Analysis of current-meter data at Columbia River gaging stations, Washington and Oregon
Savini, John; Bodhaine, G.L.
1971-01-01
The U.S. Geological Survey developed equipment to measure stream velocity simultaneously with 10 current meters arranged in a vertical and to measure velocity closer to the streambed than attainable with conventional equipment. With the 10 current meters, synchronous velocities were recorded for a period of 66 minutes at 10 different depths in one vertical of one gaging-station cross section. In addition, with a current meter installed on a special bracket to allow measurements to 0.5 foot above streambed, data were obtained at two to four verticals in four gaging-station cross sections. The mean velocity determined for the 66-minute period of record was 3.30 fps (feet per second). The graphic record of velocity was analyzed on a minute-by-minute basis. It was noted that the shape of the vertical velocity curves (plot of horizontal flow velocities measured in a vertical) changed from one minute to the next, but the change seemed to be random. Velocities obtained at different depths in the, profile fluctuated significantly, with the 1-minute velocities obtained at 0.05 depth (5 percent of total depths measured from the surface at indicated vertical) showing the smallest range--0.66 fps--and those at 0.55 depth the largest range--l.22 fps. The standard deviation, expressed in feet per second, of the velocity at each point in the vertical tended to increase with depth--from 0.16 fps at 0.05 depth to a maximum of 0.24 fps at 0.75 depth. The standard deviation, expressed as a percentage of the mean velocity, ranged from about 4 percent near the surface to 11 percent at 0.95 depth. In spite of the fluctuation in mean velocity that occurred during the 66 minutes and observation period of 4 minutes yields a mean velocity that differs from the 66-minute mean by less than one-half of a percent. Determining the mean velocity by averaging the 10-point observations of the 66minute run proved to be as accurate as by plotting the vertical velocity curvy (from the averaged 10 points) and then integrating the depth-velocity profile. In comparing the velocity obtained by integrating the depth-velocity profile with the 10-point mean velocity for other field data, collected beyond that obtained during the 66-minute run, the difference ranged from -1.3 to +1.7 percent and averaged -0.2 percent. Extension of the curve below the 0.95 depth by use of a power function proved to be fairly accurate (when compared with actual measurements within this reach made with the special current-meter bracket). However, the extension did not improve significantly the accuracy of the integrated-curve mean velocity. Both the one- and two-point methods were found to agree with the 10-point velocity. In computing mean river velocity, values determined by the two-point method ranged from -1.4 to +1.6 percent when compared with the base integrated-curve mean river velocity. The one-point method yielded results that ranged from -1.9 to +4.4 percent and averaged 40.1 percent. In determining river flow by use of the midsection and mean-section methods, the mean-section method uniformly yields lower flows for the same dart.. The range in difference is from -0.2 percent to -1.6 percent, with an average difference of -0.6 percent.
Vertical coherence in mantle heterogeneity from global seismic data
NASA Astrophysics Data System (ADS)
Boschi, L.; Becker, T. W.
2011-10-01
The vertical coherence of mantle structure is of importance for a range of dynamic issues including convective mass transport and the geochemical evolution of Earth. Here, we use seismic data to infer the most likely depth ranges of strong, global changes in the horizontal pattern of mantle heterogeneity. We apply our algorithm to a comprehensive set of measurements, including various shear- and compressional-wave delay times and Love- and Rayleigh-wave fundamental mode and overtone dispersion, so that tomography resolution is as high as possible at all mantle depths. We find that vertical coherence is minimum at ∼100 km and ∼800 km depths, corresponding to the base of the lithosphere and the transition between upper and lower mantle, respectively. The D″ layer is visible, but not as prominent as the shallower features. The rest of the lower mantle is, essentially, vertically coherent. These findings are consistent with slab stagnation at depths around, and perhaps below, the 660-km phase transition, and inconsistent with global, chemically distinct, mid-mantle layering.
NASA Technical Reports Server (NTRS)
Duvall, T. L., Jr.; Hanasoge, S. M.
2012-01-01
As large-distance rays (say, 10-24 deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large separation travel times associated with upergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations,reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel time difference in the separation range 10-24 deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity for the average supergranule, 5.1 s, is constant over the distance range. This magnitude of signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 m/s extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 m/s at a depth of 2.3 Mm and a peak horizontal flow of 700 m/s at a depth of 1.6 Mm.
Acoustic tracking of sperm whales in the Gulf of Alaska using a two-element vertical array and tags.
Mathias, Delphine; Thode, Aaron M; Straley, Jan; Andrews, Russel D
2013-09-01
Between 15 and 17 August 2010, a simple two-element vertical array was deployed off the continental slope of Southeast Alaska in 1200 m water depth. The array was attached to a vertical buoy line used to mark each end of a longline fishing set, at 300 m depth, close to the sound-speed minimum of the deep-water profile. The buoy line also served as a depredation decoy, attracting seven sperm whales to the area. One animal was tagged with both a LIMPET dive depth-transmitting satellite and bioacoustic "B-probe" tag. Both tag datasets were used as an independent check of various passive acoustic schemes for tracking the whale in depth and range, which exploited the elevation angles and relative arrival times of multiple ray paths recorded on the array. Analytical tracking formulas were viable up to 2 km range, but only numerical propagation models yielded accurate locations up to at least 35 km range at Beaufort sea state 3. Neither localization approach required knowledge of the local bottom bathymetry. The tracking system was successfully used to estimate the source level of an individual sperm whale's "clicks" and "creaks" and predict the maximum detection range of the signals as a function of sea state.
Fleischer, Guy W.; TeWinkel, Leslie M.
1998-01-01
Acoustic studies in Lake Michigan found that bloaters (Coregonus hoyi) were less reflective per size than the other major pelagic species. This difference in in situ acoustic backscattering could indicate that the deep-water bloaters have compressed swimbladders for much of their vertical range with related implications on buoyancy. To test this hypothesis, the buoyancy characteristics of bloaters were determined with fish placed in a cage that was lowered to bottom and monitored with an underwater camera. We found bloaters were positively buoyant near surface, neutrally buoyant at intermediate strata, and negatively buoyant near bottom. This pattern was consistent for the range of depths bloaters occur. The depth of neutral buoyancy (near the 50-n strata) corresponds with the maximum extent of vertical migration for bloaters observed in acoustic surveys. Fish below this depth would be negatively buoyant which supports our contention that bloaters deeper in the water column have compressed swimbladders. Understanding the buoyancy characteristics of pelagic fishes will help to predict the effects of vertical migration on target strength measurement and confirms the use of acoustics as a tool to identify and quantify the ecological phenomenon of vertical migration.
