Combination downflow-upflow vapor-liquid separator
Kidwell, John H.; Prueter, William P.; Eaton, Andrew M.
1987-03-10
An improved vapor-liquid separator having a vertically disposed conduit for flow of a mixture. A first, second and third plurality of curved arms penetrate and extend within the conduit. A cylindrical member is radially spaced from the conduit forming an annulus therewith and having perforations and a retaining lip at its upper end.
NASA Astrophysics Data System (ADS)
McCarthy, A. J.; Müntener, O.
2017-12-01
Different processes have been proposed to explain the variety of igneous layering in plutonic rocks. Vertical layering in particular has been described as resulting from various processes such as Ostwald ripening, oscillatory crystallization or reactive mush infiltration in cooling plutons. Comb layers and orbicules are formed by the growth of elongated, feather-like minerals growing ±perpendicular to the layering and nucleating either on dyke walls (comb layers) or on xenoliths (orbicules) at the contact between homogenous plutons. Through a detailed study of the mineralogy, bulk chemistry and the size-frequency distribution of representative comb layers and orbicules of the 110Ma Fisher Lake Pluton (Sierra Nevada, USA), we show that comb layers and orbicules show no evidence of forming through a self-organizing, oscillatory crystallization process, but represent crystallization fronts resulting from in-situ crystallization and extraction of evolved melt fractions during decompression-driven crystallization of superheated melts in subvolcanic conduits. The microstructures are dominated by the formation of a plagioclase-dominated cres-cumulate at the mm- to m-scale. We propose that the crystal content of the melt and the dynamics of the magmatic system control the mechanisms responsible for vertical igneous layering in shallow reservoirs. Moreover, the mineralogical and compositional variation of orbicules rims and comb layers can be ascribed to variations in pressure, temperature and cooling rates within the subvolcanic conduit, with estimated growth timescales of mm- to m-thick orbicules and comb layers ranging from weeks to years. Moreover, though plagioclase-glomerocrysts found in erupted volcanic products are generally interpreted as remobilized crystal-mush, we propose that some glomerocrysts might represent "failed" orbicules forming within vertical conduits upon eruption. Such glomerocrysts, as well as orbicules found in erupted volcanic products, might allow for unique insights into the dynamics, timescales and P-T conditions within volcanic conduits upon eruption.
NASA Astrophysics Data System (ADS)
Bruthans, Jiri; Svetlik, Daniel; Soukup, Jan; Schweigstillova, Jana; Valek, Jan; Sedlackova, Marketa; Mayo, Alan L.
2012-12-01
In Strelec Quarry, the Czech Republic, an underground conduit network > 300 m long with a volume of ~ 104 m3 and a catchment of 7 km2 developed over 5 years by groundwater flow in Cretaceous marine quartz sandstone. Similar landforms at natural exposures (conduits, slot canyons, undercuts) are stabilized by case hardening and have stopped evolving. The quarry offers a unique opportunity to study conduit evolution in sandstone at local to regional scales, from the initial stage to maturity, and to characterize the erosion processes which may form natural landforms prior to stabilization. A new technique was developed to distinguish erodible and non-erodible sandstone surfaces. Based on measurements of relative erodibility, drilling resistance, ambient and water-saturated tensile strength (TS) at natural and quarry exposures three distinct kinds of surfaces were found. 1) Erodible sandstone exposed at ~ 60% of surfaces in quarry. This sandstone loses as much as 99% of TS when saturated. 2) Sub-vertical fracture surfaces that are non-erodible already prior to exposure at ground surface and which keep considerable TS if saturated. 3) Case hardened surfaces that start to form after exposure. In favorable conditions they became non-erodible and reach the full TS in just 6 years. An increase in the hydraulic gradient from ~ 0.005 to > 0.02 triggered conduit evolution, based on long-term monitoring of water table in 18 wells and inflows to the quarry. Rapidly evolving major conduits are characterized by a channel gradient of ~ 0.01, a flow velocity ~ 40 cm/s and sediment concentration ~ 10 g/l. Flow in openings with a discharge 1 ml/s and hydraulic gradient > 0.05 exceeds the erosion threshold and initiates piping. In the first phase of conduit evolution, fast concentrated flow mobilizes erodible sandstone between sets of parallel fractures in the shallow phreatic zone. In the second phase the conduit opening mainly expands vertically upward into the vadose zone by mass wasting of undercut sandstone slabs. Mass wasting is responsible for > 90% of mobilized sandstone. Sides of the mature conduits are protected by non-erodible fracture surfaces. Natural landforms were probably formed very rapidly by overland flow, piping and possibly fluidization during or at the end of the glacial periods when sandstone was not yet protected by case hardening.
Counter-current convection in a volcanic conduit
NASA Astrophysics Data System (ADS)
Fowler, A. C.; Robinson, Marguerite
2018-05-01
Volcanoes of Strombolian type are able to maintain their semi-permanent eruptive states through the constant convective recycling of magma within the conduit leading from the magma chamber. In this paper we study the form of this convection using an analytic model of degassing two-phase flow in a vertical channel. We provide solutions for the flow at small Grashof and large Prandtl numbers, and we suggest that permanent steady-state counter-current convection is only possible if an initial bubbly counter-current flow undergoes a régime transition to a churn-turbulent flow. We also suggest that the magma in the chamber must be under-pressured in order for the flow to be maintained, and that this compromises the assumed form of the flow.
Sanio's laws revisited. Size-dependent changes in the xylem architecture of trees.
Mencuccini, Maurizio; Hölttä, Teemu; Petit, Giai; Magnani, Federico
2007-11-01
Early observations led Sanio [Wissen. Bot., 8, (1872) 401] to state that xylem conduit diameters and lengths in a coniferous tree increase from the apex down to a height below which they begin to decrease towards the tree base. Sanio's law of vertical tapering has been repeatedly tested with contradictory results and the debate over the scaling of conduit diameters with distance from the apex has not been settled. The debate has recently acquired new vigour, as an accurate knowledge of the vertical changes in wood anatomy has been shown to be crucial to scaling metabolic properties to plant and ecosystem levels. Contrary to Sanio's hypothesis, a well known model (MST, metabolic scaling theory) assumes that xylem conduits monotonically increase in diameter with distance from the apex following a power law. This has been proposed to explain the three-fourth power scaling between size and metabolism seen across plants. Here, we (i) summarized available data on conduit tapering in trees and (ii) propose a new numerical model that could explain the observed patterns. Data from 101 datasets grouped into 48 independent profiles supported the notions that phylogenetic group (angiosperms versus gymnosperms) and tree size strongly affected the vertical tapering of conduit diameter. For both angiosperms and gymnosperms, within-tree tapering also varied with distance from the apex. The model (based on the concept that optimal conduit tapering occurs when the difference between photosynthetic gains and wall construction costs is maximal) successfully predicted all three major empirical patterns. Our results are consistent with Sanio's law only for large trees and reject the MST assumptions that vertical tapering in conduit diameter is universal and independent of rank number.
Metal halogen battery construction with improved technique for producing halogen hydrate
Fong, Walter L.; Catherino, Henry A.; Kotch, Richard J.
1983-01-01
An improved electrical energy storage system comprising, at least one cell having a positive electrode and a negative electrode separated by aqueous electrolyte, a store means wherein halogen hydrate is formed and stored as part of an aqueous material having a liquid level near the upper part of the store, means for circulating electrolyte through the cell, conduit means for transmitting halogen gas formed in the cell to a hydrate forming apparatus associated with the store, said hydrate forming apparatus including, a pump to which there is introduced quantities of the halogen gas and chilled water, said pump being located in the store and an outlet conduit leading from the pump and being substantially straight and generally vertically disposed and having an exit discharge into the gas space above the liquid level in the store, and wherein said hydrate forming apparatus is highly efficient and very resistant to plugging or jamming. The disclosure also relates to an improved method for producing chlorine hydrate in zinc chlorine batteries.
Geometric and kinematic features of the dike complex at Mt. Somma, Vesuvio (Italy)
NASA Astrophysics Data System (ADS)
Porreca, M.; Acocella, V.; Massimi, E.; Mattei, M.; Funiciello, R.; De Benedetti, A. A.
2006-05-01
Dikes provide important information on the structure, state of stress and activity of a volcano. Mt. Somma borders part of the Vesuvio cone (Italy), displaying ˜ 100 dikes emplaced between ˜ 18 and 30 ka. Field, AMS (anisotropy of magnetic susceptibility) and thin section analyses are used to characterize their geometry and kinematics (direction and sense of flow). The dikes mostly have a NNW-SSE to NE-SW strike. Approximately 57% are radial to the older Somma edifice, ˜ 27% are oblique and ˜ 16% tangential. Among the latter two groups, ˜ 32% are outward dipping and ˜ 11% inward dipping. The dike thickness varies between 0.2 and 3 m, with a mean value of 1.17 m. The kinematics of 19 dikes is determined through a combination of field (8 dikes), AMS (16 dikes) and thin section analyses (15 dikes). Thirteen dikes have a vertical upward flow, whereas six have an oblique-subhorizontal flow, suggesting a lateral propagation from the summit or eccentric vents of the former Somma edifice. These propagation paths differ from those deducible from the recent activity, as all the seven major fissure eruptions between 1631 and 1944 were related to the lateral propagation of radial dikes. We propose that these different behaviours in dike propagation may be mainly related to the opening conditions of the summit conduit. The laterally propagating dikes in 1631-1944 formed with an open conduit. Conversely, the vertically propagating dikes may have formed, between 18 and 30 ka, with a closed conduit.
Liquid-phase chromatography detector
Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.
1983-11-08
A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.
Liquid-phase chromatography detector
Voigtman, Edward G.; Winefordner, James D.; Jurgensen, Arthur R.
1983-01-01
A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.
A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits
Mastin, Larry G.; Ghiorso, Mark S.
2000-01-01
This report presents a model that calculates flow properties (pressure, vesicularity, and some 35 other parameters) as a function of vertical position within a volcanic conduit during a steady-state eruption. The model idealizes the magma-gas mixture as a single homogeneousfluid and calculates gas exsolution under the assumption of equilibrium conditions. These are the same assumptions on which classic conduit models (e.g. Wilson and Head, 1981) have been based. They are most appropriate when applied to eruptions of rapidly ascending magma (basaltic lava-fountain eruptions, and Plinian or sub-Plinian eruptions of intermediate or silicic magmas) that contains abundant nucleation sites (microlites, for example) for bubble growth.
Preliminary findings on the effects of geometry on two-phase flow through volcanic conduits
NASA Astrophysics Data System (ADS)
Mitchell, K. L.; Wilson, L.; Lane, S. J.; James, M. R.
2003-04-01
We attempt to ascertain whether some of the geometrical assumptions utilised in modelling of flows through volcanic conduits are valid. Flow is often assumed to be through a vertical conduit, but some volcanoes, such as Pu'u 'O'o (Kilauea, Hawai'i) and Stromboli (Italy), are known to exhibit inclined or more complex conduit systems. Our numerical and experimental studies have revealed that conduit inclination is a first-order influence on flow properties and eruptive style. Even a few degrees of inclination from vertical can increase gas-liquid phase separation by locally enhancing the gas volume fraction on the upper surface of the conduit. We explore the consequences of phase separation and slug flow for styles of magmatic eruption, and consider how these apply to particular eruptions. Modellers also tend to assume a simple parallel-sided geometry for volcanic conduits. Some have used a pressure-balanced assumption allowing conduits to choke and flare, resulting in higher eruption velocities. The pressure-balanced assumption is flawed in that it does not deal with the effects of compressibility and associated shocks when the flow is supersonic. Both parallel-sided and pressure-balanced assumptions avoid addressing how conduit shape evolves from an initial dyke-shaped fracture. However, we assert that evolution of conduit shape is impossible to quantify accurately using a deterministic approach. Therefore we adopt a simplified approach, with the initial conduit shape as a blade-shaped dyke, and the potential end-member as a system that is pressure-balanced up to the supersonic choking point and undetermined beyond (flow is constrained by a narrow jet envelope and not by the walls). Intermediate geometries are assumed to change quasi-steadily at locations where conduit wall stresses are high, and the consequences of these geometries are explored. We find that quite small changes in conduit geometry, which are likely to occur in volcanic systems, can have a significant effect on flow speeds.
NASA Astrophysics Data System (ADS)
Wetmore, P. H.; Connor, C.; Wilson, J.
2010-12-01
Conduit models incorporate varying degrees of complexity (or parsimony) and account for the transport properties of magmas, steady-state or transient behavior, and conduit geometry (e.g., 1- to 1.5 D, variable width and erodable conduit walls). Improvement of these models is important if we are to work toward deployment of eruption models at active volcanoes, link these models to geophysical observations (seismic, deformation, gravity) and eventually forecast eruption magnitude. One conclusion of a recent comparison of many conduit models (Sahagian, 2005 JVGR) is that next generation models need to better account for interaction of the erupting mixture with surrounding wall rocks (accounting for melting, solidification, and erosion) and better account for the effects of conduit shape on flows. In an effort to address these issues our research group has completed mapping of a suite of subvolcanic intrusions (dikes, sills, and conduits) from the west-central San Rafael Swell of central Utah. The results of this study demonstrate that vertical flow of melt through crust in this system of intrusion was dominated by dikes. Conduits form, in nearly all cases, as a result of localized flow along dikes. The conduits are commonly comprised of three distinct lithologic units: brecciated host rock (without any intrusive material), brecciated host rock mixed with brecciated and mechanically contaminated intrusive, and relatively clean (i.e. containing less than ~10% accidental material) intrusive. Contacts between all three of these units are typically discreet and traceable for several tens of meters. In some examples clasts within the unmixed breccia unit exhibit a strong alignment of clasts dipping into the core of the conduit. These observations suggests an evolutionary history that involves an early phase of brecciation and mixing, followed by confined flow with a fluidized mixed unit and an essentially uninvolved outer zone (i.e. the breccia). The final phase likely involves the inward collapse as fluid pressures reduce.
Lorentz force effect on mixed convection micropolar flow in a vertical conduit
NASA Astrophysics Data System (ADS)
Abdel-wahed, Mohamed S.
2017-05-01
The present work provides a simulation of control and filtration process of hydromagnetic blood flow with Hall current under the effect of heat source or sink through a vertical conduit (pipe). This work meets other engineering applications, such as nuclear reactors cooled during emergency shutdown, geophysical transport in electrically conducting and heat exchangers at low velocity conditions. The problem is modeled by a system of partial differential equations taking the effect of viscous dissipation, and these equations are simplified and solved analytically as a series solution using the Differential Transformation Method (DTM). The velocities and temperature profiles of the flow are plotted and discussed. Moreover, the conduit wall shear stress and heat flux are deduced and explained.
Interactions of diffuse and focused allogenic recharge in an eogenetic karst aquifer (Florida, USA)
NASA Astrophysics Data System (ADS)
Langston, Abigail L.; Screaton, Elizabeth J.; Martin, Jonathan B.; Bailly-Comte, Vincent
2012-06-01
The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, M.P.; Koyanagi, R.Y.; Fiske, R.S.
1981-08-10
We report the results of modeling the three-dimensional internal structure of Kilauea's magmatic passageways. The approach uses a clear plexiglass model containing equally-spaced levels upon which well-located seismic hypocenters are plotted. Application of constraining geologic and geophysical criteria to this distributed volume of earthquakes permits the interpretation of seismic structures produced by fracturing in response to locally high fluid pressures. Four magma transport and storage structures produce have been identified within and beneath Kilauea: (1) Primary conduit. The conduit transporting magma into Kilauea's summit storage reservoir rises from the model base (14.6 km) to 6.5 km depth level. It ismore » a zone of intense fracturing and inferred intrusion, whose horizontal sections are elliptical in planform. Over its height, the average major axis of component horizontal section is 3.3 km, with an average minor axis of 1.7 km. This yields an aspect ratio of xi = 0.52. At the 14.6 km level, the strike of the major axis is N67 /sup 0/E. During passage from the upper mantle through the oceanic crust, this axis rotates in a right-handed sense, until the strike is N41 /sup 0/W at the 6.5 km level. (2) Magma chamber complex floor. The interval from 6.5 to 5.7 km, immediately over the primary conduit, is aseismic. This suggests differentially high fluid-to-rock ratios, and relatively weak pathways for further vertical transport into higher levels of the storage complex, as well as lateral leakage eastward into the Mauna Ulu staging area: for later vertical ascent beneath the upper east rift zone. Seismicity within the immediately subjacent rocks that form the top of the primary conduit (at 6.5 km) suggests that this inferred magma-rich horizon forms the effective floor of the summit storage complex. (3) Magma chamber crown. Intense seismicity over the 1.1--1.9 km depth interval defines an elliptical region in plan view.« less
NASA Astrophysics Data System (ADS)
Silva, Orildo L.; Bezerra, Francisco H. R.; Maia, Rubson P.; Cazarin, Caroline L.
2017-10-01
This paper analyzes different types of karst landforms and their relationships with fracture systems, sedimentary bedding, and fluvial processes. We mapped karst features in the Cretaceous carbonates of the Jandaíra Formation in the Potiguar Basin, Brazil. We used high-resolution digital elevation models acquired using LiDAR and aerial orthophotographs acquired using an unmanned aerial vehicle (UAV). We grouped and described karst evolution according to scale and degree of karstification. These degrees of karst evolution are coeval. Fractures are opened by dissolution, forming vertical fluid conduits, whereas coeval dissolution occurs along horizontal layers. This conduit system acts as pathways for water flow. The enlargement of conduits contributes to the collapse of blocks in sinkholes and expansion of caves during an intermediate degree of karstification. Propagation of dissolution can cause the coalescence of sinkholes and the capture of small streams. Fluvial processes dominate karst dissolution at an advanced degree of karstification. Comparisons with previously published ground-penetrating radar (GPR), borehole and seismic surveys in sedimentary basins indicate that these structures can be partially preserved during burial.
NASA Astrophysics Data System (ADS)
Simões, M. S.; Lima, E. F.; Sommer, C. A.; Rossetti, L. M. M.
2018-04-01
Extensive silicic units in the Paraná-Etendeka LIP have been long interpreted as pyroclastic density currents (rheomorphic ignimbrites) derived from the Messum Complex in Namibia. In recent literature, however, they have been characterized as effusive lava flows and domes. In this paper we describe structures and lithofacies related to postulated silicic lava feeder conduits at Mato Perso, São Marcos and Jaquirana-Cambará do Sul areas in southern Brazil. Inferred conduits are at least 15-25 m in width and the lithofacies include variably vesicular monomictic welded and non-welded breccias in the margins to poorly vesicular, banded, spherulitic and microfractured vitrophyres in the central parts. Flat-lying coherent vitrophyres and massive obsidian are considered to be the subaerial equivalents of the conduits. Large-scale, regional tectonic structures in southern Brazil include the NE-SW aligned Porto Alegre Suture, Leão and Açotea faults besides the Antas Lineament, a curved tectonic feature accompanying the bed of Antas river. South of the Antas Lineament smaller-scale, NW-SE lineaments limit the exposure areas of the inferred conduits. NE-SW and subordinate NW-SE structures within this smaller-scale lineaments are represented by the main postulated conduit outcrops and are parallel to the dominant sub-vertical banding in the widespread banded vitrophyre lithofacies. Upper lava flows display flat-lying foliation, pipe-like and spherical vesicles and have better developed microlites. Petrographic characteristics of the silicic vitrophyres indicate that crystal-poor magmas underwent distinct cooling paths for each inferred conduit area. The vitrophyre chemical composition is defined by the evolution of trachydacitic/dacitic vitrophyres with 62-65 wt% SiO2 to rhyodacite and rhyolite with 66-68 wt% SiO2. The more evolved rocks are assigned to the latest intrusive grey vitrophyre outcropping in the center of the conduits. Degassing pathways formed during fragmentation and fracturing episodes within the conduits may have helped to inhibit the explosivity of the eruptions. Based on the documented lithofacies architecture, we attribute the source of the silicic lava flows in the studied localities to tectonic-controlled, local conduits, rather than pyroclastic density currents from distant vent areas.
A generalized genetic framework for the development of sinkholes and Karst in Florida, U.S.A.
NASA Astrophysics Data System (ADS)
Beck, Barry F.
1986-03-01
Karst topography in Florida is developed on the Tertiary limestones of the Floridan aquifer Post-depositional diagenesis and solution have made these limestones highly permeable, T=ca. 50,000 m2/d. Zones of megaporosity have formed at unconformities, and dissolution has enlarged joints and fractures Erosion of the overlying clastic Miocene Hawthorn group strata on one flank of a structural arch has exposed the limestone The elevated edge of the Hawthorn cover forms the Cody scarp Ubiquitous solution pipes have previously formed at joint intersections and are now filled Downwashing of the fill deeper into solution cavities in the limestone and subsidence of the overlying unconsolidated sediments causes surface collapse a subsidence doline or sinkhole This process may penetrate up to 60 m of the semi-consolidated Hawthorn cover, as occurred when the Winter Park sinkhole developed Dense clusters of solution pipes may have formed cenotes which are now found on the exposed limestone terrain Groundwater moves laterally as diffuse flow except where input or outflow is concentrated. At sinking streams, vertical shafts, and springs, karst caves have formed, but only the major sinking streams form through-flowing conduit systems Shaft recharge dissipates diffusely. Spring discharge is concentrated from diffuse flow In both cases, conduits taper and merge into a zone of megaporosity
Multi-ported, internally recuperated burners for direct flame impingement heating applications
Abbasi, Hamid A.; Kurek, Harry; Chudnovsky, Yaroslav; Lisienko, Vladimir G.; Malikov, German K.
2010-08-03
A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.
NASA Astrophysics Data System (ADS)
Gailey, Robert M.
2017-11-01
Water supply wells can act as conduits for vertical flow and contaminant migration between water-bearing strata under common hydrogeologic and well construction conditions. While recognized by some for decades, there is little published data on the magnitude of flows and extent of resulting water quality impacts. Consequently, the issue may not be acknowledged widely enough and the need for better management persists. This is especially true for unconsolidated alluvial groundwater basins that are hydrologically stressed by agricultural activities. Theoretical and practical considerations indicate that significant water volumes can migrate vertically through wells. The flow is often downward, with shallow groundwater, usually poorer in quality, migrating through conduit wells to degrade deeper water quality. Field data from locations in California, USA, are presented in combination with modeling results to illustrate both the prevalence of conditions conducive to intraborehole flow and the resulting impacts to water quality. Suggestions for management of planned wells include better enforcement of current regulations and more detailed consideration of hydrogeologic conditions during design and installation. A potentially greater management challenge is presented by the large number of existing wells. Monitoring for evidence of conduit flow and solute transport in areas of high well density is recommended to identify wells that pose greater risks to water quality. Conduit wells that are discovered may be addressed through approaches that include structural modification and changes in operations.
Portable conduit retention apparatus for releasably retaining a conduit therein
Metzger, Richard H.
1998-01-01
Portable conduit retention apparatus for releasably retaining a conduit therein. The apparatus releasably retains the conduit out of the way of nearby personnel and equipment. The apparatus includes a portable support frame defining a slot therein having an open mouth portion in communication with the slot for receiving the conduit through the open mouth portion and into the slot. A retention bar is pivotally connected to the support frame adjacent the mouth portion for releasably retaining the conduit in the slot. The retention bar freely pivots to a first position, so that the mouth portion is unblocked in order that the conduit is received through the mouth portion and into the slot. In addition, the retention bar freely pivots to a second position, so that the mouth portion is blocked in order that the conduit is retained in the slot. The conduit is released from the slot by pivoting the retention bar to the first position to unblock the mouth portion and thereafter manipulating the conduit from the slot and through the mouth portion. The apparatus may further include a mounting member attached to the support frame for mounting the apparatus on a vertical support surface. Another embodiment of the apparatus includes a shoe assembly of predetermined weight removably connected to the support frame for resting the apparatus on a floor in such a manner that the apparatus is substantially stationary on the floor.
NASA Astrophysics Data System (ADS)
Witter, M. R.; Ort, M. H.; Leudemann, L. A.
2013-12-01
Colton Crater, located within the San Francisco Volcanic Field (SFVF) in northern Arizona, is one of over 600 scoria cones in the field. Unlike most other volcanoes in the SFVF, Colton Crater is characterized as a hybrid volcano that had Strombolian, Hawaiian, and Surtseyan explosions. Surtseyan explosions led to the excavation of the center of the volcano, creating a large 1.3-km-diameter crater with a 30-m post-phreatomagmatic scoria cone at its center. A vertical erosion-resistant feature along the northern rim of the crater, originally mapped as a dike, provides valuable information about the sequence and timing of the transition to phreatomagmatic eruptions because it disrupts the otherwise continuous spatter layers deposited just prior to that change. Stratigraphic sections and paleomagnetic analysis of Colton Crater reveal the origin and timing of emplacement of this vertical structure and its place in the transitional eruptive history. The prominent upper layers in the crater walls show some variation throughout the crater, but generally are composed of agglutinated spatter, welded scoria and bombs, and rootless lava flows. The uppermost portion of the outward-dipping spatter layers that lie between the two saddles on the northern rim closely match the layers observed in the vertical structure, revealing that the structure is a section of rotated spatter. The characteristic remanent magnetization (ChRM), identified using alternating field (AF) demagnetization, shows the timing of the displacement of sections of the agglutinated spatter and welded cinder. Sites along the vertical structure yield ChRMs statistically identical to non-rotated sites, which indicates that rotation of the vertical structure occurred before the ChRM had been set, i.e., the layers were above the Curie temperature during rotation. The eruption started as Strombolian and Hawaiian perhaps because the flux of magma overpowered the influx of water from local aquifer formations, creating a stable and sealed conduit. Lava flows associated with the Strombolian and Hawaiian activity breached the northern flank and destabilized the walls of the crater. Water may have been introduced to the magmatic system through conduit collapse beneath the water table or vent migration to a conduit location with greater water flux, leading to the Surtseyan explosions. As space was created on the northern rim, the destabilized spatter layers detached and rotated, creating the vertical structure. The eruption ended with a small Strombolian phase, forming the 30-m-high scoria cone in the bottom of the crater. The sequence of these events must have happened within a short time period because the rotated spatter layers of the vertical structure remained above 580 oC.
NASA Astrophysics Data System (ADS)
Petrus, Karine; Szymczak, Piotr
2016-04-01
Karst formation is controlled by the processes of the fluid flow and reactant transport coupled to the chemical erosion of the limestone rock [1]. The coupling between these processes can lead to a number of different instabilities, resulting in the formation of dissolutional voids, caverns and conduits. Arguably the simplest systems of this kind are solution pipes, in which gravitationally driven water movement carves vertical conduits in limestone rocks. In the homogeneous rocks these conduits are often cylindrical, with almost a constant diameter along their length. However, in a stratified medium, the morphology of the pipes changes. For example, if a number of less porous layers is introduced in an otherwise homogeneous medium, then the pipes are observed to narrow as they cross the layers and then widen up to form bulbous caverns as they emerge from the layer [1]. In this communication, we investigate these effects more closely, considering different kind of lithographic discontinuities to be present in the system: the layers of increased/decreased porosity and/or permeability as well as the solubility which is different from the rest of the system. Using a Darcy-scale numerical model we analyze the effects these layers have on the shape and growth of solution pipes and compare the results on the piping morphologies observed in nature. Finally we comment on the possible relevance of these results to the cave-formation phenomena and the inception horizon concept [3]. References: 1.Howard A. D., The development of karst features, Bull. Natl. Spel. Soc. 25, 45-65 (1963) 2. Petrus, K. and Szymczak, P., Influence of layering on the formation and growth of solution pipes. Frontiers in Physics (submitted) 3.Filipponi , M., Jeannin, P. and Tacher, L., Evidence of inception horizons in karst conduit networks, Geomorphology, 106, 86-99 (2009)
Portable conduit retention apparatus for releasably retaining a conduit therein
Metzger, R.H.
1998-07-07
Portable conduit retention apparatus is described for releasably retaining a conduit therein. The apparatus releasably retains the conduit out of the way of nearby personnel and equipment. The apparatus includes a portable support frame defining a slot therein having an open mouth portion in communication with the slot for receiving the conduit through the open mouth portion and into the slot. A retention bar is pivotally connected to the support frame adjacent the mouth portion for releasably retaining the conduit in the slot. The retention bar freely pivots to a first position, so that the mouth portion is unblocked in order that the conduit is received through the mouth portion and into the slot. In addition, the retention bar freely pivots to a second position, so that the mouth portion is blocked in order that the conduit is retained in the slot. The conduit is released from the slot by pivoting the retention bar to the first position to unblock the mouth portion and thereafter manipulating the conduit from the slot and through the mouth portion. The apparatus may further include a mounting member attached to the support frame for mounting the apparatus on a vertical support surface. Another embodiment of the apparatus includes a shoe assembly of predetermined weight removably connected to the support frame for resting the apparatus on a floor in such a manner that the apparatus is substantially stationary on the floor. 6 figs.
NASA Astrophysics Data System (ADS)
Chen, Y.; Liu, X.; Mankoff, K. D.; Gulley, J. D.
2016-12-01
The surfaces of subglacial conduits are very complex, coupling multi-scale roughness, large sinuosity, and cross-sectional variations together. Those features significantly affect the friction law and drainage efficiency inside the conduit by altering velocity and pressure distributions, thus posing considerable influences on the dynamic development of the conduit. Parameterizing the above surface features is a first step towards understanding their hydraulic influences. A Matlab package is developed to extract the roughness field, the conduit centerline, and associated area and curvature data from the conduit surface, acquired from 3D scanning. By using those data, the characteristic vertical and horizontal roughness scales are then estimated based on the structure functions. The centerline sinuosities, defined through three concepts, i.e., the traditional definition of a fluvial river, entropy-based sinuosity, and curvature-based sinuosity, are also calculated and compared. The cross-sectional area and equivalent circular diameter along the centerline are also calculated. Among those features, the roughness is especially important due to its pivotal role in determining the wall friction, and thus an estimation of the equivalent roughness height is of great importance. To achieve such a goal, the original conduit is firstly simplified into a straight smooth pipe with the same volume and centerline length, and the roughness field obtained above is then reconstructed into the simplified pipe. An OpenFOAM-based Large-eddy-simulation (LES) is then performed based on the reconstructed pipe. Considering that the Reynolds number is of the order 106, and the relative roughness is larger than 5% for 60% of the conduit, we test the validity of the resistance law for completely rough pipe. The friction factor is calculated based on the pressure drop and mean velocity in the simulation. Working together, the equivalent roughness height can be calculated. However, whether the assumption is applicable for the current case, i.e., high relative roughness, is a question. Two other roughness heights, i.e., the vertical roughness scale based on structure functions and viscous sublayer thickness determined from the wall boundary layer are also calculated and compared with the equivalent roughness height.
Unbundled infrastructure firms: Competition and continuing regulation
NASA Astrophysics Data System (ADS)
Hogendorn, Christiaan Paul
Unbundled infrastructure firms provide conduits for electricity transmission, residential communications, etc. but are vertically disintegrated from "content" functions such as electricity generation or world-wide-web pages. These conduits are being deregulated, and this dissertation examines whether the deregulated conduits will behave in an efficient and competitive manner. The dissertation presents three essays, each of which develops a theoretical model of the behavior of conduit firms in a market environment. The first essay considers the prospects for competition between multiple conduits in the emerging market for broadband (high-speed) residential Internet access. It finds that such competition is likely to emerge as demand for these services increase. The second essay shows how a monopoly electricity or natural gas transmission conduit can facilitate collusion between suppliers of the good. It shows that this is an inefficient effect of standard price-cap regulation. The third essay considers the supply chain of residential Internet access and evaluates proposed "open access" regulation that would allow more than one firm to serve customers over the same physical infrastructure. It shows that the amount of content available to consumers does not necessarily increase under open access.
Sealed rotary hearth furnace with central bearing support
Docherty, James P.; Johnson, Beverly E.; Beri, Joseph
1989-01-01
The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.
Risse, John T.; Taggart, James C.
1976-01-01
A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.
Unsteady resurgence flows in karstic media
NASA Astrophysics Data System (ADS)
Adler, Pierre; Drygas, Piotr; Mityushev, Vladimir
2017-04-01
Geological porous media are heterogeneous materials which in addition contain discontinuities such as fractures and conduits which facilitate fluid transport. Fractures are relatively plane objects which strongly interact with the surrounding porous medium because of their large contact surface. A different situation occurs in karsts where distant regions of the medium can be connected by relatively thin conduits which have little if any hydrodynamic interaction with the porous medium that they cross, except at their ends. This phenomenon is called resurgence because of the obvious analogy with rivers which suddenly disappear underground and go out at the ground surface again. Similar ideas have already been developed in other fields, such as Physics with random networks and Geophysics with electrical tomography. Media with resurgences are addressed in the following way. They consist of a double structure. The first one is the continuous porous medium described by the classical Darcy law. The second one is composed by the resurgences modeled by conduits with impermeable walls which relate distant points of the continuous medium. When non steady regimes are considered, it appears necessary to confer a capacity to these conduits in addition to their hydrodynamic resistance. Therefore, the conduits are able to store some quantity of fluid. In addition, two kinds of resurgence are addressed, namely punctual and extended; in the second case, the dimensions of the ends of the conduit are not negligible compared to the characteristic length scales of the embedding porous medium. Capacities and extended resurgences are new features which were not taken into account in our previous studies. The punctual resurgence is described by a spatial network with a finite number of conduits embedded in a continuous porous medium. The flow in the network is described by the classical Kirchhoff law (including capacities). The equations for flow in the network and in the continuous medium are related by the unknown flow rates jn(t) (n = 1,2, …, N) depending on time at the nth vertices of the network. Application of the conservation law at the vertices yields a system of integral equations for jn(t). The structure of this system depends on the structure of the network. The Laplace transformation yields a linear algebraic system. When this system is solved, the flow rates jn(t) can be constructed by the inverse Laplace transform. Extended resurgences are modeled as extensions of punctual resurgences when instead of two vertices at each edge two domains are connected point by point by an uncountable number of edges. Another type of extended resurgence is described by a non local integral operator. A numerical finite difference method is also applied to solve the equations. Examples of network with two and more vertices are detailed. The mathematical aspects will be kept to a minimum during the presentation and emphasis will be put on the physics and on several illustrative examples.
Airfoil-Shaped Fluid Flow Tool for Use in Making Differential Measurements
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2014-01-01
A fluid flow tool includes an airfoil structure and a support arm. The airfoil structure's high-pressure side and low-pressure side are positioned in a conduit by the support arm coupled to the conduit. The high-pressure and low-pressure sides substantially face opposing walls of the conduit. At least one measurement port is formed in the airfoil structure at each of its high-pressure side and low-pressure side. A first manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the high-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit. A second manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the low-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit.
NASA Astrophysics Data System (ADS)
Morgan, J. P.; Shi, C.; Hasenclever, J.
2010-12-01
An intriguing spatial pattern of variations in shear-wave arrival times has been mapped in the PLUME ocean bottom experiment (Wolfe et al., 2009) around Hawaii. The pattern consists of a halo of fast travel times surrounding a disk of slow arrivals from waves traveling up though the plume. We think it is directly sensing the pattern of dynamic uplift of the base of a buoyant asthenosphere - the buoyancy of the plume conduit lifting a 'rim' of the cooler, denser mantle that the plume rises through. The PLUME analysis inverted for lateral shear velocity variations beneath the lithosphere, after removing the assumed 1-D model velocity structure IASP91. They found that a slow plume-conduit extends to at least 1200 km below the Hawaiian hotspot. In this inversion the slow plume conduit is — quite surprisingly - surrounded by a fast wavespeed halo. A fast halo is impossible to explain as a thermal halo around the plume; this should lead to a slow wavespeed halo, not a fast one. Plume-related shearwave anisotropy also cannot simply explain this pattern — simple vertical strain around the plume conduit would result in an anisotropic slow shear-wavespeed halo, not a fast one. (Note the PLUME experiment’s uniform ‘fast-halo’ structure from 50-400km is likely to have strong vertical streaking in the seismic image; Pacific Plate-driven shear across a low-viscosity asthenosphere would be expected to disrupt and distort any cold sheet of vertical downwelling structure between 50-400km depths so that it would no longer be vertical as it is in the 2009 PLUME image with its extremely poor vertical depth control.) If the asthenosphere is plume-fed, hence more buoyant than underlying mantle, then there can be a simple explanation for this pattern. The anomaly would be due to faster traveltimes resulting from dynamic relief at the asthenosphere-mesosphere interface; uplift of the denser mesosphere by the buoyancy of the rising plume increases the distance a wave travels through faster mantle and reduces the distance though the slower asthenosphere. With this interpretation, the inference of a radially symmetric ~40-70 km high-~250 km-radius ‘bump’ of uplift of the base of buoyant plume-fed asthenosphere (PFA) can be directly estimated from PLUME results and the measured ~6-10% reduction in shear velocity between the PFA and underlying mantle. The inferred dynamic relief at the base of the PFA due to buoyancy within the underlying plume conduit is strikingly similar to the relief we find in recent axisymmetric 2D and Cartesian 3-D numerical experiments that explore the dynamics of mantle convection with a PFA. The width and height of the bump scale directly with the total buoyancy anomaly in the upper ~500km of the plume conduit, we discuss numerical experiments that quantify this relationship, show that it is, to first order, independent of the viscosity of material in the plume conduit or asthenosphere, and which also quantify the ~400km-radius geoid anomaly produced by these subasthenospheric mantle density anomalies. This effect can only happen if the asthenosphere is more buoyant than underlying mantle — and is therefore direct evidence that a buoyant plume-fed asthenosphere exists around Hawaii.
Pressurized water nuclear reactor system with hot leg vortex mitigator
Lau, Louis K. S.
1990-01-01
A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.
Karstification at Beskonak dam site and reservoir area, southern Turkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degirmenci, M.
1993-10-01
Beskonak dam and hydroelectric power plant are planned to be constructed on the Koepruecay river, 40 km east of the Antalya city. In the dam site and reservoir area, Koepruecay Conglomerates of Miocene age and the Beskonak Formation (sandstone-claystone) alternating with each other crop out vertically. Koepruecay conglomerates, with the components of limestone fragments and carbonate texture, are karstic and permeable, whereas the Beskonak Formation is impermeable. At the northern edge of the reservoir area, the Olukkoeprue karst springs discharge at a minimum of 30 m{sup 3}/s. These springs discharge mainly through vertical and subvertical joint systems. Intensive superficial karstificationmore » developed along the joint systems and the terrane reveals columns of rocks, called {open_quotes}fairy chimneys.{close_quotes} Olukkoeprue springs represent the discharge point for a large and continuous system of underground solution cavities. In the Koepruecay basin, there are numerous karstic features within the conglomerates. Within the reservoir area, Kurukoeprue cave, with a length of 530 m, is an example of these caves developed within the conglomerates. In some parts of the reservoir area, where the groundwater level is lower than the surface-river elevation, a highly developed karstification zone is present within the fluctuation range of groundwater between depths of 40 and 50 m. The above-mentioned Kurukoeprue cave is an active cave developed in the dam site and its vicinity. The solution conduits developed along the system of mostly vertical fractures and joints are interconnected, thus giving rise to a three-dimensional conduit network. On the other hand, a majority of these conduits have clay and calcite filling materials. Karstification in the dam site varies with depths exponentially. Data suggest that karstification has a vertical extention as deep as -220 m. 4 refs., 9 figs.« less
Broad plumes rooted at the base of the Earth's mantle beneath major hotspots.
French, Scott W; Romanowicz, Barbara
2015-09-03
Plumes of hot upwelling rock rooted in the deep mantle have been proposed as a possible origin of hotspot volcanoes, but this idea is the subject of vigorous debate. On the basis of geodynamic computations, plumes of purely thermal origin should comprise thin tails, only several hundred kilometres wide, and be difficult to detect using standard seismic tomography techniques. Here we describe the use of a whole-mantle seismic imaging technique--combining accurate wavefield computations with information contained in whole seismic waveforms--that reveals the presence of broad (not thin), quasi-vertical conduits beneath many prominent hotspots. These conduits extend from the core-mantle boundary to about 1,000 kilometres below Earth's surface, where some are deflected horizontally, as though entrained into more vigorous upper-mantle circulation. At the base of the mantle, these conduits are rooted in patches of greatly reduced shear velocity that, in the case of Hawaii, Iceland and Samoa, correspond to the locations of known large ultralow-velocity zones. This correspondence clearly establishes a continuous connection between such zones and mantle plumes. We also show that the imaged conduits are robustly broader than classical thermal plume tails, suggesting that they are long-lived, and may have a thermochemical origin. Their vertical orientation suggests very sluggish background circulation below depths of 1,000 kilometres. Our results should provide constraints on studies of viscosity layering of Earth's mantle and guide further research into thermochemical convection.
Open cycle ocean thermal energy conversion system
Wittig, J. Michael
1980-01-01
An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.
Entirely passive heat pipe apparatus capable of operating against gravity
Koenig, Daniel R.
1982-01-01
The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 meters and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.
Entirely passive heat-pipe apparatus capable of operating against gravity
Koenig, D.R.
1981-02-11
The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.
Goldmann, Louis H.
1986-01-01
A dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough.
NASA Astrophysics Data System (ADS)
Henson, W.; De Rooij, R.; Graham, W. D.
2016-12-01
The Upper Floridian Aquifer is hydrogeologically complex; limestone dissolution has led to vertical and horizontal preferential flow paths. Locations of karst conduits are unknown and conduit properties are poorly constrained. Uncertainty in effects of conduit location, size, and density, network geometry and connectivity on hydrologic and transport responses is not well quantified, leading to limited use of discrete-continuum models that incorporate conduit networks for regional-scale hydrologic regulatory models. However, conduit networks typically dominate flow and contaminant transport in karst aquifers. We evaluated sensitivity of simulated water and nitrate fluxes and flow paths to karst conduit geometry in a springshed representative of Silver Springs, Florida, using a novel calcite dissolution conduit-generation algorithm coupled with a discrete-continuum flow and transport model (DisCo). Monte Carlo simulations of conduit generation, groundwater flow, and conservative solute transport indicate that, if a first magnitude spring system conduit network developed (i.e., spring flow >2.8 m3/s), the uncertainty in hydraulic and solute pulse response metrics at the spring vent was minimally related to locational uncertainty of network elements. Across the ensemble of realizations for various distributions of conduits, first magnitude spring hydraulic pulse metrics (e.g., steady-flow, peak flow, and recession coefficients) had < 0.01 coefficient of variation (CV). Similarly, spring solute breakthrough curve moments had low CV (<0.08); peak arrival had CV=0.06, mean travel time had CV=0.05, and travel time standard deviation had CV=0.08. Nevertheless, hydraulic and solute pulse response metrics were significantly different than those predicted by an equivalent porous-media model. These findings indicate that regional-scale decision models that incorporate karst preferential flow paths within an uncertainty framework can be used to better constrain aquifer-vulnerability estimates, despite lacking information about actual conduit locations.
Geyser preplay and eruption in a laboratory model with a bubble trap
NASA Astrophysics Data System (ADS)
Adelstein, Esther; Tran, Aaron; Saez, Carolina Muñoz; Shteinberg, Alexander; Manga, Michael
2014-09-01
We present visual observations and temperature measurements from a laboratory model of a geyser. Our model incorporates a bubble trap, a zone in which vapor can accumulate in the geyser's subsurface plumbing, in a vertical conduit connected to a basal chamber. Analogous features have been identified at several natural geysers. We observe three types of eruptions: 1) rising bubbles eject a small volume of liquid in a weak spout (small eruption); 2) boiling occurs in the conduit above the bubble trap (medium eruption); and 3) boiling occurs in the conduit and chamber (large eruption). In the last two cases, boiling in the conduit causes a rapid hydrostatic pressure drop that allows for the rise and eruption of liquid water in a vigorous spout. Boiling initiates at depth rather than propagating downward from the surface. In a single eruption cycle, multiple small eruptions precede every medium and large eruption. At least one eruption cycle that culminates in a medium eruption (i.e., a quiescent period followed by a series of small eruptions leading up to a medium eruption) precedes every eruption cycle that culminates in a large eruption. We find that the transfer of fluid with high enthalpy to the upper conduit during small and medium eruptions is necessary to heat the upper conduit and prepare the system for the full boiling required for a large eruption. The placement of the bubble trap midway up the conduit allows for more efficient heating of the upper conduit. Our model provides insight into the influence of conduit geometry on eruption style and the importance of heat transfer by smaller events in preparing the geyser system for eruption.
Goldmann, L.H.
1984-12-06
This is a claim for a dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough. 4 figs.
Murakami, T
1989-05-01
Extracardiac conduits, such as Dacron or homo-graft, have been utilized for the operative management of many patients with congenital right ventricular outflow obstruction. However, they have been recognized to become obstructed or calcified with time. As a new material for extracardiac conduit, an original valved conduit using glutaraldehyde-preserved equine pericardium (Xenomedica) was investigated. Various types of valved conduit were evaluated for the hydrodynamics by a circulation system. A flow-pressure gradient Lissajous was used for the evaluation. The conduit of 10 mm in diameter had a high resistance to flow. The monocusp-valved conduit had a diastolic regurgitation (DR) at any given pressures and heart rates. The bicusp-valved conduit had a DR at higher heart rates (greater than 153/min). In this experiment, the tricusp-valved conduit with a valvular vertical versus horizontal length ratio of 2:3 had utmost favorable results under any given conditions. The valved conduits were also evaluated using sixteen mongrel dogs in which the conduit were used for the reconstruction of continuity between right ventricle and pulmonary artery. Five dogs died of bacterial infection or thrombotic obstruction. Following hemodynamic studies, which were performed in eleven dogs 1, 6, and 12 months after the operation, the dogs were sacrificed to evaluate the histological changes in the conduits. The valvular function had been satisfactory until one month, however, it was lost in 6 months because the valvular leaflets were covered with neointimae grown over them. Thin neointimae were observed both at the sites of anastomosis and at the base of the valves in dogs sacrificed at one month. They spread from the proximal anastomotic site to distal one. They were organized and it was hard to remove them manually. Thrombi were found in six dogs at the proximal anastomotic site with intimal hyperplasia. There was no calcification in Xenomedica and its degenerative change was minimal. In conclusion, the equine pericardium valved conduit is thought to be an useful material for the reconstruction of right ventricular outflow obstruction to improve early hemodynamic changes after operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Curtis; Patterson, Brad; Perdue, Jayson
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through themore » solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.« less
Conduit degassing and thermal controls on eruption styles at Mount St. Helens
NASA Astrophysics Data System (ADS)
Schneider, Andrew; Rempel, Alan W.; Cashman, Katharine V.
2012-12-01
The explosivity of silicic eruptions depends on the interplay between magma rheology, exsolution kinetics, and degassing. Magma degassing is governed by the competing effects of vertical transport within the conduit and the lateral flux of gas out of the conduit (Diller et al., 2006; Jaupart and Allegre, 1991). We combine a simplified treatment of these degassing processes with thermodynamic modeling to examine the conditions present at Mount St. Helens during the spine extruding eruption from 2004 to 2008. We find that two parameters are primarily responsible for controlling the eruptive style: the magma chamber temperature, and a dimensionless parameter that gauges the efficiency of lateral degassing. Together, these parameters determine whether and where magma can solidify at depth to form a dense solid plug that is gradually extruded as a volcanic spine. We show that the small (50 oC) decrease in magma chamber temperature between eruptive activity in the 1980s and that of 2004-2008, combined with a modest increase in degassing efficiency associated with lower volumetric flux, can explain the observed change in erupted material from viscous lava flows to solidified spines. More generally, we suggest that similar threshold behavior may explain observed abrupt transitions in effusive eruptive styles at other intermediate composition volcanoes. Finally, we extrapolate our results to suggest that the increase in degassing efficiency accompanying decreasing magma supply rates may have caused the transition from explosive to effusive activity in late 1980.
Darwin's triggering mechanism of volcano eruptions
NASA Astrophysics Data System (ADS)
Galiev, Shamil
2010-05-01
Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a severe earthquake. The volcano base obtains the great earthquake-induced vertical acceleration, and the compression wave begins to propagate through the volcano body. Since we are considering conic volcano, the interaction of this wave with the free surface of the volcano may be easily analysed. It is found that the reflection of the upward-going wave from the volcano slope produces tensile stresses within the volcano and bubbles in conduit magma. The conduit magma is held at high pressure by the weight and the strength of the vent fill. This fill may be collapsed and fly off , when the upward wave is reflected from the volcano crater as a decompression wave. After this collapse the pressure on the magma surface drops to atmospheric, and the decompression front begins to move downward in the conduit. In particular, large gas bubbles can begin to form in the magma within the conduit. The resulting bubble growth provides the driving force at the beginning of the eruption. Thus, the earthquake-induced nonlinear wave phenomena can qualitatively explain the spectacular simultaneity of large eruptions after large earthquakes. The pressure difference between a region of low pressure (atmosphere) and the magma chamber can cause the large-scale eruption. The beginning and the process of the eruption depend on many circumstances: conduit system and its dimension, chamber size and pressure, magma viscosity and gas concentration in it may be the main variables . The resonant free oscillations in the conduit may continue for a long time, since they are fed by the magma chamber pressure (Galiev, Sh. U., 2003. The theory of nonlinear trans-resonant wave phenomena and an examination of Charles Darwin's earthquake reports. Geophys. J. Inter., 154, 300-354.). The behaviour of the system strongly depends on the magma viscosity. The gas can escape from the bubbles more easily in the case of low viscous magma. However, if the magma is very viscous, so the gas cannot escape so easily, then the bubbles grow very quickly near the vent only. Effects of this growth can resemble an explosion.
Drill string transmission line
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe
2006-03-28
A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.
Enclosed ground-flare incinerator
Wiseman, Thomas R.
2000-01-01
An improved ground flare is provided comprising a stack, two or more burner assemblies, and a servicing port so that some of the burner assemblies can be serviced while others remain in operation. The burner assemblies comprise a burner conduit and nozzles which are individually fitted to the stack's burner chamber and are each removably supported in the chamber. Each burner conduit is sealed to and sandwiched between a waste gas inlet port and a matching a closure port on the other side of the stack. The closure port can be opened for physically releasing the burner conduit and supplying sufficient axial movement room for extracting the conduit from the socket, thereby releasing the conduit for hand removal through a servicing port. Preferably, the lower end of the stack is formed of one or more axially displaced lower tubular shells which are concentrically spaced for forming annular inlets for admitting combustion air. An upper tubular exhaust stack, similarly formed, admits additional combustion air for increasing the efficiency of combustion, increasing the flow of exhausted for improved atmospheric dispersion and for cooling the upper stack.
Catalytic reactor for low-Btu fuels
Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.
2009-04-21
An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.
James, M.R.; Lane, S.J.; Chouet, B.A.
2006-01-01
Seismic signals generated during the flow and degassing of low-viscosity magmas include long-period (LP) and very-long-period (VLP) events, whose sources are often attributed to dynamic fluid processes within the conduit. We present the results of laboratory experiments designed to investigate whether the passage of a gas slug through regions of changing conduit diameter could act as a suitable source mechanism. A vertical, liquid-filled glass tube featuring a concentric diameter change was used to provide canonical insights into potentially deep or shallow seismic sources. As gas slugs ascend the tube, we observe systematic pressure changes varying with slug size, liquid depth, tube diameter, and liquid viscosity. Gas slugs undergoing an abrupt flow pattern change upon entering a section of significantly increased tube diameter induce a transient pressure decrease in and above the flare and an associated pressure increase below it, which stimulates acoustic and inertial resonant oscillations. When the liquid flow is not dominantly controlled by viscosity, net vertical forces on the apparatus are also detected. The net force is a function of the magnitude of the pressure transients generated and the tube geometry, which dictates where, and hence when, the traveling pressure pulses can couple into the tube. In contrast to interpretations of related volcano-seismic data, where a single downward force is assumed to result from an upward acceleration of the center of mass in the conduit, our experiments suggest that significant downward forces can result from the rapid deceleration of relatively small volumes of downward-moving liquid. Copyright 2006 by the American Geophysical Union.
Hydraulic Roughness and Flow Resistance in a Subglacial Conduit
NASA Astrophysics Data System (ADS)
Chen, Y.; Liu, X.; Mankoff, K. D.
2017-12-01
The hydraulic roughness significantly affects the flow resistance in real subglacial conduits, but has been poorly understood. To address this knowledge gap, this paper first proposes a procedure to define and quantify the geometry roughness, and then relates such a geometry roughness to the hydraulic roughness based on a series of computational fluid dynamics (CFD) simulations. The results indicate that by using the 2nd order structure function, the roughness field can be well quantified by the powers of the scaling-law, the vertical and horizontal length scales of the structure functions. The vertical length scale can be further chosen as the standard deviation of the roughness field σr. The friction factors calculated from either total drag force or the linear decreasing pressure agree very well with those calculated from traditional rough pipe theories when the equivalent hydraulic roughness height is corrected as ks = (1.1 ˜ 1.5)σr. This result means that the fully rough pipe resistance formula λ = [2 log(D0/2ks) + 1.74]-2, and the Moody diagram are still valid for the friction factor estimation in subglacial conduits when σr /D0<18% and ks/D0<22%. The results further show that when a proper hydraulic roughness is determined, the total flow resistance corresponding to the given hydraulic roughness height can be accurately modelled by using a rough wall function. This suggests that the flow resistance for the longer realistic subglacial conduits with large sinuosity and cross-sectional variations may be correctly predicted by CFD simulations. The results also show that the friction factors from CFD modeling are much larger than those determined from traditional rough pipe theories when σr /D0>20%.
Sphere forming method and apparatus
NASA Technical Reports Server (NTRS)
Youngberg, C. L.; Miller, C. G.; Stephens, J. B.; Finnerty, A. A. (Inventor)
1983-01-01
A system is provided for forming small accurately spherical objects. Preformed largely spherical objects are supported at the opening of a conduit on the update of hot gas emitted from the opening, so the object is in a molten state. The conduit is suddenly jerked away at a downward incline, to allow the molten object to drop in free fall, so that surface tension forms a precise sphere. The conduit portion that has the opening, lies in a moderate vacuum chamber, and the falling sphere passes through the chamber and through a briefly opened valve into a tall drop tower that contains a lower pressure, to allow the sphere to cool without deformation caused by falling through air.
Earthquake prediction using extinct monogenetic volcanoes: A possible new research strategy
NASA Astrophysics Data System (ADS)
Szakács, Alexandru
2011-04-01
Volcanoes are extremely effective transmitters of matter, energy and information from the deep Earth towards its surface. Their capacities as information carriers are far to be fully exploited so far. Volcanic conduits can be viewed in general as rod-like or sheet-like vertical features with relatively homogenous composition and structure crosscutting geological structures of far more complexity and compositional heterogeneity. Information-carrying signals such as earthquake precursor signals originating deep below the Earth surface are transmitted with much less loss of information through homogenous vertically extended structures than through the horizontally segmented heterogeneous lithosphere or crust. Volcanic conduits can thus be viewed as upside-down "antennas" or waveguides which can be used as privileged pathways of any possible earthquake precursor signal. In particular, conduits of monogenetic volcanoes are promising transmitters of deep Earth information to be received and decoded at surface monitoring stations because the expected more homogenous nature of their rock-fill as compared to polygenetic volcanoes. Among monogenetic volcanoes those with dominantly effusive activity appear as the best candidates for privileged earthquake monitoring sites. In more details, effusive monogenetic volcanic conduits filled with rocks of primitive parental magma composition indicating direct ascent from sub-lithospheric magma-generating areas are the most suitable. Further selection criteria may include age of the volcanism considered and the presence of mantle xenoliths in surface volcanic products indicating direct and straightforward link between the deep lithospheric mantle and surface through the conduit. Innovative earthquake prediction research strategies can be based and developed on these grounds by considering conduits of selected extinct monogenetic volcanoes and deep trans-crustal fractures as privileged emplacement sites of seismic monitoring stations using an assemblage of physical, chemical and biological sensors devised to detect precursory signals. Earthquake prediction systems can be built up based on the concept of a signal emission-transmission-reception system, in which volcanic conduits and/or deep fractures play the role of the most effective signal transmission paths through the lithosphere. Unique "precursory fingerprints" of individual seismic structures are expected to be pointed out as an outcome of target-oriented strategic prediction research. Intelligent pattern-recognition systems are to be included for evaluation of the signal assemblages recorded by complex sensor arrays. Such strategies are expected however to be limited to intermediate-depth and deep seismic structures. Due to its particular features and geotectonic setting, the Vrancea seismic structure in Romania appears to be an excellent experimental target for prediction research.
NASA Astrophysics Data System (ADS)
Li, C.; Ripley, E. M.; de Waal, S. A.; Xu, Z.
2002-12-01
The Jinchuan intrusion in western China is an elongated, deeply-dipping dyke-like body of dominantly olivine-rich ultramafic rocks of high magnesium basaltic magma. It hosts the second largest Ni-Cu sulfide deposit in the world. More than 500 million tones of sulfide ore grading 1.2 percent Ni and 0.7 percent Cu occur mostly as next-textured and disseminated sulfide (pyrrhotite, pentlendite and chalcopyrite) with cumulus olivine in about half of the rocks of the intrusion. Based on different petrological zonations, the Jinchuan intrusion is further divided into three segments: eastern, central and western segments. The central segment is characterized by concentric enrichments of cumulus olivine and sulfide, whereas the eastern and western segments are characterized by the increase of both cumulus olivine and sulfide toward the footwall. The forsterite contents of fresh olivine from different segments are similar and vary between 82 and 86 mole percent. The small range of olivine compositional variation corresponds to less than 6 percent of fractional crystallization. Mass balance calculations based on sulfide solubility in basaltic magma indicate that the volume of the parental magma of the sulfide is many times larger than that which is currently represented in the intrusion. Large amounts of cumulus olivine (more than 40 weight percent) in the marginal samples and high concentrations of sulfide in the intrusion are consistent with an interpretation that the Jinchuan intrusion was formed by olivine- and sulfide droplet-laden magma ascending through a subvertical conduit to a higher level. Differentiation processes of the olivine- and sulfide droplet-laden magma varied in different parts of the conduit. Sub-vertical flow differentiation controlled the central segment of the conduit, resulting in further enrichment of olivine crystals and sulfide droplets in the conduit center. In contrast, sub-lateral flow and gravitational differentiation dominated in the eastern and western segments, resulting in further enrichments of olivine crystals and sulfide droplets toward the footwall contact.
Geodynamic modeling of the capture and release of a plume conduit by a migrating mid-ocean ridge
NASA Astrophysics Data System (ADS)
Hall, P. S.
2011-12-01
plates over the relatively stationary, long-lived conduits of mantle plumes. However, paleomagnetic data from the Hawaii-Emperor Seamount Chain suggests that the Hawaiian hotspot moved rapidly (~40 mm/yr) between 81 - 47 Ma [Tarduno et al., 2003]. Recently, Tarduno et al. [2009] suggested that this period of rapid motion might be the surface expression of a plume conduit returning to a largely vertical orientation after having been captured and tilted as the result of being "run over" by migrating mid-ocean ridge. I report on a series of analog geodynamic experiments designed to characterize the evolution of a plume conduit as a mid-ocean ridge migrates over. Experiments were conducted in a clear acrylic tank (100 cm x 70 cm x 50 cm) filled with commercial grade high-fructose corn syrup. Plate-driven flow is modeled by dragging two sheets of Mylar film (driven by independent DC motors) in opposite directions over the surface of the fluid. Ridge migration is achieved by moving the point at which the mylar sheets diverge using a separate motor drive. Buoyant plume flow is generated using a small electrical heater placed at the bottom of the tank. Plate velocities and ridge migration rate are controlled and plume temperature monitored using LabView software. Experiments are recorded using digital video which is then analyzed using digital image analysis software to track the position and shape of the plume conduit throughout the course of the experiment. The intersection of the plume conduit with the surface of the fluid is taken as an analog for the locus of hotspot volcanism and tracked as a function of time to obtain a hotspot migration rate. Results show that the plume conduit experiences significant tilting immediately following the passage of the migrating ridge.
Box, W.D.
1996-03-12
A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.
Box, W.D.
1994-03-15
A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.
Fluid flow modeling at the Lusi mud eruption, East java, Indonesia.
NASA Astrophysics Data System (ADS)
Collignon, Marine; Schmid, Daniel; Mazzini, Adriano
2016-04-01
The 29th of may 2006, gas water and mud breccia started to erupt at several localities along the Watukosek fault system, in the Sidoarjo Regency in East java, Indonesia. The most prominent eruption, named Lusi, is still active and covering a surface of nearly 7 km2, resulting in the displacement of ~ 30 000 people. Although the origin and the chemical composition of the erupted fluids have been documented, the mechanical and physical properties of the mud are poorly constrained, and many aspects still remain not understood. Very little is known about the internal dynamics of the Lusi conduit(s). In this study, conducted in the framework of the Lusi Lab project (ERC grant n°308126) we use both analytical and numerical methods to better understand the flow dynamics within the main conduit and to try to explain the longevity of the edifice. The 2D numerical model considers a vertical conduit with a reservoir at its base and solves the stokes equations, discretized on a finite element mesh. Although, three phases (solid, liquid and gas) are present in nature, we only consider the liquid phase. The solid phase is treated as rigid particles in suspension in the liquid. The gaseous phase (methane and carbon dioxide) is treated in an analytical manner using the equations of state of the H2O-CO2 and H2O-CH4 systems. Here, we discuss the effects of density, viscosity, gas concentration and clasts concentration and size on the dynamics of the flow in the conduit as well as implications of the conduit stability.
Flowmeter for determining average rate of flow of liquid in a conduit
Kennerly, J.M.; Lindner, G.M.; Rowe, J.C.
1981-04-30
This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.
Flowmeter for determining average rate of flow of liquid in a conduit
Kennerly, John M.; Lindner, Gordon M.; Rowe, John C.
1982-01-01
This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.
Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert
2010-05-11
A dilution apparatus for diluting a gas sample. The apparatus includes a sample gas conduit having a sample gas inlet end and a diluted sample gas outlet end, and a sample gas flow restricting orifice disposed proximate the sample gas inlet end connected with the sample gas conduit and providing fluid communication between the exterior and the interior of the sample gas conduit. A diluted sample gas conduit is provided within the sample gas conduit having a mixing end with a mixing space inlet opening disposed proximate the sample gas inlet end, thereby forming an annular space between the sample gas conduit and the diluted sample gas conduit. The mixing end of the diluted sample gas conduit is disposed at a distance from the sample gas flow restricting orifice. A dilution gas source connected with the sample gas inlet end of the sample gas conduit is provided for introducing a dilution gas into the annular space, and a filter is provided for filtering the sample gas. The apparatus is particularly suited for diluting heated sample gases containing one or more condensable components.
Molten salt rolling bubble column, reactors utilizing same and related methods
Turner, Terry D.; Benefiel, Bradley C.; Bingham, Dennis N.; Klinger, Kerry M.; Wilding, Bruce M.
2015-11-17
Reactors for carrying out a chemical reaction, as well as related components, systems and methods are provided. In accordance with one embodiment, a reactor is provided that includes a furnace and a crucible positioned for heating by the furnace. The crucible may contain a molten salt bath. A downtube is disposed at least partially within the interior crucible along an axis. The downtube includes a conduit having a first end in communication with a carbon source and an outlet at a second end of the conduit for introducing the carbon material into the crucible. At least one opening is formed in the conduit between the first end and the second end to enable circulation of reaction components contained within the crucible through the conduit. An oxidizing material may be introduced through a bottom portion of the crucible in the form of gas bubbles to react with the other materials.
Superconducting magnet cooling system
Vander Arend, Peter C.; Fowler, William B.
1977-01-01
A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.
Hydrotectonics; principles and relevance
Kopf, R.W.
