with discovered close-in planets. We found that in about 350 cases out of 1200 runs ({approx}30%), the eccentricity of one of the planets is excited highly enough for tidal circularization by mutual close scatterings followed by secular effects due to outer planets, such as the Kozai mechanism, and the planet becomes a close-in planet through the damping of eccentricity and semimajor axis. The formation probability of close-in planets by such scattering is not affected significantly by the effect of the general relativity and inclusion of inertial modes in addition to fundamental modes in the tides. Detailed orbital distributions of the formed close-in planets and their counterpart distant planets in our simulations were compared with observational data. We focused on the possibility for close-in planets to retain non-negligible eccentricities ({approx}> 0.1) on timescales of {approx}10{sup 9} yr and have high inclinations, because close-in planets in eccentric or highly inclined orbits have recently been discovered. In our simulations we found that as many as 29% of the close-in planets have retrograde orbits, and the retrograde planets tend to have small eccentricities. On the other hand, eccentric close-in planets tend to have orbits of small inclinations.

  20. Global DC closed orbit correction experiment on the NSLS x-ray ring

    SciTech Connect

    Chung, Y.; Decker, G.; Evans, K.

    1992-09-15

    In this note are described the global DC closed orbit correction experiments conducted on the X-ray ring at National Synchrotron Light Source (NSLS). The beam response matrix, defined as beam motion at BPM locations per unit kick by corrector magnets, was measured and then inverted using the technique of singular value decomposition (SVD). The product of the inverted matrix and the difference orbit gives the incremental kick strengths necessary to correct the orbit. As a result, the r.m.s. orbit error around the ring was reduced from 208 {mu}m to 61 {mu}m.

  1. Open and closed string vertices for branes with magnetic field and T-duality

    NASA Astrophysics Data System (ADS)

    Pesando, Igor

    2010-02-01

    We discuss carefully the vertices which describe the dipole open strings and closed strings on a D-brane with magnetic flux on a torus. Translation invariance along closed cycles forces surprisingly closed string vertices written in open string formalism to acquire Chan-Paton like matrices. Moreover the one loop amplitudes have a single trace for the part of gauge group with the magnetic flux. These peculiarities are also required by consistency of the action of T-duality in the open string sector. In this way we can show to all orders in perturbation theory the equivalence of the T-dual open string theories, gravitational interactions included. We provide also a new and direct derivation of the bosonic boundary state in presence of constant magnetic and Kalb-Ramond background based on Sciuto-Della Selva-Saito vertex formalism.

  2. Multiport well design for sampling of ground water at closely spaced vertical intervals

    SciTech Connect

    Delin, G.N.; Landon, M.K.

    1996-11-01

    Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples form the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Trace experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorocarbon concentrations.

  3. Multiport well design for sampling of ground water at closely spaced vertical intervals

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    1996-01-01

    Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples from the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Tracer experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorcarbon concentrations.

  4. Importance of closely spaced vertical sampling in delineating chemical and microbiological gradients in groundwater studies

    USGS Publications Warehouse

    Smith, R.L.; Harvey, R.W.; LeBlanc, D.R.

    1991-01-01

    Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, U.S.A. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume. A 27-fold change in bacterial abundance; a 35-fold change in frequency of dividing cells (FDC), an indicator of bacterial growth; a 23-fold change in 3H-glucose uptake, a measure of heterotrophic activity; and substantial changes in overall cell morphology were evident within a 9-m vertical interval at 250 m downgradient. The existence of these gradients argues for the need for closely spaced vertical sampling in groundwater studies because small differences in the vertical placement of a well screen can lead to incorrect conclusions about the chemical and microbiological processes within an aquifer.Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, USA. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume

  5. Closed Loop Guidance with Multiple Constraints for Low Orbit Vehicle Trajectory Optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Rufei; Zhao, Shifan

    Low orbit has features of strong invisibility and penetration, but needs more shutdown energy comparable to high orbit under the same range, which strongly requires studying the problem of delivery capacity optimization for multi-stage launch vehicles. Based on remnant apparent velocity and constraints models, multi-constraint closed-loop guidance with constraints of trajectory maximum height and azimuth was proposed, which adopted elliptical orbit theory and Newton iteration algorithm to optimize trajectory and thrust direction, reached to take full advantage of multi-stage launch vehicle propellant, and guided low orbit vehicle to enter maximum range trajectory. Theory deduction and numerical example demonstrate that the proposed guidance method could extend range and achieve precise control for orbit maximum height and azimuth.

  6. Early excitation of spin-orbit misalignments in close-in planetary systems

    SciTech Connect

    Spalding, Christopher; Batygin, Konstantin

    2014-07-20

    Continued observational characterization of transiting planets that reside in close proximity to their host stars has shown that a substantial fraction of such objects possess orbits that are inclined with respect to the spin axes of their stars. Mounting evidence for the wide-spread nature of this phenomenon has challenged the conventional notion that large-scale orbital transport occurs during the early epochs of planet formation and is accomplished via planet-disk interactions. However, recent work has shown that the excitation of spin-orbit misalignment between protoplanetary nebulae and their host stars can naturally arise from gravitational perturbations in multi-stellar systems as well as magnetic disk-star coupling. In this work, we examine these processes in tandem. We begin with a thorough exploration of the gravitationally facilitated acquisition of spin-orbit misalignment and analytically show that the entire possible range of misalignments can be trivially reproduced. Moreover, we demonstrate that the observable spin-orbit misalignment only depends on the primordial disk-binary orbit inclination. Subsequently, we augment our treatment by accounting for magnetic torques and show that more exotic dynamical evolution is possible, provided favorable conditions for magnetic tilting. Cumulatively, our results suggest that observed spin-orbit misalignments are fully consistent with disk-driven migration as a dominant mechanism for the origin of close-in planets.

  7. Effects and Correction of Closed Orbit Magnet Errors in the SNS Ring

    SciTech Connect

    Bunch, S.C.; Holmes, J.

    2004-01-01

    We consider the effect and correction of three types of orbit errors in SNS: quadrupole displacement errors, dipole displacement errors, and dipole field errors. Using the ORBIT beam dynamics code, we focus on orbit deflection of a standard pencil beam and on beam losses in a high intensity injection simulation. We study the correction of these orbit errors using the proposed system of 88 (44 horizontal and 44 vertical) ring beam position monitors (BPMs) and 52 (24 horizontal and 28 vertical) dipole corrector magnets. Correction is carried out numerically by adjusting the kick strengths of the dipole corrector magnets to minimize the sum of the squares of the BPM signals for the pencil beam. In addition to using the exact BPM signals as input to the correction algorithm, we also consider the effect of random BPM signal errors. For all three types of error and for perturbations of individual magnets, the correction algorithm always chooses the three-bump method to localize the orbit displacement to the region between the magnet and its adjacent correctors. The values of the BPM signals resulting from specified settings of the dipole corrector kick strengths can be used to set up the orbit response matrix, which can then be applied to the correction in the limit that the signals from the separate errors add linearly. When high intensity calculations are carried out to study beam losses, it is seen that the SNS orbit correction system, even with BPM uncertainties, is sufficient to correct losses to less than 10-4 in nearly all cases, even those for which uncorrected losses constitute a large portion of the beam.

  8. Orbital stability of systems of closely-spaced planets, II: configurations with coorbital planets

    NASA Astrophysics Data System (ADS)

    Smith, Andrew W.; Lissauer, Jack J.

    2010-08-01

    We numerically investigate the stability of systems of 1 {M_{oplus}} planets orbiting a solar-mass star. The systems studied have either 2 or 42 planets per occupied semimajor axis, for a total of 6, 10, 126, or 210 planets, and the planets were started on coplanar, circular orbits with the semimajor axes of the innermost planets at 1 AU. For systems with two planets per occupied orbit, the longitudinal initial locations of planets on a given orbit were separated by either 60° (Trojan planets) or 180°. With 42 planets per semimajor axis, initial longitudes were uniformly spaced. The ratio of the semimajor axes of consecutive coorbital groups in each system was approximately uniform. The instability time for a system was taken to be the first time at which the orbits of two planets with different initial orbital distances crossed. Simulations spanned virtual times of up to 1 × 108, 5 × 105, and 2 × 105 years for the 6- and 10-planet, 126-planet, and 210-planet systems, respectively. Our results show that, for a given class of system (e.g., five pairs of Trojan planets orbiting in the same direction), the relationship between orbit crossing times and planetary spacing is well fit by the functional form log( t c / t 0) = b β + c, where t c is the crossing time, t 0 = 1 year, β is the separation in initial orbital semimajor axis (in terms of the mutual Hill radii of the planets), and b and c are fitting constants. The same functional form was observed in the previous studies of single planets on nested orbits (Smith and Lissauer 2009). Pairs of Trojan planets are more stable than pairs initially separated by 180°. Systems with retrograde planets (i.e., some planets orbiting in the opposite sense from others) can be packed substantially more closely than can systems with all planets orbiting in the same sense. To have the same characteristic lifetime, systems with 2 or 42 planets per orbit typically need to have about 1.5 or 2 times the orbital separation as

  9. Calibration of geostationary satellites infrared radiometers using the vertical sounder of a polar orbiting satellite

    NASA Astrophysics Data System (ADS)

    Beriot, N.

    1981-09-01

    A method for the calibration of infrared radiometers of geostationary satellites using calibrated infrared radiometers of an orbiting satellite is presented. This method relies upon similarities between the weighting functions corresponding to the radiometers on geostationary satellites like Meteosat or the GOES series and the weighting functions of some of the channels of the TIROS-N Operational Vertical Sounder (TOVS). It makes use of iso-secant observations of the same scene from both satellites. Many such observations are available every day resulting in a possibly daily calibration curve defined by several hundred of points. This calibration method is shown to be very sensitive, accurate and tractable. This method does not require to collect radiosonde data nor any kind of in-situ experiments and may be completely automatized.

  10. Measurement Variability of Vertical Scanning Interferometry Tool Used for Orbiter Window Defect Assessment

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II

    2009-01-01

    The ability to sufficiently measure orbiter window defects to allow for window recertification has been an ongoing challenge for the orbiter vehicle program. The recent Columbia accident has forced even tighter constraints on the criteria that must be met in order to recertify windows for flight. As a result, new techniques are being investigated to improve the reliability, accuracy and resolution of the defect detection process. The methodology devised in this work, which is based on the utilization of a vertical scanning interferometric (VSI) tool, shows great promise for meeting the ever increasing requirements for defect detection. This methodology has the potential of a 10-100 fold greater resolution of the true defect depth than can be obtained from the currently employed micrometer based methodology. An added benefit is that it also produces a digital elevation map of the defect, thereby providing information about the defect morphology which can be utilized to ascertain the type of debris that induced the damage. However, in order to successfully implement such a tool, a greater understanding of the resolution capability and measurement repeatability must be obtained. This work focused on assessing the variability of the VSI-based measurement methodology and revealed that the VSI measurement tool was more repeatable and more precise than the current micrometer based approach, even in situations where operator variation could affect the measurement. The analysis also showed that the VSI technique was relatively insensitive to the hardware and software settings employed, making the technique extremely robust and desirable

  11. Analytic energy gradients in closed-shell coupled-cluster theory with spin-orbit coupling.

    PubMed

    Wang, Fan; Gauss, Jürgen

    2008-11-07

    Gradients in closed-shell coupled-cluster (CC) theory with spin-orbit coupling included in the post Hartree-Fock treatment have been implemented at the CC singles and doubles (CCSD) level and at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The additional computational effort required in analytic energy-gradient calculations is roughly the same as that for ground-state energy calculations in the case of CCSD, and it is about twice in the case of CCSD(T) calculations. The structures, harmonic frequencies, and dipole moments of some heavy-element compounds have been calculated using the present analytic energy-gradient techniques including spin-orbit coupling. The results show that spin-orbit coupling can have a significant influence on both the equilibrium structure and the harmonic vibrational frequencies and that its inclusion is essential to obtain reliable and accurate estimates for geometrical parameters of heavy-element compounds.

  12. Tidal interactions of a Maclaurin spheroid - II. Resonant excitation of modes by a close, misaligned orbit

    NASA Astrophysics Data System (ADS)

    Braviner, Harry J.; Ogilvie, Gordon I.

    2015-02-01

    We model a tidally forced star or giant planet as a Maclaurin spheroid, decomposing the motion into the normal modes found by Bryan. We first describe the general prescription for this decomposition and the computation of the tidal power. Although this formalism is very general, forcing due to a companion on a misaligned, circular orbit is used to illustrate the theory. The tidal power is plotted for a variety of orbital radii, misalignment angles, and spheroid rotation rates. Our calculations are carried out including all modes of degree l ≤ 4, and the same degree of gravitational forcing. Remarkably, we find that for close orbits (a/R* ≈ 3) and rotational deformations that are typical of giant planets (e ≈ 0.4) the l = 4 component of the gravitational potential may significantly enhance the dissipation through resonance with surface gravity modes. There are also a large number of resonances with inertial modes, with the tidal power being locally enhanced by up to three orders of magnitude. For very close orbits (a/R* ≈ 3), the contribution to the power from the l = 4 modes is roughly the same magnitude as that due to the l = 3 modes.

  13. Symmetry exploitation in closed-shell coupled-cluster theory with spin-orbit coupling.

    PubMed

    Tu, Zheyan; Yang, Dong-Dong; Wang, Fan; Guo, Jingwei

    2011-07-21

    In the present work, we report exploitation of spatial symmetry in calculations of ground state energy and analytic first derivatives of closed-shell molecules based on our previously developed coupled-cluster (CC) approach with spin-orbit coupling. Both time-reversal symmetry and spatial symmetry for D(2h) and its subgroups are exploited in the implementation. The symmetry of a certain spin case for the amplitude, intermediate, or density matrix is determined by the symmetry of the corresponding spin functions and the direct product decomposition method is employed in computations involving these quantities. The reduction in computational effort achieved through the use of spatial symmetry is larger than the order of the molecular single point group. Symmetry exploitation renders application of the CC approaches with spin-orbit coupling to larger closed-shell molecules containing heavy elements with high accuracy.

  14. Complete spin and orbital evolution of close-in bodies using a Maxwell viscoelastic rheology

    NASA Astrophysics Data System (ADS)

    Boué, Gwenaël; Correia, Alexandre C. M.; Laskar, Jacques

    2016-11-01

    In this paper, we present a formalism designed to model tidal interaction with a viscoelastic body made of Maxwell material. Our approach remains regular for any spin rate and orientation, and for any orbital configuration including high eccentricities and close encounters. The method is to integrate simultaneously the rotation and the position of the planet as well as its deformation. We provide the equations of motion both in the body frame and in the inertial frame. With this study, we generalize preexisting models to the spatial case and to arbitrary multipole orders using a formalism taken from quantum theory. We also provide the vectorial expression of the secular tidal torque expanded in Fourier series. Applying this model to close-in exoplanets, we observe that if the relaxation time is longer than the revolution period, the phase space of the system is characterized by the presence of several spin-orbit resonances, even in the circular case. As the system evolves, the planet spin can visit different spin-orbit configurations. The obliquity is decreasing along most of these resonances, but we observe a case where the planet tilt is instead growing. These conclusions derived from the secular torque are successfully tested with numerical integrations of the instantaneous equations of motion on HD 80606 b. Our formalism is also well adapted to close-in super-Earths in multiplanet systems which are known to have non-zero mutual inclinations.

  15. The linear stability of vertical mixture seepage into the close porous filter with clogging

    NASA Astrophysics Data System (ADS)

    Maryshev, Boris S.

    2017-02-01

    In the present paper, filtration of a mixture through a close porous filter is considered. A heavy solute penetrates from the upper side of the filter into the filter body due to seepage flow and diffusion. In the presence of heavy solute a domain with a heavy fluid is formed near the upper boundary of the filter. The stratification, at which the heavy fluid is located above the light, is unstable. When the mass of the heavy solute exceeds the critical value, one can observe the onset of instability. As a result, two regimes of vertical filtration can occur: (1) homogeneous seepage and (2) convective filtration. Filtration of a mixture in porous media is a complex process. It is necessary to take into account the solute immobilization (or sorption) and clogging of porous medium. We consider the case of low solute concentrations, in which the immobilization is described by the linear MIM (mobile/immobile media) model. The clogging is described by the dependence of permeability on porosity in terms of the Carman-Kozeny formula. The presence of immobile (or adsorbed) particles of the solute decreases the porosity of media and porous media becomes less permeable. The purpose of the paper is to find the stability conditions for the homogeneous vertical seepage of the mixture into the close porous filter. The linear stability problem is solved using the quasi-static approach. The critical times of instability are estimated. The stability maps have been plotted in the space of system parameters. The applicability of quasi-static approach is substantiated by direct numerical simulation.

  16. Studying the Sun's Nuclear Furnace with a Neutrino Detector Spacecraft in Close Solar Orbit

    NASA Astrophysics Data System (ADS)

    Solomey, Nickolas

    2016-05-01

    A neutrino based detector in close solar orbit would have a neutrino flux 10,000x or more larger flux than on Earth and a smaller detector able to handle high rates with exception energy resolution could be used. We have studied the idea of operating such an experiment in close solar orbits that takes it off the ecliptic plane and in a solar orbit where the distance from the Sun will change distance. This neutrino detector on a space craft could do Solar Astrophysics studying the Solar nuclear furnace, basic nuclear physics and elementary particle physics; some of these ideas are new unique science that can only be preformed from a spacecraft. The harsh environment provides many challenges but if such a detector could be made to work it can be the next major step in this science study. How a small segmented detector can operate and preform in this environment to detect solar neutrinos will be elaborated upon using a combination of signal strength, fast signal timing, shielding and segmentation.

  17. Closed-shell coupled-cluster theory with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Gauss, Jürgen; van Wüllen, Christoph

    2008-08-01

    A two-component closed-shell coupled-cluster (CC) approach using relativistic effective core potentials with spin-orbit coupling included in the post-Hartree-Fock treatment is proposed and implemented at the CC singles and doubles (CCSD) level as well as at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The latter invokes as an additional approximation the neglect of the occupied-occupied and virtual-virtual blocks of the spin-orbit coupling matrix in order to avoid the iterative N7 steps in the treatment of triple excitations. The computational effort of the implemented two-component CC methods is about 10-15 times that of its corresponding nonrelativistic counterpart, which needs to be compared to the by a factor of 32 higher cost for fully relativistic schemes and schemes with spin-orbit coupling included already at the Hartree-Fock self-consistent field (HF-SCF) level. This substantial computational saving is due to the use of real molecular orbitals and real two-electron integrals. Results on 5p-, 6p-, and 7p-block element compounds show that the bond lengths and harmonic frequencies obtained with the present two-component CCSD method agree well with those computed with the CCSD approach including spin-orbit coupling at the HF-SCF level even for the 7p-block element compounds. As for the CCSD(T) approach, high accuracy for 5p- and 6p-block element compounds is retained. However, the difference in bond lengths and harmonic frequencies becomes somewhat more pronounced for the 7p-block element compounds.

  18. Closed-shell coupled-cluster theory with spin-orbit coupling.

    PubMed

    Wang, Fan; Gauss, Jürgen; van Wüllen, Christoph

    2008-08-14

    A two-component closed-shell coupled-cluster (CC) approach using relativistic effective core potentials with spin-orbit coupling included in the post-Hartree-Fock treatment is proposed and implemented at the CC singles and doubles (CCSD) level as well as at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The latter invokes as an additional approximation the neglect of the occupied-occupied and virtual-virtual blocks of the spin-orbit coupling matrix in order to avoid the iterative N(7) steps in the treatment of triple excitations. The computational effort of the implemented two-component CC methods is about 10-15 times that of its corresponding nonrelativistic counterpart, which needs to be compared to the by a factor of 32 higher cost for fully relativistic schemes and schemes with spin-orbit coupling included already at the Hartree-Fock self-consistent field (HF-SCF) level. This substantial computational saving is due to the use of real molecular orbitals and real two-electron integrals. Results on 5p-, 6p-, and 7p-block element compounds show that the bond lengths and harmonic frequencies obtained with the present two-component CCSD method agree well with those computed with the CCSD approach including spin-orbit coupling at the HF-SCF level even for the 7p-block element compounds. As for the CCSD(T) approach, high accuracy for 5p- and 6p-block element compounds is retained. However, the difference in bond lengths and harmonic frequencies becomes somewhat more pronounced for the 7p-block element compounds.

  19. Effect of the electron lenses on the RHIC proton beam closed orbit

    SciTech Connect

    Gu, X.; Luo, Y.; Pikin, A.; Okamura, M.; Fischer, W.; Montag, C.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2011-02-01

    We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed at RHIC IR10. The transverse fields of the E-lenses bending solenoids and the fringe field of the main solenoids will shift the proton beam. We calculate the transverse kicks that the proton beam receives in the electron lens via Opera. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.

  20. Orbital instability of close-in exomoons in non-coplanar systems

    NASA Astrophysics Data System (ADS)

    Hong, Yu-Cian; Tiscareno, Matthew S.; Nicholson, Philip D.; Lunine, Jonathan I.

    2015-05-01

    This work shows the dynamical instability that can happen to close-in satellites when planet oblateness is not accounted for in non-coplanar multiplanet systems. Simulations include two secularly interacting Jupiter-mass planets mutually inclined by 10°, with the host planet either oblate or spherical. With a spherical host planet, moons within a critical planetocentric distance experience high inclinations and in some cases high eccentricities, while more distant moons orbit stably with low inclinations and eccentricities, as expected. These counter-intuitive dynamical phenomena disappear with an oblate host planet, in which case the moons' Laplace plane transitions from the host planet's equatorial plane to the host planet's precessing orbital plane as their semimajor axes increase, and all moons are dynamically stable with very mild changes in orbits. Direct perturbation from the perturbing planet has been investigated and ruled out as an explanation for the behaviour of the innermost satellites, therefore leaving the central star's perturbation as the cause. Instability occurs while the nodal precession of the satellite and the central star (as seen from the host planet's frame) approaches the 1:1 secular resonance. In non-coplanar systems, around a non-oblate planet, the nodal precession of the moon becomes slow and comparable to that of the planet, giving rise to resonant configurations. The above effect needs to be taken into account in setting up numerical simulations.

  1. A system for predicting close approaches and potential collisions in geosynchronous orbits

    NASA Astrophysics Data System (ADS)

    Beusch, J.; Abbot, R.; Sridharan, R.

    The geosynchronous orbit is getting crowded with over 300 active, revenue producing large satellites and over 500 inactive dead resident space objects that pose a physical collision threat to the active satellites. The in situ demise of a particular satellite, Telstar 401, followed by a similar demise of SOLIDARIDAD 1, initiated a research and development effort at MIT Lincoln Laboratory to address this threat. This work with commercial satellite operators is accomplished using the mechanism of Cooperative Research and Development Agreements. Initial work to detect and warn of close approaches with these two failed satellites led to more extensive research on the collision threat over the entire geosynchronous belt. It is apparent that: a) There is a significant probability of collision; b) The probability has increased considerably in the last decade or so; c) The continuing failure of geosynchronous satellites and injection of rocket bodies into or near geosynchronous orbit will increase the threat; d) Debris in or near geosynchronous orbit poses another problem that has to be addressed. This paper surveys what has been achieved so far in predicting the threat and protecting satellites. An assessment of the probability of collision is presented as well as a description of the Geosynchronous Monitoring and Warning System. The operations of the GMWS are described as well as some of the results achieved so far. Areas of current research are mentioned.

  2. Hardware design and implementation of the closed-orbit feedback system at APS

    SciTech Connect

    Barr, D.; Chung, Youngjoo

    1996-10-01

    The Advanced Photon Source (APS) storage ring will utilize a closed-orbit feedback system in order to produce a more stable beam. The specified orbit measurement resolution is 25 microns for global feedback and 1 micron for local feedback. The system will sample at 4 kHz and provide a correction bandwidth of 100 Hz. At this bandwidth, standard rf BPMs will provide a resolution of 0.7 micron, while specialized miniature BPMs positioned on either side of the insertion devices for local feedback will provide a resolution of 0.2 micron (1). The measured BPM noise floor for standard BPMs is 0.06 micron per root hertz mA. Such a system has been designed, simulated, and tested on a small scale (2). This paper covers the actual hardware design and layout of the entire closed-loop system. This includes commercial hardware components, in addition to many components designed and built in-house. The paper will investigate the large-scale workings of all these devices, as well as an overall view of each piece of hardware used.

  3. Spin-Orbit Resonances in Super-Earth Systems Close to Mean-motion Commensurabilities

    NASA Astrophysics Data System (ADS)

    Ribeiro, F. B.; Callegari, N., Jr.

    2014-10-01

    There is a great deal of planets in close-in orbits and low mass on order of magnitude less than 10 Earth mass. Valencia et al. (2006) call them Super-Earths. Recently, several efforts have been done in order to understand the dynamics of rotation of these planets, including spin-orbit resonance and spin tidal evolution (Rodríguez et al. (2012), Callegari and Rodríguez (2013)). In the referred papers, it is considered a single planet whose motion around the star is governed by the rules of the two-body problem. However, many Super-Earths are present in systems where other terrestrial or giant planets are present, and that problem must be checked. In this work we study the dynamical effects of mean-motion commensurabilities on rigid body rotation and spin-orbit resonances. Emphasis is given in the cases of the multi-planetary systems Kepler-11, KOI-55 and KOI-961, where the mean motions of several pairs of planets are commensurable. In some cases we have observed that the period associated to a particular commensurability is close to the period of the free libration of the rotation of one of the super-Earths. Thus, we investigate the role of the mean motion resonance on the synchronous rotation. Depending on the initial conditions inside the synchronous domain, the stable librations induced by the torque of the central star on the figure of the planet can lead to instabilities on its rotation which are not expected in such regular regions of rotational phase space. This phenomenon has been observed in the cases of Kepler-11 b (disturbed by Kepler-11 c), KOI-55 b (disturbed by KOI-55 c), KOI-961c (disturbed by KOI-961b and KOI-961d).

  4. Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms

    SciTech Connect

    Pederson, Mark R.

    2015-02-14

    A recent modification of the Perdew-Zunger self-interaction-correction to the density-functional formalism has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Löwdin orthonormalized Fermi-orbitals which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested, here, on atoms. Total energies and ionization energies in closed-shell singlet atoms, where correlation is less important, using the Perdew-Wang 1992 Local Density Approximation (PW92) functional, are in good agreement with experiment and non-relativistic quantum-Monte-Carlo results albeit slightly too low.

  5. Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms.

    PubMed

    Pederson, Mark R

    2015-02-14

    A recent modification of the Perdew-Zunger self-interaction-correction to the density-functional formalism has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Löwdin orthonormalized Fermi-orbitals which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested, here, on atoms. Total energies and ionization energies in closed-shell singlet atoms, where correlation is less important, using the Perdew-Wang 1992 Local Density Approximation (PW92) functional, are in good agreement with experiment and non-relativistic quantum-Monte-Carlo results albeit slightly too low.

  6. A General Closed-Form Solution for the Lunar Reconnaissance Orbiter (LRO) Antenna Pointing System

    NASA Technical Reports Server (NTRS)

    Shah, Neerav; Chen, J. Roger; Hashmall, Joseph A.

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle into a direct insertion trajectory to the Moon LRO, designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. During the mission s nominal life of one year its six instruments and one technology demonstrator will find safe landing site, locate potential resources, characterize the radiation environment and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera (LROC NAC) of the Apollo landing sites have appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Attitude Control System (ACS), in addition to controlling the orientation of the spacecraft is also responsible for pointing the High Gain Antenna (HGA). A dual-axis (or double-gimbaled) antenna, deployed on a meter-long boom, is required to point at a selected Earth ground station. Due to signal loss over the distance from the Moon to Earth, pointing precision for the antenna system is very tight. Since the HGA has to be deployed in spaceflight, its exact geometry relative to the spacecraft body is uncertain. In addition, thermal distortions and mechanical errors/tolerances must be characterized and removed to realize the greatest gain from the antenna system. These reasons necessitate the need for an in-flight calibration. Once in orbit around the moon, a series of attitude maneuvers was conducted to provide data needed to determine optimal parameters to load onboard, which would account for the environmental and mechanical errors at any

  7. Feasibility of a responsive, hybrid propulsion augmented, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit launch system

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.

    1996-03-01

    A novel, reusable, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named HYP-SSTO, is presented in this paper. This launch vehicle system concept uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LOX/LH2) propulsion system, that is used only for launch, with a hybrid auxiliary propulsion system which is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. By using a hybrid propulsion system for major orbit maneuver burns and landing, this launch system concept has many advantages over conventional VTOL/SSTO concepts that use LOX/LH2 propulsion system(s) burns for all phases of flight. Because hybrid propulsion systems are relatively simple and inert by their nature, this concept has the potential to support short turnaround times between launches, be economical to develop, and be competitive in terms of overall system life-cycle cost. This paper provides a technical description of the novel, reusable HYP-SSTO launch system concept. Launch capability performance, as well as major design and operational system attributes, are identified and discussed.

  8. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean J.; Queen, Steven Z.; Placanica, Samuel J.

    2015-01-01

    NASAs Magnetospheric Multiscale (MMS) mission successfully launched on March 13,2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  9. [Response properties of the jaw-closing muscle spindle during decreased occlusal vertical dimension in rats].

    PubMed

    Fujita, Koichi

    2008-03-01

    The masseter-muscle spindle is regarded as being highly adaptable to increases in the occlusal vertical dimension (iOVD), it is hypothesized that spindle function would adapt to a decrease in occlusal vertical dimension (dOVD) as well. Seventy-five 5-week-old female Wistar rats were divided into Control (n = 25) and Experimental (n = 50) groups; those in the Experimental group received a 2.0-mm composite resin build-up to the maxillary molars. The Experimental group was divided into the resin-removal group (n = 25, build-up resin was removed) and the non resin-removal group (n = 25) 8 weeks later; i. e., when the animals were 13 weeks old. Electrophysiological recordings were obtained from masseter-muscle spindle afferents in 13, 14, 15, 19, 21-week-old rats (n = 5 rats each) under general anesthesia Masseter-muscle spindle sensitivity was significantly lower in the resin-removal group 1 week after resin-removal and for the rest of the observation period. The present results indicate that masseter-muscle spindles may not completely adapt to dOVD and may affect jaw function.

  10. Closed form solutions for unsteady free convection flow of a second grade fluid over an oscillating vertical plate.

    PubMed

    Ali, Farhad; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions.

  11. Closed Form Solutions for Unsteady Free Convection Flow of a Second Grade Fluid over an Oscillating Vertical Plate

    PubMed Central

    Ali, Farhad; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions. PMID:24551033

  12. Orbital Disturbance Analysis due to the Lunar Gravitational Potential and Deviation Minimization through the Trajectory Control in Closed Loop

    NASA Astrophysics Data System (ADS)

    Gonçalves, L. D.; Rocco, E. M.; de Moraes, R. V.

    2013-10-01

    A study evaluating the influence due to the lunar gravitational potential, modeled by spherical harmonics, on the gravity acceleration is accomplished according to the model presented in Konopliv (2001). This model provides the components x, y and z for the gravity acceleration at each moment of time along the artificial satellite orbit and it enables to consider the spherical harmonic degree and order up to100. Through a comparison between the gravity acceleration from a central field and the gravity acceleration provided by Konopliv's model, it is obtained the disturbing velocity increment applied to the vehicle. Then, through the inverse problem, the Keplerian elements of perturbed orbit of the satellite are calculated allowing the orbital motion analysis. Transfer maneuvers and orbital correction of lunar satellites are simulated considering the disturbance due to non-uniform gravitational potential of the Moon, utilizing continuous thrust and trajectory control in closed loop. The simulations are performed using the Spacecraft Trajectory Simulator-STRS, Rocco (2008), which evaluate the behavior of the orbital elements, fuel consumption and thrust applied to the satellite over the time.

  13. Orbital Distribution Arbitrarily Close to the Homothetic Equilateral Triple Collision in the Free-Fall Three-Body Problem with Equal Masses

    NASA Astrophysics Data System (ADS)

    Umehara, Hiroaki; Tanikawa, Kiyotaka

    The existence of escape and nonescape orbits arbitrarily close to the homothetic equilateral triple-collision orbit is considered analytically in the three-body problem with zero initial velocities and equal masses. It is proved that escape orbits in the initial condition space are distributed around three kinds of isosceles orbits. It is also proved that nonescape orbits are distributed in between the escape orbits where different particles escape. In order to show this, it is proved that the homothetic-equilateral orbit is isolated from other triple-collision orbits as far as the collision at the first triple encounter is concerned. Moreover, the escape criterion is formulated in the planar-isosceles problem and translated into the words of regularizing variables. The result obtained by us explains the orbital structure numerically.

  14. Orbital

    NASA Astrophysics Data System (ADS)

    Hanson, Robert M.

    2003-06-01

    ORBITAL requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime Plug-in, version compatible with your OS and browser (available from MDL).

  15. Orbits of massive satellite galaxies - I. A close look at the Large Magellanic Cloud and a new orbital history for M33

    NASA Astrophysics Data System (ADS)

    Patel, Ekta; Besla, Gurtina; Sohn, Sangmo Tony

    2017-02-01

    The Milky Way (MW) and M31 both harbour massive satellite galaxies, the Large Magellanic Cloud (LMC) and M33, which may comprise up to 10 per cent of their host's total mass. Massive satellites can change the orbital barycentre of the host-satellite system by tens of kiloparsec and are cosmologically expected to harbour dwarf satellite galaxies of their own. Assessing the impact of these effects crucially depends on the orbital histories of the LMC and M33. Here, we revisit the dynamics of the MW-LMC system and present the first detailed analysis of the M31-M33 system utilizing high-precision proper motions and statistics from the dark-matter-only Illustris cosmological simulation. With the latest Hubble Space Telescope proper motion measurements of M31, we reliably constrain M33's interaction history with its host. In particular, like the LMC, M33 is either on its first passage (tinf < 2 Gyr ago) or if M31 is massive (≥2 × 1012 M⊙), it is on a long-period orbit of about 6 Gyr. Cosmological analogues of the LMC and M33 identified in Illustris support this picture and provide further insight about their host masses. We conclude that, cosmologically, massive satellites such as the LMC and M33 are likely completing their first orbits about their hosts. We also find that the orbital energies of such analogues prefer an MW halo mass ˜1.5 × 1012 M⊙ and an M31 halo mass ≥1.5 × 1012 M⊙. Despite conventional wisdom, we conclude it is highly improbable that M33 made a close (<100 kpc) approach to M31 recently (tperi < 3 Gyr ago). Such orbits are rare (<1 per cent) within the 4σ error space allowed by observations. This conclusion cannot be explained by perturbative effects through four-body encounters amongst the MW, M31, M33, and the LMC. This surprising result implies that we must search for a new explanation for M33's strongly warped gas and stellar discs.

  16. Robust vertical scanning white-light interferometry in close-to-machine applications

    NASA Astrophysics Data System (ADS)

    Tereschenko, Stanislav; Lehmann, Peter; Gollor, Pascal; Kuehnhold, Peter

    2015-05-01

    We present a scanning white-light interferometer (SWLI) for close-to-machine applications in the presence of environmental vibrations. It combines an area measuring white-light interferometer and a punctual measuring laser distance interferometer (LDI) in one device. The measurement spot of the LDI is within the field of view of SWLI. The LDI measures any distance change during the white-light measurement with a high temporal resolution. With the knowledge of the real distance changes during the measurement we can compensate for the influence of environmental vibrations on the white-light correlograms. The reconstruction of the white-light interference signals takes place after measurement by reordering the captured images in accordance with their real positions obtained by the LDI. With this system we are able to reconstruct completely distorted and unusable SWLI signals and to determine the 3D topography of the measurement specimen from these reconstructed signals with high accuracy. We demonstrate the feasibility of the method by examples of practical measurements with and without vibrational disturbances.

  17. Simulation of open-loop plasma vertical movement response in the Damavand tokamak using closed-loop subspace system identification

    NASA Astrophysics Data System (ADS)

    Darestani Farahani, N.; Abbasi Davani, F.

    2016-02-01

    The formulation of a multi-input single-output closed-loop subspace method for system identification has been employed for the purpose of obtaining control-relevant model of the open loop response for plasma vertical movement in the Damavand tokamak. Such a model is particularly well suited for the robust controller design. The method described in this paper is a kind of worst-case identification technique, aiming to minimize the error between the identified model and the true plant. The accuracy of the estimation of the plant dynamics has been tested by different experiments. The fitness of the identified model around the defined operating point has been more than 90%, and compared to the physical-based model, it has better root mean squared error (RMSE) measure of the goodness of fitting.

  18. CYCLIC VARIATIONS OF ORBITAL PERIOD AND LONG-TERM LUMINOSITY IN CLOSE BINARY RT ANDROMEDAE

    SciTech Connect

    Manzoori, Davood

    2009-12-15

    Solutions of standard VR light curves for the eclipsing binary RT And were obtained using the PHOEBE program (ver. 0.3a). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the mass-luminosity diagram. Times of minima data ({sup O} - C curve) were analyzed using the method of Kalimeris et al. A cyclic variation in the orbital period and brightness, with timescales of about 11.89 and 12.50 yr were found, respectively. This is associated with a magnetic activity cycle modulating the orbital period of RT And via the Applegate mechanism. To check the consistency of the Applegate model, we have estimated some related parameters of the RT And system. The calculated parameters were in accordance with those estimated by Applegate for other similar systems, except B, the subsurface magnetic field of which shows a rather high value for RT And.

  19. Exo-Mercury Analogues and the Roche Limit for Close-Orbiting Rocky Planets

    NASA Astrophysics Data System (ADS)

    Rogers, Leslie A.; Price, Ellen

    2015-12-01

    The origin of Mercury's enhanced iron content is a matter of ongoing debate. The characterization of rocky exoplanets promises to provide new independent insights on this topic, by constraining the occurrence rate and physical and orbital properties of iron-enhanced planets orbiting distant stars. The ultra-short-period transiting planet candidate KOI-1843.03 (0.6 Earth-radius, 4.245 hour orbital period, 0.46 Solar-mass host star) represents the first exo-Mercury planet candidate ever identified. For KOI-1843.03 to have avoided tidal disruption on such a short orbit, Rappaport et al. (2013) estimate that it must have a mean density of at least 7g/cc and be at least as iron rich as Mercury. This density lower-limit, however, relies upon interpolating the Roche limits of single-component polytrope models, which do not accurately capture the density profiles of >1000 km differentiated rocky bodies. A more exact calculation of the Roche limit for the case of rocky planets of arbitrary composition and central concentration is needed. We present 3D interior structure simulations of ultra-short-period tidally distorted rocky exoplanets, calculated using a modified version of Hachisu’s self-consistent field method and realistic equations of state for silicates and iron. We derive the Roche limits of rocky planets as a function of mass and composition, and refine the composition constraints on KOI-1843.03. We conclude by discussing the implications of our simulations for the eventual characterization of short-period transiting planets discovered by K2, TESS, CHEOPS and PLATO.

  20. The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations

    NASA Astrophysics Data System (ADS)

    Aghedo, A. M.; Bowman, K. W.; Shindell, D. T.; Faluvegi, G.

    2011-07-01

    Ensemble climate model simulations used for the Intergovernmental Panel on Climate Change (IPCC) assessments have become important tools for exploring the response of the Earth System to changes in anthropogenic and natural forcings. The systematic evaluation of these models through global satellite observations is a critical step in assessing the uncertainty of climate change projections. This paper presents the technical steps required for using nadir sun-synchronous infrared satellite observations for multi-model evaluation and the uncertainties associated with each step. This is motivated by need to use satellite observations to evaluate climate models. We quantified the implications of the effect of satellite orbit and spatial coverage, the effect of variations in vertical sensitivity as quantified by the observation operator and the impact of averaging the operators for use with monthly-mean model output. We calculated these biases in ozone, carbon monoxide, atmospheric temperature and water vapour by using the output from two global chemistry climate models (ECHAM5-MOZ and GISS-PUCCINI) and the observations from the Tropospheric Emission Spectrometer (TES) instrument on board the NASA-Aura satellite from January 2005 to December 2008. The results show that sampling and monthly averaging of the observation operators produce zonal-mean biases of less than ±3 % for ozone and carbon monoxide throughout the entire troposphere in both models. Water vapour sampling zonal-mean biases were also within the insignificant range of ±3 % (that is ±0.14 g kg-1) in both models. Sampling led to a temperature zonal-mean bias of ±0.3 K over the tropical and mid-latitudes in both models, and up to -1.4 K over the boundary layer in the higher latitudes. Using the monthly average of temperature and water vapour operators lead to large biases over the boundary layer in the southern-hemispheric higher latitudes and in the upper troposphere, respectively. Up to 8 % bias was

  1. The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations

    NASA Astrophysics Data System (ADS)

    Aghedo, A. M.; Bowman, K. W.; Shindell, D. T.; Faluvegi, G.

    2011-03-01

    Ensemble climate model simulations used for the Intergovernmental Panel on Climate Change (IPCC) assessments have become important tools for exploring the response of the Earth System to changes in anthropogenic and natural forcings. The systematic evaluation of these models through global satellite observations is a critical step in assessing the uncertainty of climate change projections. This paper presents the technical steps required for using nadir sun-synchronous infrared satellite observations for multi-model evaluation and the uncertainties associated with each step. This is motivated by need to use satellite observations to evaluate climate models. We quantified the implications of the effect of satellite orbit and spatial coverage, the effect of variations in vertical sensitivity as quantified by the observation operator and the impact of averaging the operators for use with monthly-mean model output. We calculated these biases in ozone, carbon monoxide, atmospheric temperature and water vapour by using the output from two global chemistry climate models (ECHAM5-MOZ and GISS-PUCCINI) and the observations from the Tropospheric Emission Spectrometer (TES) satellite from January 2005 to December 2008. The results show that sampling and monthly averaging of the observation operators produce biases of less than ±3% for ozone and carbon monoxide throughout the entire troposphere in both models. Water vapour sampling biases were also within the insignificant range of ±3% (that is ±0.14 g kg-1) in both models. Sampling led to a temperature bias of ±0.3 K over the tropical and mid-latitudes in both models, and up to -1.4 K over the boundary layer in the higher latitudes. Using the monthly average of temperature and water vapour operators lead to large biases over the boundary layer in the southern-hemispheric higher latitudes and in the upper troposphere, respectively. Up to 8% bias was calculated in the upper troposphere water vapour due to monthly

  2. Random matrix theory for closed quantum dots with weak spin-orbit coupling.

    PubMed

    Held, K; Eisenberg, E; Altshuler, B L

    2003-03-14

    To lowest order in the coupling strength, the spin-orbit coupling in quantum dots results in a spin-dependent Aharonov-Bohm flux. This flux decouples the spin-up and spin-down random matrix theory ensembles of the quantum dot. We employ this ensemble and find significant changes in the distribution of the Coulomb blockade peak height, in particular, a decrease of the width of the distribution. The puzzling disagreement between standard random matrix theory and the experimental distributions by Patel et al. [Phys. Rev. Lett. 81, 5900 (1998)

  3. Closed-Loop Control of a Satellite in an Unstable Periodic Orbit about L3.

    DTIC Science & Technology

    1981-12-01

    Wiesel , since I first walked into his classroom. I believe it rare for a man to hold so much knowledge and yet also exhibit such infinite patience...The Moon’s motion is approximated as a periodic orbit about the Earth as developed by Professor Wiesel in his work (Ref 25), which is more realistic...1977. 11. Kronmiller, G.C. Jr. and Elie J. Baghdadv. "The C RARR System: Concept Design, and Performance," Space Science Reviews, 5:265-307 Jul- 1066

  4. Analytic second derivatives in closed-shell coupled-cluster theory with spin-orbit coupling.

    PubMed

    Wang, Fan; Gauss, Jürgen

    2009-10-28

    The theory for geometrical second derivatives of the energy is outlined for the recently suggested two-component coupled-cluster approach using relativistic effective core potentials with spin-orbit coupling included in the post-Hartree-Fock treatment [F. Wang, J. Gauss, and C. van Wullen, J. Chem. Phys. 129, 064113 (2008)], and an implementation is reported at the coupled-cluster singles and doubles (CCSD) level as well as at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The applicability of the developed analytic second-derivative techniques is demonstrated by computing harmonic and fundamental frequencies for PtH(2), PbH(2), and HgH(2) with the required cubic and semidiagonal quartic force fields obtained by numerical differentiation of the analytically evaluated quadratic force constants. Spin-orbit coupling effects are shown to be non-negligible for the three considered molecules and thus need to be considered in the case of high-accuracy predictions.