NASA Technical Reports Server (NTRS)
Duvall, Thomas L., Jr.; Hanasoge, S. M.
2012-01-01
As large-distance rays (say, 10 - 24deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large-separation travel times associated with supergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations, reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel-time difference [outward-going time minus inward-going time] in the separation range delta= 10 - 24deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity, 5.1+/-0.1 seconds, is constant over the distance range. This magnitude of the signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 ms(exp-1) extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 ms(exp-1) at a depth of 2.3 Mm and a peak horizontal flow of 700 ms(exp-1) at a depth of 1.6 Mm.
Vertical distribution of the sound-scattering layer in the Amundsen Sea, Antarctica
NASA Astrophysics Data System (ADS)
Lee, Hyungbeen; La, Hyoung Sul; Kang, Donhyug; Lee, SangHoon
2018-03-01
Mid-trophic level at high-latitude coastal water in the Southern Ocean reside unique geographical condition with sea ice, coastal polynya, and ice shelf. To investigate the regional differences in their vertical distribution during summer, we examined acoustic backscatter data from scientific echo sounder, collected in the three representative regions in the Amundsen Sea: pack ice zone, coastal polynya zone, and ice shelf zone. The weighted mean depths (WMDs) representing zooplankton were calculated with the high resolution acoustic backscatter (1-m depth) to identify the vertical variability of the sound-scattering layer (SSL). WMDs were mainly distributed between 50 and 130 m exhibiting clear regional differences. The WMDs were detected in the shallow depth ranged between 48 and 84 m within the pack ice and coastal polynya, whereas they were observed at deeper depths around near ice shelf ranged between 117 and 126 m. WMDs varied with changing the stratification of water column structure representing strong linear relationship with the mixed layer depth (r = 0.69). This finding implies that understanding the essential forcing of zooplankton behavior will improve our ability to assess the coastal ecosystem in the Southern Ocean facing dramatic change.
Joint Estimation of Source Range and Depth Using a Bottom-Deployed Vertical Line Array in Deep Water
Li, Hui; Yang, Kunde; Duan, Rui; Lei, Zhixiong
2017-01-01
This paper presents a joint estimation method of source range and depth using a bottom-deployed vertical line array (VLA). The method utilizes the information on the arrival angle of direct (D) path in space domain and the interference characteristic of D and surface-reflected (SR) paths in frequency domain. The former is related to a ray tracing technique to backpropagate the rays and produces an ambiguity surface of source range. The latter utilizes Lloyd’s mirror principle to obtain an ambiguity surface of source depth. The acoustic transmission duct is the well-known reliable acoustic path (RAP). The ambiguity surface of the combined estimation is a dimensionless ad hoc function. Numerical efficiency and experimental verification show that the proposed method is a good candidate for initial coarse estimation of source position. PMID:28590442
Van Uffelen, Lora J; Worcester, Peter F; Dzieciuch, Matthew A; Rudnick, Daniel L; Colosi, John A
2010-04-01
Deep acoustic shadow-zone arrivals observed in the late 1990s in the North Pacific Ocean reveal significant acoustic energy penetrating the geometric shadow. Comparisons of acoustic data obtained from vertical line arrays deployed in conjunction with 250-Hz acoustic sources at ranges of 500 and 1000 km from June to November 2004 in the North Pacific, with simulations incorporating scattering consistent with the Garrett-Munk internal-wave spectrum, are able to describe both the energy contained in and vertical extent of deep shadow-zone arrivals. Incoherent monthly averages of acoustic timefronts indicate that lower cusps associated with acoustic rays with shallow upper turning points (UTPs), where sound-speed structure is most variable and seasonally dependent, deepen from June to October as the summer thermocline develops. Surface-reflected rays, or those with near-surface UTPs, exhibit less scattering due to internal waves than in later months when the UTP deepens. Data collected in November exhibit dramatically more vertical extension than previous months. The depth to which timefronts extend is a complex combination of deterministic changes in the depths of the lower cusps as the range-average profiles evolve with seasonal change and of the amount of scattering, which depends on the mean vertical gradients at the depths of the UTPs.
Callegary, J.B.; Ferré, T.P.A.; Groom, R.W.
2007-01-01
Vertical spatial sensitivity and effective depth of exploration (d e) of low-induction-number (LIN) instruments over a layered soil were evaluated using a complete numerical solution to Maxwell's equations. Previous studies using approximate mathematical solutions predicted a vertical spatial sensitivity for instruments operating under LIN conditions that, for a given transmitter-receiver coil separation (s), coil orientation, and transmitter frequency, should depend solely on depth below the land surface. When not operating under LIN conditions, vertical spatial sensitivity and de also depend on apparent soil electrical conductivity (??a) and therefore the induction number (??). In this new evaluation, we determined the range of ??a and ?? values for which the LIN conditions hold and how de changes when they do not. Two-layer soil models were simulated with both horizontal (HCP) and vertical (VCP) coplanar coil orientations. Soil layers were given electrical conductivity values ranging from 0.1 to 200 mS m-1. As expected, de decreased as ??a increased. Only the least electrically conductive soil produced the de expected when operating under LIN conditions. For the VCP orientation, this was 1.6s, decreasing to 0.8s in the most electrically conductive soil. For the HCP orientation, de decreased from 0.76s to 0.51s. Differences between this and previous studies are attributed to inadequate representation of skin-depth effect and scattering at interfaces between layers. When using LIN instruments to identify depth to water tables, interfaces between soil layers, and variations in salt or moisture content, it is important to consider the dependence of de on ??a. ?? Soil Science Society of America.
Lapham, Wayne W.