1982-01-01
Hydrotectonics combines the principles of hydraulics and rock mechanics. The hypothesis assumes that: (1) no faults are truly planar, (2) opposing noncongruent wavy wallrock surfaces form chambers and bottlenecks along the fault, and (3) most thrusting occurs beneath the water table. These physical constraints permit the following dynamics. Shear displacement accompanying faulting must constantly change the volume of each chamber. Addition of ground water liquefies dry fault breccia to a heavy incompressible viscous muddy breccia I call fault slurry. When the volume of a chamber along a thrust fault decreases faster than its fault slurry can escape laterally, overpressurized slurry is hydraulically injected into the base of near-vertical fractures in the otherwise impervious overriding plate. Breccia pipes commonly form where such fissures intersect. Alternating decrease and increase in volume of the chamber subjects this injection slurry to reversible surges that not only raft and abrade huge clasts sporadically spalled from the walls of the conduit but also act as a forceful hydraulic ram which periodically widens the conduit and extends its top. If the pipe perforates a petroleum reservoir, leaking hydrocarbons float to its top. Sudden faulting may generate a powerful water hammer that can be amplified at some distal narrow ends of the anastomosing plumbing system, where the shock may produce shatter cones. If vented on the Earth's surface, the muddy breccia, now called extrusion slurry, forms a mud volcano. This hypothesis suggests that many highly disturbed features presently attributed to such catastrophic processes as subsurface explosions or meteorite impacts are due to the rheology of tectonic slurry in an intermittently reactivated pressure-relief tube rooted in a powerful reciprocating hydrotectonic pump activated by a long-lived deep-seated thrust fault.
Superconducting cable-in-conduit low resistance splice
Artman, Thomas A.
2003-06-24
A low resistance splice connects two cable-in-conduit superconductors to each other. Dividing collars for arranging sub-cable units from each conduit are provided, along with clamping collars for mating each sub-cable wire assembly to form mated assemblies. The mated assemblies ideally can be accomplished by way of splicing collar. The mated assemblies are cooled by way of a flow of coolant, preferably helium. A method for implementing such a splicing is also described.
NASA Astrophysics Data System (ADS)
Klimchouk, Alexander; Auler, Augusto S.; Bezerra, Francisco H. R.; Cazarin, Caroline L.; Balsamo, Fabrizio; Dublyansky, Yuri
2016-01-01
This study is focused on speleogenesis of the Toca da Boa Vista (TBV) and Toca da Barriguda (TBR), the longest caves in South America occurring in the Neoproterozoic Salitre Formation in the São Francisco Craton, NE Brazil. We employ a multidisciplinary approach integrating detailed speleomorphogenetic, lithostratigraphic and geological structure studies in order to reveal the origin of the caves, their functional organization and geologic controls on their development. The caves developed in deep-seated confined conditions by rising flow. The overall fields of passages of TBV and TBR caves represent a speleogenetically exploited large NE-SW-trending fracture corridor associated with a major thrust. This corridor vertically extends across the Salitre Formation allowing the rise of deep fluids. In the overall ascending flow system, the formation of the cave pattern was controlled by a system of sub-parallel anticlines and troughs with NNE-SSW dominant orientation, and by vertical and lateral heterogeneities in fracture distribution. Three cave-stratigraphic stories reflect the actual hydrostratigraphy during the main phase of speleogenesis. Cavities at different stories are distinct in morphology and functioning. The gross tree-dimensional pattern of the system is effectively organized to conduct rising flow in deep-seated confined conditions. Cavities in the lower story developed as recharge components to the system. A laterally extensive conduit network in the middle story formed because the vertical flow from numerous recharge points has been redirected laterally along the highly conductive unit, occurring below the major seal - a scarcely fractured unit. Rift-like and shaft-like conduits in the upper story developed along fracture-controlled outflow paths, breaching the integrity of the major seal, and served as outlets for the cave system. The cave system represents a series of vertically organized, functionally largely independent clusters of cavities developed within individual ascending flow cells. Lateral integration of clusters occurred due to hydrodynamic interaction between the flow cells in course of speleogenetic evolution and change of boundary conditions. The main speleogenetic phase, during which the gross cave pattern has been established and the caves acquired most of their volume, was likely related to rise of deep fluids at about 520 Ma or associated with rifting and the Pangea break-up in Triassic-Cretaceous. This study highlights the importance of speleogenetic studies for interpreting porosity and permeability features in carbonate reservoirs.
NASA Technical Reports Server (NTRS)
Coombs, C. R.; Hawke, B. R.; Wilson, L.
1990-01-01
Two source vents, one explosive and one effusive erupted to form a cinder cone and low lava shield that together compose the Kalaupapa peninsula of Molokai, Hawaii, A 50-100-m-wide channel/tube system extends 2.3 km northward from kauhako crater in the center of the shield. Based on modeling, a volume of up to about 0.2 cu km of lava erupted at a rate of 260 cu m/sec to flow through the Kauhako conduit system in one of the last eruptive episodes on the peninsula. Channel downcutting by thermal erosion occurred at a rate of about 10 micron/sec to help form the 30-m-deep conduit. Two smaller, secondary tube systems formed east of the main lava channel/tube. Several other lava conduit systems on the islands of Oahu and Hawaii were also compared to the Kauhako and lunar sinuous rille systems. These other lava conduits include Whittington, Kupaianaha, and Mauna Ulu lava tubes. Morphologically, the Hawaiian tube systems studied are very similar to lunar sinuous rilles in that they have deep head craters, sinuous channels, and gentle slopes. Thermal erosion is postulated to be an important factor in the formation of these terrestrial channel systems and by analogy is inferred to be an important process involved in the formation of lunar sinuous rilles.
NASA Astrophysics Data System (ADS)
Coombs, C. R.; Hawke, B. R.; Wilson, L.
Two source vents, one explosive and one effusive erupted to form a cinder cone and low lava shield that together compose the Kalaupapa peninsula of Molokai, Hawaii, A 50-100-m-wide channel/tube system extends 2.3 km northward from kauhako crater in the center of the shield. Based on modeling, a volume of up to about 0.2 cu km of lava erupted at a rate of 260 cu m/sec to flow through the Kauhako conduit system in one of the last eruptive episodes on the peninsula. Channel downcutting by thermal erosion occurred at a rate of about 10 micron/sec to help form the 30-m-deep conduit. Two smaller, secondary tube systems formed east of the main lava channel/tube. Several other lava conduit systems on the islands of Oahu and Hawaii were also compared to the Kauhako and lunar sinuous rille systems. These other lava conduits include Whittington, Kupaianaha, and Mauna Ulu lava tubes. Morphologically, the Hawaiian tube systems studied are very similar to lunar sinuous rilles in that they have deep head craters, sinuous channels, and gentle slopes. Thermal erosion is postulated to be an important factor in the formation of these terrestrial channel systems and by analogy is inferred to be an important process involved in the formation of lunar sinuous rilles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Ying -Qi; Segall, Paul; Bradley, Andrew
Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock andmore » magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5 wt %) total volatiles and that the magma permeability scale is well constrained at ~10 –11.4m 2 to reproduce observed dome rock porosities. Here, compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.« less
NASA Astrophysics Data System (ADS)
Wong, Ying-Qi; Segall, Paul; Bradley, Andrew; Anderson, Kyle
2017-10-01
Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock and magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5 wt %) total volatiles and that the magma permeability scale is well constrained at ˜10-11.4m2 to reproduce observed dome rock porosities. Compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.
Wong, Ying -Qi; Segall, Paul; Bradley, Andrew; ...
2017-10-04
Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock andmore » magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5 wt %) total volatiles and that the magma permeability scale is well constrained at ~10 –11.4m 2 to reproduce observed dome rock porosities. Here, compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.« less
Wong, Ying-Qi; Segall, Paul; Bradley, Andrew; Anderson, Kyle R.
2017-01-01
Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock and magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5wt%) total volatiles and that the magma permeability scale is well constrained at ~10-11.4 m2 to reproduce observed dome rock porosities. Compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Lihua; Center of Molecular Medicine, School of Medicine, Hubei University of Arts and Sciences, Xiangyang 441053; Gan, Li
Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were appliedmore » to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide conduits in the field of nerve tissue engineering. - Highlights: • A novel nerve conduit was constructed and applied to repair nerve defect in rats. • Transparent hollow cellulose/soy protein isolate tube was used as conduit matrix. • Pyrroloquinoline quinine was adsorbed into the hollow tube as nerve growth factor. • Schwann cells were cultured into the hollow tube as seed cells. • The new nerve conduit could repair and reconstruct the peripheral nerve defects.« less
Box, W. Donald
1994-01-01
A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.
Box, W. Donald
1996-01-01
A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, R.D.
An apparatus is described for reducing hydrocarbon fuel requirements for haber ammonia synthesis by the supply of selected gases to the second reformer of such system, comprising a first cylindrical conduit, a second smaller coaxial cylinder inside of the first conduit, forming a first annular space therebetween, the downstream end of said second conduit closed, and a plurality of circumferentially-spaced orifices in the wall of said conduit upstream of the closed end. Means are provided to supply air at selected pressure p1, temperature and flow rate to the first annular space, means to supply at least methane at a pressuremore » p2 greater than p1, to said second conduit, so that the concentration of methane in the air will be less than the lower explosive limit, and means to shield the jets of gas from the orifices in the second conduit , as they flow radially outwardly across the annular space. Means are also provided for adding steam in selected ratio with the methane prior to flow into the second conduit, whereby air, methane and steam are mixed together prior to flow into the second haber reformer.« less
Method for braze-joining spirally wound tapes to inner walls of heat exchanger tubes
Garrison, Melton E.
1984-01-01
The present invention is directed to a method of fabricating heat exchanger tubes in which twisted tapes are utilized for promoting turbulence and heat transfer. The method of the present invention provides for the brazing of the tapes to the inner walls of the tubes for enhancing heat transfer between the fluid within the conduit and a fluid medium outside of the conduit by conduction through the tape. The braze joint of the present invention is coextensive with the tape over the entire length thereof within the conduit. The practice of the present invention is achieved by placing a filler wire of brazing metal along the tape at a location removed from the side walls and then heating the conduit and tape sufficiently to effect the displacement of the filler metal by wicking to the contact point between the tape and the conduit wall to form a braze joint coextensive with the length of the tape within the conduit. This arrangement provides maximum heat transfer and assures that the tape is in contact with the conduit over the entire common length thereof.
Method for braze-joining spirally wound tapes to inner walls of heat exchanger tubes
Garrison, M.E.
1982-09-03
The present invention is directed to a method of fabricating heat exchanger tubes in which twisted tapes are utilized for promoting turbulence and heat transfer. The method of the present invention provides for the brazing of the tapes to the inner walls of the tubes for enhancing heat transfer between the fluid within the conduit and a fluid medium outside of the conduit by conduction through the tape. The braze joint of the present invention is coextensive with the tape over the entire length thereof within the conduit. The practice of the present invention is achieved by placing a filler wire of brazing metal along the tape at a location removed from the side walls and then heating the conduit and tape sufficiently to effect the displacement of the filler metal by wicking to the contact point between the tape and the conduit wall to form a braze joint coextensive with the length of the tape within the conduit. This arrangement provides maximum heat transfer and assures that the tape is in contact with the conduit over the entire common length thereof.
Self-contained all-terrain living apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeser, J.
1980-10-21
A living apparatus comprises a first reservoir within the ground surface of circular form and having a quantity of water therein. A building having a roof and a peripheral side wall of circular form is concentrically nested and spaced within said reservoir. A convex hull is peripherally connected and sealed to the bottom of said building wall and immersed within the water and floatingly projected into said reservoir, a substantial portion of said building wall extending above said ground surface. A second reservoir within the ground surface is spaced from and below said first reservoir. A drain outlet is spacedmore » above the bottom of said first reservoir; and a conduit interconnects said outlet and said second reservoir. A valve on said outlet is adapted to variably control the drain of water from said first reservoir to said second reservoir with the building adapted to controllably descend within said first reservoir throughout any desired distance up to the building roof yet, buoyantly immersed within the remaining water in said first reservoir for protectively enclosing the building within said first reservoir against storms , tornados, earthquakes, extreme temperatures or other conditions endangering the intergrity of the building. A power-operated pump is connected to a conduit between said reservoirs for returning water from said second reservoir to said first said reservoir and controllably regulating elevation of the building within said first reservoir. Within a central vertical axis of the building, there is provided an energy core upon the hull. An apertured support column is coaxially mounted upon said core and at its upper end, supports the roof.« less
Structure of a bacterial cell surface decaheme electron conduit
USDA-ARS?s Scientific Manuscript database
Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits...
Dehoff, Ryan R; Lind, Randall F; Love, Lonnie L; Peter, William H; Richardson, Bradley S
2015-02-10
A robotic, prosthetic or orthotic member includes a body formed of a solidified metallic powder. At least one working fluid cylinder is formed in the body. A piston is provided in the working fluid cylinder for pressurizing a fluid in the cylinder. At least one working fluid conduit receives the pressurized fluid from the cylinder. The body, working fluid cylinder and working fluid conduit have a unitary construction. A method of making a robotic member is also disclosed.
Article, component, and method of forming an article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Itzel, Gary Michael; Kottilingam, Srikanth Chandrudu
An article and method of forming an article are provided. The article includes a body portion separating an inner region and an outer region, an aperture in the body portion, the aperture fluidly connecting the inner region to the outer region, and a conduit extending from an outer surface of the body portion at the aperture and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The method includes providing a body portion separating an inner region and an outer region, providing an aperture in the body portion, and forming a conduit overmore » the aperture, the conduit extending from an outer surface of the body portion and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The article is arranged and disposed for insertion within a hot gas path component.« less
Systems for delivering liquified natural gas to an engine
Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.
2000-01-01
A fuel delivery system includes a fuel tank configured to receive liquid natural gas. A first conduit extends from a vapor holding portion of the fuel tank to an economizer valve. A second conduit extends from a liquid holding portion of the fuel tank to the economizer valve. Fluid coupled to the economizer valve is a vaporizer which is heated by coolant from the engine and is positioned below the fuel tank. The economizer valve selectively withdraws either liquid natural gas or vaporized natural gas from the fuel tank depending on the pressure within the vapor holding portion of the fuel tank. A delivery conduit extends from the vaporizer to the engine. A return conduit having a check valve formed therein extends from the delivery conduit to the vapor holding portion of the fuel tank for pressurizing the fuel tank.
In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits.
Zhang, Yahui; Yu, Yin; Akkouch, Adil; Dababneh, Amer; Dolati, Farzaneh; Ozbolat, Ibrahim T
2015-01-01
The ability to create three dimensional (3D) thick tissues is still a major tissue engineering challenge. It requires the development of a suitable vascular supply for an efficient media exchange. An integrated vasculature network is particularly needed when building thick functional tissues and/or organs with high metabolic activities, such as the heart, liver and pancreas. In this work, human umbilical vein smooth muscle cells (HUVSMCs) were encapsulated in sodium alginate and printed in the form of vasculature conduits using a coaxial deposition system. Detailed investigations were performed to understand the dehydration, swelling and degradation characteristics of printed conduits. In addition, because perfusional, permeable and mechanical properties are unique characteristics of natural blood vessels, for printed conduits these properties were also explored in this work. The results show that cells encapsulated in conduits had good proliferation activities and that their viability increased during prolonged in vitro culture. Deposition of smooth muscle matrix and collagen was observed around the peripheral and luminal surface in long-term cultured cellular vascular conduit through histology studies.
NASA Astrophysics Data System (ADS)
Saubin, Elodie; Tuffen, Hugh; Gurioli, Lucia; Owen, Jacqueline; Castro, Jonathan; Berlo, Kim; McGowan, Ellen; Schipper, C.; Wehbe, Katia
2016-05-01
The mechanisms of hazardous silicic eruptions are controlled by complex, poorly-understood conduit processes. Observations of recent Chilean rhyolite eruptions have revealed the importance of hybrid activity, involving simultaneous explosive and effusive emissions from a common vent. Such behaviour hinges upon the ability of gas to decouple from magma in the shallow conduit. Tuffisite veins are increasingly suspected to be a key facilitator of outgassing, as they repeatedly provide a transient permeable escape route for volcanic gases. Intersection of foam domains by tuffisite veins appears critical to efficient outgassing. However, knowledge is currently lacking into textural heterogeneities within shallow conduits, their relationship with tuffisite vein propagation, and the implications for fragmentation and degassing processes. Similarly, the magmatic vesiculation response to upper conduit pressure perturbations, such as those related to the slip of dense magma plugs, remains largely undefined. Here we provide a detailed characterization of an exceptionally large tuffisite vein within a rhyolitic obsidian bomb ejected during transitional explosive-effusive activity at Chaitén, Chile in May 2008. Vein textures and chemistry provide a time-integrated record of the invasion of a dense upper conduit plug by deeper fragmented magma. Quantitative textural analysis reveals diverse vesiculation histories of various juvenile clast types. Using vesicle size distributions, bubble number densities, zones of diffusive water depletion, and glass H2O concentrations, we propose a multi-step degassing/fragmentation history, spanning deep degassing to explosive bomb ejection. Rapid decompression events of ~3-4 MPa are associated with fragmentation of foam and dense magma at ~200-350 metres depth in the conduit, permitting vertical gas and pyroclast mobility over hundreds of metres. Permeable pathway occlusion in the dense conduit plug by pyroclast accumulation and sintering preceded ultimate bomb ejection, which then triggered a final bubble nucleation event. Our results highlight how the vesiculation response of magma to decompression events is highly sensitive to the local melt volatile concentration, which is strongly spatially heterogeneous. Repeated opening of pervasive tuffisite vein networks promotes this heterogeneity, allowing juxtaposition of variably volatile-rich magma fragments that are derived from a wide range of depths in the conduit. This process enables efficient but explosive removal of gas from rhyolitic
The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?
NASA Astrophysics Data System (ADS)
Kueppers, U.; Schauroth, J.; Taddeucci, J.
2013-12-01
Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product of magma fragmentation at or close to the fragmentation level. Given the high abrasiveness of pumice, hemispherical clasts should be observed if clast break-up followed efficient clast abrasion. As a consequence, finer grained pyroclastic fall deposits do not necessarily proof efficient secondary fragmentation in the conduit but may rather reveal the influence of conduit length on 'What size of pyroclasts can be erupted'?
Sun, Fei; Zhou, Ke; Mi, Wen-juan; Qiu, Jian-hua
2011-11-01
Natural biological conduits containing seed cells have been widely used as an alternative strategy for nerve gap reconstruction to replace traditional nerve autograft techniques. The purpose of this study was to investigate the effects of a decellularized allogeneic artery conduit containing autologous transdifferentiated adipose-derived stem cells (dADSCs) on an 8-mm facial nerve branch lesion in a rat model. After 8 weeks, functional evaluation of vibrissae movements and electrophysiological assessment, retrograde labeling of facial motoneurons and morphological analysis of regenerated nerves were performed to assess nerve regeneration. The transected nerves reconstructed with dADSC-seeded artery conduits achieved satisfying regenerative outcomes associated with morphological and functional improvements which approached those achieved with Schwann cell (SC)-seeded artery conduits, and superior to those achieved with artery conduits alone or ADSC-seeded artery conduits, but inferior to those achieved with nerve autografts. Besides, numerous transplanted PKH26-labeled dADSCs maintained their acquired SC-phenotype and myelin sheath-forming capacity inside decellularized artery conduits and were involved in the process of axonal regeneration and remyelination. Collectively, our combined use of decellularized allogeneic artery conduits with autologous dADSCs certainly showed beneficial effects on nerve regeneration and functional restoration, and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ltd. All rights reserved.
Paillet, Frederick L.; Hess, A.E.; Cheng, C.H.; Hardin, E.
1987-01-01
The distribution of fracture permeability in granitic rocks was investigated by measuring the distribution of vertical flow in boreholes during periods of steady pumping. Pumping tests were conducted at two sites chosen to provide examples of moderately fractured rocks near Mirror Lake, New Hampshire and intensely fractured rocks near Oracle, Arizona. A sensitive heat-pulse flowmeter was used for accurate measurements of vertical flow as low as 0.2 liter per minute. Results indicate zones of fracture permeability in crystalline rocks are composed of irregular conduits that cannot be approximated by planar fractures of uniform aperture, and that the orientation of permeability zones may be unrelated to the orientation of individual fractures within those zones.-Authors
NASA Astrophysics Data System (ADS)
Rawling, Geoffrey C.; Goodwin, Laurel B.; Wilson, John L.
2001-01-01
The Sand Hill fault is a steeply dipping, large-displacement normal fault that cuts poorly lithified Tertiary sediments of the Albuquerque basin, New Mexico, United States. The fault zone does not contain macroscopic fractures; the basic structural element is the deformation band. The fault core is composed of foliated clay flanked by structurally and lithologically heterogeneous mixed zones, in turn flanked by damage zones. Structures present within these fault-zone architectural elements are different from those in brittle faults formed in lithified sedimentary and crystalline rocks that do contain fractures. These differences are reflected in the permeability structure of the Sand Hill fault. Equivalent permeability calculations indicate that large-displacement faults in poorly lithified sediments have little potential to act as vertical-flow conduits and have a much greater effect on horizontal flow than faults with fractures.
Petit, Giai; Pfautsch, Sebastian; Anfodillo, Tommaso; Adams, Mark A
2010-09-01
*Recent research suggests that increasing conduit tapering progressively reduces hydraulic constraints caused by tree height. Here, we tested this hypothesis using the tallest hardwood species, Eucalyptus regnans. *Vertical profiles of conduit dimensions and vessel density were measured for three mature trees of height 47, 51 and 63 m. *Mean hydraulic diameter (Dh) increased rapidly from the tree apex to the point of crown insertion, with the greatest degree of tapering yet reported (b > 0.33). Conduit tapering was such that most of the total resistance was found close to the apex (82-93% within the first 1 m of stem) and the path length effect was reduced by a factor of 2000. Vessel density (VD) declined from the apex to the base of each tree, with scaling parameters being similar for all trees (a = 4.6; b = -0.5). *Eucalyptus regnans has evolved a novel xylem design that ensures a high hydraulic efficiency. This feature enables the species to grow quickly to heights of 50-60 m, beyond the maximum height of most other hardwood trees.
The dynamics of slug trains in volcanic conduits: Evidence for expansion driven slug coalescence
NASA Astrophysics Data System (ADS)
Pering, T. D.; McGonigle, A. J. S.; James, M. R.; Capponi, A.; Lane, S. J.; Tamburello, G.; Aiuppa, A.
2017-12-01
Strombolian volcanism is a ubiquitous form of activity, driven by the ascent and bursting of bubbles of slug morphology. Whilst considerable attention has been devoted to understanding the behaviour of individual slugs in this regime, relatively little is known about how inter-slug interactions modify flow conditions. Recently, we reported on high temporal frequency strombolian activity on Etna, in which the larger erupted slug masses were followed by longer intervals before the following explosion than the smaller bursts (Pering et al., 2015). We hypothesised that this behaviour arose from the coalescence of ascending slugs causing a prolonged lag before arrival of the next distinct bubble. Here we consider the potential importance of inter-slug interactions for the dynamics of strombolian volcanism, by reporting on the first study into the behaviour of trains of ascending gas slugs, scaled to the expansion rates in volcanic conduits. This laboratory analogue study illustrates that slugs in trains rise faster than individual slugs, and can be associated with aspects of co-current flow. The work also highlights that coalescence and inter-slug interactions play an important role in modulating slug train behaviour. We also report, for the first time, on slug coalescence driven by vertical expansion of the trailing slug, a process which can occur, even where the leading slug base ascent velocity is greater than that of the trailing slug.
13. WEIGHING ROOM Fish were lifted up from tower by ...
13. WEIGHING ROOM Fish were lifted up from tower by conveyor, controlled by buttons above the two sets of vertical electrical conduits. They entered the weighing room through the shielded window on the left (shielding missing from the window on the right), were weighed and then transported to the holding tanks. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA
Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations
NASA Astrophysics Data System (ADS)
Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.
2016-04-01
The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.
Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.
1960-03-22
An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.
NASA Technical Reports Server (NTRS)
Widmer, M. S.; Gupta, P. K.; Lu, L.; Meszlenyi, R. K.; Evans, G. R.; Brandt, K.; Savel, T.; Gurlek, A.; Patrick, C. W. Jr; Mikos, A. G.;
1998-01-01
We have fabricated porous, biodegradable tubular conduits for guided tissue regeneration using a combined solvent casting and extrusion technique. The biodegradable polymers used in this study were poly(DL-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA). A polymer/salt composite was first prepared by a solvent casting process. After drying, the composite was extruded to form a tubular construct. The salt particles in the construct were then leached out leaving a conduit with an open-pore structure. PLGA was studied as a model polymer to analyze the effects of salt weight fraction, salt particle size, and processing temperature on porosity and pore size of the extruded conduits. The porosity and pore size were found to increase with increasing salt weight fraction. Increasing the salt particle size increased the pore diameter but did not affect the porosity. High extrusion temperatures decreased the pore diameter without altering the porosity. Greater decrease in molecular weight was observed for conduits manufactured at higher temperatures. The mechanical properties of both PLGA and PLLA conduits were tested after degradation in vitro for up to 8 weeks. The modulus and failure strength of PLLA conduits were approximately 10 times higher than those of PLGA conduits. Failure strain was similar for both conduits. After degradation for 8 weeks, the molecular weights of the PLGA and PLLA conduits decreased to 38% and 43% of the initial values, respectively. However, both conduits maintained their shape and did not collapse. The PLGA also remained amorphous throughout the time course, while the crystallinity of PLLA increased from 5.2% to 11.5%. The potential of seeding the conduits with cells for transplantation or with biodegradable polymer microparticles for drug delivery was also tested with dyed microspheres. These porous tubular structures hold great promise for the regeneration of tissues which require tubular scaffolds such as peripheral nerve, long bone, intestine, or blood vessel.
Linking observations at active volcanoes to physical processes through conduit flow modelling
NASA Astrophysics Data System (ADS)
Thomas, Mark; Neuberg, Jurgen
2010-05-01
Low frequency seismic events observed on volcanoes such as Soufriere hills, Montserrat may offer key indications about the state of a volcanic system. To obtain a better understanding of the source of these events and of the physical processes that take place within a volcano it is necessary to understand the conditions of magma a depth. This can be achieved through conduit flow modelling (Collier & Neuberg, 2006). 2-D compressible Navier-Stokes equations are solved through a Finite Element approach, for differing initial water and crystal contents, magma temperatures, chamber overpressures and geometric shapes of conduit. In the fully interdependent modelled system each of these variables has an effect on the magma density, viscosity, gas content, and also the pressure within the flow. These variables in turn affect the magma ascent velocity and the overall eruption dynamics of an active system. Of particular interest are the changes engendered in the flow by relativity small variations in the conduit geometry. These changes can have a profound local effect of the ascent velocity of the magma. By restricting the width of 15m wide, 5000m long vertical conduit over a 100m distance a significant acceleration of the magma is seen in this area. This has implications for the generation of Low-Frequency (LF) events at volcanic systems. The strain-induced fracture of viscoelastic magma or brittle failure of melt has been previously discussed as a possible source of LF events by several authors (e.g. Tuffen et al., 2003; Neuberg et al., 2006). The location of such brittle failure however has been seen to occur at relativity shallow depths (<1000m), which does not agree with the location of recorded LF events. By varying the geometry of the conduit and causing accelerations in the magma flow, localised increases in the shear strain rate of up to 30% are observed. This provides a mechanism of increasing the depth over witch brittle failure of melt may occur. A key observable of the Low frequency events observed on Montserrat is their tightly confined source region. The high degree of similarity of the waveforms from such events indicates a stationary common source within a finite volume of 150m x 150m x 150m (Neuberg et al., 2006). By modelling the physical processes that occur at depth within the volcano it has been possible to identify a potential source region of these events caused by the shape of the conduit, that has a fixed position and will have the potential cause repeatable events whenever magma is moving within the system. Making links of this type is essential to form a better understanding of what the observations made by monitoring systems actually relate to in terms of the volcanoes activity. Tuffen, H., Dingwell, D.B., and Pinkerton, H. 2003. Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology, 31(12), 1089-1092. Collier, L. and Neuberg, J. 2006. Incorporating seismic observations into 2D conduit flow modelling. Journal of volcanology and geothermal research, 152, 331-346. Neuberg, J., Tuffen, H., Collier, L., Green, D., Powell, T., and Dingwell, P. 2006. The trigger mechanisms of low-frequency swarms on Montserrat. Journal of volcanology and geothermal research, 153, 37-50.
Mechanically-reattachable liquid-cooled cooling apparatus
Arney, Susanne; Cheng, Jen-Hau; Kolodner, Paul R; Kota-Venkata, Krishna-Murty; Scofield, William; Salamon, Todd R; Simon, Maria E
2013-09-24
An apparatus comprising a rack having a row of shelves, each shelf supporting an electronics circuit board, each one of the circuit boards being manually removable from the shelve supporting the one of the circuit boards and having a local heat source thereon. The apparatus also comprises a cooler attached to the rack and being able to circulate a cooling fluid around a channel forming a closed loop. The apparatus further comprises a plurality of heat conduits, each heat conduit being located over a corresponding one of the circuit boards and forming a path to transport heat from the local heat source of the corresponding one of the circuit boards to the cooler. Each heat conduit is configured to be manually detachable from the cooler or the circuit board, without breaking a circulation pathway of the fluid through the cooler.
NASA Astrophysics Data System (ADS)
Xu, Zexuan; Hu, Bill
2016-04-01
Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow condition but discrete-continuum models provide more accurate results. Parameters sensitivities analysis indicates that conduit diameter and friction factor, matrix hydraulic conductivity and porosity are important parameters that significantly affect variable-density flow and solute transport simulation. The pros and cons of model assumptions, conceptual simplifications and numerical techniques in VDFST-CFP are discussed. In general, the development of VDFST-CFP model is an innovation in numerical modeling methodology and could be applied to quantitatively evaluate the seawater/freshwater interaction in coastal karst aquifers. Keywords: Discrete-continuum numerical model; Variable density flow and transport; Coastal karst aquifer; Non-laminar flow
The hydrodynamics of the Big Horn Basin: a study of the role of faults
Bredehoeft, J.D.; Belitz, K.; Sharp-Hansen, S.
1992-01-01
A three-dimensional mathematical model simulates groundwater flow in the Big Horn basin, Wyoming. The hydraulic head at depth over much of the Big Horn basin is near the land surface elevation, a condition usually defined as hydrostatic. This condition indicates a high, regional-scale, vertical conductivity for the sediments in the basin. Our hypothesis to explain the high conductivity is that the faults act as vertical conduits for fluid flow. These same faults can act as either horizontal barriers to flow or nonbarriers, depending upon whether the fault zones are more permeable or less permeable than the adjoining aquifers. -from Authors
NASA Astrophysics Data System (ADS)
Saubin, Elodie; Tuffen, Hugh; Gurioli, Lucia; Owen, Jacqueline; Castro, Jonathan; Berlo, Kim; McGowan, Ellen; Schipper, C. Ian; Wehbe, Katia
2016-04-01
Conduit processes govern the mechanisms of hazardous silicic eruptions, but our understanding of complex conduit behaviour is far from complete. Observations of recent Chilean rhyolite eruptions have revealed the importance of hybrid activity, involving simultaneous explosive and effusive emissions from a common vent[1]. Such behaviour hinges upon the ability of gas to decouple from magma in the shallow conduit. Tuffisite veins are increasingly suspected to be a key facilitator of outgassing, as they repeatedly provide a transient permeable escape route for volcanic gases. However, we have limited insights into the interactions between tuffisites and foams that appear critical to efficient outgassing[2], and into how heterogeneous conduit magma responds to pressure perturbations related to repeated disruption or slip of dense magma plugs. Here we provide a detailed characterization of an exceptionally large tuffisite vein within a rhyolitic obsidian bomb ejected during transitional explosive-effusive activity at volcán Chaitén, Chile in May 2008. Vein textures and chemistry provide a time-integrated record of the invasion of a dense upper conduit plug by deeper fragmented magma. Quantitative textural analysis reveals diverse vesiculation histories of varied juvenile clast types. Using vesicle size distributions, bubble number densities, zones of diffusive water depletion, and glass H2O concentrations, we propose a multi-step degassing/fragmentation history, spanning deep degassing to explosive bomb ejection. Rapid decompression events of ~3-4 MPa are associated with fragmentation of foam and dense magma at ~200-300 metres depth in the conduit, permitting vertical gas and pyroclast mobility over >100-200 metres. Permeable pathway occlusion in the dense conduit plug by pyroclast accumulation and sintering preceded ultimate bomb ejection, which triggered a final bubble nucleation event. Our results highlight how the vesiculation response of magma to decompression events is highly sensitive to the local melt volatile concentration, which is strongly spatially heterogeneous. Repeated opening of pervasive tuffisite vein networks promotes this heterogeneity, allowing juxtaposition of variably volatile-rich magma fragments that are derived from a wide range of depths in the conduit. This process enables efficient but explosive removal of gas from rhyolitic magma and creates a complex textural collage within dense rhyolitic lava, in which neighbouring fused clasts may have experienced vastly different degassing histories. [1] Schipper CI et al 2013 JVGR 262, 25-37. [2] Castro JM et al 2012 EPSL 333, 63-69.
Bloemendaal, A L A; Kraus, R; Buchs, N C; Hamdy, F C; Hompes, R; Cogswell, L; Guy, R J
2016-11-01
In advanced pelvic cancer it may be necessary to perform a total pelvic exenteration. In such cases urinary tract reconstruction is usually achieved with the creation of an ileal conduit with a urinary stoma on the right side of the patient's abdomen and an end colostomy separately on the left. The potential morbidity from a second stoma may be avoided by the use of a double-barrelled wet colostomy (DBWC), as a single stoma. Another advantage is the possibility of using a vertical rectus abdominis muscle flap for perineal reconstruction. All patients undergoing formation of a DBWC were included. A DBWC was formed in 10 patients. One patient underwent formation of a double-barrelled wet ileostomy. In this technical note we present our early experience in 11 cases and a video of DBWC formation in a male patient. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.
Evolution of fluvial styles in the Eocene Wasatch Formation, Powder River Basin, Wyoming
Warwick, Peter D.; Flores, Romeo M.; Ethridge, Frank G.; Flores, Romeo M.
1987-01-01
Vertical and lateral facies changes in the lower part of the Eocene Wasatch Formation in the Powder River Basin, Wyoming represent an evolution of fluvial systems that varied from meandering to anastomosing. The meandering facies in the lower part of the study interval formed in a series of broad meanderbelts in a northnorthwestflowing system. Upon abandonment this meanderbelt facies served as a topographic high on which a raised or ombrotrophic Felix peat swamp developed. Peat accumulated until compaction permitted encroachment of crevasse splays from an adjoining transitional facies which consists of deposits of a slightly sinuous fluvial system. Crevasse splays eventually prograded over the peat swamp that was partly covered by lakes. Bifurcation, reunification, and transformation of crevasse channels into major conduits produced an anastomosing system that was characterized by diverging and converging channels separated by floodbasins drowned by lakes and partly covered swamps.
Cold start characteristics of ethanol as an automobile fuel
Greiner, Leonard
1982-01-01
An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.
A rare case of prosthetic endocarditis and dehiscence in a mechanical valved conduit
Kannan, Arun; Smith, Cristy; Subramanian, Sreekumar; Janardhanan, Rajesh
2014-01-01
A middle-aged adult patient with a history of aortic root replacement with a mechanical valved conduit and remote chest trauma was referred to our institution with prosthetic endocarditis. Transoesophageal echocardiogram at our institution confirmed a near-complete dehiscence of the prosthetic aortic valve from the conduit, with significant perivalvular flow forming a pseudoaneurysm. The patient underwent a high-risk re-operation, involving redo aortic root replacement with a homograft after extensive debridement of the infected tissue. The patient was discharged to an outside facility after an uncomplicated hospital course, and remains stable. PMID:24510692
A rare case of prosthetic endocarditis and dehiscence in a mechanical valved conduit.
Kannan, Arun; Smith, Cristy; Subramanian, Sreekumar; Janardhanan, Rajesh
2014-02-07
A middle-aged adult patient with a history of aortic root replacement with a mechanical valved conduit and remote chest trauma was referred to our institution with prosthetic endocarditis. Transoesophageal echocardiogram at our institution confirmed a near-complete dehiscence of the prosthetic aortic valve from the conduit, with significant perivalvular flow forming a pseudoaneurysm. The patient underwent a high-risk re-operation, involving redo aortic root replacement with a homograft after extensive debridement of the infected tissue. The patient was discharged to an outside facility after an uncomplicated hospital course, and remains stable.
Extrusion cycles of dome-forming eruptions
NASA Astrophysics Data System (ADS)
de'Michieli Vitturi, M.; Clarke, A. B.; Neri, A.; Voight, B.
2010-12-01
We investigated the dynamics of magma ascent along a dome-forming conduit coupled with the formation and extrusion of a degassed plug at the top by a two-phase flow model. We treated the magma mixture as a liquid continuum with dispersed gas bubbles and crystals in thermodynamic equilibrium with the melt. A modified Poiseulle form of the viscous term for fully developed laminar flow in an elliptic conduit was assumed. During ascent, magma pressure decreases and water vapor exsolves and partially degasses from the melt as the melt simultaneously crystallizes, causing changes in mixture density and viscosity, which may eventually lead to the formation of a degassed plug sealing the conduit. The numerical model DOMEFLOW (de’ Michieli Vitturi et al., EPSL 2010) has been applied to dome-building eruptions using conditions approximately appropriate for the Soufrière Hills volcano, Montserrat, which has led to a better understanding of the role of a plug on eruption periodicity. Two mechanisms, which have been proposed to cause periodicity, have been implemented in the model and their corresponding timescales explored. The first test applies a stick-slip model in which the plug is considered as solid and static/dynamic friction, as described in Iverson et al. [Nature 2006, 444, 439-43], replaces the viscous forces in the momentum equation. This mechanism yields cycle timescales of seconds to tens of seconds with values generally depending on assumed friction coefficients. Although not all constants and parameters have been explored for this model, we suggest that a stick-slip mechanism of this type cannot explain the cycles of extrusion and explosion typically observed at Montserrat (timescales of hours). The second mechanism does not consider friction but allows enhanced permeable gas loss in the shallow conduit, possibly due to connected porosity or micro- or macro-scale fractures. Enhanced permeable gas loss may lead to formation of a dense and rheologically stiffened magma plug with high viscosity at the top of the conduit which can resist extrusion and prevent steady conduit flow. The plug produces high pressure in the upper conduit, which can cause edifice inflation. Eventually the pressure increases sufficiently to drive the degassed plug from the conduit, overcoming dome overburden, plug weight, and viscous forces. Extrusion and escape of pressurized gas result in a relaxation of pressure in the upper conduit and allow edifice deflation. In general, cycle period decreases with increasing magma supply rate until a threshold is reached, at which point periodicity disappears and extrusion rate becomes steady. Results are compared to well-documented cyclic phases of the ongoing eruption of the Soufrière Hills volcano, Montserrat, in order to demonstrate the appropriateness of this second formulation.
The mechanics of granitoid systems and maximum entropy production rates.
Hobbs, Bruce E; Ord, Alison
2010-01-13
A model for the formation of granitoid systems is developed involving melt production spatially below a rising isotherm that defines melt initiation. Production of the melt volumes necessary to form granitoid complexes within 10(4)-10(7) years demands control of the isotherm velocity by melt advection. This velocity is one control on the melt flux generated spatially just above the melt isotherm, which is the control valve for the behaviour of the complete granitoid system. Melt transport occurs in conduits initiated as sheets or tubes comprising melt inclusions arising from Gurson-Tvergaard constitutive behaviour. Such conduits appear as leucosomes parallel to lineations and foliations, and ductile and brittle dykes. The melt flux generated at the melt isotherm controls the position of the melt solidus isotherm and hence the physical height of the Transport/Emplacement Zone. A conduit width-selection process, driven by changes in melt viscosity and constitutive behaviour, operates within the Transport Zone to progressively increase the width of apertures upwards. Melt can also be driven horizontally by gradients in topography; these horizontal fluxes can be similar in magnitude to vertical fluxes. Fluxes induced by deformation can compete with both buoyancy and topographic-driven flow over all length scales and results locally in transient 'ponds' of melt. Pluton emplacement is controlled by the transition in constitutive behaviour of the melt/magma from elastic-viscous at high temperatures to elastic-plastic-viscous approaching the melt solidus enabling finite thickness plutons to develop. The system involves coupled feedback processes that grow at the expense of heat supplied to the system and compete with melt advection. The result is that limits are placed on the size and time scale of the system. Optimal characteristics of the system coincide with a state of maximum entropy production rate. This journal is © 2010 The Royal Society
NASA Astrophysics Data System (ADS)
Clarke, A. B.; Stephens, S.; Teasdale, R.; Sparks, R. S. J.; Diller, K.
2007-04-01
A series of 88 Vulcanian explosions occurred at the Soufrière Hills volcano, Montserrat, between August and October, 1997. Conduit conditions conducive to creating these and other Vulcanian explosions were explored via analysis of eruptive products and one-dimensional numerical modeling of magma ascent through a cylindrical conduit. The number densities and textures of plagioclase microlites were documented for twenty-three samples from the events. The natural samples all show very high number densities of microlites, and > 50% by number of microlites have areas < 20 μm 2. Pre-explosion conduit conditions and decompression history have been inferred from these data by comparison with experimental decompressions of similar groundmass compositions. Our comparisons suggest quench pressures < 30 MPa (origin depths < 2 km) and multiple rapid decompressions of > 13.75 MPa each during ascent from chamber to surface. Values are consistent with field studies of the same events and statistical analysis of explosion time-series data. The microlite volume number density trend with depth reveals an apparent transition from growth-dominated crystallization to nucleation-dominated crystallization at pressures of ˜ 7 MPa and lower. A concurrent sharp increase in bulk density marks the onset of significant open-system degassing, apparently due to a large increase in system permeability above ˜ 70% vesicularity. This open-system degassing results in a dense plug which eventually seals the conduit and forms conditions favorable to Vulcanian explosions. The corresponding inferred depth of overpressure at 250-700 m, near the base of the dense plug, is consistent with depth to center of pressure estimated from deformation measurements. Here we also illustrate that one-dimensional models representing ascent of a degassing, crystal-rich magma are broadly consistent with conduit profiles constructed via our petrologic analysis. The comparison between models and petrologic data suggests that the dense conduit plug forms as a result of high overpressure and open-system degassing through conduit walls.
Vacuum-barrier window for wide-bandwidth high-power microwave transmission
Caplan, M.; Shang, C.C.
1996-08-20
A vacuum output window comprises a planar dielectric material with identical systems of parallel ridges and valleys formed in opposite surfaces. The valleys in each surface neck together along parallel lines in the bulk of the dielectric. Liquid-coolant conduits are disposed linearly along such lines of necking and have water or even liquid nitrogen pumped through to remove heat. The dielectric material can be alumina, or its crystalline form, sapphire. The electric-field of a broadband incident megawatt millimeter-wave radio frequency energy is oriented perpendicular to the system of ridges and valleys. The ridges, about one wavelength tall and with a period of about one wavelength, focus the incident energy through in ribbons that squeeze between the liquid-coolant conduits without significant losses over very broad bands of the radio spectrum. In an alternative embodiment, the liquid-coolant conduits are encased in metal within the bulk of the dielectric. 4 figs.
Vacuum-barrier window for wide-bandwidth high-power microwave transmission
Caplan, Malcolm; Shang, Clifford C.
1996-01-01
A vacuum output window comprises a planar dielectric material with identical systems of parallel ridges and valleys formed in opposite surfaces. The valleys in each surface neck together along parallel lines in the bulk of the dielectric. Liquid-coolant conduits are disposed linearly along such lines of necking and have water or even liquid nitrogen pumped through to remove heat. The dielectric material can be alumina, or its crystalline form, sapphire. The electric-field of a broadband incident megawatt millimeter-wave radio frequency energy is oriented perpendicular to the system of ridges and valleys. The ridges, about one wavelength tall and with a period of about one wavelength, focus the incident energy through in ribbons that squeeze between the liquid-coolant conduits without significant losses over very broad bands of the radio spectrum. In an alternative embodiment, the liquid-coolant conduits are encased in metal within the bulk of the dielectric.
Slip stream apparatus and method for treating water in a circulating water system
Cleveland, J.R.
1997-03-18
An apparatus is described for treating water in a circulating water system that has a cooling water basin which includes a slip stream conduit in flow communication with the circulating water system, a source of acid solution in flow communication with the slip stream conduit, and a decarbonator in flow communication with the slip stream conduit and the cooling water basin. In use, a slip stream of circulating water is drawn from the circulating water system into the slip stream conduit of the apparatus. The slip stream pH is lowered by contact with an acid solution provided from the source thereof. The slip stream is then passed through a decarbonator to form a treated slip stream, and the treated slip stream is returned to the cooling water basin. 4 figs.
Cunningham, Kevin J.; Carlson, Janine L.; Wingard, G. Lynn; Robinson, Edward; Wacker, Michael A.
2004-01-01
This report identifies and characterizes candidate ground-water flow zones in the upper part of the shallow, eogenetic karst limestone of the Biscayne aquifer in the Lake Belt area of north-central Miami-Dade County using cyclostratigraphy, ground-penetrating radar (GPR), borehole geophysical logs, and continuously drilled cores. About 60 miles of GPR profiles were used to calculate depths to shallow geologic contacts and hydrogeologic units, image karst features, and produce qualitative views of the porosity distribution. Descriptions of the lithology, rock fabrics, and cyclostratigraphy, and interpretation of depositional environments of 50 test coreholes were linked to the geophysical interpretations to provide an accurate hydrogeologic framework. Molluscan and benthic foraminiferal paleontologic constraints guided interpretation of depositional environments represented by rockfabric facies. Digital borehole images were used to characterize and quantify large-scale vuggy porosity. Preliminary heat-pulse flowmeter data were coupled with the digital borehole image data to identify candidate ground-water flow zones. Combined results show that the porosity and permeability of the karst limestone of the Biscayne aquifer have a highly heterogeneous and anisotropic distribution that is mostly related to secondary porosity overprinting vertical stacking of rock-fabric facies within high-frequency cycles (HFCs). This distribution of porosity produces a dual-porosity system consisting of diffuse-carbonate and conduit flow zones. The nonuniform ground-water flow in the upper part of the Biscayne aquifer is mostly localized through secondary permeability, the result of solution-enlarged carbonate grains, depositional textures, bedding planes, cracks, root molds, and paleokarst surfaces. Many of the resulting pore types are classified as touching vugs. GPR, borehole geophysical logs, and whole-core analyses show that there is an empirical relation between formation porosity, permeability, formation electrical conductivity, and GPR reflection amplitudes? as porosity and permeability increase, formation electrical conductivity increases and reflection amplitude decreases. This relation was observed throughout the entire vertical and lateral section of the upper part of the Biscayne aquifer in the study area. Further, upward-shallowing brackish- or freshwatercapped cycles of the upper part of the Fort Thompson Formation show low-amplitude reflections near their base that correspond to relatively higher porosity and permeability. This distribution is related to a systematic vertical stacking of rock-fabric facies within the cycle. Inferred flow characteristics of the porosity distribution within the upper part of the Biscayne aquifer were used to identify four ground-water flow classes, with each characterized by a discrete pore system that affects vertical and horizontal groundwater flow: (1) a low-permeability peat, muck, and marl ground-water flow class; (2) a horizontal conduit ground-water flow class; (3) a leaky, low-permeability ground-water flow class; and (4) a diffuse-carbonate ground-water flow class. At the top of the Biscayne aquifer, peat, muck, and marl can combine to form a relatively low-permeability layer of Holocene sediment that water moves through slowly. Most horizontal conduit flow is inferred to occur along touching vugs in portions of the following rock-fabric facies: (1) touchingvug pelecypod floatstone and rudstone, (2) sandy touching-vug pelecypod floatstone and rudstone, (3) vuggy wackestone and packstone, (4) laminated peloid grainstone and packstone, (5) peloid grainstone and packstone, and (6) peloid wackestone and packstone. Gastropod floatstone and rudstone, mudstone and wackestone, and pedogenic limestone rock-fabric facies are the main hosts for leaky, low-permeability units. This study provides evidence that the limestone that spans the base of the Miami Limestone and top of the Fort Thompson
Wang, Chunyang; Jia, Yachao; Yang, Weichao; Zhang, Cheng; Zhang, Kuihua; Chai, Yimin
2018-07-01
Silk fibroin (SF)-based nerve conduits have been widely used to bridge peripheral nerve defects. Our previous study showed that nerve regeneration in a SF-blended poly (l-lactide-co-ɛ-caprolactone) [P(LLA-CL)] nerve conduit is better than that in a P(LLA-CL) conduit. However, the involved mechanisms remain unclarified. Because angiogenesis within a nerve conduit plays an important role in nerve regeneration, vascularization of SF/P(LLA-CL) and P(LLA-CL) conduits was compared both in vitro and in vivo. In the present study, we observed that SF/P(LLA-CL) nanofibers significantly promoted fibroblast proliferation, and vascular endothelial growth factor secreted by fibroblasts seeded in SF/P(LLA-CL) nanofibers was more than seven-fold higher than that in P(LLA-CL) nanofibers. Conditioned medium of fibroblasts in the SF/P(LLA-CL) group stimulated more human umbilical vein endothelial cells (HUVEC) to form capillary-like networks and promoted faster HUVEC migration. The two kinds of nerve conduits were used to bridge 10-mm-length nerve defects in rats. At 3 weeks of reparation, the blood vessel area in the SF/P(LLA-CL) group was significantly larger than that in the P(LLA-CL) group. More regenerated axons and Schwann cells were also observed in the SF/P(LLA-CL) group, which was consistent with the results of blood vessels. Collectively, our data revealed that the SF/P(LLA-CL) nerve conduit enhances peripheral nerve regeneration by improving angiogenesis within the conduit. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2070-2077, 2018. © 2018 Wiley Periodicals, Inc.
Slip stream apparatus and method for treating water in a circulating water system
Cleveland, Joe R.
1997-01-01
An apparatus (10) for treating water in a circulating water system (12) t has a cooling water basin (14) includes a slip stream conduit (16) in flow communication with the circulating water system (12), a source (36) of acid solution in flow communication with the slip stream conduit (16), and a decarbonator (58) in flow communication with the slip stream conduit (16) and the cooling water basin (14). In use, a slip stream of circulating water is drawn from the circulating water system (12) into the slip stream conduit (16) of the apparatus (10). The slip stream pH is lowered by contact with an acid solution provided from the source (36) thereof. The slip stream is then passed through a decarbonator (58) to form a treated slip stream, and the treated slip stream is returned to the cooling water basin (14).
Method and apparatus for a catalytic firebox reactor
Smith, Lance L.; Etemad, Shahrokh; Ulkarim, Hasan; Castaldi, Marco J.; Pfefferle, William C.
2001-01-01
A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.
Larson, L.L.
1984-09-17
A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.
Larson, Loren L.
1987-01-01
A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.
Video Observations Inside Channels of Erupting Geysers, Geyser Valley, Russia
NASA Astrophysics Data System (ADS)
Belousov, A.; Belousova, M.; Nechaev, A.
2011-12-01
Geysers are a variety of hot springs characterized by violent ejections of water and steam separated by periods of repose. While ordinary boiling springs are numerous and occur in many places on Earth, geysers are very rare. In total, less than 1000 geysers are known worldwide, and most of them are located in three large geyser fields: Yellowstone (USA), Geyser Valley (Russia), and El Tatio (Chile). Several physical models were suggested to explain periodic eruptions of geysers, but realistic understanding of processes was hampered by the scarcity of field data on the internal plumbing of geyser systems. Here we present data based on video observations of interior conduit systems for geysers in Geyser Valley in Kamchatka, Russia. To investigate geyser plumbing systems we lowered a video camera (with thermal and water insulation) into the conduits of four erupting geysers. These included Velikan and Bolshoy, the largest geysers in the field, ejecting about 20 and 15 cub.m of water to heights of 25 and 15 m, respectively, with rather stable periods of approximately 5 h and 1 h. We also investigated Vanna and Kovarny, small geysers with irregular regimes, ejecting about ten liters of water to heights as much as 1.5 m, with periods of several minutes. The video footage reveals internal plumbing geometries and hydrodynamic processes that contradict the widely accepted "simple vertical conduit model", which regards geyser eruptions as caused by flashing of superheated water into steam. In contrast, our data fit the long-neglected "boiler model", in which steam accumulates in an underground cavity (boiler) and periodically erupts out through a water-filled, inverted siphon. We describe the physical rationale and conditions for the periodic discharge of steam from a boiler. Channels of the studied geysers are developed by ascending hot water in deposits of several voluminous prehistoric landslides (debris avalanches). The highly irregular contacts between adjacent debris avalanche blocks provided an environment that favored the formation of channel-conduit systems with the contorted configurations characteristic for the boiler model. The solitary geysers scattered all over the Earth can form by the occasional coincidence of several favorable factors and, perhaps, function according to the principles of anyone of the existing geyser models. But why in some (very few) locations are multiple geysers grouped together in relatively small areas? We argue that in these areas, besides the necessary hydrothermal conditions, there are specific shallow geological structures or deposits that favor the formation of multiple complex systems of underground conduits, channels and chambers, including systems having the boiler model geometry. A required combination of geological conditions favoring generation of contorted channels, and hydrothermal discharge, explains the rarity of large geyser fields on Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joye, D.D.
1996-07-01
Mixed convection heat transfer in a vertical tube with opposing flow (downflow heating) was studied experimentally for Reynolds numbers ranging from about 1,000 to 30,000 at constant Grashof numbers ranging about 1{1/2} orders of magnitude under constant wall temperature (CWT) conditions. Three correlations developed for opposing mixed convection flows in vertical conduits predicted the data reasonably well, except near and into the asymptote region for which these equations were not designed. A critical Reynolds number is developed here, above which these equations can be used for design purposes regardless of the boundary condition. Below Re{sub crit}, the correlations, the asymptotemore » equation should be used for the CWT boundary condition, which is more prevalent in process situations than the uniform heat flux (UHF) boundary condition.« less
Radtke, Corey William; Blackwelder, David Bradley
2004-01-27
An in situ reactor for use in a geological strata, is described and which includes a liner defining a centrally disposed passageway and which is placed in a borehole formed in the geological strata; and a sampling conduit is received within the passageway defined by the liner and which receives a geological specimen which is derived from the geological strata, and wherein the sampling conduit is in fluid communication with the passageway defined by the liner.
Cashman, Katharine V.; Thornber, Carl R.; Pallister, John S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
Comparison of eruptive conditions during the 2004-6 activity at Mount St. Helens with those of other spine-forming eruptions suggests that magma ascent rates of about 10-4 m/s or less allow sufficient degassing and crystallization within the conduit to form large volcanic spines of intermediate composition (andesite to dacite). Solidification deep within the conduit, in turn, requires transport of the solid plug over long distances (hundreds of meters); resultant large strains are responsible for extensive brittle breakage and development of thick gouge zones. Moreover, similarities between gouge textures and those of ash emitted by explosions from spine margins indicate that fault gouge is the origin for the ash. As the comminution and generation of ash-sized particles was clearly a multistep process, this observation suggests that fragmentation preceded, rather than accompanied, these explosions.
Lintunen, A; Lindfors, L; Kolari, P; Juurola, E; Nikinmaa, E; Hölttä, T
2014-12-01
Woody plants can suffer from winter embolism as gas bubbles are formed in the water-conducting conduits when freezing occurs: gases are not soluble in ice, and the bubbles may expand and fill the conduits with air during thawing. A major assumption usually made in studies of winter embolism formation is that all of the gas dissolved in the xylem sap is trapped within the conduits and forms bubbles during freezing. The current study tested whether this assumption is actually valid, or whether efflux of gases from the stem during freezing reduces the occurrence of embolism. CO2 efflux measurements were conducted during freezing experiments for saplings of three Scots pine (Pinus sylvestris) and three Norway spruce (Picea abies) trees under laboratory conditions, and the magnitudes of the freezing-related bursts of CO2 released from the stems were analysed using a previously published mechanistic model of CO2 production, storage, diffusion and efflux from a tree stem. The freezing-related bursts of CO2 released from a mature Scots pine tree growing in field conditions were also measured and analysed. Substantial freezing-related bursts of CO2 released from the stem were found to occur during both the laboratory experiments and under field conditions. In the laboratory, the fraction of CO2 released from the stem ranged between 27 and 96 % of the total CO2 content within the stem. All gases dissolved in the xylem sap are not trapped within the ice in the stem during freezing, as has previously been assumed, thus adding a new dimension to the understanding of winter embolism formation. The conduit water volume not only determines the volume of bubbles formed during freezing, but also the efficiency of gas efflux out of the conduit during the freezing process. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company.
Sills of the San Rafael Volcanic Field, Utah
NASA Astrophysics Data System (ADS)
Gallant, E.; Connor, C.; Connor, L.; Richardson, J. A.; Wetmore, P. H.
2014-12-01
Substantial populations, such as Mexico City, Auckland, and Portland, are built within or near monogenetic fields, so it is important to understand both eruption precursors and magma plumbing systems in such areas. Directly observing the plumbing systems of this rarely witnessed eruption style provides valuable insight into the nature of magmatic transport and storage within the shallow crust, as well as the associated monogenetic eruptive processes. Within the San Rafael Desert of Central Utah is an exposed Pliocene complex of approximately 2000 mapped dikes, 12 sills, and 60 conduits eroded to a depth of 800 m below the paleosurface. A combination of airborne LiDAR (ALS), provided by NCALM, and terrestrial LiDAR (TLS) surveys are used to map the dip of 5 major sills within a 35 sq km area. The ALS provides a 1 m aerial resolution of exposed volcanic features and the TLS gives vertical measurements to cm accuracy. From these data we determine that the 5-25 m thick sills in this area dip approximately 1 to 6 degrees. Field observations show that steps in sills and related fabrics indicate flow direction in sills during emplacement and that sills normally propagate down dip in the Entrada sandstone host rock away from apparent feeder dikes and conduits. Some sills have foundered roofs, especially near conduits, suggesting that nearly neutrally buoyant magmas emplaced into sills along bed partings in the Entrada, differentiated, and in some cases flowed back into conduits. By volume, at 800 m depth in the San Rafael, nearly all igneous rock (approximately 90 percent) is located in sills rather than in dikes or conduits. These observations are consistent with geochemical models that suggest differentiation in shallow sills explains geochemical trends observed in single monogenetic volcanoes in some active fields. Deformation associated with sill inflation and deflation may be a significant precursor to eruptive activity in monogenetic volcanic fields.
NASA Astrophysics Data System (ADS)
Harp, A.; Valentine, G.
2016-12-01
Mafic eruptions along the flanks of stratovolcanoes pose significant hazards to life and property due to the uncertainty linked to new vent locations and their potentially close proximity to inhabited areas. Flank eruptions are often fed by radial dikes with magma supplied either laterally from the central conduit or vertically from a deeper storage location. The highly eroded Oligocene age Summer Coon stratovolcano, Colorado reveals over 700 mafic dikes surrounding a series of intrusive stocks (inferred conduit). The exposure provides an opportunity to study radial dike propagation directions and their relationship with the conduit in the lower portions of a volcanic edifice. Detailed geologic mapping and a geophysical survey revealed that little or no direct connection exists between the mafic radial dikes and the inferred conduit at the current level of exposure. Oriented samples collected from the chilled margins of 29 mafic dikes were analyzed for flow fabrics and emplacement directions. Among them, 20 dikes show flow angles greater than 30 degrees from horizontal, and a single dike had flow fabrics oriented at approximately 20 degrees. Of the dikes with steeper fabrics nine dikes were emplaced up and toward the volcano's center between 30-75 degrees from horizontal, and 11 dikes emplaced up and away from the volcano's center between 35-60 degrees. The two groups of dikes likely responded to the stress field within the edifice, where steepest-emplaced had relatively high magma overpressure and were focused toward the volcano's summit, while dikes with lower overpressures propagated out toward the flanks. At Summer Coon, the lack of connection between mafic dikes and the inferred conduit and presence of only one sub-horizontally emplaced dike implies the stresses within lower edifice impeded lateral dike nucleation and propagation while promoting and influencing the emplacement direction of upward propagating dikes.
Hipfner, J Mark; Galbraith, Moira; Tucker, Strahan; Studholme, Katharine R; Domalik, Alice D; Pearson, Scott F; Good, Thomas P; Ross, Peter S; Hodum, Peter
2018-04-11
We assessed the potential role played by two vital Northeastern Pacific Ocean forage fishes, the Pacific sand lance (Ammodytes personatus) and Pacific herring (Clupea pallasii), as conduits for the vertical transfer of microfibres in food webs. We quantified the number of microfibres found in the stomachs of 734 sand lance and 205 herring that had been captured by an abundant seabird, the rhinoceros auklet (Cerorhinca monocerata). Sampling took place on six widely-dispersed breeding colonies in British Columbia, Canada, and Washington State, USA, over one to eight years. The North Pacific Ocean is a global hotspot for pollution, yet few sand lance (1.5%) or herring (2.0%) had ingested microfibres. In addition, there was no systematic relationship between the prevalence of microplastics in the fish stomachs vs. in waters around three of our study colonies (measured in an earlier study). Sampling at a single site (Protection Island, WA) in a single year (2016) yielded most (sand lance) or all (herring) of the microfibres recovered over the 30 colony-years of sampling involved in this study, yet no microfibres had been recovered there, in either species, in the previous year. We thus found no evidence that sand lance and herring currently act as major food-web conduits for microfibres along British Columbia's outer coast, nor that the local at-sea density of plastic necessarily determines how much plastic enters marine food webs via zooplanktivores. Extensive urban development around the Salish Sea probably explains the elevated microfibre loads in fishes collected on Protection Island, but we cannot account for the between-year variation. Nonetheless, the existence of such marked interannual variation indicates the importance of measuring year-to-year variation in microfibre pollution both at sea and in marine biota. Copyright © 2018 Elsevier Ltd. All rights reserved.
Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto
2001-01-01
The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.
Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto
1999-01-01
The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.
Flow plug with length-to-hole size uniformity for use in flow conditioning and flow metering
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2012-01-01
A flow plug of varying thickness has a plurality of holes formed therethrough. The plug fits in a conduit such that a fluid flow in the conduit passes through the plug's holes. Each hole is defined by a parameter indicative of size in terms of the cross-sectional area thereof. A ratio of hole length-to-parameter is approximately the same for all of the holes.
Three types of cavitation caused by air seeding.
Shen, Fanyi; Wang, Yuansheng; Cheng, Yanxia; Zhang, Li
2012-11-01
There are different opinions of the dynamics of an air bubble entering a xylem conduit. In this paper, we present a thorough mechanical analysis and conclude that there are three types of cavitation caused by air seeding. After an air seed enters a conduit at high xylem pressure P'(1), along with the drop of the water potential, it will expand gradually to a long-shaped bubble and extend continually. This is the first type of air seeding, or the type of expanding gradually. When the xylem pressure is moderate, right after an air seed enters a conduit, it will expand first. Then, as soon as the pressure reaches a threshold the bubble will blow up to form a bubble in long shape, accompanied by acoustic (or ultra-acoustic) emission. It will extend further as xylem pressure decreases continually. This is the second type of air seeding, or the type of expanding-exploding, becoming a long-shaped bubble-lengthening by degrees. In the range of P'(1) ≤ - 3P(o) (P(o) is atmospheric pressure), soon after an air seed is sucked into a conduit it will explode immediately and the conduit will be full of the gas of the bubble instantly. This is the third type of air seeding, or the type of sudden exploding and filling conduit instantly. The third type is the frequent event in daily life of plant.