  5. Isogyres – Manifestation of Spin-orbit interaction in uniaxial crystal: A closed-fringe Fourier analysis of conoscopic interference

    PubMed Central

    Samlan, C. T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2016-01-01

    Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena. PMID:27625210

  6. Isogyres – Manifestation of Spin-orbit interaction in uniaxial crystal: A closed-fringe Fourier analysis of conoscopic interference

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2016-09-01

    Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.

  7. A Neptune-sized transiting planet closely orbiting a 5-10-million-year-old star

    NASA Astrophysics Data System (ADS)

    David, Trevor J.

    2016-10-01

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals - the building blocks of planets - are produced within the first million years of a star's life. A prominent question is: how early can one find fully formed planets like those frequently detected on short orbital periods around mature stars? Some theories suggest the in situ formation of planets close to their host stars is unlikely and the existence of such planets is evidence for large scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report on a newly-born, transiting planet orbiting its star every 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times Jupiter (at 99.7 per cent confidence), with a true mass likely to be within a factor of several of Neptune's. The 5-10 million year old star has a tenuous dust disk extending outwards from about 2 times the Earth-Sun separation, in addition to the large planet located at less than one-twentieth the Earth-Sun separation.

  8. A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star.

    PubMed

    David, Trevor J; Hillenbrand, Lynne A; Petigura, Erik A; Carpenter, John M; Crossfield, Ian J M; Hinkley, Sasha; Ciardi, David R; Howard, Andrew W; Isaacson, Howard T; Cody, Ann Marie; Schlieder, Joshua E; Beichman, Charles A; Barenfeld, Scott A

    2016-06-30

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation.

  9. A Neptune-sized transiting planet closely orbiting a 5-10-million-year-old star

    NASA Astrophysics Data System (ADS)

    David, Trevor J.; Hillenbrand, Lynne A.; Petigura, Erik A.; Carpenter, John M.; Crossfield, Ian J. M.; Hinkley, Sasha; Ciardi, David R.; Howard, Andrew W.; Isaacson, Howard T.; Cody, Ann Marie; Schlieder, Joshua E.; Beichman, Charles A.; Barenfeld, Scott A.

    2016-06-01

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5-10 million years old and has a tenuous dust disk extending outward from about twice the Earth-Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth-Sun separation.

  10. Shift in principal equilibrium current from a vertical to a toroidal one towards the initiation of a closed flux surface in ECR plasmas in the LATE device

    NASA Astrophysics Data System (ADS)

    Kuroda, Kengoh; Wada, Manato; Uchida, Masaki; Tanaka, Hitoshi; Maekawa, Takashi

    2016-02-01

    In toroidal electron cyclotron resonance (ECR) plasmas under a weak external vertical field {{B}\\text{V}} a part of the pressure driven vertical charge separation current returns along the helical field lines, generating a toroidal current. The rest circulates via the conducting vacuum vessel. Only the toroidal current contributes to the production of a closed flux surface. Both the toroidal and vertical currents are an equilibrium current that provides a radial force by the interaction with the vertical field and the toroidal field, respectively, to counter-balance the outward pressure ballooning force. We have done experiments using 2.45 GHz microwaves in the low aspect ratio torus experiment (LATE) device to investigate in what way and how much the toroidal current is generated towards the initiation of a closed flux surface. In steady discharges by {{P}\\text{inj}}=1.5 kW under various {{B}\\text{V}} both the pressure and the toroidal current become large with {{B}\\text{V}} . When {{B}\\text{V}}=6.8 G, a toroidal current of 290 A is generated and the vertical field is reduced to 1.2 G inside the current channel, being close to the initiation of a closed flux surface. In this plasma the return current does not obey Ohm’s law. Instead, the return current flows so that the electric force on the electron fluid is balanced with the pressure gradient along the field lines. Near the top and bottom boundaries superthermal electrons flow beyond the potential barrier onto the walls along the field lines. In another discharge by the low power of {{P}\\text{inj}}=1.0 kW under {{B}\\text{V}}=8.3 G, both the toroidal current and the pressure steadily increase for an initial duration of 1.1 s and then abruptly jump, generating an initial closed flux surface. While the counter force from the vertical current is initially dominant, that from the toroidal current gradually increases and becomes four times larger than that from the vertical current just before the initiation

  11. A vertically integrated snow/ice model over land/sea for climate models. I - Development. II - Impact on orbital change experiments

    NASA Technical Reports Server (NTRS)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A vertically integrated formulation (VIF) model for sea ice/snow and land snow is discussed which can simulate the nonlinear effects of heat storage and transfer through the layers of snow and ice. The VIF demonstates the accuracy of the multilayer formulation, while benefitting from the computational flexibility of linear formulations. In the second part, the model is implemented in a seasonal dynamic zonally averaged climate model. It is found that, in response to a change between extreme high and low summer insolation orbits, the winter orbital change dominates over the opposite summer change for sea ice. For snow over land the shorter but more pronounced summer orbital change is shown to dominate.

  12. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multi-Scale Mission (MMS) Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean; Queen, Steve; Placanica, Sam

    2015-01-01

    NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  13. Importance of Orbital Optimization for Double-Hybrid Density Functionals: Application of the OO-PBE-QIDH Model for Closed- and Open-Shell Systems.

    PubMed

    Sancho-García, J C; Pérez-Jiménez, A J; Savarese, M; Brémond, E; Adamo, C

    2016-03-17

    We assess here the reliability of orbital optimization for modern double-hybrid density functionals such as the parameter-free PBE-QIDH model. We select for that purpose a set of closed- and open-shell strongly and weakly bound systems, including some standard and widely used data sets, to show that orbital optimization improves the results with respect to standard models, notably for electronically complicated systems, and through first-order properties obtained as derivatives of the energy.

  14. Influence of closed skill and open skill warm-ups on the performance of speed, change of direction speed, vertical jump, and reactive agility in team sport athletes.

    PubMed

    Gabbett, Tim J; Sheppard, Jeremy M; Pritchard-Peschek, Kellie R; Leveritt, Michael D; Aldred, Murry J

    2008-09-01

    In this study, we evaluated the efficacy of two different dynamic warm-up conditions, one that was inclusive of open skills (i.e., reactive movements) and one that included only preplanned dynamic activities (i.e., closed skills) on the performance of speed, change of direction speed, vertical jump, and reactive agility in team sport athletes. Fourteen (six male, eight female) junior (mean +/- SD age, 16.3 +/- 0.7 year) basketball players participated in this study. Testing was conducted on 2 separate days using a within-subjects cross-over study design. Each athlete performed a standardized 7-minute warm-up consisting of general dynamic movements and stretching. After the general warm-up, athletes were randomly allocated into one of two groups that performed a dynamic 15-minute warm-up consisting entirely of open or closed skills. Each of the warm-up conditions consisted of five activities of 3 minute duration. At the completion of the warm-up protocol, players completed assessments of reactive agility, speed (5-, 10-, and 20-m sprints), change of direction speed (T-test), and vertical jump. No significant differences (p > 0.05) were detected among warm-up conditions for speed, vertical jump, change of direction speed, and reactive agility performances. The results of this study demonstrate that either open skill or closed skill warm-ups can be used effectively for team sport athletes without compromising performance on open skill and closed skill tasks.

  15. WASP-24 b: A NEW TRANSITING CLOSE-IN HOT JUPITER ORBITING A LATE F-STAR

    SciTech Connect

    Street, R. A.; Lister, T. A.; Depagne, E.; Simpson, E.; Barros, S. C. C.; Pollacco, D.; Joshi, Y.; Todd, I.; Collier Cameron, A.; Enoch, B.; Parley, N.; Stempels, E.; Hebb, L.; Triaud, A. H. M. J.; Queloz, D.; Segransan, D.; Pepe, F.; Udry, S.; West, R. G.; Norton, A. J.

    2010-09-01

    We report the discovery of a new transiting close-in giant planet, WASP-24 b, in a 2.341 day orbit, 0.037 AU from its F8-9 type host star. By matching the star's spectrum with theoretical models, we infer an effective temperature T{sub eff} = 6075 {+-} 100 K and a surface gravity of log g = 4.15 {+-} 0.10. A comparison of these parameters with theoretical isochrones and evolutionary mass tracks places only weak constraints on the age of the host star, which we estimate to be 3.8{sup +1.3}{sub -1.2} Gyr. The planetary nature of the companion was confirmed by radial velocity measurements and additional photometric observations. These data were fit simultaneously in order to determine the most probable parameter set for the system, from which we infer a planetary mass of 1.071{sup +0.036}{sub -0.038} M {sub Jup} and radius 1.3{sup +0.039}{sub -0.037} R{sub Jup}.

  16. Spin-orbit coupling and electron correlation at various coupled-cluster levels for closed-shell diatomic molecules.

    PubMed

    Wang, Zhifan; Wang, Fan

    2013-11-07

    In this work, equilibrium bond lengths and harmonic frequencies of some closed-shell diatomic heavy-element compounds are calculated at a series of coupled-cluster (CC) levels including CCS, CC2, CCSD and CCSD(T) with spin-orbit coupling (SOC) included in post-Hartree-Fock (HF) step. The purpose of this work is to demonstrate the performance of CC2 for heavy element compounds and to investigate the separability between SOC and electron correlation at different correlation levels. According to our calculations, CC2 results agree well with MP2 results for these molecules except for SnO, Sb2, PbO and Bi2 and the bond lengths of SnO and PbO with CC2 are overestimated by about 0.25 Å compared to when using other approaches. Furthermore, SOC effects on electron correlation are significant for Bi2 and At2 at CCSD(T) level, while this is the case only for Bi2 at CCSD level. For 5th-row element compounds, SOC effects on bond lengths and harmonic frequencies at different levels agree well with each other except for Sb2. On the other hand, SOC effects at CCSD level are in good agreement with those at CCSD(T) level for the investigated 6th-row element compounds except for At2, whereas SOC effects at low correlation levels will be different from those at CCSD(T) level to some extent.

  17. Spin-Orbit Effects in Closed-Shell Heavy and Superheavy Element Monohydrides and Monofluorides with Coupled-Cluster Theory.

    PubMed

    Gao, Dong-Dong; Cao, Zhanli; Wang, Fan

    2016-03-03

    Bond lengths and force constants of a set of closed-shell sixth-row and superheavy element monohydrides and monofluorides are calculated in this work. Kramers restricted coupled-cluster approaches (KR-CC) with spin-orbit coupling (SOC) included at the self-consistent field (SCF) level as well as CC approaches with SOC included in post-SCF treatment (SOC-CC) are employed in calculations. Recently published relativistic effective core potentials are employed, and highly accurate results for superheavy element molecules are achieved with KR-CCSD(T). SOC effects on bond lengths and force constants of these molecules are investigated. Effects of electron correlation are shown to be affected by SOC to a large extent for some superheavy element molecules. Bond lengths and force constants with SOC-CC agree very well with those of KR-CC for most of the sixth-row element molecules. As for superheavy element molecules, SOC-CCSD is able to afford results that are in good agreement with those of KR-CCSD except for 111F, while the error of SOC-CCSD(T) is more pronounced. Large error would be encountered with SOC-CC approaches for molecules when both SOC and electron correlation effects are sizable.

  18. The distribution of ion orbit loss fluxes of ions and energy from the plasma edge across the last closed flux surface into the scrape-off layer

    SciTech Connect

    Stacey, Weston M.; Schumann, Matthew T.

    2015-04-15

    A more detailed calculation strategy for the evaluation of ion orbit loss of thermalized plasma ions in the edge of tokamaks is presented. In both this and previous papers, the direct loss of particles from internal flux surfaces is calculated from the conservation of canonical angular momentum, energy, and magnetic moment. The previous result that almost all of the ion energy and particle fluxes crossing the last closed flux surface are in the form of ion orbit fluxes is confirmed, and the new result that the distributions of these fluxes crossing the last closed flux surface into the scrape-off layer are very strongly peaked about the outboard midplane is demonstrated. Previous results of a preferential loss of counter current particles leading to a co-current intrinsic rotation peaking just inside of the last closed flux surface are confirmed. Various physical details are discussed.

  19. Characterization of vertical electric fields and associated voltages induced on a overhead power line from close artificially initiated lightning

    NASA Astrophysics Data System (ADS)

    Rubinstein, Marcos; Uman, Martin A.; Thomson, Ewen M.; Medelius, Pedro J.

    1991-08-01

    Measurements were characterized of simultaneous vertical electric fields and voltages induced at both ends of a 448 m overhead power line by artificially initiated lightning return strokes. The lightning discharges struck ground about 20 m from one end of the line. The measured line voltages could be grouped into two categories: those in which multiple, similarly shaped, evenly spaced pulses were observed, which are called oscillatory; and those dominated by a principal pulse with subsidiary oscillations of much smaller amplitude, which are called impulsive. Voltage amplitudes range from tens of kilovolts for oscillatory voltages to hundreds of kilovolts for impulsive voltages.

  20. Compensation of the Effects of Detector Solenoid on the Vertical Beam Orbit in NLC(LCC-0143)

    SciTech Connect

    Parker, B

    2004-06-07

    In this note we consider compensation of the vertical angle at the IP that arises when the NLC beam enters the detector solenoid. While this angle is antisymmetric for e{sup +}e{sup -} collisions and does not affect luminosity, compensating this angle is desirable to guarantee knowledge of polarization at the IP. For the e{sup -}e{sup -} case compensation is necessary also from the luminosity point of view. We show in this note that the most effective compensation can be done locally, with a special dipole coil arrangement incorporated into the detector. It is shown that compensation can be achieved for both e{sup +}e{sup -} and e{sup -}e{sup -} case and that this scheme is compatible with beam size compensation by both the standard method, using skew quadrupoles, and by means of more advantageous method using weak antisolenoids.

  1. Case studies of the impact of orbital sampling on stratospheric trend detection and derivation of tropical vertical velocities: solar occultation vs. limb emission sounding

    NASA Astrophysics Data System (ADS)

    Millán, Luis F.; Livesey, Nathaniel J.; Santee, Michelle L.; Neu, Jessica L.; Manney, Gloria L.; Fuller, Ryan A.

    2016-09-01

    This study investigates the representativeness of two types of orbital sampling applied to stratospheric temperature and trace gas fields. Model fields are sampled using real sampling patterns from the Aura Microwave Limb Sounder (MLS), the HALogen Occultation Experiment (HALOE) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The MLS sampling acts as a proxy for a dense uniform sampling pattern typical of limb emission sounders, while HALOE and ACE-FTS represent coarse nonuniform sampling patterns characteristic of solar occultation instruments. First, this study revisits the impact of sampling patterns in terms of the sampling bias, as previous studies have done. Then, it quantifies the impact of different sampling patterns on the estimation of trends and their associated detectability. In general, we find that coarse nonuniform sampling patterns may introduce non-negligible errors in the inferred magnitude of temperature and trace gas trends and necessitate considerably longer records for their definitive detection. Lastly, we explore the impact of these sampling patterns on tropical vertical velocities derived from stratospheric water vapor measurements. We find that coarse nonuniform sampling may lead to a biased depiction of the tropical vertical velocities and, hence, to a biased estimation of the impact of the mechanisms that modulate these velocities. These case studies suggest that dense uniform sampling such as that available from limb emission sounders provides much greater fidelity in detecting signals of stratospheric change (for example, fingerprints of greenhouse gas warming and stratospheric ozone recovery) than coarse nonuniform sampling such as that of solar occultation instruments.

  2. On turbulence driven by axial precession and tidal evolution of the spin-orbit angle of close-in giant planets

    NASA Astrophysics Data System (ADS)

    Barker, Adrian J.

    2016-08-01

    The spin axis of a rotationally deformed planet is forced to precess about its orbital angular momentum vector, due to the tidal gravity of its host star, if these directions are misaligned. This induces internal fluid motions inside the planet that are subject to a hydrodynamic instability. We study the turbulent damping of precessional fluid motions, as a result of this instability, in the simplest local computational model of a giant planet (or star), with and without a weak internal magnetic field. Our aim is to determine the outcome of this instability, and its importance in driving tidal evolution of the spin-orbit angle in precessing planets (and stars). We find that this instability produces turbulent dissipation that is sufficiently strong that it could drive significant tidal evolution of the spin-orbit angle for hot Jupiters with orbital periods shorter than about 10-18 d. If this mechanism acts in isolation, this evolution would be towards alignment or anti-alignment, depending on the initial angle, but the ultimate evolution (if other tidal mechanisms also contribute) is expected to be towards alignment. The turbulent dissipation is proportional to the cube of the precession frequency, so it leads to much slower damping of stellar spin-orbit angles, implying that this instability is unlikely to drive evolution of the spin-orbit angle in stars (either in planetary or close binary systems). We also find that the instability-driven flow can act as a system-scale dynamo, which may play a role in producing magnetic fields in short-period planets.

  3. Equation-of-Motion Coupled-Cluster Theory for Excitation Energies of Closed-Shell Systems with Spin-Orbit Coupling.

    PubMed

    Wang, Zhifan; Tu, Zheyan; Wang, Fan

    2014-12-09

    Excitation energies of closed-shell systems based on the equation-of-motion (EOM) coupled-cluster theory at the singles and doubles (CCSD) level with spin-orbit coupling (SOC) included in the post-Hartree-Fock treatment are implemented in the present work. SOC can be included in both the CC and EOM steps (EOM-SOC-CCSD) or only in the EOM part (SOC-EOM-CCSD). The latter approach is an economical way to account for SOC effects, but excitation energies with this approach are not size-intensive. When the unlinked term in the latter approach is neglected (cSOC-EOM-CCSD), size-intensive excitation energies can be obtained. Time-reversal symmetry and spatial symmetry are exploited to reduce the computational effort. Imposing time-reversal symmetry results in a real matrix representation for the similarity-transformed Hamiltonian, which facilitates the requirement of time-reversal symmetry for new trial vectors in Davidson's algorithm. Results on some closed-shell atoms and molecules containing heavy elements show that EOM-SOC-CCSD can provide excitation energies and spin-orbit splittings with reasonable accuracy. On the other hand, the SOC-EOM-CCSD approach is able to afford accurate estimates of SOC effects for valence electrons of systems containing elements up to the fifth row, while cSOC-EOM-CCSD is less accurate for spin-orbit splittings of transitions involving p1/2 spinors, even for Kr.

  4. Radio Emission and Orbital Motion from the Close-encounter Star-Brown Dwarf Binary WISE J072003.20-084651.2

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Melis, Carl; Todd, Jacob; Gelino, Christopher R.; Hallinan, Gregg; Bardalez Gagliuffi, Daniella

    2015-12-01

    We report the detection of radio emission and orbital motion from the nearby star-brown dwarf binary WISE J072003.20-084651.2AB. Radio observations across the 4.5-6.5 GHz band with the Very Large Array identify at the position of the system quiescent emission with a flux density of 15 ± 3 μJy, and a highly polarized radio source that underwent a 2-3 minute burst with peak flux density 300 ± 90 μJy. The latter emission is likely a low-level magnetic flare similar to optical flares previously observed for this source. No outbursts were detected in separate narrow-band Hα monitoring observations. We report new high-resolution imaging and spectroscopic observations that confirm the presence of a co-moving T5.5 secondary and provide the first indications of three-dimensional orbital motion. We used these data to revise our estimates for the orbital period (4.1{}-1.3+2.7 year) and tightly constrain the orbital inclination to be nearly edge-on (93.°6+1.°6-1.°4), although robust measures of the component and system masses will require further monitoring. The inferred orbital motion does not change the high likelihood that this radio-emitting very low-mass binary made a close pass to the Sun in the past 100 kyr. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. A Fixed-Base-Simulator Study of the Ability of a Pilot to Establish Close Orbits Around the Moon

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Riley, Donald R.

    1961-01-01

    A study was made on a six-degree-of-freedom fixed-base simulator of the ability of human pilots to modify ballistic trajectories of a 5 space vehicle approaching the moon to establish a circular orbit about 50 miles above the lunar surface. The unmodified ballistic trajectories had miss distances from the lunar surface of from 40 to 80 miles, and a velocity range of from 8,200 to 8,700 feet per second at closest approach. The pilot was given control of the thrust (along the vehicle longitudinal axis) and torques about all three body axes. The information display given to the pilot was a hodograph of the vehicle rate of descent and circumferential velocity, an altimeter, and vehicle attitude and rate meters.

  6. Possible Outcomes of Coplanar High-eccentricity Migration: Hot Jupiters, Close-in Super-Earths, and Counter-orbiting Planets

    NASA Astrophysics Data System (ADS)

    Xue, Yuxin; Masuda, Kento; Suto, Yasushi

    2017-02-01

    We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m1 ≪ m0 and m1 ≪ m2. In addition to the gravity for point masses, we examine the importance of the short-range forces, and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.

  7. NR2 and P3+: Accurate, Efficient Electron-Propagator Methods for Calculating Valence, Vertical Ionization Energies of Closed-Shell Molecules.

    PubMed

    Corzo, H H; Galano, Annia; Dolgounitcheva, O; Zakrzewski, V G; Ortiz, J V

    2015-08-20

    Two accurate and computationally efficient electron-propagator (EP) methods for calculating the valence, vertical ionization energies (VIEs) of closed-shell molecules have been identified through comparisons with related approximations. VIEs of a representative set of closed-shell molecules were calculated with EP methods using 10 basis sets. The most easily executed method, the diagonal, second-order (D2) EP approximation, produces results that steadily rise as basis sets are improved toward values based on extrapolated coupled-cluster singles and doubles plus perturbative triples calculations, but its mean errors remain unacceptably large. The outer valence Green function, partial third-order and renormalized partial third-order methods (P3+), which employ the diagonal self-energy approximation, produce markedly better results but have a greater tendency to overestimate VIEs with larger basis sets. The best combination of accuracy and efficiency with a diagonal self-energy matrix is the P3+ approximation, which exhibits the best trends with respect to basis-set saturation. Several renormalized methods with more flexible nondiagonal self-energies also have been examined: the two-particle, one-hole Tamm-Dancoff approximation (2ph-TDA), the third-order algebraic diagrammatic construction or ADC(3), the renormalized third-order (3+) method, and the nondiagonal second-order renormalized (NR2) approximation. Like D2, 2ph-TDA produces steady improvements with basis set augmentation, but its average errors are too large. Errors obtained with 3+ and ADC(3) are smaller on average than those of 2ph-TDA. These methods also have a greater tendency to overestimate VIEs with larger basis sets. The smallest average errors occur for the NR2 approximation; these errors decrease steadily with basis augmentations. As basis sets approach saturation, NR2 becomes the most accurate and efficient method with a nondiagonal self-energy.

  8. Closed loop performance of a brushless dc motor powered electromechanical actuator for flight control applications. [computerized simulation for Shuttle Orbiter applications

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Nehl, T. W.

    1980-01-01

    A comprehensive digital model for the analysis and possible optimization of the closed loop dynamic (instantaneous) performance of a power conditioner fed, brushless dc motor powered, electromechanical actuator system (EMA) is presented. This model was developed for the simulation of the dynamic performance of an actual prototype EMA built for NASA-JSC as a possible alternative to hydraulic actuators for consideration in Space Shuttle Orbiter applications. Excellent correlation was achieved between numerical model simulation and experimental test results obtained from the actual hardware. These results include: various current and voltage waveforms in the machine-power conditioner (MPC) unit, flap position as well as other control loop variables in response to step commands of change of flap position. These results with consequent conclusions are detailed in the paper.

  9. Closed-Form and Numerically-Stable Solutions to Problems Related to the Optimal Two-Impulse Transfer Between Specified Terminal States of Keplerian Orbits

    NASA Technical Reports Server (NTRS)

    Senent, Juan

    2011-01-01

    The first part of the paper presents some closed-form solutions to the optimal two-impulse transfer between fixed position and velocity vectors on Keplerian orbits when some constraints are imposed on the magnitude of the initial and final impulses. Additionally, a numerically-stable gradient-free algorithm with guaranteed convergence is presented for the minimum delta-v two-impulse transfer. In the second part of the paper, cooperative bargaining theory is used to solve some two-impulse transfer problems when the initial and final impulses are carried by different vehicles or when the goal is to minimize the delta-v and the time-of-flight at the same time.

  10. Quantum manifestations of bifurcations of closed orbits in the photodetachment cross section of H- in parallel fields

    NASA Astrophysics Data System (ADS)

    Peters, A. D.; Jaffé, C.; Gao, J.; Delos, J. B.

    1997-07-01

    In the preceding paper, we showed that the semiclassical approximation diverges at a bifurcation, and that this divergence coincides with the passage of a focused cusp through the origin. Here we obtain a wave function in the vicinity of this cusp, and we use that wave function to eliminate the divergences in the photodetachment cross section. To describe the focused cusp, we first discuss the wave function of an ordinary two-dimensional (nonfocused) cusp. This wave function is known as a Pearcey function, and it has been studied extensively. Then we show how the formulas that lead to the Pearcey function have to be modified to describe a cylindrically focused cusp. The resulting wave function turns out to be given by an integral of Fresnel type containing within it a cylindrical Bessel function. This wave function is used to derive a formula for the photodetachment cross section near a bifurcation. That formula is a simple closed-form expression containing a Fresnel integral. Comparison with exact quantum calculations shows that this corrected-semiclassical formula is quite accurate.

  11. Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric material

    SciTech Connect

    Shaikhislamov, I. F.; Khodachenko, M. L.; Sasunov, Yu. L.; Lammer, H.; Kislyakova, K. G.; Erkaev, N. V.

    2014-11-10

    In the present series of papers we propose a consistent description of the mass loss process. To study in a comprehensive way the effects of the intrinsic magnetic field of a close-orbit giant exoplanet (a so-called hot Jupiter) on atmospheric material escape and the formation of a planetary inner magnetosphere, we start with a hydrodynamic model of an upper atmosphere expansion in this paper. While considering a simple hydrogen atmosphere model, we focus on the self-consistent inclusion of the effects of radiative heating and ionization of the atmospheric gas with its consequent expansion in the outer space. Primary attention is paid to an investigation of the role of the specific conditions at the inner and outer boundaries of the simulation domain, under which different regimes of material escape (free and restricted flow) are formed. A comparative study is performed of different processes, such as X-ray and ultraviolet (XUV) heating, material ionization and recombination, H{sub 3}{sup +} cooling, adiabatic and Lyα cooling, and Lyα reabsorption. We confirm the basic consistency of the outcomes of our modeling with the results of other hydrodynamic models of expanding planetary atmospheres. In particular, we determine that, under the typical conditions of an orbital distance of 0.05 AU around a Sun-type star, a hot Jupiter plasma envelope may reach maximum temperatures up to ∼9000 K with a hydrodynamic escape speed of ∼9 km s{sup –1}, resulting in mass loss rates of ∼(4-7) · 10{sup 10} g s{sup –1}. In the range of the considered stellar-planetary parameters and XUV fluxes, that is close to the mass loss in the energy-limited case. The inclusion of planetary intrinsic magnetic fields in the model is a subject of the follow-up paper (Paper II).

  12. Status of Digital Orbit Feedback for SPEAR

    SciTech Connect

    Hettel, Robert

    2003-05-30

    The present global orbit feedback system for SPEAR can adjust the electron beam position with a cycle time of 5 s. In addition, 50 Hz analog local servos stabilize the vertical photon beam position at monitors situated in the ten SSRL beamlines. The global and local systems will soon be merged into a single unified system operating from a dedicated DSP board. The goal is to acquire orbits, process the data, and correct beam position in a 1-2 ms interval to achieve a 30-50 Hz closed-loop bandwidth.

  13. Orbiting droplets on a vibrated bath

    NASA Astrophysics Data System (ADS)

    Sampara, Naresh; Burger, Loic; Gilet, Tristan; Microfluidics, university of liege Team

    2015-11-01

    A millimeter-sized oil droplet can bounce on a vertically vibrated liquid bath for unlimited time. It may couple to the surface wave it emits; leading to horizontal self-propulsion called walking. When several walkers coexist close to one another, they either repel or attract each other, in response to the superposition of the waves they generate. Attraction leads to various bound states, including droplets that orbit around each other. We have experimentally investigated the variety of quantized orbital motions exhibited by two, three and more identical walkers, as a function of forcing acceleration. Each motion is quantified in terms of droplet and wave energy.

  14. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.

    PubMed

    van Meer, R; Gritsenko, O V; Baerends, E J

    2014-10-14

    In recent years, several benchmark studies on the performance of large sets of functionals in time-dependent density functional theory (TDDFT) calculations of excitation energies have been performed. The tested functionals do not approximate exact Kohn-Sham orbitals and orbital energies closely. We highlight the advantages of (close to) exact Kohn-Sham orbitals and orbital energies for a simple description, very often as just a single orbital-to-orbital transition, of molecular excitations. Benchmark calculations are performed for the statistical average of orbital potentials (SAOP) functional for the potential [J. Chem. Phys. 2000, 112, 1344; 2001, 114, 652], which approximates the true Kohn-Sham potential much better than LDA, GGA, mGGA, and hybrid potentials do. An accurate Kohn-Sham potential does not only perform satisfactorily for calculated vertical excitation energies of both valence and Rydberg transitions but also exhibits appealing properties of the KS orbitals including occupied orbital energies close to ionization energies, virtual-occupied orbital energy gaps very close to excitation energies, realistic shapes of virtual orbitals, leading to straightforward interpretation of most excitations as single orbital transitions. We stress that such advantages are completely lost in time-dependent Hartree-Fock and partly in hybrid approaches. Many excitations and excitation energies calculated with local density, generalized gradient, and hybrid functionals are spurious. There is, with an accurate KS, or even the LDA or GGA potentials, nothing problematic about the "band gap" in molecules: the HOMO-LUMO gap is close to the first excitation energy (the optical gap).

  15. Closeup view of the Orbiter Discovery as it is suspended ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Orbiter Discovery as it is suspended vertically by the hoist in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center. This view is a detail of the starboard wing of the orbiter. Note the Reinforced Carbon-Carbon panels on the leading edge of the wing, the elevons and the elevon seal panels on the wing's trailing edge. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  16. Birefringence controlled room-temperature picosecond spin dynamics close to the threshold of vertical-cavity surface-emitting laser devices

    NASA Astrophysics Data System (ADS)

    Li, M. Y.; Jähme, H.; Soldat, H.; Gerhardt, N. C.; Hofmann, M. R.; Ackemann, T.

    2010-11-01

    We analyze the spin-induced circular polarization dynamics at the threshold of vertical-cavity surface-emitting lasers at room-temperature using a hybrid excitation combining electrically pumping without spin preference and spin-polarized optical injection. After a short pulse of spin-polarized excitation, fast oscillations of the circular polarization degree (CPD) are observed within the relaxation oscillations. A theoretical investigation of this behavior on the basis of a rate equation model shows that these fast oscillations of CPD could be suppressed by means of a reduction of the birefringence of the laser cavity.

  17. INTERACTION OF CLOSE-IN PLANETS WITH THE MAGNETOSPHERE OF THEIR HOST STARS. II. SUPER-EARTHS AS UNIPOLAR INDUCTORS AND THEIR ORBITAL EVOLUTION

    SciTech Connect

    Laine, Randy O.; Lin, Douglas N. C. E-mail: randy.laine@normalesup.org

    2012-01-20

    Planets with several Earth masses and orbital periods of a few days have been discovered through radial velocity and transit surveys. Regardless of their formation mechanism, an important evolution issue is the efficiency of their retention in the proximity of their host stars. If these 'super-Earths' attained their present-day orbits during or shortly after the T Tauri phase of their host stars, a large fraction of these planets would have encountered an intense stellar magnetic field. These rocky planets have a higher conductivity than the atmosphere of their host stars and, therefore, the magnetic flux tube connecting them would slip though the envelope of the host stars faster than across the planets. The induced electromotive force across the planet's diameter leads to a potential drop which propagates along a flux tube away from the planet with an Alfven speed. The foot of the flux tube would sweep across the stellar surface and the potential drop across the field lines drives a DC current analogous to that proposed for the electrodynamics of the Io-Jupiter system. The ohmic dissipation of this current produces potentially observable hot spots in the star envelope. It also heats the planet and leads to a torque which drives the planet's orbit to evolve toward both circularization and a state of synchronization with the spin of the star. The net effect is the damping of the planet's orbital eccentricity. Around slowly (or rapidly) spinning stars, this process also causes rocky planets with periods less than a few days to undergo orbital decay (or expansion/stagnation) within a few Myr. In principle, this effect can determine the retention efficiency of short-period hot Earths. We also estimate the ohmic dissipation interior to these planets and show that it can lead to severe structure evolution and potential loss of volatile material in them. However, these effects may be significantly weakened by the reconnection of the induced field.

  18. THE ROCHE LIMIT FOR CLOSE-ORBITING PLANETS: MINIMUM DENSITY, COMPOSITION CONSTRAINTS, AND APPLICATION TO THE 4.2 hr PLANET KOI 1843.03

    SciTech Connect

    Rappaport, Saul; Sanchis-Ojeda, Roberto; Winn, Joshua N.; Rogers, Leslie A.; Levine, Alan E-mail: sar@mit.edu E-mail: larogers@caltech.edu

    2013-08-10

    The requirement that a planet must orbit outside of its Roche limit gives a lower limit on the planet's mean density. The minimum density depends almost entirely on the orbital period and is immune to systematic errors in the stellar properties. We consider the implications of this density constraint for the newly identified class of small planets with periods shorter than half a day. When the planet's radius is accurately known, this lower limit to the density can be used to restrict the possible combinations of iron and rock within the planet. Applied to KOI 1843.03, a 0.6 R{sub Circled-Plus} planet with the shortest known orbital period of 4.245 hr, the planet's mean density must be {approx}> 7 g cm{sup -3}. By modeling the planetary interior subject to this constraint, we find that the composition of the planet must be mostly iron, with at most a modest fraction of silicates ({approx}< 30% by mass)

  19. Superdeep vertical seismic profiling at the KTB deep drill hole (Germany): Seismic close-up view of a major thrust zone down to 8.5 km depth

    NASA Astrophysics Data System (ADS)

    Rabbel, W.; Beilecke, T.; Bohlen, T.; Fischer, D.; Frank, A.; Hasenclever, J.; Borm, G.; Kück, J.; Bram, K.; Druivenga, G.; Lüschen, E.; Gebrande, H.; Pujol, J.; Smithson, S.

    2004-09-01

    The lowermost section of the continental superdeep drill hole German Continental Deep Drilling Program (KTB) (south Germany) has been investigated for the first time by vertical seismic profiling (VSP). The new VSP samples the still accessible range of 6-8.5 km depth. Between 7 and 8.5 km depth, the drill hole intersects a major cataclastic fault zone which can be traced back to the Earth's surface where it forms a lineament of regional importance, the Franconian line. To determine the seismic properties of the crust in situ, in particular within and around this deep fault zone, was one of the major goals of the VSP. For the measurements a newly developed high-pressure/high-temperature borehole geophone was used that was capable of withstanding temperatures and pressures up to 260°C and 140 MPa, respectively. The velocity-depth profiles and reflection images resulting from the VSP are of high spatial resolution due to a small geophone spacing of 12.5 m and a broad seismic signal spectrum. Compared to the upper part of the borehole, we found more than 10% decrease of the P wave velocity in the deep, fractured metamorphic rock formations. P wave velocity is ˜5.5 km/s at 8.5 km depth compared to 6.0-6.5 km/s at more shallow levels above 7 km. In addition, seismic anisotropy was observed to increase significantly within the deep fracture zone showing more than 10% shear wave splitting and azimuthal variation of S wave polarization. In order to quantify the effect of fractures on the seismic velocity in situ we compared lithologically identical rock units at shallow and large depths: Combining seismic velocity and structural logs, we could determine the elastic tensors for three gneiss sections. The analysis of these tensors showed that we need fracture porosity in the percent range in order to explain seismic velocity and anisotropy observed within the fault zone. The opening of significant pore space around 8 km depth can only be maintained by differential tectonic

  20. Vertical landing on an asteroid

    NASA Technical Reports Server (NTRS)

    Harel, D.; Geulman, M.

    1992-01-01

    This work is concerned with the final approach phase and vertical landing on an asteroid with a power-limited, electrically propelled spacecraft. With gravitational effects taken into account, a new solution to the fuel optimal vertical landing on an asteroid was obtained. In this solution, the spacecraft commanded acceleration is explicitly expressed as a function of vehicle velocity and time to go. Based on qualitative methods of analysis, the guidance strategy and the resulting trajectories were studied. It is shown that these fuel-optimal trajectories effectively assure a vertical soft landing on the asteroid. Results of numerical simulations for the vertical landing, starting from an elliptical orbit are presented.

  1. Orbital cellulitis

    MedlinePlus

    ... hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and ... in the space around the eye. An orbital cellulitis infection can get worse very quickly. A person with ...

  2. Glow phenomenon surrounding the vertical stabilizer and OMS pods

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This 35mm frame, photographed as the Space Shuttle Columbia was orbiting Earth during a 'night' pass, documents the glow phenomenon surrounding the vertical stabilizer and the Orbital Maneuvering System (OMS) pods of the spacecraft.

  3. THE VERTICAL

    NASA Technical Reports Server (NTRS)

    Albert, Stephen L.; Spencer, Jeffrey B.

    1994-01-01

    'THE VERTICAL' computer keyboard is designed to address critical factors which contribute to Repetitive Motion Injuries (RMI) (including Carpal Tunnel Syndrome) in association with computer keyboard usage. This keyboard splits the standard QWERTY design into two halves and positions each half 90 degrees from the desk. In order to access a computer correctly. 'THE VERTICAL' requires users to position their bodies in optimal alignment with the keyboard. The orthopaedically neutral forearm position (with hands palms-in and thumbs-up) reduces nerve compression in the forearm. The vertically arranged keypad halves ameliorate onset occurrence of keyboard-associated RMI. By utilizing visually-reference mirrored mylar surfaces adjustable to the user's eye, the user is able to readily reference any key indicia (reversed) just as they would on a conventional keyboard. Transverse adjustability substantially reduces cumulative musculoskeletal discomfort in the shoulders. 'THE VERTICAL' eliminates the need for an exterior mouse by offering a convenient finger-accessible curser control while the hands remain in the vertically neutral position. The potential commercial application for 'THE VERTICAL' is enormous since the product can effect every person who uses a computer anywhere in the world. Employers and their insurance carriers are spending hundreds of millions of dollars per year as a result of RMI. This keyboard will reduce the risk.

  4. Late Eocene stable isotope stratigraphy of North Atlantic IODP Site U1411: Orbitally paced climatic heartbeat at the close of the Eocene greenhouse

    NASA Astrophysics Data System (ADS)

    Coxall, Helen; Bohaty, Steve; Wilson, Paul; Liebrand, Diederik; Nyberg, Anna; Holmström, Max

    2016-04-01

    Integrated Ocean Drilling Program (IODP) Expedition 342 drilled sediment drifts on the Newfoundland margin to recover high-resolution records of North Atlantic ocean-climate history and track the evolution of the modern climate system through the Late Cretaceous and Early Cenozoic. An early Paleogene deep-sea benthic stable isotope composite record from multiple Exp. 342 sites is currently in development and will provide a key reference section for investigations of Atlantic and global climate dynamics. This study presents initial results for the late Eocene slice of the composite from Site U1411, located at mid depth (˜2850m Eocene paleodepth) on the Southeast Newfoundland Ridge. Stable oxygen (δ18O) and carbon (δ13C) isotope ratios were measured on 640 samples hosting exceptionally well-preserved epifaunal benthic foraminifera obtained from the microfossil-rich uppermost Eocene clays at 4cm spacing. Sedimentation rates average 2-3 cm/kyr through the late Eocene, such that our sampling resolution is sufficient to capture the dominant Milankovitch frequencies. Late Eocene Site U1411 benthic δ18O values (1.4 to 0.5‰ VPDB) are comparable to the Pacific and elsewhere in the Atlantic at similar depths; however, δ13C is lower by ˜0.5 ‰ with values intermediate between those of the Southern Labrador Sea to the north (-1 to 0) and mid latitude/South Atlantic (0.5 to 1.5) to the south, suggesting poorly ventilated bottom waters in the late Eocene North Atlantic and limited production of North Atlantic deep water. Applying the initial shipboard magneto-biostratigraphic age framework, the Site U1411 benthic δ13C and δ18O records display clear cyclicity on orbital timescales. Spectral analysis of the raw unfiltered datasets identifies eccentricity (400 and 100 kyr), obliquity (40 kyr) and precession (˜20 kyr) signals imprinted on our time series, revealing distinct climatic heart beats in the late Eocene prior to the transition into the 'ice house'.

  5. Kepler's Orbit

    NASA Video Gallery

    Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...

  6. An orbit fit program for localizing errors in RHIC

    SciTech Connect

    Liu, C.; Minty, M.; Ptitsyn, V.

    2011-11-01

    Many errors in an accelerator are evidenced as transverse kicks to the beam which distort the beam trajectory. Therefore, the information of the errors are imprinted in the distorted orbits, which are different from what would be predicted by the optics model. In this note, we introduce an algorithm for fitting the orbit based on an on-line optics model. By comparing the measured and fitted orbits, we first present results validating the algorithm. We then apply the algorithm and localize the location of the elusive source of vertical diurnal variations observed in RHIC. The difference of two trajectories (linear accelerator) or closed orbits (storage ring) should match exactly a betatron oscillation, which is predictable by the optics model, in an ideal machine. However, in the presence of errors, the measured trajectory deviates from prediction since the model is imperfect. Comparison of measurement to model can be used to detect such errors. To do so the initial conditions (phase space parameters at any point) must be determined which can be done by comparing the difference orbit to prediction using only a few beam position monitors (BPMs). The fitted orbit can be propagated along the beam line based on the optics model. Measurement and model will agree up to the point of an error. The error source can be better localized by additionally fitting the difference orbit using downstream BPMs and back-propagating the solution. If one dominating error source exist in the machine, the fitted orbit will deviate from the difference orbit at the same point.

  7. The Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hendrix, M. K.; Fox, J. C.; Thomas, D. J.; Nicholson, J.

    1986-01-01

    The hardware and software of NASA's proposed Orbital Acceleration Research Experiment (OARE) are described. The OARE is to provide aerodynamic acceleration measurements along the Orbiter's principal axis in the free-molecular flow-flight regime at orbital attitude and in the transition regime during reentry. Models considering the effects of electromagnetic effects, solar radiation pressure, orbiter mass attraction, gravity gradient, orbital centripetal acceleration, out-of-orbital-plane effects, orbiter angular velocity, structural noise, mass expulsion signal sources, crew motion, and bias on acceleration are examined. The experiment contains an electrostatically balanced cylindrical proofmass accelerometer sensor with three orthogonal sensing axis outputs. The components and functions of the experimental calibration system and signal processor and control subsystem are analyzed. The development of the OARE software is discussed. The experimental equipment will be enclosed in a cover assembly that will be mounted in the Orbiter close to the center of gravity.

  8. Congenital orbital encephalocele, orbital dystopia, and exophthalmos.

    PubMed

    Hwang, Kun; Kim, Han Joon

    2012-07-01

    We present here an exceedingly rare variant of a nonmidline basal encephalocele of the spheno-orbital type, and this was accompanied with orbital dystopia in a 56-year-old man. On examination, his left eye was located more inferolaterally than his right eye, and the patient said this had been this way since his birth. The protrusion of his left eye was aggravated when he is tired. His naked visual acuity was 0.7/0.3, and the ocular pressure was 14/12 mm Hg. The exophthalmometry was 10/14 to 16 mm. His eyeball motion was not restricted, yet diplopia was present in all directions. The distance from the midline to the medial canthus was 20/15 mm. The distance from the midline to the midpupillary line was 35/22 mm. The vertical dimension of the palpebral fissure was 12/9 mm. The height difference of the upper eyelid margin was 11 mm, and the height difference of the lower eyelid margin was 8 mm. Facial computed tomography and magnetic resonance imaging showed left sphenoid wing hypoplasia and herniation of the left anterior temporal pole and dura mater into the orbit, and this resulted into left exophthalmos and encephalomalacia in the left anterior temporal pole. To the best of our knowledge, our case is the second case of basal encephalocele and orbital dystopia.

  9. Deceleration Orbit Improvements

    SciTech Connect

    Church, M.

    1991-04-26

    During the accelerator studies period of 12/90-1/91 much study time was dedicated to improving the E760 deceleration ramps. 4 general goals were in mind: (1) Reduce the relative orbit deviations from the nominal reference orbit as much as possible. This reduces the potential error in the orbit length calculation - which is the primary source of error in the beam energy calculation. (2) Maximize the transverse apertures. This minimizes beam loss during deceleration and during accidental beam blow-ups. (3) Measure and correct lattice parameters. Knowledge of {gamma}{sub T}, {eta}, Q{sub h}, Q{sub v}, and the dispersion in the straight sections allows for a more accurate energy calculation and reliable SYNCH calculations. (4) Minimize the coupling. This allows one to discern between horizontal and vertical tunes.

  10. Experimental determination of storage ring optics using orbit response measurements

    NASA Astrophysics Data System (ADS)

    Safranek, J.