1989-01-01
The use of temperature profiles beneath streams to determine rates of vertical ground-water flow and effective vertical hydraulic conductivity of sediments was evaluated at three field sites by use of a model that numerically solves the partial differential equation governing simultaneous vertical flow of fluid and heat in the Earth. The field sites are located in Hardwick and New Braintree, Mass., and in Dover, N.J. In New England, stream temperature varies from about 0 to 25 ?C (degrees Celsius) during the year. This stream-temperature fluctuation causes ground-water temperatures beneath streams to fluctuate by more than 0.1 ?C during a year to a depth of about 35 ft (feet) in fine-grained sediments and to a depth of about 50 ft in coarse-grained sediments, if ground-water velocity is 0 ft/d (foot per day). Upward flow decreases the depth affected by stream-temperature fluctuation, and downward flow increases the depth. At the site in Hardwick, Mass., ground-water flow was upward at a rate of less than 0.01 ft/d. The maximum effective vertical hydraulic conductivity of the sediments underlying this site is 0.1 ft/d. Ground-water velocities determined at three locations at the site in New Braintree, Mass., where ground water discharges naturally from the underlying aquifer to the Ware River, ranged from 0.10 to 0.20 ft/d upward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.4 to 17.1 ft/d. Ground-water velocities determined at three locations at the Dover, N.J., site, where infiltration from the Rockaway River into the underlying sediments occurs because of pumping, were 1.5 ft/d downward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.2 to 2.5 ft/d. Independent estimates of velocity at two of the three sites are in general agreement with the velocities determined using temperature profiles. The estimates of velocities and conductivities derived from the temperature measurements generally fall within the ranges of expected rates of flow in, and conductivities of, the sediments encountered at the test sites. Application of the method at the three test sites demonstrates the feasibility of using the method to determine the rate of ground-water flow between a stream and underlying sediments and the effective vertical hydraulic conductivity of the sediments.
Use Of Vertical Electrical Sounding Survey For Study Groundwater In NISSAH Region, SAUDI ARABIA
NASA Astrophysics Data System (ADS)
Alhenaki, Bander; Alsoma, Ali
2015-04-01
The aim of this research is to investigate groundwater depth in desert and dry environmental conditions area . The study site located in Wadi Nisah-eastern part of Najd province (east-central of Saudi Arabia), Generally, the study site is underlain by Phanerozoic sedimentary rocks of the western edge of the Arabian platform, which rests on Proterozoic basement at depths ranged between 5-8km. Another key objective of this research is to assess the water-table and identify the bearing layers structures study area by using Vertical Electrical Sounding (VES) 1D imaging technique. We have been implemented and acquired a sections of 315 meter vertical electrical soundings using Schlumberger field arrangements . These dataset were conducted along 9 profiles. The resistivity Schlumberger sounding was carried with half-spacing in the range 500 . The VES survey intend to cover several locations where existing wells information may be used for correlations. also location along the valley using the device Syscal R2 The results of this study concluded that there are at least three sedimentary layers to a depth of 130 meter. First layer, extending from the surface to a depth of about 3 meter characterized by dry sandy layer and high resistivity value. The second layer, underlain the first layer to a depth of 70 meter. This layer has less resistant compare to the first layer. Last layer, has low resistivity values of 20 ohm .m to a depth of 130 meter blow ground surface. We have observed a complex pattern of groundwater depth (ranging from 80 meter to 120 meter) which may reflect the lateral heterogeneity of study site. The outcomes of this research has been used to locate the suitable drilling locations.
NASA Astrophysics Data System (ADS)
Mincks, Sarah L.; Bollens, Stephen M.; Madin, Laurence P.; Horgan, Erich; Butler, Mari; Kremer, Patricia M.; Craddock, James E.
Macrozooplankton and micronekton samples were collected on two cruises in the Arabian Sea conducted during the Spring Intermonsoon period (May) and the SW Monsoon period (August) of 1995. Discrete depth samples were collected down to depths of 1000-1500 m. Quantitative gut content analyses were performed on four species of decapod shrimps, Gennadas sordidus, Sergia filictum, Sergia creber, and Eupasiphae gilesii, as well as on the pelagic crab Charybdis smithii. Of the shrimps, only S. filictum and S. creber increased significantly in abundance between the Spring Intermonsoon and SW Monsoon seasons. These four species were found at all depths sampled, and most did not appear to be strong vertical migrators. G. sordidus and S. filictum did appear to spread upward at night, especially during the SW Monsoon, but this movement did not include the entire population. S. creber showed signs of diel vertical migration only in some areas. All four shrimp species except, to some degree, S. creber lived almost exclusively within the oxygen minimum zone (150-1000 m), and are likely to have respiratory adaptations that allow them to persist under such conditions. Feeding occurred at all depths throughout these species' ranges, but only modest feeding occurred in the surface layer (0-150 m). G. sordidus appeared to feed continuously throughout the day and night. Estimated contribution of fecal material to vertical flux ranged from <0.01-2.1% of particulate flux at 1000 m for the shrimps and 1.8-3.0% for C. smithii.
Dahl, Peter H; Plant, William J; Dall'Osto, David R
2013-09-01
Results of an experiment to measure vertical spatial coherence from acoustic paths interacting once with the sea surface but at perpendicular azimuth angles are presented. The measurements were part of the Shallow Water 2006 program that took place off the coast of New Jersey in August 2006. An acoustic source, frequency range 6-20 kHz, was deployed at depth 40 m, and signals were recorded on a 1.4 m long vertical line array centered at depth 25 m and positioned at range 200 m. The vertical array consisted of four omni-directional hydrophones and vertical coherences were computed between pairs of these hydrophones. Measurements were made over four source-receiver bearing angles separated by 90°, during which sea surface conditions remained stable and characterized by a root-mean-square wave height of 0.17 m and a mixture of swell and wind waves. Vertical coherences show a statistically significant difference depending on source-receiver bearing when the acoustic frequency is less than about 12 kHz, with results tending to fade at higher frequencies. This paper presents field observations and comparisons of these observations with two modeling approaches, one based on bistatic forward scattering and the other on a rough surface parabolic wave equation utilizing synthetic sea surfaces.