Moon, I S; Kim, D G; Lee, M D; Hong, S K; Park, S C; Oh, D Y; Ahn, S T; Lee, Y J
2005-03-01
Right anterior-medial lobe congestion due to temporary clamping of segment V and/or VIII is common in the operative theater during adult donor right lobe liver transplantation, the most common procedure in our institute. We have used an autogenous saphenous vein conduit to recipient portal vein tributaries in 15 cases, as a "Y-to-I venoplasty" since January 2004. The recipient portal vein is transected 5 mm proximal to its bifurcation and extended to both sides with partial hepatic dissection. The "Y-to-I venoplasty" is made by suture closure of the portal vein transversely to form a tube. The average length is 7.5 cm with a 1.3 cm width. One end of "Y-to-I venoplasty" conduit is anastomosed to the donor segment V branch on the back table. And the other end is anastomosed directly to the IVC via a new window or the middle hepatic vein stump in recipient. The phase distension of the conduit with respiration is noted in the operative field. A 6/15 (40%) patency rate, was observed by CT angiography at the second postoperative week. All-patient conduits showed good flow on serial examinations at the 60th postoperative day. This new venous graft, made of recipient portal vein is a good conduit for segment V decongestion in adult right lobe partial liver transplantation.
Ikeda, R.; Kajiwara, T.; Omura, K.; Hickman, S.
2008-01-01
The objective of the Unzen Scientific Drilling Project (USDP) is not only to reveal the structure and eruption history of the Unzen volcano but also to clarify the ascent and degassing mechanisms of the magma conduit. Conduit drilling (USDP-4) was conducted in 2004, which targeted the magma conduit for the 1990-95 eruption. The total drilled length of USDP-4 was 1995.75??m. Geophysical well logging, including resistivity, gamma-ray, spontaneous potential, sonic-wave velocity, density, neutron porosity, and Fullbore Formation MicroImager (FMI), was conducted at each drilling stage. Variations in the physical properties of the rocks were revealed by the well-log data, which correlated with not only large-scale formation boundaries but also small-scale changes in lithology. Such variations were evident in the lava dike, pyroclastic rocks, and breccias over depth intervals ranging from 1 to 40??m. These data support previous models for structure of the lava conduit, in that they indicate the existence of alternating layers of high-resistivity and high P-wave velocity rocks corresponding to the lava dikes, in proximity to narrower zones exhibiting high porosity, low resistivity, and low P-wave velocity. These narrow, low-porosity zones are presumably higher in permeability than the adjacent rocks and may form preferential conduits for degassing during magma ascent. ?? 2008 Elsevier B.V.
Satellite-based constraints on explosive SO2 release from Soufrière Hills Volcano, Montserrat
NASA Astrophysics Data System (ADS)
Carn, Simon A.; Prata, Fred J.
2010-09-01
Numerous episodes of explosive degassing have punctuated the 1995-2009 eruption of Soufrière Hills volcano (SHV), Montserrat, often following major lava dome collapses. We use ultraviolet (UV) and infrared (IR) satellite measurements to quantify sulfur dioxide (SO2) released by explosive degassing, which is not captured by routine ground-based and airborne gas monitoring. We find a total explosive SO2 release of ˜0.5 Tg, which represents ˜6% of total SO2 emissions from SHV since July 1995. The majority of this SO2 (˜0.4 Tg) was vented following the most voluminous SHV dome collapses in July 2003 and May 2006. Based on our analysis, we suggest that the SO2 burden measured following explosive disruption of lava domes depends on several factors, including the instantaneous lava effusion rate, dome height above the conduit, and the vertical component of directed explosions. Space-based SO2 measurements merit inclusion in routine gas monitoring at SHV and other dome-forming volcanoes.
Impact of Redevelopment Projects on Waste Water Infrastructure
NASA Astrophysics Data System (ADS)
Bhave, Prashant; Rahate, Sarvesh
2018-05-01
In the last few decades there has been a tremendous increase in urban population globally. Metropolitan cities in India are experiencing rapid change in their population due to migration from rural to urban areas. Due to limited land Mumbai city is experiencing vertical growth in the form of redevelopment projects, signifying a change in population density. Wastewater collection systems greatly contribute to the cost of the overall municipal sewerage system. Present study is an attempt to understand the impact of the redevelopment activities on the wastewater infrastructure. Existing sewerage network of an urban area in Central Mumbai was redesigned and analysed for four different planning scenarios with Bentley's SewerGEM. Results have shown significant change in diameters of the conduits within the sewer network, thus making it inefficient by 13, 19, 31 and 42% with each changing scenario. The results and analysis derived from the study are significant with respect to the urban town planners, developing solutions in alleviating the rising problem of sewer overflows and the economic impact being caused.
Heat exchanger efficiently operable alternatively as evaporator or condenser
Ecker, Amir L.
1981-01-01
A heat exchanger adapted for efficient operation alternatively as evaporator or condenser and characterized by flexible outer tube having a plurality of inner conduits and check valves sealingly disposed within the outer tube and connected with respective inlet and outlet master flow conduits and configured so as to define a parallel flow path for a first fluid such as a refrigerant when flowed in one direction and to define a serpentine and series flow path for the first fluid when flowed in the opposite direction. The flexible outer tube has a heat exchange fluid, such as water, flowed therethrough by way of suitable inlet and outlet connections. The inner conduits and check valves form a package that is twistable so as to define a spiral annular flow path within the flexible outer tube for the heat exchange fluid. The inner conduits have thin walls of highly efficient heat transfer material for transferring heat between the first and second fluids. Also disclosed are specific materials and configurations.
Takewa, Yoshiaki; Yamanami, Masashi; Kishimoto, Yuichiro; Arakawa, Mamoru; Kanda, Keiichi; Matsui, Yuichi; Oie, Tomonori; Ishibashi-Ueda, Hatsue; Tajikawa, Tsutomu; Ohba, Kenkichi; Yaku, Hitoshi; Taenaka, Yoshiyuki; Tatsumi, Eisuke; Nakayama, Yasuhide
2013-06-01
Using simple, safe, and economical in-body tissue engineering, autologous valved conduits (biovalves) with the sinus of Valsalva and without any artificial support materials were developed in animal recipients' bodies. In this study, the feasibility of the biovalve as an aortic valve was evaluated in a goat model. Biovalves were prepared by 2-month embedding of the molds, assembled using two types of specially designed plastic rods, in the dorsal subcutaneous spaces of goats. One rod had three projections, resembling the protrusions of the sinus of Valsalva. Completely autologous connective tissue biovalves (type VI) with three leaflets in the inner side of the conduit with the sinus of Valsalva were obtained after removing the molds from both terminals of the harvested implants with complete encapsulation. The biovalve leaflets had appropriate strength and elastic characteristics similar to those of native aortic valves; thus, a robust conduit was formed. Tight valvular coaptation and a sufficient open orifice area were observed in vitro. Biovalves (n = 3) were implanted in the specially designed apico-aortic bypass for 2 months as a pilot study. Postoperative echocardiography showed smooth movement of the leaflets with little regurgitation under systemic circulation (2.6 ± 1.1 l/min). α-SMA-positive cells appeared significantly with rich angiogenesis in the conduit and expanded toward the leaflet tip. At the sinus portions, marked elastic fibers were formed. The luminal surface was covered with thin pseudointima without thrombus formation. Completely autologous biovalves with robust and elastic characteristics satisfied the higher requirements of the systemic circulation in goats for 2 months with the potential for valvular tissue regeneration.
Carriel, Víctor; Garzón, Ingrid; Campos, Antonio; Cornelissen, Maria; Alaminos, Miguel
2017-02-01
Nerve conduits are promising alternatives for repairing nerve gaps; they provide a close microenvironment that supports nerve regeneration. In this sense, histological analysis of axonal growth is a determinant to achieve successful nerve regeneration. To evaluate this process, the most-used immunohistochemical markers are neurofilament (NF), β-III tubulin and, infrequently, GAP-43. However, GAP-43 expression in long-term nerve regeneration models is still poorly understood. In this study we analysed GAP-43 expression and its correlation with NF and S-100, using three tissue-engineering approaches with different regeneration profiles. A 10 mm gap was created in the sciatic nerve of 12 rats and repaired using collagen conduits or collagen conduits filled with fibrin-agarose hydrogels or with hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs). After 12 weeks the conduits were harvested for histological analysis. Our results confirm the long-term expression of GAP-43 in all groups. The expression of GAP-43 and NF was significantly higher in the group with ADMSCs. Interestingly, GAP-43 was observed in immature, newly formed axons and NF in thicker and mature axons. These proteins were not co-expressed, demonstrating their differential expression in newly formed nerve fascicles. Our descriptive and quantitative histological analysis of GAP-43 and NFL allowed us to determine, with high accuracy, the heterogenic population of axons at different stages of maturation in three tissue-engineering approaches. Finally, to perform a complete assessment of axonal regeneration, the quantitative immunohistochemical evaluation of both GAP-43 and NF could be a useful quality control in tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
A Numerical Program for Steady-State Flow of Magma-Gas Mixtures Through Vertical Eruptive Conduits
2000-01-01
1997, Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea Volcano , Hawaii : Journal of...method: Journal of Geology, v. 94, p. 626-630. Head, J.W.I., and Wilson, L., 1987, Lava fountain heights at Pu’u ’O’o, Kilauea , Hawaii : Indicators of...Additional information can be obtained from Copies of this report can be purchased from: U.S. Geological Survey U.S. Geological Survey Cascades Volcano
A robotic approach to mapping post-eruptive volcanic fissure conduits
NASA Astrophysics Data System (ADS)
Parcheta, Carolyn E.; Pavlov, Catherine A.; Wiltsie, Nicholas; Carpenter, Kalind C.; Nash, Jeremy; Parness, Aaron; Mitchell, Karl L.
2016-06-01
VolcanoBot was developed to map volcanic vents and their underlying conduit systems, which are rarely preserved and generally inaccessible to human exploration. It uses a PrimeSense Carmine 1.09 sensor for mapping and carries an IR temperature sensor, analog distance sensor, and an inertial measurement unit (IMU) inside a protective shell. The first field test succeeded in collecting valuable scientific data but revealed several needed improvements, including more rugged cable connections and mechanical couplers, increased ground clearance, and higher-torque motors for uphill mobility. The second field test significantly improved on all of these aspects but it traded electrical ruggedness for reduced data collection speed. Data collected by the VolcanoBots, while intermittent, yield the first insights into the cm-scale geometry of volcanic fissures at depths of up to 25 m. VolcanoBot was deployed at the 1969 Mauna Ulu fissure system on Kīlauea volcano in Hawai'i. It collected first-of-its-kind data from inside the fissure system. We hypothesized that 1) fissure sinuosity should decrease with depth, 2) irregularity should be persistent with depth, 3) any blockages in the conduit should occur at the narrowest points, and 4) the fissure should narrow with depth until it is too narrow for VolcanoBot to pass or is plugged with solidified lava. Our field campaigns did not span enough lateral or vertical area to test sinuosity. The preliminary data indicate that 1) there were many irregularities along fissures at depth, 2) blockages occurred, but not at obviously narrow locations, and 3) the conduit width remained a consistent 0.4-0.5 m for most of the upper 10 m that we analyzed.
Open cycle ocean thermal energy conversion system structure
Wittig, J. Michael
1980-01-01
A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.
Molded Concrete Center Mine Wall
NASA Technical Reports Server (NTRS)
Lewis, E. V.
1987-01-01
Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casagrande, I.; Cravarolo, L.; Hassid, A.
1963-05-01
A discussion is given of the experimental data obtained at CISE on two- phase adiabatic flow under the following conditions: vertical upward (dispersed regime) flow; circular conduit (15 to 25 mm diameter); gaseous phase argon or nitrogen; liquid phase water or ethyl alcohol-water solution (,90% by wt. of alcohol); gas fiow rate of 15 to 82 g/ cm/sup 2/; liquid flow rate of 20 to 208 g/ cm/sup 2/ sec; temperature of 18 to 20 deg C; pressure of up to approximates 22 kg/cm/sup 2/. The measured quantities are pressure drop and liquid film thickness on the wall of themore » conduit. The pressure loss and film flow rate are evaluated. The experimental data are discussed and the influence of surface tension and gas and liquid viscosity investigated. A simple relationship for the pressure loss over a wide range of experimental conditions in adiabatic dispersed regime is given. (auth)« less
NASA Astrophysics Data System (ADS)
Isgett, S. J.; Houghton, B. F.; Burgisser, A.; Arbaret, L.
2016-12-01
Current models propose a static conduit architecture prior to Vulcanian eruptions where a dense, outgassed dome/plug overlies an orderly, texturally horizontally layered conduit. Blocks from a Vulcanian phase (Episode IV) during the 1912 eruption of Novarupta provide special insight to the state of the magma within a complex shallow conduit prior to fragmentation. Extreme conduit heterogeneity is seen in a diverse range of dacitic block types, including pumiceous, dense, flow-banded, and variably welded breccia clasts, all with a range of surface-breadcrusting. Diverse 2D and 3D textures suggest a variety of degassing states, with ranges of vesicle textures (e.g. bubble number, shape, and size) in each of the block types. The nonbreadcrusted pumice exhibit textures similar to preceding Plinian phases, reflecting bubble nucleation, growth, and coalescence followed by fragmentation. Breadcrusted rind and dense dacite textures are the result of bubble collapse with the dense dacites progressing furthest along the outgassing pathway. Residual water contents within the quenched glass are all less than 0.5 wt% and indicate that the melt came from the upper 100 m of the conduit. There is no correlation between water content and vesicularity. Overall, the evidence indicates 1) the mingling of variably degassed and outgassed melts in varying states of chemical disequilibrium over a narrow depth range close to the surface and 2) fragmentation was probably driven by the melt forming the non-breadcrusted pumices which we consider was probably newly arrived in the shallow conduit at the time of fragmentation. We therefore propose a revised, dynamic model applicable to Vulcanian explosions in the context of downscaling Plinian eruptions that involves vigorous mingling of melts that are all actively degassing and outgassing to varying degrees within the shallow conduit.
Tharsis Formation by Chemical Plume Due to Giant Impact Event
NASA Astrophysics Data System (ADS)
Fleck, J.; Weeraratne, D. S.; Olson, P.
2014-12-01
Tharsis formed early in the history of Mars, likely during the Noachian but later than the hemispheric crustal dichotomy that it partially overprints (Johnson and Phillips, 2005; Solomon et al., 2005; Wenzel et al., 2004). It has been suggested that the crustal dichotomy may have been formed by a giant impact (Andrews-Hanna et al., 2008; Marinova et al., 2008; Nimmo et al., 2008). Several models have been proposed to explain a localized orogeny, but predict multiple, evenly-spaced plumes or have instability growth and rise times which are longer than Tharsis formation. We use fluid dynamic experiments to model the differentiation process during Mars accretion using low viscosity glucose syrup solutions and an emulsion of liquid gallium for the metal-rich magma ocean and a high viscosity glucose syrup for the mantle. Our experiments demonstrate the formation of metal-silicate diapirs from metal emulsion drops that form a pond at the base of the magma ocean. The diapirs descend through the underlying mantle with trailing conduit of low viscosity silicate material. The silicate material is buoyant and eventually ascends back through the conduit. Remaining emulsion drops that do not adhere with the diapir fall through the conduit, forcing the buoyant molten silicate material to exit the conduit laterally and ascend along a new trajectory. The time elapsed between diapir formation and ascent of the chemical plume in experiments scales with the time between the formation of the crustal dichotomy on Mars and the formation of Tharsis. Our model offers an explanation for the rapid formation of Tharsis on the edge of the crustal dichotomy via a single large upwelling event followed by smaller upwellings producing and the late stages of effusive volcanism observed in the Tharsis region.
Multiple stage multiple filter hydrate store
Bjorkman, H.K. Jr.
1983-05-31
An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means for separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means. 7 figs.
Multiple stage multiple filter hydrate store
Bjorkman, Jr., Harry K.
1983-05-31
An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means or separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means.
Geostatistics applied to cross-well reflection seismic for imaging carbonate aquifers
NASA Astrophysics Data System (ADS)
Parra, Jorge; Emery, Xavier
2013-05-01
Cross-well seismic reflection data, acquired from a carbonate aquifer at Port Mayaca test site near the eastern boundary of Lake Okeechobee in Martin County, Florida, are used to delineate flow units in the region intercepted by two wells. The interwell impedance determined by inversion from the seismic reflection data allows us to visualize the major boundaries between the hydraulic units. The hydraulic (flow) unit properties are based on the integration of well logs and the carbonate structure, which consists of isolated vuggy carbonate units and interconnected vug systems within the carbonate matrix. The vuggy and matrix porosity logs based on Formation Micro-Imager (FMI) data provide information about highly permeable conduits at well locations. The integration of the inverted impedance and well logs using geostatistics helps us to assess the resolution of the cross-well seismic method for detecting conduits and to determine whether these conduits are continuous or discontinuous between wells. A productive water zone of the aquifer outlined by the well logs was selected for analysis and interpretation. The ELAN (Elemental Log Analysis) porosity from two wells was selected as primary data and the reflection seismic-based impedance as secondary data. The direct and cross variograms along the vertical wells capture nested structures associated with periodic carbonate units, which correspond to connected flow units between the wells. Alternatively, the horizontal variogram of impedance (secondary data) provides scale lengths that correspond to irregular boundary shapes of flow units. The ELAN porosity image obtained by cokriging exhibits three similar flow units at different depths. These units are thin conduits developed in the first well and, at about the middle of the interwell separation region, these conduits connect to thicker flow units that are intercepted by the second well. In addition, a high impedance zone (low porosity) at a depth of about 275 m, after being converted to ELAN porosity, is characterized as a more confined low porosity structure. This continuous zone corresponds to a permeability barrier in the carbonate aquifer that separates the three connected conduits observed in the cokriging image. In the zones above and below this permeability barrier, the water production is very high, which agrees with water well observations at the Port Mayaca aquifer.
Volcanic conduit failure as a trigger to magma fragmentation
NASA Astrophysics Data System (ADS)
Lavallée, Y.; Benson, P. M.; Heap, M. J.; Flaws, A.; Hess, K.-U.; Dingwell, D. B.
2012-01-01
In the assessment of volcanic risk, it is often assumed that magma ascending at a slow rate will erupt effusively, whereas magma ascending at fast rate will lead to an explosive eruption. Mechanistically viewed, this assessment is supported by the notion that the viscoelastic nature of magma (i.e., the ability of magma to relax at an applied strain rate), linked via the gradient of flow pressure (related to discharge rate), controls the eruption style. In such an analysis, the physical interactions between the magma and the conduit wall are commonly, to a first order, neglected. Yet, during ascent, magma must force its way through the volcanic edifice/structure, whose presence and form may greatly affect the stress field through which the magma is trying to ascend. Here, we demonstrate that fracturing of the conduit wall via flow pressure releases an elastic shock resulting in fracturing of the viscous magma itself. We find that magma fragmentation occurred at strain rates seven orders of magnitude slower than theoretically anticipated from the applied axial strain rate. Our conclusion, that the discharge rate cannot provide a reliable indication of ascending magma rheology without knowledge of conduit wall stability, has important ramifications for volcanic hazard assessment. New numerical simulations are now needed in order to integrate magma/conduit interaction into eruption models.
Asgari, M. A.; Safarinejad, M. R.; Shakhssalim, N.; Soleimani, M.; Shahabi, A.; Amini, E.
2013-01-01
Aim: To investigate quality of life (QoL) domains with three forms of urinary diversions, including ileal conduit, MAINZ pouch, and orthotopic ileal neobladder after radical cystectomy in men with muscle-invasive bladder cancer. Materials and Methods: In a prospective study, 149 men underwent radical cystectomy and urinary diversion (70 ileal conduit, 16 MAINZ pouch, and 63 orthotopic ileal neobladder). Different domains of QoL, including general and physical conditions, psychological status, social status, sexual life, diversion-related symptoms, and satisfaction with the treatment were assessed using an author constructed questionnaire. Assessment was performed at three months postoperatively. Results: In questions addressing psychological status, social status, and sexual life, patients with continent diversion had a more favorable outcome (P = 0.002, P = 0.01, and P = 0.002, respectively). The rate of erectile dysfunction did not differ significantly between the three groups (P = 0.21). The rate and global satisfaction was higher with the MAINZ pouch (68.7%) and ileal neobladder (76.2%) as compared with the ileal conduit group (52.8%) (P = 0.002). Conclusion: Continent urinary diversion after radical cystectomy provides better results in terms of QoL as compared with ileal conduit diversion. PMID:24049384
Direct condensation refrigerant recovery and restoration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, D.C.H.
1992-03-10
This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting themore » separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.« less
The trigger mechanism of low-frequency earthquakes on Montserrat
NASA Astrophysics Data System (ADS)
Neuberg, J. W.; Tuffen, H.; Collier, L.; Green, D.; Powell, T.; Dingwell, D.
2006-05-01
A careful analysis of low-frequency seismic events on Soufrièere Hills volcano, Montserrat, points to a source mechanism that is non-destructive, repetitive, and has a stationary source location. By combining these seismological clues with new field evidence and numerical magma flow modelling, we propose a seismic trigger model which is based on brittle failure of magma in the glass transition. Loss of heat and gas from the magma results in a strong viscosity gradient across a dyke or conduit. This leads to a build-up of shear stress near the conduit wall where magma can rupture in a brittle manner, as field evidence from a rhyolitic dyke demonstrates. This brittle failure provides seismic energy, the majority of which is trapped in the conduit or dyke forming the low-frequency coda of the observed seismic signal. The trigger source location marks the transition from ductile conduit flow to friction-controlled magma ascent. As the trigger mechanism is governed by the depth-dependent magma parameters, the source location remains fixed at a depth where the conditions allow brittle failure. This is reflected in the fixed seismic source locations.
Seismic Evidence for Lower Mantle Plume Under the Yellowstone Hotspot
NASA Astrophysics Data System (ADS)
Nelson, P.; Grand, S.
2017-12-01
The mantle plume hypothesis for the origin of intraplate volcanism has been controversial since its inception in the 1970s. The hypothesis proposes hot narrow upwelling of rock rooted at the core mantle boundary (CMB) rise through the mantle and interact with the base of the lithosphere forming linear volcanic systems such as Hawaii and Yellowstone. Recently, broad lower mantle (>500 km in diameter) slow velocity conduits, most likely thermochemical in origin, have been associated with some intraplate volcanic provinces (French and Romanowicz, 2015). However, the direct detection of a classical thin thermal plume in the lower mantle using travel time tomography has remained elusive (Anderson and Natland, 2014). Here we present a new shear wave tomography model for the mantle beneath the western United States that is optimized to find short wavelength, sub-vertical structures in the lower mantle. Our approach uses carefully measured SKS and SKKS travel times recorded by dense North American seismic networks in conjunction with finite frequency kernels to build on existing tomography models. We find the presence of a narrow ( 300 km diameter) well isolated cylindrically shaped slow anomaly in the lower most mantle which we associate with the Yellowstone Hotspot. The conduit has a 2% reduction in shear velocity and is rooted at the CMB near the California/Arizona/Nevada border. A cross sectional view through the anomaly shows that it is slightly tilted toward the north until about 1300 km depth where it appears to weaken and deflect toward the surficial positon of the hotspot. Given the anomaly's strength, proximity to the Yellowstone Hotspot, and morphology we argue that a thermal plume interpretation is the most reasonable. Our results provide strong support for a lower mantle plume origin of the Yellowstone hotspot and more importantly the existence of deep thermal plumes.
High temperature sealed electrochemical cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.
2015-10-06
A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.
Kannaiyan, Lavanya; Chacko, Jacob; George, Alice; Sen, Sudipta
2009-08-01
Cervicovaginal or vaginal agenesis with functioning endometrial tissue is rare. We report the construction of a colon conduit which is anastomosed to posterior uterine wall or upper vaginal pouch to allow menstruation. We report seven girls with cervicovaginal agenesis and four with lower vaginal agenesis (aged 12-20 years) who presented with painful cryptomenorrheoa. All the girls wanted to conserve their uterus and menstruate normally. A colon conduit was constructed for the egress of menstrual blood. The colon conduit was anastomosed to the posterior uterine wall in the seven girls with cervicovaginal agenesis and to the distended upper vaginal pouch in the four girls with vaginal agenesis. Utero-colonic neovaginal anastomosis was performed only after excising a circular portion of the posterior myometrium to prevent stenosis. The colon conduit functioned effectively, providing an egress for regular painless menstruation. One patient had stenosis of the perineal neovaginal orifice for which dilations were done. One girl has married and reports satisfactory intercourse. The mean follow up is 2.2 years. This group of patients forms a separate subgroup needing a conduit not only for sexual function but also for menstruation. However, if treated by the method described herein, they should be cautioned against pregnancy if they have cervicovaginal agenesis and against vaginal delivery if they have vaginal agenesis.
NASA Astrophysics Data System (ADS)
Bruthans, Jiri; Balak, Frantisek; Schweigstillova, Jana; Vojtisek, Jan
2017-04-01
Carbonate karst is best developed in high-grade limestones and majority of the studies is focused on these rocks. Features developed by dissolution of calcite cement in quartz sandstones and dissolution of various carbonate-silicate rocks are studied far less frequently. Unlike in common karst, the insoluble residuum has to be washed out after dissolution to create high-permeability conduits in these rocks. Aquifers in a Bohemian Cretaceous Basin (BCB), the most important hydrogeological basin in the Czech Republic, consist mainly of quartz and calcareous sandstones to siltstones. These rocks are intercalated by thin layers of calcite-cemented sandstone and low-grade limestone, the latter sometimes partly impregnated by a secondary silica. Results of tracer tests show a high flow velocity in some of the aquifers. Springs with flow rate up to 500 l/s and wells with yield up to 200 l/s occur in these rocks. Dissolution features in BCB were however not yet studied in detail. For identification and characterization of rocks prone to karstification, 350 cores were sampled mostly from boreholes but also from rock outcrops in several areas of BCB. Cores were taken from intervals where: (i) high carbonate content was expected, (ii) conduits and enlarged porosity was observed in rock outcrops or wells, (iii) inflows to boreholes were determined by well logging. Calcium carbonate content was determined by calcimetry in all cores. All cores were leached in hydrochloric acid to observe the degree of disintegration after removal of calcite, which was far dominating portion of total carbonate. Polished sections were prepared from selected cores and Ca, Si, Na, K, Al content was automatically mapped by microprobe to visualize the calcium, silica, feldspar and clay mineral distribution in cores. Conduits were photo documented in the field. Two types of sediments with distinct disintegration characteristics were observed: (i) In sandstone composed of quartz grains cemented by calcite the complete disintegration occurs when calcite content exceeds 30-50%. Such calcite-rich layers are mostly few tens of cms thick and are enclosed in quartz sandstone. Groundwater flow dissolves calcite cement and turns the rock into cohesion-less sand. Sand is consequently washed out by headward erosion in drainage areas forming high capacity conduits within the sandstone. (ii) In carbonates containing secondary silica which form reinforcing structure, even 70-80% calcite content may not be sufficient for rock disintegration during leaching. Disintegration occurs only on tectonically heavily fractured zones, where secondary silica structure is fragmented. It was found that inflows into wells are often associated with zones prone to karstification. Results clearly show that form of insoluble material is critical for karstification potential. Insoluble grain size defines minimum flow velocity needed to excavate the conduits in dissolved residuum. Impregnation by secondary silica needs to be tectonically fragmented prior conduits can occur. Research was funded by the Czech Science Foundation (GA CR No. 16-19459S) and Review of groundwater resources (Ident. No. 155996).
Kulanaokuaiki 3: Product of an Energetic, Diatreme-Like Eruption at Kilauea
NASA Astrophysics Data System (ADS)
Fiske, R. S.; Rose, T. R.; Swanson, D. A.
2006-12-01
Kulanaokuaiki 3 (K-3), one of five units of the Kulanaokuaiki tephra, was erupted at ~AD 850 and blanketed large near-summit areas. Most complete remnants today are found in the Koa`e fault system and on the volcano`s south flank, S and SE of the summit. There, K-3 consists mostly of crystal-rich scoria lapilli contained in two sub-units, generally 1-8 cm thick, separated by a <1 cm "parting" of coarse ash and/or reticulite lapilli. Fine ash (<0.5 mm) makes up <3% of the two scoria units, increasing upward to ~10%. Dense lithic clasts are contained in both sub-units; ~85% of these consist of a wide variety of basalt (some enclosed in cored bombs), and ~12% are fine-coarse gabbro (some containing interstitial glass w/vesicles). The lithics are typically fresh, suggesting that the eruptive conduit pierced pristine parts of the volcano`s edifice rather than long-established, hydrothermally altered conduit systems. Erosion has stripped most K-3 from the south flank, leaving its lithics as scattered lags. Dense clasts, >4 kg and 18 cm across, are found as far as 7 km from the summit; progressively smaller clasts (~3-4 cm) fell at the coastline, 17 km away. The K-3 scoria deposits are unremarkable to the eye, but this belies cryptic vertical zonation that characterizes these units at widespread south-flank localities. The specific gravity of scoria lapilli (7-10 mm dia.) decreases upward in the lower sub-unit, accompanied by decreasing whole-rock MgO values. The pattern is reversed in the upper sub-unit, where specific gravity and MgO values increase upward. Available information suggests the specific gravity and MgO variations correlate with percentages of phenocrystic olivine. Preliminary geobarometry of pyroxene-glass pairs suggests that some gabbro was crystallizing at 5-7 km depth before exploding from the volcano-- far deeper than expected in a phreatomagmatic eruption. We interpret that CO2, known to be released in huge volumes from Kilauea`s summit, and which initially exsolves from basaltic magma at ~10 km depth, was the likely propellant for the diatreme-like K-3 eruption. While reaming a conduit to the surface, the streaming CO2, knicked the upper part of a magma body (likely dike-shaped), initiating its disintegration. The first pulse of the eruption released scoria that, along with spalled conduit wall rocks, erupted to form the lower K-3 sub-unit. Following a brief pause, when the air partly cleared to form the mid-K-3 parting, a second pulse entrained scoria originating from progressively deeper and more olivine-rich parts of the magma body. As a result, scoria containing greater percentages of phenocrystic olivine was erupted, and these were showered over the south flank to produce the observed upside-down "magma-chamber grading" in the upper K-3 sub-unit. Multi-mach exit velocities are visualized, and entrained lithic clasts may have been carried to heights of 15-20 km. These clasts were carried to the southeast as they fell through high-level northwesterly winds.
NASA Astrophysics Data System (ADS)
Wright, H. M.; Cashman, K.; Rosi, M.; Cioni, R.
2003-12-01
Vulcanian eruptions are common at many volcanoes around the world. These eruptions occur in energetic pulses and eject relatively small amounts of material. Each blast event (vulcanian eruption) has been inferred to represent a "throat-clearing" process that ejects a conduit plug. As such, we can examine the ejected material to reconstruct the conduit stratigraphy. The recent sequence of vulcanian eruptions at Guagua Pichincha volcano provides an opportunity to learn more about the dynamics of and pressurization conditions preceding vulcanian eruptions. From late 1999 - mid 2000, Pichincha experienced a series of vulcanian eruptions that ejected ballistic bombs, which now cover the surface of the crater. Bomb types range from dense to highly vesicular, with many exhibiting the breadcrusting that is ubiquitous in vulcanian deposits. Clast morphology varies with clast density, with slightly vesicular bombs having thick, glassy crusts and widely spaced cracks, whereas more vesicular bombs have thinner crusts and more closely spaced, regular crack patterns. The wide range of clast types appears to represent the stratigraphy of the conduit prior to each eruptive event, with denser blocks formed from more degassed magma near the top of the pre-eruptive conduit plug and more vesicular blocks representing deeper, less degassed levels in the conduit. This study uses the ballistic bombs, including the abundant breadcrust bombs, to learn more about conduit processes during a typical vulcanian eruption. In particular, we use the rapidly quenched crusts of breadcrust bombs, which preserve pre-eruptive conduit material, to determine gradients in volatile and crystal content in the conduit. The volatile content (both H2O and CO2) of the pre-eruptive melt was determined from FTIR spectroscopic analysis of bomb rind matrix glass. These values reach up to 1.2 wt% water and 10 ppm CO2, equivalent to 15 MPa maximum recorded presusure, or approximately 600 meters maximum depth. Coincident with the volatile gradient, microlite populations in bombs with dense, glassy crusts have uniform tabular shapes, whereas microlites in bombs with vesicular rinds have more variable crystal shapes. Insight into these degassing and crystallization conditions may help us understand pressurization mechanisms for the eruptions. The differences between the ballistic bombs will provide a picture of the conduit prior to eruption.
Capillary Flows Along Open Channel Conduits: The Open-Star Section
NASA Technical Reports Server (NTRS)
Weislogel, Mark; Geile, John; Chen, Yongkang; Nguyen, Thanh Tung; Callahan, Michael
2014-01-01
Capillary rise in tubes, channels, and grooves has received significant attention in the literature for over 100 years. In yet another incremental extension of such work, a transient capillary rise problem is solved for spontaneous flow along an interconnected array of open channels forming what is referred to as an 'open-star' section. This geometry possesses several attractive characteristics including passive phase separations and high diffusive gas transport. Despite the complex geometry, novel and convenient approximations for capillary pressure and viscous resistance enable closed form predictions of the flow. As part of the solution, a combined scaling approach is applied that identifies unsteady-inertial-capillary, convective-inertial-capillary, and visco-capillary transient regimes in a single parameter. Drop tower experiments are performed employing 3-D printed conduits to corroborate all findings.
Pressurized reactor system and a method of operating the same
Isaksson, J.M.
1996-06-18
A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Super-atmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gasification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor. 2 figs.
Pressurized reactor system and a method of operating the same
Isaksson, Juhani M.
1996-01-01
A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Superatmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gassification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor.
NASA Technical Reports Server (NTRS)
Kelley, Anthony R. (Inventor); Buskirk, Paul D. (Inventor)
2006-01-01
An orifice plate for use in a conduit through which fluid flows is defined by a central circular region having a radius R, and a ring-shaped region surrounding the central circular region. The ring-shaped region has holes formed therethrough with those holes centered at each radius R thereof satisfying a relationship A(sub R)=al(X(sub R)V(sub R)(sup b)) where A(sub R) is a sum of areas of those holes having centers at radius R, X(sub R) is a flow coefficient at radius R, V(sub R) is a velocity of the fluid that is to flow through the conduit at radius R, b is a constant selected to make at least one process variable (associated with the fluid that is to flow through the conduit) approximately equal at each radius R, and a is a constant that is equal to (X(sub R)A(sub R)V(sub R)(sup b)) at each radius R.
Xu, Weifeng; Santini, Paul A.; Sullivan, John S.; He, Bing; Shan, Meimei; Ball, Susan C.; Dyer, Wayne B.; Ketas, Thomas J.; Chadburn, Amy; Cohen-Gould, Leona; Knowles, Daniel M.; Chiu, April; Sanders, Rogier W.; Chen, Kang; Cerutti, Andrea
2009-01-01
Contact-dependent communication between immune cells generates protection, but also facilitates viral spread. We found that macrophages formed long-range actin-propelled conduits in response to negative factor (Nef), a human immunodeficiency virus type-1 (HIV-1) protein with immunosuppressive functions. Conduits attenuated immunoglobulin G2 (IgG2) and IgA class switching in systemic and intestinal lymphoid follicles by shuttling Nef from infected macrophages to B cells through a guanine exchange factor-dependent pathway involving the amino-terminal anchor, central core and carboxy-terminal flexible loop of Nef. By showing stronger virus-specific IgG2 and IgA responses in patients harboring Nef-deficient virions, our data suggest that HIV-1 exploits intercellular highways as a “Trojan horse” to deliver Nef to B cells and evade humoral immunity systemically and at mucosal sites of entry. PMID:19648924
Liu, James T; Hsu, Ray T; Yang, Rick J; Wang, Ya Ping; Wu, Hui; Du, Xiaoqin; Li, Anchun; Chien, Steven C; Lee, Jay; Yang, Shouye; Zhu, Jianrong; Su, Chih-Chieh; Chang, Yi; Huh, Chih-An
2018-03-09
Globally mud areas on continental shelves are conduits for the dispersal of fluvial-sourced sediment. We address fundamental issues in sediment dynamics focusing on how mud is retained on the seabed on shallow inner shelves and what are the sources of mud. Through a process-based comprehensive study that integrates dynamics, provenance, and sedimentology, here we show that the key mechanism to keep mud on the seabed is the water-column stratification that forms a dynamic barrier in the vertical that restricts the upward mixing of suspended sediment. We studied the 1000 km-long mud belt that extends from the mouth of the Changjiang (Yangtze) River along the coast of Zhejiang and Fujian Provinces of China and ends on the west coast of Taiwan. This mud belt system is dynamically attached to the fluvial sources, of which the Changjiang River is the primary source. Winter is the constructive phase when active deposition takes place of fine-grained sediment carried mainly by the Changjiang plume driven by Zhe-Min Coastal Currents southwestward along the coast.
Multiple source/multiple target fluid transfer apparatus
Turner, Terry D.
1997-01-01
A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.
Multiple source/multiple target fluid transfer apparatus
Turner, T.D.
1997-08-26
A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.
NASA Astrophysics Data System (ADS)
Chevalier, Laure; Collombet, Marielle; Pinel, Virginie
2017-03-01
Understanding magma degassing evolution during an eruption is essential to improving forecasting of effusive/explosive regime transitions at andesitic volcanoes. Lava domes frequently form during effusive phases, inducing a pressure increase both within the conduit and within the surrounding rocks. To quantify the influence of dome height on magma flow and degassing, we couple magma and gas flow in a 2D numerical model. The deformation induced by magma flow evolution is also quantified. From realistic initial magma flow conditions in effusive regime (Collombet, 2009), we apply increasing pressure at the conduit top as the dome grows. Since volatile solubility increases with pressure, dome growth is then associated with an increase in magma dissolved water content at a given depth, which corresponds with a decrease in magma porosity and permeability. Magma flow evolution is associated with ground deflation of a few μrad in the near field. However this signal is not detectable as it is hidden by dome subsidence (a few mrad). A Darcy flow model is used to study the impact of pressure and permeability conditions on gas flow in the conduit and surrounding rock. We show that dome permeability has almost no influence on magma degassing. However, increasing pressure in the surrounding rock, due to dome loading, as well as decreasing magma permeability in the conduit limit permeable gas loss at the conduit walls, thus causing gas pressurization in the upper conduit by a few tens of MPa. Decreasing magma permeability and increasing gas pressure increase the likelihood of magma explosivity and hazard in the case of a rapid decompression due to dome collapse.
NASA Astrophysics Data System (ADS)
Saxena, Saurabh; Yaghoobian, Neda
2017-11-01
Fungus-cultivating termites of the subfamily Macrotermitinae that are extensively found throughout sub-Saharan Africa and south East Asia are one species of termites that collectively build massive, uninhabited, complex structures. These structures, which are much larger than the size of an individual termite, effectively use natural wind and solar energies and the energy embodied in colony's metabolic activity to maintain the necessary condition for termite survival. These mounds enclose a subterranean nest, where the termite live and cultivate fungus, as well as a complex network of tunnels consisting of a large, vertically oriented central chimney, surface conduits, and lateral connectives that connect the chimney and the surface conduits. In this study, we use computational modeling to explore the combined interaction of geometry, heterogeneous thermal mass, and porosity with the external turbulent wind and solar radiation to investigate the physical principles and fundamental aero-thermodynamics underlying the controlled and stable climate of termite mounds. Exploitation of natural resources of wind and solar energies in these natural systems for the purpose of ventilation will lead to new lessons for improving human habitats conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Losh, S.; Eglinton, L.; Schoell, M.
1999-02-01
Data from sediments in and near a large growth fault adjacent to the giant South Eugene Island Block 330 field, offshore Louisiana, indicate that the fault has acted as a conduit for fluids whose flux has varied in space and time. Core and cuttings samples from two wells that penetrated the same fault about 300 m apart show markedly different thermal histories and evidence for mass flux. Sediments within and adjacent to the fault zone in the US Department of Energy-Pennzoil Pathfinder well at about 2200 m SSTVD (subsea true vertical depth) showed little paleothermal or geochemical evidence for through-goingmore » fluid flow. The sediments were characterized by low vitrinite reflectances (R{sub {omicron}}), averaging 0.3% R{sub {omicron}}, moderate to high {delta}{sup 18}O and {delta}{sup 13}C values, and little difference in major or trace element composition between deformed and undeformed sediments. In contrast, faulted sediments from the A6ST well, which intersects the A fault at 1993 m SSTVD, show evidence for a paleothermal anomaly (0.55% R{sub {omicron}}) and depleted {delta}{sup 18}O and {delta}{sup 13}C values. Overall, indicators of mass and heat flux indicate the main growth fault zone in South Eugene Island Block 330 has acted as a conduit for ascending fluids, although the cumulative fluxes vary along strike. This conclusion is corroborated by oil and gas distribution in downthrown sands in Blocks 330 and 331, which identify the fault system in northwestern Block 330 as a major feeder.« less
NASA Astrophysics Data System (ADS)
Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; Giralt, Santiago; García-Sansegundo, Joaquín; Meléndez-Asensio, Mónica
2015-10-01
Speleogenetic research on alpine caves has advanced significantly during the last decades. These investigations require techniques from different geoscience disciplines that must be adapted to the methodological constraints of working in deep caves. The Picos de Europa mountains are one of the most important alpine karsts, including 14% of the World's Deepest Caves (caves with more than 1 km depth). A speleogenetic research is currently being developed in selected caves in these mountains; one of them, named Torca La Texa shaft, is the main goal of this article. For this purpose, we have proposed both an optimized multi-method approach for speleogenetic research in alpine caves, and a speleogenetic model of the Torca La Texa shaft. The methodology includes: cave surveying, dye-tracing, cave geometry analyses, cave geomorphological mapping, Uranium series dating (234U/230Th) and geomorphological, structural and stratigraphical studies of the cave surroundings. The SpeleoDisc method was employed to establish the structural control of the cavity. Torca La Texa (2653 m length, 215 m depth) is an alpine cave formed by two cave levels, vadose canyons and shafts, soutirage conduits, and gravity-modified passages. The cave was formed prior to the Middle Pleistocene and its development was controlled by the drop of the base level, producing the development of the two cave levels. Coevally to the cave levels formation, soutirage conduits originated connecting phreatic and epiphreatic conduits and vadose canyons and shafts were formed. Most of the shafts were created before the local glacial maximum (43-45 ka) and only two cave passages are related to dolines developed in recent times. The cave development is strongly related to the structure, locating the cave in the core of a gentle fold with the conduits' geometry and orientation controlled by the bedding and five families of joints.
NASA Astrophysics Data System (ADS)
Sample, James C.; Reid, Mary R.; Tols, Harold J.; Moore, J. Casey
1993-06-01
To understand the relation between fluid seeps and structures, sedimentary rocks were collected with the DSRV Alvin from a vertical fault zone that transects the deformation front of the Cascadia accretionary wedge. The rocks contained diagenetic carbonate cement that was precipitated from fluids expelled during accretion. Carbon, oxygen, and strontium isotope data are consistent with a fluid source at >2 km depth. Most carbon isotopes range from -1‰ to -25‰ (PDB [Peedee belemnitel] standard) consistent with a thermogenic methane source. Oxygen isotopes show extreme 18O depletions (-4‰ to -13‰ PDB) that are consistent with precipitation from fluids with temperatures as high as 100 °C. 87Sr/86Sr values of 0.70975 to 0.71279 may be due to strontium in fluids derived from clay-rich parts of the stratigraphic section. The ubiquity of carbonate precipitates and the isotope data indicate that the vertical fault zone is an efficient conduit for fluid dewatering from deep levels of the accretionary wedge.
Laboratory simulations of tensile (hydro) fracture via cyclical fluid pressurisation
NASA Astrophysics Data System (ADS)
Benson, P. M.; Heap, M. J.; Lavallee, Y.; Flaws, A.; Hess, K.; Selvadurai, A. P.; Dingwell, D. B.
2011-12-01
During magma ascent, cracking and faulting of the host rock provide conduits for the movement of magmatic fluids. The spatial and temporal formation of such conduits, driven largely by pressurized magmas in the form of dykes, is of key importance in the volcano-tectonic system. In particular, it is known that both a fracture mechanical (brittle) mechanism (due to the propagating dyke tip) as well as a petrological mechanism (due to the elevated pressure-temperature environment), play roles in dyke propagation. As the use of elevated temperatures in the laboratory is technically challenging, early work has tended to concentrate either on analogue setups using gelatine and other materials that are fractured by injection of coloured water or - for simulation of representative pressures - a simplified experimental setup at modest (room) temperatures. Here, we overcome these difficulties by simulating magma intrusion in the laboratory through an experimental protocol that compresses a 'conduit' of magma encapsulated inside a hollow cylindrical shell. A well-controlled stress is then imposed onto the conduit which has the effect of transmitting this force onto the inner wall of the surrounding shell. Although we present our work with a view to investigating fluid driven tensile fracture applicable to high temperature processes, this general protocol may be used to analyse a wide range of processes whereby direct fluid pressure is used to fracture a host medium. To analyse the system, we make use of a number of well-known fracture mechanics methods allied to independently measured rheological parameters for the inner conduit to develop a model to explain (a) the stress relaxations, and (b) the peak stress measured at failure, as well as the observed interactions between the ductile inner conduit and brittle outer shell, interpreted as analogous to dykes driving though a volcanic edifice. We show that (a), the coupling of stress, strain and seismic data through time can be used to infer the stability of volcanic conduits and/or the state of the magma during periods of unrest by calculating the viscoelastic relaxation parameters and hence the modulus or viscosity of the melt, (b), that dyke propagation is initiated when the tensile strength of the country rock is overcome of between 7-11 MPa, in the case of basalt from Etna Volcano, and that the initial tensile failure is energetic enough to melt, and to produce shock waves in it, (c), that the fracture of silicate melt is strain rate dependent and the presence of cracks in the core rhyolite melt provides evidence that the fracture of the outer shell is sufficient to trigger the fracture of a magma conduit and potentially, episodes of explosive activity, and (d), that the material fracture parameters are largely temperature independent. We anticipate that these data will provide a starting point for more detailed models incorporating the full thermal-hydraulic-mechanical process, with applications ranging from deep ore-forming processes to geothermal energy extraction and improved hazard mitigation strategies.
NASA Astrophysics Data System (ADS)
Houghton, B. F.; Wilson, C. J. N.; Del Carlo, P.; Coltelli, M.; Sable, J. E.; Carey, R.
2004-09-01
Basaltic volcanism is most typically thought to produce effusion of lava, with the most explosive manifestations ranging from mild Strombolian activity to more energetic fire fountain eruptions. However, some basaltic eruptions are now recognized as extremely violent, i.e., generating widespread phreatomagmatic, subplinian and Plinian fall deposits. We focus here on the influence of conduit processes, especially partial open-system degassing, in triggering abrupt changes in style and intensity that occurred during two examples of basaltic Plinian volcanism. We use the 1886 eruption of Tarawera, New Zealand, the youngest known basaltic Plinian eruption and the only one for which there are detailed written eyewitness accounts, and the well-documented 122 BC eruption of Mount Etna, Italy, and present new grain size and vesicularity data from the proximal deposits. These data show that even during extremely powerful basaltic eruptions, conduit processes play a critical role in modifying the form of the eruptions. Even with very high discharge, and presumably ascent, rates, partial open-system behaviour of basaltic melts becomes a critical factor that leads to development of domains of largely stagnant and outgassed melt that restricts the effective radius of the conduit. The exact path taken in the waning stages of the eruptions varied, in response to factors which included conduit geometry, efficiency and extent of outgassing and availability of ground water, but a relatively abrupt cessation to sustained high-intensity discharge was an inevitable consequence of the degassing processes.
Rise of a variable-viscosity fluid in a steadily spreading wedge-shaped conduit with accreting walls
Lachenbruch, Arthur H.; Nathenson, Manuel
1976-01-01
Relatively rigid plates making up the outer 50 to 100 km of the Earth are steadily separating from one another along narrow globe-circling zones of submarine volcanism, the oceanic spreading centers. Continuity requires that the viscous underlying material rise beneath spreading centers and accrete onto the steadily diverging plates. It is likely that during the rise the viscosity changes systematically and that the viscous tractions exerted on the plates contribute to the unique pattern of submarine mountains and earthquake faults observed at spreading centers. The process is modeled by viscous creep in a wedge-shaped conduit (with apex at the sea floor) in which the viscosity varies as rm where r is distance from the apex and m is a parameter. For these conditions, the governing differential equations take a simple form. The solution for the velocity is independent of r and of the sign of m. As viscous stresses vary as rm-1, the pattern of stress on the conduit wall is sensitive to viscosity variation. For negative m, the viscous pressure along the base of the conduit is quite uniform; for positive m, it falls toward zero in the axial region as the conduit base widens. For small opening angles, viscous forces push the plates apart, and for large ones, they oppose plate separation. Though highly idealized, the solution provides a tool for investigating tectonic processes at spreading centers.
NASA Astrophysics Data System (ADS)
Rossi, Carlos; Villalaín, Juan J.; Lozano, Rafael P.; Hellstrom, John
2016-05-01
The steeply-dipping-dolostone-hosted caves of the Sierra de Arnero (N Spain) contain low-gradient relict canyons with up to ten mapped levels of ferromanganese stromatolites and associated wall notches over a vertical range of 85 m, the highest occurring 460 m above base level. Despite a plausible speleogenetic contribution by pyrite oxidation, and the irregular cave-wall mesomorphologies suggestive of hypogenic speleogenesis, the Arnero relict caves are dominantly epigenic, as indicated by the conduit pattern and the abundant allogenic sediments. Allogenic input declined over time due to a piracy-related decrease in the drainage area of allogenic streams, explaining the large size of the relict Arnero caves relative to the limited present-day outcrop area of the karstified carbonates. Allogenic-sediment input also explains the observed change from watertable canyons to phreatic conduits in the paleo-downstream direction. Stromatolites and notches arguably formed in cave-stream passages at the watertable. The best-defined paleo-watertables show an overall slope of 1.7°, consistent with the present-day relief of the watertable, with higher-slope segments caused by barriers related to sulfide mineralization. The formation of watertable stromatolites favored wall notching by the combined effect of enhanced acidity by Mn-Fe oxidation and shielding of cave floors against erosion. Abrasive bedload further contributed to notch formation by promoting lateral mechanical erosion and protecting passage floors. The irregular wallrock erosional forms of Arnero caves are related partly to paragenesis and partly to the porous nature of the host dolostones, which favored irregular dissolution near passage walls, generating friable halos. Subsequent mechanical erosion contributed to generate spongework patterns. The dolostone porosity also contributes to explain the paradox that virtually all Arnero caves are developed in dolostone despite being less soluble than adjacent limestone. U-series dating of carbonate speleothems and paleomagnetic data from ferromanganese stromatolites and clastic sediments indicate that the paleo-watertables recorded 320 m above the present-day watertable formed during the Matuyama Chron but prior to 1.5 Ma, implying long-term base-level-lowering rates from 125 to 213 m/Ma. To our knowledge, this is the first attempt of paleomagnetic dating of cave ferromanganese stromatolites. These deposits are excellent geomagnetic recorders and offer a direct way to delineate and date paleo-watertables, especially in caves developed in dolostone.
Method And Apparatus For Detecting Chemical Binding
Warner, Benjamin P.; Havrilla, George J.; Miller, Thomasin C.; Wells, Cyndi A.
2005-02-22
The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.
Method and apparatus for detecting chemical binding
Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM
2007-07-10
The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.
NASA Astrophysics Data System (ADS)
Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; José Domínguez-Cuestra, María; García-Sansegundo, Joaquín; Meléndez-Asensio, Mónica
2014-05-01
Karst areas show a lot of kilometers of cave conduits with a hidden Geoheritage poorly investigated in previous works that concerning with their cultural, scientific and education values. The evaluation of cave Geoheritage is complex due to methodological constrains. One of the most important karst areas in the World is the Picos de Europa National Park (North Spain) that was declared as a Global Geosite in 2007 and includes 14 % of the World's Deepest Caves. The GEOCAVE research project is being developed in several caves from the Picos de Europa National Park since 2012 in order to characterize geomorphology and geochronology of the cavities, proposing and validating new methodologies adapted to these environments. The aim of this work is to evaluate the Geoheritage of the Picos de Europa caves based on the studies made in nine selected caves. The methodology includes: 1) elaboration of geomorphological maps of the nine selected caves, projecting geomorphological, geological, hydrogeological, paleontological and cultural forms on the caves surveys; and 2) definition and calculation of three indexes useful to evaluate the Geoheritage of the caves. The indexes are: a) Cave Geoheritage Extension Index (CGhEI), defined as the percentage of the area occupied by the entire features divided by the cave area (excluding the forms that represent the conduits themselves), b) Feature Extension Index (FEI), defined as the area occupied by each group of form divided by the cave area, and c) Cave Geodiversity Index (CGdI), defined as the number of forms divided by the cave area. The nine cave geomorphological maps cover 178,639 m2 of caves and include a whole of 14.9 km of karst conduits, representing these caves the 4.1 % of the conduits of the Picos de Europa. The values of the Cave Geoheritage Extension Index range from 22 to 82 %, while the values of the Feature Extension Indexes for each group of features reach the following values: Geomorphological FEI take values of 20-80 % (speleothems FEI is 15-60 %, fluviokarst FEI is 5-25 %, gravity FEI is 10-40 %); Geological FEI is 4-5 %; Hydrogeological FEI is 0-3 %; Paleontological FEI is 0-0.1% and cultural FEI is 0-4 %. the On the other hand, 84 features are recognized into the caves and the Cave Geodiversity Index ranges from 0.3 to 1.1 features/cm2. These results evidence that 22 to 82 % of the cave conduits are occupy with Geoheritage features, being most of them geomorphological forms (speleothems, fluviokarst and gravity forms). The Geodiversity of the karst caves is high, recognizing a whole of 84 features into the caves and showing a high density of forms. Consequently, underground Geoheritage from karst areas can be estimated combining geomorphological maps few selected caves and three indexes based on number and extensions of the features. These indexes allow us to assign a preliminary weight of the geomorphological, geological, hydrogeological, paleontological and cultural features in a karst area.
Device useful as a borehole fluid sampler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freifeld, Barry M.
The present invention provides a device comprising: (a) a proximal end of the device comprises an inner first conduit within the lumen of an outer second conduit, (b) a distal end of the device comprises the outer second conduit in fluid communication with a third conduit and a fourth conduit through a Y-shaped, T-shaped or U-shaped junction, (c) the third conduit terminates in a triggering mechanism, and (d) the fourth conduit is in fluid communication through a one-way valve, wherein fluid can only convey in a direction from the fourth conduit towards the second outer conduit, with an aperture.
NASA Astrophysics Data System (ADS)
Yasuda, Y.; Suzuki-Kamata, K.
2018-05-01
The 34 ka Sounkyo eruption produced 7.6 km3 of tephra ( 5 km3 DRE) as fallout, ignimbrite, and lithic breccia units, forming a small, 2-km-diameter summit caldera in the Taisetsu volcano group, Japan. The Sounkyo eruption products are made up of five eruptive units (SK-A to -E) in proximal regions, corresponding to the distal deposits, a 1- to 2-m-thick pumice fallout and the Px-type ignimbrite up to 220 m thick. The eruption began with a fallout phase, producing unstable low eruption columns during the earlier phase to form a <7-m-thick succession of well-stratified fallouts (SK-A1 and the lower part of the distal fallout). The eruption column reached up to 25 km high (subplinian to plinian) and became more stable at the late of the phase, producing a < 60-m-thick, pumice-dominated fallout (SK-A2 and the upper part of the distal fallout). The second phase, the climax of the Sounkyo eruption, produced a widespread, valley-filling ignimbrite in both proximal and distal regions (SK-B and the Px-type ignimbrite). At the end of the climactic phase, the waning of the eruption led to extensive failure of the walls of the shallow conduit, generating a dense, lithic-rich, low-mobile pyroclastic density current (PDC) to form a >27-m-thick, unstratified and ungraded, coarse lithic breccia (SK-C). The failure in turn choked the conduit, and then the eruption stopped. After a short eruptive hiatus, the eruption resumed with a short-lived fall phase, establishing an eruption column up to 16 km high and producing a <6-m-thick scoria fallout (SK-D). Finally, the eruption ended with the generation of PDCs by eruption column collapse to form a 5- to 15-m-thick ignimbrite in the proximal area (SK-E). Volume relationships between the caldera, ejected magma, and ejected lithic fragments suggest that the caldera was not essentially formed by caldera collapse but, instead, by vent widening as a consequence of explosive erosion and failure of the shallow conduit. The dominance of shallow-origin volcanic rocks in the lithic fraction throughout the Sounkyo eruption products implies the development of a flaring funnel-shaped vent. Hence, the occurrence of lithic breccias within small caldera-forming eruption products does not necessarily reflect either the existence or the timing of caldera collapse, as commonly assumed in literature. Lithic breccias commonly overlie climactic ignimbrite/fallout deposits in small caldera-forming eruptions, and an alternative explanation is that this reflects the collapse of the shallow conduit after an eruption climax, whose walls had been highly fractured and had become unstable owing to progressive erosion.
Temperature limited heater with a conduit substantially electrically isolated from the formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinegar, Harold J; Sandberg, Chester Ledlie
2009-07-14
A system for heating a hydrocarbon containing formation is described. A conduit may be located in an opening in the formation. The conduit includes ferromagnetic material. An electrical conductor is positioned inside the conduit, and is electrically coupled to the conduit at or near an end portion of the conduit so that the electrical conductor and the conduit are electrically coupled in series. Electrical current flows in the electrical conductor in a substantially opposite direction to electrical current flow in the conduit during application of electrical current to the system. The flow of electrons is substantially confined to the insidemore » of the conduit by the electromagnetic field generated from electrical current flow in the electrical conductor so that the outside surface of the conduit is at or near substantially zero potential at 25.degree. C. The conduit may generate heat and heat the formation during application of electrical current.« less
Experimental constraints on the outgassing dynamics of basaltic magmas
NASA Astrophysics Data System (ADS)
Pioli, L.; Bonadonna, C.; Azzopardi, B. J.; Phillips, J. C.; Ripepe, M.
2012-03-01
The dynamics of separated two-phase flow of basaltic magmas in cylindrical conduits has been explored combining large-scale experiments and theoretical studies. Experiments consisted of the continuous injection of air into water or glucose syrup in a 0.24 m diameter, 6.5 m long bubble column. The model calculates vesicularity and pressure gradient for a range of gas superficial velocities (volume flow rates/pipe area, 10-2-102 m/s), conduit diameters (100-2 m), and magma viscosities (3-300 Pa s). The model is calibrated with the experimental results to extrapolate key flow parameters such as Co (distribution parameter) and Froude number, which control the maximum vesicularity of the magma in the column, and the gas rise speed of gas slugs. It predicts that magma vesicularity increases with increasing gas volume flow rate and decreases with increasing conduit diameter, until a threshold value (45 vol.%), which characterizes churn and annular flow regimes. Transition to annular flow regimes is expected to occur at minimum gas volume flow rates of 103-104 m3/s. The vertical pressure gradient decreases with increasing gas flow rates and is controlled by magma vesicularity (in bubbly flows) or the length and spacing of gas slugs. This study also shows that until conditions for separated flow are met, increases in magma viscosity favor stability of slug flow over bubbly flow but suggests coexistence between gas slugs and small bubbles, which contribute to a small fraction of the total gas outflux. Gas flow promotes effective convection of the liquid, favoring magma homogeneity and stable conditions.
Perkins, Eddie; Warren, Susan; May, Paul J
2009-08-01
The superior colliculus (SC), which directs orienting movements of both the eyes and head, is reciprocally connected to the mesencephalic reticular formation (MRF), suggesting the latter is involved in gaze control. The MRF has been provisionally subdivided to include a rostral portion, which subserves vertical gaze, and a caudal portion, which subserves horizontal gaze. Both regions contain cells projecting downstream that may provide a conduit for tectal signals targeting the gaze control centers which direct head movements. We determined the distribution of cells targeting the cervical spinal cord and rostral medullary reticular formation (MdRF), and investigated whether these MRF neurons receive input from the SC by the use of dual tracer techniques in Macaca fascicularis monkeys. Either biotinylated dextran amine or Phaseolus vulgaris leucoagglutinin was injected into the SC. Wheat germ agglutinin conjugated horseradish peroxidase was placed into the ipsilateral cervical spinal cord or medial MdRF to retrogradely label MRF neurons. A small number of medially located cells in the rostral and caudal MRF were labeled following spinal cord injections, and greater numbers were labeled in the same region following MdRF injections. In both cases, anterogradely labeled tectoreticular terminals were observed in close association with retrogradely labeled neurons. These close associations between tectoreticular terminals and neurons with descending projections suggest the presence of a trans-MRF pathway that provides a conduit for tectal control over head orienting movements. The medial location of these reticulospinal and reticuloreticular neurons suggests this MRF region may be specialized for head movement control. (c) 2009 Wiley-Liss, Inc.
Design of barrier coatings on kink-resistant peripheral nerve conduits
Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim
2016-01-01
Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery. PMID:26977288
Parcheta, Carolyn; Fagents, Sarah; Swanson, Donald A.; Houghton, Bruce F.; Ericksen, Todd; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique
2015-01-01
Geometries of shallow magmatic pathways feeding volcanic eruptions are poorly constrained, yet many key interpretations about eruption dynamics depend on knowledge of these geometries. Direct quantification is difficult because vents typically become blocked with lava at the end of eruptions. Indirect geophysical techniques have shed light on some volcanic conduit geometries, but the scales are too coarse to resolve narrow fissures (widths typically 1 m). Kīlauea's Mauna Ulu eruption, which started with <50 m high Hawaiian fountains along a 4.5 km fissure on 24 May 1969, provides a unique opportunity to measure the detailed geometry of a shallow magmatic pathway, as the western vents remain unobstructed to depths >30 m. Direct measurements at the ground surface were augmented by tripod-mounted lidar measurements to quantify the shallow conduit geometry for three vents at a resolution <4 cm. We define the form of the fissure in terms of aspect ratio, flaring ratio, irregularity, sinuosity, and segmentation and discuss the factors influencing these parameters. In the past, simplified first-order fissure geometries have been used in computational modeling. Our data can provide more accurate conduit shapes for better understanding of shallow fissure fluid dynamics and how it controls eruptive behavior, especially if incorporated into computer models.
Link, Alexander; Hardie, Debbie L.; Favre, Stéphanie; Britschgi, Mirjam R.; Adams, David H.; Sixt, Michael; Cyster, Jason G.; Buckley, Christopher D.; Luther, Sanjiv A.