    1997-02-01

    The measured response matrix giving the change in orbit at beam position monitors (BPMs) with changes in steering magnet excitation can be used to accurately calibrate the linear optics in an electron storage ring [1-8]. A computer code called LOCO (Linear Optics from Closed Orbits) was developed to analyze the NSLS X-Ray Ring measured response matrix to determine: the gradients in all 56 quadrupole magnets; the calibration of the steering magnets and BPMs; the roll of the quadrupoles, steering magnets, and BPMs about the electron beam direction; the longitudinal magnetic centers of the orbit steering magnets; the horizontal dispersion at the orbit steering magnets; and the transverse mis-alignment of the electron orbit in each of the sextupoles. Random orbit measurement error from the BPMs propagated to give only 0.04% rms error in the determination of individual quadrupole gradients and 0.4 mrad rms error in the determination of individual quadrupole rolls. Small variations of a few parts in a thousand in the quadrupole gradients within an individual family were resolved. The optics derived by LOCO gave accurate predictions of the horizontal dispersion, the beta functions, and the horizontal and vertical emittances, and it gave good qualitative agreement with the measured vertical dispersion. The improved understanding of the X-Ray Ring has enabled us to increase the synchrotron radiation brightness. The LOCO code can also be used to find the quadrupole family gradients that best correct for gradient errors in quadrupoles, in sextupoles, and from synchrotron radiation insertion devices. In this way the design periodicity of a storage ring's optics can be restored. An example of periodicity restoration will be presented for the NSLS VUV Ring. LOCO has also produced useful results when applied to the ALS storage ring [8].

  11. Orbiter door closure tools

    NASA Technical Reports Server (NTRS)

    Acres, W. R.

    1980-01-01

    Safe reentry of the shuttle orbiter requires that the payload bay doors be closed and securely latched. Since a malfunction in the door drive or bulkhead latch systems could make safe reentry impossible, the requirement to provide tools to manually close and secure the doors was implemented. The tools would disconnect a disabled door or latch closure system and close and secure the doors if the normal system failed. The tools required to perform these tasks have evolved into a set that consists of a tubing cutter, a winch, a latching tool, and a bolt extractor. The design, fabrication, and performance tests of each tool are described.

  12. Orbitals and orbital energies in DFT and TDDFT

    NASA Astrophysics Data System (ADS)

    Baerends, Evert Jan

    The status and meaning of orbitals and orbital energies in the Kohn-Sham one-electron model of DFT has been controversial, in contrast to Hartree-Fock orbitals and orbital energies. We will argue the opposite: the exact Kohn-Sham orbitals of DFT are ''better'' than HF orbitals and their orbital energies are much closer to ionization energies than HF orbital energies are. This follows from the relation between the KS potential and the wavefunction, which can be cast in the form vs =vc , kin +vH +vxchole +vresp, where each term depends on the KS orbitals and the wavefunction (the one- or two-particle density matrices). The response potential vresp (r) = ∑ j ∞|/dj(r) | 2 ρ (r) Ij - ∑ i H|/ψs , i(r) | 2 ρ (r) (-ɛi) (dj is the Dyson orbital corresponding to ion state ΨjN - 1 , ψs , i is a Kohn-Sham orbital) enables the connection between ionization energies Ii and orbital energies ɛi to be made. For virtual orbitals and orbital energies similar statements can be made: the shapes and energies of the (exact) KS orbitals are much more realistic than those of the Hartree-Fock model or hybrid functionals. The HOMO-LUMO gap in molecules is very close to the optical gap, and very different from the fundamental gap. In solids the situation is very different, which is the well-known ''KS gap problem''. Again the response potential vresp (a good approximation to it) helps to solve this problem, affording a straigtforward correction method of the KS gap to the fundamental gap.

  13. Commissioning of the APS real-time orbit feedback system

    SciTech Connect

    Carwardine, J.; Decker, G.; Evans, K. Jr.; Hillman, A.; Lenkszus, F.; Merl, R.; Pietryla, A.

    1997-08-01

    A unified global and local closed-orbit feedback system has been implemented at the Advanced Photon Source in order to stabilize both particle and photon beams. Beam stability requirements in the band up to 50 Hz are 17 {micro}m in the horizontal plane and 4.4 {micro}m vertically. Orbit feedback algorithms are implemented digitally using multiple digital signal processors, with computing power distributed in 20 VME crates around the storage ring. Each crate communicates with all others via a fast reflective memory network. The system has access to 320 rf beam position monitors together with x-ray beam position monitors in both insertion device and bending magnet beamlines. Up to 317 corrector magnets are available to the system. The global system reduces horizontal rms beam motion at the x-ray source points by more than a factor of two in the frequency band from 10 mHz to 50 Hz.

  14. Shuttle Orbiter Enterprise Off-Loaded at Redstone Arsenal Airfield

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Shuttle Orbiter Enterprise is off-loaded Redstone Arsenal Airfield for later Mated Vertical Ground Vibration tests (MVGVT) at Marshall Space Flight Center's Dynamic Test Stand. The tests marked the first time ever that the entire shuttle complement (including orbiter, external tank, and solid rocket boosters) were mated vertically.

  15. Shuttle Orbiter Enterprise Off-Loaded at Redstone Arsenal Airfield

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Shuttle Orbiter Enterprise is off-loaded at Redstone Arsenal Airfield for later Mated Vertical Ground Vibration tests (MVGVT) at Marshall Space Flight Center's Dynamic Test Stand. The tests marked the first time ever that the entire shuttle complement including orbiter, external tank, and solid rocket boosters were vertically mated.

  16. Shuttle Orbiter Enterprise Off-Loaded at Redstone Arsenal Airfield

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Shuttle Orbiter Enterprise is off-loaded at Redstone Arsenal Airfield for later Mated Vertical Ground Vibration tests (MVGVT) at Marshall Space Flight Center's Dynamic Test Stand. The tests marked the first time ever that the entire shuttle complement (including orbiter, external tank, and solid rocket boosters) were mated vertically.

  17. Shuttle Orbiter Enterprise Arrives at Redstone Arsenal Airfield

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Shuttle Orbiter Enterprise atop a 747 landing at Redstone Arsenal Airfield for later Mated Vertical Ground Vibration tests (MVGVT) at Marshall Space Flight Center's Dynamic Test Stand. The tests marked the first time ever that the entire shuttle complement (including orbiter, external tank, and solid rocket boosters) were mated vertically.

  18. The Eccentric Behavior of Nearly Frozen Orbits

    NASA Technical Reports Server (NTRS)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  19. Orbiter's Skeleton

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.

  20. Orbital abscess from an odontogenic infection.

    PubMed

    Kim, Il-Kyu; Kim, Ju-Rok; Jang, Keum-Soo; Moon, Yeon-Sung; Park, Sun-Won

    2007-01-01

    An orbital abscess is a rare but serious complication of an odontogenic infection, which can lead to loss of vision or worse. This paper presents a case of orbital abscess secondary to an infection from the upper molar teeth, which extended to the retobulbar and posterosuperior region of the orbit, close to the superior orbital fissure. The infection spreaded to the pterygopalatine and infratemporal fossa and then to the orbit via the inferior orbital fissure. This paper reviews the clinical presentation, differential diagnosis, route of spread, value of serial CT scanning, treatment and possible complications.

  1. Autonomous orbital navigation using Kepler's equation

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1974-01-01

    A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.

  2. Study of an orbiting tethered dumbbell system having positive orbital energy

    NASA Technical Reports Server (NTRS)

    Arnold, David A.

    1988-01-01

    For very long tethered systems the sum of the kinetic and potential energy can be positive. The system remains in a circular orbit as long as the masses remain vertically aligned. The system is unstable without constant control of the alignment. If the upper mass rotates forward in the direction of the orbital motion, the system escapes out of orbit. If the upper mass rotates backward, the system falls out of orbit and the lower mass impacts the body around which the system is orbiting.

  3. New orbit correction method uniting global and local orbit corrections

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Takaki, H.; Sakai, H.; Satoh, M.; Harada, K.; Kamiya, Y.

    2006-01-01

    A new orbit correction method, called the eigenvector method with constraints (EVC), is proposed and formulated to unite global and local orbit corrections for ring accelerators, especially synchrotron radiation(SR) sources. The EVC can exactly correct the beam positions at arbitrarily selected ring positions such as light source points, simultaneously reducing closed orbit distortion (COD) around the whole ring. Computer simulations clearly demonstrate these features of the EVC for both cases of the Super-SOR light source and the Advanced Light Source (ALS) that have typical structures of high-brilliance SR sources. In addition, the effects of errors in beam position monitor (BPM) reading and steering magnet setting on the orbit correction are analytically expressed and also compared with the computer simulations. Simulation results show that the EVC is very effective and useful for orbit correction and beam position stabilization in SR sources.

  4. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  5. Vertical Distribution of Water at Phoenix

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Lemmon, M. T.

    2011-01-01

    Phoenix results, combined with coordinated observations from the Mars Reconnaissance Orbiter of the Phoenix lander site, indicate that the water vapor is nonuniform (i.e., not well mixed) up to a calculated cloud condensation level. It is important to understand the mixing profile of water vapor because (a) the assumption of a well-mixed atmosphere up to a cloud condensation level is common in retrievals of column water abundances which are in turn used to understand the seasonal and interannual behavior of water, (b) there is a long history of observations and modeling that conclude both that water vapor is and is not well-mixed, and some studies indicate that the water vapor vertical mixing profile may, in fact, change with season and location, (c) the water vapor in the lowest part of the atmosphere is the reservoir that can exchange with the regolith and higher amounts may have an impact on the surface chemistry, and (d) greater water vapor abundances close to the surface may enhance surface exchange thereby reducing regional transport, which in turn has implications to the net transport of water vapor over seasonal and annual timescales.

  6. Nuclear orbiting

    SciTech Connect

    Shapira, D.

    1988-01-01

    Nuclear orbiting following collisions between sd and p shell nuclei is discussed. The dependence of this process on the real and imaginary parts of the nucleus-nucleus potential is discussed, as well as the evolution of the dinucleus toward a fully equilibrated fused system. 26 refs., 15 figs.

  7. Closing Window

    NASA Technical Reports Server (NTRS)

    2006-01-01

    24 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows billowing clouds of dust rising from a storm southeast of Hellas Planitia. The dust storm in this case obscured the Mars Orbiter Camera's view of the martian surface.

    Location near: 62.2oS, 259.0oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  8. Orbital problems in GPS interferometry

    NASA Astrophysics Data System (ADS)

    Zielinski, Janusz B.

    The GPS orbits and the influence of the orbital errors on the geodetic determination were investigated during the last few years. In the paper, the summary of some analyses is presented concerning the nature of the interferometric observations, the propagation of the orbital errors, and the correlations and covariances in geodetic GPS solutions. One of the results was a proof that, in relative determinations by GPS, the error propagation factor is close to b/10 h, that is almost one order smaller than previously supposed.

  9. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...

  10. Configuration interaction singles natural orbitals: An orbital basis for an efficient and size intensive multireference description of electronic excited states

    SciTech Connect

    Shu, Yinan; Levine, Benjamin G.; Hohenstein, Edward G.

    2015-01-14

    Multireference quantum chemical methods, such as the complete active space self-consistent field (CASSCF) method, have long been the state of the art for computing regions of potential energy surfaces (PESs) where complex, multiconfigurational wavefunctions are required, such as near conical intersections. Herein, we present a computationally efficient alternative to the widely used CASSCF method based on a complete active space configuration interaction (CASCI) expansion built from the state-averaged natural orbitals of configuration interaction singles calculations (CISNOs). This CISNO-CASCI approach is shown to predict vertical excitation energies of molecules with closed-shell ground states similar to those predicted by state averaged (SA)-CASSCF in many cases and to provide an excellent reference for a perturbative treatment of dynamic electron correlation. Absolute energies computed at the CISNO-CASCI level are found to be variationally superior, on average, to other CASCI methods. Unlike SA-CASSCF, CISNO-CASCI provides vertical excitation energies which are both size intensive and size consistent, thus suggesting that CISNO-CASCI would be preferable to SA-CASSCF for the study of systems with multiple excitable centers. The fact that SA-CASSCF and some other CASCI methods do not provide a size intensive/consistent description of excited states is attributed to changes in the orbitals that occur upon introduction of non-interacting subsystems. Finally, CISNO-CASCI is found to provide a suitable description of the PES surrounding a biradicaloid conical intersection in ethylene.

  11. Motion of dust in a planetary magnetosphere - Orbit-averaged equations for oblateness, electromagnetic, and radiation forces with application to Saturn's E ring

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas P.

    1993-01-01

    The orbital dynamics of micrometer-sized dust grains is explored numerically and analytically, treating the strongest perturbation forces acting on close circumplanetary dust grains: higher-order gravity, radiation pressure, and the electromagnetic force. The appropriate orbit-average equations are derived and applied to the E ring. Arguments are made for the existence of azimuthal and vertical asymmetries in the E ring. New understanding of the dynamics of E ring dust grains is applied to problems of the ring's breadth and height. The possibility for further ground-based and spacecraft observations is considered.

  12. Orbit analysis

    SciTech Connect

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  13. Closing in on Close Reading

    ERIC Educational Resources Information Center

    Boyles, Nancy

    2013-01-01

    "A significant body of research links the close reading of complex text--whether the student is a struggling reader or advanced--to significant gains in reading proficiency and finds close reading to be a key component of college and career readiness" (Partnership for Assessment of Readiness for College and Careers, 2011, p. 7). When the author…

  14. Orbit Correction for the Newly Developed Polarization-Switching Undulator

    SciTech Connect

    Obina, Takashi; Honda, Tohru; Shioya, Tatsuro; Kobayashi, Yukinori; Tsuchiya, Kimichika; Yamamoto, Shigeru

    2007-01-19

    A new scheme of undulator magnet arrangements has been proposed and developed as a polarization-switching radiation source, and its test-stand was installed in the 2.5-GeV Photon Factory storage ring (PF ring) in order to investigate the effects on the beam orbit. The closed orbit distortion (COD) over 200 {mu}m was produced in a vertical direction when we switched the polarization of the radiation from the test-stand. In a horizontal direction, the COD was less than 50{mu}m. The results agreed well with the predictions from the magnetic-field measurement on the bench. In order to suppress the CODs and realize a stable operation of the ring with the polarization-switching, we developed an orbit correction system which consists of an encoder to detect motion of magnets, a pair of beam position monitors (BPMs), signal processing parts, and a pair of steering magnets. We succeeded in suppressing the CODs to the level below 3{mu}m using the system even when we switch the polarization at a maximum frequency of 0.8 Hz.

  15. Vertical bounce of two vertically aligned balls

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2007-11-01

    When a tennis ball rests on top of a basketball and both drop to the floor together, the tennis ball is projected vertically at high speed. A mass-spring model of the impact, as well as air track data, suggest that the tennis ball should be projected at relatively low speed. Measurements of the forces on each ball and the bounce of vertically aligned superballs are used to resolve the discrepancy.

  16. [Giant cavernous hemangioma of the orbit (case report)].

    PubMed

    Grusha, Ia O; Ismailova, D S; Eksarenko, O V; Fedorov, A A; Kharlap, S I

    2014-01-01

    The following case demonstrates a successful en bloc removal of a massive cavernous hemangioma of the orbit via vertical transpalpebral approach with postoperative improvement of optic nerve condition and optimal cosmetic result.

  17. Artist's Concept of Mars Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Mars Reconnaissance Orbiter, depicted above Mars in this artist's concept illustration, is scheduled for launch in 2005. The orbiter will carry cameras to zoom in for extreme close-up photography of the martian surface, use a sounder to find subsurface water and look for safe and scientifically worthy landing sites for future exploration.

  18. Pioneer probe mission with orbiter option

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A spacecraft is described which is based on Pioneer 10 and 11, and existing propulsion technology; it can transport and release a probe for entry into Jupiter's atmosphere, and subsequently maneuver to place the spacecraft in orbit about Jupiter. Orbital operations last 3 years and include maneuvers to provide multiple close satellite encounters which allow the orbit to be significantly changed to explore different parts of the magnetosphere. A mission summary, a guide to related documents, and background information about Jupiter are presented along with mission analysis over the complete mission profile. Other topics discussed include the launch, interplanetary flight, probe release and orbit deflection, probe entry, orbit selection, orbit insertion, periapsis raising, spacecraft description, and the effects of Jupiter's radiation belt on both orbiter and the probe.

  19. Vertical axis wind turbines

    DOEpatents

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  20. Orbital Winch

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)

    2016-01-01

    Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.

  1. Shuttle Orbiter Enterprise Transported Via Road at MSFC

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In this view looking northwest over the Marshall Space Flight Center (MSFC), the Shuttle Orbiter Enterprise is seen heading South on Rideout Road near the Redstone Arsenal Fire Station as it is being transported to MSFC's building 4755 for later Mated Vertical Ground Vibration tests (MVGVT) at MSFC's Dynamic Test Stand. The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.

  2. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Vehicle Assembly Building (VAB), overhead cranes move above the orbiter Atlantis in order to lift it to vertical. When vertical, the orbiter will be placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  3. Rings from Close Encounters

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Weve recently discovered narrow sets of rings around two minor planets orbiting in our solar system. How did these rings form? A new study shows that they could be a result of close encounters between the minor planets and giants like Jupiter or Neptune.Unexpected Ring SystemsPositions of the centaurs in our solar system (green). Giant planets (red), Jupiter trojans (grey), scattered disk objects (tan) and Kuiper belt objects (blue) are also shown. [WilyD]Centaurs are minor planets in our solar system that orbit between Jupiter and Neptune. These bodies of which there are roughly 44,000 with diameters larger than 1 km have dynamically unstable orbits that cross paths with those of one or more giant planets.Recent occultation observations of two centaurs, 10199 Chariklo and 2060 Chiron, revealed that these bodies both host narrow ring systems. Besides our four giant planets, Chariklo and Chiron are the only other bodies in the solar system known to have rings. But how did these rings form?Scientists have proposed several models, implicating collisions, disruption of a primordial satellite, or dusty outgassing. But a team of scientists led by Ryuki Hyodo (Paris Institute of Earth Physics, Kobe University) has recently proposed an alternative scenario: what if the rings were formed from partial disruption of the centaur itself, after it crossed just a little too close to a giant planet?Tidal Forces from a GiantHyodo and collaborators first used past studies of centaur orbits to estimate that roughly 10% of centaurs experience close encounters (passing within a distance of ~2x the planetary radius) with a giant planet during their million-year lifetime. The team then performed a series of simulations of close encounters between a giant planet and a differentiated centaur a body in which the rocky material has sunk to form a dense silicate core, surrounded by an icy mantle.Some snapshots of simulation outcomes (click for a closer look!) for different initial states of

  4. Vertical Lift - Not Just For Terrestrial Flight

    DTIC Science & Technology

    2000-10-01

    Cassini space mission will reach Saturn’s orbit and release the Huygens probe (descending via parachute) into Titan’s atmosphere. The Huygens ...is outside the official mission scope). This accomplishment will likely come from future missions post- Cassini / Huygens . The use of vertical lift...from HST) With the arrival of the Cassini / Huygens spacecraft to Saturn and Titan in 2004 -- and the anticipated science and outreach bonanza from this

  5. General view of the mid deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the mid deck of the Orbiter Discovery during pre-launch preparations. Note the payload and mission specialists seats. The seats are removed packed and stowed during on-orbit activities. Also not the black panels in the right of the image, they are protective panels used for preparation of the orbiter and astronaut ingress while the orbiter is in its vertical launch position. This image was taken at Kenney Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. Horseshoe orbits in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Kreisman, B. B.

    2016-11-01

    Horseshoe orbits in the restricted three-body problem have been mostly considered in the Sun-Jupiter system and, in recent years, in the Sun-Earth system. Here, these orbits have been used to find asteroids that have orbits of this kind. We have built a planar family of horseshoe orbits in the Earth-Moon system and determined the points of planar and 1/1 vertical resonances on this family. We have presented examples of orbits generated by these spatial families.

  7. General view of the "top" side of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the "top" side of the Orbiter Discovery as it is being hoisted in a vertical position in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. General view of the "bottom" side of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the "bottom" side of the Orbiter Discovery as it is being hoisted in a vertical position in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. Shadowing Lemma and chaotic orbit determination

    NASA Astrophysics Data System (ADS)

    Spoto, Federica; Milani, Andrea

    2016-03-01

    Orbit determination is possible for a chaotic orbit of a dynamical system, given a finite set of observations, provided the initial conditions are at the central time. The Shadowing Lemma (Anosov 1967; Bowen in J Differ Equ 18:333-356, 1975) can be seen as a way to connect the orbit obtained using the observations with a real trajectory. An orbit is a shadowing of the trajectory if it stays close to the real trajectory for some amount of time. In a simple discrete model, the standard map, we tackle the problem of chaotic orbit determination when observations extend beyond the predictability horizon. If the orbit is hyperbolic, a shadowing orbit is computed by the least squares orbit determination. We test both the convergence of the orbit determination iterative procedure and the behaviour of the uncertainties as a function of the maximum number of map iterations observed. When the initial conditions belong to a chaotic orbit, the orbit determination is made impossible by numerical instability beyond a computability horizon, which can be approximately predicted by a simple formula. Moreover, the uncertainty of the results is sharply increased if a dynamical parameter is added to the initial conditions as parameter to be estimated. The Shadowing Lemma does not dictate what the asymptotic behaviour of the uncertainties should be. These phenomena have significant implications, which remain to be studied, in practical problems of orbit determination involving chaos, such as the chaotic rotation state of a celestial body and a chaotic orbit of a planet-crossing asteroid undergoing many close approaches.

  10. Offset vertical radar profiling

    USGS Publications Warehouse

    Witten, A.; Lane, J.

    2003-01-01

    Diffraction tomography imaging was applied to VRP data acquired by vertically moving a receiving antenna in a number of wells. This procedure simulated a vertical downhole receiver array. Similarly, a transmitting antenna was sequentially moved along a series of radial lines extending outward from the receiver wells. This provided a sequence of multistatic data sets and, from each data set, a two-dimensional vertical cross-sectional image of spatial variations in wave speed was reconstructed.

  11. Vertical Axis Wind Turbine

    SciTech Connect

    Homicz, Greg

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  12. How Close Is Close Reading?

    ERIC Educational Resources Information Center

    Saccomano, Doreen

    2014-01-01

    Close Reading is a strategy that can be used when reading challenging text. This strategy requires teachers to provide scaffolding, and create opportunities for think-alouds and rereading of text in order to help students become active readers who focus on finding text-based support for their answers. In addition, teachers must also be aware of…

  13. Sun-synchronous satellite orbit determination

    NASA Astrophysics Data System (ADS)

    Ma, Der-Ming; Zhai, Shen-You

    2004-02-01

    The linearized dynamic equations used for on-board orbit determination of Sun-synchronous satellite are derived. Sun-synchronous orbits are orbits with the secular rate of the right ascension of the ascending node equal to the right ascension rate of the mean sun. Therefore the orbit is no more a closed circle but a tight helix about the Earth. In the paper, instead of treating the orbit as a closed circle, the actual helix orbit is taken as nominal trajectory. The details of the linearized equations of motion for the satellite in the Sun-synchronous orbit are derived. The linearized equations are obtained by perturbing the Keplerian motion with the J2 correction and the effect of sun's attraction being neglected. Combined with the GPS navigation equations, the Kalman filter formulation is given. The particular application considered is the circular Sun-synchronous orbit with the altitude of 800 km and inclination of 98.6°. The numerical example simulated by MATLAB® shows that only the pseudo-range data used in the algorithm still gives acceptable results. Based on the simulation results, we can use the on-board GPS receivers' signal only as an alternative to determine the orbit of Sun-Synchronous satellite and therefore circumvents the need for extensive ground support.

  14. Vertical axis windmill

    SciTech Connect

    Campbell, J.S.

    1980-04-08

    A vertical axis windmill is described which involves a rotatable central vertical shaft having horizontal arms pivotally supporting three sails that are free to function in the wind like the main sail on a sail boat, and means for disabling the sails to allow the windmill to be stopped in a blowing wind.

  15. The evolution of comet orbits

    NASA Technical Reports Server (NTRS)

    Everhart, E.

    1976-01-01

    The origin of comets and the evolution of their orbits are discussed. Factors considered include: the law of survival of comets against ejection on hyperbolic orbits; short-period comets are not created by single close encounters of near-parabolic comets with Jupiter; observable long-period comets do not evolve into observable short-period comets; unobservable long-period comets with perihelia near Jupiter can evolve into observable short-period comets; long-period comets cannot have been formed or created within the planetary region of the solar system (excluding the effects of stellar perturbations); it is possible that some of the short-period comets could have been formed inside the orbit of Neptune; circularly-restricted three-body problem, and its associated Jacobi integral, are not valid approximations to use in studying origin and evolution of comets.

  16. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  17. The higher excited electronic states and spin-orbit splitting of the valence band in three-dimensional assemblies of close-packed ZnSe and CdSe quantum dots in thin film form

    SciTech Connect

    Pejova, Biljana

    2008-08-15

    Optical properties of as-deposited and annealed thin films composed of three-dimensional arrays of sphalerite-type ZnSe and CdSe quantum dots (QDs), synthesized by chemical deposition, were investigated. Neglecting the S-D mixing of hole states, the lowest 'band to band' transitions in very small nanoclusters and in bulk-like clusters may be assigned as 1S{yields}1S and 1S{sub {delta}}{yields}1S, and are split by spin-orbit (SO) splitting energy of the bulk material-{delta}. The splitting energy between these transitions was found to be insensitive to QD size variations, which could be explained assuming that 1S hole states arising from valence band {gamma}{sub 7} and {gamma}{sub 8} components do not mix with higher angular momentum states and shift together to higher energies coupled via the isotropic hole mass. This implies significant difference between the SO splitting energies in the two semiconductors. Accounting for S-D mixing of hole states, the observed transitions may be attributed to the fundamental ground state-(1S{sub 3/2}, 1S{sub e}) and the ground state-(1S{sub 1/2}, 1S{sub e}) ones. The observed 'splittings' thus do not correspond exactly to SO splitting energy in both semiconductors, but are complex functions of it, as exact position of each hole energy level depends, besides on {delta}, also on other material-characteristic parameters. - Graphical abstract: Accounting for S-D mixing of hole states, the observed optical transitions in very small sphalerite-type ZnSe and CdSe nanoclusters are attributed to the ground state-(1S{sub 3/2}, 1S{sub e}) and the ground state-(1S{sub 1/2}, 1S{sub e}). The 'splittings' do not correspond to SO splitting energy, but are complex functions of it.

  18. Closeup view of the reinforced carboncarbon nose of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the reinforced carbon-carbon nose of the Orbiter Discovery from the service platform in the Orbiter Processing Facility at Kennedy Space Center. Note the clear protective shield around the nose cap, and the reflective insulation protecting the Crew Compartment bulkhead and orbiter structure in the void created by the removal of the Forward Reaction Control Module. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. Orbital dystopia due to orbital roof defect.

    PubMed

    Rha, Eun Young; Joo, Hong Sil; Byeon, Jun Hee

    2013-01-01

    We performed a retrospective review of patients who presented with delayed dystopia as a consequence of an orbital roof defect due to fractures and nontraumatic causes to search for a correlation between orbital roof defect size and surgical indications for the treatment thereof. Retrospective analyses were performed in 7 patients, all of whom presented with delayed dystopia due to orbital roof defects, between January 2001 and June 2011. The causes of orbital roof defects were displaced orbital roof fractures (5 cases), tumor (1 case), and congenital sphenoid dysplasia (1 case). All 7 patients had initially been treated conservatively and later presented with significant dystopia. The sizes of the defects were calculated on computed tomographic scans. Among the 7 patients, aspiration of cerebrospinal fluid, which caused ocular symptoms, in 1 patient with minimal displaced orbital roof and reconstruction with calvarial bone, titanium micromesh, or Medpor in 6 other patients were performed. The minimal size of the orbital roof in patients who underwent orbital roof reconstruction was 1.2 cm (defect height) x 1.0 cm (defect length), 0.94 cm(2). For all patients with orbital dystopia, displacement of the globe was corrected without any complications, regardless of whether the patient was evaluated grossly or by radiology. In this retrospective study, continuous monitoring of clinical signs and active surgical management should be considered for cases in which an orbital roof defect is detected, even if no definite symptoms are noted, to prevent delayed sequelae.

  20. Sclerosing idiopathic orbital inflammation.

    PubMed

    Brannan, Paul A; Kersten, Robert C; Kulwin, Dwight R

    2006-01-01

    A 5-year-old girl referred for orbital cellulitis was found to have a right orbital mass. Computed tomography revealed a mass occupying the inferotemporal orbit, extending into the maxillary sinus. Biopsy yielded a diagnosis of sclerosing idiopathic orbital inflammation. She was successfully treated with prednisone.

  1. Orbital fractures: a review

    PubMed Central

    Joseph, Jeffrey M; Glavas, Ioannis P

    2011-01-01

    This review of orbital fractures has three goals: 1) to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2) to explain how to assess and examine a patient after periorbital trauma, and 3) to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training. PMID:21339801

  2. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  3. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  4. Multi-Body Orbit Architectures for Lunar South Pole Coverage

    NASA Technical Reports Server (NTRS)

    Grebow, D. J.; Ozimek, M. T.; Howell, K. C.; Folta, D. C.

    2006-01-01

    A potential ground station at the lunar south pole has prompted studies of orbit architectures that ensure adequate coverage. Constant communications can be achieved with two spacecraft in different combinations of Earth-Moon libration point orbits. Halo and vertical families, as well as other orbits near L1 and L2 are considered. The investigation includes detailed results using nine different orbits with periods ranging from 7 to 16 days. Natural solutions are generated in a full ephemeris model, including solar perturbations. A preliminary station-keeping analysis is also completed.

  5. Impact on Spin Tune From Horizontal Orbital Angle Between Snakes and Orbital Angle Between Spin Rotators

    SciTech Connect

    Bai,M.; Ptitsyn, V.; Roser, T.

    2008-10-01

    To keep the spin tune in the spin depolarizing resonance free region is required for accelerating polarized protons to high energy. In RHIC, two snakes are located at the opposite side of each accelerator. They are configured to yield a spin tune of 1/2. Two pairs of spin rotators are located at either side of two detectors in each ring in RHIC to provide longitudinal polarization for the experiments. Since the spin rotation from vertical to longitudinal is localized between the two rotators, the spin rotators do not change the spin tune. However, due to the imperfection of the orbits around the snakes and rotators, the spin tune can be shifted. This note presents the impact of the horizontal orbital angle between the two snakes on the spin tune, as well as the effect of the vertical orbital angle between two rotators at either side of the collision point on the spin tune.

  6. Detail view of the lower portion of the vertical stabilizer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the lower portion of the vertical stabilizer of the Orbiter Discovery. The section below the rudder, often referred to as the "stinger", is used to house the orbiter drag chute assembly. The system consisted of a mortar deployed pilot chute, the main drag chute, a controller assembly and an attach/jettison mechanism. This system was a modification to the original design of the Orbiter Discovery to safely reduce the roll to stop distance without adversely affecting the vehicle handling qualities. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. Revised Orbits of Saturn's Small Inner Satellites

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.; Spitale, J.; Porco, C. C.; Beurle, K.; Cooper, N. J.; Evans, M. W.; Murray, C. D.

    2007-01-01

    We have updated the orbits of the small inner Saturnian satellites using additional Cassini imaging observations through 2007 March. Statistically significant changes from previously published values appear in the eccentricities and inclinations of Pan and Daphnis, but only small changes have been found in the estimated orbits of the other satellites. We have also improved our knowledge of the masses of Janus and Epimetheus as a result of their close encounter observed in early 2006.

  8. Revised Orbits of Saturn's Small Inner Satellites

    NASA Astrophysics Data System (ADS)

    Jacobson, R. A.; Spitale, J.; Porco, C. C.; Beurle, K.; Cooper, N. J.; Evans, M. W.; Murray, C. D.

    2008-01-01

    We have updated the orbits of the small inner Saturnian satellites using additional Cassini imaging observations through 2007 March. Statistically significant changes from previously published values appear in the eccentricities and inclinations of Pan and Daphnis, but only small changes have been found in the estimated orbits of the other satellites. We have also improved our knowledge of the masses of Janus and Epimetheus as a result of their close encounter observed in early 2006.

  9. Manned Venus Orbiting Mission

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.

    1967-01-01

    Manned orbiting stopover round trips to Venus are studied for departure dates between 1975 and 1986 over a range of trip times and stay times. The use of highly elliptic parking orbits at Venus leads to low initial weights in Earth orbit compared with circular orbits. For the elliptic parking orbit, the effect of constraints on the low altitude observation time on the initial weight is shown. The mission can be accomplished with the Apollo level of chemical propulsion, but advanced chemical or nuclear propulsion can give large weight reductions. The Venus orbiting mission weights than the corresponding Mars mission.

  10. Orbital interactions - A new geometrical formalism

    NASA Technical Reports Server (NTRS)

    Greenberg, R.

    1982-01-01

    The geometry of encounters between two bodies on independent Keplerian orbits around a third body is considered by a novel analysis, which avoids approximations made in previous studies. For the case of most of the applications considered, the formulas for collision frequencies and orbital element rates of change due to close approaches which comprise the method agree with past results. It is shown that the method can be extended to such other applications as the consideration of oscillations in orbital elements due to secular perturbations, and the computation of probabilities of escape from the system.

  11. Interaction of the Space Shuttle on-orbit autopilot with tether dynamics

    NASA Technical Reports Server (NTRS)

    Bergmann, Edward V.

    1988-01-01

    The effect of Orbiter flight control on tether dynamics is studied by simulation. Open-loop effects of Orbiter jet firing on tether dynamics are shown, and the potential for closed-loop interaction between tether dynamics and Orbiter flight control is determined. The significance of these effects on Orbiter flight control and tether control is assessed.

  12. 'Columbia Hills' from Orbit

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This view of the 'Columbia Hills' in Gusev Crater was made by draping an image from the Mars Orbiter Camera on NASA's Mars Global Surveyor orbiter (image E0300012 from that camera) over a digital elevation model that was derived from two Mars Orbiter Camera images (E0300012 and R0200357).

    This unique view is helpful to the rover team members as they plan the journey of NASA's Mars Exploration Rover Spirit to the base of the Columbia Hills and beyond. Spirit successfully completed a three-month primary mission, and so far remains healthy in an extended mission of bonus exploration. As of sol 135 (on May 21, 2004), Spirit sits approximately 680 meters (0.4 miles) away from its first target at the western base of the hills, a spot informally called 'West Spur.' The team estimates that Spirit will reach West Spur by sol 146 (June 1, 2004). Spirit will most likely remain there for about a week to study the outcrops and rocks associated with this location.

    When done there, Spirit will head approximately 620 meters (0.38 miles) to a higher-elevation location informally called 'Lookout Point.' Spirit might reach Lookout Point by around sol 165 (June 20, 2004). On the way, the rover will pass by and study ripple-shaped wind deposits that may reveal more information about wind processes on Mars.

    Lookout Point will provide a great vantage point for scientists to remotely study the inner basin area of the Columbia Hills. This basin contains a broad range of interesting geological targets including the informally named 'Home Plate' and other possible layered outcrops. These features suggest that the hills contain rock layers. Spirit might investigate the layers to determine whether they are water-deposited sedimentary rock.

    Once at Lookout Point, Spirit will acquire 360-degree panoramic images of the entire area to help define the rover's next steps. Assuming the rover stays healthy, Spirit will eventually drive down into the basin to get an up-close

  13. Orbital dynamics in galaxy mergers

    NASA Astrophysics Data System (ADS)

    Hoffman, Loren

    In the favored vacuum energy + cold dark matter (ACDM) cosmology, galaxies form through a hierarchical merging process. Mergers between comparable-mass sys tems are qualitatively different from the ongoing accretion of small objects by much larger ones, in that they can radically transform the nature of the merging objects, e.g. through violent relaxation of the stars and dark matter, triggered starbursts, and quasar activity. This thesis covers two phenomena unique to major galaxy mergers: the formation of supermassive black hole (SMBH) binary and triple systems, and the transformation of the stellar orbit structure through violent relaxation, triggered gas inflow, and star formation. In a major merger, the SMBHs can spiral in and form a bound binary in less than a Hubble time. If the binary lifetime exceeds the typical time between mergers, then triple black hole (BH) systems may form. We study the statistics of close triple-SMBH encounters in galactic nuclei by computing a series of three-body orbits with physically-motivated initial conditions appropriate for giant elliptical galaxies. Our simulations include a smooth background potential consisting of a stellar bulge plus a dark matter halo, drag forces due to gravitational radiation and dynamical friction on the stars and dark matter, and a simple model of the time evolution of the inner density profile under heating and mass ejection by the SMBHs. We find that the binary pair coalesces as a result of repeated close encounters in ~85% of our runs. In about 40% of the runs the lightest BH is left wandering through the galactic halo or escapes the galaxy altogether. The triple systems typically scour out cores with mass deficits ~1-2 times their total mass. The high coalescence rate and prevalence of very high-eccentricity orbits could provide interesting signals for the future Laser Interferometer Space Antenna (LISA). Our study of remnant orbit structure involved 42 disk-disk mergers at various gas fractions

  14. An Orbit And Dispersion Correction Scheme for the PEP II

    SciTech Connect

    Cai, Y.; Donald, M.; Shoaee, H.; White, G.; Yasukawa, L.A.; /SLAC

    2011-09-01

    To achieve optimum luminosity in a storage ring it is vital to control the residual vertical dispersion. In the original PEP storage ring, a scheme to control the residual dispersion function was implemented using the ring orbit as the controlling element. The 'best' orbit not necessarily giving the lowest vertical dispersion. A similar scheme has been implemented in both the on-line control code and in the simulation code LEGO. The method involves finding the response matrices (sensitivity of orbit/dispersion at each Beam-Position-Monitor (BPM) to each orbit corrector) and solving in a least squares sense for minimum orbit, dispersion function or both. The optimum solution is usually a subset of the full least squares solution. A scheme of simultaneously correcting the orbits and dispersion has been implemented in the simulation code and on-line control system for PEP-II. The scheme is based on the eigenvector decomposition method. An important ingredient of the scheme is to choose the optimum eigenvectors that minimize the orbit, dispersion and corrector strength. Simulations indicate this to be a very effective way to control the vertical residual dispersion.

  15. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  16. The Orbits of Saturn's Small Satellites

    NASA Astrophysics Data System (ADS)

    Spitale, J. N.; Jacobson, R. A.; Porco, C. C.; Owen, W. M.; Charnoz, S.

    2005-05-01

    We report on the orbits of the small, inner Saturnian satellites, either recovered or newly-discovered in recent Cassini imaging observations (excluding Helene, Telesto and Calypso, which will be discussed by another group). Using combined Cassini and Voyager observations, the mean motions of Pan and Atlas have been refined by several orders of magnitude. The Atlas orbit is based on a numerical integration perturbed by all of the massive Saturnian satellites including Prometheus, Pandora, Janus, and Epimetheus. We find that the dominant perturber is Prometheus. Cassini, Voyager, HST, and Earth-based data have been used to refine the orbits of Janus, Epimetheus, Prometheus and Pandora. The orbits of the co-orbitals, Janus and Epimetheus, remain stable; their orbital swap does not occur until Februrary, 2006. The orbits of Prometheus and Pandora remain close to recent values (Jacobson and French 2004, Icarus, 172, 382). Six new objects have been discovered to date -- three (S/2004 S3, S4, S6) in close proximity to the F ring, two (S/2004 S1(Methone), S/2004 S2(Pallene)) between the orbits of Mimas and Enceladus, and one (S/2004 S5(Polydeuces)) co-orbital with Dione, trailing by ˜60 deg (Porco et al., Science 307, 25 Feb 2005). One of the F-ring objects -- S/2004 S3 -- was seen over a 118-day interval, but none of those objects, including S/2004 S3, were subsequently recovered in an F-ring movie acquired on 15 November 2004 (29 days after the last sighting of S/2004 S3) with an image scale of 4 km/pixel, in which all were expected to appear. Consequently, we are confident only that Methone, Pallene and Polydeuces are solid satellites; S/2004 S3, S4 and S6 may be transient clumps. Our orbital fits, both precessing ellipse models and orbital integrations, suggest that Pallene is the same object as S/1981 S14, imaged by Voyager 2 on 23 August 1981, contrary to our initial reports (IAU circular 8389). The orbital inclination and eccentricity of Methone are considerably

  17. A vertical cephalometric analysis.

    PubMed

    Alió Sanz, Juan J; Iglesias Conde, Carmen

    2007-01-01

    Correctly assessing open-bite malocclusions has remained problematic because clinicians have not had entirely reliable methods of determining the exact amount of skeletal and dental contributions to the problem. A new cephalometric technique, the vertical cephalometric analysis, offers orthodontists a system that precisely identifies the percentage of skeletal and dentoalveolar components that open-bite patients have. The vertical cephalometric analysis offers a discriminating diagnostic method for evaluating, diagnosing, and treatment planning for patients with open bite. This technique will allow clinicians to classify patients with accuracy, as well as to establish prognoses and select therapies.

  18. HL-20 Vertical Human Factors

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The HL-20 space taxi, Langley's candidate personnel launch system, is one of several designs being considered by NASA as a complement to the Space Shuttle. Human factors studies, using Langley volunteers as subjects, have been ongoing since March 1991 to verify crew seating arrangements, habitability, ingress and egress, equipment layout and maintenance and handling operations, and to determine visibility requirements during docking and landing operations. Langley volunteers, wearing flight suits and helmets, were put through a series of tests with the craft placed both vertically and horizontally to simulate launch and landing attitudes, The HL-20 would be launched into a low orbit by an expendable rocket and then use its own propulsion system to boost itself to the space station. Following exchange of crews or delivery of small payload, the HL-20 would return to Earth like the space shuttle, making a runway landing near the launch site, The full-scale engineering research model of the HL-20 design was constructed by students and faculty at North Carolina State University and North Carolina A&T State University with the Mars Mission Research Center under a grant from NASA Langley.

  19. Constraints on Triton's Orbital Evolution

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Zhang, K.; Agnor, C.

    2005-05-01

    Three models have been proposed for the capture origin of Triton: Collision with a preexisting satellite (Goldreich 1989), Gas drag (McKinnon 1990), and three-body exchange (Agnor and Hamilton 2004). All three scenarios put Triton onto a highly elongated orbit which is subsequently circularized by satellite tides. Our goal here is to use the current state of the Neptunian system to constrain these capture scenarios. Triton strongly affects inner satellites (or an inner disk) directly via close pericenter passages before its orbit circularizes. Since satellite tides nearly conserve angular momentum, a simple tidal model puts Triton's minimum pericenter distance at aT/2 ˜ 7RN, where aT is its current semimajor axis. Our initial simulations show that some satellites orbiting outside Proteus (the outermost of the inner satellites at a=4.67RN) can survive these Triton passages. So why are there no known moonlets beyond 4.67RN? Seeking answers, we have integrated Triton's orbit backwards in time with a more sophisticated model that includes J2, solar perturbations, and satellite tides. We find that Triton's pericenter smoothly descends toward 7RN, as in the simple tidal model, but with superimposed oscillations at i) 1/2 Neptune's orbital period and ii) the nodal and apsidal precession periods. At a ˜ 94RN Triton encounters a Kozai-like resonance between these precession periods which causes its pericenter to dip to ˜ 4.2RN - well within the current orbit of Proteus. If Triton's orbit were ever this large, then the early inner satellite system must have been much smaller than it is today. Additional apsidal and nodal resonances between an early Triton on a highly elliptical orbit and the small inner satellites (with resonant arguments like 2nT - 2Ω sat) are strong enough to drive moonlet inclinations up to several degrees. We are using the stengths and locations of these resonances to further limit possible capture and evolution scenarios and will report on the

  20. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  1. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  2. Elementary excitations in magnetically ordered systems with orbital degeneracy

    SciTech Connect

    Joshi, A.; Ma, M. ); Mila, F. ); Shi, D.N. College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Peoples Republic of ); Zhang, F.C. )

    1999-09-01

    The generalized Holstein-Primakoff transformation is used to develop a quantum flavor wave theory for spin systems with orbital degeneracy. Elementary excitations of ordered ground states consist of spin, orbital, and spin-orbital waves. Spin and spin-orbital waves couple to each other due to orbital anisotropy and Hund[close quote]s rule, resulting in modes observable by inelastic neutron scattering. In the SU(4) limit, flavor waves are dispersionless along one or more directions, and give rise to quantum fluctuations of reduced dimensionality. [copyright] [ital 1999] [ital The American Physical Society

  3. Vertical shaft windmill

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Inge, S. V., Jr. (Inventor)

    1983-01-01

    A vertical shaft has several equally spaced blades mounted. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  4. Aiding Vertical Guidance Understanding

    NASA Technical Reports Server (NTRS)

    Feary, Michael; McCrobie, Daniel; Alkin, Martin; Sherry, Lance; Polson, Peter; Palmer, Everett; McQuinn, Noreen

    1998-01-01

    A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance.