Liu, Jia; Zhang, Wenyan; Du, Haijian; Leng, Xiaoyun; Li, Jin-Hua; Pan, Hongmiao; Xu, Jianhong; Wu, Long-Fei; Xiao, Tian
2018-04-24
There are two genetically distinct morphological types of multicellular magnetotactic prokaryotes (MMPs) in the intertidal zone of Lake Yuehu (China): ellipsoidal MMPs (eMMPs) and spherical MMPs (sMMPs). We studied the vertical distribution of both types of MMPs in the sediment at Lake Yuehu during 1 year. Both types of MMPs were observed at sediment depths ranging from 1 to 34 cm, depending on the seasons. The eMMPs distributed at depths of 2-34 cm during spring, 1-11 cm during summer, 2-21 cm during autumn and 9-32 cm during winter. The eMMP species Candidatus Magnetananas rongchenensis, with magnetite magnetosomes, dominated at all distribution depths. These results suggested that Ca. M. rongchenensis migrated vertically during four seasons. The vertical profiles of oxidation-reduction potential (ORP) in Lake Yuehu changed seasonally, and these changes coincided with the seasonal distribution of MMPs, suggesting that the ORP affected the vertical distribution of MMPs. In addition, high concentrations of ammonium and silicate were associated with low abundances of MMPs. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
75 FR 43479 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
.... * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean... Evelyns Drive. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above.... * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean...
Bioluminescence as an ecological factor during high Arctic polar night
NASA Astrophysics Data System (ADS)
Cronin, Heather A.; Cohen, Jonathan H.; Berge, Jørgen; Johnsen, Geir; Moline, Mark A.
2016-11-01
Bioluminescence commonly influences pelagic trophic interactions at mesopelagic depths. Here we characterize a vertical gradient in structure of a generally low species diversity bioluminescent community at shallower epipelagic depths during the polar night period in a high Arctic fjord with in situ bathyphotometric sampling. Bioluminescence potential of the community increased with depth to a peak at 80 m. Community composition changed over this range, with an ecotone at 20-40 m where a dinoflagellate-dominated community transitioned to dominance by the copepod Metridia longa. Coincident at this depth was bioluminescence exceeding atmospheric light in the ambient pelagic photon budget, which we term the bioluminescence compensation depth. Collectively, we show a winter bioluminescent community in the high Arctic with vertical structure linked to attenuation of atmospheric light, which has the potential to influence pelagic ecology during the light-limited polar night.
Gilly, William F; Zeidberg, Louis D; Booth, J Ashley T; Stewart, Julia S; Marshall, Greg; Abernathy, Kyler; Bell, Lauren E
2012-09-15
We studied the locomotion and behavior of Dosidicus gigas using pop-up archival transmitting (PAT) tags to record environmental parameters (depth, temperature and light) and an animal-borne video package (AVP) to log these parameters plus acceleration along three axes and record forward-directed video under natural lighting. A basic cycle of locomotor behavior in D. gigas involves an active climb of a few meters followed by a passive (with respect to jetting) downward glide carried out in a fins-first direction. Temporal summation of such climb-and-glide events underlies a rich assortment of vertical movements that can reach vertical velocities of 3 m s(-1). In contrast to such rapid movements, D. gigas spends more than 80% of total time gliding at a vertical velocity of essentially zero (53% at 0±0.05 m s(-1)) or sinking very slowly (28% at -0.05 to -0.15 m s(-1)). The vertical distribution of squid was compared with physical features of the local water column (temperature, oxygen and light). Oxygen concentrations of ≤20 μmol kg(-1), characteristic of the midwater oxygen minimum zone (OMZ), can influence the daytime depth of squid, but this depends on location and season, and squid can 'decouple' from this environmental feature. Light is also an important factor in determining daytime depth, and temperature can limit nighttime depth. Vertical velocities were compared over specific depth ranges characterized by large differences in dissolved oxygen. Velocities were generally reduced under OMZ conditions, with faster jetting being most strongly affected. These data are discussed in terms of increased efficiency of climb-and-glide swimming and the potential for foraging at hypoxic depths.
Testing the depth-differentiation hypothesis in a deepwater octocoral
Quattrini, Andrea; Baums, Iliana B.; Shank, Timothy M.; Morrison, Cheryl L.; Cordes, Erik E.
2015-01-01
The depth-differentiation hypothesis proposes that the bathyal region is a source of genetic diversity and an area where there is a high rate of species formation. Genetic differentiation should thus occur over relatively small vertical distances, particularly along the upper continental slope (200–1000 m) where oceanography varies greatly over small differences in depth. To test whether genetic differentiation within deepwater octocorals is greater over vertical rather than geographical distances, Callogorgia delta was targeted. This species commonly occurs throughout the northern Gulf of Mexico at depths ranging from 400 to 900 m. We found significant genetic differentiation (FST = 0.042) across seven sites spanning 400 km of distance and 400 m of depth. A pattern of isolation by depth emerged, but geographical distance between sites may further limit gene flow. Water mass boundaries may serve to isolate populations across depth; however, adaptive divergence with depth is also a possible scenario. Microsatellite markers also revealed significant genetic differentiation (FST = 0.434) between C. delta and a closely related species, Callogorgia americana, demonstrating the utility of microsatellites in species delimitation of octocorals. Results provided support for the depth-differentiation hypothesis, strengthening the notion that factors covarying with depth serve as isolation mechanisms in deep-sea populations.
Structure of diffusion flames from a vertical burner
Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold
2010-01-01
Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...
Lezama-Ochoa, Ainhoa; Irigoien, Xabier; Chaigneau, Alexis; Quiroz, Zaida; Lebourges-Dhaussy, Anne; Bertrand, Arnaud
2014-01-01
Bifrequency acoustic data, hydrological measurements and satellite data were used to study the vertical distribution of macrozooplankton in the Bay of Biscay in relation to the hydrological conditions and fish distribution during spring 2009. The most noticeable result was the observation of a ‘biocline’ during the day i.e., the interface where zooplankton biomass changes more rapidly with depth than it does in the layers above or below. The biocline separated the surface layer, almost devoid of macrozooplankton, from the macrozooplankton-rich deeper layers. It is a specific vertical feature which ties in with the classic diel vertical migration pattern. Spatiotemporal correlations between macrozooplankton and environmental variables (photic depth, thermohaline vertical structure, stratification index and chlorophyll-a) indicate that no single factor explains the macrozooplankton vertical distribution. Rather a set of factors, the respective influence of which varies from region to region depending on the habitat characteristics and the progress of the spring stratification, jointly influence the distribution. In this context, the macrozooplankton biocline is potentially a biophysical response to the search for a particular depth range where light attenuation, thermohaline vertical structure and stratification conditions together provide a suitable alternative to the need for expending energy in reaching deeper water without the risk of being eaten. PMID:24505374
Reference surfaces for bridge scour depths
Landers, Mark N.; Mueller, David S.; ,
1993-01-01
Depth of scour is measured as the vertical distance between scoured channel geometry and a measurement reference surface. A scour depth measurement can have a wide range depending on the method used to establish the reference surface. A consistent method to establish reference surfaces for bridge scour measurements is needed to facilitate transferability of scour data an scour analyses. This paper describes and evaluates techniques for establishing reference surfaces from which local and contraction scour are measured.