2011-01-01
Ectopic or tertiary lymphoid tissues (TLTs) are often induced at sites of chronic inflammation. They typically contain various hematopoietic cell types, high endothelial venules, and follicular dendritic cells; and are organized in lymph node–like structures. Although fibroblastic stromal cells may play a role in TLT induction and persistence, they have remained poorly defined. Herein, we report that TLTs arising during inflammation in mice and humans in a variety of tissues (eg, pancreas, kidney, liver, and salivary gland) contain stromal cell networks consisting of podoplanin+ T-zone fibroblastic reticular cells (TRCs), distinct from follicular dendritic cells. Similar to lymph nodes, TRCs were present throughout T-cell–rich areas and had dendritic cells associated with them. They expressed lymphotoxin (LT) β receptor (LTβR), produced CCL21, and formed a functional conduit system. In rat insulin promoter–CXCL13–transgenic pancreas, the maintenance of TRC networks and conduits was partially dependent on LTβR and on lymphoid tissue inducer cells expressing LTβR ligands. In conclusion, TRCs and conduits are hallmarks of secondary lymphoid organs and of well-developed TLTs, in both mice and humans, and are likely to act as important scaffold and organizer cells of the T-cell–rich zone. PMID:21435450
Drews, R; Pattyn, F; Hewitt, I J; Ng, F S L; Berger, S; Matsuoka, K; Helm, V; Bergeot, N; Favier, L; Neckel, N
2017-05-09
Ice-shelf channels are long curvilinear tracts of thin ice found on Antarctic ice shelves. Many of them originate near the grounding line, but their formation mechanisms remain poorly understood. Here we use ice-penetrating radar data from Roi Baudouin Ice Shelf, East Antarctica, to infer that the morphology of several ice-shelf channels is seeded upstream of the grounding line by large basal obstacles indenting the ice from below. We interpret each obstacle as an esker ridge formed from sediments deposited by subglacial water conduits, and calculate that the eskers' size grows towards the grounding line where deposition rates are maximum. Relict features on the shelf indicate that these linked systems of subglacial conduits and ice-shelf channels have been changing over the past few centuries. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation and ice-shelf stability.
Drews, R.; Pattyn, F.; Hewitt, I. J.; Ng, F. S. L.; Berger, S.; Matsuoka, K.; Helm, V.; Bergeot, N.; Favier, L.; Neckel, N.
2017-01-01
Ice-shelf channels are long curvilinear tracts of thin ice found on Antarctic ice shelves. Many of them originate near the grounding line, but their formation mechanisms remain poorly understood. Here we use ice-penetrating radar data from Roi Baudouin Ice Shelf, East Antarctica, to infer that the morphology of several ice-shelf channels is seeded upstream of the grounding line by large basal obstacles indenting the ice from below. We interpret each obstacle as an esker ridge formed from sediments deposited by subglacial water conduits, and calculate that the eskers' size grows towards the grounding line where deposition rates are maximum. Relict features on the shelf indicate that these linked systems of subglacial conduits and ice-shelf channels have been changing over the past few centuries. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation and ice-shelf stability. PMID:28485400
Electrochemical sensor for monitoring electrochemical potentials of fuel cell components
Kunz, Harold R.; Breault, Richard D.
1993-01-01
An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.
Yamanami, Masashi; Yahata, Yuki; Uechi, Masami; Fujiwara, Megumi; Ishibashi-Ueda, Hatsue; Kanda, Keiichi; Watanabe, Taiji; Tajikawa, Tsutomu; Ohba, Kenkichi; Yaku, Hitoshi; Nakayama, Yasuhide
2010-09-14
We developed autologous prosthetic implants by simple and safe in-body tissue architecture technology. We present the first report on the development of autologous valved conduit with the sinus of Valsalva (BIOVALVE) by using this unique technology and its subsequent implantation in the pulmonary valves in a beagle model. A mold of BIOVALVE organization was assembled using 2 types of specially designed silicone rods with a small aperture in a trileaflet shape between them. The concave rods had 3 projections that resembled the protrusions of the sinus of Valsalva. The molds were placed in the dorsal subcutaneous spaces of beagle dogs for 4 weeks. The molds were covered with autologous connective tissues. BIOVALVEs with 3 leaflets in the inner side of the conduit with the sinus of Valsalva were obtained after removing the molds. These valves had adequate burst strength, similar to that of native valves. Tight valvular coaptation and sufficient open orifice area were observed in vitro. These BIOVALVEs were implanted to the main pulmonary arteries as allogenic conduit valves (n=3). Postoperative echocardiography demonstrated smooth movement of the leaflets with trivial regurgitation. Histological examination of specimens obtained at 84 days showed that the surface of the leaflet was covered by endothelial cells and neointima, including an elastin fiber network, and was formed at the anastomosis sides on the luminal surface of the conduit. We developed the first completely autologous BIOVALVE and successfully implanted these BIOVALVEs in a beagle model in a pilot study.
Denlinger, Roger P.; Moran, Seth C.
2014-01-01
On 2 October 2004, a significant noneruptive tremor episode occurred during the buildup to the 2004–2008 eruption of Mount St. Helens (Washington). This episode was remarkable both because no explosion followed, and because seismicity abruptly stopped following the episode. This sequence motivated us to consider a model for volcanic tremor that does not involve energetic gas release from magma but does involve movement of conduit magma through extension on its way toward the surface. We found that the tremor signal was composed entirely of Love and Rayleigh waves and that its spectral bandwidth increased and decreased with signal amplitude, with broader bandwidth signals containing both higher and lower frequencies. Our modeling results demonstrate that the forces giving rise to this tremor were largely normal to conduit walls, generating hybrid head waves along conduit walls that are coupled to internally reflected waves. Together these form a crucial part of conduit resonance, giving tremor wavefields that are largely a function of waveguide geometry and velocity. We find that the mechanism of tremor generation fundamentally masks the nature of the seismogenic source giving rise to resonance. Thus multiple models can be invoked to explain volcanic tremor, requiring that information from other sources (such as visual observations, geodesy, geology, and gas geochemistry) be used to constrain source models. With concurrent GPS and field data supporting rapid rise of magma, we infer that tremor resulted from drag of nearly solid magma along rough conduit walls as magma was forced toward the surface.
Expandable mixing section gravel and cobble eductor
Miller, Arthur L.; Krawza, Kenneth I.
1997-01-01
In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.
Burgess, Stephen S O; Pittermann, Jarmila; Dawson, Todd E
2006-02-01
The hydraulic limitation hypothesis of Ryan & Yoder (1997, Bioscience 47, 235-242) suggests that water supply to leaves becomes increasingly difficult with increasing tree height. Within the bounds of this hypothesis, we conjectured that the vertical hydrostatic gradient which gravity generates on the water column in tall trees would cause a progressive increase in xylem 'safety' (increased resistance to embolism and implosion) and a concomitant decrease in xylem 'efficiency' (decreased hydraulic conductivity). We based this idea on the historically recognized concept of a safety-efficiency trade-off in xylem function, and tested it by measuring xylem conductivity and vulnerability to embolism of Sequoia sempervirens branches collected at a range of heights. Measurements of resistance of branch xylem to embolism did indeed show an increase in 'safety' with height. However, the expected decrease in xylem 'efficiency' was not observed. Instead, sapwood-specific hydraulic conductivities (Ks) of branches increased slightly, while leaf-specific hydraulic conductivities increased dramatically, with height. The latter could be largely explained by strong vertical gradients in specific leaf area. The increase in Ks with height corresponded to a decrease in xylem wall fraction (a measure of wall thickness), an increase in percentage of earlywood and slight increases in conduit diameter. These changes are probably adaptive responses to the increased transport requirements of leaves growing in the upper canopy where evaporative demand is greater. The lack of a safety-efficiency tradeoff may be explained by opposing height trends in the pit aperture and conduit diameter of tracheids and the major and semi-independent roles these play in determining xylem safety and efficiency, respectively.
NASA Astrophysics Data System (ADS)
Mirfenderesgi, G.; Bohrer, G.; Matheny, A. M.; Fatichi, S.; Frasson, R. P. M.; Schafer, K. V.
2016-12-01
The Finite-difference Ecosystem-scale Tree-Crown Hydrodynamics model version 2 (FETCH2) is a novel tree-scale hydrodynamic model of transpiration. The FETCH2 model employs a finite difference numerical methodology and a simplified single-beam conduit system and simulates water flow through the tree as a continuum of porous media conduits. It explicitly resolves xylem water potential throughout the tree's vertical extent. Empirical equations relate water potential within the stem to stomatal conductance of the leaves at each height throughout the crown. While highly simplified, this approach brings additional realism to the simulation of transpiration by linking stomatal responses to stem water potential rather than directly to soil moisture, as is currently the case in the majority of land-surface models. FETCH2 accounts for plant hydraulic traits, such as the degree of anisohydric/isohydric response of stomata, maximal xylem conductivity, vertical distribution of leaf area, and maximal and minimal stemwater content. We used FETCH2 along with sap flow and eddy covariance data sets collected from a mixed plot of two genera (oak/pine) in Silas Little Experimental Forest, NJ, USA, to conduct an analysis of the inter-genera variation of hydraulic strategies and their effects on diurnal and seasonal transpiration dynamics. We define these strategies through the parameters that describe the genus-level transpiration and xylem conductivity responses to changes in stem water potential. A virtual experiment showed that the model was able to capture the effect of hydraulic strategies such as isohydric/anisohydric behavior on stomatal conductance under different soil-water availability conditions. Our evaluation revealed that FETCH2 considerably improved the simulation of ecosystem transpiration and latent heat flux than more conventional models.
NASA Astrophysics Data System (ADS)
Sergienko, O. V.
2013-09-01
Recent surveys of floating ice shelves associated with Pine Island Glacier (Antarctica) and Petermann Glacier (Greenland) indicate that there are channels incised upward into their bottoms that may serve as the conduits of meltwater outflow from the sub-ice-shelf cavity. The formation of the channels, their evolution over time, and their impact on ice-shelf flow are investigated using a fully-coupled ice-shelf/sub-ice-shelf ocean model. The model simulations suggest that channels may form spontaneously in response to meltwater plume flow initiated at the grounding line if there are relatively high melt rates and if there is transverse to ice-flow variability in ice-shelf thickness. Typical channels formed in the simulations have a width of about 1-3 km and a vertical relief of about 100-200 m. Melt rates and sea-water transport in the channels are significantly higher than on the smooth flat ice bottom between the channels. The melt channels develop through melting, deformation, and advection with ice-shelf flow. Simulations suggest that both steady state and cyclic state solutions are possible depending on conditions along the lateral ice-shelf boundaries. This peculiar dynamics of the system has strong implications on the interpretation of observations. The richness of channel morphology and evolution seen in this study suggests that further observations and theoretical analysis are imperative for understanding ice-shelf behavior in warm oceanic conditions.
Seal between metal and ceramic conduits
Underwood, Richard Paul; Tentarelli, Stephen Clyde
2015-02-03
A seal between a ceramic conduit and a metal conduit of an ion transport membrane device consisting of a sealing surface of ceramic conduit, a sealing surface of ceramic conduit, a single gasket body, and a single compliant interlayer.
NASA Astrophysics Data System (ADS)
Bumpus, P. B.; Kruse, S. E.
2013-12-01
A year of continuous monitoring with two grids of 12-15 electrodes each measured self-potential (SP) over two small covered-karst conduits in Tampa, Florida. Positive and negative SP anomalies episodically manifested over conduits, suggesting that conduit flow is dynamic, not static. Various SP flow regimes in the conduits are postulated: flow in the conduit is faster than through surrounding surficial sediment, flow in the conduit is slower than through surrounding sediment, and conduit flow rates match those through the surrounding sediments. It is further postulated that conduits change permeability with inflow and washing out of sediment, especially associated with rain events. Numerical simulations of the postulated flow regimes were run with 2D simulations using the Comsol finite element modeling code. Simulations show that each regime produces different SP patterns. Models simulate the Tampa field setting in which a 1-2 meter-thick high permeability sand layer overlies a low-permeability clay-rich layer. A funnel-shaped conduit breaches both layers. In the models, when the permeability of the conduit sands is equal to surrounding surficial sands, a small (several mV) negative anomaly manifests locally at the conduit. This negative anomaly can be explained as the result of the depression of the SPS surface (the first sediment surface with a change in conductance or streaming potential coefficient) in the conduit. However a permeability difference of as little as 5 to 20 percent between conduit and background can cause an SP anomaly of tens to several hundred millivolts, either positive or negative. When the permeability is higher in the conduit than the surficial sands, lateral flow into the conduit within the sand layer and through the conduit to the underlying aquifer are both high, and the SP signal over the conduit is positive. This may contradict the concept exemplified in other studies that downward flow creates a negative anomaly. In our case the positive voltage is the result of high lateral flow toward a high flux conduit. As a result, the horizontal dimension of the conduit plays a role in whether a positive or negative anomaly is observed locally near the surface, depending on the degree to which the terminus of the inward lateral flow affects voltage over the conduit center. When the conduit has lower permeability than surrounding surficial sediment, models show that the SP anomaly is negative. In this case lateral flow is small to a low-flux conduit and there is little build-up of positive SP to overcome the negative potential associated with the SPS trough.
Moran, S.C.
2003-01-01
The volcanological significance of seismicity within Katmai National Park has been debated since the first seismograph was installed in 1963, in part because Katmai seismicity consists almost entirely of high-frequency earthquakes that can be caused by a wide range of processes. I investigate this issue by determining 140 well-constrained first-motion fault-plane solutions for shallow (depth < 9 km) earthquakes occuring between 1995 and 2001 and inverting these solutions for the stress tensor in different regions within the park. Earthquakes removed by several kilometers from the volcanic axis occur in a stress field characterized by horizontally oriented ??1 and ??3 axes, with ??1 rotated slightly (12??) relative to the NUVELIA subduction vector, indicating that these earthquakes are occurring in response to regional tectonic forces. On the other hand, stress tensors for earthquake clusters beneath several Katmai cluster volcanoes have vertically oriented ??1 axes, indicating that these events are occuring in response to local, not regional, processes. At Martin-Mageik, vertically oriented ??1 is most consistent with failure under edifice loading conditions in conjunction with localized pore pressure increases associated with hydrothermal circulation cells. At Trident-Novarupta, it is consistent with a number of possible models, including occurence along fractures formed during the 1912 eruption that now serve as horizontal conduits for migrating fluids and/or volatiles from nearby degassing and cooling magma bodies. At Mount Katmai, it is most consistent with continued seismicity along ring-fracture systems created in the 1912 eruption, perhaps enhanced by circulating hydrothermal fluids and/or seepage from the caldera-filling lake.
Sinter-vein correlations at Buckskin Mountain, National district, Humboldt County, Nevada
Vikre, P.G.
2007-01-01
At Buckskin Mountain (elev 2,650 m, 8,743 ft), Humboldt County, Nevada, a hydrothermal system, imposed on a middle Miocene volcanic sequence with contrasting permeabilities and tensile strengths, produced alteration assemblages controlled by elevation, from Hg-mineralized sinter to subjacent precious metal veins over a vertical distance exceeding 790 m. Sinter and epiclastic deposits, interpreted to be remnant paleosurface basinal strata enclosed by 16.6 to 16.1 Ma rhyolites, overlie older volcaniclastic basinal deposits and were part of a regional fluvial-lacustrine system developed among ca. 16 to 12 Ma basalt-rhyolite eruptive centers throughout the northern Great Basin. Because of contrasting erosional resistance among altered and unaltered rocks, Buckskin Mountain represents inverse topography with sinter and silicified epiclastic deposits at the summit. Sinter and veins, correlated by common elements, similar mineralogy, age constraints, textures, S isotope compositions, and fluid inclusion microthermometry, were deposited by sinter-vein fluid, the first of two sequential hydrothermal fluid regimes that evolved in response to magmatism, tectonism, hydrology, and topography. Thermal quenching of distally derived sinter-vein fluid in planar conduits caused deposition of banded quartz-silicate-selenide-sulfide veins ???270 to > 440 m below sinter at 16.1 Ma; vei??ns were initially enveloped by zoned selvages of proximal K-feldspar + K-mica + quartz + pyrite and distal illite + chlorite + calcite + pyrite. Mixing of sinter-vein fluid with local meteoric water in saturated basinal deposits caused deposition of silica, Hg-Se-S-Cl minerals, and precious metals in sinter and epiclastic deposits. Elevated ???Se/???S in sinter-vein fluid, and the relatively large stability fields of reduced aqueous selenide species in the temperature range of 250?? to <100??C, enabled (but was not the cause of) codeposition of selenide-sulfide minerals and common element associations in veins and sinter. Acid-sulfate fluid of the second fluid regime was derived from oxidation of H2S and other volatiles exsolved from sinter-vein fluid. Acid-sulfate fluid produced (1) a subhorizontal zone of partially leached basinal deposits and rhyolite from the paleosurface to a depth of ???60 m, and (2) laterally pervasive zones, ???100 to 200 m thick, of quartz + alunite ?? hematite and quartz + kaolinite + pyrite in volcaniclastic deposits immediately beneath partially leached rocks, but this fluid did not decompose selenide-sulfide-precious metal phases in sinter. Paragenetically late vein and wall-rock assemblages, including marcasite + pyrite, calcite, and kaolinite-replaced K minerals, record deeper transition of sinter-vein fluid into acid-sulfate fluid in vein conduits. This transition occurred as regional subsidence, manifested by the Goosey Lake depression immediately east of Buckskin Mountain, lowered the pieziometric surface at Buckskin Mountain, terminated sinter deposition, and caused boiling and/or degassing of sinter-vein fluid. The timing of subsidence is recorded by a decrease in alunite ages, from ca. 15.8 to 15.6 Ma, with depth below sinter. Lateral replacement of sinter and partially leached epiclastic deposits and rhyolite by opal-A marks the termination of the two hydrothermal regimes that lasted ???0.5 m.y. and followed rhyolitic volcanism of similar duration. Veins and sinter display textures that attest to plastic deformation, spalling, and gravitational settling, and indicate fluid-flow direction, velocity, and density stratification which, with conduit topology, may have influenced precious metal tenor in the veins. Components of sinter and veins were transported as colloids, formed in supersaturated sinter-vein fluid, that aggregated or coagulated as incompetent gelatinous layers in shallow pools and in underlying, near-vertical conduits in rhyolite and initially crystallized as opal and chalcedony. The low thermal conductivity of ho
Hiermeier, Florian; Männer, Jörg
2017-11-19
Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.
Hiermeier, Florian; Männer, Jörg
2017-01-01
Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts. PMID:29367548
Microchannel heat sink assembly
Bonde, Wayne L.; Contolini, Robert J.
1992-01-01
The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.
NASA Astrophysics Data System (ADS)
Rutkowski, Gregory E.; Miller, Cheryl A.; Jeftinija, Srdija; Mallapragada, Surya K.
2004-09-01
This paper describes a novel biodegradable conduit that provides a combination of physical, chemical and biological cues at the cellular level to facilitate peripheral nerve regeneration. The conduit consists of a porous poly(D,L-lactic acid) (PDLLA) tubular support structure with a micropatterned inner lumen. Schwann cells were pre-seeded into the lumen to provide additional trophic support. Conduits with micropatterned inner lumens pre-seeded with Schwann cells (MS) were fabricated and compared with three types of conduits used as controls: M (conduits with micropatterned inner lumens without pre-seeded Schwann cells), NS (conduits without micropatterned inner lumens pre-seeded with Schwann cells) and N (conduits without micropatterned inner lumens, without pre-seeded Schwann cells). The conduits were implanted in rats with 1 cm sciatic nerve transections and the regeneration and functional recovery were compared in the four different cases. The number or size of regenerated axons did not vary significantly among the different conduits. The time of recovery, and the sciatic function index, however, were significantly enhanced using the MS conduits, based on qualitative observations as well as quantitative measurements using walking track analysis. This demonstrates that biodegradable micropatterned conduits pre-seeded with Schwann cells that provide a combination of physical, chemical and biological guidance cues for regenerating axons at the cellular level offer a better alternative for repairing sciatic nerve transactions than conventional biodegradable conduits.
Asymmetric deformation structure of lava spine in Unzen Volcano, Japan
NASA Astrophysics Data System (ADS)
Miwa, T.; Okumura, S.; Matsushima, T.; Shimizu, H.
2013-12-01
Lava spine is commonly generated by effusive eruption of crystal-rich, dacitic-andesitic magmas. Especially, deformation rock on surface of lava spine has been related with processes of magma ascent, outgassing, and generation of volcanic earthquake (e.g., Cashman et al. 2008). To reveal the relationships and generation process of the spine, it is needed to understand a spatial distribution of the deformation rock. Here we show the spatial distribution of the deformation rock of lava spine in the Unzen volcano, Japan, to discuss the generation process of the spine. The lava spine in Unzen volcano is elongated in the E-W direction, showing a crest like shape with 150 long, 40 m wide and 50 m high. The lava spine is divided into following four parts: 1) Massive dacite part: Dense dacite with 30 m of maximum thickness, showing slickenside on the southern face; 2) Sheared dacite part: Flow band developed dacite with 1.0 m of maximum thickness; 3) Tuffisite part: Network of red colored vein develops in dacite with 0.5 m of maximum thickness; 4) Breccia part: Dacitic breccia with 10 m of maximum thickness. The Breccia part dominates in the northern part of the spine, and flops over Massive dacite part accross the Sheared dacite and Tuffisite parts. The slickenside on southern face of massive dacite demonstrates contact of solids. The slickenside breaks both of phenocryst and groundmass, demonstrating that the slickenside is formed after significant crystallization at the shallow conduit or on the ground surface. The lineation of the slickenside shows E-W direction with almost horizontal rake angle, which is consistent with the movement of the spine to an east before emplacement. Development of sub-vertical striation due to extrusion was observed on northern face of the spine (Hayashi, 1994). Therefore, we suggest that the spine just at extrusion consisted of Massive dacite, Sheared dacite, Tuffisite, Breccia, and Striation parts in the northern half of the spine. Such a variation of rock type is analogous to tectonic fault zone, suggesting that brittle failure of rigid magma due to contact with the conduit wall. Also similar variation is observed in the spine of Mt. St. Helens (Kendrick et al., 2012), which implies the existence of fault zone and brittle failure of magma are common features in the lava spine. The lava spine in Unzen volcano exhibits asymmetric deformation structure about direction of north and south. There is positive correlation between width and length in tectonic fault (Wells and Coppersmith, 1994). Therefore, development of fault zone (Sheared dacite, Tuffisite, and Breccia parts) in northern half may indicate that brittle failure starts at the deeper conduit for the northern half than the southern half of the spine. The asymmetry of magma ascent process is possible to result in asymmetries of outgassing path and location of volcanic earthquake in the conduit.
Lossless droplet transfer of droplet-based microfluidic analysis
Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Smith, Richard D [Richland, WA
2011-11-22
A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.
NASA Astrophysics Data System (ADS)
Giese, M.; Reimann, T.; Bailly-Comte, V.; Maréchal, J.-C.; Sauter, M.; Geyer, T.
2018-03-01
Due to the duality in terms of (1) the groundwater flow field and (2) the discharge conditions, flow patterns of karst aquifer systems are complex. Estimated aquifer parameters may differ by several orders of magnitude from local (borehole) to regional (catchment) scale because of the large contrast in hydraulic parameters between matrix and conduit, their heterogeneity and anisotropy. One approach to deal with the scale effect problem in the estimation of hydraulic parameters of karst aquifers is the application of large-scale experiments such as long-term high-abstraction conduit pumping tests, stimulating measurable groundwater drawdown in both, the karst conduit system as well as the fractured matrix. The numerical discrete conduit-continuum modeling approach MODFLOW-2005 Conduit Flow Process Mode 1 (CFPM1) is employed to simulate laminar and nonlaminar conduit flow, induced by large-scale experiments, in combination with Darcian matrix flow. Effects of large-scale experiments were simulated for idealized settings. Subsequently, diagnostic plots and analyses of different fluxes are applied to interpret differences in the simulated conduit drawdown and general flow patterns. The main focus is set on the question to which extent different conduit flow regimes will affect the drawdown in conduit and matrix depending on the hydraulic properties of the conduit system, i.e., conduit diameter and relative roughness. In this context, CFPM1 is applied to investigate the importance of considering turbulent conditions for the simulation of karst conduit flow. This work quantifies the relative error that results from assuming laminar conduit flow for the interpretation of a synthetic large-scale pumping test in karst.
ETR, TRA642. ON BASEMENT FLOOR. REACTOR VESSEL WILL BE PLACED ...
ETR, TRA-642. ON BASEMENT FLOOR. REACTOR VESSEL WILL BE PLACED WITHIN THE INNER METAL FORM. WHEN CONCRETE IS POURED OUTSIDE THIS FORM, CONDUIT HOLES WILL BE PRESERVE SPACE THROUGH HOLES. INL NEGATIVE NO. 56-1507. Jack L. Anderson, Photographer, 5/8/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Device for separating CO2 from fossil-fueled power plant emissions
Burchell, Timothy D [Oak Ridge, TN; Judkins, Roddie R [Knoxville, TN; Wilson, Kirk A [Knoxville, TN
2002-04-23
A gas separation device includes an inner conduit, and a concentric outer conduit. An electrically conductive filter media, preferably a carbon fiber composite molecular sieve, is provided in the annular space between the inner conduit and the outer conduit. Gas flows through the inner conduit and the annular space between the inner conduit and the outer conduit, so as to contact the filter media. The filter media preferentially adsorbs at least one constituent of the gas stream. The filter media is regenerated by causing an electric current to flow through the filter media. The inner conduit and outer conduit are preferably electrically conductive whereby the regeneration of the filter media can be electrically stimulated. The invention is particularly useful for the removal of CO.sub.2 from the exhaust gases of fossil-fueled power plants.
Conduit purging device and method
NASA Technical Reports Server (NTRS)
Wilks, Michael T. (Inventor)
2011-01-01
A device for purging gas comprises a conduit assembly defining an interior volume. The conduit assembly comprises a first conduit portion having an open first end and an open second end and a second conduit portion having an open first end and a closed second end. The open second end of the first conduit portion is disposed proximate to the open first end of the second conduit portion to define a weld region. The device further comprises a supply element supplying a gas to the interior volume at a substantially constant rate and a vent element venting the gas from the interior volume at a rate that maintains the gas in the interior volume within a pressure range suitable to hold a weld bead in the weld region in equilibrium during formation of a weld to join the first conduit portion and the second conduit portion.
Doody, Thomas J.
1978-08-22
A multiple-port valve assembly is designed to direct flow from a primary conduit into any one of a plurality of secondary conduits as well as to direct a reverse flow. The valve includes two mating hemispherical sockets that rotatably receive a spherical valve plug. The valve plug is attached to the primary conduit and includes diverging passageways from that conduit to a plurality of ports. Each of the ports is alignable wih one or more of a plurality of secondary conduits fitted into one of the hemispherical sockets. The other hemispherical socket includes a slot for the primary conduit such that the conduit's motion along that slot with rotation of the spherical plug about various axes will position the valve-plug ports in respect to the secondary conduits.
Acute postoperative obstruction of extracardiac conduit due to separation of thin fibrous peel.
Agarwal, K C; Edwards, W D; Puga, F J; Mair, D D
1982-03-01
Late postoperative obstruction of extracardiac conduits may occur in some patients and may result from one of several mechanisms. Severe intraoperative or early postoperative obstruction of such conduits is very rare. Herein we describe a case of acute, severe, early postoperative obstruction of an extracardiac conduit; this followed partial excision and replacement of a Hancock conduit in which late postoperative calcific valvular stenosis had occurred. Unexpectedly elevated right ventricular pressure should suggest the possibility of acute conduit obstruction. In cases with partial conduit replacement, the remaining segment should be carefully inspected for the presence of a peel; if a peel is present, it should be removed from the conduit even if it is considered thin and nonobstructive.
Vaporization chambers and associated methods
Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Shunn, Lee P.
2017-02-21
A vaporization chamber may include at least one conduit and a shell. The at least one conduit may have an inlet at a first end, an outlet at a second end and a flow path therebetween. The shell may surround a portion of each conduit and define a chamber surrounding the portion of each conduit. Additionally, a plurality of discrete apertures may be positioned at longitudinal intervals in a wall of each conduit, each discrete aperture of the plurality of discrete apertures sized and configured to direct a jet of fluid into each conduit from the chamber. A liquid may be vaporized by directing a first fluid comprising a liquid into the inlet at the first end of each conduit, directing jets of a second fluid into each conduit from the chamber through discrete apertures in a wall of each conduit and transferring heat from the second fluid to the first fluid.
Solute Migration from the Aquifer Matrix into a Solution Conduit and the Reverse.
Li, Guangquan; Field, Malcolm S
2016-09-01
A solution conduit has a permeable wall allowing for water exchange and solute transfer between the conduit and its surrounding aquifer matrix. In this paper, we use Laplace Transform to solve a one-dimensional equation constructed using the Euler approach to describe advective transport of solute in a conduit, a production-value problem. Both nonuniform cross-section of the conduit and nonuniform seepage at the conduit wall are considered in the solution. Physical analysis using the Lagrangian approach and a lumping method is performed to verify the solution. Two-way transfer between conduit water and matrix water is also investigated by using the solution for the production-value problem as a first-order approximation. The approximate solution agrees well with the exact solution if dimensionless travel time in the conduit is an order of magnitude smaller than unity. Our analytical solution is based on the assumption that the spatial and/or temporal heterogeneity in the wall solute flux is the dominant factor in the spreading of spring-breakthrough curves, and conduit dispersion is only a secondary mechanism. Such an approach can lead to the better understanding of water exchange and solute transfer between conduits and aquifer matrix. Euler and Lagrangian approaches are used to solve transport in conduit. Two-way transfer between conduit and matrix is investigated. The solution is applicable to transport in conduit of persisting solute from matrix. © 2016, National Ground Water Association.
Egloff, L; Schönbeck, M; Arbenz, U; Turina, M; Senning, A
1982-12-18
Operative correction of certain congenital cardiac malformations with discontinuity between the right ventricle and pulmonary artery is technically possible today with satisfactory late results. The atretic or hypoplastic outflow tract can be bridged by an external tubular graft containing a valvular prosthesis. Of 22 patients operated upon from 1978-1981, 16 survived the operation and perioperative period. There was one late death. Routine cardiac catheterization was performed in 6 non-selected patients between 7 and 22 months after surgery. No hemodynamically important gradients were found. The extracardiac conduit between the right ventricle and pulmonary artery has become an important tool in correcting certain forms of congenital heart disease.
Examining shear processes during magma ascent
NASA Astrophysics Data System (ADS)
Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.
2017-12-01
Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.
Mangan, M.; Mastin, L.; Sisson, T.
2004-01-01
In this paper we examine the consequences of bubble nucleation mechanism on eruptive degassing of rhyolite magma. We use the results of published high temperature and pressure decompression experiments as input to a modified version of CONFLOW, the numerical model of Mastin and Ghiorso [(2000) U.S.G.S. Open-File Rep. 00-209, 53 pp.] and Mastin [(2002) Geochem. Geophys. Geosyst. 3, 10.1029/2001GC000192] for steady, two-phase flow in vertical conduits. Synthesis of the available experimental data shows that heterogeneous nucleation is triggered at ??P 120-150 MPa, and leads to disequilibrium degassing at extreme H2O supersaturation. In this latter case, nucleation is an ongoing process controlled by changing supersaturation conditions. Exponential bubble size distributions are often produced with number densities of 106-109 bubbles/cm3. Our numerical analysis adopts an end-member approach that specifically compares equilibrium degassing with delayed, disequilibrium degassing characteristic of homogeneously-nucleating systems. The disequilibrium simulations show that delaying nucleation until ??P =150 MPa restricts degassing to within ???1500 m of the surface. Fragmentation occurs at similar porosity in both the disequilibrium and equilibrium modes (???80 vol%), but at the distinct depths of ???500 m and ???2300 m, respectively. The vesiculation delay leads to higher pressures at equivalent depths in the conduit, and the mass flux and exit pressure are each higher by a factor of ???2.0. Residual water contents in the melt reaching the vent are between 0.5 and 1.0 wt%, roughly twice that of the equilibrium model. ?? 2003 Elsevier B.V. All rights reserved.
Magma wagging and whirling in volcanic conduits
NASA Astrophysics Data System (ADS)
Liao, Yang; Bercovici, David; Jellinek, Mark
2018-02-01
Seismic tremor characterized by 0.5-7 Hz ground oscillations commonly occur before and during eruptions at silicic volcanoes with widely ranging vent geometries and edifice structures. The ubiquitous characteristics of this tremor imply that its causes are potentially common to silicic volcanoes. Here we revisit and extend to three dimensions the magma-wagging model for tremor (Jellinek and Bercovici, 2011; Bercovici et al., 2013), wherein a stiff magma column rising in a vertical conduit oscillates against a surrounding foamy annulus of bubbly magma, giving rise to tremor. While prior studies were restricted to two-dimensional lateral oscillations, here we explore three-dimensional motion and additional modes of oscillations. In the absence of viscous damping, the magma column undergoes 'whirling' motion: the center of each horizontal section of the column traces an elliptical trajectory. In the presence of viscous effect we identify new 'coiling' and 'uncoiling' column bending shapes with relatively higher and comparable rates of dissipation to the original two-dimensional magma wagging model. We also calculate the seismic P-wave response of the crustal material around the volcanic conduit to the new whirling motions and propose seismic diagnostics for different wagging patterns using the time-lag between seismic stations. We test our model by analyzing pre-eruptive seismic data from the 2009 eruption of Redoubt Volcano. In addition to suggesting that the occurrence of elliptical whirling motion more than 1 week before the eruption, our analysis of seismic time-lags also implies that the 2009 eruption was accompanied by qualitative changes in the magma wagging behavior including fluctuations in eccentricity and a reversal in the direction of elliptical whirling motion when the eruption was immediately impending.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bock, Hendrik Pieter Jacobus; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi
2016-06-21
An apparatus, such as an electrical machine, is provided. The apparatus can include a rotor defining a rotor bore and a conduit disposed in and extending axially along the rotor bore. The conduit can have an annular conduit body defining a plurality of orifices disposed axially along the conduit and extending through the conduit body. The rotor can have an inner wall that at least partially defines the rotor bore. The orifices can extend through the conduit body along respective orifice directions, and the rotor and conduit can be configured to provide a line of sight along the orifice directionmore » from the respective orifices to the inner wall.« less
Aneurysm of the right ventricular outflow following bovine valved venous conduit insertion.
Boudjemline, Younes; Bonnet, Damien; Agnoletti, Gabriella; Vouhé, Pascal
2003-01-01
A case of aneurysm of the right ventricular outflow tract is described after repair of tetralogy of Fallot using a Contegra supported conduit. Angiograms revealed that the aneurysm was located between the ventricular anastomosis and the proximal ring of the conduit confirming echocardiographic data. Because the conduit between the rings was not dilated, the valve was perfectly functioning. Pulmonary anastomosis was severely stenosed explaining the dilatation seen below. Conduit replacement with resection of the aneurysmal part of the failing conduit was performed. Supported conduits do not eliminate the risk of secondary dilatation below the artificial ring but preserve valvular function.
Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration.
Cui, Tongkui; Yan, Yongnian; Zhang, Renji; Liu, Li; Xu, Wei; Wang, Xiaohong
2009-03-01
A new technique for preparing double-layer polyurethane (PU)-collagen nerve conduits for peripheral nerve repair via a double-nozzle, low-temperature, deposition manufacturing (DLDM) system has been developed. The DLDM system is based on a digital prototyping approach, and uses a combination of thermally induced phase separation and freeze-drying. With this system, two kinds of biomaterials with different properties can be combined to produce scaffold structures with good biocompatibility in the inner layer and with the desired mechanical strength protruded by the outer. The forming precision is high, the wall thickness can be controlled, and a tight connection between the two layers can be achieved. The effects of changing the processing parameters and the material temperature on the structure of the scaffolds have been investigated. Additionally, the effect of material concentration on the mechanical strength and hydrophilic properties of the scaffolds has also been studied. Ideal peripheral nerve repair conduits, comprising an outer microporous layer of PU and internal oriented filaments of collagen, have been manufactured through optimizing the processing parameters and the biomaterial concentrations.
Geology of the ultrabasic to basic Uitkomst complex, eastern Transvaal, South Africa: an overview
NASA Astrophysics Data System (ADS)
Gauert, C. D. K.; De Waal, S. A.; Wallmach, T.
1995-11-01
The Uitkomst complex in eastern Transvaal, South Africa, is a mineralized, layered ultrabasic to basic intrusion of Bushveld complex age (2.05-2.06 Ga) that intruded into the sedimentary rocks of the Lower Transvaal Supergroup. The complex is situated 20 km north of Badplaas. It is elongated in a northwesterly direction and is exposed over a total distance of 9 km. The intrusion is interpreted to have an anvil-shaped cross-section with a true thickness of approximately 800 m and is enveloped by metamorphosed and, in places, brecciated country rocks. Post-Bushveld diabase intrusions caused considerable vertical dilation of teh complex. The complex consists of six lithological units (from bottom to top): Basal Gabbro, Lower Harzburgite, Chromitiferous Harzburgite, Main Harzburgite, Pyroxenite and Gabbronorite. The Basal Gabbro Unit, developed at the base of the intrusion and showing a narrow chilled margin of 0.2 to 1.5 m against the floor rocks, has an average thickness of 6 m and grades upwards into the sulphide-rich and xenolith-bearing sequence of the Lower Harzburgite Unit. The latter unit averages 50 m in thickness and is gradationally overlain by the chromite-rich harzburgite of the Chromitiferous Harzburgite Unit (average thickness 60 m). Following on from the Chromitiferous Harzburgite Unit is the 330 m thick Main Harzburgite Unit. The Pyroxenite and Gabbronorite Units (total combined thickness of 310 m) form the uppermost formations of the intrusion. The three lower lithological units, Basal Gabbro to Chromitiferous Harzburgite, are highly altered by late magmatic, hydrothermal processes causing widespread serpentinization, steatitization, saussuritization and uralitization. Field relations, petrography and mineral and whole rock chemistry suggest the following sequence of events, The original emplacement of magma took place from northwest to southeast. The intrusion was bounded between two major fracture zones that gave rise to an elongated body, which acted as a conduit for later magma heaves. The first magma pulses, forming the chilled margin of the intrusion, show chemical affinities to a micropyroxenite described from the Bushveld complex. The Lower Harzburgite and Chromitiferous Harzburgite Units, judged from the abundance of xenoliths, originated by crystal settling from a contaminated basic magma. The Main Harzburgite crystallized from a magma of constant, probably also basic, composition, which flowed through the conduit after formation of the lower three lithological units. At a late stage of emplacement, after replenishment in the conduit came to a standstill, closed system conditions developed in the upper part of the complex, resulting in a magma fractionation trend of increasing incompatible elements contents towards the top of the intrusion. The mineralization in the lower three rock units and at the base was most probably caused by a segregating sulphide liquid forced to precipitate by the oxidative degassing of dolomite. Sulphur isotope ratios indicate various degrees of contamination of the magma by the enveloping sedimentary rocks, which provided the necessary amounts of S to reach S saturation.
[Method to make the tricuspid extracardiac conduit by heterogeneous pericardium].
Yamagishi, M; Imai, Y; Koh, Y; Nagatsu, M; Matsuo, K; Kurosawa, H
1992-07-01
We described here, how to make tricuspid extracardiac conduit by heterogeneous pericardium for Rastelli procedure. We have developed some ingenious devices which allow to obtain good hemodynamics. One of the devices is large valvular leaflets as long as 130% of the circumference of the conduit. Another device is the commissural suture as figure of eight. We used 121 tricuspid extracardiac conduits between January 1985 and March 1991. There were two reoperations: One from stenosis at the suture with ventricle and the other from infective endocarditis. This hand-made conduit has the advantages of flexibility, fitness with the pulmonary artery, wide range of size and very little regurgitation. These advantages indicate that the tricuspid extracardiac conduit made by heterogeneous pericardium is a valved conduit substitute of choice for Rastelli procedure. The durability of the conduit is to be further evaluated.
Sung, H W; Witzel, T H; Hata, C; Tu, R; Shen, S H; Lin, D; Noishiki, Y; Tomizawa, Y; Quijano, R C
1993-04-01
Many congenital cardiac malformations may require a valved conduit for the reconstruction of the right ventricular outflow tract. In spite of many endeavors made in the last 25 years, the clinical results of right ventricular outflow tract reconstruction with currently available valved conduits are still not satisfactory. Specific problems encountered clinically include suboptimal hemodynamic performance, conduit kinking or compression, and fibrous peeling from the luminal surface. To address these deficiencies, we undertook the development of a biological valved conduit: a bovine external jugular vein graft with a retained native valve cross-linked with a diglycidyl ether (DE). This study, using a canine model, was to evaluate the functional and hemodynamic performance of this newly developed valved conduit. Three 14 mm conduits, implanted as bypass grafts, right ventricle to pulmonary artery, were evaluated. The evaluation was conducted with a noninvasive color Doppler flow mapping system at pre-implantation, immediately post implantation, one- and three-months post implantation, and prior to retrieval (five-months post implantation). The two-dimensional tomographic inspection of the leaflet motion at various periods post implantation showed that the valvular leaflets in the DE treated conduit was quite pliable. No cardiac failure or valvular dysfunction was observed in any of the studied cases. The color Doppler flow mapping study demonstrated that the valve in the DE treated conduit was competent, with no conduit kinking or compression observed in any of the three cases. The spectral Doppler velocity study evidenced that the transvalvular pressure gradients of the DE treated conduit were minimal as compared to those of the currently available conduits. In conclusion, from the functional and hemodynamic performance points of view, this newly developed valved conduit is superior to those currently available.
Hickey, Edward J; McCrindle, Brian W; Blackstone, Eugene H; Yeh, Thomas; Pigula, Frank; Clarke, David; Tchervenkov, Christo I; Hawkins, John
2008-05-01
Limited availability and durability of allograft conduits require that alternatives be considered. We compared bovine jugular venous valved (JVV) and allograft conduit performance in 107 infants who survived truncus arteriosus repair. Children were prospectively recruited between 2003 and 2007 from 17 institutions. The median z-score for JVV (n=27, all 12 mm) was +2.1 (range +1.2 to +3.2) and allograft (n=80, 9-15mm) was +1.7 (range -0.4 to +3.6). Propensity-adjusted comparison of conduit survival was undertaken using parametric risk-hazard analysis and competing risks techniques. All available echocardiograms (n=745) were used to model deterioration of conduit function in regression equations adjusted for repeated measures. Overall conduit survival was 64+/-9% at 3 years. Conduit replacement was for conduit stenosis (n=16) and/or pulmonary artery stenosis (n=18) or regurgitation (n=1). The propensity-adjusted 3-year freedom from replacement for in-conduit stenosis was 96+/-4% for JVV and 69+/-8% for allograft (p=0.05). The risk of intervention or replacement for branch pulmonary artery stenosis was similar for JVV and allograft. Smaller conduit z-score predicted poor conduit performance (p<0.01) with best outcome between +1 and +3. Although JVV conduits were a uniform diameter, their z-score more consistently matched this ideal. JVV exhibited a non-significant trend towards slower progression of conduit regurgitation and peak right ventricular outflow tract (RVOT) gradient. In addition, catheter intervention was more successful at slowing subsequent gradient progression in children with JVV versus those with allograft (p<0.01). JVV does match allograft performance and may be advantageous. It is an appropriate first choice for repair of truncus arteriosus, and perhaps other small infants requiring RVOT reconstruction.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
... forth by the American Society for Testing and Materials (ASTM) for the welded form of chromium-nickel... configuration and welding along the seam. WSSP is a commodity product generally used as a conduit to transmit...
Molten salt as a heat transfer fluid for heating a subsurface formation
Nguyen, Scott Vinh; Vinegar, Harold J.
2010-11-16
A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.
Heating systems for heating subsurface formations
Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX
2011-04-26
Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.
Vikre, Peter; Graybeal, Frederick T.; Koutz, Fleetwood R.
2014-01-01
The Santa Cruz porphyry Cu-(Mo) system near Casa Grande, Arizona, includes the Sacaton mine deposits and at least five other concealed, mineralized fault blocks with an estimated minimum resource of 1.5 Gt @ 0.6% Cu. The Late Cretaceous-Paleocene system has been dismembered and rotated by Tertiary extension, partially eroded, and covered by Tertiary-Quaternary basin-fill deposits. The mine and mineralized fault blocks, which form an 11 km (~7 miles) by 1.6 km (~1 mile) NE-SW–trending alignment, represent either pieces of one large deposit, several deposits, or pieces of several deposits. The southwestern part of the known system is penetrated by three or more diatremes that consist of heterolithic breccia pipes with basalt and clastic matrices, and subannular tuff ring and maar-fill sedimentary deposits associated with vents. The tephra and maar-fill deposits, which are covered by ~485 to 910 m (~1,600–3,000 ft) of basin fill, lie on a mid-Tertiary erosion surface of Middle Proterozoic granite and Late Cretaceous porphyry, which compose most xenoliths in pipes and are the host rocks of the system. Some igneous xenoliths in the pipes contain bornite-chalcopyrite-covellite assemblages with hypogene grades >1 wt % Cu, 0.01 ounces per ton (oz/t) Au, 0.5 oz/t Ag, and small amounts of Mo (<0.01 wt %). These xenoliths were derived from mineralized rocks that have not been encountered in drill holes, and attest to additional, possibly higher-grade deposits within or subjacent to the known system.The geometry, stratigraphy, and temporal relationships of pipes and tephras, interpreted from drill hole spacing and intercepts, multigenerational breccias and matrices, reequilibrated and partially decomposed sulfide-oxide mineral assemblages, melted xenoliths, and breccia matrix compositions show that the diatremes formed in repeated stages. Initial pulses of basalt magma fractured granite, porphyry, and other crustal rocks during intrusion, transported multi-sized fragments of these rocks upward, and partially melted small fragments. Rapid decompression of magma induced catastrophic devolatilization that ruptured overlying rocks to the surface, and generated fragment-volatile suspensions that abraded conduits into near-vertical cylindrical structures. Fragments entrained in suspensions were milled and sorted, and ejected as basal surge, pyroclastic deposits, and airfall tephra that built tuff rings around vents and filled vent depressions. Comminuted m- to mm-sized fragments of wall rocks in magma and suspensions that remained in conduits solidified as heterolithic breccias. Subsequent pulses of basalt magma ascended through the same conduits, brecciated older heterolithic breccias, devolatilized, and quenched, leaving two or more generations of nested and mingled heterolithic breccias and internal zones of fluidized fragments. Tephra and maar-fill deposits from later eruptions are composed of more hydrous and oxidized minerals than earlier tephras, reflecting a higher proportion of water in transport fluid which, based on fluid inclusion populations in mineralized xenoliths, was saline water and CO2. The large vertical extent (~600 m; ~2,000 ft) of basalt matrix in pipes, near-paleosurface matrix vesiculation, and plastically deformed basalt lapilli indicates that diatreme eruptions were predominantly phreatic.Diatreme xenoliths represent crustal stratigraphy and, as in the Santa Cruz system, provide evidence of concealed mineral resources that can guide exploration drilling through cover. Vectors to the source of bornite-dominant xenoliths containing >1% Cu and significant Au and Ag could be determined by refinement of breccia pipe geometries, by reassembly of mineralized fault blocks using modal, chemical, and temporal characteristics of hydrothermal mineral assemblages and fluid inclusions, and by paleodrainage analysis.
Using TLS to Improve Models of Volcano Conduit Processes (Invited)
NASA Astrophysics Data System (ADS)
Connor, C.; Connor, L.
2010-12-01
In volcanology, diverse numerical models of conduit flow have been developed to relate the properties of these flows to processes that occur at the surface during eruptions. Conduit models incorporate varying degrees of complexity and account for the transport properties of magmas, steady-state or transient behavior, and conduit geometry (e.g., 1- to 1.5 D, variable width and erodable conduit walls). Improvement of these models is important if we are to work toward deployment of eruption models at active volcanoes, link these models to geophysical observations (seismic, deformation, gravity) and eventually forecast eruption magnitude. One conclusion of a recent comparison of many conduit models is that next generation models need to better account for interaction of the erupting mixture with surrounding wall rocks (accounting for melting, solidification, and erosion) and better account for the effects of conduit shape on flows. We made progress toward accounting for this interaction by using TLS to map basaltic conduits in a deeply eroded volcanic field, the San Rafael volcanic field, Utah. TLS data were collected with UNAVCO support during a field campaign in summer 2010. A region of approximately 1 x 1 km was imaged from 9 TLS stations. TLS data reveal the exact geometries of several exposed conduits, their relationship to sills and dikes, and dramatic change in reflectivity of the Entrada sandstone country rock with alteration. The TLS data are particularly good for (a) quantifying rapid change in conduit shape and area as a function of height, (b) differentiating breccias zones (complex mixing zones along conduit margins) from areas of late stage intrusion, (c) imaging complexity of sill geometry near conduits, illustrating the mechanical and perhaps geochemical interaction between sills and conduits in volcanic fields. Overall, application of TLS in this volcanic field has resulted in substantial improvement in our models of volcanic conduit formation, growth, and interaction with shallow magma storage systems.
Microchannel heat sink assembly
Bonde, W.L.; Contolini, R.J.
1992-03-24
The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.
NASA Astrophysics Data System (ADS)
Heap, Michael J.; Violay, Marie; Wadsworth, Fabian B.; Vasseur, Jérémie
2017-04-01
Explosive silicic volcanism is driven by gas overpressure in systems that are inefficient at outgassing. The zone at the margin of a volcanic conduit-thought to play an important role in the outgassing of magma and therefore pore pressure changes and explosivity-is the boundary through which heat is exchanged from the hot magma to the colder country rock. Using a simple heat transfer model, we first show that the isotherm for the glass transition temperature (whereat the glass within the groundmass transitions from a glass to an undercooled liquid) moves into the country rock when the magma within the conduit can stay hot, or into the conduit when the magma is quasi-stagnant and cools (on the centimetric scale over days to months). We then explore the influence of a migrating viscous boundary on compactive deformation micromechanisms in the conduit margin zone using high-pressure (effective pressure of 40 MPa), high-temperature (up to 800 °C) triaxial deformation experiments on porous andesite. Our experiments show that the micromechanism facilitating compaction in andesite is localised cataclastic pore collapse at all temperatures below the glass transition of the amorphous groundmass glass Tg (i.e., rock). In this regime, porosity is only reduced within the bands of crushed pores; the porosity outside the bands remains unchanged. Further, the strength of andesite is a positive function of temperature below the threshold Tg due to thermal expansion driven microcrack closure. The micromechanism driving compaction above Tg (i.e., magma) is the distributed viscous flow of the melt phase. In this regime, porosity loss is distributed and is accommodated by the widespread flattening and closure of pores. We find that viscous flow is much more efficient at reducing porosity than cataclastic pore collapse, and that it requires stresses much lower than those required to form bands of crushed pores. Our study therefore highlights that temperature excursions can result in a change in deformation micromechanism that drastically alters the mechanical and hydraulic properties of the material within the conduit margin zone, with possible implications for pore pressure augmentation and explosive behaviour.
Experimental investigations of aeration efficiency in high-head gated circular conduits.
Cihat Tuna, M; Ozkan, Fahri; Baylar, Ahmet
2014-01-01
The primary purpose of water aeration is to increase the oxygen saturation of the water. This can be achieved by using hydraulic structures because of substantial air bubble entrainment at these structures. Closed conduit aeration is a particular instance of this. While there has been a great deal of research on air-demand ratio within closed conduit, very little research has specifically addressed aeration efficiency of closed conduit. In the present work an experimental study was conducted to investigate the aeration efficiency of high-head gated circular conduits. Results showed that high-head gated circular conduits were effective for oxygen transfer. The effects of Froude number and ratio of the water cross-sectional flow area to the conduit cross-sectional area on aeration efficiency were particularly significant, whereas the effect of conduit length was only moderate. Further, a design formula for the aeration efficiency was presented relating the aeration efficiency to ratio of water cross-sectional flow area to conduit cross-sectional area and Froude number. The obtained results will be useful in future modeling processes and aid the practicing engineer in predicting aeration efficiency for design purposes.
Glacial moulin formation triggered by rapid lake drainage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Matt
Scientists at Los Alamos National Laboratory and collaborators are uncovering the mystery of how, where and when a glacial feature called a moulin can form on the Greenland Ice Sheet. Moulins, drain-like holes that form in glaciers, funnel meltwater from the ice surface to the ground beneath, and they are the alarmingly efficient conduits that allow surface water to reach deep and drive the ice to flow faster.
A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.
Xie, Hongjian; Yang, Wen; Chen, Jianghai; Zhang, Jinxiang; Lu, Xiaochen; Zhao, Xiaobo; Huang, Kun; Li, Huili; Chang, Panpan; Wang, Zheng; Wang, Lin
2015-10-28
Peripheral nerve gap defects lead to significant loss of sensory or motor function. Tissue engineering has become an important alternative to nerve repair. Sericin, a major component of silk, is a natural protein whose value in tissue engineering has just begun to be explored. Here, the first time use of sericin in vivo is reported as a long-term implant for peripheral nerve regeneration. A sericin nerve guidance conduit is designed and fabricated. This conduit is highly porous with mechanical strength matching peripheral nerve tissue. It supports Schwann cell proliferation and is capable of up-regulating the transcription of glial cell derived neurotrophic factor and nerve growth factor in Schwann cells. The sericin conduit wrapped with a silicone conduit (sericin/silicone double conduits) is used for bridging repair of a 5 mm gap in a rat sciatic nerve transection model. The sericin/silicone double conduits achieve functional recovery comparable to that of autologous nerve grafting as evidenced by drastically improved nerve function and morphology. Importantly, this improvement is mainly attributed to the sericin conduit as the silicone conduit alone only produces marginal functional recovery. This sericin/silicone-double-conduit strategy offers an efficient and valuable alternative to autologous nerve grafting for repairing damaged peripheral nerve. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conduit stability effects on intensity and steadiness of explosive eruptions.
Aravena, Álvaro; Cioni, Raffaello; de'Michieli Vitturi, Mattia; Neri, Augusto
2018-03-07
Conduit geometry affects magma ascent dynamics and, consequently, the style and evolution of volcanic eruptions. However, despite geological evidences support the occurrence of conduit widening during most volcanic eruptions, the factors controlling conduit enlargement are still unclear, and the effects of syn-eruptive variations of conduit geometry have not been investigated in depth yet. Based on numerical modeling and the application of appropriate stability criteria, we found out a strong relationship between magma rheology and conduit stability, with significant effects on eruptive dynamics. Indeed, in order to be stable, conduits feeding dacitic/rhyolitic eruptions need larger diameters respect to their phonolitic/trachytic counterparts, resulting in the higher eruption rates commonly observed in dacitic/rhyolitic explosive events. Thus, in addition to magma source conditions and viscosity-dependent efficiency for outgassing, we suggest that typical eruption rates for different magma types are also controlled by conduit stability. Results are consistent with a compilation of volcanological data and selected case studies. As stability conditions are not uniform along the conduit, widening is expected to vary in depth, and three axisymmetric geometries with depth-dependent radii were investigated. They are able to produce major modifications in eruptive parameters, suggesting that eruptive dynamics is influenced by syn-eruptive changes in conduit geometry.
Environmental tracers as indicators of karst conduits in groundwater in South Dakota, USA
Long, Andrew J.; Sawyer, J.F.; Putnam, L.D.
2008-01-01
Environmental tracers sampled from the carbonate Madison aquifer on the eastern flank of the Black Hills, South Dakota, USA indicated the approximate locations of four major karst conduits. Contamination issues are a major concern because these conduits are characterized by direct connections to sinking streams, high groundwater velocities, and proximity to public water supplies. Objectives of the study were to estimate approximate conduit locations and assess possible anthropogenic influences associated with conduits. Anomalies of young groundwater based on chlorofluorocarbons (CFCs), tritium, and electrical conductivity (EC) indicated fast moving, focused flow and thus the likely presence of conduits. ??18O was useful for determining sources of recharge for each conduit, and nitrate was a useful tracer for assessing flow paths for anthropogenic influences. Two of the four conduits terminate at or near a large spring complex. CFC apparent ages ranged from 15 years near conduits to >50 years in other areas. Nitrate-N concentrations >0.4 mg/L in groundwater were associated with each of the four conduits compared with concentrations ranging from <0.1 to 0.4 mg/L in other areas. These higher nitrate-N concentrations probably do not result from sinking streams but rather from other areas of infiltration. ?? Springer-Verlag 2007.
Saida, Yuuto; Tanaka, Ryou; Fukushima, Ryuji; Hoshi, Katsuichiro; Hira, Satoshi; Soda, Aiko; Iizuka, Tomoya; Ishikawa, Taisuke; Nishimura, Taiki; Yamane, Yoshihisa
2009-04-01
Right ventricle (RV)-pulmonary artery (PA) valved conduit (RPVC) implantation decreases RV systolic pressure in pulmonic stenosis (PS) by forming a bypass route between the RV and the PA. The present study evaluates valved conduits derived from canine aortae in a canine model of PS produced by pulmonary artery banding (PAB). Pulmonary stenosis was elicited using PAB in 10 conditioned beagles aged 8 months. Twelve weeks after PAB, the dogs were assigned to one group that did not undergo surgical intervention and another that underwent RPVC using denacol-treated canine aortic valved grafts (PAB+RPVC). Twelve weeks later, the rate of change in the RV-PA systolic pressure gradient was significantly decreased in the PAB+RPVC, compared with the PAB group (60.5 +/- 16.7% vs. 108.9 +/- 22.9%; p<0.01). In addition, the end-diastolic RV free wall thickness (RVFWd) was significantly reduced in the PAB+RPVC, compared with the PAB group (8.2 +/- 0.2 vs. 9.4 +/- 0.7 mm; p<0.05). Thereafter, regurgitation was not evident beyond the conduit valve and the decrease in RV pressure overload induced by RPVC was confirmed. The present results indicate that RPVC can be performed under a beating heart without cardiopulmonary bypass and adapted to dogs with various types of PS, including "supra valvular" PS or PS accompanied by dysplasia of the pulmonary valve. Therefore, we consider that this method is useful for treating PS in small animals.
NASA Technical Reports Server (NTRS)
Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)
2014-01-01
Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.
System and method measuring fluid flow in a conduit
Ortiz, Marcos German; Kidd, Terrel G.
1999-01-01
A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.
NASA Astrophysics Data System (ADS)
Vezzoli, Luigina; Corazzato, Claudia
2016-05-01
In the upper part of the Stromboli volcano, in the Le Croci and Bastimento areas, two dyke-like bodies of volcanic breccia up to two-metre thick crosscut and intrude the products of Vancori and Neostromboli volcanoes. We describe the lithofacies association of these unusual volcaniclastic dykes, interpret the setting of dyke-forming fractures and the emplacement mechanism of internal deposits, and discuss their probable relationships with the explosive eruption and major lateral collapse events that occurred at the end of the Neostromboli period. The dyke volcaniclastic deposits contain juvenile magmatic fragments (pyroclasts) suggesting a primary volcanic origin. Their petrographic characteristics are coincident with the Neostromboli products. The architecture of the infilling deposits comprises symmetrically-nested volcaniclastic units, separated by sub-vertical boundaries, which are parallel to the dyke margins. The volcanic units are composed of distinctive lithofacies. The more external facies is composed of fine and coarse ash showing sub-vertical laminations, parallel to the contact wall. The central facies comprises stratified, lithic-rich breccia and lapilli-tuff, whose stratification is sub-horizontal and convolute, discordant to the dyke margins. Only at Le Croci dyke, the final unit shows a massive tuff-breccia facies. The volcaniclastic dykes experienced a polyphasic geological evolution comprising three stages. The first phase consisted in fracturing, explosive intrusion related to magma rising and upward injection of magmatic fluids and pyroclasts. The second phase recorded the dilation of fractures and their role as pyroclastic conduits in an explosive eruption possibly coeval with the lateral collapse of the Neostromboli lava cone. Finally, in the third phase, the immediately post-eruption mass-flow remobilization of pyroclastic deposits took place on the volcano slopes.
Dome growth and destruction during the 1989-1990 eruption of redoubt volcano
Miller, T.P.
1994-01-01
Much of the six-month-long 1989-1990 eruption of Redoubt Volcano consisted of a dome-growth and -destructive phase in which 14 short-lived viscous silicic andesite domes were emplaced and 13 subsequently destroyed. The life span of an individual dome ranged from 3 to 21 days and volumes are estimated at 1 ?? 106 to 30 ?? 106 m3. Magma supply rates to the vent area averaged about 5 ?? 105 m3 / day for most of the dome-building phase and ranged from a high of 2.2 ?? 106 m3 per day initially to a low of 1.8 ?? 105 m3 per day at the waning stages of the eruption. The total volume of all domes is estimated to be about 90 ?? 106 m3 and may represent as much as 60-70% of the volume for the entire eruption. The site of 1989-1990 dome emplacement, like that in 1966, was on the margin of a north-facing amphitheatre-like summit crater. The domes were confined on the east and west by steep cliffs of pre-eruption cone-building volcanic rocks and thus were constrained to grow vertically. Rapid upward growth in a precarious site caused each dome to spread preferentially to the north, resulting in eventual gravitational collapse. As long as the present conduit remains active at Redoubt Volcano, any dome formed in a new eruption will be confined to a narrow steeply-sloping gorge, leading to rapid vertical growth and a tendency to collapse gravitationally. Repetitive cycles of dome formation and failure similar to those seen in 1989-1990 are probably the norm and must be considered in future hazard analyses of Redoubt Volcano. ?? 1994.
Klein, Silvan M; Vykoukal, Jody; Li, De-Pei; Pan, Hui-Lin; Zeitler, Katharina; Alt, Eckhard; Geis, Sebastian; Felthaus, Oliver; Prantl, Lukas
2016-07-01
Conduits preseeded with either Schwann cells or stem cells differentiated into Schwann cells demonstrated promising results for the outcome of nerve regeneration in nerve defects. The concept of this trial combines nerve repair by means of a commercially available nerve guidance conduit and preseeding with autologous, undifferentiated, adipose tissue-derived stem cells. Adipose tissue-derived stem cells were harvested from rats and subsequently seeded onto a U.S. Food and Drug Administration-approved type I collagen conduit. Sciatic nerve gaps 10 mm in length were created, and nerve repair was performed by the transplantation of either conduits preseeded with autologous adipose tissue-derived stem cells or acellular (control group) conduits. After 6 months, the motor and sensory nerve conduction velocity were assessed. Nerves were removed and examined by hematoxylin and eosin, van Gieson, and immunohistochemistry (S100 protein) staining for the quality of axonal regeneration. Nerve gaps treated with adipose tissue-derived stem cells showed superior nerve regeneration, reflected by higher motor and sensory nerve conduction velocity values. The motor and sensory nerve conduction velocity were significantly greater in nerves treated with conduits preseeded with adipose tissue-derived stem cells than in nerves treated with conduits alone (p < 0.05). Increased S100 immunoreactivity was detected for the adipose tissue-derived stem cell group. In this group, axon arrangement inside the conduits was more organized. Transplantation of adipose tissue-derived stem cells significantly improves motor and sensory nerve conduction velocity in peripheral nerve gaps. Preseeded conduits showed a more organized axon arrangement inside the conduit in comparison with nerve conduits alone. The approach used here could readily be translated into a clinical therapy. Therapeutic, V.
Münsterer, Andrea; Kasnar-Samprec, Jelena; Hörer, Jürgen; Cleuziou, Julie; Eicken, Andreas; Malcic, Ivan; Lange, Rüdiger; Schreiber, Christian
2013-09-01
To determine the incidence of right ventricle-to-pulmonary artery (RV-PA) conduit stenosis after the Norwood I operation in patients with hypoplastic left heart syndrome (HLHS), and to determine whether the treatment strategy of RV-PA conduit stenosis has an influence on interstage and overall survival. Ninety-six patients had a Norwood operation with RV-PA conduit between 2002 and 2011. Details of reoperations/interventions due to conduit obstruction prior to bidirectional superior cavopulmonary anastomosis (BSCPA) were collected. Overall pre-BSCPA mortality was 17%, early mortality after Norwood, 6%. Early angiography was performed in 34 patients due to desaturation at a median of 8 days after the Norwood operation. Fifteen patients (16%) were diagnosed with RV-PA conduit stenosis that required treatment. The location of the conduit stenosis was significantly different in the patients with non-ringed (proximal) and the patients with ring-enforced conduit (distal), P = 0.004. In 6 patients, a surgical revision of the conduit was performed; 3 of them died prior to BSCPA. Another 6 patients had a stent implantation and 3 were treated with balloon dilatation followed by a BSCPA in the subsequent 2 weeks. All patients who were treated interventionally for RV-PA conduit obstruction had a successful BSCPA. Patients who received a surgical RV-PA conduit revision had a significantly higher interstage (P = 0.044) and overall mortality (P = 0.011) than those who received a stent or balloon dilatation of the stenosis followed by an early BSCPA. RV-PA conduit obstruction after Norwood I procedure in patients with HLHS can be safely and effectively treated by stent implantation, balloon dilatation and early BSCPA. Surgical revision of the RV-PA conduit can be reserved for patients in whom an interventional approach fails, and an early BSCPA is not an option.