  5. Linear Optics From Closed Orbits (LOCO): An Introduction

    SciTech Connect

    Safranek, James; /SLAC

    2009-06-18

    The LOCO code is used to find and correct errors in the linear optics of storage rings. The original FORTRAN code was written to correct the optics of the NSLS X-Ray ring, and was applied soon thereafter to debug problems with the ALS optics. The ideas used in the code were developed from previous work at SLAC. Several years ago, LOCO was rewritten in MATLAB. As described in this newsletter, the MATLAB version includes a user-friendly interface, with many useful fitting and analysis options. LOCO has been used at many accelerators. Presently, a search for LOCO in the text of papers on the Joint Accelerator Conferences Website yields 107 papers. A comprehensive survey of applications will not be included here. Details of recent results at a few light sources are included in this newsletter. In the past, the quality of LOCO fitting results varied significantly, depending on the storage ring. In particular, the results were mixed for colliding beam facilities, where there tend to be fewer BPMs that in light sources. Fitting rings with less BPM data to constrain the fit optics parameters often led to unreasonably large fit quadrupole gradient variations. Recently, modifications have been made to the LOCO fitting algorithm which leads to much better results when the BPM data does not tightly constrain the fit parameters. The modifications are described in this newsletter, and an example of results with this new algorithm is included.

  6. Dynamics on the cone: Closed orbits and superintegrability

    SciTech Connect

    Brihaye, Y.; Kosiński, P.

    2014-05-15

    The generalization of Bertrand’s theorem to the case of the motion of point particle on the surface of a cone is presented. The superintegrability of such models is discussed. The additional integrals of motion are analysed for the case of Kepler and harmonic oscillator potentials. -- Highlights: •Bertrand’s theorem is generalized to the case of the motion on a cone. •The superintegrability of the dynamics on a cone is discussed. •The W-algebra of integrals of motion for Kepler and harmonic oscillator problems on a cone is derived.

  7. Studies of Shuttle orbiter arrestment system

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Stubbs, Sandy M.

    1993-01-01

    Scale model studies of the Shuttle Orbiter Arrestment System (AS) were completed with a 1/27.5-scale model at the NASA Langley Research Center. The purpose of these studies was to determine the proper configuration for a net arrestment system to bring the orbiter to a safe stop with minimal damage in the event of a runway overrun. Tests were conducted for runway on-centerline and off-centerline engagements at simulated speeds up to approximately 100 knots (full scale). The results of these tests defined the interaction of the net and the orbiter, the dynamics of off-centerline engagements, and the maximum number of vertical net straps that may become entangled with the nose gear. In addition to these tests, a test program with a 1/8-scale model was conducted by the arrestment system contractor, and the results are presented in the appendix.

  8. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  9. Orbital hematoma caused by bleeding from orbital branch of the infraorbital artery after reconstruction of an orbital fracture.

    PubMed

    Hwang, Kun; Kim, Joo Ho; Kang, Young Hye

    2014-03-01

    We experienced and report on a case of retrobulbar hematoma caused by bleeding from the orbital branch of the infraorbital artery after a medial orbital wall reconstruction.A healthy 28-year-old man struck his left eye while playing baseball before admission. A computed tomographic scan revealed an approximately 13 × 12-mm-sized fracture of the left orbit medial wall. The medial orbit wall was reconstructed through a subciliary approach on the 18th day after the injury. Approximately 15 hours after the orbit wall reconstruction, the patient complained of pain in the left orbital area, headache, and vomiting. Upon an examination, swelling and ecchymosis were observed on the left eye. His visual acuity was 0.8 (oculus dexter [OD])/0.4 (oculus sinister [OS]) and the intraocular pressure was 18 (OD)/24 (OS) mm Hg by a Goldmann applanation tonometry. A computed tomographic scan showed an intraorbital hematoma and proptosis on the left side. In an emergency operation, a hematoma with a volume of approximately 2 to 3 mL was evacuated and an active bleeding point was noted on the orbital floor, which was thought to be the orbital branch of the infraorbital nerve. The bleeding point was cauterized. After the operation, his visual acuity was 1.0 (OD)/0.8 (OS) and the ocular pressure normalized to 16 (OD)/16 (OS) mm Hg by a Goldmann applanation tonometry.Close observation and meticulous hemostasis along the infraorbital groove may be needed in an orbital floor exploration to prevent postoperative orbital hematoma.

  10. Painless orbital myositis.

    PubMed

    Chakor, Rahul T; Santhosh, N S

    2012-07-01

    Idiopathic orbital inflammation is the third most common orbital disease, following Graves orbitopathy and lymphoproliferative diseases. We present a 11 year old girl with 15 days history of painless diplopia. There was no history of fluctuation of symptoms, drooping of eye lids or diminished vision. She had near total restricted extra-ocular movements and mild proptosis of the right eye. There was no conjunctival injection, chemosis, or bulb pain. There was no eyelid retraction or lid lag. Rest of the neurological examination was unremarkable.Erythrocyte sedimentation rate was raised with eosinophilia. Antinuclear antibodies were positive. Liver, renal and thyroid functions were normal. Antithyroid, double stranded deoxyribonucleic acid and acetylcholine receptor antibodies were negative. Repetitive nerve stimulation was negative. Magnetic resonance imaging (MRI) of the orbit was typical of orbital myositis. The patient responded to oral steroids. Orbital myositis can present as painless diplopia. MRI of orbit is diagnostic in orbital myositis.

  11. Solar Sail Optimal Orbit Transfers to Synchronous Orbits

    NASA Technical Reports Server (NTRS)

    Powers, Robert B.; Coverstone, Victoria; Prussing, John E.; Lunney, Bryan C. (Technical Monitor)

    1999-01-01

    A constant outward radial thrust acceleration can be used to reduce the radius of a circular orbit of specified period. Heliocentric circular orbits are designed to match the orbital period of Earth or Mars for various radial thrust accelerations and are defined as synchronous orbits. Minimum-time solar sail orbit transfers to these synchronous heliocentric orbits are presented.

  12. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KSC employees accompany the orbiter Atlantis as it is moved aboard an orbiter transporter to the Vehicle Assembly Building (VAB). In the background are OPF bays 1 and 2. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  13. The Mars Climate Sounder on the Mars Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    McCleese, D.; Taylor, F.; Schofield, J.; Calcutt, S.

    2003-04-01

    There remains a need for an intensive effort to obtain a climatology of the martian atmosphere. This objective was to have been accomplished with the Mars Observer and with the Mars Climatology Orbiter, both of which failed at Mars. In 2005, the Mars Reconnaissance Orbiter will carry the Mars Climate Sounder (MCS) to aquire the necessary measurements of the vertical profiles of atmospheric temperature, water vapor, dust and condensates. This paper describes the climate objectives and measurement approach of MCS.

  14. The properties of close multiple stars

    NASA Technical Reports Server (NTRS)

    Fekel, F. C., Jr.

    1981-01-01

    A reexamination of the properties of close multiple systems is conducted, taking into account recent numerical, analytical, and observational results. The orbital elements of 43 spectroscopic multiple systems are presented in a table. Tables with photometry data of the systems and data describing their properties are also provided. Attention is given to period ratios, mass ratios, orbital coplanarity, stability, lithium abundances and age estimates, and prospects of future observations. Numerical studies indicate that fragmentation produces binary components with mass ratios usually close to 1.0, while fission usually produces mass ratios in the range 0.1-0.5. Using analytical stability criteria, all 27 close multiple systems considered are stable if they are corotating. If they are counter-rotating, four systems are possibly unstable. However, other factors suggest that even these four are probably stable. The solar-type close multiple systems ranged in age from 100 million years to 2,000 million years.

  15. ORBITS AROUND BLACK HOLES IN TRIAXIAL NUCLEI

    SciTech Connect

    Merritt, David; Vasiliev, Eugene E-mail: eugvas@lpi.ru

    2011-01-10

    We discuss the properties of orbits within the influence sphere of a supermassive black hole (BH), in the case that the surrounding star cluster is non-axisymmetric. There are four major orbit families; one of these, the pyramid orbits, have the interesting property that they can approach arbitrarily closely to the BH. We derive the orbit-averaged equations of motion and show that in the limit of weak triaxiality, the pyramid orbits are integrable: the motion consists of a two-dimensional libration of the major axis of the orbit about the short axis of the triaxial figure, with eccentricity varying as a function of the two orientation angles and reaching unity at the corners. Because pyramid orbits occupy the lowest angular momentum regions of phase space, they compete with collisional loss cone repopulation and with resonant relaxation (RR) in supplying matter to BHs. General relativistic advance of the periapse dominates the precession for sufficiently eccentric orbits, and we show that relativity imposes an upper limit to the eccentricity: roughly the value at which the relativistic precession time is equal to the time for torques to change the angular momentum. We argue that this upper limit to the eccentricity should also apply to evolution driven by RR, with potentially important consequences for the rate of extreme-mass-ratio inspirals in low-luminosity galaxies. In giant galaxies, we show that capture of stars on pyramid orbits can dominate the feeding of BHs, at least until such a time as the pyramid orbits are depleted; however this time can be of order a Hubble time.

  16. Hilly Surroundings (vertical)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 360-degree view of the terrain surrounding NASA's Mars Exploration Rover Spirit was taken on the rover's 189th sol on Mars (July 15, 2004). It was assembled from images taken by the rover's navigation camera at a position referred to as Site 72, which is at the base of the 'West Spur' portion of the 'Columbia Hills.'' The view is presented in a vertical projection with geometrical seam correction.

  17. Protective Vertical Shelters.

    DTIC Science & Technology

    1983-06-29

    on Generic MX Structures" by John Betz. 5. (AFCMD/82-013) "Finite Element Dynamic Analysis of th, DCT-2 Models" by Barry Bingham . 61 (AFCMD/82-017) "MX...facility to define the HEST structure for the GOVS tests. A SAMSON dynamic finite-element computer code provided pretest predictions of strdsses and...as piecewise linear, elastic- plastic materials. TEST DESCRIPTION Shel ter Models The generic MX vertical shelter is basically a large, reinforced

  18. Kramers' Restricted Closed Shell CCSD Theory

    NASA Technical Reports Server (NTRS)

    Visscher, Lucas; Dyall, Kenneth G.; Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    A Kramers' restricted version of the closed shell coupled cluster singles doubles theory is presented. The theory may be used in conjunction with 2 or 4-component relativistic reference wavefunctions. The intrinsic treatment of the spin-orbit coupling doubles the number of independent quantities (amplitudes and integrals) relative to a spin-independent formalism. The number of operations required to evaluate the equations is four times larger than in the optimal spin-independent closed shell formalism.

  19. Vertical bloch line memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-chuan (Inventor)

    1995-01-01

    A new read gate design for the vertical Bloch line (VBL) memory is disclosed which offers larger operating margin than the existing read gate designs. In the existing read gate designs, a current is applied to all the stripes. The stripes that contain a VBL pair are chopped, while the stripes that do not contain a VBL pair are not chopped. The information is then detected by inspecting the presence or absence of the bubble. The margin of the chopping current amplitude is very small, and sometimes non-existent. A new method of reading Vertical Bloch Line memory is also disclosed. Instead of using the wall chirality to separate the two binary states, the spatial deflection of the stripe head is used. Also disclosed herein is a compact memory which uses vertical Bloch line (VBL) memory technology for providing data storage. A three-dimensional arrangement in the form of stacks of VBL memory layers is used to achieve high volumetric storage density. High data transfer rate is achieved by operating all the layers in parallel. Using Hall effect sensing, and optical sensing via the Faraday effect to access the data from within the three-dimensional packages, an even higher data transfer rate can be achieved due to parallel operation within each layer.

  20. Toroidal path filter for orbital conjunction screening

    NASA Astrophysics Data System (ADS)

    Alfano, Salvatore

    2012-07-01

    For satellite conjunction prediction containing many objects, timely processing can be a concern. Various filters are used to identify orbiting pairs that cannot come close enough over a prescribed time period to be considered hazardous. Such pairings can then be eliminated from further computation to quicken the overall processing time. One such filter is the orbit path filter (also known as the geometric pre-filter), designed to eliminate pairs of objects based on characteristics of orbital motion. The goal of this filter is to eliminate pairings where the distance (geometry) between their orbits remains above some user-defined threshold, irrespective of the actual locations of the satellites along their paths. Rather than using a single distance bound, this work presents a toroid approach, providing a measure of versatility by allowing the user to specify different in-plane and out-of-plane bounds for the path filter. The primary orbit is used to define a focus-centered elliptical ring torus with user-defined thresholds. An assessment is then made to determine if the secondary orbit can touch or penetrate this torus. The method detailed here can be used on coplanar, as well as non-coplanar, orbits.

  1. The atomic orbitals of the topological atom.

    PubMed

    Ramos-Cordoba, Eloy; Salvador, Pedro; Mayer, István

    2013-06-07

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure.

  2. Orbit Determination of the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-01-01

    We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

  3. Closeup view of the aft flight deck of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the aft flight deck of the Orbiter Discovery looking at the aft center control panels A6, A7, A8, A12, A13, A14, A16 and A17. This View was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. Design of a Formation of Earth Orbiting Satellites: The Auroral Lites Mission

    NASA Technical Reports Server (NTRS)

    Hametz, Mark E.; Conway, Darrel J.; Richon, Karen

    1999-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has proposed a set of spacecraft flying in close formation around the Earth in order to measure the behavior of the auroras. The mission, named Auroral Lites, consists of four spacecraft configured to start at the vertices of a tetrahedron, flying over three mission phases. During the first phase, the distance between any two spacecraft in the formation is targeted at 10 kilometers (km). The second mission phase is much tighter, requiring satellite interrange spacing targeted at 500 meters. During the final phase of the mission, the formation opens to a nominal 100-km interrange spacing. In this paper, we present the strategy employed to initialize and model such a close formation during each of these phases. The analysis performed to date provides the design and characteristics of the reference orbit, the evolution of the formation during Phases I and II, and an estimate of the total mission delta-V budget. AI Solutions' mission design tool, FreeFlyer(R), was used to generate each of these analysis elements. The tool contains full force models, including both impulsive and finite duration maneuvers. Orbital maintenance can be fully modeled in the system using a flexible, natural scripting language built into the system. In addition, AI Solutions is in the process of adding formation extensions to the system facilitating mission analysis for formations like Auroral Lites. We will discuss how FreeFlyer(R) is used for these analyses.

  5. Design of a Formation of Earth-Orbiting Satellites: The Auroral Lites Mission

    NASA Technical Reports Server (NTRS)

    Hametz, Mark E.; Conway, Darrel J.; Richon, Karen

    1999-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has proposed a set of spacecraft flying in close formation around the Earth in order to measure the behavior of the auroras. The mission, named Auroral Lites, consists of four spacecraft configured to start at the vertices of a tetrahedron, flying over three mission phases. During the first phase, the distance between any two spacecraft in the formation is targeted at 10 kilometers (km). The second mission phase is much tighter, requiring satellite interrange spacing targeted at 500 meters. During the final phase of the mission, the formation opens to a nominal 100-km interrange spacing. In this paper, we present the strategy employed to initialize and model such a close formation during each of these phases. The analysis performed to date provides the design and characteristics of the reference orbit, the evolution of the formation during Phases I and II, and an estimate of the total mission delta-V budget. AI Solutions' mission design tool, FreeFlyer, was used to generate each of these analysis elements. The tool contains full force models, including both impulsive and finite duration maneuvers. Orbital maintenance can be fully modeled in the system using a flexible, natural scripting language built into the system. In addition, AI Solutions is in the process of adding formation extensions to the system facilitating mission analysis for formations like Auroral Lites. We will discuss how FreeFlyer is used for these analyses.

  6. Proxima's orbit around α Centauri

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Thévenin, F.; Lovis, C.

    2017-01-01

    Proxima and α Centauri AB have almost identical distances and proper motions with respect to the Sun. Although the probability of such similar parameters is, in principle, very low, the question as to whether they actually form a single gravitationally bound triple system has been open since the discovery of Proxima one century ago. Owing to HARPS high-precision absolute radial velocity measurements and the recent revision of the parameters of the α Cen pair, we show that Proxima and α Cen are gravitationally bound with a high degree of confidence. The orbital period of Proxima is ≈ 550 000 yr. With an eccentricity of , Proxima comes within kau of α Cen at periastron, and is currently close to apastron ( kau). This orbital motion may have influenced the formation or evolution of the recently discovered planet orbiting Proxima, as well as circumbinary planet formation around α Cen. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 072.C-0488(E), 082.C-0718(B), 183.C-0437(A), 191.C-0505(A) and 096.C-0082(A).

  7. Vertical sleeve gastrectomy

    MedlinePlus

    ... closed. The surgery takes 60 to 90 minutes. Weight-loss surgery may increase your risk of gallstones. Your surgeon ... the gallbladder. It may be done before the weight-loss surgery or at the same time. Why the Procedure ...

  8. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  9. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  10. Magnetospheric Multiscale (MMS) Orbit

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...

  11. Family of Orbiters

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time.

    All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet.

    Phoenix will land just south of Mars's north polar ice cap.

  12. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The orbiter Atlantis is moved aboard an orbiter transporter from the Orbiter Processing Facility (OPF) bay 3 over to the Vehicle Assembly Building (VAB). In the background (right) are OPF bays 1 and 2. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  13. Optimization of the Helical Orbits in the Tevatron

    SciTech Connect

    Alexahin, Y.; /Fermilab

    2007-06-01

    To avoid multiple head-on collisions the proton and antiproton beams in the Tevatron move along separate helical orbits created by 7 horizontal and 8 vertical electrostatic separators. Still the residual long-range beam-beam interactions can adversely affect particle motion at all stages from injection to collision. With increased intensity of the beams it became necessary to modify the orbits in order to mitigate the beam-beam effect on both antiprotons and protons. This report summarizes the work done on optimization of the Tevatron helical orbits, outlines the applied criteria and presents the achieved results.

  14. Fast global orbit feedback system in PLS-II

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, C.; Kim, J. M.; Kim, K. R.; Lee, E. H.; Lee, J. W.; Lee, T. Y.; Park, C. D.; Shin, S.; Yoon, J. C.; Cho, W. S.; Park, G. S.; Kim, S. C.

    2016-12-01

    The transverse position of the electron beam in the Pohang Light Source-II is stabilized by the global orbit feedback system. A slow orbit feedback system has been operating at 2 Hz, and a fast orbit feedback (FOFB) system at 813 Hz was installed recently. This FOFB system consists of 96 electron-beam-position monitors, 48 horizontal fast correctors, 48 vertical fast correctors and Versa Module Europa bus control system. We present the design and implementation of the FOFB system and its test result. Simulation analysis is presented and future improvements are suggested.

  15. Close supermassive binary black holes.

    PubMed

    Gaskell, C Martin

    2010-01-07

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive black-hole binary (SMBB). The AGN J1536+0441 ( = SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that J1536+0441 is an example of line emission from a disk. If this is correct, the lack of clear optical spectral evidence for close SMBBs is significant, and argues either that the merging of close SMBBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.

  16. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Cooper, J. F.; Mahaffy, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; Acuna, M.; Allen, M.; Bjoraker, G.; Brasunas, J.; Farrell, W.; Burchell, M. J.; Burger, M.; Chin, G.; Coates, A. J.; Farrell, W.; Flasar, M.; Gerlach, B.; Gorevan, S.; Hartle, R. E.; Im, Eastwood; Jennings, D.; Johnson, R. E.

    2007-01-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. One could also use aerobraking to put spacecraft into orbit around Saturn first for an Enceladus phase of the mission and then later use aerocapture to put spacecraft into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG approx. 1000 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan's atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  17. Orbital granulocytic sarcoma

    PubMed Central

    Stockl, F.; Dolmetsch, A.; Saornil, M; Font, R.; Burnier, M.

    1997-01-01

    AIM—Orbital granulocytic sarcoma is a localised tumour composed of cells of myeloid origin. Histological diagnosis can be difficult in patients with poorly differentiated orbital tumours and no evidence of systemic leukaemia. The naphthol AS-D chloracetate esterase (Leder stain) and immunohistochemical stains for lysozyme and MAC387 were used to determine the staining characteristics of these tumours. A case series of seven patients with orbital granulocytic sarcoma is presented.
METHODS—Seven patients with orbital granulocytic sarcoma were studied. Haematoxylin and eosin, Leder, and lysozyme stained sections were available in seven cases. Unstained formalin fixed paraffin embedded sections of seven cases were available for immunohistochemical evaluation using the avidin-biotin-complex technique for MAC387.
RESULTS—The mean age of presentation of the orbital tumour was 8.8 years. Four patients presented with an orbital tumour before any systemic manifestations of leukaemia. In two cases the diagnosis of the orbital tumour and systemic leukaemia was made simultaneously. There was one case of established systemic myeloid leukaemia in remission with the subsequent development of orbital granulocytic sarcoma. Six of seven cases (86%) were positive for the Leder stain. Five of seven cases (71%) showed positive immunoreactivity with lysozyme. The immunohistochemical stain for MAC387 was positive in all seven cases (100%) including one case that was negative for both lysozyme and Leder stains.
CONCLUSIONS—Orbital granulocytic sarcoma is a tumour that affects children and can present with rapidly progressive proptosis. This tumour may develop before, during, or after the occurrence of systemic leukaemia. The combination of Leder and lysozyme stains is useful in the diagnosis of orbital granulocytic sarcoma. MAC387 may be a more reliable marker for orbital granulocytic sarcoma.

 PMID:9497470

  18. Kalman Orbit Optimized Loop Tracking

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  19. Spin-orbit coupling and chaotic rotation for coorbital bodies in quasi-circular orbits

    SciTech Connect

    Correia, Alexandre C. M.; Robutel, Philippe

    2013-12-10

    Coorbital bodies are observed around the Sun sharing their orbits with the planets, but also in some pairs of satellites around Saturn. The existence of coorbital planets around other stars has also been proposed. For close-in planets and satellites, the rotation slowly evolves due to dissipative tidal effects until some kind of equilibrium is reached. When the orbits are nearly circular, the rotation period is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We show the existence of an entirely new family of spin-orbit resonances at the frequencies n ± kν/2, where n is the orbital mean motion, ν the orbital libration frequency, and k an integer. In addition, when the natural rotational libration frequency due to the axial asymmetry, σ, has the same magnitude as ν, the rotation becomes chaotic. Saturn coorbital satellites are synchronous since ν << σ, but coorbital exoplanets may present non-synchronous or chaotic rotation. Our results prove that the spin dynamics of a body cannot be dissociated from its orbital environment. We further anticipate that a similar mechanism may affect the rotation of bodies in any mean-motion resonance.

  20. Orbital varix thrombosis: a rare cause of unilateral proptosis

    PubMed Central

    Wade, Ryckie George; Maddock, Thomas B; Ananth, Srinivasan

    2013-01-01

    Orbital varices are thin walled, low flow, distensible veins which may rarely present with periorbital pain, proptosis or visual loss. Most orbital varices may be managed conservatively and only warrant surgery in the presence of recurrent thrombosis, disfiguring proptosis or acute visual loss. This report concerns an 84-year-old Caucasian woman who was admitted following a fall and noted to have isolated proptosis of the right eye, with vertical diplopia. All biochemical and haematological investigations were normal. A CT scan of the orbits demonstrated a serpiginous soft tissue mass within the superior portion of the right orbit, consistent with a thrombosed orbital varix. Conservative management was agreed with prism glasses and ophthalmological follow-up. PMID:23355578

  1. Transformed variables and hodographs in impulsive orbit transfer

    NASA Astrophysics Data System (ADS)

    Carter, Thomas; Humi, Mayer

    2016-06-01

    Recently a transformation of variables has been used for an object in a Newtonian gravitational field that linearizes the equations of motion. This transformation has been found useful for unconstrained orbital rendezvous and transfer problems. This paper examines the geometry of these transformed variables for planar orbital transfer problems. The transformed initial, final, and transfer orbits are either points or circles with centers on a horizontal axis. Applied velocity impulses cause horizontal jumps between these points or centers and vertical jumps between points on the circular arcs. These transformed orbits are shown to have an equivalence to the well-known classical hodographs. Because of this equivalence the orbit equation can be represented by another set of linear equations in terms of the radial velocity, transverse velocity, and the reciprocal of the angular momentum.

  2. Orbital Behavior of Captured Satellites: The Effect of Solar Gravity on Triton's Post-Capture Orbit

    NASA Astrophysics Data System (ADS)

    Benner, Lance A. M.; McKinnon, William B.

    1995-03-01

    The effects of solar perturbations on the postcapture orbital behavior of satellites are investigated in the context of the restricted, circular three-body problem as applied to Neptune, Triton, and the Sun. Highly eccentric and inclined satellite orbits are considered; thus a numerical, phenomenological approach is taken to describe variations of the satellite's orbital elements. We focus on harmonic variations in specific orbital angular momentum h, and thus pericenter distance q, eccentricity e , semimajor axis a, and inclination to Neptune's orbital plane i . From prograde and retrograde simulations over a range of eccentricities and semimajor axes, a momentum oscillation is found with a period of half a Neptune year and an amplitude proportional to a2e2 cos i. Inclined orbits also experience a longer period, secular-torque-driven variation in h associated with orbital precession and nutation, upon which the semiannual oscillation is superimposed. The amplitude of the longer period variation can exceed and dominate the semiannual variation, and the two can combine to produce much larger variations in the elements q, e, and i than is possible for noninclined orbits, leading in some circumstances to "Neptune,grazing." Consequently, if Triton was temporarily gravitationally captured, solar perturbations could have increased e and reduced h sufficiently to drive the pericenter close to Neptune. There, interactions with a gaseous protoplanetary nebula or a collision with an existing satellite could have dissipated enough orbital energy to make capture permanent. It is more likely, though, that Triton was promptly captured by collision or gas drag into a lower q state to begin with. In either situation, capture at lower q ensures that further orbital variation does not bring Triton dangerously close to Neptune. Repeated close flybys following permanent capture are likely (and could also occur in the less likely event of an extended temporary capture). Multiple close

  3. Reticulohistiocytoma of the Orbit

    PubMed Central

    Weissman, Heather M.; Hayek, Brent R.; Grossniklaus, Hans E.

    2015-01-01

    Reticulohistiocytoma is a rare, benign histiocytic proliferation of the skin or soft tissue. While ocular involvement has been documented in the past, there have been no previously reported cases of reticulohistiocytoma of the orbit. In this report, the authors describe a reticulohistiocytoma of the orbit in a middle-aged woman. PMID:24807799

  4. Statistical initial orbit determination

    SciTech Connect

    Taff, L.G.; Belkin, B.; Schweiter, G.A.; Sommar, K. D.H. Wagner Associates, Inc., Paoli, PA )

    1992-02-01

    For the ballistic missile initial orbit determination problem in particular, the concept of 'launch folders' is extended. This allows to decouple the observational data from the initial orbit determination problem per se. The observational data is only used to select among the possible orbital element sets in the group of folders. Monte Carlo simulations using up to 7200 orbital element sets are described. The results are compared to the true orbital element set and the one a good radar would have been able to produce if collocated with the optical sensor. The simplest version of the new method routinely outperforms the radar initial orbital element set by a factor of two in future miss distance. In addition, not only can a differentially corrected orbital element set be produced via this approach - after only two measurements of direction - but also an updated, meaningful, six-dimensional covariance array for it can be calculated. This technique represents a significant advance in initial orbit determination for this problem, and the concept can easily be extended to minor planets and artificial satellites. 9 refs.

  5. Orbital Shape Representations.

    ERIC Educational Resources Information Center

    Kikuchi, Osamu; Suzuki, Keizo

    1985-01-01

    Discusses the use of orbital shapes for instructional purposes, emphasizing that differences between polar, contour, and three-dimensional plots must be made clear to students or misconceptions will occur. Also presents three-dimensional contour surfaces for the seven 4f atomic orbitals of hydrogen and discusses their computer generation. (JN)

  6. Managing resonant-trapped orbits in our Galaxy

    NASA Astrophysics Data System (ADS)

    Binney, James

    2016-11-01

    Galaxy modelling is greatly simplified by assuming the existence of a global system of angle-action coordinates. Unfortunately, global angle-action coordinates do not exist because some orbits become trapped by resonances, especially where the radial and vertical frequencies coincide. We show that in a realistic Galactic potential such trapping occurs only on thick-disc and halo orbits (speed relative to the guiding centre ≳ 80 km s- 1). We explain how the TORUS MAPPER code (TM) behaves in regions of phase space in which orbits are resonantly trapped, and we extend TM so that trapped orbits can be manipulated as easily as untrapped ones. The impact that the resonance has on the structure of velocity space depends on the weights assigned to trapped orbits. The impact is everywhere small if each trapped orbit is assigned the phase space density equal to the time average along the orbit of the DF for untrapped orbits. The impact could be significant with a different assignment of weights to trapped orbits.

  7. Orbital endoscopic surgery.

    PubMed

    Prabhakaran, Venkatesh C; Selva, Dinesh

    2008-01-01

    Minimally invasive "keyhole" surgery performed using endoscopic visualization is increasing in popularity and is being used by almost all surgical subspecialties. Within ophthalmology, however, endoscopic surgery is not commonly performed and there is little literature on the use of the endoscope in orbital surgery. Transorbital use of the endoscope can greatly aid in visualizing orbital roof lesions and minimizing the need for bone removal. The endoscope is also useful during decompression procedures and as a teaching aid to train orbital surgeons. In this article, we review the history of endoscopic orbital surgery and provide an overview of the technique and describe situations where the endoscope can act as a useful adjunct to orbital surgery.

  8. Orbital Plots Using Gnuplot

    NASA Astrophysics Data System (ADS)

    Moore, Brian G.

    2000-06-01

    The plotting program Gnuplot is freely available, general purpose, easy to use, and available on a variety of platforms. Complex three-dimensional surfaces, including the familiar angular parts of the hydrogen atom orbitals, are easily represented using Gnuplot. Contour plots allow viewing the radial and angular variation of the probability density in an orbital. Examples are given of how Gnuplot is used in an undergraduate physical chemistry class to view familiar atomic orbitals in new ways or to generate views of orbital functions that the student may have not seen before. Gnuplot may also be easily integrated into the environment of a Web page; an example of this is discussed (and is available at http://onsager.bd.psu.edu/~moore/orbitals_gnuplot). The plotting commands are entered with a form and a CGI script is used to run Gnuplot and display the result back to the browser.

  9. Congenital Orbital Teratoma

    PubMed Central

    Pellerano, Fernando; Guillermo, Elvis; Garrido, Gloreley; Berges, Pedro

    2017-01-01

    We report a case of congenital orbital teratoma. A 3-day-old male, born at 39 weeks’ gestation without relevant prenatal history, presented with a large vascularized proptotic mass distorting the left midface. Laboratory studies showed elevated serum alpha-fetoprotein (12,910 ng/ml). Computed tomography showed a multiloculated heterogeneous lesion composed of hypodense and hyperdense calcified areas encompassing the whole orbital cavity with expansion of the bony walls, as well as forward displacement and compression of the eyeball without extension to surrounding structures. Clinical, imaging and laboratory features were consistent with congenital orbital teratoma. Due to pronounced proptosis with exposure keratopathy and corneal perforation, no motility of the globe and no vision in the affected eye in a resource-limited setting, the patient underwent orbital exenteration. Histopathological examination confirmed the diagnosis of mature cystic teratoma. We describe the clinical course, radiographic and histopathological findings of this rare orbital tumor. PMID:28275597

  10. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.

  11. Congenital Orbital Teratoma.

    PubMed

    Pellerano, Fernando; Guillermo, Elvis; Garrido, Gloreley; Berges, Pedro

    2017-01-01

    We report a case of congenital orbital teratoma. A 3-day-old male, born at 39 weeks' gestation without relevant prenatal history, presented with a large vascularized proptotic mass distorting the left midface. Laboratory studies showed elevated serum alpha-fetoprotein (12,910 ng/ml). Computed tomography showed a multiloculated heterogeneous lesion composed of hypodense and hyperdense calcified areas encompassing the whole orbital cavity with expansion of the bony walls, as well as forward displacement and compression of the eyeball without extension to surrounding structures. Clinical, imaging and laboratory features were consistent with congenital orbital teratoma. Due to pronounced proptosis with exposure keratopathy and corneal perforation, no motility of the globe and no vision in the affected eye in a resource-limited setting, the patient underwent orbital exenteration. Histopathological examination confirmed the diagnosis of mature cystic teratoma. We describe the clinical course, radiographic and histopathological findings of this rare orbital tumor.

  12. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  13. Hydrodynamic Stability Criteria for Vertically Stratified Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Stewart, Glen R.

    2014-11-01

    Whenever a vertically stratified circumstellar disk has a radial entropy gradient, the balance of forces in the radial and vertical directions implies that the unperturbed orbit frequency is a function of both radius and height above the midplane of the disk. This vertical shear in the orbit frequency can produce baroclinic instabilities that result in slanted convection in the r-z plane, vertical corrugations of the disk midplane, and outward angular momentum transport with an effective alpha of 0.001 (Nelson et al., MNRAS 435, 2610-2632, (2013)). It is difficult to derive a rigorous dispersion relation for this instability due to the inseparable nature of the r and z-dependence of the problem. Previously published stability criteria are limited to small vertical scales because they assume the vertical component of the star’s gravity to be independent of z. This limitation can be overcome if one assumes that the vertical structure near the disk midplane is nearly adiabatic, so that the anelastic approximation is valid. For this case, the problem can be reduced to a set of three evolution equations for the z-component of the angular momentum, the potential temperature, and the component of vorticity due to motions in the r-z plane. This reduced dynamical system has a Hamiltonian structure that allows one to readily derive a Liapunov functional that governs the linear and nonlinear stability of the problem. The stability criterion reduces to a statement about the relative slopes in the r-z plane of the surfaces of constant angular momentum and constant potential temperature in the unperturbed disk. This stability condition is analogous to the criterion for symmetric baroclinic instabilities in planetary atmospheres. Support from NASA’s Origins of Solar Systems program is gratefully acknowledged.

  14. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and starboard with the Space Shuttle Main Engines (SSME) and Orbiter Maneuvering System/Reaction Control System pods removed. The openings for the SSMEs have been covered with a flexible barrier to create a positive pressure envelope inside of the aft fuselage. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and port with the Space Shuttle Main Engines (SSME) and Orbiter Maneuvering System/Reaction Control System pods still in place. However. the heat shields have been removed from the SSMEs providing a good view toward the interior of the aft fuselage. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  16. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and starboard with the Space Shuttle Main Engines (SSME) and Orbiter Maneuvering System/Reaction Control System pods still in place. However. the heat shields have been removed from the SSMEs providing a good view toward the interior of the aft fuselage. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  17. Closeup view of the aft fuselage of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the aft fuselage of the Orbiter Discovery on the starboard side looking forward. This view is of the attach surface for the Orbiter Maneuvering System/Reaction Control System (OMS/RCS) Pod. The OMS/RCS pods are removed for processing and reconditioning at another facility. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. Closeup view looking forward along the centerline of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view looking forward along the centerline of the Orbiter Discovery looking into the payload bay. This view is a close-up view of the external airlock and the beam-truss attach structure supporting it and attaching it to the payload bay sill longerons. Also note the protective covering over the docking mechanism on top of the airlock assembly. This external airlock configuration was for mating to the International Space Station. This photograph was taken in the Orbiter Processing Facility at Kennedy Space Cente - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. Orbital Causes of Incomitant Strabismus

    PubMed Central

    Lueder, Gregg T.

    2015-01-01

    Strabismus may result from abnormal innervation, structure, or function of the extraocular muscles. Abnormalities of the orbital bones or masses within the orbit may also cause strabismus due to indirect effects on the extraocular muscles. This paper reviews some disorders of the orbit that are associated with strabismus, including craniofacial malformations, orbital masses, trauma, and anomalous orbital structures. PMID:26180465

  20. Stability of Frozen Orbits Around Europa

    NASA Astrophysics Data System (ADS)

    Cardoso Dos Santos, Josué; Vilhena de Moraes, R.; Carvalho, J. S.

    2013-05-01

    Abstract (2,250 Maximum Characters): A planetary satellite of interest at the present moment for the scientific community is Europa, one of the four largest moons of Jupiter. There are some missions planned to visit Europa in the next years, for example, Jupiter Europa Orbiter (JEO, NASA) and Jupiter IcyMoon Explorer (JUICE, ESA). In this work we are formulating theories and constructing computer programs to be used in the design of aerospace tasks as regards the stability of artificial satellite orbits around planetary satellites. The studies are related to translational motion of orbits around planetary satellites considering polygenic perturbations due to forces, such as the nonspherical shape of the central body and the perturbation of the third body. The equations of motion will be developed in closed form to avoid expansions in eccentricity and inclination. For a description of canonical formalism are used the Delaunay canonical variables. The canonical set of equations, which are nonlinear differential equations, will be used to study the stability of orbits around Europa. We will use a simplified dynamic model, which considers the effects caused by non-uniform distribution of mass of Europa (J2, J3 and C22) and the gravitational attraction of Jupiter. Emphasis will be given to the case of frozen orbits, defined as having almost constant values of eccentricity, inclination, and argument of pericentre. An approach will be used to search for frozen orbits around planetary satellites and study their stability by applying a process of normalization of Hamiltonian. Acknowledges: FAPESP

  1. Orbital Evolution of Jupiter-Family Comets

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. S.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We investigated the evolution for periods of at least 5-10 Myr of 2500 Jupiter-crossing objects (JCOs) under the gravitational influence of all planets, except for Mercury and Pluto (without dissipative factors). In the first series we considered N=2000 orbits near the orbits of 30 real Jupiter-family comets with period less than 10 yr, and in the second series we took 500 orbits close to the orbit of Comet 10P Tempel 2. We calculated the probabilities of collisions of objects with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr and then summarized the results for all time intervals and all bodies, obtaining the total probability P(sub sigma) of collisions with a planet and the total time interval T(sub sigma) during which perihelion distance of bodies was less than a semimajor axis of the planet. The values of P = 10(exp 6)P(sub sigma)/N and T = T(sub sigma)/1000 yr are presented in Table together with the ratio r of the total time interval when orbits were of Apollo type (at e less than 0.999) to that of Amor type.

  2. Vertical trapezius musculocutaneous flap: a retrospective study.

    PubMed

    Papadopoulos, Othon N; Chrisostomidis, Chrisostomos I; Georgiou, Panagis N; Frangoulis, Marios B; Zapantis-Fragos, Menelaos K; Champsas, Grigorios G

    2005-01-01

    From 1986 to 2001, 17 patients (aged 26-77 years) were treated using the vertical trapezius musculocutaneous flap. A two-stage procedure was used in 7 and a single-stage island flap in 10. The donor site was closed directly in all patients. Mean length of hospital stay was 16 days (range 12-25). There was no operative mortality. Complications were one partial flap necrosis and two seromas of the donor site, complicated by infection. With a minimum follow-up of more than two years, our study confirms the usefulness of the vertical trapezius musculocutaneous flap in head and neck reconstructive surgery. It is a reliable, thin flap of uniform thickness, which carries hairless skin. The length and thickness of its pedicle allows excellent mobility. The main disadvantage of the flap is the complete sacrifice of the muscle necessary for total mobilisation of the flap, and the intraoperative repositioning of the patient.

  3. Velocity Field in a Vertical Foam Film

    NASA Astrophysics Data System (ADS)

    Seiwert, Jacopo; Kervil, Ronan; Nou, Soniraks; Cantat, Isabelle

    2017-01-01

    The drainage of vertical foam films governs their lifetime. For a foam film supported on a rectangular solid frame, when the interface presents a low resistance to shear, the drainage dynamics involves a complex flow pattern at the film scale, leading to a drainage time proportional to the frame width. Using an original velocimetry technique, based on fluorescent foam films and photobleaching, we measure the horizontal and vertical components of the velocity in a draining film, thus providing the first quantitative experimental evidence of this flow pattern. Upward velocities up to 10 cm /s are measured close to the lateral menisci, whereas a slower velocity field is obtained in the center of the film, with comparable downwards and horizontal components. Scaling laws are proposed for all characteristic velocities, coupling gravitational effects, and capillary suction.

  4. Pioneer Venus orbiter electron temperature probe

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1994-01-01

    This document lists the scientific accomplishments of the Orbiter Electron Temperature Probe (OETP) group. The OETP instrument was fabricated in 1976, integrated into the PVO spacecraft in 1977, and placed in orbit about Venus in December 1978. The instrument operated flawlessly for nearly 14 years until PVO was lost as it entered the Venusian atmosphere in October 1992. The OETP group worked closely with other PVO investigators to examine the Venus ionosphere and its interactions with the solar wind. After the mission was completed we continued to work with the scientist selected for the Venus Data Analysis Program (VDAP), and this is currently leading to additional publications.

  5. Orbital Evolution of Jupiter-Family Comets

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. S.

    2002-05-01

    We investigated the evolution for periods of at least 5-10 Myr of 2500 Jupiter-crossing objects (JCOs) under the gravitational influence of all planets, except for Mercury and Pluto (without dissipative factors). In the first series we considered N=2000 orbits near the orbits of 30 real Jupiter-family comets with period <10 yr, and in the second series we took 500 orbits close to the orbit of Comet 10P Tempel 2. We calculated the probabilities of collisions of objects with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr and then summarized the results for all time intervals and all bodies, obtaining the total probability PΣ of collisions with a planet and the total time interval TΣ during which perihelion distance of bodies was less than a semimajor axis of the planet. The values of P = 106 PΣ /N and T = TΣ /1000 yr are presented in Table together with the ratio r of the total time interval when orbits were of Apollo type (at e<0.999) to that of Amor type. Venus & Venus & Earth & Earth & Mars & Mars & - N & T & P & T & P & T & P & r 2000 & 9.3 & 6.62 & 14.0 & 6.65 & 24.7 & 2.03 & 1.32 500 & 24.9 & 16.3 & 44.0 & 24.5 & 96.2 & 5.92 & 1.49 The probability of collisions with the Earth for 3 former JCOs, each of which moved for more than 1 Myr in Earth-crossing orbits, (usually more than 80% of such collisions with the terrestrial planets were from orbits with aphelion distance <4.2 AU) was 1.5 times greater than that for 1997 other JCOs. About 1 of 300 JCOs collided with the Sun. The total time during which former 2000 JCOs were in Apollo-type and Amor-type orbits was 28.7 and 21.75 Myr, respectively, but 12.7 and 11.4 Myr of the above times were due to three objects. One former JCO spent some time in orbits with aphelia deep inside Jupiter's orbit, and then it moved for tens of Myr in the trans-Neptunian region, partly in low eccentricity and partly in high eccentricity orbits. We acknowledge support of this work by NASA grant

  6. Orbit stability and feedback control in synchrotron radiation rings

    SciTech Connect

    Yu, L.H.

    1989-01-01

    Stability of the electron orbit is essential for the utilization of a low emittance storage ring as a high brightness radiation source. We discuss the development of the measurement and feedback control of the closed orbit, with emphasis on the activities as the National Synchrotron Light Source of BNL. We discuss the performance of the beam position detectors in use and under development: the PUE rf detector, split ion chamber detector, photo-emission detector, solid state detector, and the graphite detector. Depending on the specific experiments, different beamlines require different tolerances on the orbit motion. Corresponding to these different requirements, we discuss two approaches to closed orbit feedback: the global and local feedback systems. Then we describe a new scheme for the real time global feedback by implementing a feedback system based upon a harmonic analysis of both the orbit movements and the correction magnetic fields. 14 refs., 6 figs., 2 tabs.

  7. A World Vertical Network.

    DTIC Science & Technology

    1980-02-01

    and continental levelling nets into a unifiled World Vertical Network. OD ,~ 173 OITON F I OV 5 I OSOLEI tnc las 9if led SECURITY CLASSIP CATION O T...rp,0p,Xp is T(P) = V(P) - U (P) (2.2) The gravity potential of the Earth is W(P) = V(P) + ((P) (2.3) where o ( P) = w rp’ cos 2 Op corresponds to the...is, therefore, A W(P,Q) = U(P) + T(P) + 0 (P) - U(Q) - T(Q) - o (Q) (2.4) With both P and Q on the Earth’s surface, the uncertainties in the calculated

  8. Multicolored Vertical Silicon Nanowires

    SciTech Connect

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  9. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  10. Orbit Stabilization of Nanosat

    SciTech Connect

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  11. OL- ORBITAL LIFETIME PROGRAM

    NASA Technical Reports Server (NTRS)

    Orr, L. H.