Howey, Lucy A.; Tolentino, Emily R.; Jordan, Lance K. B.; Ruppert, Jonathan L. W.; Brooks, Edward J.
2017-01-01
Despite the ecological and economic importance of the Caribbean reef shark (Carcharhinus perezi), little data exist regarding the movements and habitat use of this predator across its range. We deployed 11 pop-up satellite archival tags on Caribbean reef sharks captured in the northeast Exuma Sound, The Bahamas, to assess their horizontal and vertical movements throughout the water column. Sharks showed high site fidelity to The Bahamas suggesting Bahamian subpopulations remain protected within the Bahamian Shark Sanctuary. Depth data indicate that Caribbean reef sharks spent a significant proportion (72–91%) of their time above 50 m in narrow vertical depth bands, which varied considerably on an individual basis. This may be indicative of high site fidelity to specific bathymetric features. Animals exhibited three broadly categorized sporadic off-bank excursions (more than 50 m excursions) down to a depth of 436.1 m, which were more frequent during the night. These deeper excursions during night may be indicative of foraging in relation to prey on mesophotic reefs, as well as diel-vertically migrating prey from the deeper meso- and bathypelagic zones. These vertical movements suggest that Caribbean reef sharks can be significant vectors of ecosystem connectivity further warranting holistic multi-system management and conservation approaches. PMID:28386422
Shipley, Oliver N; Howey, Lucy A; Tolentino, Emily R; Jordan, Lance K B; Ruppert, Jonathan L W; Brooks, Edward J
2017-02-01
Despite the ecological and economic importance of the Caribbean reef shark ( Carcharhinus perezi ), little data exist regarding the movements and habitat use of this predator across its range. We deployed 11 pop-up satellite archival tags on Caribbean reef sharks captured in the northeast Exuma Sound, The Bahamas, to assess their horizontal and vertical movements throughout the water column. Sharks showed high site fidelity to The Bahamas suggesting Bahamian subpopulations remain protected within the Bahamian Shark Sanctuary. Depth data indicate that Caribbean reef sharks spent a significant proportion (72-91%) of their time above 50 m in narrow vertical depth bands, which varied considerably on an individual basis. This may be indicative of high site fidelity to specific bathymetric features. Animals exhibited three broadly categorized sporadic off-bank excursions (more than 50 m excursions) down to a depth of 436.1 m, which were more frequent during the night. These deeper excursions during night may be indicative of foraging in relation to prey on mesophotic reefs, as well as diel-vertically migrating prey from the deeper meso- and bathypelagic zones. These vertical movements suggest that Caribbean reef sharks can be significant vectors of ecosystem connectivity further warranting holistic multi-system management and conservation approaches.
Vertical migration and nighttime distribution of adult bloaters in Lake Michigan
TeWinkel, Leslie M.; Fleischer, Guy W.
1999-01-01
The vertical migration and nighttime vertical distribution of adult bloaters Coregonus hoyi were investigated during late summer in Lake Michigan using acoustics simultaneously with either midwater or bottom trawling. Bloaters remained on or near bottom during the day. At night, bloaters were distributed throughout 30-65 m of water, depending on bottom depth. Shallowest depths of migration were not related to water temperature or incident light. Maximum distances of migration increased with increasing bottom depth. Nighttime midwater densities ranged from 0.00 to 6.61 fish/1,000 mA? and decreased with increasing bottom depth. Comparisons of length distributions showed that migrating and nonmigrating bloaters did not differ in size. However, at most sites, daytime bottom catches collected a greater proportion of larger individuals compared with nighttime midwater or bottom catches. Mean target strengths by 5-m strata indicated that migrating bloaters did not stratify by size in the water column at night. Overall, patterns in frequency of empty stomachs and mean digestive state of prey indicated that a portion of the bloater population fed in the water column at night. Bloater diet composition indicated both midwater feeding and bottom feeding. In sum, although a portion of the bloater population fed in the water column at night, bloaters were not limited to feeding at this time. This research confirmed that bloaters are opportunistic feeders and did not fully support the previously proposed hypothesis that bloater vertical migration is driven by the vertically migrating macroinvertebrate the opossom shrimp Mysis relicta.