Belli, Emre; Salihoğlu, Ece; Leobon, Bertrand; Roubertie, François; Ly, Mohammed; Roussin, Régine; Serraf, Alain
2010-01-01
The surgical reconstruction of right ventricle outflow tract (RVOT) often requires the implantation of a valved conduit. Homografts are lacking availability and are associated with limited durability in children. Our experience with the Hancock porcine-valved Dacron (DuPont, Wilmington, DE) conduit (Medtronic, Minneapolis, MN) was retrospectively assessed. Follow-up was studied in 214 survivors who underwent 247 conduit implants between January 1990 and January 2007. Pulmonary atresia/ventricular septal defect was present in 86 (40.2%) and truncus arteriosus in 62 (29%). Conduit implantation was associated with anatomic repair in 136, conduit replacement in 96, and secondary pulmonary valve insertion in 15. Median age at operation was 62.5 months (range, 1 week to 50 years), including 14 neonates (6%). Median conduit size was 17.4 mm because of routine over-sizing. Pulmonary bifurcation patch augmentation was necessary in 26 patients. Periodic echocardiography studies were performed for a median follow-up of 98 months (range, 13 to 142 months). Three (1.4%) late deaths occurred. No conduit-related deaths or complications occurred. Conduit degeneration was associated with increase in valvular gradient. Valve regurgitation was absent or mild. Higher RVOT systolic pressure gradient at discharge did not influence conduit longevity. Conduit reoperation was delayed due to percutaneous balloon dilatation in 14 patients, associated with stenting in 7. Survival with freedom from conduit reoperation was 98% (95% confidence interval [CI], 97% to 100%) at 1 year, 81% (95% CI, 75% to 87%) at 5 years, and 32% (95% CI, 22% to 42%) at 10 years. The Hancock valved conduit is a safe and reliable alternative to homografts. It appears to be appropriate in patients with limited pulmonary vascular bed and high pulmonary artery pressures. Caution is required in neonates because of the rigidity of the Dacron housing. Initial results with secondary percutaneous procedures are encouraging. 2010 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Conduit enlargement in an eogenetic karst aquifer
NASA Astrophysics Data System (ADS)
Moore, Paul J.; Martin, Jonathan B.; Screaton, Elizabeth J.; Neuhoff, Philip S.
2010-11-01
SummaryMost concepts of conduit development have focused on telogenetic karst aquifers, where low matrix permeability focuses flow and dissolution along joints, fractures, and bedding planes. However, conduits also exist in eogenetic karst aquifers, despite high matrix permeability which accounts for a significant component of flow. This study investigates dissolution within a 6-km long conduit system in the eogenetic Upper Floridan aquifer of north-central Florida that begins with a continuous source of allogenic recharge at the Santa Fe River Sink and discharges from a first-magnitude spring at the Santa Fe River Rise. Three sources of water to the conduit include the allogenic recharge, diffuse recharge through epikarst, and mineralized water upwelling from depth. Results of sampling and inverse modeling using PHREEQC suggest that dissolution within the conduit is episodic, occurring only during 30% of 16 sampling times between March 2003 and April 2007. During low flow conditions, carbonate saturated water flows from the matrix to the conduit, restricting contact between undersaturated allogenic water with the conduit wall. When gradients reverse during high flow conditions, undersaturated allogenic recharge enters the matrix. During these limited periods, estimates of dissolution within the conduit suggest wall retreat averages about 4 × 10 -6 m/day, in agreement with upper estimates of maximum wall retreat for telogenetic karst. Because dissolution is episodic, time-averaged dissolution rates in the sink-rise system results in a wall retreat rate of about 7 × 10 -7 m/day, which is at the lower end of wall retreat for telogenetic karst. Because of the high permeability matrix, conduits in eogenetic karst thus enlarge not just at the walls of fractures or pre-existing conduits such as those in telogenetic karst, but also may produce a friable halo surrounding the conduits that may be removed by additional mechanical processes. These observations stress the importance of matrix permeability in eogenetic karst and suggest new concepts may be necessary to describe how conduits develop within these porous rocks.
NASA Astrophysics Data System (ADS)
Tuffen, Hugh; Dingwell, Don
2005-04-01
It is proposed that fault textures in two dissected rhyolitic conduits in Iceland preserve evidence for shallow seismogenic faulting within rising magma during the emplacement of highly viscous lava flows. Detailed field and petrographic analysis of such textures may shed light on the origin of long-period and hybrid volcanic earthquakes at active volcanoes. There is evidence at each conduit investigated for multiple seismogenic cycles, each of which involved four distinct evolutionary phases. In phase 1, shear fracture of unrelaxed magma was triggered by shear stress accumulation during viscous flow, forming the angular fracture networks that initiated faulting cycles. Transient pressure gradients were generated as the fractures opened, which led to fluidisation and clastic deposition of fine-grained particles that were derived from the fracture walls by abrasion. Fracture networks then progressively coalesced and rotated during subsequent slip (phase 2), developing into cataclasite zones with evidence for multiple localised slip events, fluidisation and grain size reduction. Phase 2 textures closely resemble those formed on seismogenic tectonic faults characterised by friction-controlled stick-slip behaviour. Increasing cohesion of cataclasites then led to aseismic, distributed ductile deformation (phase 3) and generated deformed cataclasite zones, which are enriched in metallic oxide microlites and resemble glassy pseudotachylite. Continued annealing and deformation eventually erased all structures in the cataclasite and formed microlite-rich flow bands in obsidian (phase 4). Overall, the mixed brittle-ductile textures formed in the magma appear similar to those formed in lower crustal rocks close to the brittle-ductile transition, with the rheological response mediated by strain-rate variations and frictional heating. Fault processes in highly viscous magma are compared with those elsewhere in the crust, and this comparison is used to appraise existing models of volcano seismic activity. Based on the textures observed, it is suggested that patterns of long-period and hybrid earthquakes at silicic lava domes reflect friction-controlled stick-slip movement and eventual healing of fault zones in magma, which are an accelerated and smaller-scale analogue of tectonic faults.
Observations of the eruptions of July 22 and August 7, 1980, at Mount St. Helens, Washington
Hoblitt, Richard P.
1986-01-01
The explosive eruptions of July 22 and August 7, 1980, at Mount St. Helens, Wash., both included multiple eruptive pulses. The beginnings of three of the pulses-two on July 22 and one on August 7-were witnessed and photographed. Each of these three began with a fountain of gases and pyroclasts that collapsed around the vent and generated a pyroclastic density flow. Significant vertical-eruption columns developed only after the density flows were generated. This behavior is attributable to either an increase in the gas content of the eruption jet or a decrease in vent radius with time. An increase in the gas content may have occurred as the vent was cleared (by expulsion of a plug of pyroclasts) or as the eruption began to tap deeper, gas-rich magma after first expelling the upper, gas-depleted part of the magma body. An effective decrease of the vent radius with time may have occurred as the eruption originated from progressively deeper levels in the vent. All of these processes-vent clearing; tapping of deeper, gas-rich magma; and effective decrease in vent radius-probably operated to some extent. A 'relief-valve' mechanism is proposed here to account for the occurrence of multiple eruptive pulses. This mechanism requires that the conduit above the magma body be filled with a bed of pyroclasts, and that the vesiculation rate in the magma body be inadequate to sustain continuous eruption. During a repose interval, vesiculation of the magma body would cause gas to flow upward through the bed of pyroclasts. If the rate at which the magma produced gas exceeded the rate at which gas escaped to the atmosphere, the vertical pressure difference across the bed of pyroclastic debris would increase, as would the gas-flow rate. Eventually a gas-flow rate would be achieved that would suddenly diminish the ability of the bed to maintain a pressure difference between the magma body and the atmosphere. The bed of pyroclasts would then be expelled (that is, the relief valve would open) and an eruption would commence. During the eruption, gas would be lost faster than it could be replaced by vesiculation, so the gas-flow rate in the conduit would decrease. Eventually the gas-flow rate would decrease to a value that would be inadequate to expel pyroclasts, so the conduit would again become choked with pyroclasts (that is, the relief valve would close). Another period of repose would commence. The eruption/repose sequence would be repeated until gas-production rates were inadequate to reopen the valve, either because the depth of the pyroclast bed had become too great, the volatile content of the magma had become too low, or the magma had been expended. A timed sequence of photographs of a pyroclastic density flow on August 7 indicates that, in general, the velocity of the flow front was determined by the underlying topography. Observations and details of the velocity/topography relationship suggest that both pyroclastic flows and pyroclastic surges formed. The following mechanism is consistent with the data. During initial fountain collapse and when the flow passed over steep, irregular terrain, a highly inflated suspension of gases and pyroclasts formed. In this suspension, the pyroclasts underwent rapid differential settling according to size and density; a relatively low-concentration, fine-grained upper phase formed over a relatively high-concentration coarse-grained phase. The low-particle-concentration phase (the pyroclastic surge) was subject to lower internal friction than the basal high-concentration phase (the pyroclastic flow), and so accelerated away from it. The surge advanced until it had deposited so much of its solid fraction that its net density became less than that of the ambient air. At this point it rose convectively off the ground, quickly decelerated, and was overtaken by the pyroclastic flow. The behavior of the flow of August 7 suggests that a pyroclastic density flow probably expands through the ingestion of ai
Homograft conduit failure in infants is not due to somatic outgrowth.
Wells, Winfield J; Arroyo, Hector; Bremner, Ross M; Wood, John; Starnes, Vaughn A
2002-07-01
It has been assumed that the need for homograft replacement is due to somatic outgrowth, but this has not been adequately studied. Our objective was to identify reasons for homograft conduit failure. The records and imaging studies of 40 patients undergoing homograft conduit replacement of the right ventricular outflow tract from 1996 to 2000 were retrospectively reviewed. The majority of patients had a diagnosis of tetralogy of Fallot (n = 20) and truncus arteriosus (n = 13). The median age at the initial operation was 8 months (0.25-108 months). The initial homograft sizes ranged from 9 to 22 mm, and 28 conduits were of pulmonary origin. When comparing size of the initial homograft with patients' expected pulmonary valve diameter (z = 0), oversizing was noted to be +3 (range, 0.83-5.4). Median interval to conduit failure was 5.3 years (0.83-11.3 years). At homograft replacement, only 12 patients had an existing conduit that was 1 SD below the homograft conduit size needed (z < or = -1). Most conduits had important regurgitation, but this was rarely a primary reason for reintervention (n = 1). Reoperation was usually required for stenosis, with a median gradient of 53 mm Hg (20-140 mm Hg). Stenosis was further categorized angiographically as follows: homograft valvular stenosis (shrinkage; 21/40 [53%]), distal anastomotic stenosis (4/40 [10%]), conduit kinking (3/40 [8%]), sternal compression (3/40 [8%]), posterior shelf impingement (2/40 [5%]), and somatic outgrowth (3/40 [8%]). Replacement in 2 patients was for proximal hood aneurysm. Several patients (7/40 [18%]) had stenosis at multiple levels. The average decrease in conduit diameter was 47% (28%-73%). Somatic outgrowth is seldom a primary reason for homograft conduit replacement of the right ventricular outflow tract. The most common cause for failure is conduit obstruction with thickening and shrinkage at the annular area. Conduit stenosis was responsible for failure in 53% of patients, technical issues were responsible for 30%, and only 8% failed as a result of somatic outgrowth. Placement of a smaller homograft (z = 0) at the initial operation may decrease the incidence of conduit kinking, sternal compression, and posterior shelf impingement.
Kobayashi, Daisuke; Gowda, Srinath T; Forbes, Thomas J
2014-08-01
A 9-year-old male, with history of pulmonary atresia and ventricular septal defect, status post complete repair with a 16 mm pulmonary homograft in the right ventricular outflow tract (RVOT) underwent 3110 Palmaz stent placement for conduit stenosis. Following deployment the stent embolized proximally into the right ventricle (RV). We undertook the choice of repositioning the embolized stent into the conduit with a transcatheter approach. Using a second venous access, the embolized stent was carefully maneuvered into the proximal part of conduit with an inflated Tyshak balloon catheter. A second Palmaz 4010 stent was deployed in the distal conduit telescoping through the embolized stent. The Tyshak balloon catheter was kept inflated in the RV to stabilize the embolized stent in the proximal conduit until it was successfully latched up against the conduit with the deployment of the overlapping second stent. One year later, he underwent Melody valve implantation in the pre-stented conduit relieving conduit insufficiency. This novel balloon assisted two-stents telescoping technique is a feasible transcatheter option to secure an embolized stent from the RV to the RVOT. © 2014 Wiley Periodicals, Inc.
Water Flow in Karst Aquifer Considering Dynamically Variable Saturation Conduit
NASA Astrophysics Data System (ADS)
Tan, Chaoqun; Hu, Bill X.
2017-04-01
The karst system is generally conceptualized as dual-porosity system, which is characterized by low conductivity and high storage continuum matrix and high conductivity and quick flow conduit networks. And so far, a common numerical model for simulating flow in karst aquifer is MODFLOW2005-CFP, which is released by USGS in 2008. However, the steady-state approach for conduit flow in CFP is physically impractical when simulating very dynamic hydraulics with variable saturation conduit. So, we adopt the method proposed by Reimann et al. (2011) to improve current model, in which Saint-Venant equations are used to model the flow in conduit. Considering the actual background that the conduit is very big and varies along flow path and the Dirichlet boundary varies with rainfall in our study area in Southwest China, we further investigate the influence of conduit diameter and outflow boundary on numerical model. And we also analyze the hydraulic process in multi-precipitation events. We find that the numerical model here corresponds well with CFP for saturated conduit, and it could depict the interaction between matrix and conduit during very dynamic hydraulics pretty well compare with CFP.
Yao, L; Daly, W; Newland, B; Yao, S; Wang, W; Chen, B K K; Madigan, N; Windebank, A; Pandit, A
2013-12-01
Functionalized biomaterial scaffolds targeted at improving axonal regeneration by enhancing guided axonal growth provide a promising approach for the repair of spinal cord injury. Collagen neural conduits provide structural guidance for neural tissue regeneration, and in this study it is shown that these conduits can also act as a reservoir for sustained gene delivery. Either a G-luciferase marker gene or a neurotrophin-3-encoding gene, complexed to a non-viral, cyclized, PEGylated transfection vector, was loaded within a multichannel collagen conduit. The complexed genes were then released in a controlled fashion using a dual release system both in vitro and in vivo. For evaluation of their biological performance, the loaded conduits were implanted into the completely transected rat thoracic spinal cord (T8-T10). Aligned axon regeneration through the channels of conduits was observed one month post-surgery. The conduits delivering neurotrophin-3 polyplexes resulted in significantly increased neurotrophin-3 levels in the surrounding tissue and a statistically higher number of regenerated axons versus the control conduits (P<0.05). This study suggests that collagen neural conduits delivering a highly effective non-viral therapeutic gene may hold promise for repair of the injured spinal cord.
30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. [Statutory Provisions] All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically...
30 CFR 77.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conduits enclosing power conductors. 77.700 Section 77.700 Mineral Resources MINE SAFETY AND HEALTH..., and conduits enclosing power conductors. Metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout and shall be grounded by methods approved by an...
30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. [Statutory Provisions] All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically...
30 CFR 77.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... conduits enclosing power conductors. 77.700 Section 77.700 Mineral Resources MINE SAFETY AND HEALTH..., and conduits enclosing power conductors. Metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout and shall be grounded by methods approved by an...
3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration
NASA Astrophysics Data System (ADS)
Hu, Yu; Wu, Yao; Gou, Zhiyuan; Tao, Jie; Zhang, Jiumeng; Liu, Qianqi; Kang, Tianyi; Jiang, Shu; Huang, Siqing; He, Jiankang; Chen, Shaochen; Du, Yanan; Gou, Maling
2016-08-01
Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed “lock and key” moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use.
Reeder, G S; Currie, P J; Fyfe, D A; Hagler, D J; Seward, J B; Tajik, A J
1984-11-01
Extracardiac valved conduits are often employed in the repair of certain complex congenital heart defects; late obstruction is a well recognized problem that usually requires catheterization for definitive diagnosis. A reliable noninvasive method for detecting conduit stenosis would be clinically useful in identifying the small proportion of patients who develop this problem. Continuous wave Doppler echocardiography has been used successfully to estimate cardiac valvular obstructive lesions noninvasively. Twenty-three patients with prior extracardiac conduit placement for complex congenital heart disease underwent echocardiographic and continuous wave Doppler echocardiographic examinations to determine the presence and severity of conduit stenosis. In 20 of the 23 patients, an adequate conduit flow velocity profile was obtained, and in 10 an abnormally increased conduit flow velocity was present. All but one patient had significant obstruction proven at surgery and in one patient, surgery was planned. In three patients, an adequate conduit flow velocity profile could not be obtained but obstruction was still suspected based on high velocity tricuspid regurgitant Doppler signals. In these three patients, subsequent surgery also proved that conduit stenosis was present. Doppler-predicted gradients and right ventricular pressures showed an overall good correlation (r = 0.90) with measurements at subsequent cardiac catheterization. Continuous wave Doppler echocardiography appears to be a useful noninvasive tool for the detection and semiquantitation of extracardiac conduit stenosis.
A novel conduit-based coaptation device for primary nerve repair.
Bamba, Ravinder; Riley, D Colton; Kelm, Nathaniel D; Cardwell, Nancy; Pollins, Alonda C; Afshari, Ashkan; Nguyen, Lyly; Dortch, Richard D; Thayer, Wesley P
2018-06-01
Conduit-based nerve repairs are commonly used for small nerve gaps, whereas primary repair may be performed if there is no tension on nerve endings. We hypothesize that a conduit-based nerve coaptation device will improve nerve repair outcomes by avoiding sutures at the nerve repair site and utilizing the advantages of a conduit-based repair. The left sciatic nerves of female Sprague-Dawley rats were transected and repaired using a novel conduit-based device. The conduit-based device group was compared to a control group of rats that underwent a standard end-to-end microsurgical repair of the sciatic nerve. Animals underwent behavioral assessments at weekly intervals post-operatively using the sciatic functional index (SFI) test. Animals were sacrificed at four weeks to obtain motor axon counts from immunohistochemistry. A sub-group of animals were sacrificed immediately post repair to obtain MRI images. SFI scores were superior in rats which received conduit-based repairs compared to the control group. Motor axon counts distal to the injury in the device group at four weeks were statistically superior to the control group. MRI tractography was used to demonstrate repair of two nerves using the novel conduit device. A conduit-based nerve coaptation device avoids sutures at the nerve repair site and leads to improved outcomes in a rat model. Conduit-based nerve repair devices have the potential to standardize nerve repairs while improving outcomes.
Method and apparatus for electrokinetic transport
NASA Technical Reports Server (NTRS)
James, Patrick Ismail (Inventor); Stejic, George (Inventor)
2012-01-01
Controlled electrokinetic transport of constituents of liquid media can be achieved by connecting at least two volumes containing liquid media with at least one dielectric medium with opposing dielectric surfaces in direct contact with said liquid media, and establishing at least one conduit across said dielectric medium, with a conduit inner surface surrounding a conduit volume and at least a first opening and a second opening opposite to the first opening. The conduit is arranged to connect two volumes containing liquid media and includes a set of at least three electrodes positioned in proximity of the inner conduit surface. A power supply is arranged to deliver energy to the electrodes such that time-varying potentials inside the conduit volume are established, where the superposition of said potentials represents at least one controllable traveling potential well that can travel between the opposing conduit openings.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, M.G.; Boucher, T.J.
1998-11-10
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, M.G.
1998-02-10
A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Method and apparatus for inspecting conduits
Spisak, Michael J.; Nance, Roy A.
1997-01-01
An apparatus and method for ultrasonic inspection of a conduit are provided. The method involves directing a first ultrasonic pulse at a particular area of the conduit at a first angle, receiving the reflected sound from the first ultrasonic pulse, substantially simultaneously or subsequently in very close time proximity directing a second ultrasonic pulse at said area of the conduit from a substantially different angle than said first angle, receiving the reflected sound from the second ultrasonic pulse, and comparing the received sounds to determine if there is a defect in that area of the conduit. The apparatus of the invention is suitable for carrying out the above-described method. The method and apparatus of the present invention provide the ability to distinguish between sounds reflected by defects in a conduit and sounds reflected by harmless deposits associated with the conduit.
Ortiz, Marcos German; Boucher, Timothy J.
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, Marcos German; Boucher, Timothy J
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, Marcos German
1998-01-01
A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
System and method measuring fluid flow in a conduit
Ortiz, M.G.; Kidd, T.G.
1999-05-18
A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.
Picos de Europa National and Regional parks (Northern Spain): the karst underground landscape
NASA Astrophysics Data System (ADS)
Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; Rodríguez-Rodríguez, Laura; José Domínguez-Cuesta, María; Meléndez-Asensio, Mónica; García-Sansegundo, Joaquín
2015-04-01
Karst caves represent an environmental with a high value from the Geoheritage and Geodiversity points of view given by hidden underground landscape practically reserved to the speleologists. Nevertheless, cave surveys, 3d models of caves and DEMs, and pictures can be used to approach the endokarst geoheritage characterization. The Picos de Europa National and Regional parks include the 14% of World's Deepest Caves (>1 km depth); moreover these parks shows a high environmental value related with seven protection figures: Biosphere Reserve, Special Protection Area, the Site of Community Importance, and four Natural Monument. The aim of this work is to present the Geoheritage values of the underground landscape of the Picos de Europa National and Regional parks. These parks involve several alpine karst massifs up to 700 km2 and 2,600 m asl, as the Picos de Europa mountains (declared Global Geosite by its geomorphological interest), the Mampodre Massif, and the Peñas Pintas and Yordas peaks (sited in Riaño dam area). The alpine karst involves a large underground landscape formed by more than 3,700 epigenic caves with 403 km of conduits. The 95 % of the cave conduits are located in the Picos de Europa mountains and correspond to caves up to 18.9 km length and 1.6 km depth; the 5 % of cave conduits are sited in other small karst areas and include caves up to 1.5 km length and 200 m depth. The karst caves present high natural, scientific and cultural values. The natural value corresponds to the singularity and the spectacular vertical development of the caves and a very high Geodiversity of cave features. The karst shows a high concentration of deep caves (81 caves deeper than 500 m) that is twice higher than the concentration of other karst areas, as Arabika Massif (Western Caucasus). The natural value is mainly related to the presence of geomorphological and hydrogeological features, highlighting high vadose canyons and shafts, old phreatic and epiphreatic conduits, few fluvial deposits, some speleothems (dripstone, flowstone), few ice caves, many underground streams, and karst springs. The scientific value corresponds to the cave records related to the regional evolution of the Cantabrian Range. The scientific studies evidence that the caves are originated prior to, at least, the Middle Pleistocene, in relation to mountain uplift, glaciations, fluvial incision, and the erosion of the alpine lithological seriesthat were above the karst. The cultural value is related with the specific uses of the cavities by shepherds and speleologists, and the singularity of cave names. The uses include traditional customs, as the livestock farming, the water collection, the elaboration of five types of cheese with Certificated of Origin, and sport uses by speleologists from many countries of Europe. The educative values are low due to the limitations of access inside the caves, although two caves are touristic and the entrance of some caves can be used to explain vadose shafts, relations between caves and glaciers and rivers or the underground water flow. GEOCAVE project (MAGRAMA-580/12 OAPN)
Renzi, Ronald F
2013-11-19
An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.
The Influence of Conduit Processes During Basaltic Plinian Eruptions.
NASA Astrophysics Data System (ADS)
Houghton, B. F.; Sable, J. E.; Wilson, C. J.; Coltelli, M.; Del Carlo, P.
2001-12-01
Basaltic volcanism is most typically thought to produce effusion of lava, with the most explosive manifestations ranging from mild Strombolian activity to more energetic fire fountain eruptions. However, some basaltic eruptions are now recognized as extremely violent, i.e. generating widespread phreatomagmatic, subplinian and Plinian fall deposits. These eruptions are particularly dangerous because the ascent rate of basaltic magma prior to eruption can be very rapid (giving warning times as little as a few hours) and because their precursors may be ignored or misunderstood. The main question addressed in this talk is: what conditions in the conduit cause basaltic magma to adopt an eruption style more typical of chemically evolved, highly viscous magmas? Possible mechanisms (acting singly, or in concert) are: (1) interaction between magma and water, (ii) very rapid ascent producing a delayed onset of degassing then exceptionally rapid "runaway" vesiculation at shallow levels in the conduit, (iii) microlite crystallization and degassing of the magma during ascent leading to increased viscosity. We focus here on two examples of basaltic Plinian volcanism: the 1886 eruption of Tarawera, New Zealand, which is the youngest known basaltic Plinian eruption and the only one for which there are detailed written eyewitness accounts, and the well documented 122 BC eruption of Mount Etna, Italy. Field and laboratory evidence suggests that the Plinian phase of the 1886 eruption was a consequence of two processes. Firstly rheologic changes during magma ascent accompanied early (pre-fragmentation) interaction between the basaltic melt and water-bearing rhyolitic units forming the conduit walls and, secondly, late-stage magma:water interaction. In contrast, during the 122 BC eruption tectonic processes, such as slope failure or permanent displacement of a mobile flank of the volcano, appear to have triggered exceptionally rapid ascent, delayed onset of degassing and exceptionally rapid vesiculation at shallow levels in the conduit.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep (Inventor); Fujita, Toshio (Inventor)
1991-01-01
A thermal power transfer system using a phase change liquid gas fluid in a closed loop configuration has a heat exchanger member connected to a gas conduit for inputting thermal energy into the fluid. The pressure in the gas conduit is higher than a liquid conduit that is connected to a heat exchanger member for outputting thermal energy. A solid electrolyte member acts as a barrier between the gas conduit and the liquid conduit adjacent to a solid electrolyte member. The solid electrolyte member has the capacity of transmitting ions of a fluid through the electrolyte member. The ions can be recombined with electrons with the assistance of a porous electrode. An electrical field is applied across the solid electrolyte member to force the ions of the fluid from a lower pressure liquid conduit to the higher pressure gas conduit.
Ortiz, M.G.; Boucher, T.J.
1998-10-27
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Systems and methods for retaining and removing irradiation targets in a nuclear reactor
Runkle, Gary A.; Matsumoto, Jack T.; Dayal, Yogeshwar; Heinold, Mark R.
2015-12-08
A retainer is placed on a conduit to control movement of objects within the conduit in access-restricted areas. Retainers can prevent or allow movement in the conduit in a discriminatory fashion. A fork with variable-spacing between prongs can be a retainer and be extended or collapsed with respect to the conduit to change the size of the conduit. Different objects of different sizes may thus react to the fork differently, some passing and some being blocked. Retainers can be installed in inaccessible areas and allow selective movement in remote portions of conduit where users cannot directly interface, including below nuclear reactors. Position detectors can monitor the movement of objects through the conduit remotely as well, permitting engagement of a desired level of restriction and object movement. Retainers are useable in a variety of nuclear power plants and with irradiation target delivery, harvesting, driving, and other remote handling or robotic systems.
Engineering Bi-Layer Nanofibrous Conduits for Peripheral Nerve Regeneration
Zhu, Yiqian; Wang, Aijun; Patel, Shyam; Kurpinski, Kyle; Diao, Edward; Bao, Xuan; Kwong, George; Young, William L.
2011-01-01
Trauma injuries often cause peripheral nerve damage and disability. A goal in neural tissue engineering is to develop synthetic nerve conduits for peripheral nerve regeneration having therapeutic efficacy comparable to that of autografts. Nanofibrous conduits with aligned nanofibers have been shown to promote nerve regeneration, but current fabrication methods rely on rolling a fibrous sheet into the shape of a conduit, which results in a graft with inconsistent size and a discontinuous joint or seam. In addition, the long-term effects of nanofibrous nerve conduits, in comparison with autografts, are still unknown. Here we developed a novel one-step electrospinning process and, for the first time, fabricated a seamless bi-layer nanofibrous nerve conduit: the luminal layer having longitudinally aligned nanofibers to promote nerve regeneration, and the outer layer having randomly organized nanofibers for mechanical support. Long-term in vivo studies demonstrated that bi-layer aligned nanofibrous nerve conduits were superior to random nanofibrous conduits and had comparable therapeutic effects to autografts for nerve regeneration. In summary, we showed that the engineered nanostructure had a significant impact on neural tissue regeneration in situ. The results from this study will also lead to the scalable fabrication of engineered nanofibrous nerve conduits with designed nanostructure. This technology platform can be combined with drug delivery and cell therapies for tissue engineering. PMID:21501089
A one-dimensional heat-transport model for conduit flow in karst aquifers
Long, Andrew J.; Gilcrease, P.C.
2009-01-01
A one-dimensional heat-transport model for conduit flow in karst aquifers is presented as an alternative to two or three-dimensional distributed-parameter models, which are data intensive and require knowledge of conduit locations. This model can be applied for cases where water temperature in a well or spring receives all or part of its water from a phreatic conduit. Heat transport in the conduit is simulated by using a physically-based heat-transport equation that accounts for inflow of diffuse flow from smaller openings and fissures in the surrounding aquifer during periods of low recharge. Additional diffuse flow that is within the zone of influence of the well or spring but has not interacted with the conduit is accounted for with a binary mixing equation to proportion these different water sources. The estimation of this proportion through inverse modeling is useful for the assessment of contaminant vulnerability and well-head or spring protection. The model was applied to 7 months of continuous temperature data for a sinking stream that recharges a conduit and a pumped well open to the Madison aquifer in western South Dakota. The simulated conduit-flow fraction to the well ranged from 2% to 31% of total flow, and simulated conduit velocity ranged from 44 to 353 m/d.
A 3D-engineered porous conduit for peripheral nerve repair
Tao, Jie; Hu, Yu; Wang, Shujuan; Zhang, Jiumeng; Liu, Xuan; Gou, Zhiyuan; Cheng, Hao; Liu, Qianqi; Zhang, Qianqian; You, Shenglan; Gou, Maling
2017-01-01
End-to-end neurorrhaphy is the most commonly used method for treating peripheral nerve injury. However, only 50% of patients can regain useful function after treating with neurorrhaphy. Here, we constructed a 3D-engineered porous conduit to promote the function recovery of the transected peripheral nerve after neurorrhaphy. The conduit that consisted of a gelatin cryogel was prepared by molding with 3D-printed moulds. Due to its porous structure and excellent mechanical properties, this conduit could be collapsed by the mechanical force and resumed its original shape after absorption of normal saline. This shape-memory property allowed a simply surgery process for installing the conduits. Moreover, the biodegradable conduit could prevent the infiltration of fibroblasts and reduce the risk of scar tissue, which could provide an advantageous environment for nerve regeneration. The efficiency of the conduits in assisting peripheral nerve regeneration after neurorrhaphy was evaluated in a rat sciatic nerve transected model. Results indicated that conduits significantly benefitted the recovery of the transected peripheral nerve after end-to-end neurorrhaphy on the static sciatic index (SSI), electrophysiological results and the re-innervation of the gastrocnemius muscle. This work demonstrates a biodegradable nerve conduit that has potentially clinical application in promoting the neurorrhaphy. PMID:28401914
NASA Astrophysics Data System (ADS)
Mullet, B.; Segall, P.
2017-12-01
Explosive volcanic eruptions can exhibit abrupt changes in physical behavior. In the most extreme cases, high rates of mass discharge are interspaced by dramatic drops in activity and periods of quiescence. Simple models predict exponential decay in magma chamber pressure, leading to a gradual tapering of eruptive flux. Abrupt changes in eruptive flux therefore indicate that relief of chamber pressure cannot be the only control of the evolution of such eruptions. We present a simplified physics-based model of conduit flow during an explosive volcanic eruption that attempts to predict stress-induced conduit collapse linked to co-eruptive pressure loss. The model couples a simple two phase (gas-melt) 1-D conduit solution of the continuity and momentum equations with a Mohr-Coulomb failure condition for the conduit wall rock. First order models of volatile exsolution (i.e. phase mass transfer) and fragmentation are incorporated. The interphase interaction force changes dramatically between flow regimes, so smoothing of this force is critical for realistic results. Reductions in the interphase force lead to significant relative phase velocities, highlighting the deficiency of homogenous flow models. Lateral gas loss through conduit walls is incorporated using a membrane-diffusion model with depth dependent wall rock permeability. Rapid eruptive flux results in a decrease of chamber and conduit pressure, which leads to a critical deviatoric stress condition at the conduit wall. Analogous stress distributions have been analyzed for wellbores, where much work has been directed at determining conditions that lead to wellbore failure using Mohr-Coulomb failure theory. We extend this framework to cylindrical volcanic conduits, where large deviatoric stresses can develop co-eruptively leading to multiple distinct failure regimes depending on principal stress orientations. These failure regimes are categorized and possible implications for conduit flow are discussed, including cessation of eruption.
Carney, John P; Zhang, Lindsey M; Larson, Jeffrey J; Lahti, Matthew T; Robinson, Nicholas A; Dalmasso, Agustin P; Bianco, Richard W
2017-07-01
Xenograft conduits have been used successfully to repair congenital heart defects, but are prone to failure over time. Hence, in order to improve patient outcomes, better xenografts are being developed. When evaluating a conduit's performance and safety it must first be compared against a clinically available control in a large animal model. The study aim was to evaluate a clinically available xenograft conduit used in right ventricular outflow tract (RVOT) reconstruction in a sheep model. RVOT reconstruction was performed in 13 adult and juvenile sheep, using the Medtronic Hancock® Bioprosthetic Valved Conduit (Hancock conduit). The method had previously been used on patients, and a newly modified variant termed 'RVOT Extraction' was employed to facilitate the surgical procedure. Animals were monitored over predetermined terms of 70 to 140 days. Serial transthoracic echocardiography, intracardiac pressure measurements and angiography were performed. On study completion the animals were euthanized and necropsies performed. Two animals died prior to their designated study term due to severe valvular stenosis and distal conduit narrowing, respectively. Thus, 11 animals survived the study term, with few or no complications. Generally, maximal and mean transvalvular pressure gradients across the implanted conduits were increased throughout the postoperative course. Among 11 full-term animals, seven conduits were patent with mild or no pseudointimal proliferation and with flexible leaflets maintaining the hemodynamic integrity of the valve. RVOT reconstruction using the Hancock conduit was shown to be successful in sheep, with durable and efficient performances. With its extensive clinical use in patients, and ability for long-term use in sheep (as described in the present study) it can be concluded that the Hancock conduit is an excellent control device for the evaluation of new xenografts in future preclinical studies.
Xenograft transplantation in congenital cardiac surgery at Baskent University: midterm results.
Ozkan, S; Akay, T H; Gultekin, B; Sezgin, A; Tokel, K; Aslamaci, S
2007-05-01
Xenograft valved conduits have been used in several cardiac pathologies. In this study we have presented our midterm results of pediatric patients pathologies who were operated with xenograft conduits. Between January 1999 and January 2005, 134 patients underwent open heart surgery with xenograft conduits. The conduits were used to establish the continuity of the right ventricle to the pulmonary artery or aorta, the left ventricle to the pulmonary artery, or aorta due to various types of complex cardiac anomalies. Patients were evaluated by transthoracic echocardiography (ECHO) at 6-month follow-ups. Cardiac catheterization was performed when ECHO demonstrated significant conduit failure. Hospital mortality was observed in 28 patients (20.1%), and 13 patients died upon follow-up (9.7%). Mean follow-up was 24.6 +/- 4 months (range, 13 to 85 months). Among 93 survivors 20 patients (21.5%) were reoperated due to conduit failure. The main reasons for conduit failure were stenosis (n=13), valvular regurgitation (n=2), or both conditions in 5 cases. Mean pulmonary gradient before conduit re-replacement was 47.7 +/- 30.1 mmHg. The 1-, 3-, and 6-year actuarial survival rates were 95 +/- 2%, 91 +/- 3%, and 86 +/- 5%. The 1-, 3-, and 6-year actuarial freedom rates from reoperation were 95 +/- 1%, 90 +/- 3%, and 86 +/- 4%. An increased gradient between the pulmonary artery and the right ventricle and prolonged cardiopulmonary bypass times were observed to be significant risk factors for reoperation. There was no mortality among reoperated patients. Xenograft conduits should be closely followed for calcification and stenosis. Conduit stenosis is the major risk factor for reoperation. In these patients, reoperation for conduit replacement can be performed safely before deterioration of cardiac performance.
NASA Astrophysics Data System (ADS)
Liang, C.; Prochnow, B. N.; OReilly, O. J.; Dunham, E. M.; Karlstrom, L.
2016-12-01
Oscillation of magma in volcanic conduits connected to cracks (dikes and sills) has been suggested as an explanation for very long period (VLP) seismic signals recorded at active basaltic volcanoes such as. Kilauea, Hawaii, and Erebus, Antarctica. We investigate the VLP seismicity using a linearized model for waves in and associated eigenmodes of a coupled conduit-crack system filled with multiphase magma, an extension of the Karlstrom and Dunham (2016) model for acoustic-gravity waves in volcanic conduits. We find that the long period surface displacement (as recorded on broadband seismometers) is dominated by opening/closing of the crack rather than the deformation of the conduit conduit walls. While the fundamental eigenmode is sensitive to the fluid properties and the geometry of the magma plumbing system, a closer scrutiny of various resonant modes reveals that the surface displacement is often more sensitive to higher modes. Here we present a systematic analysis of various long period acoustic-gravity wave resonant modes of a coupled conduit-crack system that the surface displacement is most sensitive to. We extend our previous work on a quasi-one-dimensional conduit model with inviscid magma to a more general axisymmetric conduit model that properly accounts for viscous boundary layers near the conduit walls, based on the numerical method developed by Prochnow et al. (submitted to Computers and Fluids, 2016). The surface displacement is dominated by either the fundamental or higher eigenmodes, depending on magma properties and the geometry of conduit and crack. An examination of the energetics of these modes reveals the complex interplay of different restoring forces (magma compressibility in the conduit, gravity, and elasticity of the crack) driving the VLP oscillations. Both nonequilibrium bubble growth and resorption and viscosity contribute to the damping of VLP signals. Our models thus provide a means to infer properties of open-vent basaltic volcanoes from seismic observations of VLP events.
NASA Astrophysics Data System (ADS)
Aravena, Alvaro; de'Michieli Vitturi, Mattia; Cioni, Raffaello; Neri, Augusto
2017-04-01
Geological evidences of changes in volcanic conduit geometry (i.e. erosive processes) are common in the volcanic record, as revealed by the occurrence of lithic fragments in most pyroclastic deposits. However, the controlling factors of conduit enlargement mechanisms are still partially unclear, as well as the influence of conduit geometry in the eruptive dynamics. Despite physical models have been systematically used for studying volcanic conduits, their mechanical stability has been poorly addressed. In order to study the mechanical stability of volcanic conduits during explosive eruptions, we present a 1D steady-state model which considers the main processes experimented by ascending magmas, such as crystallization, drag forces, fragmentation, outgassing and degassing; and the application of the Mogi-Coulomb collapse criterion, using a set of constitutive equations for studying typical cases of rhyolitic and trachytic explosive volcanism. From our results emerge that conduit stability is mainly controlled by magma rheology and conduit dimensions. Indeed, in order to be stable, feeding conduits of rhyolitic eruptions need larger radii respect to their trachytic counterparts, which is manifested in the higher eruption rates usually observed in rhyolitic explosive eruptions, as confirmed by a small compilation of global data. Additionally, for both magma compositions, we estimated a minimum magma flux for developing stable conduits (˜3ṡ106 kg/s for trachytic magmas and ˜8ṡ107 kg/s for rhyolitic magmas), which is consistent with the unsteady character commonly observed in low-mass flux events (e.g. sub-Plinian eruptions), which would be produced by episodic collapse events of the volcanic conduit, opposite to the mainly stationary high-mass flux events (e.g. Plinian eruptions), characterized by stable conduits. For a given magma composition, a minimum radius for reaching stable conditions can be computed, as a function of inlet overpressure and water content. Under the assumption that magma chamber conditions during a typical volcanic eruption follow a depressurizing trend, a continuous conduit widening process is expected. This process could explain the pervasive and continuous presence of lithic fragments in most pyroclastic deposits, even with stationary properties and conditions of the magma source (e.g. water content, temperature, composition).
Stochastic simulation of karst conduit networks
NASA Astrophysics Data System (ADS)
Pardo-Igúzquiza, Eulogio; Dowd, Peter A.; Xu, Chaoshui; Durán-Valsero, Juan José
2012-01-01
Karst aquifers have very high spatial heterogeneity. Essentially, they comprise a system of pipes (i.e., the network of conduits) superimposed on rock porosity and on a network of stratigraphic surfaces and fractures. This heterogeneity strongly influences the hydraulic behavior of the karst and it must be reproduced in any realistic numerical model of the karst system that is used as input to flow and transport modeling. However, the directly observed karst conduits are only a small part of the complete karst conduit system and knowledge of the complete conduit geometry and topology remains spatially limited and uncertain. Thus, there is a special interest in the stochastic simulation of networks of conduits that can be combined with fracture and rock porosity models to provide a realistic numerical model of the karst system. Furthermore, the simulated model may be of interest per se and other uses could be envisaged. The purpose of this paper is to present an efficient method for conditional and non-conditional stochastic simulation of karst conduit networks. The method comprises two stages: generation of conduit geometry and generation of topology. The approach adopted is a combination of a resampling method for generating conduit geometries from templates and a modified diffusion-limited aggregation method for generating the network topology. The authors show that the 3D karst conduit networks generated by the proposed method are statistically similar to observed karst conduit networks or to a hypothesized network model. The statistical similarity is in the sense of reproducing the tortuosity index of conduits, the fractal dimension of the network, the direction rose of directions, the Z-histogram and Ripley's K-function of the bifurcation points (which differs from a random allocation of those bifurcation points). The proposed method (1) is very flexible, (2) incorporates any experimental data (conditioning information) and (3) can easily be modified when implemented in a hydraulic inverse modeling procedure. Several synthetic examples are given to illustrate the methodology and real conduit network data are used to generate simulated networks that mimic real geometries and topology.
Engineering a multimodal nerve conduit for repair of injured peripheral nerve
NASA Astrophysics Data System (ADS)
Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.
2013-02-01
Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate hydrogel. This indicates return of some feeling to the limb via the fully-configured conduit. Immunohistochemical analysis of the implanted conduits removed from the rats after the four-week implantation period confirmed the presence of myelinated axons within the conduit and distal to the site of implantation, further supporting that the conduit promoted nerve repair over this period of time. This study describes the design considerations and fabrication of a novel multicomponent, multimodal bio-engineered synthetic conduit for peripheral nerve repair.
Conduits and dike distribution analysis in San Rafael Swell, Utah
NASA Astrophysics Data System (ADS)
Kiyosugi, K.; Connor, C.; Wetmore, P. H.; Ferwerda, B. P.; Germa, A.
2011-12-01
Volcanic fields generally consist of scattered monogenetic volcanoes, such as cinder cones and maars. The temporal and spatial distribution of monogenetic volcanoes and probability of future activity within volcanic fields is studied with the goals of understanding the origins of these volcano groups, and forecasting potential future volcanic hazards. The subsurface magmatic plumbing systems associated with volcanic fields, however, are rarely observed or studied. Therefore, we investigated a highly eroded and exposed magmatic plumbing system on the San Rafael Swell (UT) that consists of dikes, volcano conduits and sills. San Rafael Swell is part of the Colorado Plateau and is located east of the Rocky Mountain seismic belt and the Basin and Range. The overburden thickness at the time of mafic magma intrusion (Pliocene; ca. 4 Ma) into Jurassic sandstone is estimated to be ~800 m based on paleotopographical reconstructions. Based on a geologic map by P. Delaney and colleagues, and new field research, a total of 63 conduits are mapped in this former volcanic field. The conduits each reveal features of root zone and / or lower diatremes, including rapid dike expansion, peperite and brecciated intrusive and host rocks. Recrystallized baked zone of host rock is also observed around many conduits. Most conduits are basaltic or shonkinitic with thickness of >10 m and associated with feeder dikes intruded along N-S trend joints in the host rock, whereas two conduits are syenitic and suggesting development from underlying cognate sills. Conduit distribution, which is analyzed by a kernel function method with elliptical bandwidth, illustrates a N-S elongate higher conduit density area regardless of the azimuth of closely distributed conduits alignment (nearest neighbor distance <200 m). In addition, dike density was calculated as total dike length in unit area (km/km^2). Conduit and sill distribution is concordant with the high dike density area. Especially, the distribution of conduits is not random with respect to the dike distribution with greater than 99% confidence on the basis of the Kolmogorov-Smirnov test. On the other hand, dike density at each conduits location also suggests that there is no threshold of dike density for conduit formation. In other words, conduits may be possible to develop from even short mapped dikes in low dike density areas. These results show effectiveness of studying volcanic vent distribution to infer the size of magmatic system below volcanic fields and highlight the uncertainty of forecasting the location of new monogenetic volcanoes in active fields, which may be associated with a single dike intrusion.
A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration.
Hadlock, T; Sundback, C; Hunter, D; Cheney, M; Vacanti, J P
2000-04-01
Alternatives to autografts have long been sought for use in bridging neural gaps. Many entubulation materials have been studied, although with generally disappointing results in comparison with autografts. The purpose of this study was to design a more effective neural guidance conduit, to introduce Schwann cells into the conduit, and to determine regenerative capability through it in an in vivo model. A novel, fully biodegradable polymer conduit was designed and fabricated for use in peripheral nerve repair, which approximates the macro- and microarchitecture of native peripheral nerves. It comprised a series of longitudinally aligned channels, with diameters ranging from 60 to 550 microns. The lumenal surfaces promoted the adherence of Schwann cells, whose presence is known to play a key role in nerve regeneration. This unique channel architecture increased the surface area available for Schwann cell adherence up to five-fold over that available through a simple hollow conduit. The conduit was composed of a high-molecular-weight copolymer of lactic and glycolic acids (PLGA) (MW 130,000) in an 85:15 monomer ratio. A novel foam-processing technique, employing low-pressure injection molding, was used to create highly porous conduits (approximately 90% pore volume) with continuous longitudinal channels. Using this technique, conduits were constructed containing 1, 5, 16, 45, or more longitudinally aligned channels. Prior to cellular seeding of these conduits, the foams were prewet with 50% ethanol, flushed with physiologic saline, and coated with laminin solution (10 microg/mL). A Schwann cell suspension was dynamically introduced into these processed foams at a concentration of 5 X 10(5) cells/mL, using a simple bioreactor flow loop. In vivo regeneration studies were carried out in which cell-laden five-channel polymer conduits (individual channel ID 500 microm, total conduit OD 2.3 mm) were implanted across a 7-mm gap in the rat sciatic nerve (n = 4), and midgraft axonal regeneration compared with autografts (n = 6). At 6 weeks, axonal regeneration was observed in the midconduit region of all five channels in each experimental animal. The cross-sectional area comprising axons relative to the open conduit cross sectional area (mean 26.3%, SD 10. 1%) compared favorably with autografts (mean 23.8%, SD 3.6%). Our methodology can be used to create polymer foam conduits containing longitudinally aligned channels, to introduce Schwann cells into them, and to implant them into surgically created neural defects. These conduits provide an environment permissive to axonal regeneration. Furthermore, this polymer foam-processing method and unique channeled architecture allows the introduction of neurotrophic factors into the conduit in a controlled fashion. Deposition of different factors into distinct regions within the conduit may be possible to promote more precisely guided neural regeneration.
Clastic Pipes on Mars: Evidence for a Near Surface Groundwater System
NASA Astrophysics Data System (ADS)
Wheatley, D. F.; Chan, M. A.; Okubo, C. H.
2017-12-01
Clastic pipes, a type of vertical, columnar injectite, occur throughout the terrestrial stratigraphic record and are identified across many Martian terrains. Terrestrial pipe analogs can aid in identifying clastic pipes on Mars to understand their formation processes and their implications for a past near-surface groundwater system. On Earth, clastic pipes form through fluidization of overpressurized sediment. Fluidization occurs when the upward frictional (i.e., drag) forces of escaping fluids overpower the downward acting gravitational force. To create the forces necessary for pipe formation requires overpressurization of a body of water-saturated porous media overlain by a low permeability confining layer. As the pressure builds, the confining layer eventually fractures and the escaping fluids fluidize the porous sediment causing the sediment to behave like a fluid. These specific formation conditions record evidence of a violent release of fluid-suspended sediment including brecciation of the host and sealing material, internal outward grading/sorting that results in a coarser-grained commonly better cemented outer rind, traction structures, and a cylindrical geometry. Pipes form self-organized, dispersed spatial relationships due to the efficient diffusion of overpressured zones in the subsurface and the expulsion of sediment under pressure. Martian pipes occur across the northern lowlands, dichotomy boundary, and southern highlands in various forms of erosional relief ranging from newer eruption structures to eroded cylindrical/conical mounds with raised rims to highly eroded mounds/hills. Similar to terrestrial examples, Martian pipes form in evenly-spaced, self-organized arrangements. The pipes are typically internally massive with a raised outer rim (interpreted as a sorted, coarser-grained, better-cemented rim). This evidence indicates that Martian pipes formed through fluidization, which requires a near-surface groundwater system. Pipes create a window into the subsurface by excavating subsurface sediment and waters. After emplacement, pipes can also act as fluid conduits, channeling post-depositional fluid flow. The preferential porosity and flow paths may make the pipes an ideal exploration target for microbial life.
A rapid method for hydraulic profiling in unconsolidated formations
Dietrich, P.; Butler, J.J.; Faiss, K.
2008-01-01
Information on vertical variations in hydraulic conductivity (K) can often shed much light on how a contaminant will move in the subsurface. The direct-push injection logger has been developed to rapidly obtain such information in shallow unconsolidated settings. This small-diameter tool consists of a short screen located just behind a drive point. The tool is advanced into the subsurface while water is injected through the screen to keep it clear. Upon reaching a depth at which information about K is desired, advancement ceases and the injection rate and pressure are measured on the land surface. The rate and pressure values are used in a ratio that serves as a proxy for K. A vertical profile of this ratio can be transformed into a K profile through regressions with K estimates determined using other techniques. The viability of the approach was assessed at an extensively studied field site in eastern Germany. The assessment demonstrated that this tool can rapidly identify zones that may serve as conduits for or barriers to contaminant movement. ?? 2007 The Author(s).
30 CFR 18.31 - Enclosures-joints and fastenings.
Code of Federal Regulations, 2011 CFR
2011-07-01
... square inch (gage). Castings shall be free from blowholes. (2) Welded joints forming an enclosure shall... portion are acceptable in lieu of a head or shoulder, but cotter pins and similar devices shall not be... attaching hose conduit, unless energy carried by the cable is intrinsically safe. (c) No assembly will be...
30 CFR 18.31 - Enclosures-joints and fastenings.
Code of Federal Regulations, 2012 CFR
2012-07-01
... square inch (gage). Castings shall be free from blowholes. (2) Welded joints forming an enclosure shall... portion are acceptable in lieu of a head or shoulder, but cotter pins and similar devices shall not be... attaching hose conduit, unless energy carried by the cable is intrinsically safe. (c) No assembly will be...
30 CFR 18.31 - Enclosures-joints and fastenings.
Code of Federal Regulations, 2013 CFR
2013-07-01
... square inch (gage). Castings shall be free from blowholes. (2) Welded joints forming an enclosure shall... portion are acceptable in lieu of a head or shoulder, but cotter pins and similar devices shall not be... attaching hose conduit, unless energy carried by the cable is intrinsically safe. (c) No assembly will be...
Computer Algebra Systems in Education Newsletter[s].
ERIC Educational Resources Information Center
Computer Algebra Systems in Education Newsletter, 1990
1990-01-01
Computer Algebra Systems (CAS) are computer systems for the exact solution of problems in symbolic form. The newspaper is designed to serve as a conduit for information and ideas on the use of CAS in education, especially in lower division college and university courses. Articles included are about CAS programs in several colleges, experiences…
Morrison, Edward F.; Bergman, John W.
2001-05-22
A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.
Trap seal for open circuit liquid cooled turbines
Grondahl, Clayton M.; Germain, Malcolm R.
1980-01-01
An improved trap seal for open circuit liquid cooled turbines is disclosed. The trap seal of the present invention includes an annular recess formed in the supply conduit of cooling channels formed in the airfoil of the turbine buckets. A cylindrical insert is located in the annular recesses and has a plurality of axial grooves formed along the outer periphery thereof and a central recess formed in one end thereof. The axial grooves and central recess formed in the cylindrical insert cooperate with the annular recess to define a plurality of S-shaped trap seals which permit the passage of liquid coolant but prohibit passage of gaseous coolant.
Experimental sintering of ash at conduit conditions and implications for the longevity of tuffisites
NASA Astrophysics Data System (ADS)
Gardner, James E.; Wadsworth, Fabian B.; Llewellin, Edward W.; Watkins, James M.; Coumans, Jason P.
2018-03-01
Escape of gas from magma in the conduit plays a crucial role in mitigating explosivity. Tuffisite veins—ash-filled cracks that form in and around volcanic conduits—represent important gas escape pathways. Sintering of the ash infill decreases its porosity, eventually forming dense glass that is impermeable to gas. We present an experimental investigation of surface tension-driven sintering and associated densification of rhyolitic ash under shallow conduit conditions. Suites of isothermal (700-800 °C) and isobaric H2O pressure (20 and 40 MPa) experiments were run for durations of 5-90 min. Obsidian powders with two different size distributions were used: 1-1600 μm (mean size = 89 μm), and 63-400 μm (mean size = 185 μm). All samples evolved similarly through four textural phases: phase 1—loose and cohesion-less particles; phase 2—particles sintered at contacts and surrounded by fully connected tortuous pore space of up to 40% porosity; phase 3—continuous matrix of partially coalesced particles that contain both isolated spherical vesicles and connected networks of larger, contorted vesicles; phase 4—dense glass with 2-5% fully isolated vesicles that are mainly spherical. Textures evolve faster at higher temperature and higher H2O pressure. Coarse samples sinter more slowly and contain fewer, larger vesicles when fully sintered. We quantify the sintering progress by measuring porosity as a function of experimental run-time, and find an excellent collapse of data when run-time is normalized by the sintering timescale {λ}_s=η \\overline{R}/σ , where η is melt viscosity, \\overline{R} is mean particle radius, and σ is melt-gas surface tension. Because timescales of diffusive H2O equilibration are generally fast compared to those of sintering, the relevant melt viscosity is calculated from the solubility H2O content at experimental temperature and pressure. We use our results to develop a framework for estimating ash sintering rates under shallow conduit conditions, and predict that sintering of ash to dense glass can seal tuffisites in minutes to hours, depending on pressure (i.e., depth), temperature, and ash size.
Zhu, J.; Currens, J.C.; Dinger, J.S.
2011-01-01
Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit. ?? 2011 Elsevier B.V.
Aupècle, Bertrand; Serraf, Alain; Belli, Emre; Mohammadi, Siamak; Lacour-Gayet, François; Fornes, Paul; Planché, Claude
2002-07-01
In the pediatric population, glutaraldehyde-preserved bovine pericardium conduit containing a stentless porcine valve has been proposed as an alternative to homografts for right ventricular outflow tract reconstruction. Between June 1996 and March 2000, a total of 55 patients, 20 with truncus arteriosus, 21 with pulmonary atresia with ventricular septal defect, and 14 with miscellaneous defects, received this conduit. Median age at implantation was 3.4 months (range, 3 days to 19 years), and 27 patients (50%) were less than 3 months old. Clinical outcome, echocardiographic data, and pathologic analysis were recorded. End points for conduit failure were conduit replacement or dilation. A mean follow-up of 27 months (range, 2 to 46 months) was available for 47 survivors. Procedure for conduit obstruction was required in 13 patients. The most common procedure was operation, and all but 3 patients had an unsuccessful balloon angioplasty before reoperation. Actuarial freedom from conduit dilation or reoperation was 93.6% (95% confidence limits, 82% to 99%), 81.9% (95% confidence limits, 64% to 91%), 77.8% (95% confidence limits, 39% to 78%), and 64.3% (95% confidence limits, 26% to 73%) at 1, 2, 3, and 4 postoperative years, respectively. Univariate analysis identified small conduit size as a risk factor for conduit obstruction. Although this new conduit was not free from progressive obstruction, our clinical results (easy to work and good valvular function) and the availability in small sizes encouraged us to use it as an alternative to small-size homografts when those were not available.
Long-term follow-up of autologous pericardial valved conduits.
Schlichter, A J; Kreutzer, C; Mayorquim, R C; Simon, J L; Vazquez, H; Roman, M I; Kreutzer, G O
1996-07-01
The aim of this study was to evaluate the long-term results of the use of an autologous pericardial valved conduit in the outflow tract of the venous ventricle in congenital heart malformations. Fifty-one patients were followed up for a period of 12 to 120 months; 30 for more than 36 months and 13 for more than 72 months. All were evaluated clinically and by two-dimensional and Doppler echocardiography. Eight patients were recatheterized. Postoperative evaluation included serial measurement of pressure gradients and the conduit's diameter at the proximal, valvular, and distal levels. Reoperation because of stenosis was indicated when the gradient across the right ventricular outflow was greater than 50 mm Hg. The reoperation rate in relation with postoperative time, diameter of the autologous pericardial valved conduit at the time of implantation, and malformation was statistically analyzed. In 27 patients the conduit increased its diameter 1 to 7 mm. In 20 patients the diameter remained unchanged, whereas a reduction was noted in 4. Conduit survival free of reoperation for the whole group was 89.9% at 5 years. Conduit survival free of reoperation was 100% at 5 and 7 years for conduits larger than 16 mm at the time of implantation. It was 95% (standard deviation = 4.8%) at 5 years and 72.3% at 7 years for those 16 mm or less. For patients operated after January 1, 1986 (technical modification), conduit survival free of reoperation was 95.4% at 7 years postoperatively. These results compare favorably with those of other available conduits.
Rupprath, G; Vogt, J; de Vivie, E R; Beuren, A J
1981-12-01
The results are presented of 44 systematic cardiac catheterizations in 35 patients after successful repair of various types of congenital cyanotic heart disease using a conduit. The operations were performed from 1972 to 1981. The patients were followed from 6 months to 9 years, the mean interval between operation and catheterization was 2.5 years (4 weeks to 8 years). Different types of conduits were used: a Hancock conduit in 27 cases (1 replaced), an aortic homograft in 3 cases (all 3 replaced by a Hancock conduit), a Dacron tube with Lillehei-Kaster valve in 2 cases (1 replaced), a lonescu-Shiley conduit in 5 cases, a composite graft of pericardium and a Hancock valve in one patient (replaced) and a valveless Dacron tube in one patient. The total conduit gradient was differentiated in 43/44 investigations. For the Hancock conduit the mean proximal gradient was 9 mmHg, the valvular 14 and the distal 13 mmHg. Severe valvular stenosis of the porcine valve occurred in 3 patients. For the lonescu-Shiley conduit only early, but promising, results are available. Three of the 35 patients died late (2.5 and 4 years postoperatively); the deaths were related to severe additional lesions. Cross-sectional echocardiography was performed in 32 of the 35 patients. The latter does not appear to be a reliable method for the detection of valvular lesions so far, but is helpful for the diagnosis of proximal and distal obstructions of the conduit.
Elastin Shapes Small Molecule Distribution in Lymph Node Conduits.
Lin, Yujia; Louie, Dante; Ganguly, Anutosh; Wu, Dequan; Huang, Peng; Liao, Shan
2018-05-01
The spatial and temporal Ag distribution determines the subsequent T cell and B cell activation at the distinct anatomical locations in the lymph node (LN). It is well known that LN conduits facilitate small Ag distribution in the LN, but the mechanism of how Ags travel along LN conduits remains poorly understood. In C57BL/6J mice, using FITC as a fluorescent tracer to study lymph distribution in the LN, we found that FITC preferentially colocalized with LN capsule-associated (LNC) conduits. Images generated using a transmission electron microscope showed that LNC conduits are composed of solid collagen fibers and are wrapped with fibroblastic cells. Superresolution images revealed that high-intensity FITC is typically colocalized with elastin fibers inside the LNC conduits. Whereas tetramethylrhodamine isothiocyanate appears to enter LNC conduits as effectively as FITC, fluorescently-labeled Alexa-555-conjugated OVA labels significantly fewer LNC conduits. Importantly, injection of Alexa-555-conjugated OVA with LPS substantially increases OVA distribution along elastin fibers in LNC conduits, indicating immune stimulation is required for effective OVA traveling along elastin in LN conduits. Finally, elastin fibers preferentially surround lymphatic vessels in the skin and likely guide fluid flow to the lymphatic vessels. Our studies demonstrate that fluid or small molecules are preferentially colocalized with elastin fibers. Although the exact mechanism of how elastin fibers regulate Ag trafficking remains to be explored, our results suggest that elastin can be a potentially new target to direct Ag distribution in the LN during vaccine design. Copyright © 2018 by The American Association of Immunologists, Inc.
NASA Astrophysics Data System (ADS)
Xu, Zexuan; Hu, Bill X.; Davis, Hal; Cao, Jianhua
2015-05-01
A research version of CFP (Conduit Flow Process) code, CFPv2, is applied with UMT3D to simulate long term (1966-2018) nitrate-N contamination transport processes in the Woodville Karst Plain (WKP), northern Florida, where karst conduit networks are well developed. Groundwater flow in the WKP limestone porous matrix is simulated using Darcy's law, and non-laminar flow within conduits is described by Darcy-Weisbach equation. Nitrate-N conduit transport and advective exchanges of groundwater and nitrate-N between conduits and limestone matrix are calculated by CFPv2 and UMT3D, instead of MODFLOW and MT3DMS since Reynolds numbers for flows in conduits are over the criteria of laminar flow. The developed numerical model is calibrated by field observations and then applied to simulate nitrate-N transport in the WKP. The numerical simulations verify the theories that two sprayfields near the City of Tallahassee and septic tanks in the rural area are major nitrate-N point sources within the WKP. High nitrate-N concentrations occur near Lost Creek Sink, and conduits of Wakulla Spring and Spring Creek Springs where aquifer discharge groundwater. Conduit networks control nitrate-N transport and regional contaminant distributions in the WKP, as nitrate-N is transported through conduits rapidly and spread over large areas.
Byrne, Kenneth G.
1983-01-01
1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means.
Atabay, Keramettin
1979-01-01
The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.