    1994-01-01

    The Orbital Lifetime (OL) program analyzes the long-term motion of Earth-orbiting spacecraft at altitudes of up to 2500 kilometers. It models perturbations to the orbit caused by solar radiation pressure, atmospheric drag, and gravitational effects due to the sun, the moon, and Earth oblateness. OL can be used to predict the orbital lifetime and decay rate of a satellite. The atmospheric density models used in OL are the U.S. Standard Atmosphere for altitudes below 90 km and the Jacchia model for altitudes above 90 km. The Jacchia model requires solar flux and geomagnetic index for the date of orbit. An input file containing these values for 1984 to 1998 is supplied with the OL package. The solar radiation pressure calculations in OL will predict the amount of time a spacecraft is subjected to the Earth's shadow. Input to OL includes spacecraft physical characteristics, initial orbit parameters, and launch date/time. OL calculates time histories of the orbital elements, total lifetime, and decay rates. A spacecraft is considered 'down' at an altitude of 64 km. OL also generates a file of plot data which can be input to a user-supplied graphics program for lifetime plots of altitude against time. OL is written in FORTRAN 77 for interactive or batch execution and has been implemented on a DEC VAX series computer operating under VMS. This program was developed in 1985.

  12. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    SciTech Connect

    Wootton, Kent

    2015-09-17

    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 #6;± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  13. Mars Reconnaissance Orbiter Accelerometer Experiment Results

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Bougher, S. W.; Theriot, M. E.; Zurek, R. W.; Blanchard, R. C.; Tolson, R. H.; Murphy, J. R.

    2007-05-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005, designed for aerobraking, achieved Mars Orbital Insertion (MOI), March 10, 2006. Atmospheric density decreases exponentially with increasing height. By small propulsive adjustments of the apoapsis orbital velocity, periapsis altitude is fine tuned to the density surface that safely used the atmosphere of Mars to aerobrake over 400 orbits. MRO periapsis precessed from the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis was brought dramatically from 40,000km at MOI to 460 km at aerobraking completion (ABX) August 30, 2006. After ABX, a few small propulsive maneuvers established the Primary Science Orbit (PSO), which without aerobraking would have required an additional 400 kg of fuel. Each of the 400 plus aerobraking orbits provided a vertical structure and distribution of density, scale heights, and temperatures, along the orbital path, providing key in situ insight into various upper atmosphere (greater than 100 km) processes. One of the major questions for scientists studying Mars is: "Where did the water go?" Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities at the requests of The George Washington University, JPL, and Lockheed Martin. The improved accelerometer sensitivities allowed density measurements to exceed 200km, at least 40 km higher than with Mars Odyssey (MO). This extended vertical structures from MRO into the neutral lower exosphere, a region where various processes may allow atmospheric gasses to escape. Over the eons, water may have been lost in both near the surface and in the upper atmosphere. Thus the water balance throughout the entire atmosphere from subsurface to exosphere may both be critical. Comparisons of data from Mars Global Surveyor (MGS), MO and MRO help characterize key temporal and spatial cycles including: winter polar warming, planetary scale

  14. Removal of orbital debris

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.; Talent, David L.

    1989-01-01

    The several methods presently identified for the reduction of orbital debris populations are broadly classifiable as either preventive or remedial, and fall within distinctive operational regimes. For all particles, (1) in the 250-2000-km altitude band, intelligent sweepers may be used; (2) for large objects, in the 80-250-km altitude band, orbital decay renders removal impractical; (3) for the 250-750-km altitude band, deorbit devices should be used; (4) for 750-2500-km altitude, OMV rendezvous for propulsive deorbit package attachment is foreseeable; and beyond 2500 km, (5) propulsive escape from earth orbit is required.

  15. The orbital record in stratigraphy

    NASA Technical Reports Server (NTRS)

    Fischer, Alfred G.

    1992-01-01

    , and (2) presence of abundant microfossils yields close ties to geochronology. A tantalizing possibility that stratigraphy may yield a record of orbital signals unrelated to climate has turned up in magnetic studies of our Cretaceous core. Magnetic secular variations here carry a strong 39 ka periodicity, corresponding to the theoretical obliquity period of that time - Does the obliquity cycle perhaps have some direct influence on the magnetic field?

  16. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  17. FAST DIGITAL ORBIT FEEDBACK SYSTEMS AT NSLS.

    SciTech Connect

    PODOBEDOV,B.; KUSHNER,B.; RAMAMOORTHY,S.; TANG,Y.; ZITVOGEL,E.

    2001-06-18

    We are implementing digital orbit feedback systems to replace the analog ones in both the VUV and the X-ray rings. We developed an original VME-based design which is run by a powerful Motorola 2305 CPU and consists entirely of off-the-shelf VME boards. This makes the system inexpensive and easy to configure, and allows for high digitizing rates. The new 5 kHz digital global feedback system is currently operational in the VUV ring, and the X-ray system is in the commissioning phase. Some of the parameters achieved include vertical correction bandwidth of 200 Hz (at DC gain of 100) and typical orbit drift over a fill of <3% of the rms beam size. In this paper we discuss the system architecture, implementation and performance.

  18. Naso-orbital fistula and socket reconstruction with radial artery forearm flap following orbital mucormycosis

    PubMed Central

    Bhatnagar, Ankur; Agarwal, Amit

    2016-01-01

    Invasive mucormycosis is an uncommon cause of orbital exenteration. Reconstruction of an exenterated orbit is a surgical challenge. The loss of eyelids, adnexal structures, and even surrounding skin causes significant facial disfigurement. The goal for reconstruction demands a symmetrical orbital cavity with good prosthetic rehabilitation. Multiple reconstructive options in the form of skin grafts, local flaps, and free flaps are available. However, none of them provide ideal reconstruction. Our patient not only had extensive soft-tissue loss and unstable lining but also a large naso-orbital fistula. Reconstruction for this complex defect was done using an adipofascial radial artery flap which not only closed the fistula but also provided soft-tissue bulk and good skin match. Radial artery forearm flap provides a simple, stable, and good reconstructive option postorbital exenteration. PMID:28356694

  19. Reconstruction of the Orbit With a Temporalis Muscle Flap After Orbital Exenteration

    PubMed Central

    Uyar, Yavuz; Yıldırım, Güven; Kuzdere, Mustafa; Arbağ, Hamdi; Jorayev, Chary; Kılıç, Mehmet Vefa; Gümrükçü, Said Serdar

    2015-01-01

    Objectives This study presents the role of the temporalis muscle flap in primary reconstruction after orbital exenteration. Methods A retrospective nonrandomized study of orbital exenterations performed between 1990 and 2010 for malignant tumors of the skin, paranasal sinus, and nasal cavity is presented. Results The study included 13 patients (nine men, four women; age range, 30-82 years) with paranasal sinus, nasal cavity, or skin carcinomas. Primary reconstruction of the cavity was performed in all patients after orbital exenteration. No visible defects in the muscle flap donor site were present. Local recurrences were readily followed up with nasal endoscopy, whereas radiology helped to diagnose intracranial involvement in three patients. Two patients died of systemic metastases and five died for other reasons Conclusion The temporalis muscle flap is readily used to close the defect after orbital exenteration, and does not prevent the detection of recurrence. PMID:25729496

  20. Spaceport aurora: An orbiting transportation node

    NASA Technical Reports Server (NTRS)

    1990-01-01

    With recent announcements of the development of permanently staffed facilities on the Moon and Mars, the national space plan is in need of an infrastructure system for transportation and maintenance. A project team at the University of Houston College of Architecture and the Sasakawa International Center for Space Architecture, recently examined components for a low Earth orbit (LEO) transportation node that supports a lunar build-up scenario. Areas of investigation included identifying transportation node functions, identifying existing space systems and subsystems, analyzing variable orbits, determining logistics strategies for maintenance, and investigating assured crew return systems. The information resulted in a requirements definition document, from which the team then addressed conceptual designs for a LEO transportation node. The primary design drivers included: orbital stability, maximizing human performance and safety, vehicle maintainability, and modularity within existing space infrastructure. For orbital stability, the power tower configuration provides a gravity gradient stabilized facility and serves as the backbone for the various facility components. To maximize human performance, human comfort is stressed through zoning of living and working activities, maintaining a consistent local vertical orientation, providing crew interaction and viewing areas and providing crew return vehicles. Vehicle maintainability is accomplished through dual hangars, dual work cupolas, work modules, telerobotics and a fuel depot. Modularity is incorporated using Space Station Freedom module diameter, Space Station Freedom standard racks, and interchangeable interior partitions. It is intended that the final design be flexible and adaptable to provide a facility prototype that can service multiple mission profiles using modular space systems.

  1. Orbitals from local RDMFT: Are they Kohn-Sham or natural orbitals?

    SciTech Connect

    Theophilou, Iris; Helbig, Nicole; Lathiotakis, Nektarios N.; Gidopoulos, Nikitas I.; Rubio, Angel

    2015-08-07

    Recently, an approximate theoretical framework was introduced, called local reduced density matrix functional theory (local-RDMFT), where functionals of the one-body reduced density matrix (1-RDM) are minimized under the additional condition that the optimal orbitals satisfy a single electron Schrödinger equation with a local potential. In the present work, we focus on the character of these optimal orbitals. In particular, we compare orbitals obtained by local-RDMFT with those obtained with the full minimization (without the extra condition) by contrasting them against the exact NOs and orbitals from a density functional calculation using the local density approximation (LDA). We find that the orbitals from local-RMDFT are very close to LDA orbitals, contrary to those of the full minimization that resemble the exact NOs. Since local RDMFT preserves the good quality of the description of strong static correlation, this finding opens the way to a mixed density/density matrix scheme, where Kohn-Sham orbitals obtain fractional occupations from a minimization of the occupation numbers using 1-RDM functionals. This will allow for a description of strong correlation at a cost only minimally higher than a density functional calculation.

  2. Cassini orbit determination performance during the first eight orbits of the Saturn satellite tour

    NASA Technical Reports Server (NTRS)

    Antreasian, P. G.; Bordi, J. J.; Criddle, K. E.; Ionasescu, R.; Jacobson, R. A.; Jones, J. B.; MacKenzie, R. A.; Meek, M. C.; Pelletier, F. J.; Roth, D. C.; Roundhill, I. M.; Stauch, J.

    2005-01-01

    From June 2004 through July 2005, the Cassini/Huygens spacecraft has executed nine successful close-targeted encounters by three major satellites of the Saturnian system. Current results show that orbit determination has met design requirements for targeting encounters, Hugens descent, and predicting science instrument pointing for targetd satellite encounters. This paper compares actual target dispersion against, the predicte tour covariance analyses.

  3. THE FATE OF MOONS OF CLOSE-IN GIANT EXOPLANETS

    SciTech Connect

    Namouni, Fathi

    2010-08-20

    We show that the fate of moons of a close-in giant planet is mainly determined by the migration history of the planet in the protoplanetary disk. As the planet migrates in the disk from beyond the snow line toward a multi-day period orbit, the formed and forming moons become unstable as the planet's sphere of influence shrinks. Disk-driven migration is faster than the moons' tidal orbital evolution. Moons are eventually ejected from around close-in exoplanets or forced into collision with them before tides from the planet affect their orbits. If moons are detected around close-in exoplanets, they are unlikely to have been formed in situ, instead they were captured from the protoplanetary disk on retrograde orbits around the planets.

  4. Coupled resonator vertical cavity laser

    SciTech Connect

    Choquette, K.D.; Chow, W.W.; Hou, H.Q.; Geib, K.M.; Hammons, B.E.

    1998-01-01

    The monolithic integration of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. The authors report the first electrically injected coupled resonator vertical-cavity laser diode and demonstrate novel characteristics arising from the cavity coupling, including methods for external modulation of the laser. A coupled mode theory is used model the output modulation of the coupled resonator vertical cavity laser.

  5. ON-LINE TOOLS FOR PROPER VERTICAL POSITIONING OF VERTICAL SAMPLING INTERVALS DURING SITE ASSESSMENT

    EPA Science Inventory

    This presentation presents on-line tools for proper vertical positioning of vertical sampling intervals during site assessment. Proper vertical sample interval selection is critical for generate data on the vertical distribution of contamination. Without vertical delineation, th...

  6. Distant retrograde orbits for the Moon's exploration

    NASA Astrophysics Data System (ADS)

    Sidorenko, Vladislav

    We discuss the properties of the distant retrograde orbits (which are called quasi-satellite orbits also) around Moon. For the first time the distant retrograde orbits were described by J.Jackson in studies on restricted three body problem at the beginning of 20th century [1]. In the synodic (rotating) reference frame distant retrograde orbit looks like an ellipse whose center is slowly drifting in the vicinity of minor primary body while in the inertial reference frame the third body is orbiting the major primary body. Although being away the Hill sphere the third body permanently stays close enough to the minor primary. Due to this reason the distant retrograde orbits are called “quasi-satellite” orbits (QS-orbits) too. Several asteroids in solar system are in a QS-orbit with respect to one of the planet. As an example we can mention the asteroid 2002VE68 which circumnavigates Venus [2]. Attention of specialists in space flight mechanics was attracted to QS-orbits after the publications of NASA technical reports devoted to periodic moon orbits [3,4]. Moving in QS-orbit the SC remains permanently (or at least for long enough time) in the vicinity of small celestial body even in the case when the Hill sphere lies beneath the surface of the body. The properties of the QS-orbit can be studied using the averaging of the motion equations [5,6,7]. From the theoretical point of view it is a specific case of 1:1 mean motion resonance. The integrals of the averaged equations become the parameters defining the secular evolution of the QS-orbit. If the trajectory is robust enough to small perturbations in the simplified problem (i.e., restricted three body problem) it may correspond to long-term stability of the real-world orbit. Our investigations demonstrate that under the proper choice of the initial conditions the QS-orbits don’t escape from Moon or don’t impact Moon for long enough time. These orbits can be recommended as a convenient technique for the large

  7. ARTEMIS Orbits Magnetic Moon

    NASA Video Gallery

    NASA's THEMIS spacecraft have completed their mission and are still working perfectly, so NASA is re-directing the outermost two spacecraft to special orbits around the Moon. Now called ARTEMIS, th...

  8. Space Shuttle Orbiter ECLSS.

    NASA Technical Reports Server (NTRS)

    Stoll, O. T.; Laubach, G. E.; Gibb, J. W.

    1973-01-01

    The Orbiter Environmental Control and Life Support System (ECLSS) provides the functions of atmosphere revitalization, crew life support, active thermal conditioning, and airlock support for EVA and docking activities. The ECLSS must satisfy the requirements of orbital missions with four to ten crewmembers and mission duration of a few hours to 30 days and the requirements associated with an atmospheric horizontal flight test program and ferry flight missions. The ECLSS development plan utilizes an ECLSS ground test article and thermal/vacuum testing to support the first horizontal flight test at the end of 1976. The ground testing and horizontal flight test program certify the Orbiter ECLSS for the first orbital flight in early 1978.

  9. MMS Orbit Animation

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS)mission, a Solar Terrestrial Probes mission comprising of fouridentically instrumented spacecraft that will study the Earth’sm...

  10. Optical orbital debris spotter

    NASA Astrophysics Data System (ADS)

    Englert, Christoph R.; Bays, J. Timothy; Marr, Kenneth D.; Brown, Charles M.; Nicholas, Andrew C.; Finne, Theodore T.

    2014-11-01

    The number of man-made debris objects orbiting the Earth, or orbital debris, is alarmingly increasing, resulting in the increased probability of degradation, damage, or destruction of operating spacecraft. In part, small objects (<10 cm) in Low Earth Orbit (LEO) are of concern because they are abundant and difficult to track or even to detect on a routine basis. Due to the increasing debris population it is reasonable to assume that improved capabilities for on-orbit damage attribution, in addition to increased capabilities to detect and track small objects are needed. Here we present a sensor concept to detect small debris with sizes between approximately 1.0 and 0.01 cm in the vicinity of a host spacecraft for near real time damage attribution and characterization of dense debris fields and potentially to provide additional data to existing debris models.

  11. Orbiter entry aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Ried, R. C.

    1985-01-01

    The challenge in the definition of the entry aerothermodynamic environment arising from the challenge of a reliable and reusable Orbiter is reviewed in light of the existing technology. Select problems pertinent to the orbiter development are discussed with reference to comprehensive treatments. These problems include boundary layer transition, leeward-side heating, shock/shock interaction scaling, tile gap heating, and nonequilibrium effects such as surface catalysis. Sample measurements obtained from test flights of the Orbiter are presented with comparison to preflight expectations. Numerical and wind tunnel simulations gave efficient information for defining the entry environment and an adequate level of preflight confidence. The high quality flight data provide an opportunity to refine the operational capability of the orbiter and serve as a benchmark both for the development of aerothermodynamic technology and for use in meeting future entry heating challenges.

  12. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  13. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  14. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Habitability design concepts for the Shuttle Orbiter Program are provided for MSC. A variety of creative solutions for the stated tasks are presented. Sketches, mock-ups, mechanicals and models are included for establishing a foundation for future development.

  15. Tethered orbital refueling study

    NASA Technical Reports Server (NTRS)

    Fester, Dale A.; Rudolph, L. Kevin; Kiefel, Erlinda R.; Abbott, Peter W.; Grossrode, Pat

    1986-01-01

    One of the major applications of the space station will be to act as a refueling depot for cryogenic-fueled space-based orbital transfer vehicles (OTV), Earth-storable fueled orbit maneuvering vehicles, and refurbishable satellite spacecraft using hydrazine. One alternative for fuel storage at the space station is a tethered orbital refueling facility (TORF), separated from the space station by a sufficient distance to induce a gravity gradient force that settles the stored fuels. The technical feasibility was examined with the primary focus on the refueling of LO2/LH2 orbital transfer vehicles. Also examined was the tethered facility on the space station. It was compared to a zero-gravity facility. A tethered refueling facility should be considered as a viable alternative to a zero-gravity facility if the zero-gravity fluid transfer technology, such as the propellant management device and no vent fill, proves to be difficult to develop with the required performance.

  16. Orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Dotts, R. L.; Curry, D. M.; Tillian, D. J.

    1985-01-01

    The major material and design challenges associated with the orbiter thermal protection system (TPS), the various TPS materials that are used, the different design approaches associated with each of the materials, and the performance during the flight test program are described. The first five flights of the Orbiter Columbia and the initial flight of the Orbiter Challenger provided the data necessary to verify the TPS thermal performance, structural integrity, and reusability. The flight performance characteristics of each TPS material are discussed, based on postflight inspections and postflight interpretation of the flight instrumentation data. Flights to date indicate that the thermal and structural design requirements for the orbiter TPS are met and that the overall performance is outstanding.

  17. On the Conservation of the Vertical Action in Galactic Disks

    NASA Astrophysics Data System (ADS)

    Vera-Ciro, Carlos; D'Onghia, Elena

    2016-06-01

    We employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars.

  18. Hydrogen atom in a magnetic field: Ghost orbits, catastrophes, and uniform semiclassical approximations

    SciTech Connect

    Main, J.; Wunner, G.

    1997-03-01

    Applying closed-orbit theory to the recurrence spectra of the hydrogen atom in a magnetic field, one can interpret most, but not all, structures semiclassically in terms of closed classical orbits. In particular, conventional closed-orbit theory fails near bifurcations of orbits where semiclassical amplitudes exhibit unphysical divergences. Here we analyze the role of ghost orbits living in complex phase space. The ghosts can explain resonance structures in the spectra of the hydrogen atom in a magnetic field at positions where no real orbits exist. For three different types of catastrophes, viz. fold, cusp, and butterfly catastrophes, we construct uniform semiclassical approximations and demonstrate that these solutions are completely determined by classical parameters of the real orbits and complex ghosts. {copyright} {ital 1997} {ital The American Physical Society}

  19. Kepler-36: a pair of planets with neighboring orbits and dissimilar densities.

    PubMed

    Carter, Joshua A; Agol, Eric; Chaplin, William J; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Christensen-Dalsgaard, Jørgen; Deck, Katherine M; Elsworth, Yvonne; Fabrycky, Daniel C; Ford, Eric B; Fortney, Jonathan J; Hale, Steven J; Handberg, Rasmus; Hekker, Saskia; Holman, Matthew J; Huber, Daniel; Karoff, Christopher; Kawaler, Steven D; Kjeldsen, Hans; Lissauer, Jack J; Lopez, Eric D; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Rogers, Leslie A; Stello, Dennis; Borucki, William J; Bryson, Steve; Christiansen, Jessie L; Cochran, William D; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer; Howard, Andrew W; Jenkins, Jon M; Klaus, Todd; Koch, David G; Latham, David W; MacQueen, Phillip J; Sasselov, Dimitar; Steffen, Jason H; Twicken, Joseph D; Winn, Joshua N

    2012-08-03

    In the solar system, the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets' orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky "super-Earth," whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system.

  20. Evolutionary orbital period change in BH Virginis

    NASA Astrophysics Data System (ADS)

    Gebrehiwot, Y. M.; Tessema, S. B.; Berdnikov, L. N.

    2017-04-01

    The study of orbital period change of close binaries, such as BH Virginis (BH Vir), using very long time baseline is vital to understand evolutionary processes of the system. In this paper, we use photometric data to analyze the evolutionary orbital period change of the short period RS CVn-type binary system, BH Vir, with a time baseline spanning 123 years. We used the software version of the Hertzsprung method to describe the O-C curve of the system, and we found that the orbital period secularly decreases at a rate of dp/dt=-(0.0013000 ± 0.0000863) s yr^{-1}. Because BH Vir is a typical detached binary system and both components are late type (G0 V + G2 V) stars, the evolutionary period change could be caused by the angular momentum loss due to tides coupled with magnetic breaking.

  1. Europa Planetary Protection for Juno Jupiter Orbiter

    NASA Technical Reports Server (NTRS)

    Bernard, Douglas E.; Abelson, Robert D.; Johannesen, Jennie R.; Lam, Try; McAlpine, William J.; Newlin, Laura E.

    2010-01-01

    NASA's Juno mission launched in 2011 and will explore the Jupiter system starting in 2016. Juno's suite of instruments is designed to investigate the atmosphere, gravitational fields, magnetic fields, and auroral regions. Its low perijove polar orbit will allow it to explore portions of the Jovian environment never before visited. While the Juno mission is not orbiting or flying close to Europa or the other Galilean satellites, planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design.The science mission is designed to conclude with a deorbit burn that disposes of the spacecraft in Jupiter's atmosphere. Compliance with planetary protection requirements is verified through a set of analyses including analysis of initial bioburden, analysis of the effect of bioburden reduction due to the space and Jovian radiation environments, probabilistic risk assessment of successful deorbit, Monte-Carlo orbit propagation, and bioburden reduction in the event of impact with an icy body.

  2. Astrometric orbits of SB^9 stars

    NASA Astrophysics Data System (ADS)

    Jancart, S.; Jorissen, A.; Babusiaux, C.; Pourbaix, D.

    2005-10-01

    Hipparcos Intermediate Astrometric Data (IAD) have been used to derive astrometric orbital elements for spectroscopic binaries from the newly released Ninth Catalogue of Spectroscopic Binary Orbits (SB^9). This endeavour is justified by the fact that (i) the astrometric orbital motion is often difficult to detect without the prior knowledge of the spectroscopic orbital elements, and (ii) such knowledge was not available at the time of the construction of the Hipparcos Catalogue for the spectroscopic binaries which were recently added to the SB^9 catalogue. Among the 1374 binaries from SB^9 which have an HIP entry (excluding binaries with visual companions, or DMSA/C in the Double and Multiple Stars Annex), 282 have detectable orbital astrometric motion (at the 5% significance level). Among those, only 70 have astrometric orbital elements that are reliably determined (according to specific statistical tests), and for the first time for 20 systems. This represents a 8.5% increase of the number of astrometric systems with known orbital elements (The Double and Multiple Systems Annex contains 235 of those DMSA/O systems). The detection of the astrometric orbital motion when the Hipparcos IAD are supplemented by the spectroscopic orbital elements is close to 100% for binaries with only one visible component, provided that the period is in the 50-1000 d range and the parallax is >5 mas. This result is an interesting testbed to guide the choice of algorithms and statistical tests to be used in the search for astrometric binaries during the forthcoming ESA Gaia mission. Finally, orbital inclinations provided by the present analysis have been used to derive several astrophysical quantities. For instance, 29 among the 70 systems with reliable astrometric orbital elements involve main sequence stars for which the companion mass could be derived. Some interesting conclusions may be drawn from this new set of stellar masses, like the enigmatic nature of the companion to the

  3. A tapestry of orbits

    SciTech Connect

    King-Hele, D.

    1992-01-01

    In this book, the author describes how orbital research developed to yield a rich harvest of knowledge about the earth and its atmosphere. King-Hele relates a personal account of this research based on analysis of satellite orbits between 1957 and 1990 conducted from the Royal Aircraft Establishment in Farnborough England. The early research methods used before the launch of Sputnik in 1957 are discussed.

  4. 4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe (VTL). Machining the fixture for GE Turboshroud. G.S. O'Brien, operator. - Juniata Shops, Machine Shop No. 1, East of Fourth Avenue at Third Street, Altoona, Blair County, PA

  5. The Lunar Orbital Prospector

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg

    1992-01-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  6. The Exoplanet Orbit Database

    NASA Astrophysics Data System (ADS)

    Wright, J. T.; Fakhouri, O.; Marcy, G. W.; Han, E.; Feng, Y.; Johnson, John Asher; Howard, A. W.; Fischer, D. A.; Valenti, J. A.; Anderson, J.; Piskunov, N.

    2011-04-01

    We present a database of well-determined orbital parameters of exoplanets, and their host stars’ properties. This database comprises spectroscopic orbital elements measured for 427 planets orbiting 363 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form online through the Exoplanets Data Explorer table, and the data can be plotted and explored through the Exoplanet Data Explorer plotter. We use the Data Explorer to generate publication-ready plots, giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the different selection biases between radial velocity and transit surveys, and that the multiplanet systems show a distinct semimajor-axis distribution from apparently singleton systems.

  7. New Heteroclinic Orbits Coined

    NASA Astrophysics Data System (ADS)

    Wang, Haijun; Li, Chang; Li, Xianyi

    We devote to studying the problem for the existence of homoclinic and heteroclinic orbits of Unified Lorenz-Type System (ULTS). Other than the known results that the ULTS has two homoclinic orbits to E0 = (0, 0, 0) for b = -2a1, d = -a1, a12 + a 2c > 0, e < 0 and two heteroclinic orbits to E1,2 = (±-2(a1 2+a2 c) e ,∓a1 a2 -2(a1 2+a2 c) e ,-a12+a2c a2e ) for b = -2a1, d = -a1, a12 + a 2c < 0, e > 0 on its invariant algebraic surface Q(x,y,z) = z - x2 2a2 = 0, formulated in the literature by Yang and Chen [2014], we seize two new heteroclinic orbits of this Unified Lorenz-Type System. Namely, we rigorously prove that this system has another two heteroclinic orbits to E0 and E± = (±b(a2 c-a1 d) a1e ,∓a1 a2 b(a2 c-a1 d) a1e , a1d-a2c a2e ) while no homoclinic orbit when a1 < 0, e < 0, a1 + d < 0, a2≠0, a2c - a1d > 0, b + 2a1 ≥ 0.

  8. SECULAR ORBITAL EVOLUTION OF COMPACT PLANET SYSTEMS

    SciTech Connect

    Zhang, Ke; Hamilton, Douglas P.; Matsumura, Soko E-mail: soko@astro.umd.edu

    2013-11-20

    Recent observations have shown that at least some close-in exoplanets maintain eccentric orbits despite tidal circularization timescales that are typically much shorter than stellar ages. We explore gravitational interactions with a more distant planetary companion as a possible cause of these unexpected non-zero eccentricities. For simplicity, we focus on the evolution of a planar two-planet system subject to slow eccentricity damping and provide an intuitive interpretation of the resulting long-term orbital evolution. We show that dissipation shifts the two normal eigenmode frequencies and eccentricity ratios of the standard secular theory slightly, and we confirm that each mode decays at its own rate. Tidal damping of the eccentricities drives orbits to transition relatively quickly between periods of pericenter circulation and libration, and the planetary system settles into a locked state in which the pericenters are nearly aligned or nearly anti-aligned. Once in the locked state, the eccentricities of the two orbits decrease very slowly because of tides rather than at the much more rapid single-planet rate, and thus eccentric orbits, even for close-in planets, can often survive much longer than the age of the system. Assuming that an observed close-in planet on an elliptical orbit is apsidally locked to a more distant, and perhaps unseen companion, we provide a constraint on the mass, semi-major axis, and eccentricity of the companion. We find that the observed two-planet system HAT-P-13 might be in just such an apsidally locked state, with parameters that obey our constraint reasonably well. We also survey close-in single planets, some with and some without an indication of an outer companion. None of the dozen systems that we investigate provides compelling evidence for unseen companions. Instead, we suspect that (1) orbits are in fact circular, (2) tidal damping rates are much slower than we have assumed, or (3) a recent event has excited these

  9. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  10. Vertically reciprocating auger

    NASA Technical Reports Server (NTRS)

    Etheridge, Mark; Morgan, Scott; Fain, Robert; Pearson, Jonathan; Weldi, Kevin; Woodrough, Stephen B., Jr.

    1988-01-01

    The mathematical model and test results developed for the Vertically Reciprocating Auger (VRA) are summarized. The VRA is a device capable of transporting cuttings that result from below surface drilling. It was developed chiefly for the lunar surface, where conventional fluid flushing while drilling would not be practical. The VRA uses only reciprocating motion and transports material through reflections with the surface above. Particles are reflected forward and land ahead of radially placed fences, which prevent the particles from rolling back down the auger. Three input wave forms are considered to drive the auger. A modified sawtooth wave form was chosen for testing, over a modified square wave or sine wave, due to its simplicity and effectiveness. The three-dimensional mathematical model predicted a sand throughput rate of 0.2667 pounds/stroke, while the actual test setup transported 0.075 pounds/stroke. Based on this result, a correction factor of 0.281 is suggested for a modified sawtooth input.

  11. Orbits for the Impatient: A Bayesian Rejection Sampling Method for Quickly Fitting the Orbits of Long-Period Exoplanets

    NASA Astrophysics Data System (ADS)

    Blunt, Sarah Caroline; Nielsen, Eric; De Rosa, Robert J.; Konopacky, Quinn M.; Ryan, Dominic; Wang, Jason; Pueyo, Laurent; Rameau, Julien; Marois, Christian; Marchis, Franck; Macintosh, Bruce; Graham, James R.; GPIES Collaboration

    2017-01-01

    Direct imaging planet-finders like the Gemini Planet Imager (GPI) allow for direct imaging of exoplanets with orbital periods beyond ~10 years that are still close enough to their host stars to undergo detectable orbital motion on year or multi-year timescales, creating a need for methods that rapidly characterize newly discovered planets using relative astrometry covering a short fraction of an orbital period. We address this problem with Orbits for the Impatient (OFTI), a statistically robust and computationally efficient Bayesian rejection sampling method for fitting orbits to astrometric datasets covering small orbital fractions from directly imaged exoplanets, brown dwarfs, and wide-orbit stellar binaries. We demonstrate that OFTI produces valid orbital solutions by directly comparing its outputs with those of two Markov Chain Monte Carlo (MCMC) implementations, and compare the computational speeds of OFTI and MCMC as a function of orbital fraction spanned by input astrometry. We find that for well-sampled orbits with astrometry covering less than 15% of the total orbital period, OFTI converges on the correct orbital solution in orders of magnitude less CPU time than MCMC. Exoplanet observations with space missions such as the WFIRST coronagraph present a similar problem of sparse sampling, and we show how these methods can efficiently constrain the orbital inclination, phase, and separation of a planet such as 47 Uma c. Finally, we present some of the first orbital fits to astrometry from directly imaged exoplanets and brown dwarfs in the literature, including GJ 504 b, CD-35 2722 B, kappa And b, and HR 3549 B.

  12. Overall view of the Orbiter Servicing Structure within the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view of the Orbiter Servicing Structure within the Orbiter Processing Facility at Kennedy Space Center. Can you see any hint of the Orbiter Discovery? It is in there. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Investigations of SPS Orbit Drifts

    SciTech Connect

    Drøsdal, Lene; Bracco, Chiara; Cornelis, Karel; Goddard, Brennan; Kain, Verena; Meddahi, Malika; Wenninger, Jorg; Gianfelice-Wendt, Eliana

    2014-07-01

    The LHC is filled from the last pre-injector, the Super Proton Synchrotron (SPS), via two 3 km long transfer lines, TI 2 and TI 8. Over the LHC injection processes, a drift of the beam trajectories has been observed in TI 2 and TI 8, requiring regular correction of the trajectories, in order to ensure clean injection into the LHC. Investigations of the trajectory variations in the transfer lines showed that the main source of short term trajectory drifts are current variations of the SPS extraction septa (MSE). The stability of the power converters has been improved, but the variations are still present and further improvements are being investigated. The stability over a longer period of time cannot be explained by this source alone. The analysis of trajectory variations shows that there are also slow variations in the SPS closed orbit at extraction. A set of SPS orbit measurements has been saved and analysed. These observations will be used together with simulations and observed field errors to locate the second source of variations.

  14. [Orbital complications of sinusitis].

    PubMed

    Šuchaň, M; Horňák, M; Kaliarik, L; Krempaská, S; Koštialová, T; Kovaľ, J

    2014-12-01

    Orbital complications categorised by Chandler are emergency. They need early diagnosis and agresive treatment. Stage and origin of orbital complications are identified by rhinoendoscopy, ophtalmologic examination and CT of orbite and paranasal sinuses. Periorbital cellulitis and early stage of orbital cellulitis can be treated conservatively with i. v. antibiotics. Monitoring of laboratory parameters and ophtalmologic symptoms is mandatory. Lack of improvement or worsening of symptoms within 24-48 hours and advanced stages of orbital complications are indicated for surgery. The purpose of the study is to evaluate epidemiology, clinical features and management of sinogenic orbital complications. Retrospective data of 8 patients with suspicion of orbital complication admited to hospital from 2008 to 2013 were evaluated. Patients were analyzed in terms of gender, age, CT findings, microbiology, clinical features, stage and treatment. Male and female were afected in rate 1,66:1. Most of patients were young adult in 3rd. and 4th. decade of life (62,5 %). Acute and chronic sinusitis were cause of orbital complication in the same rate. The most common origin of orbital complication was ethmoiditis (62,5 %), than maxillary (25 %) and frontal (12,5 %) sinusitis. Polysinusitis with affection of ethmoidal, maxillary and frontal sinuses (75 %) was usual CT finding. Staphylococcus epidermidis and Staphylococcus aureus were etiological agens in half of cases. Periorbital oedema (100 %), proptosis, chemosis (50 %), diplopia and glaucoma (12,5 %) were observed. Based on examinations, diagnosis of periorbital oedema/preseptal cellulitis was made in 3 (37,5 %), orbital cellulitis in 3 (37,5 %) and subperiosteal abscess in 2 cases (25 %). All patients underwent combined therapy - i. v. antibiotics and surgery within 24 hours. Eradication of disease from ostiomeatal complex (OMC), drainage of affected sinuses and drainage of subperiosteal abscess were done via fuctional endonasal

  15. Vertical deformation at western part of Sumatra

    SciTech Connect

    Febriyani, Caroline Prijatna, Kosasih Meilano, Irwan

    2015-04-24

    This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by the Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8 mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5 mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25 mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.

  16. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing

  17. Mars Geoscience Orbiter and Lunar Geoscience Orbiter

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.; Kaskiewicz, P. F.

    1983-01-01

    The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.

  18. Real-time Sub-cm Differential Orbit Determination of two Low-Earth Orbiters with GPS Bias Fixing

    NASA Technical Reports Server (NTRS)

    Wu, Sien-Chong; Bar-Sever, Yoaz E.

    2006-01-01

    An effective technique for real-time differential orbit determination with GPS bias fixing is formulated. With this technique, only real-time GPS orbits and clocks are needed (available from the NASA Global Differential GPS System with 10-20 cm accuracy). The onboard, realtime orbital states of user satellites (few meters in accuracy) are used for orbit initialization and integration. An extended Kalman filter is constructed for the estimation of the differential orbit between the two satellites as well as a reference orbit, together with their associating dynamics parameters. Due to close proximity of the two satellites and of similar body shapes, the differential dynamics are highly common and can be tightly constrained which, in turn, strengthens the orbit estimation. Without explicit differencing of GPS data, double-differenced phase biases are formed by a transformation matrix. Integer-valued fixing of these biases are then performed which greatly strengthens the orbit estimation. A 9-day demonstration between GRACE orbits with baselines of approx.200 km indicates that approx.80% of the double-differenced phase biases can successfully be fixed and the differential orbit can be determined to approx.7 mm as compared to the results of onboard K-band ranging.

  19. Vertical and horizontal seismometric observations of tides

    NASA Astrophysics Data System (ADS)

    Lambotte, S.; Rivera, L.; Hinderer, J.

    2006-01-01

    Tidal signals have been largely studied with gravimeters, strainmeters and tiltmeters, but can also be retrieved from digital records of the output of long-period seismometers, such as STS-1, particularly if they are properly isolated. Horizontal components are often noisier than the vertical ones, due to sensitivity to tilt at long periods. Hence, horizontal components are often disturbed by local effects such as topography, geology and cavity effects, which imply a strain-tilt coupling. We use series of data (duration larger than 1 month) from several permanent broadband seismological stations to examine these disturbances. We search a minimal set of observable signals (tilts, horizontal and vertical displacements, strains, gravity) necessary to reconstruct the seismological record. Such analysis gives a set of coefficients (per component for each studied station), which are stable over years and then can be used systematically to correct data from these disturbances without needing heavy numerical computation. A special attention is devoted to ocean loading for stations close to oceans (e.g. Matsushiro station in Japon (MAJO)), and to pressure correction when barometric data are available. Interesting observations are made for vertical seismometric components; in particular, we found a pressure admittance between pressure and data 10 times larger than for gravimeters for periods larger than 1 day, while this admittance reaches the usual value of -3.5 nm/s 2/mbar for periods below 3 h. This observation may be due to instrumental noise, but the exact mechanism is not yet understood.

  20. Sunrise enhancement of equatorial vertical plasma drift

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Zhang, Ruilong; Le, Huijun

    2016-04-01

    Sunrise enhancement in vertical plasma drift over equatorial regions is not discernible in the statistical picture compared with the significant enhancement during dusk hours. In this report, it is the first time to investigate the occurrence of the dawn enhancement in the equatorial ionospheric vertical plasma drift from ROCSAT-1 observations during geomagnetic quiet times. The dawn enhancements occur most frequently in June solstice and least frequently in December solstice. The statistical survey shows that the occurrence depends on the magnetic declination. The enhancement has the strongest amplitude in regions near 320° longitude and peaks during June solstice. The dawn enhancement reaches its peak after the sunrise in conjugated E regions. Furthermore, it is found that the dawn enhancement is closely related to the difference between the sunrise times in the conjugated E regions (sunrise time lag). The dawn enhancement occurs easily in regions with a large sunrise time lag. Moreover, we will report the effects of the sunrise enhancement of vertical plasma drift on the equatorial ionosphere as indicated from the observations and model simulations. We thanks National Central University of Taiwan providing the ROCSAT-1 data. The Ap and F107 indices are obtained from the National Geophysical Data Center (http://spidr.ngdc.noaa.gov/spidr/). This research is supported by National Natural Science Foundation of China (41231065), the Chinese Academy of Sciences project (KZZD-EW-01-3), National Key Basic Research Program of China (2012CB825604) and National Natural Science Foundation of China (41321003).

  1. Latitude and longitude vertical disparity

    PubMed Central

    Read, Jenny C. A.; Phillipson, Graeme P.; Glennerster, Andrew

    2010-01-01

    The literature on vertical disparity is complicated by the fact that several different definitions of the term “vertical disparity” are in common use, often without a clear statement about which is intended or a widespread appreciation of the properties of the different definitions. Here, we examine two definitions of retinal vertical disparity: elevation-latitude and elevation-longitude disparity. Near the fixation point, these definitions become equivalent, but in general, they have quite different dependences on object distance and binocular eye posture, which have not previously been spelt out. We present analytical approximations for each type of vertical disparity, valid for more general conditions than previous derivations in the literature: we do not restrict ourselves to objects near the fixation point or near the plane of regard, and we allow for non-zero torsion, cyclovergence and vertical misalignments of the eyes. We use these expressions to derive estimates of the latitude and longitude vertical disparity expected at each point in the visual field, averaged over all natural viewing. Finally, we present analytical expressions showing how binocular eye position – gaze direction, convergence, torsion, cyclovergence, and vertical misalignment – can be derived from the vertical disparity field and its derivatives at the fovea. PMID:20055544

  2. Measuring Growth with Vertical Scales

    ERIC Educational Resources Information Center

    Briggs, Derek C.

    2013-01-01

    A vertical score scale is needed to measure growth across multiple tests in terms of absolute changes in magnitude. Since the warrant for subsequent growth interpretations depends upon the assumption that the scale has interval properties, the validation of a vertical scale would seem to require methods for distinguishing interval scales from…

  3. The School Library Vertical File.

    ERIC Educational Resources Information Center

    Smallwood, Carol

    1990-01-01

    Discusses the maintenance of vertical files in the school library. Topics covered include circulation, weeding, using materials for special displays, acquiring materials, policies on advertising and controversial issues, cross-references, subject headings, introducing students to vertical files, beginning a collection, and preservation. (MES)

  4. An orbital angular momentum spectrometer for electrons

    NASA Astrophysics Data System (ADS)

    Harvey, Tyler; Grillo, Vincenzo; McMorran, Benjamin

    2016-05-01

    With the advent of techniques for preparation of free-electron and neutron orbital angular momentum (OAM) states, a basic follow-up question emerges: how do we measure the orbital angular momentum state distribution in matter waves? Control of both the energy and helicity of light has produced a range of spectroscopic applications, including molecular fingerprinting and magnetization mapping. Realization of an analogous dual energy-OAM spectroscopy with matter waves demands control of both initial and final energy and orbital angular momentum states: unlike for photons, final state post-selection is necessary for particles that cannot be annihilated. We propose a magnetic field-based mechanism for quantum non-demolition measurement of electron OAM. We show that OAM-dependent lensing is produced by an operator of form U =expclose=")" open="(" separators=""> iLzρ2/ℏb2 where ρ =√{x2 +y2 } is the radial position operator, Lz is the orbital angular momentum operator along z, and b is the OAM dispersion length. We can physically realize this operator as a term in the time evolution of an electron in magnetic round lens. We discuss prospects and practical challenges for implementation of a lensing orbital angular momentum measurement. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under the Early Career Research Program Award # DE-SC0010466.

  5. General view of the flight deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the flight deck of the Orbiter Discovery looking forward along the approximate center line of the orbiter at the center console. The Multifunction Electronic Display System (MEDS) is evident in the mid-ground center of this image, this system was a major upgrade from the previous analog display system. The commander's station is on the port side or left in this view and the pilot's station is on the starboard side or right tin this view. Not the grab bar in the upper center of the image which was primarily used for commander and pilot ingress with the orbiter in a vertical position on the launch pad. Also note that the forward observation windows have protective covers over them. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. The onset of chaos in orbital pilot-wave dynamics

    NASA Astrophysics Data System (ADS)

    Tambasco, Lucas D.; Harris, Daniel M.; Oza, Anand U.; Rosales, Rodolfo R.; Bush, John W. M.

    2016-10-01

    We present the results of a numerical investigation of the emergence of chaos in the orbital dynamics of droplets walking on a vertically vibrating fluid bath and acted upon by one of the three different external forces, specifically, Coriolis, Coulomb, or linear spring forces. As the vibrational forcing of the bath is increased progressively, circular orbits destabilize into wobbling orbits and eventually chaotic trajectories. We demonstrate that the route to chaos depends on the form of the external force. When acted upon by Coriolis or Coulomb forces, the droplet's orbital motion becomes chaotic through a period-doubling cascade. In the presence of a central harmonic potential, the transition to chaos follows a path reminiscent of the Ruelle-Takens-Newhouse scenario.

  7. Extravehicular activity at geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Shields, Nicholas, Jr.; Schulze, Arthur E.; Carr, Gerald P.; Pogue, William

    1988-01-01

    The basic contract to define the system requirements to support the Advanced Extravehicular Activity (EVA) has three phases: EVA in geosynchronous Earth orbit; EVA in lunar base operations; and EVA in manned Mars surface exploration. The three key areas to be addressed in each phase are: environmental/biomedical requirements; crew and mission requirements; and hardware requirements. The structure of the technical tasks closely follows the structure of the Advanced EVA studies for the Space Station completed in 1986.