Vercruyssen, M; Coucke, W; Naert, I; Jacobs, R; Teughels, W; Quirynen, M
2015-11-01
To assess the accuracy of guided surgery compared with mental navigation or the use of a pilot-drill template in fully edentulous patients. Sixty consecutive patients (72 jaws), requiring four to six implants (maxilla or mandible), were randomly assigned to one of the following treatment modalities: Materialise Universal(®) mucosa, Materialise Universal(®) bone, Facilitate(™) mucosa, Facilitate(™) bone, mental navigation, or a pilot-drill template. Accuracy was assessed by matching the planning CT with a postoperative CBCT. Deviations were registered in a vertical (depth) and horizontal (lateral) plane. The latter further subdivided into BL (bucco-lingual) and MD (mesio-distal) deviations. The overall mean vertical deviation for the guided surgery groups was 0.9 mm ± 0.8 (range: 0.0-3.7) and 0.9 mm ± 0.6 (range: 0.0-2.9) in a horizontal direction. For the non-guided groups, this was 1.7 mm ± 1.3 (range: 0.0-6.4) and 2.1 mm ± 1.4 (range 0.0-8.5), respectively (P < 0.05). The overall mean deviation for the guided surgery groups in MD direction was 0.6 mm ± 0.5 (range: 0.0-2.5) and 0.5 mm ± 0.5 (range: 0.0-2.9) in BL direction. For the non-guided groups, this was 1.8 mm ± 1.4 (range: 0.0-8.3) and 0.7 mm ± 0.6 (range 0.0-2.9), respectively. The deviation in MD direction was significantly higher in the non-guided groups (P = 0.0002). The most important inaccuracy with guided surgery is in vertical direction (depth). The inaccuracy in MD or BL direction is clearly less. For non-guided surgery, the inaccuracy is significantly higher. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2012-12-01
depth of the deepest bin passing the ‘ lgb ’ criteria was compared with the nearest bathymetric data. Although, in most cases , the ‘ lgb ’ cutoffs are... CASE ...........................................................................30 1. LOW RANGE FLOOD...30 2. HIGH RANGE FLOOD ....................................................................32 B. EBB CURRENT CASE
Zydlewski, Joseph D.; Gorsky, Dimitry; Balsey, David
2016-01-01
Seasonal and daily vertical activity of lake whitefish Coregonus clupeaformis was studied in Clear Lake, Maine (253 ha), using acoustic telemetry from November 2004 to June 2009. Twenty adult lake whitefish were tagged with acoustic tags that had either a depth sensor or both depth and temperature sensors to assess vertical habitat use at a seasonal and daily resolution. Vertical habitat selection varied seasonally and was strongly influenced by temperature. Between December and April, when the lake was covered with ice, surface temperature was below 2°C and tagged individuals occupied deep areas of the lake (∼15 m). After ice-out, fish ascended into shallow waters (∼5 m), responding to increased water temperature and possibly to greater foraging opportunity. When surface water temperatures exceeded 20°C, fish descended below the developing thermocline (∼9 m), where they remained until surface temperatures fell below 20°C; fish then ascended into shallower depths, presumably for feeding and spawning. Through the winter, fish remained in thermal habitats that were warmer than the surface temperatures; in the summer, they selected depths with thermal habitats below 15°C. Though the amplitude varied greatly across seasons, lake whitefish displayed a strong diurnal pattern of activity as measured by vertical velocities. Fish were twofold more active during spring, summer, and fall than during winter. Lake whitefish exhibited diel vertical migrations, rising in the water column during nighttime and occupying deeper waters during the day. This pattern was more pronounced in the spring and fall and far less prominent during winter and summer. The strong linkage between temperature and habitat use may limit the current range of lake whitefish and may be directly impacted by climatic change.
Nasby-Lucas, Nicole; Dewar, Heidi; Lam, Chi H.; Goldman, Kenneth J.; Domeier, Michael L.
2009-01-01
Background Although much is known about the behavior of white sharks in coastal regions, very little is known about their vertical movements offshore in the eastern Pacific where they spend up to five months. We provide the first detailed description of the offshore habitat use of white sharks in the eastern North Pacific. Methodology/Principal Findings This study uses 2-min data from four recovered pop-up satellite archival tags deployed at Guadalupe Island (2002 and 2005). Deployments ranged from 5.4 to 8.2 months. Two predominant vertical patterns were described. The first was a bimodal vertical pattern with time spent at the surface and at depth, which was observed while traveling. The second was a repetitive oscillatory diving mode displayed by sharks in the Shared Offshore Foraging Area (SOFA). For all four datasets the average maximum daily dive depths ranged from 442.5 to 492.8 m and were typically associated with dissolved oxygen concentrations of above 1.7 ml L−1. Although infrequent, occasional dives to near 1000 m with a minimum temperature of 3.9°C and a minimum O2 level of 0.3 ml L−1 were observed. Conclusions/Significance Recovered pop-up satellite tags from Guadalupe Island white sharks advance our understanding of the vertical habitat use of white sharks while offshore. The bimodal vertical pattern during traveling is most likely related to geolocation. The oscillatory dive pattern is likely associated with foraging. While feeding is not documented, foraging is likely occurring in association with the deep scattering layer. Diving depths were not limited by temperature but were constrained by O2 levels below approximately 1.5 ml L−1. While oxygen may limit the extent of sharks' vertical movements, it will also impact prey distribution. Consequently, the shallow oxygen minimum zone in the SOFA may act to concentrate prey, thus enhancing foraging opportunities in these oligotrophic waters. PMID:20011032
Vaudo, Jeremy J; Wetherbee, Bradley M; Harvey, Guy; Nemeth, Richard S; Aming, Choy; Burnie, Neil; Howey-Jordan, Lucy A; Shivji, Mahmood S
2014-05-01
Tiger sharks (Galeocerdo cuvier) are a wide ranging, potentially keystone predator species that display a variety of horizontal movement patterns, making use of coastal and pelagic waters. Far less, however, is known about their vertical movements and use of the water column. We used pop-up satellite archival tags with two data sampling rates (high rate and standard rate tags) to investigate the vertical habitat use and diving behavior of tiger sharks tagged on the Puerto Rico-Virgin Islands platform and off Bermuda between 2008 and 2009. Useable data were received from nine of 14 sharks tagged, tracked over a total of 529 days. Sharks spent the majority of their time making yo-yo dives within the upper 50 m of the water column and considerable time within the upper 5 m of the water column. As a result, sharks typically occupied a narrow daily temperature range (∼2°C). Dives to greater than 200 m were common, and all sharks made dives to at least 250 m, with one shark reaching a depth of 828 m. Despite some similarities among individuals, a great deal of intraspecific variability in vertical habit use was observed. Four distinct depth distributions that were not related to tagging location, horizontal movements, sex, or size were detected. In addition, similar depth distributions did not necessitate similar dive patterns among sharks. Recognition of intraspecific variability in habitat use of top predators can be crucial for effective management of these species and for understanding their influence on ecosystem dynamics.