Ko, Chien-Hsin; Shie, Ming-You; Lin, Jia-Horng; Chen, Yi-Wen; Yao, Chun-Hsu; Chen, Yueh-Sheng
2017-12-13
In our previous study, we found that gelatin-based materials exhibit good conductivity and are non-cytotoxic. In this study, gelatin was cross-linked with bisvinyl sulfonemethyl (BVSM) to fabricate a biodegradable conduit for peripheral nerve repair. First, BVSM on the prepared conduit was characterized to determine its mechanical properties and contact angle. The maximum tensile strength and water contact angle of the gelatin-BVSM conduits were 23 ± 4.8 MPa and 74.7 ± 9°, which provided sufficient mechanical strength to resist muscular contraction; additionally, the surface was hydrophilic. Cytotoxicity and apoptosis assays using Schwann cells demonstrated that the gelatin-BVSM conduits are non-cytotoxic. Next, we examined the neuronal electrophysiology, animal behavior, neuronal connectivity, macrophage infiltration, calcitonin gene-related peptide localization and expression, as well as the expression levels of nerve regeneration-related proteins. The number of fluorogold-labelled cells and histological analysis of the gelatin-BVSM nerve conduits was similar to that observed with the clinical use of silicone rubber conduits after 8 weeks of repair. Therefore, our results demonstrate that gelatin-BVSM conduits are promising substrates for application as bioengineered grafts for nerve tissue regeneration.
Tsuboko, Yusuke; Shiraishi, Yasuyuki; Yamada, Akihiro; Yambe, Tomoyuki; Matsuo, Satoshi; Saiki, Yoshikatsu; Yamagishi, Masaaki
2015-01-01
Pulmonary conduit valves are used as one of the surgical treatment methods of congenital heart diseases. We have been designing a sophisticated pulmonary conduit valve for the right ventricular outflow tract reconstruction in pediatric patients. In this study, two types of polyester grafts with or without bulging structures for the conduit valves were used and evaluated from the hemodynamic point of view focusing on the application of these conduit valves in the grown-up congenital heart failure patients. We examined valvular function in the originally developed pulmonary mock circulatory system, which consisted of a pneumatic driven right ventricular model, a pulmonary valve chamber, and an elastic pulmonary compliance model with peripheral vascular resistance units. Prior to the measurement, a bileaflet valve was sutured in each conduit. Each conduit valve was installed in the mock right ventricular outflow portion, and its leaflet motion was obtained by using a high-speed camera synchronously with pressure and flow waveforms. As a result, we could obtain hemodynamic changes in two different types of conduits for pulmonary valves, and it was indicated that the presence of the Valsalva shape might be effective for promoting valvular response in the low cardiac output condition.
Boudjemline, Y; Laborde, F; Pineau, E; Mollet, A; Abadir, S; Bonhoeffer, P; Bonnet, D; Sidi, D
2006-05-01
This study was undertaken to develop a dilated valved conduit for reconstruction of the right ventricular outflow tract in the animal. The conduits were made by sewing a valved tube (Medtronic Inc) inside a vascular stent (Numed Inc). After preparation, they were inserted surgically in five lambs. The conduits were then dilated 6 weeks and 3 months after their implantation. Before sacrificing the animals at 3 months, a 22 mm valved stent was implanted percutaneously inside the surgical conduits. One animal died suddenly due to kinking of the conduit. Balloon dilatation was performed in the surviving animals. The first dilatation only had a modest impact on valvular function but it was much aggravated after the second dilatation. A valved stent was successfully inserted percutaneously. At sacrifice, all the conduits were completely engulfed in an intense fibrosis. In conclusion, a valved biological conduit for reconstruction of the right ventricular ejection tract has been developed and can be dilated sequentially to follow growth. The new product could have an important role to play in the management of congenital malformations involving the right ventricular outflow tract.
Expandable right ventricular-to-pulmonary artery conduit: an animal study.
Boudjemline, Younes; Laborde, François; Pineau, Emmanuelle; Mollet, Alix; Abadir, Sylvia; Borenstein, Nicolas; Behr, Luc; Bonhoeffer, Philipp
2006-06-01
This study was performed to assess a new vascular stent graft as an expandable valved conduit for right ventricular outflow tract (RVOT) reconstruction in sheep. Conduits were constructed by sewing an 18-mm valved conduit inside a stent. Crimped to 16 mm, they were implanted either under or without extracorporeal circulation in seven (group A) and in five (group B) sheep, respectively. Six weeks and 3 mo after their insertion, conduits were dilated intraluminally. A valved stent was implanted percutaneously into conduits before they were killed. Two animals from group A recovered normally, whereas five animals had a complicated postoperative course. In group B, one died acutely due to kinking of the conduit. Balloon dilatations were performed in all surviving animals. First dilatations had a slight impact on valvular function in all animals but one, whereas second dilatations led to significant PR in all. Transcatheter valve implantation was performed successfully. When animals were killed, no bleeding was found around the surgically implanted device. In conclusion, we designed a biologic valved conduit for RVOT reconstruction that can be dilated sequentially to follow animal growth. This new device can have tremendous applications in children with congenital heart diseases involving the RVOT.
Combination gas producing and waste-water disposal well
Malinchak, Raymond M.
1984-01-01
The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.
Combination gas-producing and waste-water disposal well. [DOE patent application
Malinchak, R.M.
1981-09-03
The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.
NASA Astrophysics Data System (ADS)
Jenkins, Phillip M.; Laughter, Melissa R.; Lee, David J.; Lee, Young M.; Freed, Curt R.; Park, Daewon
2015-06-01
Despite major advances in the pathophysiological understanding of peripheral nerve damage, the treatment of nerve injuries still remains an unmet medical need. Nerve guidance conduits present a promising treatment option by providing a growth-permissive environment that 1) promotes neuronal cell survival and axon growth and 2) directs axonal extension. To this end, we designed an electrospun nerve guidance conduit using a blend of polyurea and poly-caprolactone with both biochemical and topographical cues. Biochemical cues were integrated into the conduit by functionalizing the polyurea with RGD to improve cell attachment. Topographical cues that resemble natural nerve tissue were incorporated by introducing intraluminal microchannels aligned with nanofibers. We determined that electrospinning the polymer solution across a two electrode system with dissolvable sucrose fibers produced a polymer conduit with the appropriate biomimetic properties. Human neural stem cells were cultured on the conduit to evaluate its ability to promote neuronal growth and axonal extension. The nerve guidance conduit was shown to enhance cell survival, migration, and guide neurite extension.
CONDUIT: A New Multidisciplinary Integration Environment for Flight Control Development
NASA Technical Reports Server (NTRS)
Tischler, Mark B.; Colbourne, Jason D.; Morel, Mark R.; Biezad, Daniel J.; Levine, William S.; Moldoveanu, Veronica
1997-01-01
A state-of-the-art computational facility for aircraft flight control design, evaluation, and integration called CONDUIT (Control Designer's Unified Interface) has been developed. This paper describes the CONDUIT tool and case study applications to complex rotary- and fixed-wing fly-by-wire flight control problems. Control system analysis and design optimization methods are presented, including definition of design specifications and system models within CONDUIT, and the multi-objective function optimization (CONSOL-OPTCAD) used to tune the selected design parameters. Design examples are based on flight test programs for which extensive data are available for validation. CONDUIT is used to analyze baseline control laws against pertinent military handling qualities and control system specifications. In both case studies, CONDUIT successfully exploits trade-offs between forward loop and feedback dynamics to significantly improve the expected handling, qualities and minimize the required actuator authority. The CONDUIT system provides a new environment for integrated control system analysis and design, and has potential for significantly reducing the time and cost of control system flight test optimization.
NASA Astrophysics Data System (ADS)
Meyerhoff, Steven B.; Karaoulis, Marios; Fiebig, Florian; Maxwell, Reed M.; Revil, André; Martin, Jonathan B.; Graham, Wendy D.
2012-12-01
In the karstic upper Floridan aquifer, surface water flows into conduits of the groundwater system and may exchange with water in the aquifer matrix. This exchange has been hypothesized to occur based on differences in discharge at the Santa Fe River Sink-Rise system, north central Florida, but has yet to be visualized using any geophysical techniques. Using electrical resistivity tomography, we conducted a time-lapse study at two locations with mapped conduits connecting the Santa Fe River Sink to the Santa Fe River Rise to study changes of electrical conductivity during times of varying discharge over a six-week period. Our results show conductivity differences between matrix, conduit changes in resistivity occurring through time at the locations of mapped karst conduits, and changes in electrical conductivity during rainfall infiltration. These observations provide insight into time scales and matrix conduit conductivity differences, illustrating how surface water flow recharged to conduits may flow in a groundwater system in a karst aquifer.
Methods and apparatus for coating particulate material
NASA Technical Reports Server (NTRS)
Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)
2012-01-01
Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.
Methods for Coating Particulate Material
NASA Technical Reports Server (NTRS)
Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)
2013-01-01
Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.
Exhaust gas recirculation system for an internal combustion engine
Wu, Ko-Jen
2013-05-21
An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.
A novel bioprinting method and system for forming hybrid tissue engineering constructs.
Shanjani, Y; Pan, C C; Elomaa, L; Yang, Y
2015-12-18
Three dimensional (3D) bioprinting is a promising approach to form tissue engineering constructs (TECs) via positioning biomaterials, growth factors, and cells with controlled spatial distribution due to its layer-by-layer manufacturing nature. Hybrid TECs composed of relatively rigid porous scaffolds for structural and mechanical integrity and soft hydrogels for cell- and growth factor-loading have a tremendous potential to tissue regeneration under mechanical loading. However, despite excessive progress in the field, the current 3D bioprinting techniques and systems fall short in integration of such soft and rigid multifunctional components. Here we present a novel 3D hybrid bioprinting technology (Hybprinter) and its capability enabling integration of soft and rigid components for TECs. Hybprinter employs digital light processing-based stereolithography (DLP-SLA) and molten material extrusion techniques for soft and rigid materials, respectively. In this study, poly-ethylene glycol diacrylate (PEGDA) and poly-(ε-caprolactone) (PCL) were used as a model material for soft hydrogel and rigid scaffold, respectively. It was shown that geometrical accuracy, swelling ratio and mechanical properties of the hydrogel component can be tailored by DLP-SLA module. We have demonstrated the printability of variety of complex hybrid construct designs using Hybprinter technology and characterized the mechanical properties and functionality of such constructs. The compressive mechanical stiffness of a hybrid construct (90% hydrogel) was significantly higher than hydrogel itself (∼6 MPa versus 100 kPa). In addition, viability of cells incorporated within the bioprinted hybrid constructs was determined approximately 90%. Furthermore, a functionality of a hybrid construct composed of porous scaffold with an embedded hydrogel conduit was characterized for vascularized tissue engineering applications. High material diffusion and high cell viability in about 2.5 mm distance surrounding the conduit indicated that culture media effectively diffused through the conduit and fed the cells. The results suggest that the developed technology is potent to form functional TECs composed of rigid and soft biomaterials.
NASA Astrophysics Data System (ADS)
Edwards, Matt; Kennedy, Ben; Jolly, Art; Scheu, Bettina; Taddeucci, Jacopo; Jousset, Philippe; Schmid, Di
2015-04-01
Micro-eruptions are potentially modulated by hydrothermal systems and crater lakes but to date have not been well studied. In January/February 2013 White Island (Whakaari), New Zealand, experienced an about three week long period of atypical, frequent micro-eruptions within its crater lake. Many of these micro-eruptions were recorded by tour operators and GNS personnel monitoring the lake activity. Analysis of this video footage reveals an increasingly energetic eruption style. Deformation of the muddy lake surface by ascending bubbles begins as irregularly shaped bursts, producing liquid strings of mud ejected to heights of less than 10m at 10-15m/s. As the episode progresses, eruption frequency is maintained at semi-regular <10s intervals. Each eruption however starts with an increasingly hemispheric surface deformation ~6m in diameter, and bursts occur as "star-bursts" with ejection of less fluidal ash/mud clots. In addition, these bursts are commonly followed within 2s by a more vertical and energetic secondary ejection of material, which occasionally ejects through the deformed hemispheric surface up to >100m high, and reaches ejection velocities up to 45m/s. The period of frequent "star-bursts" is then followed by a two day phase of constant ~30-75m high ash ejection resulting in the formation of a tuff cone with a central open conduit of 6m within the former crater lake. We theorise that this behaviour is influenced by evolving bubble overpressure/volume, including the presence or absence of a trailing wake of smaller bubbles and is modulated over the eruption episode by the viscosity of the crater lake. In the early stages of the episode a lower viscosity lake provides little resistance to rising gas/ash mixtures. Bubble coalescence and/or overpressure development is therefore minimised, resulting in low energy bursts. Over the course of this episode the viscosity of the lake increases due to addition of ash from ash-carrying gas flux and fluid loss by boiling. Thus higher pressurized gas bubbles can form within the conduit which burst with increasing explosivity. Two experiments are planned simulating this evolving eruption style. In the first, controlled cold volumes of pressurized gas bubbles within a vertical pipe will be released into an overlying chamber filled with varying viscosity fluids, to investigate energy and acoustics of bubble bursts. The second will involve sudden depressurisation of a mud-filled autoclave at elevated temperature (>100°C) to provide eruption metrics. Comparing the eruption styles generated in the lab with those identified at White Island in video analysis will allow us to investigate the dominant controls on the eruption style.
Shallow Subsurface transport and eruption of basaltic foam
NASA Astrophysics Data System (ADS)
Parcheta, C. E.; Mitchell, K. L.
2016-12-01
Volcanic fissure vents are difficult to quantify, and details of eruptive behavior are elusive even though it is the most common eruption mechanism on Earth and across the solar system. A fissure's surface expression is typically concealed, but when a fissure remains exposed, its subsurface conduit can be mapped post-eruptively with VolcanoBot. The robot uses a NIR structured light sensor that reproduces a 3D surface model to cm-scale accuracy, documenting the shallow conduit. VolcanoBot3 has probed >1000m3 of volcanic fissure vents at the Mauna Ulu fissure system on Kilauea. Here we present the new 3D model of a flared vent on the Mauna Ulu fissure system. We see a self-similar pattern of irregularities on the fissure walls throughout the entire shallow subsurface, implying a fracture mechanical origin similar to faults. These irregularities are typically 1 m across, protrude 30 cm horizontally into the drained fissure, and have a vertical spacing of 2-3 m. However, irregularity size is variable and distinct with depth, potentially reflecting stratigraphy in the wall rock. Where piercing points are present, we infer the dike broke the wall rock in order to propagate upwards; where they are not, we infer that syn-eruptive mechanical erosion has taken place. One mechanism for mechanical erosion is supersonic shocks, which may occur in Hawaiian fountains. We are calculating the speed of sound in 64% basaltic foam, which appears to be the same velocity (or slightly slower) than inferred eruption velocities. Irregularities are larger than the maximum 10% wall roughness used in engineering fluid dynamic studies, indicating that magma fluid dynamics during fissure eruptions are probably not as passive nor as simple as previously thought. We are currently using the mapped conduit geometries and derived speed of sound for basaltic foam in fluid dynamical modeling of fissure-fed lava fountains.
Wallin, Marcus B; Grabs, Thomas; Buffam, Ishi; Laudon, Hjalmar; Agren, Ånneli; Öquist, Mats G; Bishop, Kevin
2013-03-01
Evasion of gaseous carbon (C) from streams is often poorly quantified in landscape C budgets. Even though the potential importance of the capillary network of streams as C conduits across the land-water-atmosphere interfaces is sometimes mentioned, low-order streams are often left out of budget estimates due to being poorly characterized in terms of gas exchange and even areal surface coverage. We show that evasion of C is greater than all the total dissolved C (both organic and inorganic) exported downstream in the waters of a boreal landscape. In this study evasion of carbon dioxide (CO2 ) from running waters within a 67 km(2) boreal catchment was studied. During a 4 year period (2006-2009) 13 streams were sampled on 104 different occasions for dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). From a locally determined model of gas exchange properties, we estimated the daily CO2 evasion with a high-resolution (5 × 5 m) grid-based stream evasion model comprising the entire ~100 km stream network. Despite the low areal coverage of stream surface, the evasion of CO2 from the stream network constituted 53% (5.0 (±1.8) g C m(-2) yr(-1) ) of the entire stream C flux (9.6 (±2.4) g C m(-2) yr(-1) ) (lateral as DIC, DOC, and vertical as CO2 ). In addition, 72% of the total CO2 loss took place already in the first- and second-order streams. This study demonstrates the importance of including CO2 evasion from low-order boreal streams into landscape C budgets as it more than doubled the magnitude of the aquatic conduit for C from this landscape. Neglecting this term will consequently result in an overestimation of the terrestrial C sink strength in the boreal landscape. © 2012 Blackwell Publishing Ltd.
2011-01-01
Objectives To retrospectively analyze the clinical outcome of a totally biological composite stentless aortic valved conduit (No-React® BioConduit) implanted using the Bentall procedure over ten years in a single centre. Methods Between 27/10/99 and 19/01/08, the No-React® BioConduit composite graft was implanted in 67 patients. Data on these patients were collected from the in-hospital database, from patient notes and from questionnaires. A cohort of patients had 2D-echocardiogram with an average of 4.3 ± 0.45 years post-operatively to evaluate valve function, calcification, and the diameter of the conduit. Results Implantation in 67 patients represented a follow-up of 371.3 patient-year. Males were 60% of the operated population, with a mean age of 67.9 ± 1.3 years (range 34.1-83.8 years), 21 of them below the age of 65. After a mean follow-up of 7.1 ± 0.3 years (range of 2.2-10.5 years), more than 50% of the survivors were in NYHA I/II and more than 60% of the survivors were angina-free (CCS 0). The overall 10-year survival following replacement of the aortic valve and root was 51%. During this period, 88% of patients were free from valved-conduit related complications leading to mortality. Post-operative echocardiography studies showed no evidence of stenosis, dilatation, calcification or thrombosis. Importantly, during the 10-year follow-up period no failures of the valved conduit were reported, suggesting that the tissue of the conduit does not structurally change (histology of one explant showed normal cusp and conduit). Conclusions The No-React® BioConduit composite stentless aortic valved conduit provides excellent long-term clinical results for aortic root replacement with few prosthesis-related complications in the first post-operative decade. PMID:21699696
Chang, Y; Tsai, C C; Liang, H C; Sung, H W
2001-12-01
This study was designed to evaluate a newly developed biologic valved conduit fixed with genipin used to reconstruct the right ventricular outflow tract in a canine model. Fresh bovine jugular veins with a retained native valve procured from a slaughterhouse were used as raw materials to fabricate the valved conduits. A naturally occurring crosslinking agent, genipin, was used to fix the procured jugular veins. The glutaraldehyde-fixed counterpart was used as a control. A canine model was used in the study. Echocardiography revealed that the motion of the valvular leaflets in both the glutaraldehyde- and genipin-fixed conduits was satisfactory. The transvalvular pressure gradients of both studied groups were minimal. No endothelium-like cells were observed on the luminal surface of the conduit and the valvular leaflet for the glutaraldehyde-fixed group throughout the entire course of the study. In contrast, endothelium-like cells were observed on the entire surface of the genipin-fixed valved conduit retrieved at 6 months postoperatively in all the cases studied. There was no evidence of luminal fibrous peel in any the valved conduits studied. Degradation of valvular leaflet in one of the glutaraldehyde-fixed conduits was observed. In this particular case, thrombus formation was also observed on the surface of the valvular leaflet. On the other hand, no apparent degradation or thrombus formation was observed on the surfaces of the genipin-fixed valvular leaflet and conduit. A significantly more severe inflammatory reaction was observed for the glutaraldehyde-fixed conduit than for its genipin-fixed counterpart throughout the entire course of the study. The calcium contents of the samples before implantation and those retrieved at distinct implantation duration were minimal for both the glutaraldehyde- and genipin-fixed tissues. Although further studies are necessary, the genipin-fixed valved conduit appears to have great potential in helping mitigate the complications observed in the commercially available conduits.
Carrel, Thierry; Berdat, Pascal; Pavlovic, Mladen; Pfammatter, Jean-Pierre
2002-07-01
Current techniques to correct valvular anomalies of the right ventricular outflow tract (RVOT) include repair and replacement of the pulmonary valve. However, the performance of currently used conduits has been less than ideal because of unfavorable hemodynamics and mid- to long-term complications. An early experience with a totally integrated Contegra valved conduit derived from a bovine jugular vein is reported; this conduit has the advantage that there is no discontinuity between its lumen and the valve it incorporates. Between October 1999 and October 2001, a total of 22 Contegra valved conduits (12-22 mm) was implanted in 21 children aged <5 years, and in one patient aged 21 years. Diagnosis included tetralogy of Fallot (n = 13), pulmonary atresia (n = 3), double outlet right ventricle with pulmonary stenosis (PS) (n = 3), transposition of the great arteries, ventricular septal defect and PS (n = 2) and truncus arteriosus (n = 1). In 15 of these patients, distal and proximal anastomoses were performed on the beating heart. There was no mortality and no valved-conduit-related early morbidity. Intraoperative invasive assessment demonstrated excellent hemodynamic characteristics: mean peak pressure increase was 8.5+/-6.3 mmHg (varying between 4 mmHg in the 20-mm conduit and 18 mmHg in the 14-mm conduit). These values were confirmed by pre-discharge transthoracic pulsed-wave Doppler echocardiography. Because of endocarditis, one conduit was explanted after 11 months and replaced with a pulmonary homograft. Two patients required reintervention. The Contegra valved conduit is an excellent immediate substitute in the treatment of RVOT lesion when a pulmonary valve has to be inserted. Both systolic and diastolic valve functions are promising. Further data are required to confirm the favorable hemodynamics, as well as the durability and efficacy of this conduit in the long term.
Rosevear, Henry M; Krishnamachari, Yogita; Ariza, Carlos A; Mallapragada, Surya K; Salem, Aliasger K; Griffith, Thomas S; De Young, Barry R; Wald, Moshe
2012-04-01
To investigate the effect of the combination of locally delivered growth factors and oral sildenafil citrate on cross-conduit microrecanalization. A total of 42 rats were divided into 7 groups. Of the 42 rats, 6 underwent bilateral vasectomy and bilateral end-to-end vasovasostomy and 12 underwent bilateral vasectomy. Of the latter 12, 6 received sildenafil citrate orally (10 mg/kg/d) for 24 weeks and 6 received placebo. A total of 24 rats underwent bilateral vasectomy and bilateral reconstruction with implantation of a 5-mm biodegradable conduit that bridged the 2 vasal ends. Of the 24 rats with conduits, 12 also had 250 pg of transforming growth factor-β and 12.5 pg of platelet-derived growth factor-β sustained release nanoparticles placed in immediate proximity to the conduit. The remaining 12 rats with conduits (6 without growth factors and 6 with growth factors) also received sildenafil citrate orally (10 mg/kg/d) for 24 weeks; the others received placebo. The reconstructed segments were harvested for histologic examination at 24 weeks. Five of 6 primary vasovasostomy and no vasectomy-only rats sired litters. Significantly more microcanals per conduit were observed in rats receiving sildenafil citrate: without growth factors, 3.9 vs. 0 canals/conduit (P < 0.001); with growth factors, 5.5 vs. 0.25 canals/conduit (P < 0.001). The rats receiving sildenafil citrate with growth factors showed a trend toward more microcanals per conduit than the rats receiving sildenafil citrate without growth factors (5.5 vs 3.9; P = .10). Rats receiving growth factors but no sildenafil citrate did not produce more canals than the rats receiving neither growth factor nor sildenafil citrate (0.25 vs 0; P = NS). Orally administered sildenafil citrate enhances formation of microcanalization after postvasectomy reconstruction using a biodegradable conduit in a rat model. Locally delivered growth factors appear to increase the number of microcanals. Copyright © 2012 Elsevier Inc. All rights reserved.
Morbidity and mortality after use of iliac conduits for endovascular aortic aneurysm repair.
Gupta, Prateek K; Sundaram, Abhishek; Kent, K Craig
2015-07-01
Although placement of an open iliac conduit for endovascular aortic aneurysm repair (EVAR) is generally felt to result in higher morbidity and mortality, published literature is scarce. Our objective was to assess 30-day outcomes after elective EVAR with an open iliac conduit using a multi-institutional database. Patients who underwent elective EVAR (n = 14,339) for abdominal aortic aneurysm were identified from the American College of Surgeons National Surgical Quality Improvement Program 2005 to 2011 database. Univariable and multivariable logistic regression analyses were performed. An open iliac conduit was used in 231 patients (1.6%), and the remainder had femoral exposure or percutaneous EVAR. Women comprised 32% of patients with iliac conduits in contrast to 17% of those without iliac conduits. Patients with iliac conduits were older and had a lower body mass index. Univariable analysis showed patients with open iliac conduits had a higher incidence of postoperative pneumonia (3.0% vs 1.1%), ventilator dependence (4.8% vs 1.0%), renal failure (3.0% vs 0.7%), cardiac arrest or myocardial infarction (5.2% vs 1.1%), return to the operating room (9.1% vs 3.7%), major morbidity (16.0 vs 6.6%), and death (3.0% vs 0.9%). On multivariable analysis, the use of open iliac conduits was associated with higher risk of 30-day mortality (odds ratio, 2.7; 95% confidence interval, 1.2-6.0) and 30-day major morbidity (odds ratio, 2.3; 95% confidence interval, 1.6-3.3). Patients with open iliac conduits for EVAR are more likely to be female and have higher postoperative morbidity and mortality. For patients with complex iliac artery disease, conduits are a viable alternative after EVAR to be performed, albeit at an increased risk. These data do suggest the need for lower-profile grafts and other alternative strategies for navigating complex iliac artery disease. Copyright © 2015 Society for Vascular Surgery. All rights reserved.
Wlaszczuk, Adam; Marcol, Wiesław; Kucharska, Magdalena; Wawro, Dariusz; Palen, Piotr; Lewin-Kowalik, Joanna
2016-11-01
The influence of different kinds of nerve guidance conduits on regeneration of totally transected rat sciatic nerves through a 7-mm gap was examined. Five different types of conduits made of chitosan and poly(D,L-lactide-co-glycolide) (PLGA) were constructed and tested in vivo. We divided 50 animals into equal groups of 10, with a different type of conduit implanted in each group: chitosan sponge core with an average molecular mass of polymer (Mv) of 287 kDa with 7 channels in a PLGA sleeve, chitosan sponge core with an Mv of 423 kDa with 7 channels in a PLGA sleeve, chitosan sponge core (Mv, 423 kDa) with 13 channels in a PLGA sleeve, chitosan multifilament yarn in a PLGA sleeve, and a PLGA sleeve only. Seven weeks after the operation, we examined the distance covered by regenerating nerve fibers, growing of nerves into the conduit's core, and intensity and type of inflammatory reaction in the conduit, as well as autotomy behavior (reflecting neuropathic pain intensity) in the animals. Two types of conduits were allowing nerve outgrowth through the gap with minor autotomy and minor inflammatory reactions. These were the conduits with chitosan multifilament yarn in a PLGA sleeve and the conduits with 13-channel microcrystalline chitosan sponge in a PLGA sleeve. The type of chitosan used to build the nerve guidance conduit influences the intensity and character of inflammatory reaction present during nerve regeneration, which in turn affects the distance crossed by regenerating nerve fibers, growing of the nerve fibers into the conduit's core, and the intensity of autotomy in the animals. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Balaras, Elias; Cha, K S; Griffith, Bartley P; Gammie, James S
2009-03-01
Aortic valve bypass surgery treats aortic valve stenosis with a valve-containing conduit that connects the left ventricular apex to the descending thoracic aorta. After aortic valve bypass, blood is ejected from the left ventricle via both the native stenotic aortic valve and the conduit. We performed computational modeling to determine the effects of aortic valve bypass on aortic and cerebral blood flow, as well as the effect of conduit size on relative blood flow through the conduit and the native valve. The interaction of blood flow with the vascular boundary was modeled using a hybrid Eurelian-Lagrangian formulation, where an unstructured Galerkin finite element method was coupled with an immersed boundary approach. Our model predicted native (stenotic) valve to conduit flow ratios of 45:55, 52:48, and 60:40 for conduits with diameters of 20, 16, and 10 mm, respectively. Mean gradients across the native aortic valve were calculated to be 12.5, 13.8, and 17.6 mm Hg, respectively. Post-aortic valve bypass cerebral blood flow was unchanged from preoperative aortic valve stenosis configurations and was constant across all conduit sizes. In all cases modeled, cerebral blood flow was completely supplied by blood ejected across the native aortic valve. An aortic valve bypass conduit as small as 10 mm results in excellent relief of left ventricular outflow tract obstruction in critical aortic valve stenosis. The presence of an aortic valve bypass conduit has no effect on cerebral blood flow. All blood flow to the brain occurs via antegrade flow across the native stenotic valve; this configuration may decrease the long-term risk of cerebral thromboembolism.
Transpiring purging access probe for particulate laden or hazardous environments
VanOsdol, John G
2013-12-03
An access probe for remote-sensing access through a viewing port, viewing volume, and access port into a vessel. The physical boundary around the viewing volume is partially formed by a porous sleeve lying between the viewing volume and a fluid conduit. In a first mode of operation, a fluid supplied to the fluid conduit encounters the porous sleeve and flows through the porous material to maintain the viewing volume free of ash or other matter. When additional fluid force is needed to clear the viewing volume, the pressure of the fluid flow is increased sufficiently to slidably translate the porous sleeve, greatly increasing the flow into the viewing volume. The porous sleeve is returned to position by an actuating spring. The access probe thereby provides for alternate modes of operation based on the pressure of an actuating fluid.
Wave energy transmission apparatus for high-temperature environments
NASA Technical Reports Server (NTRS)
Buckley, John D. (Inventor); Edwards, William C. (Inventor); Kelliher, Warren C. (Inventor); Carlberg, Ingrid A. (Inventor)
2010-01-01
A wave energy transmission apparatus has a conduit made from a refractory oxide. A transparent, refractory ceramic window is coupled to the conduit. Wave energy passing through the window enters the conduit.
The evolution of a valved hepatoduodenal intestinal conduit.
Kaufman, B H; Luck, S R; Raffensperger, J G
1981-06-01
Ascending cholangitis remains among the most serious complications following operations for biliary disorders. The bacterial count of refluxing intestinal contents can be reduced by using an enteric conduit from the biliary tract to the relatively sterile duodenum. A valvular conduit prohibits reflux of intestinal contents and permits unobstructed antegrade flow of bile. This can be created by intussuscepting approximately 1 cm of intestine in the midportion of the conduit. During the last 3 yr, valvular conduits were created in 11 patients. Seven of these children were treated for biliary atresia, and 4 had operations for choledochal duct cysts. There have been no deaths or morbidity resulting from the use of the valvular conduits. The postoperative courses in these patients indicate that the use of an intussusception valve may be beneficial in the prevention of ascending cholangitis.
Siddiqui, Maria Tariq; Hasan, Asif; Mohsin, Shazia; Hamid, Mohammad; Amanullah, Muhammad Muneer
2012-10-01
The focus of this study is to share the experience and outcomes of Contegra graft implantation in the paediatric and adult population in Pakistan. Between May 2007 and July 2011, 16 patients, underwent implantation of a Contegra valved conduit. All operations were performed through a median sternotomy with cardiopulmonary bypass. Indications included: Pulmonary atresia with ventricular septal defect (n = 11), Tetralogy of Fallot with absent Pulmonary Valve (PV) syndrome (n = 2), double outlet right ventricle, transposition of great arteries and pulmonary stenosis (n = 1), isolated aortic valve disease (n = 1) and a pseudo-aneurysm with infective endocarditis (n = 1).Conduit sizes varied between 16-22 mm. The three in hospital deaths were unrelated to the Contegra valved conduit. One patient was lost to follow up. Of the 12 survivors, 10 are currently free from re-operation or complications related to the conduit while one needed distal pulmonary artery dilatation owing to critical stenosis and another had severe Valvular regurgitation. Echocardiographic evaluation of the Contegra valved conduit demonstrated no haemodynamically significant valve regurgitation in 10 patients. In this small review of 16 operations using the Contegra valved conduit for Right Venticular Outflow Tract (RVOT) reconstruction in the paediatric population, we observed good post operative results concerning conduit function. The Contegra conduit provides an excellent substitute to the homograft with satisfactory early and mid-term results though long-term results are awaited in Pakistan.
NASA Astrophysics Data System (ADS)
Yumao, Pang; Xunhua, Zhang; Guolin, Xiao; Luning, Shang; Xingwei, Guo; Zhenhe, Wen
2018-04-01
Various igneous complexes were identified in multi-channel seismic reflection profiles from the South Yellow Sea Basin. It is not rare that magmatic intrusions in sedimentary basins cause strong thermal perturbations and hydrothermal activities. Some intrusion-related hydrothermal vent complexes have been identified and they are considered to originate from the deep sedimentary contact aureole around igneous intrusions and terminate in upper vents structures, and are linked by a vertical conduit system. The upper vent complexes are usually eye-shaped, dome-shaped, fault-related, crater-shaped or pock-shaped in seismic profiles. A schematic model was proposed to illustrate the structures of different types of hydrothermal vent complexes. A conceptual conduit model composed of an upper pipe-like part and a lower branching part was also derived. Hydrothermal vent complexes mainly developed during the Middle-Late Cretaceous, which is coeval with, or shortly after the intrusion. The back-arc basin evolution of the area which is related to the subduction of the Paleo-Pacific plate during the Mesozoic-Cenozoic may be the principal factor for voluminous igneous complexes and vent complexes in this area. It is significant to study the characteristics of igneous complexes and related hydrothermal vent complexes, which will have implications for the future study of this area.
Results of Buoyancy-gravity Effects in ITER Cable-in- Conduit Conductor with Dual Channel
NASA Astrophysics Data System (ADS)
Bruzzone, P.; Stepanov, B.; Zanino, R.; Richard, L. Savoldi
2006-04-01
The coolant in the ITER cable-in-conduit conductors (CICC) flows at significant higher speed in the central channel than in the strand bundle region due to the large difference of hydraulic impedance. When energy is deposited in the bundle region, e.g. by ac loss or radiation, the heat removal in vertically oriented dual channel CICC with the coolant flowing downward is affected by the reduced density of helium (buoyancy) in the bundle region, which is arising from the temperature gradient due to poor heat exchange between the two channels. At large deposited power, flow stagnation and back-flow can cause in the strand bundle area a slow temperature runaway eventually leading to quench. A new test campaign of the thermal-hydraulic behavior was carried out in the SULTAN facility on an instrumented section of the ITER Poloidal Field Conductor Insert (PFIS). The buoyancy-gravity effect was investigated using ac loss heating, with ac loss in the cable calibrated in separate runs. The extent of upstream temperature increase was explored over a broad range of mass flow rate and deposited power. The experimental behavior is partly reproduced by numerical simulations. The results from the tests are extrapolated to the likely operating conditions of the ITER Toroidal Field conductor with the inboard leg cooled from top to bottom and heat deposited by nuclear radiation from the burning plasma.
Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit.
Kalbermatten, D F; Kingham, P J; Mahay, D; Mantovani, C; Pettersson, J; Raffoul, W; Balcin, H; Pierer, G; Terenghi, G
2008-06-01
Peripheral nerve injury presents with specific problems of neuronal reconstructions, and from a clinical viewpoint a tissue engineering approach would facilitate the process of repair and regeneration. We have previously used artificial nerve conduits made from bioresorbable poly-3-hydroxybutyrate (PHB) in order to refine the ways in which peripheral nerves are repaired and reconnected to the target muscles and skin. The addition of Schwann cells (SC) or differentiated mesenchymal stem cells (dMSC) to the conduits enhances regeneration. In this study, we have used a matrix based on fibrin (Tisseel) to fill optimally the nerve-conduits with cells. In vitro analysis showed that both SC and MSC adhered significantly better to PHB in the presence of fibrin and cells continued to maintain their differentiated state. Cells were more optimally distributed throughout the conduit when seeded in fibrin than by delivery in growth medium alone. Transplantation of the nerve conduits in vivo showed that cells in combination with fibrin matrix significantly increased nerve regeneration distance (using PGP9.5 and S100 distal and proximal immunohistochemistry) when compared with empty PHB conduits. This study shows the beneficial combinatory effect of an optimised matrix, cells and conduit material as a step towards bridging nerve gaps which should ultimately lead to improved functional recovery following nerve injury.
Spatially varying dispersion to model breakthrough curves.
Li, Guangquan
2011-01-01
Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G.; Boucher, Timothy J.
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, Marcos German
1999-01-01
A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.
Guided acoustic wave inspection system
Chinn, Diane J.
2004-10-05
A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.
Flow through in situ reactors with suction lysimeter sampling capability and methods of using
Radtke, Corey W [Idaho Falls, ID; Blackwelder, D Brad [Blackfoot, ID; Hubbell, Joel M [Idaho Falls, ID
2009-11-17
An in situ reactor for use in a geological strata includes a liner defining a centrally disposed passageway and a sampling conduit received within the passageway. The sampling conduit may be used to receive a geological speciment derived from geological strata therein and a lysimeter is disposed within the sampling conduit in communication with the geological specimen. Fluid may be added to the geological specimen through the passageway defined by the liner, between an inside surface of the liner and an outside surface of the sampling conduit. A distal portion of the sampling conduit may be in fluid communication with the passageway.
26 CFR 1.860D-1 - Definition of a REMIC.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) INCOME TAXES Real Estate Investment Trusts § 1.860D-1 Definition of a REMIC. (a) In general. A real.... (d) Election to be treated as a real estate mortgage investment conduit—(1) In general. A qualified..., for the first taxable year of its existence, a Form 1066, U.S. Real Estate Mortgage Investment Conduit...
26 CFR 1.860F-4 - REMIC reporting requirements and other administrative rules.
Code of Federal Regulations, 2010 CFR
2010-04-01
... TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Real Estate Investment Trusts § 1.860F-4 REMIC... 6011(a), for each taxable year on Form 1066, U.S. Real Estate Mortgage Investment Conduit Income Tax... assets that are real estate assets defined in section 856(c)(6)(B), computed by reference to the average...
ETR, TRA642. ON GROUND FLOOR. WITH OUTER THERMAL RING IN ...
ETR, TRA-642. ON GROUND FLOOR. WITH OUTER THERMAL RING IN PLACE AND CONDUIT PRESERVED, HIGH-DENSITY CONCRETE IS PLACED BETWEEN THE THERMAL RING AND THE OUTER REACTOR FORM. INL NEGATIVE NO. 56-2400. Jack L. Anderson, Photographer, 6/10/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Canter, C E; Gutierrez, F R; Molina, P; Hartmann, A F; Spray, T L
1991-04-01
Right-sided extracardiac conduits are frequently complicated by obstruction over time. We compared the utility of two-dimensional and Doppler echocardiography and magnetic resonance imaging in the diagnosis of postoperative right-sided obstruction with cardiac catheterization and angiography in 10 patients with xenograft or homograft conduits. Correlation (r = 0.95) between continuous-wave Doppler estimates and catheter pullback pressure gradients across the conduits was excellent. Echocardiography could only visualize five of 10 conduits in their entirety. Magnetic resonance imaging visualized all conduits and showed statistically significant (kappa = 0.58) agreement with angiography in the localization and estimation of severity of a variety of right-sided obstructions in these patients. However, flow voids created by the metallic ring around xenograft valves led to a false negative diagnosis of valvular stenosis in four patients when magnetic resonance imaging was used alone. Doppler studies correctly indicated obstruction in these patients. The combination of magnetic resonance imaging studies and continuous-wave Doppler echocardiography can be useful to noninvasively evaluate right-sided obstruction in postoperative patients with right-sided extracardiac conduits.
Pressurized fluidized bed reactor
Isaksson, J.
1996-03-19
A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.
Pressurized fluidized bed reactor
Isaksson, Juhani
1996-01-01
A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.
Powder collection apparatus/method
Anderson, I.E.; Terpstra, R.L.; Moore, J.A.
1994-01-11
Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing. 4 figures.
Powder collection apparatus/method
Anderson, Iver E.; Terpstra, Robert L.; Moore, Jeffery A.
1994-01-11
Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing.
River Intrusion in Karst Springs in Eogenetic Aquifers: Implications for Speleogenesis
NASA Astrophysics Data System (ADS)
Martin, J. B.; Gulley, J.; Screaton, E. J.
2008-12-01
Conceptual models of speleogenesis generally assume uni-directional transport in integrated conduit systems from discrete recharge points to discharge at karst springs. Estavelles, however, are karst springs that function intermittently as discrete recharge points when river stage rises more rapidly than local aquifer heads. As river water chemistry changes between baseflow and floods, estavelles should influence mass transport through (e.g. organic carbon, nutrients, and oxygen) and speleogenesis within karst systems. Estavelles are common in our study area in north-central Florida, particularly along the lower reaches of the Santa Fe River, where it flows across the unconfined karstic Floridan aquifer. River stage in this unconfined region can rise much faster than aquifer heads when large amounts of rain fall on the confined regions in its upper reaches. Backflooding into the estavelles during elevated river stage drives river water into the ground, causing some springs to reverse and other springs to recirculate large volumes of river water. Floodwaters originating in the confined region are highly undersaturated with respect to calcite, and thus river water transitions from slightly supersaturated to highly undersaturated with respect to calcite during flood events. As a result, conduits connected to estavelles are continuously enlarged as springs reverse or recirculate calcite-undersaturated river water. It has been suggested that currently flooded caves (i.e. karst conduits) associated with springs in Florida formed entirely underwater because speleothems, which are prevalent in flooded caves in the Yucatan and Bahamas, have not been observed by cave divers. Results of this study indicate that the absence of speleothems does not necessarily provide evidence of a continuous phreatic history for underwater caves. Instead speleothems that formed in caves while dry could have been dissolved by backflooding of estavelles with undersaturated water
Innovative and effective techniques for locating underground conduits.
DOT National Transportation Integrated Search
2011-06-01
The New Jersey Department of Transportation (NJDOT) operates and maintains a network of : thousands of miles of conduits, many carrying fiber optic cables, that is vital to the States : communication system. These conduits frequently must be locat...
Real-time airborne particle analyzer
Reilly, Peter T.A.
2012-10-16
An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.
NASA Astrophysics Data System (ADS)
Syam, Bustami; Sebayang, Alexander; Sebayang, Septian; Muttaqin, Maraghi; Darmadi, Harry; Basuki, WS; Sabri, M.; Abda, S.
2018-03-01
Open channel conduit is designed and produced with the aims to reduce excess water, whether from rain, seepage, or excess irrigation water in an area. It is also included in one of the important components of urban infrastructure in tackling the problem of flooding and waterlogging. On the roadway, e.g. housing complex the open channel conduits should function the same, however conduit covers are needed. The covers should be also designed to function as parking bumper. This paper discusses the design and production of the stoppers using our newly invented materials; the stoppers are structurally tested under static, dynamic, and bump test. Response of the conduit cover are found from structural analysis using finite element software ANSYS MECHANICAL version 17.5. Two types of stoppers are introduced: flat and curvy configuration. It was obtained that both types are suitable for open channel conduit cover and parking bumper.
The twisted diversion: a paralyzing complication
Hiew, Kenneth; Glendinning, Richard; Parr, Nigel; Kumar, Manal
2013-01-01
Ileal conduit remains a widely used urinary diversion performed after radical cystectomy. However, complications of ileal conduits remain an important concern in urological surgery. We report a rare case of an ileal conduit stricture, which can have grim complications if unobserved during the operation. Following an initial operation of radical cystectomy and ileal conduit formation in France in 2011, an 80-year-old male travelled back to the UK after 4 months of general weakness and limb paralysis. Initial blood test shows life-threatening hyperkalemia and worsened renal function. Subsequent ultrasound KUB scan and loopogram revealed obstructive uropathy. The initial management includes intravenous antibiotics and bilateral nephrostomies were inserted to aid diversion of urine. A thorough surgical exploration revealed a twisted, fibrous mesenteric band adhered to the proximal part of the ileal conduit. Only one case report of ileal conduit stenosis was described many years after the procedure. PMID:24963928
Separation and/or sequestration apparatus and methods
Rieke, Peter C; Towne, Silas A; Coffey, Greg W; Appel, Aaron M
2015-02-03
Apparatus for separating CO.sub.2 from an electrolyte solution are provided. Example apparatus can include: a vessel defining an interior volume and configured to house an electrolyte solution; an input conduit in fluid communication with the interior volume; an output conduit in fluid communication with the interior volume; an exhaust conduit in fluid communication with the interior volume; and an anode located within the interior volume. Other example apparatus can include: an elongated vessel having two regions; an input conduit extending outwardly from the one region; an output conduit extending outwardly from the other region; an exhaust conduit in fluid communication with the one region; and an anode located within the one region. Methods for separating CO.sub.2 from an electrolyte solution are provided. Example methods can include: providing a CO.sub.2 rich electrolyte solution to a vessel containing an anode; and distributing hydrogen from the anode to acidify the electrolyte solution.
Momentum transfer conduits -- A new microscopic look at porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moaveni, S.
In this paper, the flow of fluid through porous media is investigated on a microscopic scale by representing a porous medium by an assemblage of hypothetical conduits through which the fluid momentum is transferred across the medium. It is shown that the rate of transfer of fluid momentum depends on the geometrical structure of the conduits such as the number density of momentum transfer conduits (MTCs), the length distribution and the directional distribution of these hypothetical conduits. In addition an expression for the total number of momentum transfer conduits reaching an arbitrary areal element is developed. Finally, an average heightmore » normal to an arbitrary areal element at which the MTCs were last discharged is formulated. This idea leads to definition of momentum thickness, which in turn may be used to define an effective (pseudo) viscosity for a given porous medium.« less
Novel technique for airless connection of artificial heart to vascular conduits.
Karimov, Jamshid H; Gao, Shengqiang; Dessoffy, Raymond; Sunagawa, Gengo; Sinkewich, Martin; Grady, Patrick; Sale, Shiva; Moazami, Nader; Fukamachi, Kiyotaka
2017-12-01
Successful implantation of a total artificial heart relies on multiple standardized procedures, primarily the resection of the native heart, and exacting preparation of the atrial and vascular conduits for pump implant and activation. Achieving secure pump connections to inflow/outflow conduits is critical to a successful outcome. During the connection process, however, air may be introduced into the circulation, traveling to the brain and multiple organs. Such air emboli block blood flow to these areas and are detrimental to long-term survival. A correctly managed pump-to-conduit connection prevents air from collecting in the pump and conduits. To further optimize pump-connection techniques, we have developed a novel connecting sleeve that enables airless connection of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) to the conduits. In this brief report, we describe the connecting sleeve design and our initial results from two acute in vivo implantations using a scaled-down version of the CFTAH.
NASA Astrophysics Data System (ADS)
Saffer, D. M.; McKiernan, A. W.; Skarbek, R. M.
2008-12-01
Characterizing dewatering pathways and chemical fluxes near and outboard of subduction trenches is important toward understanding early sediment dewatering and devolatilization. Quantifying fluid flow rates also constrains the hydraulic gradients driving flow, and thus ultimately hold implications for pore pressure distribution and fault mechanical strength. We focus on the well-studied Nankai Trough offshore SW Japan, where drilling has sampled the sedimentary section at several boreholes from ~11 km outboard of the trench to 3 km landward. At these drillsites, &δ37Cl data and correlation of distinct extrema in downhole chloride profiles have been interpreted to reflect substantial horizontal fluid flow to >10 km outboard of the trench within the ~400 m-thick, homogeneous Lower Shikoku Basin (LSB) facies mudstone. The estimated horizontal velocities are 13 ± 5 cm yr-1; the flow is presumably driven by loading during subduction, and mediated by either permeable conduits or strong anisotropy in permeability. However, the pressure gradients and sediment permeabilities necessary for such flow have not been quantified. Here, we address this problem by combining (1) laboratory measurement of horizontal and vertical sediment permeability from a combination of constant rate of strain (CRS) consolidation tests and flow-through measurements on core samples; and (2) numerical models of fluid flow within a cross section perpendicular to the trench. In our models, we assign hydrostatic pressure at the top and seaward edges, a no-flow condition at the base of the sediments, and pore pressures ranging from 40%-100% of lithostatic at the arcward model boundary. We assign sediment permeability on the basis of our laboratory measurements, and evaluate the possible role of thin permeable conduits as well as strong anisotropy in the incoming section. Our laboratory results define a systematic log-linear relationship between sediment permeability and porosity within the LSB mudstones. The overall variation in permeability for our suite of samples is ~1 order of magnitude. Notably, horizontal permeabilities fall within the range of measured vertical permeabilities, and indicate no significant anisotropy. Using laboratory-derived permeability values, simulated horizontal flow rates range from 10-4 to 10-1 cm yr-1, and decrease dramatically with distance seaward of the trench. With permeability anisotropy of 1000x (i.e. kh = 1000kv), simulated flow rates peak at 3 cm yr-1 at the trench, and decrease to 3x10-1 cm yr-1 by 10 km seaward. These flow rates are substantially lower than those inferred from the geochemical data and also lower than the plate convergence rate of 4 cm yr-1, such that net transport of fluids out of the subduction zone is not likely. If discrete conduits are included in our models, permeabilities of ~10-114m2 are required to sustain the inferred flow rates. However, no potential conduits in the LSB were observed by coring or logging- while-drilling. In contrast, net egress of fluids - and associated chemical transport and pressure translation - are plausible at margins where continuous permeable strata are subducting. Overall, our results highlight a major discrepancy between constraints on fluid flow derived from physical hydrogeology and inferences from geochemical data. In this case, we suggest that the chemical signals may be affected by other processes such as in situ clay dehydration and down-section chemical variations.
Contaminant sequestration in karstic aquifers: Experiments and quantification
NASA Astrophysics Data System (ADS)
Li, Guangquan; Loper, David E.; Kung, Robin
2008-02-01
A karstic aquifer typically has significant secondary porosity consisting of an interconnected system of caves or conduits. Conduit-borne contaminants can enter the contiguous limestone matrix, remain inside for a longer time than in the conduit, and subsequently be flushed out. This retention or sequestration can significantly influence the fate of contaminants within the aquifer and alter the shape of the breakthrough curve. The mechanisms involved in sequestration have been identified and quantified by analysis of the breakthrough curves generated by a set of laboratory experiments in which a conduit, porous limestone matrix, and conservative contaminant were simulated by a porous-walled pipe, chamber of closely packed glass beads, and salt, respectively. Experiments were conducted with both active and passive transfer of water between conduit and matrix, simulating differing hydrogeologic regimes. In active transfer the primary control parameter is the volume of water transferred; sequestration is primarily due to advection with the effects of diffusion and dispersion being minimal. In passive transfer the control parameters are the conduit Reynolds number and the duration that contaminant resides in the conduit; sequestration is caused by the combined effects of the conduit pressure drop, pressure variation due to bedform, and diffusion. Active and passive transfer can be unified by analyzing the ratio of the scale of pressure variation to the conduit length. In accordance with the resolved mechanisms a variety of models have been constructed to recover solute distributions in the matrix and to regenerate breakthrough curves. These analyses and models provide a potential approach to investigate contaminant migration in karstic aquifers.
Modelling the Effects of Magma Properties, Pressure and Conduit Dimensions on the Seismic Signature
NASA Astrophysics Data System (ADS)
Sturton, S.; Neuberg, J.
2002-12-01
A finite-difference scheme is used to model the seismic radiation pattern for a fluid filled conduit surrounded by a solid medium. Seismic waves travel slower than the acoustic velocity inside the conduit and the propagation velocity is frequency dependent. At the ends of the conduit the waves are partly reflected back along the conduit and also leak into the solid medium. The seismometer signal obtained is therefore composed of a series of events released from the ends of the conduit. Each signal can be characterised by the repeat time of the events and the dispersion seen within each event. These characteristics are dependent on the seismic parameters and the conduit dimensions. For a gas-charged magma, increasing the pressure with depth reduces the volume of gas exsolved, thereby increasing the seismic velocity lower in the conduit. From the volume of gas exsolved, profiles of seismic parameters within the conduit and their evolution with time can be obtained. The differences between a varying velocity with depth and a constant velocity with depth are seen in the synthetic seismograms and spectrograms. At Soufriere Hills Volcano, Montserrat, single hybrid events merge into tremor and occasionally gliding lines are observed in the spectra indicating changes in the seismic parameters with time or varying triggering rates of single events. The synthetic seismograms are compared to the observational data and used to constrain the magnitude of pressure changes necessary to produce the gliding lines. Further constraints are obtained from the dispersion patterns in both the synthetic seismograms and the observed data.
Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence
Koyanagi, Kazuo; Ozawa, Soji; Oguma, Junya; Kazuno, Akihito; Yamazaki, Yasushi; Ninomiya, Yamato; Ochiai, Hiroki; Tachimori, Yuji
2016-01-01
Abstract Anastomotic leakage is considered as an independent risk factor for postoperative mortality after esophagectomy, and an insufficient blood flow in the reconstructed conduit may be a risk factor of anastomotic leakage. We investigated the clinical significance of blood flow visualization by indocyanine green (ICG) fluorescence in the gastric conduit as a means of predicting the leakage of esophagogastric anastomosis after esophagectomy. Forty patients who underwent an esophagectomy with gastric conduit reconstruction were prospectively investigated. ICG fluorescence imaging of the gastric conduit was detected by a near-infrared camera system during esophagectomy and correlated with clinical parameters or surgical outcomes. In 25 patients, the flow speed of ICG fluorescence in the gastric conduit wall was simultaneous with that of the greater curvature vessels (simultaneous group), whereas in 15 patients this was slower than that of the greater curvature vessels (delayed group). The reduced speed of ICG fluorescence stream in the gastric conduit wall was associated with intraoperative blood loss (P = 0.008). Although anastomotic leakage was not found in the simultaneous group, it occurred in 7 patients of the delayed group (P < 0.001). A flow speed of ICG fluorescence in the gastric conduit wall of 1.76 cm/s or less was determined by a receiver operating characteristic (ROC) curve, identified as a significant independent predictor of anastomotic leakage after esophagectomy (P = 0.004). This preliminary study demonstrates that intraoperative evaluation of blood flow speed by ICG fluorescence in the gastric conduit wall is a useful means to predict the risk of anastomotic leakage after esophagectomy. PMID:27472732
Salehi, Majid; Naseri-Nosar, Mahdi; Ebrahimi-Barough, Somayeh; Nourani, Mohammdreza; Khojasteh, Arash; Farzamfar, Saeed; Mansouri, Korosh; Ai, Jafar
2018-04-01
The current study aimed to enhance the efficacy of peripheral nerve regeneration using a biodegradable porous neural guidance conduit as a carrier to transplant allogeneic Schwann cells (SCs). The conduit was prepared from polyurethane (PU) and gelatin nanofibrils (GNFs) using thermally induced phase separation technique and filled with melatonin (MLT) and platelet-rich plasma (PRP). The prepared conduit had the porosity of 87.17 ± 1.89%, the contact angle of 78.17 ± 5.30° and the ultimate tensile strength and Young's modulus of 5.40 ± 0.98 MPa and 3.13 ± 0.65 GPa, respectively. The conduit lost about 14% of its weight after 60 days in distilled water. The produced conduit enhanced the proliferation of SCs demonstrated by a tetrazolium salt-based assay. For functional analysis, the conduit was seeded with 1.50 × 10 4 SCs (PU/GNFs/PRP/MLT/SCs) and implanted into a 10-mm sciatic nerve defect of Wistar rat. Three control groups were used: (1) PU/GNFs/SCs, (2) PU/GNFs/PRP/SCs, and (3) Autograft. The results of sciatic functional index, hot plate latency, compound muscle action potential amplitude and latency, weight-loss percentage of wet gastrocnemius muscle and histopathological examination using hematoxylin-eosin and Luxol fast blue staining, demonstrated that using the PU/GNFs/PRP/MLT conduit to transplant SCs to the sciatic nerve defect resulted in a higher regenerative outcome than the PU/GNFs and PU/GNFs/PRP conduits.
Virtual Surgery for Conduit Reconstruction of the Right Ventricular Outflow Tract.
Ong, Chin Siang; Loke, Yue-Hin; Opfermann, Justin; Olivieri, Laura; Vricella, Luca; Krieger, Axel; Hibino, Narutoshi
2017-05-01
Virtual surgery involves the planning and simulation of surgical reconstruction using three-dimensional (3D) modeling based upon individual patient data, augmented by simulation of planned surgical alterations including implantation of devices or grafts. Here we describe a case in which virtual cardiac surgery aided us in determining the optimal conduit size to use for the reconstruction of the right ventricular outflow tract. The patient is a young adolescent male with a history of tetralogy of Fallot with pulmonary atresia, requiring right ventricle-to-pulmonary artery (RV-PA) conduit replacement. Utilizing preoperative magnetic resonance imaging data, virtual surgery was undertaken to construct his heart in 3D and to simulate the implantation of three different sizes of RV-PA conduit (18, 20, and 22 mm). Virtual cardiac surgery allowed us to predict the ability to implant a conduit of a size that would likely remain adequate in the face of continued somatic growth and also allow for the possibility of transcatheter pulmonary valve implantation at some time in the future. Subsequently, the patient underwent uneventful conduit change surgery with implantation of a 22-mm Hancock valved conduit. As predicted, the intrathoracic space was sufficient to accommodate the relatively large conduit size without geometric distortion or sternal compression. Virtual cardiac surgery gives surgeons the ability to simulate the implantation of prostheses of different sizes in relation to the dimensions of a specific patient's own heart and thoracic cavity in 3D prior to surgery. This can be very helpful in predicting optimal conduit size, determining appropriate timing of surgery, and patient education.
Secondary air injection system and method
Wu, Ko-Jen; Walter, Darrell J.
2014-08-19
According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, M.G.
1999-03-23
A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
14 CFR 29.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the... formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...
14 CFR 23.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the... formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...
Taylor, Jack R.
1987-01-01
A combustor having an annular first stage, a generally cylindrically-shaped second stage, and an annular conduit communicably connecting the first and second stages. The conduit has a relatively small annular height and a large number of quench holes in the walls thereof such that quench air injected into the conduit through the quench holes will mix rapidly with, or quench, the combustion gases flowing through the conduit. The rapid quenching reduces the amount of NO.sub.x produced in the combustor.
EVALUATION OF BURIED CONDUITS AS PERSONNEL SHELTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, G.H.; LeDoux, J.C.; Mitchell, R.A.
1960-07-14
Supersedes ITR-1421. Twelve large-diameter buried conduit sections of various shapes were tested in the 60- to l49-psi overpressure region of Burst Priscilla to make an empirical determination of the degree of personnel protection afforded by commercially available steel and concrete conduits at depths of burial of 5, 7.5, and 10 feet below grade. Essentially, it was desired to assure that Repartment of Defense Class I, 100psi and comparable radiations, and Class II, 50-psi and comparable radiations, protection is afforded by use of such conduits of various configurations. Measurements were made of free-field overpressure at the ground surface above the structure;more » pressure inside the structures; acceleration of each structure; deflection of each structure; dust inside each structure; fragmentary missiles inside the concrete structures; and gamma and neutron radiation dose inside each structure. All buried conduit sections tested provided adequate Class I protection for the conditions under which the conduits were tested. Standard 8-foot concrete sewer pipe withstood 126-psi overpressure without significant damage, minor tension cracks observed; standard 10-gage corrugated-steel 8-foot circular conduit sections withstood 126- psi overpressure without significant damage; and standard 10-gage corrugated- steel cattle-pass conduits withstood 149-psi overpressure without significant damage. Durations of positive pressure were from 206 to 333 milliseconds. (auth)« less
NASA Astrophysics Data System (ADS)
Wallace, M. G.; Iuzzolina, H.
2005-12-01
A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analysis includes disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift was intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km2 , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed in association with a volcanic eruption through the repository. Mathematical relations were built between the resulting conduit areas and the fraction of the repository area occupied by waste packages. This relation was used in conjunction with a joint distribution incorporating variability in eruptive conduit diameters and in the number of eruptive conduits that could intersect the repository.
Development of a comprehensive inventory management system for underground fiber optic conduits.
DOT National Transportation Integrated Search
2013-03-01
Major State Departments of Transportation operate and maintain networks of thousands of miles of conduits, many : carrying fiber optic cables that are vital to State communication systems. These conduits are located alongside or : across highways and...
47 CFR 32.2441 - Conduit systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Conduit systems. 32.2441 Section 32.2441 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2441 Conduit systems. (a...
47 CFR 32.2441 - Conduit systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Conduit systems. 32.2441 Section 32.2441 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2441 Conduit systems. (a...
47 CFR 32.2441 - Conduit systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Conduit systems. 32.2441 Section 32.2441 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2441 Conduit systems. (a...
47 CFR 32.2441 - Conduit systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Conduit systems. 32.2441 Section 32.2441 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2441 Conduit systems. (a...
47 CFR 32.2441 - Conduit systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Conduit systems. 32.2441 Section 32.2441 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2441 Conduit systems. (a...
Sandeep, Nefthi; Punn, Rajesh; Balasubramanian, Sowmya; Smith, Shea N; Reinhartz, Olaf; Zhang, Yulin; Wright, Gail E; Peng, Lynn F; Wise-Faberowski, Lisa; Hanley, Frank L; McElhinney, Doff B
2018-04-01
Palliation of hypoplastic left heart syndrome with a standard nonvalved right ventricle to pulmonary artery conduit results in an inefficient circulation in part due to diastolic regurgitation. A composite right ventricle pulmonary artery conduit with a homograft valve has a hypothetical advantage of reducing regurgitation, but may differ in the propensity for stenosis because of valve remodeling. This retrospective cohort study included 130 patients with hypoplastic left heart syndrome who underwent a modified stage 1 procedure with a right ventricle to pulmonary artery conduit from 2002 to 2015. A composite valved conduit (cryopreserved homograft valve anastomosed to a polytetrafluoroethylene tube) was placed in 100 patients (47 aortic, 32 pulmonary, 13 femoral/saphenous vein, 8 unknown), and a nonvalved conduit was used in 30 patients. Echocardiographic functional parameters were evaluated before and after stage 1 palliation and before the bidirectional Glenn procedure, and interstage interventions were assessed. On competing risk analysis, survival over time was better in the valved conduit group (P = .040), but this difference was no longer significant after adjustment for surgical era. There was no significant difference between groups in the cumulative incidence of bidirectional Glenn completion (P = .15). Patients with a valved conduit underwent more interventions for conduit obstruction in the interstage period, but this difference did not reach significance (P = .16). There were no differences between groups in echocardiographic parameters of right ventricle function at baseline or pre-Glenn. In this cohort of patients with hypoplastic left heart syndrome, inclusion of a valved right ventricle to pulmonary artery conduit was not associated with any difference in survival on adjusted analysis and did not confer an identifiable benefit on right ventricle function. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Richardson, J. A.; Rementer, C. W.; Bruder, Jan M.; Hoffman-Kim, D.
2011-08-01
Biomimetic replicas of cellular topography have been utilized to direct neurite outgrowth. Here, we cultured postnatal rat dorsal root ganglion (DRG) explants in the presence of Schwann cell (SC) topography to determine the influence of SC topography on neurite outgrowth. Four distinct poly(dimethyl siloxane) conduits were fabricated within which DRG explants were cultured. To determine the contribution of SC topographical features to neurite guidance, the extent of neurite outgrowth into unpatterned conduits, conduits with randomly oriented SC replicas, and conduits with SC replicas parallel or perpendicular to the conduit long axis was measured. Neurite directionality and outgrowth from DRG were also quantified on two-dimensional SC replicas with orientations corresponding to the four conduit conditions. Additionally, live SC migration and neurite extension from DRG on SC replicas were examined as a first step toward quantification of the interactions between live SC and navigating neurites on SC replicas. DRG neurite outgrowth and morphology within conduits and on two-dimensional SC replicas were directed by the underlying SC topographical features. Maximal neurite outgrowth and alignment to the underlying features were observed into parallel conduits and on parallel two-dimensional substrates, whereas the least extent of outgrowth was observed into perpendicular conduits and on perpendicular two-dimensional replica conditions. Additionally, neurites on perpendicular conditions turned to extend along the direction of underlying SC topography. Neurite outgrowth exceeded SC migration in the direction of the underlying anisotropic SC replica after two days in culture. This finding confirms the critical role that SC have in guiding neurite outgrowth and suggests that the mechanism of neurite alignment to SC replicas depends on direct contact with cellular topography. These results suggest that SC topographical replicas may be used to direct and optimize neurite alignment, and emphasize the importance of SC features in neurite guidance.