  8. Bodily Tides Near Spin-Orbit Resonances

    DTIC Science & Technology

    2012-01-01

    Celest Mech Dyn Astr (2012) 112:283–330 DOI 10.1007/s10569-011-9397-4 ORIGINAL ARTICLE Bodily tides near spin–orbit resonances Michael Efroimsky...tidal dissipation rate in the Moon, discovered by LLR. Electronic supplementary material The online version of this article (doi:10.1007/s10569-011...relevant (Bills et al. 2005). Another class of exceptions is constituted by close binary asteroids . The topic is addressed by Taylor and Margot (2010), who

  9. Simulation Studies On The Vertical Emittance Growth At The Existing ATF Extraction Beamline

    SciTech Connect

    Zhou, F.; Amann, J.; Seletskiy, S.; Seryi, A.; Spencer, C.M.; Woodley, M.D.

    2008-06-27

    Significant beam intensity-dependence of the vertical emittance growth was experimentally observed at the Accelerator Test Facility (ATF) at KEK extraction beamline. This paper presents the simulations of possible vertical emittance growth sources, particularly in the extraction channel, where the magnets are shared by both the ATF extraction beamline and its damping ring. The vertical emittance growth is observed in the simulations by changing the beam orbit in the extraction channel, even with all optics corrections. The possible reasons for the experimentally observed dependence of the vertical emittance growth on the beam intensity are also discussed. An experiment to measure the emittance versus beam orbit at the existing ATF extraction beamline is on-going led by the European colleagues.

  10. Close binary neutron star systems

    NASA Astrophysics Data System (ADS)

    Marronetti, Pedro

    1999-12-01

    We present a method to calculate solutions to the initial value problem in (3 + 1) general relativity corresponding to binary neutron-star systems (BNS) in irrotational quasi-equilibrium orbits. The initial value equations are solved using a conformally flat spatial metric tensor. The stellar fluid dynamics corresponds to that of systems with zero vorticity in the inertial reference frame. Irrotational systems like the ones analyzed in the present work are likely to resemble the final stages of the evolution of neutron-star binaries, thus providing insights on the inspiral process. The fluid velocity is derived from the gradient of a scalar potential. A numerical program was developed to solve the elliptic equations for the metric fields and the fluid velocity potential. We discuss the different numerical techniques employed to achieve high resolution across the stellar volume, as well as the methods used to find solutions to the Poisson-like equations with their corresponding boundary conditions. We present sequences of quasi-stable circular orbits which conserve baryonic mass. These sequences mimic the time evolution of the inspiral and are obtained without solving the complex evolution equations. They also provide sets of initial value data for future time evolution codes, which should be valid very close to the final merger. We evaluate the emission of gravitational radiation during the evolution through multipole expansions methods.

  11. Topographic enhancement of vertical turbulent mixing in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Mashayek, A.; Ferrari, R.; Merrifield, S.; Ledwell, J. R.; St Laurent, L.; Garabato, A. Naveira

    2017-03-01

    It is an open question whether turbulent mixing across density surfaces is sufficiently large to play a dominant role in closing the deep branch of the ocean meridional overturning circulation. The diapycnal and isopycnal mixing experiment in the Southern Ocean found the turbulent diffusivity inferred from the vertical spreading of a tracer to be an order of magnitude larger than that inferred from the microstructure profiles at the mean tracer depth of 1,500 m in the Drake Passage. Using a high-resolution ocean model, it is shown that the fast vertical spreading of tracer occurs when it comes in contact with mixing hotspots over rough topography. The sparsity of such hotspots is made up for by enhanced tracer residence time in their vicinity due to diffusion toward weak bottom flows. The increased tracer residence time may explain the large vertical fluxes of heat and salt required to close the abyssal circulation.

  12. Topographic enhancement of vertical turbulent mixing in the Southern Ocean

    PubMed Central

    Mashayek, A.; Ferrari, R.; Merrifield, S.; Ledwell, J. R.; St Laurent, L.; Garabato, A. Naveira

    2017-01-01

    It is an open question whether turbulent mixing across density surfaces is sufficiently large to play a dominant role in closing the deep branch of the ocean meridional overturning circulation. The diapycnal and isopycnal mixing experiment in the Southern Ocean found the turbulent diffusivity inferred from the vertical spreading of a tracer to be an order of magnitude larger than that inferred from the microstructure profiles at the mean tracer depth of 1,500 m in the Drake Passage. Using a high-resolution ocean model, it is shown that the fast vertical spreading of tracer occurs when it comes in contact with mixing hotspots over rough topography. The sparsity of such hotspots is made up for by enhanced tracer residence time in their vicinity due to diffusion toward weak bottom flows. The increased tracer residence time may explain the large vertical fluxes of heat and salt required to close the abyssal circulation. PMID:28262808

  13. Closed loop electrostatic levitation system

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Saffren, M. M.; Elleman, D. D. (Inventor)

    1985-01-01

    An electrostatic levitation system is described, which can closely control the position of objects of appreciable size. A plurality of electrodes surround the desired position of an electrostatically charged object, the position of the objects is monitored, and the voltages applied to the electrodes are varied to hold the object at a desired position. In one system, the object is suspended above a plate-like electrode which has a concave upper face to urge the object toward the vertical axis of the curved plate. An upper electrode that is also curved can be positioned above the object, to assure curvature of the field at any height above the lower plate. In another system, four spherical electrodes are positioned at the points of a tetrahedron, and the voltages applied to the electrodes are varied in accordance with the object position as detected by two sensors.

  14. 33 CFR 118.160 - Vertical clearance gauges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... numerals and foot marks below “low steel” of the bridge whenever the gauge is repainted or the structure is... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.160 Vertical clearance gauges. (a) When necessary for... distance between “low steel” of the bridge channel span (in the closed to navigation position...

  15. The Updated IAU MDC Catalogue of Photographic Meteor Orbits

    NASA Technical Reports Server (NTRS)

    Porubcan, V.; Svoren, J.; Neslusan, L.; Schunova, E.

    2011-01-01

    The database of photographic meteor orbits of the IAU Meteor Data Center at the Astronomical Institute SAS has gradually been updated. To the 2003 version of 4581 photographic orbits compiled from 17 different stations and obtained in the period 1936-1996, additional new 211 orbits compiled from 7 sources have been added. Thus, the updated version of the catalogue contains 4792 photographic orbits (equinox J2000.0) available either in two separate orbital and geophysical data files or a file with the merged data. All the updated files with relevant documentation are available at the web of the IAU Meteor Data Center. Keywords astronomical databases photographic meteor orbits 1 Introduction Meteoroid orbits are a basic tool for investigation of distribution and spatial structure of the meteoroid population in the close surroundings of the Earth s orbit. However, information about them is usually widely scattered in literature and often in publications with limited circulation. Therefore, the IAU Comm. 22 during the 1976 IAU General Assembly proposed to establish a meteor data center for collection of meteor orbits recorded by photographic and radio techniques. The decision was confirmed by the next IAU GA in 1982 and the data center was established (Lindblad, 1987). The purpose of the data center was to acquire, format, check and disseminate information on precise meteoroid orbits obtained by multi-station techniques and the database gradually extended as documented in previous reports on the activity of the Meteor Data Center by Lindblad (1987, 1995, 1999 and 2001) or Lindblad and Steel (1993). Up to present, the database consists of 4581 photographic meteor orbits (Lindblad et al., 2005), 63.330 radar determined orbit: Harvard Meteor Project (1961-1965, 1968-1969), Adelaide (1960-1961, 1968-1969), Kharkov (1975), Obninsk (1967-1968), Mogadish (1969-1970) and 1425 video-recordings (Lindblad, 1999) to which additional 817 video meteors orbits published by Koten el

  16. Subjective Visual Vertical and Postural Capability in Children Born Prematurely

    PubMed Central

    Bucci, Maria Pia; Wiener-Vacher, Sylvette; Trousson, Clémence; Baud, Olivier; Biran, Valerie

    2015-01-01

    Purpose We compared postural stability and subjective visual vertical performance in a group of very preterm-born children aged 3-4 years and in a group of age-matched full-term children. Materials and Methods A platform (from TechnoConcept) was used to measure postural control in children. Perception of subjective visual vertical was also recorded with posture while the child had to adjust the vertical in the dark or with visual perturbation. Two other conditions (control conditions) were also recorded while the child was on the platform: for a fixation of the vertical bar, and in eyes closed condition. Results Postural performance was poor in preterm-born children compared to that of age-matched full-term children: the surface area, the length in medio-lateral direction and the mean speed of the center of pressure (CoP) were significantly larger in the preterm-born children group (p < 0.04, p < 0.01, and p < 0.04, respectively). Dual task in both groups of children significantly affected postural control. The subjective visual vertical (SVV) values were more variable and less precise in preterm-born children. Discussion-Conclusions We suggest that poor postural control as well as perception of verticality observed in preterm-born children could be due to immaturity of the cortical processes involved in the motor control and in the treatment of perception and orientation of verticality. PMID:25790327

  17. Sedna Orbit Comparisons

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These four panels show the location of the newly discovered planet-like object, dubbed 'Sedna,' which lies in the farthest reaches of our solar system. Each panel, moving counterclockwise from the upper left, successively zooms out to place Sedna in context. The first panel shows the orbits of the inner planets, including Earth, and the asteroid belt that lies between Mars and Jupiter. In the second panel, Sedna is shown well outside the orbits of the outer planets and the more distant Kuiper Belt objects. Sedna's full orbit is illustrated in the third panel along with the object's current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. The final panel zooms out much farther, showing that even this large elliptical orbit falls inside what was previously thought to be the inner edge of the Oort cloud. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  18. Orbital spacecraft resupply technology

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Tracey, T. R.; Bailey, W. J.

    1986-01-01

    The resupplying of orbital spacecraft using the Space Shuttle, Orbital Maneuvering Vehicle, Orbital Transfer Vehicle or a depot supply at a Space Station is studied. The governing factor in fluid resupply designs is the system size with respect to fluid resupply quantities. Spacecraft propellant management for tankage via diaphragm or surface tension configurations is examined. The capabilities, operation, and application of adiabatic ullage compression, ullage exchange, vent/fill/repressurize, and drain/vent/no-vent fill/repressurize, which are proposed transfer methods for spacecraft utilizing tankage configurations, are described. Selection of the appropriate resupply method is dependent on the spacecraft design features. Hydrazine adiabatic compression/detonation, liquid-free vapor venting to prevent freezing, and a method for no-vent liquid filling are analyzed. Various procedures for accurate measurements of propellant mass in low gravity are evaluated; a system of flowmeters with a PVT system was selected as the pressurant solubility and quantity gaging technique. Monopropellant and bipropellant orbital spacecraft consumable resupply system tanks which resupply 3000 lb of hydrazine and 7000 lb of MMH/NTO to spacecraft on orbit are presented.

  19. Orbits For Sixteen Binaries

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Z.; Novakovic, B.

    2006-12-01

    In this paper orbits for 13 binaries are recalculated and presented. The reason is that recent observations show higher residuals than the corresponding ephemerides calculated by using the orbital elements given in the Sixth Catalog of Orbits of Visual Binary Stars. The binaries studied were: WDS 00182+7257 = A 803, WDS 00335+4006 = HO 3, WDS 00583+2124 = BU 302, WDS 01011+6022 = A 926, WDS 01014+1155 = BU 867, WDS 01112+4113 = A 655, WDS 01361-2954 + HJ 3447, WDS 02333+5219 = STT 42 AB, WDS 04362+0814 = A 1840 AB, WDS 08017-0836 = A 1580, WDS 08277-0425 = A 550, WDS 17471+1742 = STF 2215 and WDS 18025+4414 = BU 1127 Aa-B. In addition, for three binaries - WDS 01532+1526 = BU 260, WDS 02563+7253 =STF 312 AB and WDS 05003+3924 = STT 92 AB - the orbital elements are calculated for the first time. In this paper the authors present not only the orbital elements, but the masses, dynamical parallaxes, absolute magnitudes and ephemerides for the next five years, as well.

  20. Orbital Fluid Resupply Assessment

    NASA Technical Reports Server (NTRS)

    Eberhardt, Ralph N.

    1989-01-01

    Orbital fluid resupply can significantly increase the cost-effectiveness and operational flexibility of spacecraft, satellites, and orbiting platforms and observatories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellant to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using expendable launch vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from the Shuttle bay or launched on an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the space station or an unmanned platform as a quasi-permanent servicing facility or depot which returns to the ground for recycling once its tanks are depleted. Current modular tanker designs for monopropellants, bipropellants, and water for space station propulsion are discussed. Superfluid helium tankers are addressed, including trade-offs in tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6-month) space-basing. It is concluded that the mixed fleet approach to on-orbit consumables resupply offers significant advantages to the overall logistics requirements.

  1. GOCE Precise Science Orbits

    NASA Astrophysics Data System (ADS)

    Bock, Heike; Jäggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Heinze, Markus; Hugentobler, Urs

    GOCE (Gravity field and steady-state Ocean Circulation Explorer), as the first ESA (European Space Agency) Earth Explorer Core Mission, is dedicated for gravity field recovery of unprece-dented accuracy using data from the gradiometer, its primary science instrument. Data from the secondary instrument, the 12-channel dual-frequency GPS (Global Positioning System) receiver, is used for precise orbit determination of the satellite. These orbits are used to accu-rately geolocate the gradiometer observations and to provide complementary information for the long-wavelength part of the gravity field. A precise science orbit (PSO) product is provided by the GOCE High-Level Processing Facility (HPF) with a precision of about 2 cm and a 1-week latency. The reduced-dynamic and kinematic orbit determination strategies for the PSO product are presented together with results of about one year of data. The focus is on the improvement achieved by the use of empirically derived azimuth-and elevation-dependent variations of the phase center of the GOCE GPS antenna. The orbits are validated with satellite laser ranging (SLR) measurements.

  2. Mars Telecommunications Orbiter, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This illustration depicts a concept for NASA's Mars Telecommunications Orbiter in flight around Mars. The orbiter is in development to be the first spacecraft with a primary function of providing communication links while orbiting a foreign planet. The project's plans call for launch in September 2009, arrival at Mars in August 2010 and a mission of six to 10 years while in orbit. Mars Telecommunication Orbiter would serve as the Mars hub for an interplanetery Internet, greatly increasing the information payoff from other future Mars missions. The mission is designed to orbit Mars more than 10 times farther from the planet than orbiters dedicated primarily to science. The high-orbit design minimizes the time that Mars itself blocks the orbiter from communicating with Earth and maximizes the time that the orbiter is above the horizon -- thus capable of communications relay -- for rovers and stationary landers on Mars' surface.

  3. Requirements report for SSTO vertical take-off and horizontal landing vehicle

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    This document describes the detailed design requirements and design criteria to support Structures/TPS Technology development for SSTO winged vehicle configurations that use vertical take-off and horizontal landing and delivers 25,000 lb payloads to a 220 nm circular orbit at an inclination of 51.6 degrees or 40,000 lb payloads to a 150 nm circular orbit at a 28.5 degree inclination.

  4. Cooling Requirements for the Vertical Shear Instability in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai; Youdin, Andrew N.

    2015-09-01

    The vertical shear instability (VSI) offers a potential hydrodynamic mechanism for angular momentum transport in protoplanetary disks (PPDs). The VSI is driven by a weak vertical gradient in the disk’s orbital motion, but must overcome vertical buoyancy, a strongly stabilizing influence in cold disks, where heating is dominated by external irradiation. Rapid radiative cooling reduces the effective buoyancy and allows the VSI to operate. We quantify the cooling timescale tc needed for efficient VSI growth, through a linear analysis of the VSI with cooling in vertically global, radially local disk models. We find the VSI is most vigorous for rapid cooling with {t}{{c}}\\lt {{{Ω }}}{{K}}-1h| q| /(γ -1) in terms of the Keplerian orbital frequency, {{{Ω }}}{{K}}, the disk’s aspect-ratio, h\\ll 1, the radial power-law temperature gradient, q, and the adiabatic index, γ. For longer tc, the VSI is much less effective because growth slows and shifts to smaller length scales, which are more prone to viscous or turbulent decay. We apply our results to PPD models where tc is determined by the opacity of dust grains. We find that the VSI is most effective at intermediate radii, from ∼5 to ∼50 AU with a characteristic growth time of ∼30 local orbital periods. Growth is suppressed by long cooling times both in the opaque inner disk and the optically thin outer disk. Reducing the dust opacity by a factor of 10 increases cooling times enough to quench the VSI at all disk radii. Thus the formation of solid protoplanets, a sink for dust grains, can impede the VSI.

  5. Trajectories in Close Proximity to Asteroids

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.

    2000-01-01

    Spacecraft motion in close proximity to irregularly shaped, rotating bodies such as asteroids presents a unique dynamical environment as compared to most space missions. There are several fundamental novelties in this environment that spacecraft must deal with. These include the possibility of orbital instabilities that can act over very short time spans (on the order of hours for some systems), possible non-uniform rotation of the central gravity field, divergence of traditional gravity field representations when close to the asteroid surface, dominance of perturbing forces, an extremely large asteroid model parameter space that must be prepared for in the absence of reliable information, and the possibility of employing new and novel trajectory control techniques such as hovering and repeated landings on the asteroid surface. An overview of how these novelties impact the space of feasible close proximity operations and how different asteroid model properties will affect their implementation is given. In so doing, four fundamental types of close proximity operations will be defined. Listed in order of increasing technical difficulty these are: (1) close, stable orbits; (2) low-altitude flyovers; (3) landing trajectories; and (4) hovering trajectories. The feasibility and difficulty of implementing these operations will vary as a function of the asteroid shape, size, density, and rotation properties, and as a function of the spacecraft navigation capability. Additional information is contained in the original extended abstract.

  6. Vertical bloch line memory

    NASA Technical Reports Server (NTRS)

    Katti, R.; Wu, J.; Stadler, H.

    1990-01-01

    Vertical Bloch Line (VBL) memory is a recently conceived, integrated, solid-state, block-access, VLSI memory which offers the potential of 1Gbit/sq cm real storage density, gigabit per second data rates, and sub-millisecond average access times simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBL's are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of VBL pairs are used to store binary information. At present, efforts are being directed at developing a single-chip memory using 25Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. This paper describes the current design architecture, functional elements, and supercomputer simulation results which are used to assist the design process. The current design architecture uses three metal layers, two ion implantation steps for modulating the thickness of the magnetic layer, one ion implantation step for assisting propagation in the major line track, one NiFe soft magnetic layer, one CoPt hard magnetic layer, and one reflective Cr layer for facilitating magneto-optic observation of magnetic structure. Data are stored in a series of elongated magnetic domains, called stripes, which serve as storage sites for arrays of VBL pairs. The ends of these stripes are placed near conductors which serve as VBL read/write gates. A major line track is present to provide a source and propagation path for magnetic bubbles. Writing and reading, respectively, are achieved by converting magnetic bubbles to VBL's and vice versa. The output function is effected by stretching a magnetic bubble and detecting it magnetoresistively. Experimental results from the past design cycle created four design goals for the current design cycle. First, the bias field ranges

  7. Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.

    2007-01-01

    The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.

  8. Optical orbital angular momentum.

    PubMed

    Barnett, Stephen M; Babiker, Mohamed; Padgett, Miles J

    2017-02-28

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next.This article is part of the themed issue 'Optical orbital angular momentum'.

  9. Optical orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-02-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue 'Optical orbital angular momentum'.

  10. Optical orbital angular momentum

    PubMed Central

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-01-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069775

  11. Satellite orbit predictor

    NASA Technical Reports Server (NTRS)

    Friedman, Morton l.; Garrett, James, Major

    An analog aid to determine satellite coverage of Emergency Locator Transmitters Emergency Position Indicating Radio Beacon (ELT/EPIRB) distress incidence is discussed. The satellite orbit predictor is a graphical aid for determining the relationship between the satellite orbit, antenna coverage of the spacecraft and coverage of the Local User Terminal. The predictor allows the user to quickly visualize if a selected position will probably be detected and is composed of a base map and a satellite track overlay for each satellite.A table of equator crossings for each satellite is included.

  12. School Closings in Philadelphia

    ERIC Educational Resources Information Center

    Jack, James; Sludden, John

    2013-01-01

    In 2012, the School District of Philadelphia closed six schools. In 2013, it closed 24. The closure of 30 schools has occurred amid a financial crisis, headlined by the district's $1.35 billion deficit. School closures are one piece of the district's plan to cut expenditures and close its budget gap. The closures are also intended to make…

  13. Cassini's Grand Finale: The Final Orbits

    NASA Astrophysics Data System (ADS)

    Spilker, Linda; Edgington, Scott

    2016-04-01

    The Cassini-Huygens mission, a joint collaboration between NASA, ESA and the Italian Space Agency, is approaching its last year of operations after nearly 12 years in orbit around Saturn. Cassini will send back its final bits of unique data on September 15th, 2017 as it plunges into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Before that time Cassini will continue its legacy of exploration and discovery with 12 close flybys of Titan in 2016 and 2017 that will return new science data as well as sculpt the inclinations and periods of the final orbits. Even though all of our close icy satellite flybys, including those of Enceladus, are now completed, numerous Voyager-class flybys (<100,000 km) of Mimas and Enceladus remain as well as some of our best flybys of the tiny ring moons. Cassini will also continue to study seasonal and temporal changes in the system as northern summer solstice approaches. In November 2016 Cassini will transition to a series of orbits with peripases just outside Saturn's F ring. These 20 orbits will include close flybys of some tiny ring moons and excellent views of the F ring and outer A ring. The 126th and final close flyby of Titan will propel Cassini across Saturn's main rings and into its final orbits. Cassini's Grand Finale, starting in April 2017, is comprised of 22 orbits at an inclination of 63 degrees. Cassini will repeatedly dive between the innermost rings and the upper atmosphere of the planet providing insights into fundamental questions unattainable during the rest of the mission. Cassini will be the first spacecraft to explore this region. These close orbits provide the highest resolution observations of both the rings and Saturn, and direct in situ sampling of the ring particles, composition, plasma, Saturn's exosphere and the innermost radiation belts. Saturn's gravitational field will be measured to unprecedented accuracy, providing information on the interior structure of the planet

  14. Cassini Orbit Determination Results: January 2006 - End of Prime Mission

    NASA Technical Reports Server (NTRS)

    Antreasian, P. G.; Ardalan, S. M.; Bordi, J. J.; Criddle, K. E.; Ionasescu, R.; Jacobson, R. A.; Jones, J. B.; Mackenzie, R. A.; Parcher, D. W.; Pelletier, F. J.; Roth, D. C.; Thompson, P. F.; Vaughan, A. T.

    2008-01-01

    After the forty-fifth flyby of Titan, the Cassini spacecraft has successfully completed the planned four-year prime mission tour of the Saturnian system. This paper reports on the orbit determination performance of the Cassini spacecraft over two years spanning 2006 - 2008. In this time span, Cassini's orbit progressed through the magnetotail and pi-transfer phases of the mission. Thirty-four accurate close encounters of Titan, one close flyby of Iapetus and one 50 km flyby of Enceladus were performed during this period. The Iapetus and Enceladus flybys were especially challenging and so the orbit determination supporting these encounters will be discussed in more detail. This paper will show that in most cases orbit determination has exceeded the navigation requirements for targeting flybys and predicting science instrument pointing during these encounters.

  15. The Orbital Structure of a Tidally Induced Bar

    NASA Astrophysics Data System (ADS)

    Gajda, Grzegorz; Łokas, Ewa L.; Athanassoula, E.

    2016-10-01

    Orbits are the key building blocks of any density distribution, and their study helps us understand the kinematical structure and the evolution of galaxies. Here, we investigate orbits in a tidally induced bar of a dwarf galaxy, using an N-body simulation of an initially disky dwarf galaxy orbiting a Milky Way-like host. After the first pericenter passage, a tidally induced bar forms in the stellar component of the dwarf. The bar evolution is different than in isolated galaxies and our analysis focuses on the period before it buckles. We study the orbits in terms of their dominant frequencies, which we calculate in a Cartesian coordinate frame rotating with the bar. Apart from the well-known x1 orbits, we find many other types, mostly with boxy shapes of various degree of elongation. Some of them are also near-periodic, admitting frequency ratios of 4/3, 3/2, and 5/3. The box orbits have various degrees of vertical thickness but only a relatively small fraction of those have banana (i.e., smile/frown) or infinity-symbol shapes in the edge-on view. In the very center we also find orbits known from the potential of triaxial ellipsoids. The elongation of the orbits grows with distance from the center of the bar in agreement with the variation of the shape of the density distribution. Our classification of orbits leads to the conclusion that more than 80% of them have boxy shapes, while only 8% have shapes of classical x1 orbits.

  16. ARTEMIS Lunar Orbit Insertion and Science Orbit Design Through 2013

    NASA Technical Reports Server (NTRS)

    Broschart, Stephen B.; Sweetser, Theodore H.; Angelopoulos, Vassilis; Folta, David; Woodard, Mark

    2015-01-01

    As of late-July 2011, the ARTEMIS mission is transferring two spacecraft from Lissajous orbits around Earth-Moon Lagrange Point #1 into highly-eccentric lunar science orbits. This paper presents the trajectory design for the transfer from Lissajous orbit to lunar orbit insertion, the period reduction maneuvers, and the science orbits through 2013. The design accommodates large perturbations from Earth's gravity and restrictive spacecraft capabilities to enable opportunities for a range of heliophysics and planetary science measurements. The process used to design the highly-eccentric ARTEMIS science orbits is outlined. The approach may inform the design of future planetary moon missions.

  17. Space Shuttle Orbiter Digital Outer Mold Line Scanning

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Wilson, Brad; Pavek, Mike; Berger, Karen

    2012-01-01

    The Space Shuttle Orbiters Discovery and Endeavor have been digitally scanned to produce post-flight configuration outer mold line surfaces. Very detailed scans of the windward side of these vehicles provide resolution of the detailed tile step and gap geometry, as well as the reinforced carbon carbon nose cap and leading edges. Lower resolution scans of the upper surface provide definition of the crew cabin windows, wing upper surfaces, payload bay doors, orbital maneuvering system pods and the vertical tail. The process for acquisition of these digital scans as well as post-processing of the very large data set will be described.

  18. Precise halo orbit design and optimal transfer to halo orbits from earth using differential evolution

    NASA Astrophysics Data System (ADS)

    Nath, Pranav; Ramanan, R. V.

    2016-01-01

    The mission design to a halo orbit around the libration points from Earth involves two important steps. In the first step, we design a halo orbit for a specified size and in the second step, we obtain an optimal transfer trajectory design to the halo orbit from an Earth parking orbit. Conventionally, the preliminary design for these steps is obtained using higher order analytical solution and the dynamical systems theory respectively. Refinements of the design are carried out using gradient based methods such as differential correction and pseudo arc length continuation method under the of circular restricted three body model. In this paper, alternative single level schemes are developed for both of these steps based on differential evolution, an evolutionary optimization technique. The differential evolution based scheme for halo orbit design produces precise halo orbit design avoiding the refinement steps. Further, in this approach, prior knowledge of higher order analytical solutions for the halo orbit design is not needed. The differential evolution based scheme for the transfer trajectory, identifies the precise location on the halo orbit that needs minimum energy for insertion and avoids exploration of multiple points. The need of a close guess is removed because the present scheme operates on a set of bounds for the unknowns. The constraint on the closest approach altitude from Earth is handled through objective function. The use of these schemes as the design and analysis tools within the of circular restricted three body model is demonstrated through case studies for missions to the first libration point of Sun-Earth system.

  19. THE ORBITAL PERIOD OF SWIFT J1626.6-5156

    SciTech Connect

    Baykal, Altan; Goegues, Ersin; Inam, Sitki Cagdas; Belloni, Tomaso

    2010-03-10

    We present the discovery of the orbital period of Swift J1626.6-5156. Since its discovery in 2005, the source has been monitored with Rossi X-Ray Timing Explorer, especially during the early stage of the outburst and into the X-ray modulating episode. Using a data span of {approx}700 days, we obtain the orbital period of the system as 132.9 days. We find that the orbit is close to a circular shape with an eccentricity 0.08, that is one of the smallest among Be/X-ray binary systems. Moreover, we find that the timescale of the X-ray modulations varied, which led to earlier suggestions of orbital periods at about a third and half of the orbital period of Swift J1626.6-5156.

  20. Atmospheric braking to circularize an elliptical Venus orbit

    NASA Technical Reports Server (NTRS)

    Mcronald, A. D.; Nock, K. T.

    1977-01-01

    The use of atmospheric drag to circularize an elliptical spacecraft orbit at Venus is analyzed parametrically for the Venus Orbital Imaging Radar Mission (VOIR) in 1983. Navigation, maneuver, and guidance requirements are discussed for the decay of a 24-hr orbit to a close circular orbit in about 30-60 days. A prototype 'Aerobrake' is described which is approximately 5 m in diameter and 25 kg in mass and which replaces a chemical retroengine of about 1300 kg in mass (delta V = 2.5 km/s) by a 700 kg in-orbit mass. The aerobrake, a light deployable Inconel sheet, shields the spacecraft from the flow and radiates the aerodynamic heating.

  1. The Orbital Design of Alpha Centauri Exoplanet Satellite (ACESat)

    NASA Technical Reports Server (NTRS)

    Weston, Sasha; Belikov, Rus; Bendek, Eduardo

    2015-01-01

    Exoplanet candidates discovered by Kepler are too distant for biomarkers to be detected with foreseeable technology. Alpha Centauri has high separation from other stars and is of close proximity to Earth, which makes the binary star system 'low hanging fruit' for scientists. Alpha Centauri Exoplanet Satellite (ACESat) is a mission proposed to Small Explorer Program (SMEX) that will use a coronagraph to search for an orbiting planet around one of the stars of Alpha Centauri. The trajectory design for this mission is presented here where three different trajectories are considered: Low Earth Orbit (LEO), Geosynchronous Orbit (GEO) and a Heliocentric Orbit. Uninterrupted stare time to Alpha Centauri is desirable for meeting science requirements, or an orbit that provides 90% stare time to the science target. The instrument thermal stability also has stringent requirements for proper function, influencing trajectory design.

  2. Method of resolving radio phase ambiguity in satellite orbit determination

    NASA Technical Reports Server (NTRS)

    Councelman, Charles C., III; Abbot, Richard I.

    1989-01-01

    For satellite orbit determination, the most accurate observable available today is microwave radio phase, which can be differenced between observing stations and between satellites to cancel both transmitter- and receiver-related errors. For maximum accuracy, the integer cycle ambiguities of the doubly differenced observations must be resolved. To perform this ambiguity resolution, a bootstrapping strategy is proposed. This strategy requires the tracking stations to have a wide ranging progression of spacings. By conventional 'integrated Doppler' processing of the observations from the most widely spaced stations, the orbits are determined well enough to permit resolution of the ambiguities for the most closely spaced stations. The resolution of these ambiguities reduces the uncertainty of the orbit determination enough to enable ambiguity resolution for more widely spaced stations, which further reduces the orbital uncertainty. In a test of this strategy with six tracking stations, both the formal and the true errors of determining Global Positioning System satellite orbits were reduced by a factor of 2.

  3. Sedna Orbit Animation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the location of the newly discovered planet-like object, dubbed 'Sedna,' in relation to the rest of the solar system. Starting at the inner solar system, which includes the orbits of Mercury, Venus, Earth, and Mars (all in yellow), the view pulls away through the asteroid belt and the orbits of the outer planets beyond (green). Pluto and the distant Kuiper Belt objects are seen next until finally Sedna comes into view. As the field widens the full orbit of Sedna can be seen along with its current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. Moving past Sedna, what was previously thought to be the inner edge of the Oort cloud appears. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  4. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  5. [Orbital neoplasms in children].

    PubMed

    Küchle, H J

    1989-04-01

    The incidence, diagnosis and clinical picture of the orbital tumors in children are discussed on the basis of 49 personal cases. Discovered was the preponderance of primary non-malignant tumors. The most frequently encountered tumors were angiomas (27 p.c.), dermatomas (19 p.c.) lymphomas (8 p.c.) and among the malignant tumors--rhabdomyosarcoma (6 p.c.).

  6. Electrostatic drops in orbit

    NASA Astrophysics Data System (ADS)

    Rodriguez, Isabel J.; Schmidt, Erin; Weislogel, Mark M.; Pettit, Donald

    2016-11-01

    We present what we think are the first intentional electrostatic orbits in the near-weightless environment of a drop tower. Classical physics problems involving Coulombic forces in orbital mechanics have traditionally been confined to thought experiments due to practical terrestrial experimental limitations, namely, the preponderance of gravity. However, the use of a drop tower as an experimental platform can overcome this challenge for brief periods. We demonstrate methanol-water droplets in orbit around a variety of charged objects- some of which can be used to validate special cases of N-body systems. Footage collected via a high-speed camera is analyzed and orbital trajectories are compared with existing theoretical predictions. Droplets of diameters 0.5 to 2mm in a variety of obits are observed. Due to the repeatability of drop tower initial conditions and effective low-g environment, such experiments may be used to construct empirical analogues and confirm analyses toward the benefit of other fields including space and planetary science. NASA Cooperative Agreement NNX12A047A, Portland State LSAMP, Robert E. McNair Scholars Program.

  7. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Surveyor '98 Climate Orbiter is shown here during acoustic tests that simulate launch conditions. The orbiter was to conduct a two year primary mission to profile the Martian atmosphere and map the surface. To carry out these scientific objectives, the spacecraft carried a rebuilt version of the pressure modulated infrared radiometer, lost with the Mars Observer spacecraft, and a miniaturized dual camera system the size of a pair of binoculars, provided by Malin Space Science Systems, Inc., San Diego, California. During its primary mission, the orbiter was to monitor Mars atmosphere and surface globally on a daily basis for one Martian year (two Earth years), observing the appearance and movement of atmospheric dust and water vapor, as well as characterizing seasonal changes of the planet's surface. Imaging of the surface morphology would also provide important clues about the planet's climate in its early history. The mission was part of NASA's Mars Surveyor program, a sustained program of robotic exploration of the red planet, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, DC. Lockheed Martin Astronautics was NASA's industrial partner in the mission. Unfortunately, Mars Climate Orbiter burned up in the Martian atmosphere on September 23, 1999, due to a metric conversion error that caused the spacecraft to be off course.

  8. Vertical Beam Polarization at MAMI

    NASA Astrophysics Data System (ADS)

    Schlimme, B. S.; Achenbach, P.; Aulenbacher, K.; Baunack, S.; Bender, D.; Beričič, J.; Bosnar, D.; Correa, L.; Dehn, M.; Distler, M. O.; Esser, A.; Fonvieille, H.; Friščić, I.; Gutheil, B.; Herrmann, P.; Hoek, M.; Kegel, S.; Kohl, Y.; Kolar, T.; Kreidel, H.-J.; Maas, F.; Merkel, H.; Mihovilovič, M.; Müller, J.; Müller, U.; Nillius, F.; Nuck, A.; Pochodzalla, J.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Spruck, B.; Štajner, S.; Thiel, M.; Tioukine, V.; Tyukin, A.; Weber, A.

    2017-04-01

    For the first time a vertically polarized electron beam has been used for physics experiments at MAMI in the energy range between 180 and 855 MeV. The beam-normal single-spin asymmetry An, which is a direct probe of higher-order photon exchange beyond the first Born approximation, has been measured in the reaction 12C (e → , e ‧)12C . Vertical polarization orientation was necessary to measure this asymmetry with the existing experimental setup. In this paper we describe the procedure to orient the electron polarization vector vertically, and the concept of determining both its magnitude and orientation with the available setup. A sophisticated method has been developed to overcome the lack of a polarimeter setup sensitive to the vertical polarization component.

  9. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  10. Vertically scanned laser sheet microscopy.

    PubMed

    Dong, Di; Arranz, Alicia; Zhu, Shouping; Yang, Yujie; Shi, Liangliang; Wang, Jun; Shen, Chen; Tian, Jie; Ripoll, Jorge

    2014-01-01

    Laser sheet microscopy is a widely used imaging technique for imaging the three-dimensional distribution of a fluorescence signal in fixed tissue or small organisms. In laser sheet microscopy, the stripe artifacts caused by high absorption or high scattering structures are very common, greatly affecting image quality. To solve this problem, we report here a two-step procedure which consists of continuously acquiring laser sheet images while vertically displacing the sample, and then using the variational stationary noise remover (VSNR) method to further reduce the remaining stripes. Images from a cleared murine colon acquired with a vertical scan are compared with common stitching procedures demonstrating that vertically scanned light sheet microscopy greatly improves the performance of current light sheet microscopy approaches without the need for complex changes to the imaging setup and allows imaging of elongated samples, extending the field of view in the vertical direction.

  11. Orbital Fluid Transfer System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.

    1998-01-01

    An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS

  12. Orbital Interactions in Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Hamilton, D. P.

    2007-07-01

    We investigate the long-term orbital evolution of exoplanets in a planar two-planet system, subject to an applied dissipative force. Without dissipation, the orbits of the two planets oscillate with two fundamental eigenmodes due to their secular gravitational interactions: a slow mode in which the two pericenters are aligned and a fast mode in which they are anti-aligned. In each mode, the two orbits precess as a rigid body at a rate determined purely by planet masses and orbital semi-major axes. In addition, the ratio between the two eccentricities is fixed. Any system of two planets can be represented by a linear combination of these two modes, with initial conditions (eccentricities and longitudes of pericenters) determining the precise mix. When eccentricities are slowly damped by perturbations such as planetary tides or disk interactions, the mode frequencies and eccentricity ratios shift slightly, and the two modes decay separately at different rates. We solve for these rates analytically -- usually one mode damps much faster than the other, and the system ends up locked in either an apsidally aligned or anti-aligned state. Numerical integrations of both the first-order secular equations and direct N-body equations show close agreement with our analytical results. This mechanism provides a possible explanation for the nonzero eccentricities of "hot-Jupiters", assuming that they have companions in more eccentric orbits. Some perturbations may also cause planetary migration. For slow migration rates, adiabatic invariants exist, which are functions of mode parameters (frequencies and amplitudes). Similar invariants can be found for the case where mass loss is important. Through analytical study of these integrals, we seek to explain the diverse appearance of planetary orbits.

  13. Orbital approach to studying the slow dynamics of stellar systems

    NASA Astrophysics Data System (ADS)

    Polyachenko, V. L.; Polyachenko, E. V.; Shukhman, I. G.

    2008-03-01

    the mass of this star is "smeared." In this version, the number of orbits N orb is equal to the total number of stars N in the system under consideration. This version is a complete analogue of the N-body approach, except that the motion of each star is averaged over the orbit and we consider not the behavior of the star but the behavior of its orbit. In the second version, all stars from one small cell in the phase space of orbit parameters correspond to the orbit. In fact, this version of the N-orbit approach represents the method of solving the collisionless Boltzmann kinetic equation for the distribution function of orbit parameters. The number of orbits N orb in this approach is equal to the chosen number of cells. There exist two types of objects to the description of which N-orbit methods can be applied. First, these include the central regions of galaxies containing no large point masses. The stars in these regions move in symmetric (about the center) elliptical orbits that slowly precess due to the small deviation of the self-consistent potential from an exactly quadratic form (when all orbits are closed, so that the precession velocity is exactly equal to zero). Second, these include the star clusters around massive black holes at the centers of these clusters. The orbit of a star revolving around a central mass is a closed Keplerian ellipse and, consequently, has no precession. Slow precession appears when the relatively weak (compared to the attraction of the massive black hole) self-consistent gravitational field produced by cluster stars is taken into account. In this paper, to be specific, we will mainly deal precisely with the latter, near-Keplerian systems.

  14. Proton spin tracking with symplectic integration of orbit motion

    SciTech Connect

    Luo, Y.; Dutheil, Y.; Huang, H.; Meot, F.; Ranjbar, V.

    2015-05-03

    Symplectic integration had been adopted for orbital motion tracking in code SimTrack. SimTrack has been extensively used for dynamic aperture calculation with beam-beam interaction for the Relativistic Heavy Ion Collider (RHIC). Recently proton spin tracking has been implemented on top of symplectic orbital motion in this code. In this article, we will explain the implementation of spin motion based on Thomas-BMT equation, and the benchmarking with other spin tracking codes currently used for RHIC. Examples to calculate spin closed orbit and spin tunes are presented too.

  15. The atmospheres of Saturn and Titan: Prospects for fundamental new views from the Cassini Orbiter

    NASA Astrophysics Data System (ADS)

    Baines, K.; del Genio, A.; Flasar, M.; Simon-Miller, A.; Waite, J.; West, R.

    Beginning in the Spring of 2004, a sophisticated suite of remote sensing instruments on board the Cassini orbiter will begin a four-year reconnaissance of Saturn and Titan. A comprehensive set of five remote sensing instruments and a radio occultation experiment will repeatedly acquire spectroscopic, imaging, and occultation measurements from the far ultraviolet through cm wavelengths, yielding new views of atmospheric cloud, chemical, and temperature structures which will provide new insights into the nature of thermochemical, photochemical, and dynamical processes on both of thes e gas -enshrouded worlds. Specific atmospheric properties planned to be revealed include: (1) the spatial and vertical distributions of a plethora of atmospheric constituents, including both organic and non-organic materials, (2) the global distributions of hazes and clouds, and their microphysical characteristics, (3) atmospheric thermal profiles over extensive ranges of altitudes, (4) polar aurorae and other high-altitude emission phenomena, and (5) global wind circulation patterns, lightning, and other meteorological phenomena. In addition, in- s i t u sampling of the extended upper atmosphere of Titan will be acquired by the Ion Neutral Mass Spectrometer (INMS), the first inter-planetary instrument capable of repeated in-situ measurements over a variety of latitudes, longitudes, and observing geometries.Beyond fundamental new views provided by the uniquely comprehensive instrument set, the varying viewing geometry and long period of observations afforded by the Cassini orbiter also enables (1) enhanced studies of storms, aurorae, global-circulation, and other temporally-dependent atmospheric phenomena, (2) unique close-up views of the poles and the nightsides, and (3) detailed investigation of particle properties in hazes and clouds over a variety of phase angles. Current objectives, plans and schedules for investigating the complex atmospheres of Saturn and Titan by the suite of

  16. Multi-Nozzle Spray Cooling in a Closed Loop (POSTPRINT)

    DTIC Science & Technology

    2011-03-01

    facing upward, (b) vertical, and (c) horizontal facing downward. The thermal performance of the horizontal facing downward surface was the best. A...transfer, closed loop, CHF 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 12 19a. NAME OF...the spray target surface, namely (a) horizontal facing upward, (b) vertical, and (c) horizontal facing downward. The thermal performance of the

  17. Shuttle on-orbit rendezvous targeting: Circular orbits

    NASA Technical Reports Server (NTRS)

    Bentley, E. L.

    1972-01-01

    The strategy and logic used in a space shuttle on-orbit rendezvous targeting program are described. The program generates ascent targeting conditions for boost to insertion into an intermediate parking orbit, and generates on-orbit targeting and timeline bases for each maneuver to effect rendezvous with a space station. Time of launch is determined so as to eliminate any plane change, and all work was performed for a near-circular space station orbit.

  18. Comparison of Low Earth Orbit and Geosynchronous Earth Orbits

    NASA Technical Reports Server (NTRS)

    Drummond, J. E.

    1980-01-01

    The technological, environmental, social, and political ramifications of low Earth orbits as compared to geosynchronous Earth orbits for the solar power satellite (SPS) are assessed. The capital cost of the transmitting facilities is dependent on the areas of the antenna and rectenna relative to the requirement of high efficiency power transmission. The salient features of a low orbit Earth orbits are discussed in terms of cost reduction efforts.