Vaudo, Jeremy J; Wetherbee, Bradley M; Harvey, Guy; Nemeth, Richard S; Aming, Choy; Burnie, Neil; Howey-Jordan, Lucy A; Shivji, Mahmood S
2014-01-01
Tiger sharks (Galeocerdo cuvier) are a wide ranging, potentially keystone predator species that display a variety of horizontal movement patterns, making use of coastal and pelagic waters. Far less, however, is known about their vertical movements and use of the water column. We used pop-up satellite archival tags with two data sampling rates (high rate and standard rate tags) to investigate the vertical habitat use and diving behavior of tiger sharks tagged on the Puerto Rico–Virgin Islands platform and off Bermuda between 2008 and 2009. Useable data were received from nine of 14 sharks tagged, tracked over a total of 529 days. Sharks spent the majority of their time making yo-yo dives within the upper 50 m of the water column and considerable time within the upper 5 m of the water column. As a result, sharks typically occupied a narrow daily temperature range (∼2°C). Dives to greater than 200 m were common, and all sharks made dives to at least 250 m, with one shark reaching a depth of 828 m. Despite some similarities among individuals, a great deal of intraspecific variability in vertical habit use was observed. Four distinct depth distributions that were not related to tagging location, horizontal movements, sex, or size were detected. In addition, similar depth distributions did not necessitate similar dive patterns among sharks. Recognition of intraspecific variability in habitat use of top predators can be crucial for effective management of these species and for understanding their influence on ecosystem dynamics. PMID:24963376
Vertical variation of mixing within porous sediment beds below turbulent flows
Chandler, I. D.; Pearson, J. M.; van Egmond, R.
2016-01-01
Abstract River ecosystems are influenced by contaminants in the water column, in the pore water and adsorbed to sediment particles. When exchange across the sediment‐water interface (hyporheic exchange) is included in modeling, the mixing coefficient is often assumed to be constant with depth below the interface. Novel fiber‐optic fluorometers have been developed and combined with a modified EROSIMESS system to quantify the vertical variation in mixing coefficient with depth below the sediment‐water interface. The study considered a range of particle diameters and bed shear velocities, with the permeability Péclet number, PeK between 1000 and 77,000 and the shear Reynolds number, Re*, between 5 and 600. Different parameterization of both an interface exchange coefficient and a spatially variable in‐sediment mixing coefficient are explored. The variation of in‐sediment mixing is described by an exponential function applicable over the full range of parameter combinations tested. The empirical relationship enables estimates of the depth to which concentrations of pollutants will penetrate into the bed sediment, allowing the region where exchange will occur faster than molecular diffusion to be determined. PMID:27635104
Deep seafloor arrivals in long range ocean acoustic propagation.
Stephen, Ralph A; Bolmer, S Thompson; Udovydchenkov, Ilya A; Worcester, Peter F; Dzieciuch, Matthew A; Andrew, Rex K; Mercer, James A; Colosi, John A; Howe, Bruce M
2013-10-01
Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean acoustic propagation models. These "deep seafloor" arrivals are the largest amplitude arrivals on the vertical particle velocity channel for ranges from 500 to 3200 km. The travel times for six (of 16 observed) deep seafloor arrivals correspond to the sea surface reflection of an out-of-plane diffraction from a seamount that protrudes to about 4100 m depth and is about 18 km from the receivers. This out-of-plane bottom-diffracted surface-reflected energy is observed on the deep vertical line array about 35 dB below the peak amplitude arrivals and was previously misinterpreted as in-plane bottom-reflected surface-reflected energy. The structure of these arrivals from 500 to 3200 km range is remarkably robust. The bottom-diffracted surface-reflected mechanism provides a means for acoustic signals and noise from distant sources to appear with significant strength on the deep seafloor.
Relative net vertical impulse determines jumping performance.
Kirby, Tyler J; McBride, Jeffrey M; Haines, Tracie L; Dayne, Andrea M
2011-08-01
The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.
NASA Astrophysics Data System (ADS)
Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.
2003-12-01
The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.
NASA Astrophysics Data System (ADS)
Cook, April B.; Sutton, Tracey T.; Galbraith, John K.; Vecchione, Michael
2013-12-01
Only a miniscule fraction of the world’s largest volume of living space, the ocean’s midwater biome, has ever been sampled. As part of the International Census of Marine Life field project on Mid-Atlantic Ridge ecosystems (MAR-ECO), a discrete-depth trawling survey was conducted in 2009 aboard the NOAA FSV Henry B. Bigelow to examine the pelagic faunal assemblage structure and distribution over the Charlie-Gibbs Fracture Zone (CGFZ) of the northern Mid-Atlantic Ridge. Day/night sampling at closely spaced stations allowed the first characterization of diel vertical migration of pelagic nekton over the MAR-ECO study area. Discrete-depth sampling from 0-3000 m was conducted using a Norwegian “Krill” trawl with five codends that were opened and closed via a pre-programmed timer. Seventy-five species of fish were collected, with a maximum diversity and biomass observed between depths of 700-1900 m. A gradient in sea-surface temperature and underlying watermasses, from northwest to southeast, was mirrored by a similar gradient in ichthyofaunal diversity. Using multivariate analyses, eight deep-pelagic fish assemblages were identified, with depth as the primary discriminatory variable. Strong diel vertical migration (DVM) of the mesopelagic fauna was a prevalent feature of the study area, though the numerically dominant fish, Cyclothone microdon (Gonostomatidae), exhibited a broad (0-3000 m) vertical distribution and did not appear to migrate on a diel basis. Three patterns of vertical distribution were observed in the study area: (a) DVM of mesopelagic, and possibly bathypelagic, taxa; (b) broad vertical distribution spanning meso- and bathypelagic depths; and (c) discrete vertical distribution within a limited depth range. Overall species composition and rank order of abundance of fish species agreed with two previous expeditions to the CGFZ (1982-1983 and 2004), suggesting some long-term consistency in the ichthyofaunal composition of the study area, at least in the summer. Frequent captures of putative bathypelagic fishes, shrimps, and cephalopods in the epipelagic zone (0-200 m) were confirmed. The results of this expedition reveal distributional patterns unlike those previously reported for open-ocean ecosystems, with the implication of increased transfer efficiency of surface production to great depths in the mid-North Atlantic.
Vianna, Gabriel M. S.; Meekan, Mark G.; Meeuwig, Jessica J.; Speed, Conrad W.