NASA Astrophysics Data System (ADS)
Karlstrom, L.; Dunham, E. M.; Thelen, W. A.; Patrick, M. R.; Liang, C.; Prochnow, B. N.
2015-12-01
Beginning with the opening of a summit vent in 2008, Kilauea's (Hawaíi) summit eruption has exhibited frequent rockfalls from the crater walls into the active lava lake. These events perturb the lake surface, causing vigorous outgassing and sometimes explosions. A network of broadband seismometers records these events as a combination of high-frequency, long-period, and very long period (VLP) oscillations. The VLP portion of the signal has varied in period from 20-40 s since the summit vent opened and has a duration of 10-15 min. These seismic signals reflect the coupling of fluid motion in the conduit to elastic wall rocks. Oscillatory flow can be quantified in terms of the eigenmodes of a magma-filled conduit. Wave motion is affected by conduit geometry, multiphase fluid compressibility, viscosity, and pressure dependent H2O and CO2 solubility. Background stratification and a large impedance contrast at the depth where volatiles first exsolve gives rise to spatially localized families of conduit eigenmodes. The longest period modes are sensitive to properties of bubbly magma and to the length of the conduit above exsolution (which is set by total volatile content). To study the VLP events, we linearize the conduit flow equations assuming small perturbations to an initially magmastatic column, accounting for non-equilibrium multiphase fluid properties, stratification and buoyancy, and conduit width changes. We solve for conduit eigenmodes and associated eigenfrequencies, as well as for the time-domain conduit response to forces applied to the surface of the lava lake. We use broadband records of rockfalls from 2011-2015 that exhibit consistent periods along with lake level measurements to estimate conduit parameters. Preliminary results suggest that VLP periods can be matched with volatile contents similar to those inferred from melt inclusions from Halemaumau explosions. We are currently conducting a more thorough exploration of the parameter space to investigate this further.
NASA Astrophysics Data System (ADS)
Binet, S.; Joigneaux, E.; Pauwels, H.; Albéric, P.; Fléhoc, Ch.; Bruand, A.
2017-01-01
Water exchanges between a karstic conduit and the surrounding aquifer are driven by hydraulic head gradient at the interface between these two domains. The case-study presented in this paper investigates the impact of the geometry and interface conditions around a conduit on the spatial distribution of these exchanges. Isotopic (δ18O and δD), discharge and water head measurements were conducted at the resurgences of a karst system with a strong allogenic recharge component (Val d'Orléans, France), to estimate the amounts of water exchanged and the mixings between a saturated karstic conduit and the surrounding aquifer. The spatio-temporal variability of the observed exchanges was explored using a 2D coupled continuum-conduit flow model under saturated conditions (Feflow®). The inputs from the water heads and stable water isotopes in the groundwater flow model suggest that the amounts of water flowing from the aquifer are significant if the conduit flow discharges are less than the conduit flow capacity. This condition creates a spatial distribution of exchanges from upstream where the aquifer feeds the conduit (recharge area) to downstream where the conduit reaches its maximum discharge capacity and can feed the aquifer (discharge area). In the intermediate transport zone no exchange between the two domains takes place that brings a new criterion to delineate the vulnerable zones to surface water. On average, 4% of the water comes from the local recharge, 80% is recent river water and 16% is old river water. During the November 2008 flood, both isotopic signatures and model suggest that exchanges fluctuate around this steady state, limited when the river water level increases and intensified when the river water level decreases. The existence of old water from the river suggests a transient storage at the aquifer/conduit interface that can be considered as an underground hyporheic zone.
Pressurized fluidized bed reactor and a method of operating the same
Isaksson, J.
1996-02-20
A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.
Pressurized fluidized bed reactor and a method of operating the same
Isaksson, Juhani
1996-01-01
A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.
Are extrusive rhyolites produced from permeable foam eruptions?
Friedman, I.
1989-01-01
The permeable foam hypothesis is suggested by Eichelberger el al. (1986) to explain a major loss of water from rhyolithic magmas in the volcanic conduit. Evidence for the high-water content of the major portion of the magmas is herein examined and rejected. Eichelberger's hypothesis does not take into account the large (~2 orders of magnitude) viscosity change that would occur in the conduit as a result of water loss. It also requires that the permeable foam collapse and weld to form an obsidian that in thin section displays no evidence of the foam. An alternate hypothesis to explain the existence of small amounts of high water content rhyolite glasses in acid volcanoes is that rhyolite magmas are relatively dry (0.1-0.3% H2O) and that water enters the magma from the environment to produce a water-rich selvage which then is kneaded into the body of the magma. -Author
76 FR 43381 - Proposed Collection; Comment Request for Regulation Project
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-20
... Financial Asset Securitization Investment Trusts; Real Estate Mortgage Investment Conduits (TD 9004 (final... Securitization Investment Trusts; Real Estate Mortgage Investment Conduits. OMB Number: 1545-1675. Regulation... noneconomic residual interest in a Real Estate Mortgage Investment Conduit (REMIC) meeting the investigation...
NASA Technical Reports Server (NTRS)
Colbourne, Jason
1999-01-01
This report details the development and use of CONDUIT (Control Designer's Unified Interface). CONDUIT is a design tool created at Ames Research Center for the purpose of evaluating and optimizing aircraft control systems against handling qualities. Three detailed design problems addressing the RASCAL UH-60A Black Hawk are included in this report to show the application of CONDUIT to helicopter control system design.
Ball assisted device for analytical surface sampling
ElNaggar, Mariam S; Van Berkel, Gary J; Covey, Thomas R
2015-11-03
A system for sampling a surface includes a sampling probe having a housing and a socket, and a rolling sampling sphere within the socket. The housing has a sampling fluid supply conduit and a sampling fluid exhaust conduit. The sampling fluid supply conduit supplies sampling fluid to the sampling sphere. The sampling fluid exhaust conduit has an inlet opening for receiving sampling fluid carried from the surface by the sampling sphere. A surface sampling probe and a method for sampling a surface are also disclosed.
Young, G.
1963-01-01
This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors
Forced flow evaporator for unusual gravity conditions
NASA Technical Reports Server (NTRS)
Niggemann, Richard E. (Inventor); Ellis, Wilbert E. (Inventor)
1987-01-01
Low efficiency heat transfer in evaporators subject to unusual gravitational conditions is avoided through the use of a spiral evaporator conduit 12 receiving at an inlet 14 a vaporizable coolant at least partly in the liquid phase. Flow of the coolant through the conduit 12 demists the coolant by centrifuging the liquid phase against a pressurre wall 44 of the conduit 12. Vapor flow 40 induces counterrotating vortices 46, 48 which circulate the liquid phase coolant around the interior of the conduit 12 to wet all surfaces thereof.
NASA Astrophysics Data System (ADS)
Campagnola, S.; Romano, C.; Mastin, L. G.; Vona, A.
2016-06-01
Numerical simulations are useful tools to illustrate how flow parameters and physical processes may affect eruption dynamics of volcanoes. In this paper, we present an updated version of the Conflow model, an open-source numerical model for flow in eruptive conduits during steady-state pyroclastic eruptions (Mastin and Ghiorso in A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits. U.S. Geological Survey Open File Report 00-209, 2000). In the modified version, called Confort 15, the rheological constraints are improved, incorporating the most recent constitutive equations of both the liquid viscosity and crystal-bearing rheology. This allows all natural magma compositions, including the peralkaline melts excluded in the original version, to be investigated. The crystal-bearing rheology is improved by computing the effect of strain rate and crystal shape on the rheology of natural magmatic suspensions and expanding the crystal content range in which rheology can be modeled compared to the original version ( Conflow is applicable to magmatic mixtures with up to 30 vol% crystal content). Moreover, volcanological studies of the juvenile products (crystal and vesicle size distribution) of the investigated eruption are directly incorporated into the modeling procedure. Vesicle number densities derived from textural analyses are used to calculate, through Toramaru equations, maximum decompression rates experienced during ascent. Finally, both degassing under equilibrium and disequilibrium conditions are considered. This allows considerations on the effect of different fragmentation criteria on the conduit flow analyses, the maximum volume fraction criterion ("porosity criterion"), the brittle fragmentation criterion and the overpressure fragmentation criterion. Simulations of the pantelleritic and trachytic phases of the Green Tuff (Pantelleria) and of the Plinian Etna 122 BC eruptions are performed to test the upgrades in the Confort 15 modeling. Conflow and Confort 15 numerical results are compared analyzing the effect of viscosity, decompression rate, temperature, fragmentation criteria (critical strain rate, porosity and overpressure criteria) and equilibrium versus disequilibrium degassing in the magma flow along volcanic conduits. The equilibrium simulation results indicate that an increase in viscosity, a faster decompression rate, a decrease in temperature or the application of the porosity criterion in place of the strain rate one produces a deepening in fragmentation depth. Initial velocity and mass flux of the mixture are directly correlated with each other, inversely proportional to an increase in viscosity, except for the case in which a faster decompression rate is assumed. Taking into account up-to-date viscosity parameterization or input faster decompression rate, a much larger decrease in the average pressure along the conduit compared to previous studies is recorded, enhancing water exsolution and degassing. Disequilibrium degassing initiates only at very shallow conditions near the surface. Brittle fragmentation (i.e., depending on the strain rate criterion) in the pantelleritic Green Tuff eruption simulations is mainly a function of the initial temperature. In the case of the Etna 122 BC Plinian eruption, the viscosity strongly affects the magma ascent dynamics along the conduit. Using Confort 15, and therefore incorporating the most recent constitutive rheological parameterizations, we could calculate the mixture viscosity increase due to the presence of microlites. Results show that these seemingly low-viscosity magmas can explosively fragment in a brittle manner. Mass fluxes resulting from simulations which better represent the natural case (i.e., microlite-bearing) are consistent with values found in the literature for Plinian eruptions (~106 kg/s). The disequilibrium simulations, both for Green Tuff and Etna 122 BC eruptions, indicate that overpressure sufficient for fragmentation (if present) occurs only at very shallow conditions near the surface.
Development of the heat treatment system for the 40 T hybrid magnet superconducting outsert.
Chen, W G; Chen, Z M; Chen, Z Y; Huang, P C; He, P; Zhu, J W
2011-10-01
The heat treatment of Nb(3)Sn coil with the glass fabric insulation is one of the key and critical processes for the outsert solenoids of the 40 T hybrid magnet, which could be wound with cable-in-conduit conductors using the insulation-wind-and-react technique. The manufacturing of the large vertical type vacuum/Ar atmosphere-protection heat treatment system has been completed and recently installed in the High Magnetic Filed Laboratory, Chinese Academy of Sciences. The heat treatment system composed mainly the furnace, the purging gas supply system, the control system, the gas impurities monitoring system, and so on. At present, the regulation and testing of the heat treatment system has been successfully finished, and all of technical parameters meet or exceed specifications.
Development of the heat treatment system for the 40 T hybrid magnet superconducting outsert
NASA Astrophysics Data System (ADS)
Chen, W. G.; Chen, Z. M.; Chen, Z. Y.; Huang, P. C.; He, P.; Zhu, J. W.
2011-10-01
The heat treatment of Nb3Sn coil with the glass fabric insulation is one of the key and critical processes for the outsert solenoids of the 40 T hybrid magnet, which could be wound with cable-in-conduit conductors using the insulation-wind-and-react technique. The manufacturing of the large vertical type vacuum/Ar atmosphere-protection heat treatment system has been completed and recently installed in the High Magnetic Filed Laboratory, Chinese Academy of Sciences. The heat treatment system composed mainly the furnace, the purging gas supply system, the control system, the gas impurities monitoring system, and so on. At present, the regulation and testing of the heat treatment system has been successfully finished, and all of technical parameters meet or exceed specifications.
ERIC Educational Resources Information Center
Bentley, Danielle C.; Pang, Stephen C.
2012-01-01
Physical movement as a conduit for experiential learning within the academic context of anatomy is a strategy currently used in university dance education. This same approach can be applied to other movement-based practices, for example, yoga. The primary purpose of this study was to pilot a novel teaching curriculum to yoga practitioners, based…
Depositing bulk or micro-scale electrodes
Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.
2016-11-01
Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.
Effects of dynamically variable saturation and matrix-conduit coupling of flow in karst aquifers
Reimann, T.; Geyer, T.; Shoemaker, W.B.; Liedl, R.; Sauter, M.
2011-01-01
Well-developed karst aquifers consist of highly conductive conduits and a relatively low permeability fractured and/or porous rock matrix and therefore behave as a dual-hydraulic system. Groundwater flow within highly permeable strata is rapid and transient and depends on local flow conditions, i.e., pressurized or nonpressurized flow. The characterization of karst aquifers is a necessary and challenging task because information about hydraulic and spatial conduit properties is poorly defined or unknown. To investigate karst aquifers, hydraulic stresses such as large recharge events can be simulated with hybrid (coupled discrete continuum) models. Since existing hybrid models are simplifications of the system dynamics, a new karst model (ModBraC) is presented that accounts for unsteady and nonuniform discrete flow in variably saturated conduits employing the Saint-Venant equations. Model performance tests indicate that ModBraC is able to simulate (1) unsteady and nonuniform flow in variably filled conduits, (2) draining and refilling of conduits with stable transition between free-surface and pressurized flow and correct storage representation, (3) water exchange between matrix and variably filled conduits, and (4) discharge routing through branched and intermeshed conduit networks. Subsequently, ModBraC is applied to an idealized catchment to investigate the significance of free-surface flow representation. A parameter study is conducted with two different initial conditions: (1) pressurized flow and (2) free-surface flow. If free-surface flow prevails, the systems is characterized by (1) a time lag for signal transmission, (2) a typical spring discharge pattern representing the transition from pressurized to free-surface flow, and (3) a reduced conduit-matrix interaction during free-surface flow. Copyright 2011 by the American Geophysical Union.
Schauroth, Jenny; Wadsworth, Fabian B; Kennedy, Ben; von Aulock, Felix W; Lavallée, Yan; Damby, David E; Vasseur, Jérémie; Scheu, Bettina; Dingwell, Donald B
During explosive eruptions, a suspension of gas and pyroclasts rises rapidly within a conduit. Here, we have analysed textures preserved in the walls of a pyroclastic feeder dyke of the AD 1886 Tarawera basaltic Plinian fissure eruption. The samples examined consist of basaltic ash and scoria plastered onto a conduit wall of a coherent rhyolite dome and a welded rhyolitic dome breccia. We examine the textural evidence for the response of the wall material, built of ∼75 vol.% glass and ∼25 vol.% crystals (pore-free equivalent), to mass movement in the adjacent conduit. In the rhyolitic wall material, we quantify the orientation and aspect ratio of biotite crystals as strain markers of simple shear deformation, and interpret juxtaposed regions of vesiculation and vesicle collapse as evidence of conduit wall heating. Systematic changes occur close to the margin: (1) porosity is highly variable, with areas locally vesiculated or densified, (2) biotite crystals are oriented with their long axis parallel to the margin, (3) the biotites have greater aspect ratios close to the margin and (4) the biotite crystals are fractured. We interpret the biotite phenocryst deformation to result from crystal fracture, rotation and cleavage-parallel bookcase translation. These textural observations are inferred to indicate mechanical coupling between the hot gas-ash jet and the conduit wall and reheating of wall rock rhyolite. We couple these observations with a simple 1D conductive heating model to show what minimum temperature the conduit wall needs to reach in order to achieve a temperature above the glass transition throughout the texturally-defined deformed zone. We propose that conduit wall heating and resulting deformation influences conduit margin outgassing and may enhance the intensity of such large basaltic eruptions.
Generation of Complex Karstic Conduit Networks with a Hydro-chemical Model
NASA Astrophysics Data System (ADS)
De Rooij, R.; Graham, W. D.
2016-12-01
The discrete-continuum approach is very well suited to simulate flow and solute transport within karst aquifers. Using this approach, discrete one-dimensional conduits are embedded within a three-dimensional continuum representative of the porous limestone matrix. Typically, however, little is known about the geometry of the karstic conduit network. As such the discrete-continuum approach is rarely used for practical applications. It may be argued, however, that the uncertainty associated with the geometry of the network could be handled by modeling an ensemble of possible karst conduit networks within a stochastic framework. We propose to generate stochastically realistic karst conduit networks by simulating the widening of conduits as caused by the dissolution of limestone over geological relevant timescales. We illustrate that advanced numerical techniques permit to solve the non-linear and coupled hydro-chemical processes efficiently, such that relatively large and complex networks can be generated in acceptable time frames. Instead of specifying flow boundary conditions on conduit cells to recharge the network as is typically done in classical speleogenesis models, we specify an effective rainfall rate over the land surface and let model physics determine the amount of water entering the network. This is advantageous since the amount of water entering the network is extremely difficult to reconstruct, whereas the effective rainfall rate may be quantified using paleoclimatic data. Furthermore, we show that poorly known flow conditions may be constrained by requiring a realistic flow field. Using our speleogenesis model we have investigated factors that influence the geometry of simulated conduit networks. We illustrate that our model generates typical branchwork, network and anastomotic conduit systems. Flow, solute transport and water ages in karst aquifers are simulated using a few illustrative networks.
Rondon, Atila; Leslie, Bruno; Arcuri, Leonardo Javier; Ortiz, Valdemar; Macedo, Antonio
2015-09-01
To assess whether crossing rectus abdominis muscle strips, as proposed by Yachia, would change urinary catheterizable conduit's pressure profilometry, in static and dynamic conditions. Non-randomized selection of 20 continent patients that underwent Macedo's ileum-based reservoir, 10 including Yachia's technique (Study Group) and 10 without this mechanism of continence (Control Group). Demographics and cystometric data were assessed. Conduit's pressure profilometry was obtained by infusing saline through a multichannel catheter, at rest and during Valsalva maneuver. We assessed the pressure: (a) in the bladder; (b) in conduit's proximal segment; and (c) in conduit's distal segment, which is presumably the abdominal wall and crossed muscle strips site. Mean age at surgery was 6.1 years in the Control Group and 7.7 years in the Study Group. There was no statistically significant difference between groups regarding maximum cystometric bladder capacity and leakage point pressure. At rest, the pressure profilometry showed similar results between groups in all segments analyzed. During Valsalva maneuver, pressure profilometry showed similar results between groups in bladder and conduit's proximal segment pressure. In this condition, conduit's distal segment pressure in the Study Group (Mean = 72.9 and Peak = 128.7 cmH2 O) was significantly greater (P < 0.05) than conduit's distal segment pressure in the Control Group (Mean = 48.3 and Peak = 65.1 cmH2 O). Crossing muscle strips over the conduit significantly increases the pressure in its distal segment during contraction of the rectus abdominis muscle, which can be important in moments of sudden increase in abdominal pressure in order to keep continence. © 2014 Wiley Periodicals, Inc.
Fuel cell crimp-resistant cooling device with internal coil
NASA Technical Reports Server (NTRS)
Wittel, deceased, Charles F. (Inventor)
1986-01-01
A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet. The conduit has an internal coil means which enables it to be bent in small radii without crimping.
Refrigerant pressurization system with a two-phase condensing ejector
Bergander, Mark [Madison, CT
2009-07-14
A refrigerant pressurization system including an ejector having a first conduit for flowing a liquid refrigerant therethrough and a nozzle for accelerating a vapor refrigerant therethrough. The first conduit is positioned such that the liquid refrigerant is discharged from the first conduit into the nozzle. The ejector includes a mixing chamber for condensing the vapor refrigerant. The mixing chamber comprises at least a portion of the nozzle and transitions into a second conduit having a substantially constant cross sectional area. The condensation of the vapor refrigerant in the mixing chamber causes the refrigerant mixture in at least a portion of the mixing chamber to be at a pressure greater than that of the refrigerant entering the nozzle and greater than that entering the first conduit.
DOT National Transportation Integrated Search
2012-03-01
This project initiated the development of a computerized database of ITS facilities, including conduits, junction : boxes, cameras, connections, etc. The current system consists of a database of conduit sections of various lengths. : Over the length ...
Decker, David L.; Lyles, Brad F.; Purcell, Richard G.; Hershey, Ronald Lee
2013-04-16
The present disclosure provides an apparatus and method for coupling conduit segments together. A first pump obtains a sample and transmits it through a first conduit to a reservoir accessible by a second pump. The second pump further conducts the sample from the reservoir through a second conduit.
NASA Astrophysics Data System (ADS)
Green, D. N.; Neuberg, J.; Cayol, V.
2006-05-01
Surface deformations recorded in close proximity to the active lava dome at Soufrière Hills volcano, Montserrat, can be used to infer stresses within the uppermost 1000 m of the conduit system. Most deformation source models consider only isotropic pressurisation of the conduit. We show that tilt recorded during rapid magma extrusion in 1997 could have also been generated by shear stresses sustained along the conduit wall; these stresses are a consequence of pressure gradients that develop along the conduit. Numerical modelling, incorporating realistic topography, can reproduce both the morphology and half the amplitude of the measured deformation field using a realistic shear stress amplitude, equivalent to a pressure gradient of 3.5 × 104 Pa m-1 along a 1000 m long conduit with a 15 m radius. This shear stress model has advantages over the isotropic pressure models because it does not require either physically unattainable overpressures or source radii larger than 200 m to explain the same deformation.
Zika virus infection of Hofbauer cells.
Simoni, Michael K; Jurado, Kellie Ann; Abrahams, Vikki M; Fikrig, Erol; Guller, Seth
2017-02-01
Recent studies have linked antenatal infection with Zika virus (ZIKV) with major adverse fetal and neonatal outcomes, including microcephaly. There is a growing consensus for the existence of a congenital Zika syndrome (CZS). Previous studies have indicated that non-placental macrophages play a key role in the replication of dengue virus (DENV), a closely related flavivirus. As the placenta provides the conduit for vertical transmission of certain viruses, and placental Hofbauer cells (HBCs) are fetal-placental macrophages located adjacent to fetal capillaries, it is not surprising that several recent studies have examined infection of HBCs by ZIKV. In this review, we describe congenital abnormalities associated with ZIKV infection, the role of HBCs in the placental response to infection, and evidence for the susceptibility of HBCs to ZIKV infection. We conclude that HBCs may contribute to the spread of ZIKV in placenta and promote vertical transmission of ZIKV, ultimately compromising fetal and neonatal development and function. Current evidence strongly suggests that further studies are warranted to dissect the specific molecular mechanism through which ZIKV infects HBCs and its potential impact on the development of CZS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Roache, M. W.; Allen, S. R.; McPhie, J.
2000-12-01
At Menninnie Dam, South Australia, a drilling program has revealed a complete section through the subsurface feeder system and erupted products of a small, hydroexplosive, rhyolitic centre within the Mesoproterozoic Gawler Range Volcanics. Porphyritic rhyolite intruded near-vertical faults in the Palaeoproterozoic basement and at less than a few hundred metres depth, interacted with fault-hosted (hot?) groundwater. Hydrofracturing of the wall rock occurred in advance of and at the margins of the rhyolitic intrusions. The rhyolitic intrusions have peperitic margins and grade into discordant lithic-rich PB facies. The advancing fragmentation front intersected the palaeosurface, triggering phreatic eruptions that deposited a poorly sorted, lithic-rich explosion breccia. Rhyolite then rose to the surface through the intrusive breccias and shallow-seated magma-water interaction occurred in the conduit within <50 m of the surface. As the magma discharge rate increased, ;dry; explosive activity prevailed. A fall deposit, the top of which is welded, was deposited close to the vent, and in more distal locations (>800 m from the inferred source), the products include muddy sandstone and pumice breccia. At the end of the eruption, rhyolitic lava was extruded in the form of a small dome. The presence of contemporaneous Pb-Zn-Ag mineralisation in the wall rocks suggests that an active hydrothermal system may have been involved in the formation of the Menninnie Dam hydroexplosive volcanic centre.
Fluid-Solid Interaction and Multiscale Dynamic Processes: Experimental Approach
NASA Astrophysics Data System (ADS)
Arciniega-Ceballos, Alejandra; Spina, Laura; Mendo-Pérez, Gerardo M.; Guzmán-Vázquez, Enrique; Scheu, Bettina; Sánchez-Sesma, Francisco J.; Dingwell, Donald B.
2017-04-01
The speed and the style of a pressure drop in fluid-filled conduits determines the dynamics of multiscale processes and the elastic interaction between the fluid and the confining solid. To observe this dynamics we performed experiments using fluid-filled transparent tubes (15-50 cm long, 2-4 cm diameter and 0.3-1 cm thickness) instrumented with high-dynamic piezoelectric sensors and filmed the evolution of these processes with a high speed camera. We analyzed the response of Newtonian fluids to slow and sudden pressure drops from 3 bar-10 MPa to ambient pressure. We used fluids with viscosities of mafic to intermediate silicate melts of 1 to 1000 Pa s and water. The processes observed are fluid mass expansion, fluid flow, jets, bubbles nucleation, growth, coalescence and collapse, degassing, foam building at the surface and vertical wagging. All these processes (in fine and coarse scales) are triggered by the pressure drop and are sequentially coupled in time while interacting with the solid. During slow decompression, the multiscale processes are recognized occurring within specific pressure intervals, and exhibit a localized distribution along the conduit. In this, degassing predominates near the surface and may present piston-like oscillations. In contrast, during sudden decompression the fluid-flow reaches higher velocities, the dynamics is dominated by a sequence of gas-packet pulses driving jets of the gas-fluid mixture. The evolution of this multiscale phenomenon generates complex non-stationary microseismic signals recorded along the conduit. We discuss distinctive characteristics of these signals depending on the decompression style and compare them with synthetics. These synthetics are obtained numerically under an averaging modeling scheme, that accounted for the stress-strain of the cyclic dynamic interaction between the fluid and the solid wall, assuming an incompressible and viscous fluid that flows while the elastic solid responds oscillating. Analysis of time series, both experimental and synthetics, synchronized with high-speed imaging enables the explanation and interpretation of distinct phases of the dynamics of these fluids and the extraction of time and frequency characteristics of the individual processes. We observed that the effects of both, pressure drop triggering function and viscosity, control the characteristics of the micro-signals in time and frequency. This suggests the great potential that experimental and numerical approaches provide to untangle from field volcanic seismograms the multiscale processes of the stress field, driving forces and fluid-rock interaction that determine the volcanic conduit dynamics.
Soliton-mediated conduit flow: Deep Hawaiian magma migration
NASA Astrophysics Data System (ADS)
Ryan, M.; Stanley, B.
2006-12-01
Solitons have first-order attributes that include shape- and volume-conserving packets of fluid that migrate with characteristic wavelengths, amplitudes, wave numbers, and pulse durations. For ascent in dike-like magma- filled fractures, the soliton pulse duration is directly proportional to the conduit wall region viscosity and inversely proportional to the density contrast that drives the flow. Second-order effects that modify pathways include heat loss to conduit wall rocks, and progressive crystallization episodes along conduit walls. Long-lived (and intermediate duration) historical eruption episodes of Kilauea volcano, Hawai'i, include the 1959 Kilauea summit series at Kilauea Iki, the 1969-1974 series at Mauna Ulu and the 1983-to-present series at Pu'u `O'o-Kupaianaha. For each locale, the eruptions display a variable time-series in their erupted volumes, as well as fountain heights and vent flow rates. Inter-episode repose periods, however, often show broad regularity over extended periods. We suggest that these dynamics represent serendipitous windows into the characteristic system dynamics of deep magma migration beneath Hawai'i: all made possible by the chance clearance of mechanical obstructions allowing virtually open-system behavior. The rhythmic `beat' of eruptive episodes within a long-lived series (and their roughly regular repose periods) arise directly from the soliton migration mechanism. For non-summit locales such as Mauna Ulu and Pu'u `O'o-Kupaianaha, the fluid contents of the sub-caldera reservoir and the shallow molten rift zone core modulate the observed intrusion- eruption dynamics as volumetric displacements transmit down-rift the pressure pulses first felt beneath Halemaumau and the summit caldera. Analytic calculations of wave speed, wave length, batch volume, parcel shapes and repose periods reveal the dependence on material properties appropriate for Kilauea intrusions and eruptions. Analogue laboratory experiments using stiff mixtures of gelatin as the matrix `fluid' and dyed aqueous solutions as the injected phase, reveal that the injections exhibit soliton-like ascent modes: independent packets of fluid rise along vertical fractures with bulbous noses and slender tails that thin with depth and increasing confining pressures. Spatially-varying azimuths of principal stress components ( ) result in systematic rotations of the ascent pathway as the rising soliton rotates to reestablish an orthogonal relationship with the minimum compressive stress component ( ) orientation. These rotations in ascent pathway orientation are appropriate for the inferred transitions from the upper mantle, through the oceanic crust and into Kilauea's volcanic shield and laterally extensive East Rift Zone and Southwest Rift Zone.
Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore
2001-01-01
The apparatus and method provide a technique for improving detection of alpha and/or beta emitting sources on items or in locations using indirect means. The emission forms generate ions in a medium surrounding the item or location and the medium is then moved to a detecting location where the ions are discharged to give a measure of the emission levels. To increase the level of ions generated and render the system particularly applicable for narrow pipes and other forms of conduits, the medium pressure is increased above atmospheric pressure. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Pressurized feed-injection spray-forming apparatus
Berry, R.A.; Fincke, J.R.; McHugh, K.M.
1995-08-29
A spray apparatus and method are disclosed for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers. 22 figs.
Pressurized feed-injection spray-forming apparatus
Berry, Ray A.; Fincke, James R.; McHugh, Kevin M.
1995-01-01
A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.
18 CFR 358.6 - No conduit rule.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false No conduit rule. 358.6 Section 358.6 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY STANDARDS OF CONDUCT FOR TRANSMISSION PROVIDERS STANDARDS OF CONDUCT § 358.6 No conduit...
30 CFR 7.306 - Explosion tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... conduit box is used, then two additional tests, one stationary and one rotating, shall be conducted with... the conduit box or one end of the connected winding compartment, whichever produced the highest... winding compartment. Conduit boxes with an internal free volume of 150 cubic inches or less shall have one...
30 CFR 7.306 - Explosion tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... conduit box is used, then two additional tests, one stationary and one rotating, shall be conducted with... the conduit box or one end of the connected winding compartment, whichever produced the highest... winding compartment. Conduit boxes with an internal free volume of 150 cubic inches or less shall have one...
Fluid pipeline leak detection and location with miniature RF tags
McIntyre, Timothy J.
2017-05-16
Sensors locate troublesome leaks in pipes or conduits that carry a flowing medium. These sensors, through tailored physical and geometric properties, preferentially seek conduit leaks or breaches due to flow streaming. The sensors can be queried via transceivers outside the conduit or located and interrogated inside by submersible unmanned vehicle to identify and characterize the nature of a leak. The sensors can be functionalized with other capabilities for additional leak and pipeline characterization if needed. Sensors can be recovered from a conduit flow stream and reused for future leak detection activities.
Mottaghitalab, Fatemeh; Farokhi, Mehdi; Zaminy, Arash; Kokabi, Mehrdad; Soleimani, Masoud; Mirahmadi, Fereshteh
2013-01-01
As a contribution to the functionality of nerve guide conduits (NGCs) in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs) has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN) containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV) and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts. PMID:24098649
Cheng, Zhuo; Kidher, Emaddin; Jarral, Omar A; O'Regan, Declan P; Wood, Nigel B; Athanasiou, Thanos; Xu, Xiao Yun
2016-05-01
This paper presents the analysis of detailed hemodynamics in the aortas of four patients following replacement with a composite bio-prosthetic valve-conduit. Magnetic resonance image-based computational models were set up for each patient with boundary conditions comprising subject-specific three-dimensional inflow velocity profiles at the aortic root and central pressure waveform at the model outlet. Two normal subjects were also included for comparison. The purpose of the study was to investigate the effects of the valve-conduit on flow in the proximal and distal aorta. The results suggested that following the composite valve-conduit implantation, the vortical flow structure and hemodynamic parameters in the aorta were altered, with slightly reduced helical flow index, elevated wall shear stress and higher non-uniformity in wall shear compared to normal aortas. Inter-individual analysis revealed different hemodynamic conditions among the patients depending on the conduit configuration in the ascending aorta, which is a key factor in determining post-operative aortic flow. Introducing a natural curvature in the conduit to create a smooth transition between the conduit and native aorta may help prevent the occurrence of retrograde and recirculating flow in the aortic arch, which is particularly important when a large portion or the entire ascending aorta needs to be replaced.
De Paulis, R; De Matteis, G M; Nardi, P; Scaffa, R; Buratta, M M; Chiariello, L
2001-08-01
The durability of aortic valve-sparing procedures is negatively affected by increased leaflet stress in the absence of normally shaped sinuses of Valsalva. We compared valve motion after remodeling procedures using a standard conduit and a specifically designed aortic root conduit. Echocardiographic studies of the aortic valve dynamics were performed in 14 patients after remodeling of the aortic root (7 standard conduits, group A; 7 new conduits, group B) and in 7 controls (group C). Opening and closing leaflet velocities and percent of slow closing leaflet displacement were measured. Root distensibility and the pressure strain of the elastic modulus were measured at all root levels. Root distensibility and the pressure strain of the elastic modulus were different in group A and B only at the sinuses (p < 0.001). Opening and closing leaflet velocities were not different among groups. Slow closing leaflet displacement was markedly more evident in group B patients (24.2%+/-1.9% versus 2.5%+/-1.9% in group A, p < 0.001) and similar to controls (22.1%+/-7.9%). The new conduit guarantees dynamic features of the aortic valve leaflets superior to those obtained with standard conduits and more similar to normal subjects.
NASA Astrophysics Data System (ADS)
Kincaid, T. R.; Meyer, B. A.
2009-12-01
In groundwater flow modeling, aquifer permeability is typically defined through model calibration. Since the pattern and size of conduits are part of a karstic permeability framework, those parameters should be constrainable through the same process given a sufficient density of measured conditions. H2H Associates has completed a dual-permeability steady-state model of groundwater flow through the western Santa Fe River Basin, Florida from which a 380.9 km network of saturated conduits was delineated through model calibration to heads and spring discharges. Two calibration datasets were compiled describing average high-water and average low-water conditions based on heads at 145 wells and discharge from 18 springs for the high-water scenario and heads at 188 wells and discharge from 9 springs for the low-water scenario. An initial conduit network was defined by assigning paths along mapped conduits and inferring paths along potentiometric troughs between springs and swallets that had been connected by groundwater tracing. These initial conduit assignments accounted for only 13.75 and 34.1 km of the final conduit network respectively. The model was setup using FEFLOW™ where conduits were described as discrete features embedded in a porous matrix. Flow in the conduits was described by the Manning-Strickler equation where variables for conduit area and roughness were used to adjust the volume and velocity of spring flows. Matrix flow was described by Darcy’s law where hydraulic conductivity variations were limited to three geologically defined internally homogeneous zones that ranged from ~2E-6 m/s to ~4E-3 m/s. Recharge for both the high-water and low-water periods was determined through a water budget analysis where variations were restricted to nine zones defined by land-use. All remaining variations in observed head were then assumed to be due to conduits. The model was iteratively calibrated to the high-water and low-water datasets wherein the location, size and roughness of the conduits were assigned as needed to accurately simulate observed heads and spring discharges while bounding simulated velocities by the tracer test results. Conduit diameters were adjusted to support high-water spring discharges but the locations were best determined by calibration to the low-water head field. The final model calibrated to within 5% of the total head change across the model region at 143 of the 145 wells in the high-water scenario and at 176 of the 188 wells in the low-water scenario. Simulated spring discharges fell within 13% of the observed range under high-water conditions and to within 100% of the observed range under low-water conditions. Simulated velocities ranged from as low as 10-4 m/day in the matrix to as high as 10+3 m/day in the largest conduits. The significance of these results that we emphasize here is two-fold. First, plausible karstic groundwater flow conditions can be reasonably simulated if adequate efforts are made to include springs, swallets, caves, and traced flow paths. And second, detailed saturated conduit networks can be delineated from careful evaluation of hydraulic head data particularly when dense datasets can be constructed by correlating values obtained from different wells under similar hydraulic periods.
NASA Astrophysics Data System (ADS)
Zhang, L.; Tong, V.; Wilson, D. J.; Hobbs, R. W.; Haughton, G.; Murton, B. J.
2016-12-01
During the cruise JC114, which was carried out in the intermediate-spreading Costa Rica Rift(CRR) in 2015, we acquired seismic records from 25 ocean-bottom seismographs in a 5x5 grid with an approximate node spacing of 5 km over the rift's axis. We picked 69,000 Pg and Pn events and inverted 3D crustal Vp structure beneath the CRR by using the First-Arrival Refraction Tomography (FAST). Our results show that at the depth of 1.0 2.0km below sea floor beneath the axis, there exists a 5km-wide low-velocity zone(LVZ), which extends along the axis but breaks into two segments at 83°48'W. At a deeper depth (>2.5km below sea floor), an underlying wider LVZ extends horizontally and vertically, probably stretching through the Moho. The shallower LVZ indicates the accretion of magma in the upper crust or the presence of highly porous or cracked rocks, while the deeper LVZ is inferred to be a partially molten zone, i.e. the representative of the axial magma chamber. The deeper LVZ is connected with the shallower one by upwelling conduits, which bifurcate and provide melts for both the west and east segments of the overlying LVZ. The conduit to the east segment is more prominent, providing more robust magma supply and leading to more intense negative velocity perturbation. It may reflect that the magma supply is fluctuating and migrating in the lower crust and the upper mantle. From analysing traveltime residual to study azimuthal anisotropy, we conclude that the fast direction varies roughly around 90° in the upper crust, implying that the vertically aligned cracks are nearly parallel to the axis and favour along-axis hydrothermal circulation. By comparing the anisotropy features of the two flanks of the CRR, we propose that the magmatic activity is more vigorous in the shallow subsurface of the north flank, i.e. the Cocos Plate. This research is part of a major, interdisciplinary NERC-funded collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).
Tree-Level Hydrodynamic Approach for Improved Stomatal Conductance Parameterization
NASA Astrophysics Data System (ADS)
Mirfenderesgi, G.; Bohrer, G.; Matheny, A. M.; Ivanov, V. Y.
2014-12-01
The land-surface models do not mechanistically resolve hydrodynamic processes within the tree. The Finite-Elements Tree-Crown Hydrodynamics model version 2 (FETCH2) is based on the pervious FETCH model approach, but with finite difference numerics, and simplified single-beam conduit system. FETCH2 simulates water flow through the tree as a simplified system of porous media conduits. It explicitly resolves spatiotemporal hydraulic stresses throughout the tree's vertical extent that cannot be easily represented using other stomatal-conductance models. Empirical equations relate water potential at the stem to stomata conductance at leaves connected to the stem (through unresolved branches) at that height. While highly simplified, this approach bring some realism to the simulation of stomata conductance because the stomata can respond to stem water potential, rather than an assumed direct relationship with soil moisture, as is currently the case in almost all models. By enabling mechanistic simulation of hydrological traits, such as xylem conductivity, conductive area per DBH, vertical distribution of leaf area and maximal and minimal water content in the xylem, and their effect of the dynamics of water flow in the tree system, the FETCH2 modeling system enhanced our understanding of the role of hydraulic limitations on an experimental forest plot short-term water stresses that lead to tradeoffs between water and light availability for transpiring leaves in forest ecosystems. FETCH2 is particularly suitable to resolve the effects of structural differences between tree and species and size groups, and the consequences of differences in hydraulic strategies of different species. We leverage on a large dataset of sap flow from 60 trees of 4 species at our experimental plot at the University of Michigan Biological Station. Comparison of the sap flow and transpiration patterns in this site and an undisturbed control site shows significant difference in hydraulic strategies between species which affect their response to the disturbance. We used FETCH2 to conduct a sensitivity analysis of the total stand-level transpiration to the inter-specific differences in hydraulic strategies and used the results to reflect on the future trajectory of the forest, in terms of species composition and transpiration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter H. Titus and Ali Zolfaghari
A critical design feature of any tokamak is the space taken up by the inner leg of the toroidal field (TF) coil. The radial build needed for the TF inner leg, along with shield thickness , size of the central solenoid and plasma minor radius set the major radius of the machine. The cost of the tokamak core roughly scales with the cube of the major radius. Small reductions in the TF build can have a big impact on the overall cost of the reactor. The cross section of the TF inner leg must structurally support the centering force andmore » that portion of the vertical separating force that is not supported by the outer structures. In this paper, the TF inner leg equatorial plane cross sections are considered. Out-of- Plane (OOP) forces must also be supported, but these are largest away from the equatorial plane, in the inner upper and lower corners and outboard sections of the TF coil. OOP forces are taken by structures that are not closely coupled with the radial build of the central column at the equatorial plane. The "Vertical Access AT Pilot Plant" currently under consideration at PPPL is used as a starting point for the structural, field and current requirements. Other TF structural concepts are considered. Most are drawn from existing designs such as ITER's circular conduits in radial plates bearing on a heavy nose section, and TPX's square conduits in a case, Each of these concepts can rely on full wedging, or partial wedging. Vaulted TF coils are considered as are those with some component of bucking against a central solenoid or bucking post. With the expectation that the pilot plant will be a steady state machine, a static stress criteria is used for all the concepts. The coils are assumed to be superconducting, with the superconductor not contributing to the structural strength. Limit analysis is employed to assess the degree of conservatism in the static criteria as it is applied to a linear elastic stress analysis. TF concepts, and in particular the PPPL AT PILOT plate concept are evaluated based on amount of space needed for structure and the amount of space left for superconductor.« less
SIRACUSANO, SALVATORE; D’ELIA, CAROLINA; CERRUTO, MARIA ANGELA; SALEH, OMAR; SERNI, SERGIO; GACCI, MAURO; CICILIATO, STEFANO; SIMONATO, ALCHIEDE; PORCARO, ANTONIO; DE MARCO, VINCENZO; TALAMINI, RENATO; TOFFOLI, LAURA; VISALLI, FRANCESCO; NIERO, MAURO; LONARDI, CRISTINA; IMBIMBO, CIRO; VERZE, PAOLO; MIRONE, VINCENZO; RACIOPPI, MARCO; IAFRATE, MASSIMO; CACCIAMANI, GIOVANNI; DE MARCHI, DAVIDE; BASSI, PIERFRANCESCO; ARTIBANI, WALTER
2018-01-01
Background/Aim: Studies comparing health-related quality of life (HR-QoL) between patients who underwent radical cystectomy (RC) and those who underwent a different form of urinary diversion has not reached yet univocal and reliable conclusions. The aim of our study was to evaluate bladder-specific long-term HR-QoL after radical cystectomy and ileal conduit. Patients and Methods: A multicenter study was carried out on 145 consecutive patients (112 males and 33 females) undergoing RC and ileal conduit (IC). HR-QoL assessment was conducted using Italian versions of European Organisation for Research and Treatment of Cancer QLQ-C30 and EORTC BLM-30 questionnaires. Results: Our data showed that women who underwent IC presented greater problems than men in cognitive functioning (mean score±SD: 77.3±27.9 vs. 87.8±18.6) as well in future perspective (score: 42.4±34.4 vs. 21.9±24.6). Nevertheless, men undergoing IC had more problems in sexual functioning than women (score: 23.3±24.5 vs. 7.0±20.3) (all p<0.05). Conclusion: In our series, female patients presented a greater burden than male patients in cognitive functioning as well in future perspective, but lower concerns with regard to sexual function. PMID:29275311
Hydraulic pump with in-ground filtration and monitoring capability
Hopkins, C.D.; Livingston, R.R.; Toole, W.R. Jr.
1995-01-01
A hydraulically operated pump is described for in-ground filtering and monitoring of wells or other fluid sources, including a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of O-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis.
Hydraulic pump with in-ground filtration and monitoring capability
Hopkins, C.D.; Livingston, R.R.; Toole, W.R. Jr.
1996-10-29
A hydraulically operated pump is described for in-ground filtering and monitoring of waters or other fluid sources, includes a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of o-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis. 5 figs.
Siracusano, Salvatore; D'Elia, Carolina; Cerruto, Maria Angela; Saleh, Omar; Serni, Sergio; Gacci, Mauro; Ciciliato, Stefano; Simonato, Alchiede; Porcaro, Antonio; DE Marco, Vincenzo; Talamini, Renato; Toffoli, Laura; Visalli, Francesco; Niero, Mauro; Lonardi, Cristina; Imbimbo, Ciro; Verze, Paolo; Mirone, Vincenzo; Racioppi, Marco; Iafrate, Massimo; Cacciamani, Giovanni; DE Marchi, Davide; Bassi, Pierfrancesco; Artibani, Walter
2018-01-01
Studies comparing health-related quality of life (HR-QoL) between patients who underwent radical cystectomy (RC) and those who underwent a different form of urinary diversion has not reached yet univocal and reliable conclusions. The aim of our study was to evaluate bladder-specific long-term HR-QoL after radical cystectomy and ileal conduit. A multicenter study was carried out on 145 consecutive patients (112 males and 33 females) undergoing RC and ileal conduit (IC). HR-QoL assessment was conducted using Italian versions of European Organisation for Research and Treatment of Cancer QLQ-C30 and EORTC BLM-30 questionnaires. Our data showed that women who underwent IC presented greater problems than men in cognitive functioning (mean score±SD: 77.3±27.9 vs. 87.8±18.6) as well in future perspective (score: 42.4±34.4 vs. 21.9±24.6). Nevertheless, men undergoing IC had more problems in sexual functioning than women (score: 23.3±24.5 vs. 7.0±20.3) (all p<0.05). In our series, female patients presented a greater burden than male patients in cognitive functioning as well in future perspective, but lower concerns with regard to sexual function. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Hydraulic pump with in-ground filtration and monitoring capability
Hopkins, Charles D.; Livingston, Ronald R.; Toole, Jr., William R.
1996-01-01
A hydraulically operated pump for in-ground filtering and monitoring of ws or other fluid sources, including a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of o-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis.
Casting Apparatus Including A Gas Driven Molten Metal Injector And Method
Trudel, David R.; Meyer, Thomas N.; Kinosz, Michael J.; Arnaud, Guy; Bigler, Nicolas
2003-06-17
The filtering molten metal injector system includes a holder furnace, a casting mold supported above the holder furnace, and at least one molten metal injector supported from a bottom side of the casting mold. The holder furnace contains a supply of molten metal. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The molten metal injector projects into the holder furnace. The molten metal injector includes a cylinder defining a piston cavity housing a reciprocating piston for pumping the molten metal upward from the holder furnace to the mold cavity. The cylinder and piston are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder or the piston includes a molten metal intake for receiving the molten metal into the piston cavity when the holder furnace contains molten metal. A conduit connects the piston cavity to the mold cavity. A molten metal filter is located in the conduit for filtering the molten metal passing through the conduit during the reciprocating movement of the piston. The molten metal intake may be a valve connected to the cylinder, a gap formed between the piston and an open end of the cylinder, an aperture defined in the sidewall of the cylinder, or a ball check valve incorporated into the piston. A second molten metal filter preferably covers the molten metal intake to the injector.
Savage, V. M.; Bentley, L. P.; Enquist, B. J.; Sperry, J. S.; Smith, D. D.; Reich, P. B.; von Allmen, E. I.
2010-01-01
Plant vascular networks are central to botanical form, function, and diversity. Here, we develop a theory for plant network scaling that is based on optimal space filling by the vascular system along with trade-offs between hydraulic safety and efficiency. Including these evolutionary drivers leads to predictions for sap flow, the taper of the radii of xylem conduits from trunk to terminal twig, and how the frequency of xylem conduits varies with conduit radius. To test our predictions, we use comprehensive empirical measurements of maple, oak, and pine trees and complementary literature data that we obtained for a wide range of tree species. This robust intra- and interspecific assessment of our botanical network model indicates that the central tendency of observed scaling properties supports our predictions much better than the West, Brown, and Enquist (WBE) or pipe models. Consequently, our model is a more accurate description of vascular architecture than what is given by existing network models and should be used as a baseline to understand and to predict the scaling of individual plants to whole forests. In addition, our model is flexible enough to allow the quantification of species variation around rules for network design. These results suggest that the evolutionary drivers that we propose have been fundamental in determining how physiological processes scale within and across plant species. PMID:21149696
Savage, V M; Bentley, L P; Enquist, B J; Sperry, J S; Smith, D D; Reich, P B; von Allmen, E I
2010-12-28
Plant vascular networks are central to botanical form, function, and diversity. Here, we develop a theory for plant network scaling that is based on optimal space filling by the vascular system along with trade-offs between hydraulic safety and efficiency. Including these evolutionary drivers leads to predictions for sap flow, the taper of the radii of xylem conduits from trunk to terminal twig, and how the frequency of xylem conduits varies with conduit radius. To test our predictions, we use comprehensive empirical measurements of maple, oak, and pine trees and complementary literature data that we obtained for a wide range of tree species. This robust intra- and interspecific assessment of our botanical network model indicates that the central tendency of observed scaling properties supports our predictions much better than the West, Brown, and Enquist (WBE) or pipe models. Consequently, our model is a more accurate description of vascular architecture than what is given by existing network models and should be used as a baseline to understand and to predict the scaling of individual plants to whole forests. In addition, our model is flexible enough to allow the quantification of species variation around rules for network design. These results suggest that the evolutionary drivers that we propose have been fundamental in determining how physiological processes scale within and across plant species.
Thermomechanical milling of accessory lithics in volcanic conduits
NASA Astrophysics Data System (ADS)
Campbell, Michelle E.; Russell, James K.; Porritt, Lucy A.
2013-09-01
Accessory lithic clasts recovered from pyroclastic deposits commonly result from the failure of conduit wall rocks, and represent an underutilized resource for constraining conduit processes during explosive volcanic eruptions. The morphological features of lithic clasts provide distinctive 'textural fingerprints' of processes that have reshaped them during transport in the conduit. Here, we present the first study focused on accessory lithic clast morphology and show how the shapes and surfaces of these accessory pyroclasts can inform on conduit processes. We use two main types of accessory lithic clasts from pyroclastic fallout deposits of the 2360 B.P. subplinian eruption of Mount Meager, British Columbia, as a case study: (i) rough and subangular dacite clasts, and (ii) variably rounded and smoothed monzogranite clasts. The quantitative morphological data collected on these lithics include: mass, volume, density, 2-D image analysis of convexity (C), and 3-D laser scans for sphericity (Ψ) and smoothness (S). Shaping and comminution (i.e. milling) of clasts within the conduit are ascribed to three processes: (1) disruptive fragmentation due to high-energy impacts between clasts or between clasts and conduit walls, (2) ash-blasting of clasts suspended within the volcanic flux, and (3) thermal effects. We use a simplified conduit eruption model to predict ash-blasting velocities and lithic residence times as a function of clast size and source depth, thereby constraining the lithic milling processes. The extent of shape and surface modification (i.e. rounding and honing) is directly proportional to clast residence times within the conduit prior to evacuation. We postulate that the shallow-seated dacite clasts remain subangular and rough due to short (<2 min) residence times, whereas monzogranite clasts are much more rounded and smoothed due to deeper source depths and consequently longer residence times (up to ˜1 h). Larger monzogranite clasts are smoother than smaller clasts due to longer residence times and to greater differential velocities within the ash-laden jet. Lastly, our model residence times and mass loss estimates for rounded clasts are used to estimate minimum attrition rates due to volcanic ash-blasting within the conduit (e.g., 12 cm3 s-1 for 25 cm clasts, sourced at 2500 m depth).
Zheng, Shuai; Yang, Keming; Li, Kun; Li, Shoujun
2014-07-01
Right ventricle-pulmonary artery (RV-PA) conduit and systemic-to-pulmonary artery (S-PA) shunt in younger infants for the first-stage palliation with pulmonary atresia with ventricular septal defect (PAVSD) obtained good results. However, the pulmonary arteries (PA) grow slow in older infants undergoing an S-PA shunt. We compared the clinical outcomes of the two procedures in older infants with PAVSD. A total of 48 patients with PAVSD underwent the first-stage palliative procedure between January 2010 and July 2012. Patients were divided into the RV-PA group and the S-PA group based on whether they had an RV-PA conduit (n = 24) or an S-PA shunt (n = 24). The early and late outcomes were compared between groups. There was no significant difference in in-hospital mortality, mechanical ventilation time, paediatric intensive care unit stay and hospital stay between groups (all P > 0.05). The RV-PA conduits were associated with better PA growth compared with the S-PA shunts (P < 0.001). The RV-PA group had a higher rate of second-stage biventricular surgery compared with the S-PA group (P = 0.03). The early outcomes among different conduits of the RV-PA conduit were not different (all P > 0.05). A positive correlation was found between the size of conduits and body weight (R(2) = 0.684, P < 0.001). In older infants with PAVSD who underwent the first-stage palliative procedure, early outcomes showed no difference between the RV-PA conduit group and the S-PA shunt group. The RV-PA conduits were associated with better growth of the PA and higher rates of second-stage biventricular repair. Autologous pericardium is a good choice for RV-PA conduits, and there is a correlation between body weight and size of conduit. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Cunningham, K.J.; Renken, R.A.; Wacker, M.A.; Zygnerski, M.R.; Robinson, E.; Shapiro, A.M.; Wingard, G.L.
2006-01-01
Combined analyses of cores, borehole geophysical logs, and cyclostratigraphy produced a new conceptual hydrogeologic framework for the triple-porosity (matrix, touching-vug, and conduit porosity) karst limestone of the Biscayne aquifer in a 0.65 km2 study area, SE Florida. Vertical lithofacies successions, which have recurrent stacking patterns, fit within high-frequency cycles. We define three ideal high-frequency cycles as: (1) upward-shallowing subtidal cycles, (2) upward-shallowing paralic cycles, and (3) aggradational subtidal cycles. Digital optical borehole images, tracers, and flow meters indicate that there is a predictable vertical pattern of porosity and permeability within the three ideal cycles, because the distribution of porosity and permeability is related to lithofacies. Stratiform zones of high permeability commonly occur just above flooding surfaces in the lower part of upward-shallowing subtidal and paralic cycles, forming preferential groundwater flow zones. Aggradational subtidal cycles are either mostly high-permeability zones or leaky, low-permeability units. In the study area, groundwater flow within stratiform high-permeability zones is through a secondary pore system of touching-vug porosity principally related to molds of burrows and pelecypods and to interburrow vugs. Movement of a dye-tracer pulse observed using a borehole fluid-temperature tool during a conservative tracer test indicates heterogeneous permeability. Advective movement of the tracer appears to be most concentrated within a thin stratiform flow zone contained within the lower part of a high-frequency cycle, indicating a distinctly high relative permeability for this zone. Borehole flow-meter measurements corroborate the relatively high permeability of the flow zone. Identification and mapping of such high-permeability flow zones is crucial to conceptualization of karst groundwater flow within a cyclostratigraphic framework. Many karst aquifers are included in cyclic platform carbonates. Clearly, a cyclostratigraphic approach that translates carbonate aquifer heterogeneity into a consistent framework of correlative units will improve simulation of karst groundwater flow. ?? 2006 Geological Society of America.
NASA Astrophysics Data System (ADS)
Sundal, A.; Skurtveit, E.; Midtkandal, I.; Hope, I.; Larsen, E.; Kristensen, R. S.; Braathen, A.
2016-12-01
The thick and laterally extensive Middle Jurassic Entrada Sandstone forms a regionally significant reservoir both in the subsurface and as outcrops in Utah. Individual layers of fluvial sandstone within otherwise fine-grained aeolian dunes and silty inter-dune deposits of the Entrada Earthy Member are of particular interest as CO2 reservoir analogs to study injectivity, reservoir-caprock interaction and bypass systems. Detailed mapping of facies and deformation structures, including petrographic studies and core plug tests, show significant rock property contrasts between layers of different sedimentary facies. Beds representing fluvial facies appear as white, medium-grained, well-sorted and cross-stratified sandstone, displaying high porosity, high micro-scale permeability, low tensile strength, and low seismic velocity. Subsequent to deposition, these beds were structurally deformed and contain a dense network of deformation bands, especially in proximity to faults and injectites. Over- and underlying low-permeability layers of inter-dune aeolian facies contain none or few deformation bands, display significantly higher rock strengths and high seismic velocities compared to the fluvial inter-beds. Permeable units between low-permeability layers are prone to become over-pressured during burial, and the establishment of fluid escape routes during regional tectonic events may have caused depressurization and selective collapse of weak layers. Through-cutting, vertical sand pipes display large clasts of stratified sandstone suspended in remobilized sand matrix, and may have served as permeable fluid conduits and pressure vents before becoming preferentially cemented and plugged. Bleached zones around faults and fractures throughout the succession indicate leakage and migration of reducing fluids. The fluvial beds are porous and would appear in wireline logs and seismic profiles as excellent reservoirs; whereas due to dense populations of deformation bands they may in fact display reduced horizontal and vertical permeability locally. Facies-related differences in geomechanical properties, pressure distribution and selective structural collapse have significant implications for injectivity and reservoir behavior.
A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.
Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang
2018-01-01
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
NASA Astrophysics Data System (ADS)
Colombier, M.; Gurioli, L.; Druitt, T. H.; Shea, T.; Boivin, P.; Miallier, D.; Cluzel, N.
2017-02-01
Textural parameters such as density, porosity, pore connectivity, permeability, and vesicle size distributions of vesiculated and dense pyroclasts from the 9.4-ka eruption of Kilian Volcano, were quantified to constrain conduit and eruptive processes. The eruption generated a sequence of five vertical explosions of decreasing intensity, producing pyroclastic density currents and tephra fallout. The initial and final phases of the eruption correspond to the fragmentation of a degassed plug, as suggested by the increase of dense juvenile clasts (bimodal density distributions) as well as non-juvenile clasts, resulting from the reaming of a crater. In contrast, the intermediate eruptive phases were the results of more open-conduit conditions (unimodal density distributions, decreases in dense juvenile pyroclasts, and non-juvenile clasts). Vesicles within the pyroclasts are almost fully connected; however, there are a wide range of permeabilities, especially for the dense juvenile clasts. Textural analysis of the juvenile clasts reveals two vesiculation events: (1) an early nucleation event at low decompression rates during slow magma ascent producing a population of large bubbles (>1 mm) and (2) a syn-explosive nucleation event, followed by growth and coalescence of small bubbles controlled by high decompression rates immediately prior to or during explosive fragmentation. The similarities in pyroclast textures between the Kilian explosions and those at Soufrière Hills Volcano on Montserrat, in 1997, imply that eruptive processes in the two systems were rather similar and probably common to vulcanian eruptions in general.
Alfieris, George M; Swartz, Michael F; Lehoux, Juan; Bove, Edward L
2016-08-01
The optimal choice for pulmonary valve replacement (PVR) remains controversial. This study hypothesized that xenografts used for PVR would result in prolonged long-term survival and freedom from reoperation. Children and adults with congenital heart disease requiring PVR using a xenograft from 1980 to 1985 were reviewed. In all cases, the xenograft valve was either sewn or manufactured into a Dacron conduit, and the conduit was sewn to the pulmonary artery bifurcation. Clinical data were analyzed, and survival and freedom from reoperation were determined using Kaplan-Meier analysis. Twenty-four patients received a xenograft for PVR at 14.6 ± 5.6 years. Conduit size ranged from 21 to 27 mm. Most patients received a Carpentier-Edwards valved conduit (n = 17), followed by a Hancock valved conduit (n = 5) and an Ionescu-Shiley valve sewn into a Dacron graft (n = 2). No perioperative deaths occurred. Reoperation was required mainly for pulmonary stenosis (72.7%), followed by pulmonary insufficiency (18.2%), or both stenosis and insufficiency (9%). Freedom from reoperation was 90%, 56%, 43%, and 14% at 10, 20, 25, and 30 years, respectively. At most recent follow-up the was only death, which was related to severe biventricular failure 25 years after conduit implant. PVR using a xenograft valved conduit results in prolonged freedom from reoperation and excellent long-term survival. These data, which provide long-term follow-up information on xenograft valves after PVR. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Hsu, Shan-Hui; Chan, Shan-Ho; Chiang, Chih-Ming; Chen, Clayton Chi-Chang; Jiang, Ching-Fen
2011-05-01
The performance of an asymmetric conduit made of microporous polylactic acid (PLA) in promoting the long-term peripheral nerve regeneration across a 20-mm-long sciatic nerve gap was evaluated by a rabbit sciatic nerve transection model. Magnetic resonance imaging (MRI) was employed to monitor the nerve regeneration process. The extents of nerve regeneration and conduit degradation were quantified by image analysis. Functional and histological analyses were followed to assess nerve reinnervation. MR images showed that the transected nerve was connected at about 4 months. The diameter of the regenerated nerve continued to increase while the conduit was gradually degraded. The conduit was completely degraded in 18 months. The degradation kinetics in vivo was estimated based on MR images. The functional recovery after 18 months was ∼82% based on electrophysiology. The extension range of the operated limb was slowly recuperated to ∼81% at 18 months. Histology showed that nerve bundles were self-assembled after 16-18 months, but the morphologies were still different from those of normal sciatic nerve. This was the first work on the long-term evaluation of peripheral nerve regeneration in a rabbit model, and the first to report the use of MRI to obtain the real-time images of regenerated nerve in a biomaterial conduit as well as to define the degradation rate of the conduit in vivo. The platform established in this study serves to evaluate the regeneration of larger-diameter (>3-mm) nerve across a long-gap bridged by a conduit. Copyright © 2011 Elsevier Ltd. All rights reserved.
Patterned substrates and methods for nerve regeneration
Mallapragada, Surya K.; Heath, Carole; Shanks, Howard; Miller, Cheryl A.; Jeftinija, Srdija
2004-01-13
Micropatterned substrates and methods for fabrication of artificial nerve regeneration conduits and methods for regenerating nerves are provided. Guidance compounds or cells are seeded in grooves formed on the patterned substrate. The substrates may also be provided with electrodes to provide electrical guidance cues to the regenerating nerve. The micropatterned substrates give physical, chemical, cellular and/or electrical guidance cues to promote nerve regeneration at the cellular level.
Understanding Volcanic Conduit Dynamics: from Experimental Fragmentation to Volcanic Eruptions
NASA Astrophysics Data System (ADS)
Arciniega-Ceballos, A.; Alatorre-Ibarguengoitia, M. A.; Scheu, B.; Dingwell, D. B.