  19. Lessons Learned from Natural Space Debris in Heliocentric Orbit: An Analogue for Hazardous Debris in Earth Orbit

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wei, Hanying; Connors, Martin; Lai, Hairong; Delzanno, Gian Luca

    Interplanetary Field Enhancements (IFEs) were discovered almost 30 years ago in the PVO magnetic-field records. Our current understanding is that IFEs result from interactions between solar wind and clouds of nanometer-scale charged dust released in interplanetary collisions. These charged dust clouds are then accelerated by the solar wind and moving away from the Sun at near solar wind speed and detected by spacecraft in heliocentric orbit. The dynamics of the debris in heliocentric orbit is analogous to that mankind has placed into Earth orbit. There are lessons here that are worth exploring. The IFE formation hypothesis was supported by the discovery of co-orbiting materials associated with asteroid 2201 Oljato: IFE rate peaked when Oljato was close and IFE occurrence clustered in the longitudes near which the orbit of Oljato intersects the orbital plane of Venus. A followed up study with Venus Express observations suggested that the co-orbiting materials dissipated in 30 years. An important aspect of this evolution is that at collisional speeds of 20 km/s, a small body can destroy one 106 times more massive. This destruction of large debris by small debris could also be important in the evolution of the terrestrial debris. At 1AU, based on ACE and Wind observations, IFEs have a significant cluster in the longitude range between 195° and 225°. Thus we use the same IFE technique to identify the ‘parent’ Near-Earth Objects of co-orbiting materials which should be responsible for those IFEs. There are more than 5000 JPL documented NEOs whose ecliptic plane crossings are near to or inside the Earth’s orbit and whose orbital periods are less than five years. By comparing their trajectories, we find that the asteroid 138175 is a good candidate for the ‘parent’ body. This asteroid orbits the Sun in a 5.24° inclined elliptical orbit with a period of 367.96 days. Its descending node is at about 206°, where the IFE occurrence rate peaks. We also find that

  20. Close up view of the Commander's Seat on the Flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. It appears the Orbiter is in the roll out / launch pad configuration. A protective cover is over the Rotational Hand Controller to protect it during the commander's ingress. Most notable in this view are the Speed Brake/Thrust Controller in the center right in this view and the Translational Hand Controller in the center top of the view. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Verification of the naval oceanic vertical aerosol model during FIRE

    NASA Technical Reports Server (NTRS)

    Davidson, K. L.; Deleeuw, G.; Gathman, S. G.; Jensen, D. R.

    1990-01-01

    The value of Naval Oceanic Vertical Aerosol Model (NOVAM) is illustrated for estimating the non-uniform and non-logarithmic extinction profiles, based on a severe test involving conditions close to and beyond the limits of applicability of NOVAM. A more comprehensive evaluation of NOVAM from the FIRE data is presented, which includes a clear-air case. For further evaluation more data are required on the vertical structure of the extinction in the marine atmospheric boundary layer (MABL), preferably for different meteorological conditions and in different geographic areas (e.g., ASTEX).

  2. Helioseismology with Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Birch, Aaron C.; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Blanco Rodríguez, Julián; Cally, Paul S.; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H.; Solanki, Sami K.

    2015-12-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21∘ (up to 34∘ by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3×10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. For both helioseismology and feature tracking methods convection is a source of noise in the measurement of longitudinally averaged large-scale flows, which decreases as T -1/2 where T is the total duration of the observations. Therefore, the detection of small amplitude signals (e.g., meridional circulation, flows in the deep solar interior) requires long observation times. As an example, one hundred days of observations at lower spatial resolution would provide a noise level of about three m/s on the meridional flow at 80∘ latitude. Longer time-series are also needed to study temporal variations with the solar cycle. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. We have used a model of the PHI instrument to study its

  3. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  4. Orbits for eight Hipparcos double stars

    SciTech Connect

    Cvetković, Z.; Pavlović, R.; Ninković, S.

    2014-03-01

    In this paper, we analyze new orbital elements and the quantities that follow from them for eight binaries: WDS 00101+3825 = HDS 23Da,Db, WDS 00321–1218 = HDS 71, WDS 04287+2613 = HDS 576, WDS 04389–1207 = HDS 599, WDS 16206+4535 = HDS 2309, WDS 17155+1052 = HDS 2440, WDS 22161–0705 = HDS 3158, and WDS 23167+3441 = HDS 3315. For seven of them, the orbital elements are calculated for the first time. Binaries, denoted as HDS, were discovered during the Hipparcos mission, and their first observational epoch is 1991.25, the same as the mean epoch of the Hipparcos catalog. We found all other measurements of these binaries in databases. They were obtained in the last 15 yr using the speckle interferometric technique. All studied pairs are close, and all measured separations are less than 0.''4. The resulting orbital periods fall within 26 and 80 yr. In addition to the orbital elements, we also give (O – C) residuals in θ and ρ, masses, dynamical parallaxes, absolute magnitudes, spectral types, and ephemerides for the next 5 yr.

  5. Orbits for Eight Hipparcos Double Stars

    NASA Astrophysics Data System (ADS)

    Cvetković, Z.; Pavlović, R.; Ninković, S.

    2014-03-01

    In this paper, we analyze new orbital elements and the quantities that follow from them for eight binaries: WDS 00101+3825 = HDS 23Da,Db, WDS 00321-1218 = HDS 71, WDS 04287+2613 = HDS 576, WDS 04389-1207 = HDS 599, WDS 16206+4535 = HDS 2309, WDS 17155+1052 = HDS 2440, WDS 22161-0705 = HDS 3158, and WDS 23167+3441 = HDS 3315. For seven of them, the orbital elements are calculated for the first time. Binaries, denoted as HDS, were discovered during the Hipparcos mission, and their first observational epoch is 1991.25, the same as the mean epoch of the Hipparcos catalog. We found all other measurements of these binaries in databases. They were obtained in the last 15 yr using the speckle interferometric technique. All studied pairs are close, and all measured separations are less than 0.''4. The resulting orbital periods fall within 26 and 80 yr. In addition to the orbital elements, we also give (O - C) residuals in θ and ρ, masses, dynamical parallaxes, absolute magnitudes, spectral types, and ephemerides for the next 5 yr.

  6. Lunar Reconnaissance Orbiter Mission Highlights

    NASA Video Gallery

    Since launch on June 18, 2009 as a precursor mission, the Lunar Reconnaissance Orbiter (LRO) has remained in orbit around the moon, collecting vast amounts of science data in support of NASA's expl...

  7. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The orbiter Atlantis heads toward the open door of the Vehicle Assembly Building (VAB) on the north side. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  8. Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical stabilizer and the aft cargo bay area during the entry phase of the flight. Horowitz, pilot, joined four other astronauts and an international payload specialist for 16 days of scientific research in Earth-orbit.

  9. Research Study to Identify Technology Requirements for Advanced Earth-Orbital Transportation Systems, Dual-Mode Propulsion

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of a study of dual mode propulsion concepts applied to advanced earth orbital transportation systems using reuseable single stage to orbit vehicle concepts were summarized. Both series burn and parallel burn modes of propulsion were analyzed for vertical takeoff, horizontal landing vehicles based on accelerated technology goals. A major study objective was to assess the merits of dual mode main propulsion concepts compared to single mode concepts for carrying payloads of Space Shuttle type to orbit.

  10. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  11. 'Spider' in Earth Orbit

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module 'Spider' in a lunar landing configuration photographed by Command Module pilot David Scott inside the Command/Service Module 'Gumdrop' on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on 'Spider' has been deployed. lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were astronauts James A. McDivitt, Apollo 9 Commander; and Russell L. Schweickart, Lunar Module pilot.

  12. Orbital Debris Modeling

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)

  13. Small Mercury Relativity Orbiter

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  14. An Orbit Plan toward AKATSUKI Venus Reencounter and Orbit Injection

    NASA Technical Reports Server (NTRS)

    Kawakatsu, Yasuhiro; Campagnola, Stefano; Hirose, Chikako; Ishii, Nobuaki

    2012-01-01

    On December 7, 2010, AKATSUKI, the Japanese Venus explorer reached its destination and tried to inject itself into Venus orbit. However, due to a malfunction of the propulsion system, the maneuver was interrupted and AKATSUKI again escaped out from the Venus into an interplanetary orbit. Telemetry data from AKATSUKI suggests the possibility to perform orbit maneuvers to reencounter the Venus and retry Venus orbit injection. Reported in this paper is an orbit plan investigated under this situation. The latest results reflecting the maneuvers conducted in the autumn 2011 is introduced as well.

  15. Circular-Orbit Maintenance Strategies for Primitive Body Orbiters

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.; Broschart, Stephen

    2013-01-01

    For missions to smaller primitive bodies, solar radiation pressure (SRP) is a significant perturbation to Keplerian dynamics. For most orbits, SRP drives large oscillations in orbit eccentricity, which leads to large perturbations from the irregular gravity field at periapsis. Ultimately, chaotic motion results that often escapes or impacts that body. This paper presents an orbit maintenance strategy to keep the orbit eccentricity small, thus avoiding the destabilizing secondary interaction with the gravity field. An estimate of the frequency and magnitude of the required maneuvers as a function of the orbit and body parameters is derived from the analytic perturbation equations.

  16. Characteristics of F/A-18 vertical tail buffeting

    NASA Astrophysics Data System (ADS)

    Sheta, E. F.; Huttsell, L. J.

    2003-03-01

    A time-accurate computational analysis of vertical tail buffeting of full F/A-18 aircraft is conducted at typical flight conditions to identify the buffet characteristics of fighter aircraft. The F/A-18 aircraft is pitched at wide range of high angles of attack at Mach number of 0.243 and Reynolds number of 11 millions. Strong coupling between the fluid and structure is considered in this investigation. Strong coupling occurs when the inertial effect of the motion of the vertical tail is fed back into the flow field. The aerodynamic flow field around the F/A-18 aircraft is computed using the Reynolds-averaged full Navier-Stokes equations. The dynamical structural response of the vertical tail is predicted using direct finite-element analysis. The interface between the fluid and structure is applied using conservative and consistent interfacing methodology. The motion of the computational grid due to the deflection of the vertical tail is computed using transfinite interpolation module. The investigation revealed that the vertical tail is subject to bending and torsional responses, mainly in the first modes of vibrations. The buffet loads increase significantly as the onset of vortex breakdown moves upstream of the vertical tails. The inboard surface of the vertical tail has more significant contribution in the buffet excitation than the outboard surface. In addition, the pressure on the outboard surface of the vertical tail is less sensitive to the angle of attack than the pressure on the inboard surface. The buffet excitation peaks shift to lower frequency as the angle of attack increases. The computational results are compared, and they are in close agreement, with several flight and experimental data.

  17. Tidal evolution in close binary systems.

    NASA Technical Reports Server (NTRS)

    Kopal, Z.

    1972-01-01

    Mathematical outline of the theory of tidal evolution in close binary systems of secularly constant total momentum. Following a general outline of the problem the basic expressions for the energy and momenta of close binaries consisting of components of arbitrary internal structure are established, and the maximum and minimum values of the energy (kinetic and potential) which such systems can attain for a given amount of total momentum are investigated. These results are compared with the actual facts encountered in binaries with components whose internal structure (and, therefore, rotational momenta) are known from evidence furnished by the observed rates of apsidal advance. The results show that all such systems whether of detached or semidetached type - disclose that more than 99% of their total momenta are stored in the orbital momentum. The sum of the rotational momenta of the constituent components amounts to less than 1% of the total -a situation characteristic of a state close to the minimum energy for given total momentum.

  18. Orbiter Autoland reliability analysis

    NASA Technical Reports Server (NTRS)

    Welch, D. Phillip

    1993-01-01

    The Space Shuttle Orbiter is the only space reentry vehicle in which the crew is seated upright. This position presents some physiological effects requiring countermeasures to prevent a crewmember from becoming incapacitated. This also introduces a potential need for automated vehicle landing capability. Autoland is a primary procedure that was identified as a requirement for landing following and extended duration orbiter mission. This report documents the results of the reliability analysis performed on the hardware required for an automated landing. A reliability block diagram was used to evaluate system reliability. The analysis considers the manual and automated landing modes currently available on the Orbiter. (Autoland is presently a backup system only.) Results of this study indicate a +/- 36 percent probability of successfully extending a nominal mission to 30 days. Enough variations were evaluated to verify that the reliability could be altered with missions planning and procedures. If the crew is modeled as being fully capable after 30 days, the probability of a successful manual landing is comparable to that of Autoland because much of the hardware is used for both manual and automated landing modes. The analysis indicates that the reliability for the manual mode is limited by the hardware and depends greatly on crew capability. Crew capability for a successful landing after 30 days has not been determined yet.

  19. A Third Exoplanetary System with Misaligned Orbital and Stellar Spin Axes

    NASA Technical Reports Server (NTRS)

    Johnosn, John A.; Winn, Joshua N.; Albrecht, Simon; Howard, Andrew W.; Marcy, Geoffrey W.; Gazak, J. Zachary

    2009-01-01

    We presented evidence that the WASP-14 exoplanetary system has misaligned orbital and stellar-rotational axes, with an angle of 33.1 plus or minus 7.4 degrees between their sky projections. At the time of this publication, WASP-14 was the third system known to have a significant spin-orbit misalignment, and all three systems had super- Jupiter planets and eccentric orbits. Therefore we hypothesized that the migration and subsequent orbital evolution of massive, eccentric exoplanets is somehow different from that of less massive close-in Jupiters, the majority of which have well-aligned orbits.

  20. Extension of Earth-Moon libration point orbits with solar sail propulsion

    NASA Astrophysics Data System (ADS)

    Heiligers, Jeannette; Macdonald, Malcolm; Parker, Jeffrey S.

    2016-07-01

    This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail induced acceleration, families of Lyapunov, halo, vertical Lyapunov, Earth-centred, and distant retrograde orbits are created. As the solar sail circular restricted three-body problem is non-autonomous, a constraint defined within the differential correction scheme ensures that all orbits are periodic with the Sun's motion around the Earth-Moon system. The continuation method then starts from a classical libration point orbit with a suitable period and increases the solar sail acceleration magnitude to obtain families of orbits that are parametrised by this acceleration. Furthermore, different solar sail steering laws are considered (both in-plane and out-of-plane, and either fixed in the synodic frame or fixed with respect to the direction of Sunlight), adding to the wealth of families of solar sail enabled libration point orbits presented. Finally, the linear stability properties of the generated orbits are investigated to assess the need for active orbital control. It is shown that the solar sail induced acceleration can have a positive effect on the stability of some orbit families, especially those at the L2 point, but that it most often (further) destabilises the orbit. Active control will therefore be needed to ensure long-term survivability of these orbits.

  1. Closing the Advising Session.

    ERIC Educational Resources Information Center

    Jeon, Mihyon

    2003-01-01

    This study investigates closing patterns for an institutional conversation in an ELP (English Language Program) at a university in the United States, noting the relationship between the closing patterns of the participants and their level of proficiency in English. By indicating that ESL learners, especially beginners, face difficulty in closing…

  2. Surviving a School Closing

    ERIC Educational Resources Information Center

    De Witt, Peter M.; Moccia, Josephine

    2011-01-01

    When a beloved school closes, community emotions run high. De Witt and Moccia, administrators in the Averill Park School District in upstate New York, describe how their district navigated through parents' anger and practical matters in closing a small neighborhood elementary school and transferring all its students to another school. With a group…

  3. On the Orbit of the Circumbinary Planet Kepler-16b

    NASA Astrophysics Data System (ADS)

    Lee, Man Hoi; Leung, C. K.

    2012-05-01

    The orbit of the circumbinary planet Kepler-16b is significantly non-Keplerian because of the large secondary-to-primary mass ratio (0.29) and orbital eccentricity (0.15) of the binary, as well as the proximity of the planet to the binary (orbital period ratio 5.6). We present an analytic theory which models the motion of the planet (treated as a test particle) by the superposition of the circular motion of a guiding center, the forced oscillations due to the non-axisymmetric components of the binary's potential, the epicyclic motion, and the vertical motion. In this analytic theory, the periapse and ascending node of the planet precess at nearly equal rates in opposite directions, and the largest forced oscillation term corresponds to a forced eccentricity of 0.035. The nodal precession period (42 years) found in direct numerical orbit integration is in excellent agreement with the analytic theory, while the periapse precession period (49 years) and forced eccentricity (0.038) are slightly larger than the analytic values. The comparison with direct numerical orbit integration also shows that the planet's orbit has a nonzero epicyclic (or free) eccentricity of 0.027. This work is supported in part by Hong Kong RGC grant HKU 7034/09P.

  4. Effective solidity in vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  5. Orbital resonances and Poynting-Robertson drag

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.; Jackson, A. A.

    1993-01-01

    The phenomenon of resonance trapping with Poynting-Robertson drag in the simplest case - the circular restricted three-body problem - is elucidated. Attention is given to what determines whether a grain of a given size passes through a given resonance or is trapped there, to how and why a trapped particle's orbit evolves with time, and to why Poynting-Robertson drag resonances are only temporary, while gas-drag resonances appear to be stable. The possibility of trapping a grain into resonance with a planet depends on the combination of the following parameters: the ratio of radiation pressure force to solar gravity, the mass of the perturbing planet normalized to the solar mass, an integer, and eccentricity. In general, the peak eccentricity and sometimes the threshold value are large enough so that crossing orbits and close approaches to the planet can inhibit capture and aid escape from resonance.

  6. Vertical land motion of Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Montillet, J. P.; Szeliga, W. M.

    2015-12-01

    We use GPS measurements from 400 stations located throughout the Pacific Northwest to estimate steady-state vertical land motion for the purpose of constraining relative sea level rise projections. Vertical motions are typically only a few percent of horizontal rates and the same order of magnitude as current sea level rise rates, so may either ameliorate or exacerbate future climate impacts. We use data from receivers operating from 1994 through 2015, each with at least three years of continuous daily measurements. Furthermore, daily position time series resulting from the processing of two GPS centers, namely the EarthScope Plate Boundary Observatory (PBO) and the Pacific Northwest Geodetic Array (PANGA), are considered throughout this study. The goal is two fold: the dissemination into the scientific community of the difference in processing between these two centers, and the level of agreement between the estimated crustal for future sea-level studies in the Pacific Northwest. We model both target and reference frame receiver trajectories as a superposition of discrete processes comprising steady-state tectonic motion, annual and bi-annual sinusoids exhibiting stationary phase and amplitude that reflect both local hydrology as well as artifacts introduced through satellite clock and orbit corrections, and discrete offsets due to known earthquakes (with Mw > 6) and hardware changes. Qualitatively, Vancouver Island shows long-term uplift of ~2 mm/year, consistent with both interseismic strain accumulation from the Juan de Fuca subduction along the coast and post-glacial rebound inland, and consistent with earlier reports based on few stations and shorter time series. Further south, coastal uplift rates transition to near-zero south of Pacific Beach, and remain low southward to Cape Blanco. Vertical motion is more heterogeneous throughout Puget Sound, but most regions show subsidence of ~0.5 - 1 mm/yr. The predominant subsidence throughout Puget Sound, where the

  7. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  8. Up close and personal

    NASA Astrophysics Data System (ADS)

    Williamson, Mark

    2009-03-01

    In 1609, when he peered expectantly through his handmade telescope at the mountains of the Moon and the four large satellites of Jupiter, Galileo Galilei could have had no idea that nearly four centuries later these astronomical bodies would be orbited by "artificial satellites" hand-built by like-minded inquisitors of the solar system. That one of these spacecraft would be named after him would probably have been dismissed as idle fantasy. However, the spacecraft known as Galileo, launched in 1989 and de-orbited into Jupiter's turbulent atmosphere in 2003, is just one of many interplanetary spacecraft dispatched to explore the solar system since the beginning of the space age in 1957.

  9. Global Orbit Feedback in RHIC

    SciTech Connect

    Minty, M.; Hulsart, R.; Marusic, A.; Michnoff, R.; Ptitsyn, V.; Robert-Demolaize, G.; Satogata, T.

    2010-05-23

    For improved reproducibility of good operating conditions and ramp commissioning efficiency, new dual-plane slow orbit feedback during the energy ramp was implemented during run-10 in the Relativistic Heavy Ion Collider (RHIC). The orbit feedback is based on steering the measured orbit, after subtraction of the dispersive component, to either a design orbit or to a previously saved reference orbit. Using multiple correctors and beam position monitors, an SVD-based algorithm is used for determination of the applied corrections. The online model is used as a basis for matrix computations. In this report we describe the feedback design, review the changes made to realize its implementation, and assess system performance.

  10. Orbital maneuvers and space rendezvous

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene I.

    2015-12-01

    Several possibilities of launching a space vehicle from the orbital station are considered and compared. Orbital maneuvers discussed in the paper can be useful in designing a trajectory for a specific space mission. The relative motion of orbiting bodies is investigated on examples of spacecraft rendezvous with the space station that stays in a circular orbit around the Earth. An elementary approach is illustrated by an accompanying simulation computer program and supported by a mathematical treatment based on fundamental laws of physics and conservation laws. Material is appropriate for engineers and other personnel involved in space exploration, undergraduate and graduate students studying classical physics and orbital mechanics.

  11. Vertical motion simulator familiarization guide

    NASA Technical Reports Server (NTRS)

    Danek, George L.

    1993-01-01

    The Vertical Motion Simulator Familiarization Guide provides a synoptic description of the Vertical Motion Simulator (VMS) and descriptions of the various simulation components and systems. The intended audience is the community of scientists and engineers who employ the VMS for research and development. The concept of a research simulator system is introduced and the building block nature of the VMS is emphasized. Individual sections describe all the hardware elements in terms of general properties and capabilities. Also included are an example of a typical VMS simulation which graphically illustrates the composition of the system and shows the signal flow among the elements and a glossary of specialized terms, abbreviations, and acronyms.

  12. Measurements of vertical bar Vcb vertical bar and vertical bar Vub vertical bar at BaBar

    SciTech Connect

    Rotondo, M.

    2005-10-12

    We report results from the BABAR Collaboration on the semileptonic B decays, highlighting the measurements of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix elements Vub and Vcb. We describe the techniques used to obtain the matrix element |Vcb| using the measurement of the inclusive B {yields} Xclv process and a large sample of exclusive B {yields} D*lv decays. The vertical bar Vub vertical bar matrix elements has been measured studying different kinematic variables of the B {yields} Xulv process, and also with the exclusive reconstruction of B {yields} {pi}({rho})lv decays.

  13. Applicability of the control configured design approach to advanced earth orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W. H.; Shafer, D. E.

    1978-01-01

    The applicability of the control configured design approach (CCV) to advanced earth orbital transportation systems was studied. The baseline system investigated was fully reusable vertical take-off/horizontal landing single-stage-to-orbit vehicle and had mission requirements similar to the space shuttle orbiter. Technical analyses were made to determine aerodynamic, flight control and subsystem design characteristics. Figures of merit were assessed on vehicle dry weight and orbital payload. The results indicated that the major parameters for CCV designs are hypersonic trim, aft center of gravity, and control surface heating. Optimized CCV designs can be controllable and provide substantial payload gains over conventional non-CCV design vertical take-off vehicles.

  14. Lunar Prospector Orbit Determination Results

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Concha, Marco

    1998-01-01

    The orbit support for Lunar Prospector (LP) consists of three main areas: (1) cislunar orbit determination, (2) rapid maneuver assessment using Doppler residuals, and (3) routine mapping orbit determination. The cislunar phase consisted of two trajectory correction maneuvers during the translunar cruise followed by three lunar orbit insertion burns. This paper will detail the cislunar orbit determination accuracy and the real-time assessment of the cislunar trajectory correction and lunar orbit insertion maneuvers. The non-spherical gravity model of the Moon is the primary influence on the mapping orbit determination accuracy. During the first two months of the mission, the GLGM-2 lunar potential model was used. After one month in the mapping orbit, a new potential model was developed that incorporated LP Doppler data. This paper will compare and contrast the mapping orbit determination accuracy using these two models. LP orbit support also includes a new enhancement - a web page to disseminate all definitive and predictive trajectory and mission planning information. The web site provides definitive mapping orbit ephemerides including moon latitude and longitude, and four week predictive products including: ephemeris, moon latitude/longitude, earth shadow, moon shadow, and ground station view periods. This paper will discuss the specifics of this web site.

  15. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  16. Closed and Not Closed: Mitigating a Mystery on Chandra's Door

    NASA Technical Reports Server (NTRS)

    Odom, Brian

    2015-01-01

    The Chandra X-ray Observatory is part of NASA's fleet of "Great Observatories" along with the Hubble Space Telescope, the Spitzer Space Telescope, and the now deorbited Compton Gamma Ray Observatory. The observatory was designed to detect x-ray emissions from some of the hottest regions of the galaxy including exploded stars, clusters of galaxies, and matter around black holes. One of the observatory's key scientific instruments is the Advanced CCD Imaging Spectrometer (ACIS), which is one of four primary and two focal plane instruments. Due to the sensitivity of the charged coupled devices (CCD's), an aperture door was designed and built by Lockheed-Martin that protected the instrument during testing and the time leading up to launch. The design called for a system of wax actuators (manufactured by STARSYS Corp) to be used as components in a rotary actuator that would open and close the door during ground testing and on-orbit operations. Another feature of the design was an internal shear disc located in each actuator to prevent excessive internal pressure and to shield other components from damage.

  17. Discovering Habitable Earths, Hot Jupiters, and Other Close Planets with Microlensing

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.

    2012-06-01

    Searches for planets via gravitational lensing have focused on cases in which the projected separation, a, between planet and star is comparable to the Einstein radius, RE . This paper considers smaller orbital separations and demonstrates that evidence of close-orbit planets can be found in the low-magnification portion of the light curves generated by the central star. We develop a protocol for discovering hot Jupiters as well as Neptune-mass and Earth-mass planets in the stellar habitable zone. When planets are not discovered, our method can be used to quantify the probability that the lens star does not have planets within specified ranges of the orbital separation and mass ratio. Nearby close-orbit planets discovered by lensing can be subject to follow-up observations to study the newly discovered planets or to discover other planets orbiting the same star. Careful study of the low-magnification portions of lensing light curves should produce, in addition to the discoveries of close-orbit planets, definite detections of wide-orbit planets through the discovery of "repeating" lensing events. We show that events exhibiting extremely high magnification can effectively be probed for planets in close, intermediate, and wide distance regimes simply by adding several-time-per-night monitoring in the low-magnification wings, possibly leading to gravitational lensing discoveries of multiple planets occupying a broad range of orbits, from close to wide, in a single planetary system.

  18. DISCOVERING HABITABLE EARTHS, HOT JUPITERS, AND OTHER CLOSE PLANETS WITH MICROLENSING

    SciTech Connect

    Di Stefano, R.

    2012-06-20

    Searches for planets via gravitational lensing have focused on cases in which the projected separation, a, between planet and star is comparable to the Einstein radius, R{sub E} . This paper considers smaller orbital separations and demonstrates that evidence of close-orbit planets can be found in the low-magnification portion of the light curves generated by the central star. We develop a protocol for discovering hot Jupiters as well as Neptune-mass and Earth-mass planets in the stellar habitable zone. When planets are not discovered, our method can be used to quantify the probability that the lens star does not have planets within specified ranges of the orbital separation and mass ratio. Nearby close-orbit planets discovered by lensing can be subject to follow-up observations to study the newly discovered planets or to discover other planets orbiting the same star. Careful study of the low-magnification portions of lensing light curves should produce, in addition to the discoveries of close-orbit planets, definite detections of wide-orbit planets through the discovery of 'repeating' lensing events. We show that events exhibiting extremely high magnification can effectively be probed for planets in close, intermediate, and wide distance regimes simply by adding several-time-per-night monitoring in the low-magnification wings, possibly leading to gravitational lensing discoveries of multiple planets occupying a broad range of orbits, from close to wide, in a single planetary system.

  19. Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2015-06-01

    An electrostatically charged spacecraft accelerates as it moves through the Earth's magnetic field due to the induced Lorentz force, providing a new means of propellantless electromagnetic propulsion for orbital maneuvers. The feasibility of Lorentz-augmented spacecraft formation flying in elliptic orbits is investigated in this paper. Assuming the Earth's magnetic field as a tilted dipole corotating with Earth, a nonlinear dynamical model that characterizes the orbital motion of Lorentz spacecraft in the vicinity of arbitrary elliptic orbits is developed. To establish a predetermined formation configuration at given terminal time, pseudospectral method is used to solve the optimal open-loop trajectories of hybrid control inputs consisted of Lorentz acceleration and thruster-generated control acceleration. A nontilted dipole model is also introduced to analyze the effect of dipole tilt angle via comparisons with the tilted one. Meanwhile, to guarantee finite-time convergence and system robustness against external perturbations, a continuous fast nonsingular terminal sliding mode controller is designed and the closed-loop system stability is proved by Lyapunov theory. Numerical simulations substantiate the validity of proposed open-loop and closed-loop control schemes, and the results indicate that an almost propellantless formation establishment can be achieved by choosing appropriate objective function in the pseudospectral method. Furthermore, compared to the nonsingular terminal sliding mode controller, the closed-loop controller presents superior convergence rate with only a bit more control effort. And the proposed controller can be applied in other Lorentz-augmented relative orbital control problems.

  20. Hypervelocity Orbital Intercept Guidance

    DTIC Science & Technology

    1988-04-14

    Professor Charles E. Fosha, Jr. Terminal guidance of a hypervelocity exo-atmospheric orbital interceptor with free end-time is examined. The pursuer is...stochastic nonlinear systems with free end-time was developed by Tse and 29 Bar-Shalom [5]. This method differs from the optimal control formulation...Vol. AC-18, No. 2, April 1973, pp. 98-108. 5. Tse, E., and Y. Bar-Shalom, "Adaptive Dual Control For Stochastic Nonlinear Systems with Free End- Time

  1. Lunar Exploration Orbiter (LEO)

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Spohn, T.; Hiesinger, H.; Jessberger, E. K.; Neukum, G.; Oberst, J.; Helbert, J.; Christensen, U.; Keller, H. U.; Mall, U.; Böhnhardt, H.; Hartogh, P.; Glassmeier, K.-H.; Auster, H.-U.; Moreira, A.; Werner, M.; Pätzold, M.; Palme, H.; Wimmer-Schweingruber, R.; Mandea, M.; Lesur, V.; Häusler, B.; Hördt, A.; Eichentopf, K.; Hauber, E.; Hoffmann, H.; Köhler, U.; Kührt, E.; Michaelis, H.; Pauer, M.; Sohl, F.; Denk, T.; van Gasselt, S.

    2007-08-01

    The Moon is an integral part of the Earth-Moon system, it is a witness to more than 4.5 b. y. of solar system history, and it is the only planetary body except Earth for which we have samples from known locations. The Moon is our closest companion and can easily be reached from Earth at any time, even with a relatively modest financial budget. Consequently, the Moon was the first logical step in the exploration of our solar system before we pursued more distant targets such as Mars and beyond. The vast amount of knowledge gained from the Apollo and other lunar missions of the late 1960's and early 1970's demonstrates how valuable the Moon is for the understanding of our planetary system. Even today, the Moon remains an extremely interesting target scientifically and technologically, as ever since, new data have helped to address some of our questions about the Earth-Moon system, many questions remained. Therefore, returning to the Moon is the critical stepping-stone to further exploring our immediate planetary neighborhood. In this concept study, we present scientific and technological arguments for a national German lunar mission, the Lunar Explorations Orbiter (LEO). Numerous space-faring nations have realized and identified the unique opportunities related to lunar exploration and have planned missions to the Moon within the next few years. Among these missions, LEO will be unique, because it will globally explore the Moon in unprecedented spatial and spectral resolution. LEO will significantly improve our understanding of the lunar surface composition, surface ages, mineralogy, physical properties, interior, thermal history, gravity field, regolith structure, and magnetic field. The Lunar Explorations Orbiter will carry an entire suite of innovative, complementary technologies, including high-resolution camera systems, several spectrometers that cover previously unexplored parts of the electromagnetic spectrum over a broad range of wavelengths, microwave and

  2. Physics and the Vertical Jump

    ERIC Educational Resources Information Center

    Offenbacher, Elmer L.

    1970-01-01

    The physics of vertical jumping is described as an interesting illustration for motivating students in a general physics course to master the kinematics and dynamics of one dimensional motion. The author suggests that mastery of the physical principles of the jump may promote understanding of certain biological phenomena, aspects of physical…

  3. Vertical Instability at IPNS RCS.

    SciTech Connect

    Wang, S.; Brumwell, F. R.; Dooling, J. C.; Harkay, K. C.; Kustom, R.; McMichael, G. E.; Middendorf, M. E.; Nassiri, A.; Accelerator Systems Division

    2008-01-01

    The rapid cycling synchrotron (RCS) of the intense pulsed neutron source (IPNS) at ANL accelerates > 3.0 times 10{sup 12} protons from 50 MeV to 450 MeV with 30-Hz repetition frequency. During the acceleration cycle, the rf frequency varies from 2.21 MHz to 5.14 MHz. Presently, the beam current is limited by a vertical instability. By analyzing turn-by-turn beam position monitor (BPM) data, large- amplitude mode 0 and mode 1 vertical beam centroid oscillations were observed in the later part of the acceleration cycle. The oscillations start in the tail of the bunch, build up, and remain localized in the tail half of the bunch. This vertical instability was compared with a head-tail instability that was intentionally induced in the RCS by adjusting the trim sextupoles. It appears that our vertical instability is not a classical head-tail instability [1]. More data analysis and experiments were performed to characterize the instability.

  4. Vertical reactor coolant pump instabilities

    NASA Technical Reports Server (NTRS)

    Jones, R. M.

    1985-01-01

    The investigation conducted at the Tennessee Valley Authority's Sequoyah Nuclear Power Plant to determine and correct increasing vibrations in the vertical reactor coolant pumps is described. Diagnostic procedures to determine the vibration causes and evaluate the corrective measures taken are also described.

  5. Closed Large Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Closed Large Cell Clouds in the South Pacific     ... unperturbed by cyclonic or frontal activity. When the cell centers are cloudy and the main sinking motion is concentrated at cell ...

  6. Precise science orbits for the Swarm satellite constellation

    NASA Astrophysics Data System (ADS)

    van den IJssel, Jose; Encarnação, João; Doornbos, Eelco; Visser, Pieter

    2015-09-01

    The European Space Agency (ESA) Swarm mission was launched on 22 November 2013 to study the dynamics of the Earth's magnetic field and its interaction with the Earth system. The mission consists of three identical satellites, flying in carefully selected near polar orbits. Two satellites fly almost side-by-side at an initial altitude of about 480 km, and will descend due to drag to around 300 km during the mission lifetime. The third satellite was placed in a higher orbit of about 530 km altitude, and therefore descends much more slowly. To geolocate the Swarm observations, each satellite is equipped with an 8-channel, dual-frequency GPS receiver for Precise Orbit Determination (POD). Onboard laser retroreflectors provide the opportunity to validate the orbits computed from the GPS observations using Satellite Laser Ranging (SLR) data. Precise Science Orbits (PSOs) for the Swarm satellites are computed by the Faculty of Aerospace Engineering at Delft University of Technology in the framework of the Swarm Satellite Constellation Application and Research Facility (SCARF). The PSO product consists of both a reduced-dynamic and a kinematic orbit solution. After a short description of the Swarm GPS data characteristics, the adopted POD strategy for both orbit types is explained and first PSO results from more than one year of Swarm GPS data are presented. Independent SLR validation shows that the reduced-dynamic Swarm PSOs have an accuracy of better than 2 cm, while the kinematic orbits have a slightly reduced accuracy of about 4-5 cm. Orbit comparisons indicate that the consistency between the reduced-dynamic and kinematic Swarm PSO for most parts of the Earth is at the 4-5 cm level. Close to the geomagnetic poles and along the geomagnetic equator, however, the kinematic orbits show larger errors, which are probably due to ionospheric scintillations that affect the Swarm GPS receivers over these areas.

  7. Closed Circular Chains

    ERIC Educational Resources Information Center

    Caglayan, Günhan

    2016-01-01

    A Steiner chain is defined as the sequence of n circles that are all tangent to two given non-intersecting circles. A closed chain, in particular, is one in which every circle in the sequence is tangent to the previous and next circles of the chain. In a closed Steiner chain the first and the "n"th circles of the chain are also tangent…

  8. Periodic orbits for three and four co-orbital bodies

    NASA Astrophysics Data System (ADS)

    Verrier, P. E.; McInnes, C. R.

    2014-08-01

    We investigate the natural families of periodic orbits associated with the equilibrium configurations of the planar-restricted 1 + n-body problem for the case 2 ≤ n ≤ 4 equal-mass satellites. Such periodic orbits can be used to model both trojan exoplanetary systems and parking orbits for captured asteroids within the Solar system. For n = 2, there are two families of periodic orbits associated with the equilibria of the system: the well-known horseshoe and tadpole orbits. For n = 3, there are three families that emanate from the equilibrium configurations of the satellites, while for n = 4, there are six such families as well as numerous additional connecting families. The families of periodic orbits are all of the horseshoe or tadpole type, and several have regions of neutral linear stability.

  9. Nozomi Cis-Lunar Phase Orbit Determination

    NASA Technical Reports Server (NTRS)

    Ryne, Mark; Criddle, Kevin

    2000-01-01

    solutions based on data collected from their respective tracking networks. Spacecraft events, such as sequence uplinks and maneuvers, were generally scheduled during passes at the Usuda tracking station in Japan. As a result, maneuver design and reconstruction was derived from MMNAV solutions based on JPL tracking data obtained immediately prior to or following maneuvers. Data was also exchanged between ISAS and MMNAV so orbit determination could be performed on joint data sets in support of critical targeting late in the cis-lunar phase. In this paper, information regarding the MMNAV orbit determination effort for the first six months of the mission is presented. The spacecraft trajectory is characterized first, followed by a discussion of the orbit determination estimation procedure and models. Results from selected orbit solutions are presented and compared against reconstructed trajectories. One area of emphasis in this paper is orbit determination in the vicinity of the weak stability boundary. Precise navigation was necessary to target the second lunar swingby and the powered Earth swingby. Delivery accuracy of 150 m was required for these critical encounters, but a number of factors contributed to the general degradation of orbit determination accuracy. This included the fact that the spacecraft was at apogee, at a range of 1.7 million km and moving at less than I km/sec perpendicular to the line of sight. Nozomi was also close to zero degrees declination where there are known limitations on orbit determination performance. Finally, S-band tracking data was acquired through the Nozomi backup low gain antenna. This antenna is offset from the axis of this spin stabilized spacecraft and superimposed large signatures in the Doppler and range data. These difficulties were overcome by combining long data arcs, spanning several maneuvers, with a high fidelity solar pressure model. The model included a physically accurate representation of the spacecraft structure and a high

  10. Resonant and secular orbital interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Ke

    In stable solar systems, planets remain in nearly elliptical orbits around their stars. Over longer timescales, however, their orbital shapes and sizes change due to mutual gravitational perturbations. Orbits of satellites around a planet vary for the same reason. Because of their interactions, the orbits of planets and satellites today are different from what they were earlier. In order to determine their original orbits, which are critical constraints on formation theories, it is crucial to understand how orbits evolve over the age of the Solar System. Depending on their timescale, we classify orbital interactions as either short-term (orbital resonances) or long-term (secular evolution). My work involves examples of both interaction types. Resonant history of the small Neptunian satellites. In satellite systems, tidal migration brings satellite orbits in and out of resonances. During a resonance passage, satellite orbits change dramatically in a very short period of time. We investigate the resonant history of the six small Neptunian moons. In this unique system, the exotic orbit of the large captured Triton (with a circular, retrograde, and highly tilted orbit) influences the resonances among the small satellites very strongly. We derive an analytical framework which can be applied to Neptune's satellites and to similar systems. Our numerical simulations explain the current orbital tilts of the small satellites as well as constrain key physical parameters of both Neptune and its moons. Secular orbital interactions during eccentricity damping. Long-term periodic changes of orbital shape and orientation occur when two or more planets orbit the same star. The variations of orbital elements are superpositions of the same number of fundamental modes as the number of planets in the system. We investigate how this effect interacts with other perturbations imposed by external disturbances, such as the tides and relativistic effects. Through analytical studies of a

  11. Vertical Sextants give Good Sights

    NASA Astrophysics Data System (ADS)

    Dixon, Mark

    Many texts stress the need for marine sextants to be held precisely vertical at the instant that the altitude of a heavenly body is measured. Several authors lay particular emphasis on the technique of the instrument in a small arc about the horizontal axis to obtain a good sight. Nobody, to the author's knowledge, however, has attempted to quantify the errors involved, so as to compare them with other errors inherent in determining celestial position lines. This paper sets out to address these issues and to pose the question: what level of accuracy of vertical alignment can reasonably be expected during marine sextant work at sea ?When a heavenly body is brought to tangency with the visible horizon it is particularly important to ensure that the sextant is held in a truly vertical position. To this end the instrument is rocked gently about the horizontal so that the image of the body describes a small arc in the observer's field of vision. As Bruce Bauer points out, tangency with the horizon must be achieved during the process of rocking and not a second or so after rocking has been discontinued. The altitude is recorded for the instant that the body kisses the visible horizon at the lowest point of the rocking arc, as in Fig. 2. The only other visual clue as to whether the sextant is vertical is provided by the right angle made by the vertical edge of the horizon glass mirror with the horizon. There may also be some input from the observer's sense of balance and his hand orientation.

  12. [Endoscopic approaches to the orbit].

    PubMed

    Cebula, H; Lahlou, A; De Battista, J C; Debry, C; Froelich, S

    2010-01-01

    During the last decade, the use of endoscopic endonasal approaches to the pituitary has increased considerably. The endoscopic endonasal and transantral approaches offer a minimally invasive alternative to the classic transcranial or transconjunctival approaches to the medial aspect of the orbit. The medial wall of the orbit, the orbital apex, and the optic canal can be exposed through a middle meatal antrostomy, an anterior and posterior ethmoidectomy, and a sphenoidotomy. The inferomedial wall of the orbit can be also perfectly visualized through a sublabial antrostomy or an inferior meatal antrostomy. Several reports have described the use of an endoscopic approach for the resection or the biopsy of lesions located on the medial extraconal aspect of the orbit and orbital apex. However, the resection of intraconal lesions is still limited by inadequate instrumentation. Other indications for the endoscopic approach to the orbit are the decompression of the orbit for Graves' ophthalmopathy and traumatic optic neuropathy. However, the optimal management of traumatic optic neuropathy remains very controversial. Endoscopic endonasal decompression of the optic nerve in case of tumor compression could be a more valid indication in combination with radiation therapy. Finally, the endoscopic transantral treatment of blowout fracture of the floor of the orbit is an interesting option that avoids the eyelid or conjunctive incision of traditional approaches. The collaboration between the neurosurgeon and the ENT surgeon is mandatory and reduces the morbidity of the approach. Progress in instrumentation and optical devices will certainly make this approach promising for intraconal tumor of the orbit.

  13. Free convection over a vertical porous plate with transpiration

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Moffat, R. J.; Kays, W. M.; Bershader, D.

    1974-01-01

    The problem of free convection over an isothermal vertical porous plate with transpiration is studied both numerically and experimentally. Numerical solutions to the variable-property transpired free-convection boundary layer equations have been obtained using the finite difference procedure of Patankar and Spalding (1967). The effects of uniform transpiration on heat transfer and on temperature and velocity profiles are predicted. Interferometrically measured nondimensional temperature profiles for the uniform wall temperature and transpiration case agreed closely with these numerical predictions.

  14. Judgments of Learning for Words in Vertical Space

    PubMed Central

    Luna, Karlos; Martín-Luengo, Beatriz; Shtyrov, Yury; Myachykov, Andriy

    2016-01-01

    Close relationship between physical space and internal knowledge representations has received ample support in the literature. For example, location of visually perceived information in vertical space has been shown to affect different numerical judgments. In addition, physical dimensions, such as weight or font size, were shown to affect judgments of learning (JOLs, an estimation of the likelihood that an item will be remembered later, or its perceived memorability). In two experiments we tested the hypothesis that differences in positioning words in vertical space may affect their perceived memorability, i.e., JOLs. In both Experiments, the words were presented in lower or in upper screen locations. In Experiment 1, JOLs were collected in the centre of the screen following word presentation. In Experiment 2, JOLs were collected at the point of word presentation and in the same location. In both experiments participants completed a free recall test. JOLs were compared between different vertically displaced presentation locations. In general, Bayesian analyses showed evidence in support for the null effect of vertical location on JOLs. We interpret our results as indicating that the effects of physical dimensions on JOLs are mediated by subjective importance, information that vertical location alone fails to convey. PMID:27990132

  15. Optimal Continuous Thrust Orbital Evasive Maneuvers from Geosynchronous Orbit

    DTIC Science & Technology

    1986-12-01

    control thrusters, if its warning time and orbital parameters were appropriate. A model is developed using optimal control theory and is solved numericaly...Maneuvers of a Spacecraft Relative to a Point in Circular Orbit ,’ Journal of Guidance, Control . and Dynamics. 9(l): 27-31 (January -February 1966). 10... Elliptical Orbit ," Joursal of Guidance. Control . and Drjsmakjs1 (4: 271-275 (July- August 1979). 22. Meirovitch, Leonard. Methods of Anakytical Dynamics

  16. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and starboard as the last Space Shuttle Main Engine is being removed, it can be seen on the right side of the image frame. Note that one of the Orbiter Maneuvering System/ Reaction Control System has been removed while one of them remains. Also note that the body flap, below the engine positions has a protective covering to prevent damage to the High-temperature Reusable Surface Insulation tiles. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  17. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and port as the last Space Shuttle Main Engine is being removed, it can be seen on the left side of the image frame. Note that one of the Orbiter Maneuvering System/ Reaction Control System has been removed while one of them remains. Also note that the body flap, below the engine positions has a protective covering to prevent damage to the High-temperature Reusable Surface Insulation tiles. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. Orbiter Docking System/Spacelab-Mir Module in Atlantis

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The STS-71 mission payload is in its final flight configuration after integration into the payload bay of the Space Shuttle orbiter Atlantis and prior to payload bay door closing and rollover of the spaceplane from Orbiter Processing Facility Bay 3 to the Vehicle Assembly Building. In the foreground is the Orbiter Docking System (ODS) that is topped with the red Russian- built Androgynous Peripheral Docking System (APDS). During the 11-day mission, the APDS will lock together with a similar system on the Russian Mir Space Station so that the two spacecraft can remain docked together for four days. The ODS features an airlock that will provide access to and from both the Mir and orbiter for the U.S. and Russian flight crews. A Spacelab transfer tunnel runs from the ODS to the Spacelab-Mir module, where joint U.S. medical experiments will be conducted during the 11-day spaceflight.