2011-12-01
The investigation of conduit dynamics at high pressure, under controlled laboratory conditions is a powerful tool to understand the physics behind volcanic processes before an eruption. In this work, we analyze the characteristics of the seismic response of an "experimental volcano" focusing on the dynamics of the conduit behavior during the fragmentation process of volcanic rocks. The "experimental volcano" is represented by a shock tube apparatus, which consists of a low-pressure voluminous tank (3 x 0.40 m), for sample recovery; and a high-pressure pipe-like conduit (16.5 x 2,5 cm), which represents the volcanic source mechanism, where rock samples are pressurized and fragmented. These two serial steel pipes are connected and sealed by a set of diaphragms that bear pressures in a range of 4 to 20 MPa. The history of the overall process of an explosion consists of four steps: 1) the slow pressurization of the pipe-like conduit filled with solid pumice and gas, 2) the sudden removal of the diaphragms, 3) the rapid decompression of the system and 4) the ejection of the gas-particle mixture. Each step imprints distinctive features on the microseismic records, reflecting the conduit dynamics during the explosion. In this work we show how features such as waveform characteristics, the three components of the force system acting on the conduit, the independent components of the moment tensor, the volumetric change of the source mechanism, the arrival time of the shock wave and its velocity, are quantified from the experimental microseismic data. Knowing these features, each step of the eruptive process, the conduit conditions and the source mechanism characteristics can be determined. The procedure applied in this experimental approach allows the use of seismic field data to estimate volcanic conduit conditions before an eruption takes place. We state on the hypothesis that the physics behind the pressurization and depressurization process of any conduit is the same and the effects of such process on the conduit dynamics are independent of size. We first described the very-long period (VLP) and long-period (LP) signals, observed in many active volcanoes around the world, and from comparison of waveform characteristics with their experimental analogues (eLP and eVLP signals) we found remarkable similarities and equivalent physical meaning. Based on our experimental investigations and analysis of field data recorded during volcanic eruptions we may conclude that VLP signals are caused by the inflation-deflation behavior of the volcanic conduit due to the decompression process, and that LP signals are manly associated with cracking and fragmentation of the magmatic material (ash, magma and gas) filling the conduit and ascending to the surface. In addition, we accounted for the repetitive character of LP and VLP signals, as a consequence of contraction and dilatation of a steady non-destructive source mechanism, which systematically responds to pressure changes of the volcanic system.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-13
...--Criteria for Qualifying Conduit Hydropower Facility Satisfies (Y/ Statutory provision Description N) FPA 30(a)(3)(A), as amended by The conduit the Y HREA. facility uses is a tunnel, canal, pipeline, aqueduct... agricultural, municipal, or industrial consumption and not primarily for the generation of electricity. FPA 30...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-09
...), as amended by HREA.... The facility is constructed, operated, or maintained Y for the generation of... Conduit Hydropower Facility Satisfies (Y/ Statutory provision Description N) FPA 30(a)(3)(A), as amended by HREA....... The conduit the facility uses is a tunnel, canal, Y pipeline, aqueduct, flume, ditch...
Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration
Fiorellini, Joseph P.
2017-01-01
Background For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Methods In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusions Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits. PMID:29090249
Auto-positioning ultrasonic transducer system
NASA Technical Reports Server (NTRS)
Buchanan, Randy K. (Inventor)
2010-01-01
An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.
Campbell, Gene K.
1983-01-01
A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.
NASA Astrophysics Data System (ADS)
Lipovsky, B.; Dunham, E. M.
2012-12-01
Crack waves are guided waves along fluid-filled cracks that propagate with phase velocity less than the sound wave speed. Chouet (JGR, 1986) and Ferrazzini and Aki (JGR, 1977) have shown that such waves could explain volcanic tremor in terms of the resonant modes of a finite length magma-filled crack. Based on an idealized lumped-parameter model, Julian (JGR, 1994) further proposed that the steady flow of a viscous magma in a volcanic conduit is unstable to perturbations, leading to self-excited oscillations of the conduit walls and radiation of seismic waves. Our objective is to evaluate the possibility of self-excited oscillations within a rigorous, continuum framework. Our specific focus has been on basaltic fissure eruptions. In a typical basaltic fissure system, the magnitudes of the wave restoring forces, fluid compressibility and wall elasticity, are highly depth dependent. Because of the elevated fluid compressibility from gas exsolution at shallow depths, fluid pressure perturbations in this regime propagate as acoustic waves with effectively rigid conduit walls. Below the exsolution depth, the conduit walls are more compliant relative to the magma compressibility and perturbations propagate as dispersive crack waves. Viscous magma flow through such a fissure will evolve to a fully developed state characterized by a parabolic velocity profile in several to tens of seconds. This time scale is greater than harmonic tremor periods, typically 0.1 to 1 second. A rigorous treatment of the wave response to pressure perturbations therefore requires a general analysis of conduit flow that is not in a fully developed state. We present a linearized analysis of the coupled fluid and elastic response to general flow perturbations. We assume that deformation of the wall is linear elastic. As our focus is on wavelengths greatly exceeding the crack width, fluid flow is described by a quasi-one dimensional, or width-averaged, model. We account for conservation of magma mass and momentum including compressibility and viscous drag. Our analysis further assumes small perturbations about a steady background flow, a linearized isothermal equation of state, and a nominally constant width channel. We confirm Julian's results that sufficiently rapid flow through a deformable-walled conduit is unstable to perturbations in the form of crack waves. Instability occurs when drag reduction from opening the conduit exceeds the increase in drag from increased fluid velocity. Crack waves are most unstable at long wavelengths, where the conduit becomes more compliant. In the long wavelength limit, we find a simple expression for the critical flow speed beyond which crack waves are unstable: u = c / 2, where c is the crack wave phase velocity. The instability condition is remarkably independent of viscosity. This result more rigorously confirms the conclusion of Dunham and Ogden (2012, J. App. Mech.), who found the same instability criterion under the limiting assumption of fully developed flow. In a typical basaltic system the occurrence of this instability requires flow speeds exceeding ~50 m/s at depths where magma is primarily liquid melt with little exsolved gas. At these depths, flow speeds of this order are unlikely to occur. We conclude that harmonic tremor due to self-excited oscillations is unlikely to occur in nature.
Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger
Im, K.H.; Ahluwalia, R.K.
1994-10-18
A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.
Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger
Im, Kwan H.; Ahluwalia, Rajesh K.
1994-01-01
A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.
Schreiber, Christian; Sassen, Stefanie; Kostolny, Martin; Hörer, Jürgen; Cleuziou, Julie; Wottke, Michael; Holper, Klaus; Fend, Falko; Eicken, Andreas; Lange, Rüdiger
2006-07-01
The quest for an alternative to homografts for reconstruction of the right ventricular outflow tract is ongoing. The Shelhigh No-React (NR-4000PA series) treated porcine pulmonic valve conduit (SPVC) was developed as a potential alternative. During a 12-month period from May 2004 to May 2005, the SPVC was implanted in 34 patients, of whom 62% were younger than 1 year. Median age at operation was 7 months (range, 5 days to 12 years). Thirteen SPCV conduits size 10, 11 size 12, 8 size 14, and 2 size 16 were initially implanted. Since May 2005, however, we have temporarily abandoned its implantation as we were concerned about a number of early failures. Until November 2005, 1 early and 1 late death have occurred. Both were not conduit related. Fifteen conduits were replaced in 13 patients. Of these, 10 were size 10, 3 size 12, 2 size 14, and none size 16. Mean time to replacement of the SPVC was 313 +/- 116 days. A pseudointimal peel formation and chronic inflammation with foreign-body reaction was found in all explanted conduits at all levels. The maximum of the inflammatory reaction occurred at the valvular level around the porcine tissues, with shrinkage of the valve and hemodynamic compromise. At valvular level, small punctuate calcifications were observed in 2 cases. In 6 patients an acute inflammatory component was observed. At late follow-up (mean follow-up 366 +/- 102 days, 34 patient-years), echocardiography showed a mean graft gradient of 39.8 +/- 29.7 mm Hg, with mild to moderate insufficiency in 4 patients. Although the No-React treated valve largely resists calcification, pseudointimal peel formation was found in all explanted conduits and led to multilevel conduit stenoses. The small-sized SPVC can not be regarded as an ideal conduit for right ventricular outflow tract reconstruction.
NASA Astrophysics Data System (ADS)
Bailly-Comte, Vincent; Martin, Jonathan B.; Jourde, Hervé; Screaton, Elizabeth J.; Pistre, Séverin; Langston, Abigail
2010-05-01
SummaryKarst aquifers are heterogeneous media where conduits usually drain water from lower permeability volumes (matrix and fractures). For more than a century, various approaches have used flood recession curves, which integrate all hydrodynamic processes in a karst aquifer, to infer physical properties of the movement and storage of groundwater. These investigations typically only consider flow to the conduits and thus have lacked quantitative observations of how pressure transfer and water exchange between matrix and conduit during flooding could influence recession curves. We present analyses of simultaneous discharge and water level time series of two distinctly different karst systems, one with low porosity and permeability matrix rocks in southern France, and one with high porosity and permeability matrix rocks in north-central Florida (USA). We apply simple mathematical models of flood recession using time series representations of recharge, storage, and discharge processes in the karst aquifer. We show that karst spring hydrographs can be interpreted according to pressure transfer between two distinct components of the aquifer, conduit and matrix porosity, which induce two distinct responses at the spring. Water exchange between conduits and matrix porosity successively control the flow regime at the spring. This exchange is governed by hydraulic head differences between conduits and matrix, head gradients within conduits, and the contrast of permeability between conduits and matrix. These observations have consequences for physical interpretations of recession curves and modeling of karst spring flows, particularly for the relative magnitudes of base flow and quick flow from karst springs. Finally, these results suggest that similar analyses of recession curves can be applied to karst aquifers with distinct physical characteristics utilizing well and spring hydrograph data, but information must be known about the hydrodynamics and physical properties of the aquifer before the results can be correctly interpreted.
Cooling assembly for fuel cells
Kaufman, Arthur; Werth, John
1990-01-01
A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet.
Newcomer, S.C.; Taylor, J.C.; McAllister, R.M.; Laughlin, M.H.
2012-01-01
The purpose of this investigation was to test the hypothesis that chronic L-NAME treatment produces differential effects on conduit artery and resistance arteriole relaxation responses to endothelium-dependent and –independent vasodilators in arteries that perfuse skeletal muscle of swine. To test this hypothesis conduit skeletal muscle arteries and second order skeletal muscle arterioles were harvested from 14 Yucatan swine that were chronically administered L-NAME and 16 controls. In vitro assessments of vasorelaxation to increasing doses of acetylcholine (ACH), bradykinin (BK), and sodium nitroprusside (SNP) were performed in both conduit and 2A arterioles. L-NAME treatment produced a significant reduction in both BK and ACH relaxation responses in the conduit arteries. In contrast, the relaxation response and/or sensitivity to SNP were significantly greater in the intact, but not denuded, conduit arterial rings from chronically L-NAME treated swine. There were no significant effects of chronic L-NAME treatment on vasodilation of skeletal muscle arterioles. These findings suggest: (1) that unlike arterioles, skeletal muscle conduit arteries do not functionally compensate for a lack of NO through the upregulation of alternative vasodilator pathways. (2) that the greater relaxation response in conduit arteries of chronically L-NAME treated swine to SNP can be explained by alterations to the endothelium. PMID:18568942
14 CFR 25.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first... two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the... axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...
14 CFR 27.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first... two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...
NASA Astrophysics Data System (ADS)
Massaro, S.; Costa, A.; Sulpizio, R.
2018-01-01
The current paradigm for volcanic eruptions is that magma erupts from a deep magma reservoir through a volcanic conduit, typically modelled with fixed rigid geometries such as cylinders. This simplistic view of a volcanic eruption does not account for the complex dynamics that usually characterise a large explosive event. Numerical simulations of magma flow in a conduit combined with volcanological and geological data, allow for the first description of a physics-based model of the feeding system evolution during a sustained phase of an explosive eruption. The method was applied to the Plinian phase of the Pomici di Avellino eruption (PdA, 3945 ±10 cal yr BP) from Somma-Vesuvius (Italy). Information available from volcanology, petrology, and lithology studies was used as input data and as constraints for the model. In particular, Mass Discharge Rates (MDRs) assessed from volcanological methods were used as target values for numerical simulations. The model solutions, which are non-unique, were constrained using geological and volcanological data, such as volume estimates and types of lithic components in the fall deposits. Three stable geometric configurations of the feeding system (described assuming elliptical cross-section of variable dimensions) were assessed for the Eruptive Units 2 and 3 (EU2, EU3), which form the magmatic Plinian phase of PdA eruption. They describe the conduit system geometry at time of deposition of EU2 base, EU2 top, and EU3. A 7-km deep dyke (length 2 a = 200-4 00 m, width 2 b = 10- 12 m), connecting the magma chamber to the surface, characterised the feeding system at the onset of the Plinian phase (EU2 base). The feeding system rapidly evolved into hybrid geometric configuration, with a deeper dyke (length 2 a = 600- 800 m, width 2 b = 50 m) and a shallower cylindrical conduit (diameter D = 50 m, dyke-to-cylinder transition depth ∼2100 m), during the eruption of the EU2 top. The deeper dyke reached the dimensions of 2 a = 2000 m and 2 b = 60 m at EU3 peak MDR, when the shallower cylinder had enlarged to a diameter of 60 m and a transition depth of 3000 m. The changes in feeding system geometry indicate a partitioning of the driving pressure of the eruption, which affected both magma movement to the surface and dyke growth. This implies that a significant portion of the magma injected from the magma chamber filled the enlarging dyke before it erupted to the surface. In this model, the lower dyke acted as a sort of magma "capacitor" in which the magma was stored briefly before accelerating to the cylindrical conduit and erupting. The capacitor effect of the lower dyke implies longer times of transit for the erupting magma, which also underwent several steps of decompression. On the other hand, the decompression of magma within the capacitor provided the driving pressure to maintain the flow into the upper cylindrical conduit, even as the base of the dyke started to close due to the drop in driving pressure from progressive emptying of the magma chamber. The shallower cylindrical conduit was shaped through the erosion of conduit wall rocks at and above the fragmentation level. Using the lithic volume and duration of EU3, the erosion rate of shallower cylindrical conduit was calculated at ∼5 × 103 m3/s. The outcomes of this work represent an important baseline for further petrologic and geophysical studies devoted to the comprehension of processes driving volcanic eruptions.
Carbon dioxide, ground air and carbon cycling in Gibraltar karst
NASA Astrophysics Data System (ADS)
Mattey, D. P.; Atkinson, T. C.; Barker, J. A.; Fisher, R.; Latin, J.-P.; Durrell, R.; Ainsworth, M.
2016-07-01
We put forward a general conceptual model of CO2 behaviour in the vadose zone of karst aquifers, based on physical principles of air flow through porous media and caves, combined with a geochemical interpretation of cave monitoring data. This 'Gibraltar model' links fluxes of water, air and carbon through the soil with the porosity of the vadose zone, the circulation of ground air and the ventilation of caves. Gibraltar hosts many natural caves whose locations span the full length and vertical range of the Rock. We report results of an 8-year monitoring study of carbon in soil organic matter and bedrock carbonate, dissolved inorganic carbon in vadose waters, and gaseous CO2 in soil, cave and ground air. Results show that the regime of cave air CO2 results from the interaction of cave ventilation with a reservoir of CO2-enriched ground air held within the smaller voids of the bedrock. The pCO2 of ground air, and of vadose waters that have been in close contact with it, are determined by multiple factors that include recharge patterns, vegetation productivity and root respiration, and conversion of organic matter to CO2 within the soil, the epikarst and the whole vadose zone. Mathematical modelling and field observations show that ground air is subject to a density-driven circulation that reverses seasonally, as the difference between surface and underground temperatures reverses in sign. The Gibraltar model suggests that cave air pCO2 is not directly related to CO2 generated in the soil or the epikarstic zone, as is often assumed. Ground air CO2 formed by the decay of organic matter (OM) washed down into the deeper unsaturated zone is an important additional source of pCO2. In Gibraltar the addition of OM-derived CO2 is the dominant control on the pCO2 of ground air and the Ca-hardness of waters within the deep vadose zone. The seasonal regime of CO2 in cave air depends on the position of a cave in relation to the density-driven ground air circulation pattern which is itself determined by the topography, as well as by the high-permeability conduits for air movement provided by caves themselves. In the steep topography of Gibraltar, caves in the lower part of the Rock act as outflow conduits for descending ground air in summer, and so have higher pCO2 in that season. Caves in the upper Rock have high pCO2 in winter, when they act as outflow conduits for rising currents of CO2-enriched ground air. Understanding seasonal flows of ground air in the vadose zone, together with the origins and seasonal regimes of CO2 in cave air underpins robust interpretation of speleothem-based climate proxy records.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-21
...--Criteria for Qualifying Conduit Hydropower Facility Satisfies (Y/ Statutory provision Description N) FPA 30(a)(3)(A), as amended by The conduit the Y HREA. facility uses is a tunnel, canal, pipeline, aqueduct... agricultural, municipal, or industrial consumption and not primarily for the generation of electricity. FPA 30...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-18
... The facility is Y HREA. constructed, operated, or maintained for the generation of electric power and... Conduit Hydropower Facility Satisfies Statutory provision Description (Y/N) FPA 30(a)(3)(A), as amended by The conduit the facility Y HREA. uses is a tunnel, canal, pipeline, aqueduct, flume, ditch, or similar...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-09
...), as amended by HREA.... The facility is constructed, operated, or maintained Y for the generation of... Conduit Hydropower Facility Satisfies Statutory provision Description (Y/N) FPA 30(a)(3)(A), as amended by HREA....... The conduit the facility uses is a tunnel, canal, Y pipeline, aqueduct, flume, ditch, or...
Three-dimensional P-wave velocity structure of Mt. Etna, Italy
Villasenor, A.; Benz, H.M.; Filippi, L.; De Luca, G.; Scarpa, R.; Patane, G.; Vinciguerra, S.
1998-01-01
The three-dimensional P-wave velocity structure of Mt. Etna is determined to depths of 15 km by tomographic inversion of first arrival times from local earthquakes recorded by a network of 29 permanent and temporary seismographs. Results show a near-vertical low-velocity zone that extends from beneath the central craters to a depth of 10 km. This low-velocity region is coincident with a band of steeply-dipping seismicity, suggesting a magmatic conduit that feeds the summit eruptions. The most prominent structure is an approximately 8-km-diameter high-velocity body located between 2 and 12 km depth below the southeast flank of the volcano. This high-velocity body is interpreted as a remnant mafic intrusion that is an important structural feature influencing both volcanism and east flank slope stability and faulting.
The Colima volcano magmatic system
NASA Astrophysics Data System (ADS)
Spica, Z.; Perton, M.; Legrand, D.
2016-12-01
We show how and where magmas are produced and stored at Colima volcano, Mexico, by performing an ambient noise tomography inverting jointly the Rayleigh and Love wave dispersion curves for both phase and group velocities. We obtain shear wave velocity and radial anisotropy models. The shear wave velocity model shows a deep, large and well-delineated elliptic-shape magmatic reservoir below the Colima volcano complex at a depth of about 15 km. The radial anisotropy model shows an important negative feature rooting up to ≥35 km depth until the roof of the magma reservoir, suggesting the presence of vertical fractures where fluids migrate upward and accumulate in the magma reservoir. The convergence of both a low velocity zone and a negative anisotropy suggests that the magma is mainly stored in conduits or inter-fingered dykes as opposed to horizontally stratified magma reservoir.
Sevanto, Sanna; Holbrook, N. Michele; Ball, Marilyn C.
2012-06-06
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumptionmore » that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.« less
Sevanto, Sanna; Holbrook, N Michele; Ball, Marilyn C
2012-01-01
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.
Modified Ross procedure using a conduit with a synthetic valve.
Takabayashi, Shin; Kado, Hideaki; Shiokawa, Yuichi; Fukae, Kouji; Nakano, Toshihide
2004-12-01
In the Ross procedure, a homograft conduit is commonly used in place of an autotransplanted pulmonary valve. Homograft availability may be a problem and has resulted in a search for alternatives. We performed a modified Ross procedure for right ventricular outflow tract reconstruction with a synthetic valved conduit as an alternative to homograft. Our early results of valvular and right ventricular function were evaluated in patients who used a conduit with a synthetic valve. Subjects consisted of 11 patients, who ranged in age from 5 to 22 years (12.0+/-4.9), and whose body weight ranged from 15.1 to 52.5 (34.3+/-14.4) kg. Indications for surgery were aortic stenosis (n=3), aortic stenosis and regurgitation (n=4), and aortic regurgitation (n=4). Right ventricular outflow tract reconstruction was performed using a hand-fashioned valved conduit prepared by sewing a 0.1 mm thick polytetrafluoroethylene sheet onto the luminal cavity of the 20-28 mm conduit. A conduit made with polytetrafluoroethylene was used in 8 patients, and a Dacron graft was used in 3 patients. There was no in-hospital or late mortality and angiocardiography at discharge revealed that all artificial valves remained active. The mean right atrial pressure and right ventricular end-diastolic pressure were not statistically different from preoperative values. The latest echocardiography (mean interval, 12.6 months) revealed that a mean pressure gradient across the synthetic valve was 11.4+/-11.1 mmHg and none of the patients had moderate or severe regurgitation. We demonstrated that a modified Ross procedure for right ventricular outflow tract reconstruction using a conduit with an appropriate synthetic valve is particularly effective in older children.
Salehi, Majid; Naseri-Nosar, Mahdi; Ebrahimi-Barough, Somayeh; Nourani, Mohammdreza; Khojasteh, Arash; Hamidieh, Amir-Ali; Amani, Amir; Farzamfar, Saeed; Ai, Jafar
2018-05-01
The current study aimed to enhance the efficacy of peripheral nerve regeneration using an electrically conductive biodegradable porous neural guidance conduit for transplantation of allogeneic Schwann cells (SCs). The conduit was produced from polylactic acid (PLA), multiwalled carbon nanotubes (MWCNTs), and gelatin nanofibrils (GNFs) coated with the recombinant human erythropoietin-loaded chitosan nanoparticles (rhEpo-CNPs). The PLA/MWCNTs/GNFs/rhEpo-CNPs conduit had the porosity of 85.78 ± 0.70%, the contact angle of 77.65 ± 1.91° and the ultimate tensile strength and compressive modulus of 5.51 ± 0.13 MPa and 2.66 ± 0.34 MPa, respectively. The conduit showed the electrical conductivity of 0.32 S cm -1 and lost about 11% of its weight after 60 days in normal saline. The produced conduit was able to release the rhEpo for at least 2 weeks and exhibited favorable cytocompatibility towards SCs. For functional analysis, the conduit was seeded with 1.5 × 10 4 SCs and implanted into a 10 mm sciatic nerve defect of Wistar rat. After 14 weeks, the results of sciatic functional index, hot plate latency, compound muscle action potential amplitude, weight-loss percentage of wet gastrocnemius muscle and Histopathological examination using hematoxylin-eosin and Luxol fast blue staining demonstrated that the produced conduit had comparable nerve regeneration to the autograft, as the gold standard to bridge the nerve gaps. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1463-1476, 2018. © 2017 Wiley Periodicals, Inc.
Faulkner, Jonathan; Hu, Bill X; Kish, Stephen; Hua, Fei
2009-11-03
New mathematical and laboratory methods have been developed for simulating groundwater flow and solute transport in karst aquifers having conduits imbedded in a porous medium, such as limestone. The Stokes equations are used to model the flow in the conduits and the Darcy equation is used for the flow in the matrix. The Beavers-Joseph interface boundary conditions are adopted to describe the flow exchange at the interface boundary between the two domains. A laboratory analog is used to simulate the conduit and matrix domains of a karst aquifer. The conduit domain is located at the bottom of the transparent plexiglas laboratory analog and glass beads occupy the remaining space to represent the matrix domain. Water flows into and out of the two domains separately and each has its own supply and outflow reservoirs. Water and solute are exchanged through an interface between the two domains. Pressure transducers located within the matrix and conduit domains of the analog provide data that is processed and stored in digital format. Dye tracing experiments are recorded using time-lapse imaging. The data and images produced are analyzed by a spatial analysis program. The experiments provide not only hydraulic head distribution but also capture solute front images and mass exchange measurements between the conduit and matrix domains. In the experiment, we measure and record pressures, and quantify flow rates and solute transport. The results present a plausible argument that laboratory analogs can characterize groundwater water flow, solute transport, and mass exchange between the conduit and matrix domains in a karst aquifer. The analog validates the predictions of a numerical model and demonstrates the need of laboratory analogs to provide verification of proposed theories and the calibration of mathematical models.
NASA Astrophysics Data System (ADS)
Liang, C.; Dunham, E. M.; OReilly, O. J.; Karlstrom, L.
2015-12-01
Both the oscillation of magma in volcanic conduits and resonance of fluid-filled cracks (dikes and sills) are appealing explanations for very long period signals recorded at many active volcanoes. While these processes have been studied in isolation, real volcanic systems involve interconnected networks of conduits and cracks. The overall objective of our work is to develop a model of wave propagation and ultimately eruptive fluid dynamics through this coupled system. Here, we present a linearized model for wave propagation through a conduit with multiple cracks branching off of it. The fluid is compressible and viscous, and is comprised of a mixture of liquid melt and gas bubbles. Nonequilibrium bubble growth and resorption (BGR) is quantified by introducing a time scale for mass exchange between phases, following the treatment in Karlstrom and Dunham (2015). We start by deriving the dispersion relation for crack waves travelling along the multiphase-magma-filled crack embedded in an elastic solid. Dissipation arises from magma viscosity, nonequilibrium BGR, and radiation of seismic waves into the solid. We next introduce coupling conditions between the conduit and crack, expressing conservation of mass and the balance of forces across the junction. Waves in the conduit, like those in the crack, are influenced by nonequilibrium BGR, but the deformability of the surrounding solid is far less important than for cracks. Solution of the coupled system of equations provides the evolution of pressure and fluid velocity within the conduit-crack system. The system has various resonant modes that are sensitive to fluid properties and to the geometry of the conduit and cracks. Numerical modeling of seismic waves in the solid allows us to generate synthetic seismograms.
Local wall heat flux/temperature meter for convective flow and method of utilizing same
Boyd, Ronald D.; Ekhlassi, Ali; Cofie, Penrose
2004-11-30
According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.
Local wall heat flux/temperature meter for convective flow and method of utilizing same
NASA Technical Reports Server (NTRS)
Cofie, Penrose (Inventor); Ekhlassi, Ali (Inventor); Boyd, Ronald D. (Inventor)
2004-01-01
According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.
Passive filtration of air egressing from nuclear containment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malloy, III, John D
2017-09-26
A nuclear reactor includes a reactor core comprising fissile material disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor. A containment compartment contains the radiological containment. A heat sink includes a chimney configured to develop an upward-flowing draft in response to heated fluid flowing into a lower portion of the chimney. A fluid conduit is arranged to receive fluid from the containment compartment and to discharge into the chimney. A filter may be provided, with the fluid conduit including a first fluid conduit arranged to receive fluid from the containment compartment and to discharge into anmore » inlet of the filter, and a second fluid conduit arranged to receive fluid from an outlet of the filter and to discharge into the chimney. As the draft is developed passively, there is no need for a blower or pump configured to move fluid through the fluid conduit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Berkel, Gary J.
A system for sampling a sample material includes a probe which can have an outer probe housing with an open end. A liquid supply conduit within the housing has an outlet positioned to deliver liquid to the open end of the housing. The liquid supply conduit can be connectable to a liquid supply for delivering liquid at a first volumetric flow rate to the open end of the housing. A liquid exhaust conduit within the housing is provided for removing liquid from the open end of the housing. A liquid exhaust system can be provided for removing liquid from themore » liquid exhaust conduit at a second volumetric flow rate, the first volumetric flow rate exceeding the second volumetric flow rate, wherein liquid at the open end will receive sample, liquid containing sample material will be drawn into and through the liquid exhaust conduit, and liquid will overflow from the open end.« less
Water displacement mercury pump
Nielsen, Marshall G.
1985-01-01
A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.
Water displacement mercury pump
Nielsen, M.G.
1984-04-20
A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Berkel, Gary J
A system for sampling a sample material includes a probe which can have an outer probe housing with an open end. A liquid supply conduit within the housing has an outlet positioned to deliver liquid to the open end of the housing. The liquid supply conduit can be connectable to a liquid supply for delivering liquid at a first volumetric flow rate to the open end of the housing. A liquid exhaust conduit within the housing is provided for removing liquid from the open end of the housing. A liquid exhaust system can be provided for removing liquid from themore » liquid exhaust conduit at a second volumetric flow rate, the first volumetric flow rate exceeding the second volumetric flow rate, wherein liquid at the open end will receive sample, liquid containing sample material will be drawn into and through the liquid exhaust conduit, and liquid will overflow from the open end.« less
Plume capture by a migrating ridge: Analog geodynamic experiments
NASA Astrophysics Data System (ADS)
Mendez, J. S.; Hall, P.
2010-12-01
Paleomagnetic data from the Hawaii-Emperor Seamount Chain (HESC) suggests that the Hawaiian hotspot moved rapidly (~40 mm/yr) between 81 - 47 Ma but has remained relatively stationary since that time. This implies that the iconic bend in the HESC may in fact reflect the transition from a period of rapid hotspot motion to a stationary state, rather than a change in motion of the Pacific plate. Tarduno et al. (2009) have suggested that this period of rapid hotspot motion might be the surface expression of a plume conduit returning to a largely vertical orientation after having been “captured” and tilted by a migrating mid-ocean ridge. We report on a series of analog fluid dynamic experiments designed to characterize the interaction between a migrating spreading center and a thermally buoyant mantle plume. Experiments were conducted in a clear acrylic tank (100 cm x 70 cm x 50 cm) filled with commercial grade high-fructose corn syrup. Plate-driven flow is modeled by dragging two sheets of Mylar film (driven by independent DC motors) in opposite directions over the surface of the fluid. Ridge migration is achieved by moving the point at which the mylar sheets diverge using a separate motor drive. Buoyant plume flow is modeled using corn syrup introduced into the bottom of the tank from an external, heated, pressurized reservoir. Small (~2 mm diameter), neutrally buoyant Delrin spheres are mixed into reservoir of plume material to aid in visualization. Plate velocities and ridge migration rate are controlled and plume temperature monitored using LabView software. Experiments are recorded using digital video which is then analyzed using digital image analysis software to track the position and shape of the plume conduit throughout the course of the experiment. The intersection of the plume conduit with the surface of the fluid is taken as an analog for the locus of hotspot volcanism and tracked as a function of time to obtain a hotspot migration rate. Experiments are scaled to the Earth's mantle through a combination of a Peclet number and a plume buoyancy number. A range of spreading rates, ridge migration rates, and plume excess temperatures representative of the Earth are considered.
NASA Astrophysics Data System (ADS)
Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor; Brand, Brittany D.; Smith, Ian E. M.
2014-04-01
Maungataketake is a monogenetic basaltic volcano formed at ~ 85-89 ka in the southern part of the Auckland Volcanic Field (AVF), New Zealand. It comprises a basal 1100-m diameter tuff ring, with a central scoria/spatter cone and lava flows. The tuff ring was formed under hydrogeological and geographic conditions very similar to the present. The tuff records numerous density stratified, wet base surges that radiated outward up to 1 km, decelerating rapidly and becoming less turbulent with distance. The pyroclastic units dominantly comprise fine-grained expelled grains from various sedimentary deposits beneath the volcano mixed with a minor component of juvenile pyroclasts (~ 35 vol.%). Subtle lateral changes relate to deceleration with distance and vertical transformations are minor, pointing to stable explosion depths and conditions, with gradual transitions between units and no evidence for eruptive pauses. This volcano formed within and on ~ 60 m-thick Plio/Pleistocene, poorly consolidated, highly permeable shelly sands and silts (Kaawa Formation) capped by near-impermeable, water-saturated muds (Tauranga Group). These sediments rest on moderately consolidated Miocene-aged permeable turbiditic sandstones and siltstones (Waitemata Group). Magma-water fuelled thermohydraulic explosions remained in the shallow sedimentary layers, excavating fine-grained sediments without brittle fragmentation required. On the whole, the resulting cool, wet pyroclastic density currents were of low energy. The unconsolidated shallow sediments deformed to accommodate rapidly rising magma, leading to development of complex sill-like bodies and a range of magma-water contact conditions at any time. The weak saturated sediments were also readily liquefied to provide an enduring supply of water and fine sediment to the explosion loci. Changes in magma flux and/or subsequent stabilisation of the conduit area by a lava ring-barrier led to ensuing Strombolian and fire-fountaining eruption phases. Future eruptions in littoral environments around Auckland are likely to be of this type, producing base surges that rapidly decrease in energy over short runout distances (~ 1 km).
Thermal observations of gas pistoning at Kilauea Volcano
Johnson, J.B.; Harris, A.J.L.; Hoblitt, R.P.
2005-01-01
Data acquired by three continuously recording thermal infrared thermometers situated on the north rim of Pu'u'O' o Crater at Kilauea Volcano during 2002 revealed episodes of periodic thermal pulses originating from a degassing vent on the crater floor. These thermal pulses are interpreted as gas release (jetting events) associated with gas pistoning, a mechanism observed previously at both Mauna Ulu and Pu'u'O' o. During a 35-day-long period spanning June and July 2002, gas pistoning was frequently the dominant mode of gas release, with as many as several hundred pulses occurring in uninterrupted series. On other days, degassing alternated between periods of quasi-continuous gas jetting and intervals of gas pistoning that contained a few to a few dozen pulses. Characteristic time intervals between pistoning events ranged from 2 up to 7 min. We identify three types of pistoning. Type 1 involves emission of lava, followed by gas jetting and drain back; type 2 is the same but the elevated position of the vent does not allow postjet drain back; and type 3 involves gas jetting only with no precursory lava flow. To explain gas pistoning, we apply a model whereby a stagnant cap of degassed magma develops in the conduit below the vent. Gas bubbles rise through the magma column and collect under the cap. The collective buoyancy of these bubbles pushes the cap upward. When the cap reaches the surface, it erupts from the vent as a lava flow. Unloading of the conduit magma in this way results in an abrupt pressure drop (i.e., the overburden felt by the bubbles is reduced), causing explosive gas expansion in the form of gas jetting from the vent. This terminates the event and lava drains back into the conduit to start the cycle anew. In the case where there is no surface lava emission or drain back, the cap instead pushes into and spreads out within a subsurface cavity. Again, this unloads the conduit magma and terminates in explosive gas release. Once gas is expelled, lava in the cavity is free to drain back. We hypothesize that pistoning is a stable mode of degassing for low-viscosity basaltic magmas with appropriate conduit geometries and volatile supply rates. Copyright 2005 by the American Geophysical Union.
Murray's law, the "Yarrum'" optimum, and the hydraulic architecture of compound leaves
Katherine A. McCulloh; John S. Sperry; Frederick C. Meinzer; Barbara Lachenbruch; Cristian Atala
2009-01-01
There are two optima for maximizing hydraulic conductance per vasculature volume in plants. Murray's law (ML) predicts the optimal conduit taper for a fixed change in conduit number across branch ranks. The opposite, the Yarrum optimum (YO), predicts the optimal change in conduit number for a fixed taper. We derived the solution for YO and then evaluated...
High temperature pressure gauge
Echtler, J. Paul; Scandrol, Roy O.
1981-01-01
A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Automatic extension of time to file Real Estate... Time for Filing Returns § 1.6081-7 Automatic extension of time to file Real Estate Mortgage Investment Conduit (REMIC) income tax return. (a) In general. A Real Estate Mortgage Investment Conduit (REMIC...
Reverse Saphenous Conduit Flap in 19 Dogs and 1 Cat.
Cavalcanti, Jacqueline V J; Barry, Sabrina L; Lanz, Otto I; Barnes, Katherine; Coutin, Julia V
2018-05-14
The purpose of this retrospective study was to report the outcomes of 19 dogs and 1 cat undergoing reverse saphenous conduit flap between 1999 and 2016. Reverse saphenous conduit flap was used to treat traumatic wounds and wounds resulting from tumor excision in the hind limb; the majority of cases had medial shearing injuries. All animals had complete flap survival. In five animals (20%), minor donor site dehiscence occurred, which did not require surgery. Other postoperative complications included signs of severe venous congestion in one dog. Reverse saphenous conduit flap is a useful technique to repair skin defects of the distal hind limb.
Adjustable extender for instrument module
Sevec, J.B.; Stein, A.D.
1975-11-01
A blank extender module used to mount an instrument module in front of its console for repair or test purposes has been equipped with a rotatable mount and means for locking the mount at various angles of rotation for easy accessibility. The rotatable mount includes a horizontal conduit supported by bearings within the blank module. The conduit is spring-biased in a retracted position within the blank module and in this position a small gear mounted on the conduit periphery is locked by a fixed pawl. The conduit and instrument mount can be pulled into an extended position with the gear clearing the pawl to permit rotation and adjustment of the instrument.
Wide size range fast integrated mobility spectrometer
Wang, Jian
2013-10-29
A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.
Hydraulic balancing of a control component within a nuclear reactor
Marinos, D.; Ripfel, H.C.F.
1975-10-14
A reactor control component includes an inner conduit, for instance containing neutron absorber elements, adapted for longitudinal movement within an outer guide duct. A transverse partition partially encloses one end of the conduit and meets a transverse wall within the guide duct when the conduit is fully inserted into the reactor core. A tube piece extends from the transverse partition and is coaxially aligned to be received within a tubular receptacle which extends from the transverse wall. The tube piece and receptacle cooperate in engagement to restrict the flow and pressure of coolant beneath the transverse partition and thereby minimize upward forces tending to expel the inner conduit.
Maddali, Madan Mohan; Valliattu, John; Kandachar, Pranav Subbaraya; Thomas, Eapen; Nishant, Arora Ram
2016-05-01
During the surgical repair of a truncus arteriosus with aortic arch interruption and pulmonary artery origin stenosis, a Contegra conduit was implanted as part of reconstruction of the pulmonary artery in a small infant. There was a mismatch between the conduit size and the patient that resulted in protrusion of the conduit between the sternal edges. To accommodate the conduit inside the thoracic cavity, traction was applied to the sternum that was gradually released over a period of time guided by transesophageal echocardiography-derived cardiac output data, as well as continuous hemodynamic parameters. doi: 10.1111/jocs.12734 (J Card Surg 2016;31:357-360). © 2016 Wiley Periodicals, Inc.
Slee, Joshua B.; Alferiev, Ivan S.; Levy, Robert J.; Stachelek, Stanley J.
2014-01-01
The foreign body reaction occurs when a synthetic surface is introduced to the body. It is characterized by adsorption of blood proteins and the subsequent attachment and activation of platelets, monocyte/macrophage adhesion, and inflammatory cell signaling events, leading to post-procedural complications. The Chandler Loop Apparatus is an experimental system that allows researchers to study the molecular and cellular interactions that occur when large volumes of blood are perfused over polymeric conduits. To that end, this apparatus has been used as an ex vivo model allowing the assessment of the anti-inflammatory properties of various polymer surface modifications. Our laboratory has shown that blood conduits, covalently modified via photoactivation chemistry with recombinant CD47, can confer biocompatibility to polymeric surfaces. Appending CD47 to polymeric surfaces could be an effective means to promote the efficacy of polymeric blood conduits. Herein is the methodology detailing the photoactivation chemistry used to append recombinant CD47 to clinically relevant polymeric blood conduits and the use of the Chandler Loop as an ex vivo experimental model to examine blood interactions with the CD47 modified and control conduits. PMID:25178087
Uncovering Offshore Financial Centers: Conduits and Sinks in the Global Corporate Ownership Network.
Garcia-Bernardo, Javier; Fichtner, Jan; Takes, Frank W; Heemskerk, Eelke M
2017-07-24
Multinational corporations use highly complex structures of parents and subsidiaries to organize their operations and ownership. Offshore Financial Centers (OFCs) facilitate these structures through low taxation and lenient regulation, but are increasingly under scrutiny, for instance for enabling tax avoidance. Therefore, the identification of OFC jurisdictions has become a politicized and contested issue. We introduce a novel data-driven approach for identifying OFCs based on the global corporate ownership network, in which over 98 million firms (nodes) are connected through 71 million ownership relations. This granular firm-level network data uniquely allows identifying both sink-OFCs and conduit-OFCs. Sink-OFCs attract and retain foreign capital while conduit-OFCs are attractive intermediate destinations in the routing of international investments and enable the transfer of capital without taxation. We identify 24 sink-OFCs. In addition, a small set of five countries - the Netherlands, the United Kingdom, Ireland, Singapore and Switzerland - canalize the majority of corporate offshore investment as conduit-OFCs. Each conduit jurisdiction is specialized in a geographical area and there is significant specialization based on industrial sectors. Against the idea of OFCs as exotic small islands that cannot be regulated, we show that many sink and conduit-OFCs are highly developed countries.
Silicic magma differentiation in ascent conduits. Experimental constraints
NASA Astrophysics Data System (ADS)
Rodríguez, Carmen; Castro, Antonio
2017-02-01
Crystallization of water-bearing silicic magmas in a dynamic thermal boundary layer is reproduced experimentally by using the intrinsic thermal gradient of piston-cylinder assemblies. The standard AGV2 andesite under water-undersaturated conditions is set to crystallize in a dynamic thermal gradient of about 35 °C/mm in 10 mm length capsules. In the hotter area of the capsule, the temperature is initially set at 1200 °C and decreases by programmed cooling at two distinct rates of 0.6 and 9.6 °C/h. Experiments are conducted in horizontally arranged assemblies in a piston cylinder apparatus to avoid any effect of gravity settling and compaction of crystals in long duration runs. The results are conclusive about the effect of water-rich fluids that are expelled out the crystal-rich zone (mush), where water saturation is reached by second boiling in the interstitial liquid. Expelled fluids migrate to the magma ahead of the solidification front contributing to a progressive enrichment in the fluxed components SiO2, K2O and H2O. The composition of water-rich fluids is modelled by mass balance using the chemical composition of glasses (quenched melt). The results are the basis for a model of granite magma differentiation in thermally-zoned conduits with application of in-situ crystallization equations. The intriguing textural and compositional features of the typical autoliths, accompanying granodiorite-tonalite batholiths, can be explained following the results of this study, by critical phenomena leading to splitting of an initially homogeneous magma into two magma systems with sharp boundaries. Magma splitting in thermal boundary layers, formed at the margins of ascent conduits, may operate for several km distances during magma transport from deep sources at the lower crust or upper mantle. Accordingly, conduits may work as chromatographic columns contributing to increase the silica content of ascending magmas and, at the same time, leave behind residual mushes that eventually are dragged as enclaves or autoliths.
Fun at Antarctic grounding lines: Ice-shelf channels and sediment transport
NASA Astrophysics Data System (ADS)
Drews, Reinhard; Mayer, Christoph; Eisen, Olaf; Helm, Veit; Ehlers, Todd A.; Pattyn, Frank; Berger, Sophie; Favier, Lionel; Hewitt, Ian H.; Ng, Felix; Fürst, Johannes J.; Gillet-Chaulet, Fabien; Bergeot, Nicolas; Matsuoka, Kenichi
2017-04-01
Meltwater beneath the polar ice sheets drains, in part, through subglacial conduits. Landforms created by such drainages are abundant in areas formerly covered by ice sheets during the last glacial maximum. However, observations of subglacial conduit dynamics under a contemporary ice sheet are lacking. We present results from ice-penetrating radar to infer the existence of subglacial conduits upstream of the grounding line of Roi Baudouin Ice Shelf, Antarctica. The conduits are aligned with ice-shelf channels, and underlain by esker ridges formed from sediment deposition due to reduced water outflow speed near the grounding line. In turn, the eskers modify local ice flow to initiate the bottom topography of the ice-shelf channels, and create small surface ridges extending onto the shelf. Relict features on the shelf are interpreted to indicate a history of these interactions and variability of past subglacial drainages. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation, and ice-shelf stability. To investigate the role of sediment transport beneath ice sheets further, we model the sheet-shelf system of the Ekstömisen catchment, Antarctica. A 3D finite element model (Elmer/ICE) is used to solve the transients full Stokes equation for isotropic, isothermal ice with a dynamic grounding line. We initialize the model with surface topography from the TanDEM-X satellites and by inverting simultaneously for ice viscosity and basal drag using present-day surface velocities. Results produce a flow field which is consitent with sattelite and on-site observations. Solving the age-depth relationship allows comparison with radar isochrones from airborne data, and gives information about the atmospheric/dynamic history of this sector. The flow field will eventually be used to identify potential sediment sources and sinks which we compare with more than 400 km of seismic profiles collected over the floating ice shelves and the grounded ice sheet.
A Decaheme Cytochrome as a Molecular Electron Conduit in Dye-Sensitized Photoanodes
Hwang, Ee Taek; Sheikh, Khizar; Orchard, Katherine L; Hojo, Daisuke; Radu, Valentin; Lee, Chong-Yong; Ainsworth, Emma; Lockwood, Colin; Gross, Manuela A; Adschiri, Tadafumi; Reisner, Erwin; Butt, Julea N; Jeuken, Lars J C
2015-01-01
In nature, charge recombination in light-harvesting reaction centers is minimized by efficient charge separation. Here, it is aimed to mimic this by coupling dye-sensitized TiO2 nanocrystals to a decaheme protein, MtrC from Shewanella oneidensis MR-1, where the 10 hemes of MtrC form a ≈7-nm-long molecular wire between the TiO2 and the underlying electrode. The system is assembled by forming a densely packed MtrC film on an ultra-flat gold electrode, followed by the adsorption of approximately 7 nm TiO2 nanocrystals that are modified with a phosphonated bipyridine Ru(II) dye (RuP). The step-by-step construction of the MtrC/TiO2 system is monitored with (photo)electrochemistry, quartz-crystal microbalance with dissipation (QCM-D), and atomic force microscopy (AFM). Photocurrents are dependent on the redox state of the MtrC, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the MtrC conduit. In other words, in these TiO2/MtrC hybrid photodiodes, MtrC traps the conduction-band electrons from TiO2 before transferring them to the electrode, creating a photobioelectrochemical system in which a redox protein is used to mimic the efficient charge separation found in biological photosystems. PMID:26180522
NASA Astrophysics Data System (ADS)
O'connell, Y.; Daly, E.; Duffy, G.; Henry, T.
2012-12-01
Large volumes of groundwater, containing nutrients and contaminants enter the coastal waters of southern Galway Bay on the west coast of Ireland through submarine groundwater discharge (SGD). The SGD occurs through karstified Carboniferous limestone in a major karst region comprising the Burren and Gort Lowlands. The Carboniferous limestones have experienced extensive dissolution resulting in the development of an underground network of conduits and fissures that define a trimodal groundwater flow pattern across the region. Groundwater discharge to the sea in this area is exclusively intertidal and submarine. Storage in the karst is limited and typical winter rainfall conditions result in the karst system becoming saturated. Temporary lakes (turloughs) form in lowlying areas and act as large reservoirs which provide storage to enable the transmission of the large volumes of water in the system to the sea. Between 2010 and 2012, terrestrial and shallow marine geophysical surveying has been undertaken to investigate preferential groundwater flow-paths and SGD locations in order to quantify the groundwater-seawater interactions in this coastal karst system. A report into the groundwater system of this karst region following a major flood event proposed a conceptual conduit model defined by extensive water tracing, water level monitoring, hydrochemical sampling, geological mapping and drilling. Limited information about the dimensions of the conduits was known. Electrical resistivity tomography (ERT) profiling to depths of 100m below ground level, with multiple array configurations, has been carried out to investigate the modes of groundwater flow in to and out of both temporary and permanent freshwater lakes in the system. Towed dipole-dipole profiles have been recorded to investigate conduits beneath a permanent lake exhibiting a tidal influence despite its location 5.5 km from the seashore. The ERT data indicates significant variations in subsurface resistivities including very low resistivity features which have been modeled as large diameter conduits. Ongoing analysis of the data will allow more accurate conduit dimensions to be incorporated in to future groundwater flow models. In the shallow marine bays along the coast, towed ERT employing dipole-dipole and non-conventional modified Wenner arrays has been coupled with high-resolution digital chirp sub-bottom profiling. Combining the two techniques allows the determination of sediment, structural and lithological variations beneath the sea floor, delineating saturated sediment layers, till and bedrock horizons. Incorporation of the water column thickness and conductivity, recorded simultaneously with the ERT survey, constrains the inversion process. In addition, multiple layer boundaries interpreted from the sub-bottom profiling are incorporated in to the model, further constraining the inversion process. The combined inversion allows improved data interpretation to facilitate more accurate assessment of SGD locations.
NASA Astrophysics Data System (ADS)
Vaute, L.; Drogue, C.; Garrelly, L.; Ghelfenstein, M.
1997-12-01
Study of the movement of chemical compounds naturally present in the water, or which result from pollution, are examined according to the reservoir structure in karstic aquifers. Structure is represented by a simple geometrical model; slow flow takes place in blocks with a network of low-permeability cracks. The blocks are separated by highly permeable karstic conduits that allow rapid flow, and these form the aquifer drainage system. The karst studied covers 110 km 2. It is fed by an interrupted stream draining a 35 km 2 non-karstic basin, contaminated at the entry to the karst by effluents from a sewage treatment station. The underground water reappears as a resurgence with an annual average flow of approximately 1 m 3 s -1, after an apparent underground course of 8 km in the karst. Several local sources of pollution (effluent from septic tanks) contaminate the underground water during its course. Sixteen measurement operations were performed at 12 water points, between the interrupted stream and the spring. Some sampling points were at drains, and others were in the low-permeability fissured blocks. Comparison at each point of the concentrations of 14 chemical compounds gave the following results: when pollutant discharge occurs in a permeable zone, movement is rapid in the drainage network formed by the karstic conduits, and does not reach the less permeable fissured blocks which are thus protected; however, if discharge is in a low-permeability zone, the flow does not allow rapid movement of the polluted water, and this increases the pollutant concentration at the discharge. This simple pattern can be upset by a reversal of the apparent piezometric gradient between a block and a conduit during floods or pumping; this may reverse flow directions and hence modify the movement of contaminants. The study made it possible to site five boreholes whose positions in the karstic structure were unknown, showing the interest of such an approach for the forecasting of the impact of potential pollution.
NASA Astrophysics Data System (ADS)
Xu, Bin; Ye, Ming; Dong, Shuning; Dai, Zhenxue; Pei, Yongzhen
2018-07-01
Quantitative analysis of recession curves of karst spring hydrographs is a vital tool for understanding karst hydrology and inferring hydraulic properties of karst aquifers. This paper presents a new model for simulating karst spring recession curves. The new model has the following characteristics: (1) the model considers two separate but hydraulically connected reservoirs: matrix reservoir and conduit reservoir; (2) the model separates karst spring hydrograph recession into three stages: conduit-drainage stage, mixed-drainage stage (with both conduit drainage and matrix drainage), and matrix-drainage stage; and (3) in the mixed-drainage stage, the model uses multiple conduit layers to present different levels of conduit development. The new model outperforms the classical Mangin model and the recently developed Fiorillo model for simulating observed discharge at the Madison Blue Spring located in northern Florida. This is attributed to the latter two characteristics of the new model. Based on the new model, a method is developed for estimating effective porosity of the matrix and conduit reservoirs for the three drainage stages. The estimated porosity values are consistent with measured matrix porosity at the study site and with estimated conduit porosity reported in literature. The new model for simulating karst spring hydrograph recession is mathematically general, and can be applied to a wide range of karst spring hydrographs to understand groundwater flow in karst aquifers. The limitations of the model are discussed at the end of this paper.
Tenisch, Estelle V; Alamo, Leonor T; Sekarski, Nicole; Hurni, Michel; Gudinchet, François
2014-12-01
The Contegra® is a conduit made from the bovine jugular vein and then interposed between the right ventricle and the pulmonary artery. It is used for cardiac malformations in the reconstruction of right ventricular outflow tract. To describe both normal and pathological appearances of the Contegra® in radiological imaging, to describe imaging of complications and to define the role of CT and MRI in postoperative follow-up. Forty-three examinations of 24 patients (17 boys and 7 girls; mean age: 10.8 years old) with Contegra® conduits were reviewed. Anatomical description and measurements of the conduits were performed. Pathological items examined included stenosis, dilatation, plicature or twist, thrombus or vegetations, calcifications and valvular regurgitation. Findings were correlated to the echographic gradient through the conduit when available. CT and MR work-up showed Contegra® stenosis (n = 12), dilatation (n = 9) and plicature or twist (n = 7). CT displayed thrombus or vegetations in the Contegra® in three clinically infected patients. Calcifications of the conduit were present at CT in 12 patients and valvular regurgitation in three patients. The comparison between CT and/or MR results showed a good correlation between the echographic gradient and the presence of stenosis in the Contegra®. CT and MR bring additional information about permeability and postoperative anatomy especially when echocardiography is inconclusive. Both techniques depict the normal appearance of the conduit, and allow comparison and precise evaluation of changes in the postoperative follow-up.
Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation.
Lee, Don-Ching; Chen, Jong-Hang; Hsu, Tai-Yu; Chang, Li-Hsun; Chang, Hsu; Chi, Ya-Hui; Chiu, Ing-Ming
2017-03-01
Regeneration of injured peripheral nerves is a slow, complicated process that could be improved by implantation of neural stem cells (NSCs) or nerve conduit. Implantation of NSCs along with conduits promotes the regeneration of damaged nerve, likely because (i) conduit supports and guides axonal growth from one nerve stump to the other, while preventing fibrous tissue ingrowth and retaining neurotrophic factors; and (ii) implanted NSCs differentiate into Schwann cells and maintain a growth factor enriched microenvironment, which promotes nerve regeneration. In this study, we identified IL12p80 (homodimer of IL12p40) in the cell extracts of implanted nerve conduit combined with NSCs by using protein antibody array and Western blotting. Levels of IL12p80 in these conduits are 1.6-fold higher than those in conduits without NSCs. In the sciatic nerve injury mouse model, implantation of NSCs combined with nerve conduit and IL12p80 improves motor recovery and increases the diameter up to 4.5-fold, at the medial site of the regenerated nerve. In vitro study further revealed that IL12p80 stimulates the Schwann cell differentiation of mouse NSCs through the phosphorylation of signal transducer and activator of transcription 3 (Stat3). These results suggest that IL12p80 can trigger Schwann cell differentiation of mouse NSCs through Stat3 phosphorylation and enhance the functional recovery and the diameter of regenerated nerves in a mouse sciatic nerve injury model. Copyright © 2016 Elsevier Inc. All rights reserved.
A Trigger Mechanism for Volcanic Low-Frequency Seismic Events on Montserrat
NASA Astrophysics Data System (ADS)
Neuberg, J. W.; Tuffen, H.; Jolly, A.; Green, D.
2003-12-01
Seismic observations of low-frequency earthquake swarms on Montserrat point to a non-destructive, repeatable source mechanism in a confined area inside or near the conduit. While the seismic wave propagation pattern of the subsequent resonance in and around the conduit is well studied, the trigger mechanism has remained elusive. In this contribution we suggest a trigger mechanism based on new field evidence for fracture and healing of magma in volcanic conduits, together with seismic observations from Montserrat and finite element modelling of magma deformation during conduit flow. As a seismic trigger we suggest a stick-slip motion of highly-viscous magma in the glass transition, that periodically generates networks of seismogenic shear fractures a few metres in length. These fractures are rapidly filled by fine-grained material [cataclasite] that is generated by friction processes on the fracture surfaces, such as corner abrasion, and is locally redeposited by gas flowing within the fracture system. Filled fractures are then swiftly healed as reloading leads to annealing and a return to cohesive viscous deformation. Such a fast healing process, probably on the order of tens of seconds, leads to a repeatable trigger mechanism. Due to a strong lateral viscosity gradient in the conduit, highly-viscous magma near the conduit walls, which can exhibit brittle behaviour, co-exists with low-viscosity, fluid magma in the conduit centre; such that brittle failure provides the seismic trigger mechanism while the fluid part can still act as a seismic resonator.
NASA Astrophysics Data System (ADS)
Shinohara, Hiroshi; Tanaka, Hiroyuki K. M.
2012-10-01
Quantitative re-evaluation of the muon radiography data obtained by Tanaka et al. (2009) was conducted to constrain conduit magma convection at the Iwodake rhyolitic cone of Satsuma-Iwojima volcano, Japan. Re-evaluation of the measurement error considering topography and fake muon counts confirms the existence of a low-density body of 300 m in diameter and with 0.9-1.0 g cm-3 at depths of 135-190 m from the summit crater floor. The low-density material is interpreted as rhyolitic magma with 60% vesicularity on average, and existence of this unstable highly vesiculated magma at shallow depth without any recent eruptive or intrusive activity is considered as evidence of conduit magma convection. The structure of the convecting magma column top was modeled based on density calculations of vesiculated ascending and outgassed descending magmas, compared with the observed density anomaly. The existence of the low-density anomaly was confirmed by comparison with published gravity measurements, and the predicted degassing at the shallow magma conduit top agrees with observed heat discharge anomaly distribution localized at the summit area. This study confirms that high viscosity of silicic magmas can be compensated by a large size conduit to cause the conduit magma convection phenomena. The rare occurrence of conduit magma convection in a rhyolitic magma system at Iwodake is suggested to be due to its specific magma features of low H2O content and high temperature.
El Cobreloa: A geyser with two distinct eruption styles
NASA Astrophysics Data System (ADS)
Namiki, Atsuko; Muñoz-Saez, Carolina; Manga, Michael
2014-08-01
We performed field measurements at a geyser nicknamed "El Cobreloa," located in the El Tatio Geyser Field, Northern Andes, Chile. The El Cobreloa geyser has two distinct eruption styles: minor eruptions and more energetic and long-lived major eruptions. Minor eruptions splash hot water intermittently over an approximately 4 min time period. Major eruptions begin with an eruption style similar to minor eruptions, but then transition to a voluminous liquid water-dominated eruption, and finally end with energetic steam discharge that continues for approximately 1 h. We calculated eruption intervals by visual observations, acoustic measurements, and ground temperature measurements and found that each eruption style has a regular interval: 4 h and 40 min for major eruptions and ˜14 min for minor eruptions. Eruptions of El Cobreloa and geochemical measurements suggest interaction of three water sources. The geyser reservoir, connected to the surface by a conduit, is recharged by a deep, hot aquifer. More deeply derived magmatic fluids heat the reservoir. Boiling in the reservoir releases steam and hot liquid water to the overlying conduit, causing minor eruptions, and heating the water in the conduit. Eventually the water in the conduit becomes warm enough to boil, leading to a steam-dominated eruption that empties the conduit. The conduit is then recharged by a shallow, colder aquifer, and the eruption cycle begins anew. We develop a model for minor eruptions which heat the water in the conduit. El Cobreloa provides insight into how small eruptions prepare the geyser system for large eruptions.
The sensitivity of conduit flow models to basic input parameters: there is no need for magma trolls!
NASA Astrophysics Data System (ADS)
Thomas, M. E.; Neuberg, J. W.
2012-04-01
Many conduit flow models now exist and some of these models are becoming extremely complicated, conducted in three dimensions and incorporating the physics of compressible three phase fluids (magmas), intricate conduit geometries and fragmentation processes, to name but a few examples. These highly specialised models are being used to explain observations of the natural system, and there is a danger that possible explanations may be getting needlessly complex. It is coherent, for instance, to propose the involvement of sub-surface dwelling magma trolls as an explanation for the change in a volcanoes eruptive style, but assuming the simplest explanation would prevent such additions, unless they were absolutely necessary. While the understanding of individual, often small scale conduit processes is increasing rapidly, is this level of detail necessary? How sensitive are these models to small changes in the most basic of governing parameters? Can these changes be used to explain observed behaviour? Here we will examine the sensitivity of conduit flow models to changes in the melt viscosity, one of the fundamental inputs to any such model. However, even addressing this elementary issue is not straight forward. There are several viscosity models in existence, how do they differ? Can models that use different viscosity models be realistically compared? Each of these viscosity models is also heavily dependent on the magma composition and/or temperature, and how well are these variables constrained? Magma temperatures and water contents are often assumed as "ball-park" figures, and are very rarely exactly known for the periods of observation the models are attempting to explain, yet they exhibit a strong controlling factor on the melt viscosity. The role of both these variables will be discussed. For example, using one of the available viscosity models a 20 K decrease in temperature of the melt results in a greater than 100% increase in the melt viscosity. With changes of this magnitude resulting from small alterations in the basic governing parameters does this render any changes in individual conduit processes of secondary importance? As important as the melt viscosity is to any conduit flow model, it is a meaningless parameter unless there is a conduit through which to flow. The shape and size of a volcanic conduit are even less well constrained than magma's temperature and water content, but have an equally important role to play. Rudimentary changes such as simply increasing or decreasing the radius of a perfectly cylindrical conduit can have large effects, and when coupled with the range of magma viscosities that may be flowing through them can completely change interpretations. Although we present results specifically concerning the variables of magma temperature and water content and the radius of a cylindrical conduit, this is just the start, by systematically identifying the effect each parameter has on the conduit flow models it will be possible to identify which areas are most requiring of future attention.
Compact vacuum insulation embodiments
Benson, D.K.; Potter, T.F.
1992-04-28
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.
Benson, D.K.; Potter, T.F.
1993-01-05
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.
Benson, David K.; Potter, Thomas F.
1993-01-01
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.
Compact vacuum insulation embodiments
Benson, David K.; Potter, Thomas F.
1992-01-01
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.
Pulsed voltage electrospray ion source and method for preventing analyte electrolysis
Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN
2011-12-27
An electrospray ion source and method of operation includes the application of pulsed voltage to prevent electrolysis of analytes with a low electrochemical potential. The electrospray ion source can include an emitter, a counter electrode, and a power supply. The emitter can include a liquid conduit, a primary working electrode having a liquid contacting surface, and a spray tip, where the liquid conduit and the working electrode are in liquid communication. The counter electrode can be proximate to, but separated from, the spray tip. The power system can supply voltage to the working electrode in the form of a pulse wave, where the pulse wave oscillates between at least an energized voltage and a relaxation voltage. The relaxation duration of the relaxation voltage can range from 1 millisecond to 35 milliseconds. The pulse duration of the energized voltage can be less than 1 millisecond and the frequency of the pulse wave can range from 30 to 800 Hz.
Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit
Allmeling, Christina; Jokuszies, Andreas; Reimers, Kerstin; Kall, Susanne; Vogt, Peter M
2006-01-01
Defects of peripheral nerves still represent a challenge for surgical nerve reconstruction. Recent studies concentrated on replacement by artificial nerve conduits from different synthetic or biological materials. In our study, we describe for the first time the use of spider silk fibres as a new material in nerve tissue engineering. Schwann cells (SC) were cultivated on spider silk fibres. Cells adhered quickly on the fibres compared to polydioxanone monofilaments (PDS). SC survival and proliferation was normal in Live/Dead assays. The silk fibres were ensheathed completely with cells. We developed composite nerve grafts of acellularized veins, spider silk fibres and SC diluted in matrigel. These artificial nerve grafts could be cultivated in vitro for one week. Histological analysis showed that the cells were vital and formed distinct columns along the silk fibres. In conclusion, our results show that artificial nerve grafts can be constructed successfully from spider silk, acellularized veins and SC mixed with matrigel. PMID:16989736
Relaxation of microparticles exposed to hydrodynamic forces in microfluidic conduits.
Janča, Josef; Halabalová, Věra; Polášek, Vladimír; Vašina, Martin; Menshikova, Anastasia Yu
2011-02-01
The behavior of microparticles exposed to gravitational and lift forces and to the velocity gradient in flow velocity profile formed in microfluidic conduits is studied from the viewpoint of the transient period (the relaxation) between the moment at which a particle starts to be transported by the hydrodynamic flow and the time at which it reaches an equilibrium position, characterized by a balance of all active forces. The theoretical model allowing the calculation of the relaxation time is proposed. The numerical calculus based on the proposed model is compared with the experimental data obtained under different experimental conditions, namely, for different lengths of microfluidic channels, different average linear velocities of the carrier liquid, and different sizes and densities of the particles used in the study. The results are important for the optimization of microfluidic separation units such as microthermal field-flow fractionation channels in which the separation or manipulation of the microparticles of various origin, synthetic, natural, biological, etc., is performed under similar experimental conditions but by applying an additional thermodynamic force.
Shape memory polymer medical device
Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA
2010-06-29
A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.
2011-12-16
broadcasts, but verified by eyewitness accounts spread through word of mouth conduits. See the Dhofari case study. He also explained adversarial...information conduits of the tribes. Word of mouth was to be one the more reliable information...information conduits to its target audiences: notice boards, leaflets, word of mouth , newspapers, radio, and television. Notice boards were placed in
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 13 2013-04-01 2013-04-01 false Automatic extension of time to file Real Estate...) Extension of Time for Filing Returns § 1.6081-7 Automatic extension of time to file Real Estate Mortgage Investment Conduit (REMIC) income tax return. (a) In general. A Real Estate Mortgage Investment Conduit...