  19. SPECKLE INTERFEROMETRY AND ORBITS OF 'FAST' VISUAL BINARIES

    SciTech Connect

    Tokovinin, Andrei

    2012-08-15

    Results of speckle observations at the 4.1 m SOAR telescope in 2012 (158 measures of 121 systems, 27 non-resolutions) are reported. The aim is to follow fast orbital motion of recently discovered or neglected close binaries and sub-systems. Here, eight previously known orbits are defined better, two more are completely revised, and five orbits are computed for the first time. Using differential photometry from Hipparcos or speckle and the standard relation between mass and absolute magnitude, the component's masses and dynamical parallaxes are estimated for all 15 systems with new or updated orbits. Two astrometric binaries HIP 54214 and 56245 are resolved here for the first time, another eight are measured. We highlight several unresolved pairs that may actually be single despite multiple historic measures, such as 104 Tau and f Pup AB. Continued monitoring is needed to understand those enigmatic cases.

  20. Neptune Orbiter Mission Scenario Based on Nuclear Electric Propulsion and Aerocapture Orbital Insertion

    NASA Astrophysics Data System (ADS)

    Jits, R.

    2002-01-01

    insertion of spacecraft into elliptical orbit around target planet is proposed for Neptune orbiter mission. The primary goal of combining nuclear electric propulsion (NEP) and aerocapture orbital insertion is a reduction of a trip time comparing to that of similar mission, which would use nuclear electric propulsion only. One of the limitations of the all NEP orbiter is that at the planetary approach it must match its arrival velocity with Neptune's orbital speed in order to initiate slow capture into the desired orbit using low thrust electric propulsion. Use of aerocapture for insertion into closed elliptical orbit around Neptune through a single aerodynamically controlled atmospheric pass gives advantage of having higher entry velocities than it would be possible in case of all NEP scenario, thus reducing trip time required for interplanetary transfer. propulsion and thermal protection systems. Moreover, because faster interplanetary trip times for combined NEP/Aerocapture orbiter result in a higher entry velocities into the Neptune's atmosphere, they will also drive the increase in aerobrake mass fraction. In addition, aerocapture at Neptune also presents a challenge for aerobrake's guidance system which must target vehicle to the desired atmospheric exit conditions in the presence of significant uncertainties in Neptune's atmospheric density. Hence, there is a need to design a robust nominal aerocapture trajectory capable of accommodating density dispersions and also optimized for minimum thermal protection mass, thus contributing to overall reduction of aerobrake mass fraction. determine the optimal combination between reduction of the trip time and increase in aerobrake mass fraction was undertaken. The initial assumptions on aerobrake thermal protection materials and NEP system characteristics were based on near term state of the art technology, corresponding to 2007-2010 time frame, when such a mission to Neptune could be launched. interplanetary

  1. Orbital debris issues

    NASA Astrophysics Data System (ADS)

    Kessler, D. J.

    Orbital debris issues fall into three major topics: Environment Definition, Spacecraft Hazard, and Space Object Management. The major issue under Environment Definition is defining the debris flux for sizes smaller (10 cm in diameter) than those tracked by the North American Aerospace Defense Command (NORAD). Sources for this size debris are fragmentation of larger objects, either by explosion or collision, and solid rocket motor products. Modeling of these sources can predict fluxes in low Earth orbit which are greater than the meteoroid environment. Techniques to measure the environment in the size interval between 1 mm and 10 cm are being developed, including the use of telescopes and radar both on the ground and in space. Some impact sensors designed to detect meteoroids may have detected solid rocket motor products. Once the environment is defined, it can be combined with hypervelocity impact data and damage criteria to evaluate the Spacecraft Hazard. Shielding may be required to obtain an acceptable damage level. Space Object Management includes techniques to control the environment and the desired policy to effectively minimize the hazard to spacecraft. One control technique - reducing the likelihood of future explosions in space - has already been implemented by NASA. The effectiveness of other techniques has yet to be evaluated.

  2. Orbital construction demonstration study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A conceptual design and program plan for an Orbital Construction Demonstration Article (OCDA) was developed that can be used for evaluating and establishing practical large structural assembly operations. A flight plan for initial placement and continued utility is presented as a basic for an entirely new shuttle payload line-item having great future potential benefit for space applications. The OCDA is a three-axis stabilized platform in low-earth orbit with many structural nodals for mounting large construction and fabrication equipments. This equipment would be used to explore methods for constructing the large structures for future missions. The OCDA would be supported at regular intervals by the shuttle. Construction experiments and consumables resupply are performed during shuttle visit periods. A 250 kw solar array provides sufficient power to support the shuttle while attached to the OCDA and to run construction experiments at the same time. Wide band communications with a Telemetry and Data Relay Satellite compatible high gain antenna can be used between shuttle revisits to perform remote controlled, TV assisted construction experiments.

  3. Premixed flame propagation in vertical tubes

    NASA Astrophysics Data System (ADS)

    Kazakov, Kirill A.

    2016-04-01

    Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.

  4. The distributions of positions of Minimal Orbit Intersection Distances among Near Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Marčeta, Dušan; Šegan, Stevo

    2012-07-01

    This paper presents the distributions of the positions of the Minimal Orbit Intersection Distances (MOID) among three subgroups of the Near Earth Asteroids (NEAs). This includes 683 Atens, 4185 Apollos and 3538 Amors which makes over 15 millions combinations of the pairs of orbits. The results which are obtained in this analysis show very interesting distributions of positions of the MOIDs and circumstances of close approaches of the asteroids and emphasize influence of different orbital elements on these distributions.

  5. Orbit correction in a linear nonscaling fixed field alternating gradient accelerator

    DOE PAGES

    Kelliher, D. J.; Machida, S.; Edmonds, C. S.; ...

    2014-11-20

    In a linear non-scaling FFAG the large natural chromaticity of the machine results in a betatron tune that varies by several integers over the momentum range. In addition, orbit correction is complicated by the consequent variation of the phase advance between lattice elements. Here we investigate how the correction of multiple closed orbit harmonics allows correction of both the COD and the accelerated orbit distortion over the momentum range.

  6. General view of the Orbiter Discovery in the Orbiter Processing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center showing the payload bay doors open exposing the heat-dissipating radiator panels located on the inside of the payload bay doors. Also in the view is the boom portion of the boom sensor system deployed as part of the return to flight procedures after STS-107 to inspect the orbiter's thermal protection system. The Remote Manipulator System, the "Canadarm", and the airlock are seen in the background of the image. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. Orbital Evolution and Impact Hazard of Asteroids on Retrograde Orbits

    NASA Astrophysics Data System (ADS)

    Kankiewicz, P.; Włodarczyk, I.

    2014-07-01

    We present the past evolutional scenarios of known group of asteroids in retrograde orbits. Applying the latest observational data, we determined their nominal and averaged orbital elements. Next, we studied the behaviour of their orbital motion 1~My in the past (100~My in the future for two NEAs) taking into account the limitations of observational errors. It has been shown that the influence of outer planets perturbations in many cases can import small bodies on high inclination or retrograde orbits into the inner Solar System.

  8. The orbit properties of colliding co-orbiting bodies

    NASA Technical Reports Server (NTRS)

    Freeman, John W.

    1987-01-01

    It is generally assumed that an ensemble of small bodies located in similar Keplarian orbits will, because of collisions, tend to disperse into more and more dissimilar orbits. This theory was challenged. Alfven maintains that for the case where the time between collisions is longer than the orbit period and the collisions are essentially inelastic the orbits and velocities will become more similar. This gives rise to the concepts of negative diffusion and jet streams. It is proposed that this question might be investigated experimentally using the space station. The proposed experiment is briefly described.

  9. Simple control laws for low-thrust orbit transfers

    NASA Technical Reports Server (NTRS)

    Petropoulos, Anastassios E.

    2003-01-01

    Two methods are presented by which to determine both a thrust direction and when to apply thrust to effect specified changes in any of the orbit elements except for true anomaly, which is assumed free. The central body is assumed to be a point mass, and the initial and final orbits are assumed closed. Thrust, when on, is of a constant value, and specific impulse is constant. The thrust profiles derived from the two methods are not propellant-optimal, but are based firstly on the optimal thrust directions and location on the osculating orbit for changing each of the orbit elements and secondly on the desired changes in the orbit elements. Two examples of transfers are presented, one in semimajor axis and inclination, and one in semimajor axis and eccentricity. The latter compares favourably with a propellant-optimized transfer between the same orbits. The control laws have few input parameters, but can still capture the complexity of a wide variety of orbit transfers.

  10. Verticality perception during off-vertical axis rotation.

    PubMed

    Vingerhoets, R A A; Van Gisbergen, J A M; Medendorp, W P

    2007-05-01

    During prolonged rotation about a tilted yaw axis, often referred to as off-vertical axis rotation (OVAR), a percept of being translated along a conical path slowly emerges as the sense of rotation subsides. Recently, we found that these perceptual changes are consistent with a canal-otolith interaction model that attributes the illusory translation percept to improper interpretation of the ambiguous otolith signals. The model further predicts that the illusory translation percept must be accompanied by slowly worsening tilt underestimates. Here, we tested this prediction in six subjects by measuring the time course of the subjective visual vertical (SVV) during OVAR stimulation at three different tilt-rotation speed combinations, in complete darkness. Throughout the 2-min run, at each left-ear-down and right-ear-down position, the subject indicated whether a briefly flashed line deviated clockwise or counterclockwise from vertical to determine the SVV with an adaptive staircase procedure. Typically, SVV errors indicating tilt underestimation were already present at rotation onset and then increased exponentially to an asymptotic value, reached at about 60 s after rotation onset. The initial error in the SVV was highly correlated to the response error in a static tilt control experiment. The subsequent increase in error depended on both rotation speed and OVAR tilt angle, in a manner predicted by the canal-otolith interaction model. We conclude that verticality misjudgments during OVAR reflect a dynamic component linked to canal-otolith interaction, superimposed on a tilt-related component that is also expressed under stationary conditions.

  11. Millimetre Wave with Rotational Orbital Angular Momentum

    PubMed Central

    Zhang, Chao; Ma, Lu

    2016-01-01

    Orbital angular momentum (OAM) has been widely studied in fibre and short-range communications. The implementation of millimetre waves with OAM is expected to increase the communication capacity. Most experiments demonstrate the distinction of OAM modes by receiving all of the energy in the surface vertical to the radiation axis in space. However, the reception of OAM is difficult in free space due to the non-zero beam angle and divergence of energy. The reception of OAM in the space domain in a manner similar to that in optical fibres (i.e., receiving all of the energy rings vertical to the radiation axis) is impractical, especially for long-distance transmission. Here, we fabricate a prototype of the antenna and demonstrate that rather than in the space domain, the OAM can be well received in the time domain via a single antenna by rotating the OAM wave at the transmitter, i.e., the radio wave with rotational OAM. The phase and frequency measured in the experiment reveal that for different OAM modes, the received signals act as a commonly used orthogonal frequency division multiplexing (OFDM) signal in the time domain. This phase rotation has promising prospects for use in the practical reception of different OAMs of millimetre waves in long-distance transmission. PMID:27596746

  12. Millimetre Wave with Rotational Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Ma, Lu

    2016-09-01

    Orbital angular momentum (OAM) has been widely studied in fibre and short-range communications. The implementation of millimetre waves with OAM is expected to increase the communication capacity. Most experiments demonstrate the distinction of OAM modes by receiving all of the energy in the surface vertical to the radiation axis in space. However, the reception of OAM is difficult in free space due to the non-zero beam angle and divergence of energy. The reception of OAM in the space domain in a manner similar to that in optical fibres (i.e., receiving all of the energy rings vertical to the radiation axis) is impractical, especially for long-distance transmission. Here, we fabricate a prototype of the antenna and demonstrate that rather than in the space domain, the OAM can be well received in the time domain via a single antenna by rotating the OAM wave at the transmitter, i.e., the radio wave with rotational OAM. The phase and frequency measured in the experiment reveal that for different OAM modes, the received signals act as a commonly used orthogonal frequency division multiplexing (OFDM) signal in the time domain. This phase rotation has promising prospects for use in the practical reception of different OAMs of millimetre waves in long-distance transmission.

  13. Close up view of the Commander's Seat on the Flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. Toward the right of the view and in front of te seat is the commander's Rotational Hand Controller. The pilot station has an identical controller. These control the acceleration in the roll pitch and yaw directions via the reaction control system and/or the orbiter maneuvering system while outside of Earth's atmosphere or via the orbiter's aerosurfaces wile in Earth's atmosphere when the atmospheric density permits the surfaces to be effective. There are a number of switches on the controller, most notably a trigger switch which is a push-to-talk switch for voice communication and a large button on top of the controller which is a switch to engage the backup flight system. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. Close up view of the center console on the flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the center console on the flight deck of the Orbiter Discovery showing the console's instrumentation and controls. The commanders station is located to the left in this view and the pilot's station is to the right in the view. The handle and lever located on the right side of the center console and towards its front is one of a pair, the commander has one on the left of his seat in his station, of Speed Brake/Thrust Controllers. These are dual purpose controllers. During ascent the controller can be use to throttle the main engines and during entry the controllers can be used to control aerodynamic drag by opening or closing the orbiter's speed brake. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  16. Energy Ordering of Molecular Orbitals

    PubMed Central

    2016-01-01

    Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the real world? To shed light on this intriguing question, we employ a photoemission tomography study on monolayers of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) grown on three Ag surfaces. The characteristic photoelectron angular distribution enables us to assign individual molecular orbitals to the emission features. When comparing the resulting energy positions to density functional calculations, we observe deviations in the energy ordering. By performing complete active space calculations (CASSCF), we can explain the experimentally observed orbital ordering, suggesting the importance of static electron correlation beyond a (semi)local approximation. On the other hand, our results also show reality and robustness of the orbital concept, thereby making molecular orbitals accessible to experimental observations. PMID:27935313

  17. A statistical study of close binary systems: testing evolutionary models

    NASA Astrophysics Data System (ADS)

    Leão, I. C.; de Medeiros, J. R.

    2003-08-01

    The evolution of stars in close binary systems differs from that of their single counterparts essentially in two main aspects: (i) the rotation of each component is directly affected by tidal interactions, which determine the evolution of orbital parameters and rotations of the system, and (ii) the evolutionary tracks of the stars run in considerably different ways when the mass transfer process begins, which occurs when the primary evolves sufficiently and reaches its Roche limit. The present work brings a confrontation between observational data, including orbital parameters, rotation and age, and theoretical predictions obtained from detailed models of binary systems evolution. For this study we have selected a sample of binary systems, mostly with a F-, G- or K-type primary component, with orbital parameters and rotational velocity available in the literature. For the theoretical predictions we have used stellar evolutionary models by Claret 1998 (A&AS 131, 395) and Schaller et al. 1992 (A&AS 96, 269) combined with models of binary orbital parameters evolution by Zahn 1977 (A&A 57, 383) and Zahn 1978 (A&A 67, 162). The preliminary results point for a good agreement between the observed orbital eccentricity, orbital and rotational periods and the predicted values as a function of stellar age. In addition, we present an analysis of the relationship between Vrot/Vk (where Vrot and Vk are, respectively, the rotational and keplerian velocities) and the stellar fractional radius, to rediscuss the synchronization process between rotation and orbital motions.

  18. Local pair natural orbitals for excited states.

    PubMed

    Helmich, Benjamin; Hättig, Christof

    2011-12-07

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10(-8)-10(-7), corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  19. Local pair natural orbitals for excited states

    NASA Astrophysics Data System (ADS)

    Helmich, Benjamin; Hättig, Christof

    2011-12-01

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10-8-10-7, corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  20. Chirality-driven orbital magnetic moments as a new probe for topological magnetic structures

    PubMed Central

    dos Santos Dias, Manuel; Bouaziz, Juba; Bouhassoune, Mohammed; Blügel, Stefan; Lounis, Samir

    2016-01-01

    When electrons are driven through unconventional magnetic structures, such as skyrmions, they experience emergent electromagnetic fields that originate several Hall effects. Independently, ground-state emergent magnetic fields can also lead to orbital magnetism, even without the spin–orbit interaction. The close parallel between the geometric theories of the Hall effects and of the orbital magnetization raises the question: does a skyrmion display topological orbital magnetism? Here we first address the smallest systems with nonvanishing emergent magnetic field, trimers, characterizing the orbital magnetic properties from first-principles. Armed with this understanding, we study the orbital magnetism of skyrmions and demonstrate that the contribution driven by the emergent magnetic field is topological. This means that the topological contribution to the orbital moment does not change under continuous deformations of the magnetic structure. Furthermore, we use it to propose a new experimental protocol for the identification of topological magnetic structures, by soft X-ray spectroscopy. PMID:27995909

  1. Adaptive interplanetary orbit determination

    NASA Astrophysics Data System (ADS)

    Crain, Timothy Price

    This work documents the development of a real-time interplanetary orbit determination monitoring algorithm for detecting and identifying changes in the spacecraft dynamic and measurement environments. The algorithm may either be utilized in a stand-alone fashion as a spacecraft monitor and hypothesis tester by navigators or may serve as a component in an autonomous adaptive orbit determination architecture. In either application, the monitoring algorithm serves to identify the orbit determination filter parameters to be modified by an offline process to restore the operational model accuracy when the spacecraft environment changes unexpectedly. The monitoring algorithm utilizes a hierarchical mixture-of-experts to regulate a multilevel bank organization of extended Kalman filters. Banks of filters operate on the hierarchy top-level and are composed of filters with configurations representative of a specific environment change called a macromode. Fine differences, or micromodes, within the macromodes are represented by individual filter configurations. Regulation is provided by two levels of single-layer neural networks called gating networks. A single top-level gating network regulates the weighting among macromodes and each bank uses a gating network to regulate member filters internally. Experiments are conducted on the Mars Pathfinder cruise trajectory environment using range and Doppler data from the Deep Space Network. The experiments investigate the ability of the hierarchical mixture-of-experts to identify three environment macromodes: (1) unmodeled impulsive maneuvers, (2) changes in the solar radiation pressure dynamics, and (3) changes in the measurement noise strength. Two methods of initializing the gating networks are examined in each experiment. One method gives the neurons associated with all filters equivalent synaptic weight. The other method places greater weight on the operational filter initially believed to model the spacecraft environment. The

  2. Orbital State Uncertainty Realism

    NASA Astrophysics Data System (ADS)

    Horwood, J.; Poore, A. B.

    2012-09-01

    Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten

  3. Orbit Determination for Mars Global Surveyor During Mapping

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Rowlands, D. D.; Smith, D. E.; Pavlis, D. E.; Chinn, D. S.; Luthcke, S. B.; Neumann, G. A.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft reached a low-altitude circular orbit on February 4, 1999, after the termination of the second phase of aerobraking. The MGS spacecraft carries the Mars Orbiter Laser Altimeter (MOLA) whose primary goal is to derive a global, geodetically referenced 0.2 deg x 0.2 deg topographic grid of Mars with a vertical accuracy of better than 30 meters. During the interim science orbits in the' Hiatus mission phase (October - November 1997), and the Science Phasing Orbits (March - April, 1998, and June - July 1998) 208 passes of altimeter data were collected by the MOLA instrument. On March 1, 1999 the first ten orbits of MOLA altimeter data from the near-circular orbit were successfully returned from MGS by the Deep Space Network (DSN). Data will be collected from MOLA throughout the Mapping phase of the MCS mission, or for at least one Mars year (687 days). Whereas the interim orbits of Hiatus and SPO were highly eccentric, and altimeter data were only collected near periapsis when the spacecraft was below 785 km, the Mapping orbit of MGS is near circular, and altimeter data will be collected continuously at a rate of 10 Hz. The proper analysis of the altimeter data requires that the orbit of the MGS spacecraft be known to an accuracy comparable to that of the quality of the altimeter data. The altimeter has an ultimate precision of 30 cm on mostly flat surfaces, so ideally the orbits of the MGS spacecraft should be known to this level. This is a stringent requirement, and more realistic goals of orbit error for MGS are ten to thirty meters. In this paper we will discuss the force and measurement modelling required to achieve this objective. Issues in force modelling include the proper modelling of the gravity field of Mars, and the modelling of non-conservatives forces, including the development of a 'macro-model', in a similar fashion to TOPEX/POSEIDON and TDRSS. During Cruise and Aerobraking, the high gain antenna (HGA) was stowed

  4. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  5. Grafts in "closed" rhinoplasty.

    PubMed

    Scattolin, A; D'Ascanio, L

    2013-06-01

    Rhinoplasty is a fascinating and complex surgical procedure aiming at attaining a well-functioning and aesthetically pleasant nose. The use of grafts is of the utmost importance for the nasal surgeon to achieve such results. However, the philosophy and technical use of nasal grafts are different in "closed" and "open" rhinoplasty. The aim of this paper is not detailed description of the numerous grafts reported in the literature; we will describe the main principles of grafts use in "closed" rhinoplasty derived from our experience, with special reference to the philosophical and technical differences in their employment between "closed" and "open" rhinoplasty. Some cases are reported as an example of graft use in "endonasal" approach rhinoplasty.

  6. Cassini ISS Satellite Orbit Results

    NASA Astrophysics Data System (ADS)

    Spitale, J. N.; Jacobson, R. A.; Porco, C. C.; Owen, W. M.; Charnoz, S.; Murray, C. D.; Brahic, A.; Evans, M. W.; Beurle, K.; Cooper, N.; Cassini Imaging

    2004-11-01

    We report on the orbits of several small Saturnian satellites, either recovered or newly-discovered in recent Cassini imaging observations. The mean motions of Pan and Atlas have been corrected based on recent Cassini imaging combined with Voyager observations. Two small satellites, S/2004 S 1 and S/2004 S 2, have been discovered between the orbits of Mimas and Enceladus on orbits that are nearly circular and uninclined. Both bodies were observed for a fraction of one orbit on June 1, 2004 and S/2004 S 1 was subsequently detected in images shuttered three weeks earlier. Those bodies may be recovered in late October in imaging sequences designed for that purpose. A third new object was detected in images from June 21, 2004, orbiting just outside the F ring. However, a search for additional detections revealed something orbiting interior to the F ring near the longitude at which the new object would be expected 5 hours later. A low-residual orbit that crosses the F ring has been found to explain all of the observations, but it is not yet clear whether the two sequences imaged the same object or two different objects that coincidentally were found orbiting at the same longitude but at different orbital semimajor axes. These issues make its nature -- solid satellite or F ring clump -- unclear. The data, fitting procedures, and results will be discussed.

  7. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  8. Orbiter utilization as an ACRV

    NASA Technical Reports Server (NTRS)

    Cruz, Jonathan N.; Heck, Michael L.; Kumar, Renjith R.; Mazanek, Daniel D.; Troutman, Patrick A.

    1990-01-01

    Assuming that a Shuttle Orbiter could be qualified to serve long duration missions attached to Space Station Freedom in the capacity as an Assured Crew Return Vehicle (ACRV), a study was conducted to identify and examine candidate attach locations. Baseline, modified hardware, and new hardware design configurations were considered. Dual simultaneous Orbiter docking accommodation were required. Resulting flight characteristics analyzed included torque equilibrium attitude (TEA), microgravity environment, attitude controllability, and reboost fuel requirements. The baseline Station could not accommodate two Orbiters. Modified hardware configurations analyzed had large TEA's. The utilization of an oblique docking mechanism best accommodated an Orbiter as an ACRV.

  9. Imaging of the Postoperative Orbit.

    PubMed

    Learned, Kim O; Nasseri, Farbod; Mohan, Suyash

    2015-08-01

    Imaging evaluation of the postoperative orbit remains challenging even for the expert neuroradiologist. This article provides a simplified framework for understanding the complex postoperative appearances of the orbit, in an attempt to enhance the diagnostic accuracy of postoperative computed tomography and MR imaging of the orbit. Readers are familiarized with the normal appearances of common eye procedures and orbit reconstructions to help avoid interpretative pitfalls. Also reviewed are imaging features of common surgical complications, and evaluation of residual/recurrent neoplasm in the setting of oncologic imaging surveillance.

  10. A solution of the variational equations for elliptic orbits in rotating coordinates

    NASA Technical Reports Server (NTRS)

    Jones, J. B.

    1980-01-01

    For elliptic reference orbits, formulas are given for the perturbation state transition matrix of the two-body problem. The formulas relate perturbations expressed in a local vertical rotating coordinate system and are valid for motion in the linear neighborhood of reference orbits with e in the range of 0 to 1. The elements of the state transition matrix are expressed in terms of natural parameters (horizontal and radial velocity, radius, eccentricity, true anomaly, etc.) at the initial and final points. In addition to the general form, a simplified version, valid for small eccentricity orbits, is given.

  11. Performance capability of laser-powered launch vehicles using vertical ascent trajectories

    NASA Technical Reports Server (NTRS)

    Spurlock, O. F.

    1974-01-01

    The use of a ground-based high-power laser source to power a vertically launched rocket vehicle is investigated. By using a vertical ascent trajectory, only a single laser source is required. The vertical ascent mode is not applicable to earth orbit destinations but is applicable to missions beyond earth escape. Performance and trajectory characteristics are examined for vertical trajectories to earth escape and solar escape (which may be of interest in the future for radioactive waste disposal). Specific impulse values from 2000 to 5000 seconds are considered. With these values, a single-stage vehicle can deliver payloads to earth escape and beyond, but extremely high power sources (gigawatts) are required.

  12. Vertically Integrated Circuits at Fermilab

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2010-01-01

    The exploration of vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning, and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. For the first time, Fermilab has organized a 3D MPW run, to which more than 25 different designs have been submitted by the consortium.

  13. Vertically Integrated Circuits at Fermilab

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  14. Kinematic Fitting of Detached Vertices

    SciTech Connect

    Mattione, Paul

    2007-05-01

    The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.

  15. Cornering characteristics of the main-gear tire of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.; Robinson, Martha P.

    1988-01-01

    An experimental investigation was conducted at the NASA Langley Research Center to study the effects of various vertical load and yaw angle conditions on the cornering behavior of the Space Shuttle Orbiter main gear tire. Measured parameters included side and drag force, side and drag force coefficients, aligning torque, and overturning torque. Side force coefficient was found to increase as yaw angle was increased, but decreased as the vertical load was increased. Drag force was found to increase as vertical load was increased at constant yaw angles. Aligning torque measurements indicated that the tire is stable in yaw.

  16. Skylab Orbiter Workshop Illustration

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This cutaway illustration shows the characteristics and basic elements of the Skylab Orbiter Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.

  17. Orbital Eccrine Hidrocystoma

    PubMed Central

    Marangoz, Deniz; Doğan Ekici, Işın; Çiftçi, Ferda

    2016-01-01

    A 29-year-old female patient presented with a painless mass on her upper eyelid medially. She noticed the mass 4 years earlier and it had increased in size over time. She had no diplopia, eyelid swelling, skin lesion overlying the mass, or visual disturbances. On ocular examination, eye movements and funduscopy were normal. The mass was movable and painless with palpation. Magnetic resonance imaging with contrast showed a 12x8x7 mm well-circumscribed cystic lesion with no contrast dye appearance. Surgical removal was performed delicately and no capsular rupture occured. Pathological examination revealed an eccrine hidrocystoma. Our aim is to underline that eccrine hidrocystoma should be included in differential diagnosis of orbital masses. PMID:28058171

  18. TOPEX orbital radiation study

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Barth, J. M.

    1984-01-01

    The space radiation environment of the TOPEX spacecraft is investigated. A single trajectory was considered. The external (surface incident) charged particle radiation, predicted for the satellite, is determined by orbital flux integration for the specified trajectory. The latest standard models of the environment are used in the calculations. The evaluation is performed for solar maximum conditions. The spacecraft exposure to cosmic rays of galactic origin is evaluated over its flight path through the magnetosphere in terms of geomagnetic shielding effects, both for surface incident heavy ions and for particles emerging behind different material thickness. Limited shielding and dose evaluations are performed for simple infinite slab and spherical geometries. Results, given in graphical and tabular form, are analyzed, explained, and discussed. Conclusions are presented and commented on.

  19. Geology orbiter comparison study

    NASA Technical Reports Server (NTRS)

    Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.

    1977-01-01

    Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.

  20. Orbital angular momentum microlaser

    NASA Astrophysics Data System (ADS)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  1. Theory of Orbits

    NASA Astrophysics Data System (ADS)

    Boccaletti, Dino; Pucacco, Giuseppe

    This textbook treats Celestial Mechanics as well as Stellar Dynamics from the common point of view of orbit theory making use of the concepts and techniques from modern geometric mechanics. It starts with elementary Newtonian Mechanics and ends with the dynamics of chaotic motions. The book is meant for students in astronomy and physics alike. Prerequisite is a physicist's knowledge of calculus and differential geometry. Volume 1 begins with classical mechanics and a thorough treatment of the 2-body problem, including regularization, followed by an introduction to the N-body problem with particular attention given to the virial theorem. Then the authors discuss all important non-perturbative aspects of the 3-body problem. A final chapter deals with integrability of Hamilton-Jacobi-systems.

  2. Calculating Trajectories And Orbits

    NASA Technical Reports Server (NTRS)

    Alderson, Daniel J.; Brady, Franklyn H.; Breckheimer, Peter J.; Campbell, James K.; Christensen, Carl S.; Collier, James B.; Ekelund, John E.; Ellis, Jordan; Goltz, Gene L.; Hintz, Gerarld R.; Legerton, Victor N.; Mccreary, Faith A.; Mitchell, Robert T.; Mottinger, Neil A.; Moultrie, Benjamin A.; Moyer, Theodore D.; Rinker, Sheryl L.; Ryne, Mark S.; Stavert, L. Robert; Sunseri, Richard F.

    1989-01-01

    Double-Precision Trajectory Analysis Program, DPTRAJ, and Orbit Determination Program, ODP, developed and improved over years to provide highly reliable and accurate navigation capability for deep-space missions like Voyager. Each collection of programs working together to provide desired computational results. DPTRAJ, ODP, and supporting utility programs capable of handling massive amounts of data and performing various numerical calculations required for solving navigation problems associated with planetary fly-by and lander missions. Used extensively in support of NASA's Voyager project. DPTRAJ-ODP available in two machine versions. UNIVAC version, NPO-15586, written in FORTRAN V, SFTRAN, and ASSEMBLER. VAX/VMS version, NPO-17201, written in FORTRAN V, SFTRAN, PL/1 and ASSEMBLER.

  3. Orbital science's 'Bermuda Triangle'

    NASA Astrophysics Data System (ADS)

    Sherrill, Thomas J.

    1991-02-01

    The effects of a part of the inner Van Allen belt lying closest to the earth, known as the South Atlantic Anomaly (SAA) upon spacecraft including the Hubble Space Telescope (HST), are discussed. The area consists of positively charged ions and electrons from the Van Allen Belt which become trapped in the earth's dipole field. Contor maps representing the number of protons per square centimeter per second having energies greater than 10 million electron volts are presented. It is noted that the HST orbit causes it to spend about 15 percent of its time in the SAA, but that, unlike the experience with earlier spacecraft, the satellite's skin, internal structure, and normal electronic's packaging provides sufficient protection against eletrons, although some higher energy protons still get through. Various charged particle effects which can arise within scientific instruments including fluorescence, Cerenkov radiation, and induced radioactivity are described.

  4. Orbiting Carbon Observatory

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    Human impact on the environment has produced measurable changes in the geological record since the late 1700s. Anthropogenic emissions of CO2 today may cause the global climate to depart for its natural behavior for many millenia. CO2 is the primary anthropogenic driver of climate change. The Orbiting Carbon Observatory goals are to help collect measurements of atmospheric CO2, answering questions such as why the atmospheric CO2 buildup varies annually, the roles of the oceans and land ecosystems in absorbing CO2, the roles of North American and Eurasian sinks and how these carbon sinks respond to climate change. The present carbon cycle, CO2 variability, and climate uncertainties due atmospheric CO2 uncertainties are highlighted in this presentation.

  5. NASA-Ames vertical gun

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1984-01-01

    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  6. Management of paretic vertical deviations.

    PubMed

    Archer, Steven M

    2011-01-01

    Paretic vertical deviations are characterized by complex patterns of incomitance that make them some of the most challenging strabismus problems to treat. Optimum results are obtained by performing surgery on those muscles, selected from among the eight cyclovertical muscles in the two eyes, that minimize the incomitance. In superior oblique paresis the additional factors of torticollis and torsion need to be addressed and aberrant regeneration can alter the surgical plan in third nerve paresis.

  7. Vertical Launch System Loadout Planner

    DTIC Science & Technology

    2015-03-01

    Submarine Rocket (ASROC): Ship -launched rocket used in ASW.  RIM-174 SM6: Advanced version of a ship -launched SM2 missile capable of over-the...Operational planners strive to fmd ways to load missiles on Vertical Latmch System (VLS) ships to meet mission requit·ements in theit· AI·ea of...Responsibility (AOR). Requirements are variable: there are missions requiting specific types of missiles; each ship may have distinct capability or capacity to

  8. Vertical Gun Test Environmental Assessment

    DTIC Science & Technology

    2004-05-18

    phosphate (TBP) as a chemical agent simulant in a maximum of six vertical gun experiments to be conducted at the Energetic Materials Research and... phosphate . Using either of Ka-Bandprocess, with 2 these two substances would not achieve the test objectives of realistically simulating the threat. In...resources, geology and soils , hazardous materials and hazardous waste, health and safety, land use, noise, socioeconomics and environmental justice

  9. Mated vertical ground vibration test

    NASA Technical Reports Server (NTRS)

    Ivey, E. W.

    1980-01-01

    The Mated Vertical Ground Vibration Test (MVGVT) was considered to provide an experimental base in the form of structural dynamic characteristics for the shuttle vehicle. This data base was used in developing high confidence analytical models for the prediction and design of loads, pogo controls, and flutter criteria under various payloads and operational missions. The MVGVT boost and launch program evolution, test configurations, and their suspensions are described. Test results are compared with predicted analytical results.

  10. Orbit Determination Toolbox

    NASA Technical Reports Server (NTRS)

    Carpenter, James R.; Berry, Kevin; Gregpru. Late; Speckman, Keith; Hur-Diaz, Sun; Surka, Derek; Gaylor, Dave

    2010-01-01

    The Orbit Determination Toolbox is an orbit determination (OD) analysis tool based on MATLAB and Java that provides a flexible way to do early mission analysis. The toolbox is primarily intended for advanced mission analysis such as might be performed in concept exploration, proposal, early design phase, or rapid design center environments. The emphasis is on flexibility, but it has enough fidelity to produce credible results. Insight into all flight dynamics source code is provided. MATLAB is the primary user interface and is used for piecing together measurement and dynamic models. The Java Astrodynamics Toolbox is used as an engine for things that might be slow or inefficient in MATLAB, such as high-fidelity trajectory propagation, lunar and planetary ephemeris look-ups, precession, nutation, polar motion calculations, ephemeris file parsing, and the like. The primary analysis functions are sequential filter/smoother and batch least-squares commands that incorporate Monte-Carlo data simulation, linear covariance analysis, measurement processing, and plotting capabilities at the generic level. These functions have a user interface that is based on that of the MATLAB ODE suite. To perform a specific analysis, users write MATLAB functions that implement truth and design system models. The user provides his or her models as inputs to the filter commands. The software provides a capability to publish and subscribe to a software bus that is compliant with the NASA Goddard Mission Services Evolution Center (GMSEC) standards, to exchange data with other flight dynamics tools to simplify the flight dynamics design cycle. Using the publish and subscribe approach allows for analysts in a rapid design center environment to seamlessly incorporate changes in spacecraft and mission design into navigation analysis and vice versa.

  11. Orbit Determination for the Lunar Reconnaissance Orbiter Using an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven; Lowe, Jonathan; Woodburn, James

    2015-01-01

    Orbit determination (OD) analysis results are presented for the Lunar Reconnaissance Orbiter (LRO) using a commercially available Extended Kalman Filter, Analytical Graphics' Orbit Determination Tool Kit (ODTK). Process noise models for lunar gravity and solar radiation pressure (SRP) are described and OD results employing the models are presented. Definitive accuracy using ODTK meets mission requirements and is better than that achieved using the operational LRO OD tool, the Goddard Trajectory Determination System (GTDS). Results demonstrate that a Vasicek stochastic model produces better estimates of the coefficient of solar radiation pressure than a Gauss-Markov model, and prediction accuracy using a Vasicek model meets mission requirements over the analysis span. Modeling the effect of antenna motion on range-rate tracking considerably improves residuals and filter-smoother consistency. Inclusion of off-axis SRP process noise and generalized process noise improves filter performance for both definitive and predicted accuracy. Definitive accuracy from the smoother is better than achieved using GTDS and is close to that achieved by precision OD methods used to generate definitive science orbits. Use of a multi-plate dynamic spacecraft area model with ODTK's force model plugin capability provides additional improvements in predicted accuracy.

  12. Bimanual-vertical hand movements.

    PubMed

    Kwon, Jay C; Cohen, Matthew L; Williamson, John; Burtis, Brandon; Heilman, Kenneth M

    2011-07-01

    Patients often demonstrate attentional and action-intentional biases in both the transverse and coronal planes. In addition, when making forelimb movements in the transverse plane, normal participants also have spatial and magnitude asymmetries, but forelimb spatial asymmetries have not been studied in coronal space. Thus, to learn if when normal people make vertical movements they have right-left spatial and magnitude biases, seventeen healthy, blindfolded volunteers had their hands (holding pens) placed vertically in their midsagittal plane, 10 inches apart, on pieces of paper positioned above, below, and at eye-level. Participants were asked to move their hands together vertically and meet in the middle. Participants demonstrated less angular deviation in the below-eye condition than in the other spatial conditions, when moving down than up, and with their right than left hand. Movements toward eye level from upper or lower space were also more accurate than movements in the other directions. Independent of hand, lines were longer with downward than upward movements and the right hand moved more distance than the left. These attentional-intentional asymmetries may be related to gravitational force, hand-hemispheric dominance, and spatial "where" asymmetries; however, the mechanisms accounting for these asymmetries must be ascertained by future research.

  13. Terrestrial Planet Formation Around Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.

  14. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    NASA Technical Reports Server (NTRS)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  15. Updated orbit of Apophis with recent observations

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Colas, F.; Thuillot, W.; Hestroffer, D.; Assafin, M.

    2011-12-01

    Asteroid Apophis (previously designed 2004 MN4) was first discovered in June 2004. From its first observations, Apophis was revealed to be a special study case in as much as, it reached the level 4 of Torino scale with a high probability of collision in 2029. New observations eliminated all danger for 2029. But, because of a deep close encounter in 2029 (˜38000 km), the asteroid will be put on a chaotic-like orbit and some risks of collision in 2036 occur if the asteroid goes through a very small region called keyhole. Now, its orbit is quite well known and thanks to additional observations, the risk for the short term seems to disappear. But what about the long term? As far as the Earth-impact threat study is concerned, the deep 2029-close encounter is an opportunity for space missions towards Apophis. With our technologies, to deflect an asteroid, we can only act from the source. Many deflection missions were studied, from the hardest (nuclear weapons), to the softest (shadow mission). But in order to prepare such missions, we have to be sure that the asteroid is really on an impact trajectory. Moreover, if it is the case, we have to be sure that it won't be put on the trajectory of other keyholes. To this aim, we need a good knowledge of the 2029 region uncertainty and we will analyse the impact of the new observations of March 2011.

  16. HALO ORBITS IN COSMOLOGICAL DISK GALAXIES: TRACERS OF FORMATION HISTORY

    SciTech Connect

    Valluri, Monica; Debattista, Victor P.; Stinson, Gregory S.; Bailin, Jeremy; Quinn, Thomas R.; Couchman, H. M. P.; Wadsley, James

    2013-04-10

    We analyze the orbits of stars and dark matter particles in the halo of a disk galaxy formed in a cosmological hydrodynamical simulation. The halo is oblate within the inner {approx}20 kpc and triaxial beyond this radius. About 43% of orbits are short axis tubes-the rest belong to orbit families that characterize triaxial potentials (boxes, long-axis tubes and chaotic orbits), but their shapes are close to axisymmetric. We find no evidence that the self-consistent distribution function of the nearly oblate inner halo is comprised primarily of axisymmetric short-axis tube orbits. Orbits of all families and both types of particles are highly eccentric, with mean eccentricity {approx}> 0.6. We find that randomly selected samples of halo stars show no substructure in 'integrals of motion' space. However, individual accretion events can clearly be identified in plots of metallicity versus formation time. Dynamically young tidal debris is found primarily on a single type of orbit. However, stars associated with older satellites become chaotically mixed during the formation process (possibly due to scattering by the central bulge and disk, and baryonic processes), and appear on all four types of orbits. We find that the tidal debris in cosmological hydrodynamical simulations experiences significantly more chaotic evolution than in collisionless simulations, making it much harder to identify individual progenitors using phase space coordinates alone. However, by combining information on stellar ages and chemical abundances with the orbital properties of halo stars in the underlying self-consistent potential, the identification of progenitors is likely to be possible.

  17. PyORBIT: A Python Shell For ORBIT

    SciTech Connect

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-07-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability.

  18. Orbital Chondroma: A rare mesenchymal tumor of orbit

    PubMed Central

    Kabra, Ruchi S; Patel, Sonal B; Shanbhag, Swapna S

    2015-01-01

    While relatively common in the skeletal system, cartilaginous tumors are rarely seen originating from the orbit. Here, we report a rare case of an orbital chondroma. A 27-year-old male patient presented with a painless hard mass in the superonasal quadrant (SNQ) of left orbit since 3 months. On examination, best-corrected visual acuity of both eyes was 20/20, with normal anterior and posterior segment with full movements of eyeballs and normal intraocular pressure. Computerized tomography scan revealed well defined soft tissue density lesion in SNQ of left orbit. Patient was operated for anteromedial orbitotomy under general anesthesia. Mass was excised intact and sent for histopathological examination (HPE). HPE report showed lobular aggregates of benign cartilaginous cells with mild atypia suggesting of benign cartilaginous tumor - chondroma. Very few cases of orbital chondroma have been reported in literature so far. PMID:26265654

  19. Orbital fluctuations and orbital flipping in RVO3 perovskites.

    PubMed

    Yan, J-Q; Zhou, J-S; Goodenough, J B; Ren, Y; Cheng, J G; Chang, S; Zarestky, J; Garlea, O; Llobet, A; Liobet, A; Zhou, H D; Sui, Y; Su, W H; McQueeney, R J

    2007-11-09

    The effect of the average R-site ionic radius IR and variance on the orbital and magnetic order in R3+-doped YVO3 was studied in Y1-xLaxVO3 and Y1-x(La0.2337Lu0.7663)xVO3 with fixed IR. The orbital flipping temperature T{CG} increases nonlinearly with increasing R-site variance, indicating that the V-O-V bond angle is not the primary driving force stabilizing the C-type orbitally ordered phase. The suppressed thermal conductivity in the G-type orbitally ordered phase signals some remaining orbital randomness that is enhanced by t{2} and et hybridization in {3}T{1g} site symmetry.

  20. Orbital Fluctuations and Orbital Flipping in RVO3 Perovskites

    SciTech Connect

    Yan, J.-Q.; Zhou, J.-S.; Goodenough, J. B.; Ren, Y.; Cheng, J. G.; Zarestky, Jerel L; Garlea, Vasile O; Liobet, A.; Zhou, H. D.; Sui, Y.; Su, W. H.; McQueeney, R. J.

    2007-01-01

    The effect of the average A-site ionic radius hIRi and variance on the orbital and magnetic order in R3+-doped YVO3 was studied in Y1-xLaxVO3 and Y1-x(La0.2337Lu0.7663)xVO3 with fixed . The orbital flipping temperature T_CG increases nonlinearly with increasing R-site variance, indicating that the V-O-V bond angle is not the primary driving force stabilizing the C-type orbitally ordered phase. The suppressed thermal conductivity in the G-type orbitally ordered phase signals some remaining orbital randomness that is enhanced by t2 and et hybridization in 3T_1g site symmetry.