2013-01-01
We used acoustic telemetry to describe the patterns of vertical movement, site fidelity and residency of grey reef sharks (Carcharhinus amblyrhynchos) on the outer slope of coral reefs in Palau, Micronesia, over a period of two years and nine months. We tagged 39 sharks (mostly adult females) of which 31 were detected regularly throughout the study. Sharks displayed strong inter-annual residency with greater attendance at monitored sites during summer than winter months. More individuals were detected during the day than at night. Mean depths of tagged sharks increased from 35 m in winter to 60 m in spring following an increase in water temperature at 60 m, with maximum mean depths attained when water temperatures at 60 m stabilised around 29°C. Sharks descended to greater depths and used a wider range of depths around the time of the full moon. There were also crepuscular cycles in mean depth, with sharks moving into shallower waters at dawn and dusk each day. We suggest that daily, lunar and seasonal cycles in vertical movement and residency are strategies for optimising both energetic budgets and foraging behaviour. Cyclical patterns of movement in response to environmental variables might affect the susceptibility of reef sharks to fishing, a consideration that should be taken into account in the implementation of conservation strategies. PMID:23593193
Vianna, Gabriel M S; Meekan, Mark G; Meeuwig, Jessica J; Speed, Conrad W
2013-01-01
We used acoustic telemetry to describe the patterns of vertical movement, site fidelity and residency of grey reef sharks (Carcharhinus amblyrhynchos) on the outer slope of coral reefs in Palau, Micronesia, over a period of two years and nine months. We tagged 39 sharks (mostly adult females) of which 31 were detected regularly throughout the study. Sharks displayed strong inter-annual residency with greater attendance at monitored sites during summer than winter months. More individuals were detected during the day than at night. Mean depths of tagged sharks increased from 35 m in winter to 60 m in spring following an increase in water temperature at 60 m, with maximum mean depths attained when water temperatures at 60 m stabilised around 29°C. Sharks descended to greater depths and used a wider range of depths around the time of the full moon. There were also crepuscular cycles in mean depth, with sharks moving into shallower waters at dawn and dusk each day. We suggest that daily, lunar and seasonal cycles in vertical movement and residency are strategies for optimising both energetic budgets and foraging behaviour. Cyclical patterns of movement in response to environmental variables might affect the susceptibility of reef sharks to fishing, a consideration that should be taken into account in the implementation of conservation strategies.
Pressure as a limit to bloater (Coregonus hoyi) vertical migration
TeWinkel, Leslie M.; Fleischer, Guy W.
1998-01-01
Observations of bloater vertical migration showed a limit to the vertical depth changes that bloater experience. In this paper, we conducted an analysis of maximum differences in pressure encountered by bloater during vertical migration. Throughout the bottom depths studied, bloater experienced maximum reductions in swim bladder volume equal to approximately 50-60% of the volume in midwater. The analysis indicated that the limit in vertical depth change may be related to a maximum level of positive or negative buoyancy for which bloater can compensate using alternative mechanisms such as hydrodynamic lift. Bloater may be limited in the extent of migration by either their depth of neutral buoyancy or the distance above the depth of neutral buoyancy at which they can still maintain their position in the water column. Although a migration limit for the bloater population was evident, individual distances of migration varied at each site. These variations in migration distances may indicate differences in depths of neutral buoyancy within the population. However, in spite of these variations, the strong correlation between shallowest depths of migration and swim bladder volume reduction across depths provides evidence that hydrostatic pressure limits the extent of daily vertical movement in bloater.
Experimental demonstration of multiuser communication in deep water using time reversal.
Shimura, T; Ochi, H; Song, H C
2013-10-01
Multiuser communication is demonstrated using experimental data (450-550 Hz) collected in deep water, south of Japan. The multiple users are spatially distributed either in depth or range while a 114-m long, 20-element vertical array (i.e., base station) is deployed to around the sound channel axis (~1000 m). First, signals received separately from ranges of 150 km and 180 km at various depths are combined asynchronously to generate multiuser communication sequences for subsequent processing, achieving an aggregate data rate of 300 bits/s for up to three users. Adaptive time reversal is employed to separate collided packets at the base station, followed by a single channel decision feedback equalizer. Then it is demonstrated that two users separated by 3 km in range at ~1000 m depth can transmit information simultaneously to the base station at ~500 km range with an aggregate data rate of 200 bits/s.
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Chang, Yi-Wei; Li, Hau-Wei
2012-08-01
Full-field chromatic confocal surface profilometry employing a digital micromirror device (DMD) for spatial correspondence is proposed to minimize lateral cross-talks between individual detection sensors. Although full-field chromatic confocal profilometry is capable of enhancing measurement efficiency by completely removing time-consuming vertical scanning operation, its vertical measurement resolution and accuracy are still severely affected by the potential sensor lateral cross-talk problem. To overcome this critical bottleneck, a DMD-based chromatic confocal method is developed by employing a specially-designed objective for chromatic light dispersion, and a DMD for lateral pixel correspondence and scanning, thereby reducing the lateral cross-talk influence. Using the chromatic objective, the incident light is dispersed according to a pre-designed detection range of several hundred micrometers, and a full-field reflected light is captured by a three-chip color camera for multi color detection. Using this method, the full width half maximum of the depth response curve can be significantly sharpened, thus improving the vertical measurement resolution and repeatability of the depth detection. From our preliminary experimental evaluation, it is verified that the ±3σ repeatability of the height measurement can be kept within 2% of the overall measurement range.
Processing vertical size disparities in distinct depth planes.
Duke, Philip A; Howard, Ian P
2012-08-17
A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.
A Test of Maxwell's Z Model Using Inverse Modeling
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, T.
2003-01-01
In modeling impact craters a small region of energy and momentum deposition, commonly called a "point source", is often assumed. This assumption implies that an impact is the same as an explosion at some depth below the surface. Maxwell's Z Model, an empirical point-source model derived from explosion cratering, has previously been compared with numerical impact craters with vertical incidence angles, leading to two main inferences. First, the flowfield center of the Z Model must be placed below the target surface in order to replicate numerical impact craters. Second, for vertical impacts, the flow-field center cannot be stationary if the value of Z is held constant; rather, the flow-field center migrates downward as the crater grows. The work presented here evaluates the utility of the Z Model for reproducing both vertical and oblique experimental impact data obtained at the NASA Ames Vertical Gun Range (AVGR). Specifically, ejection angle data obtained through Three-Dimensional Particle Image Velocimetry (3D PIV) are used to constrain the parameters of Maxwell's Z Model, including the value of Z and the depth and position of the flow-field center via inverse modeling.
2014-09-30
beaked whales , and shallow-diving mysticetes, with a focus on humpback whales . Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...obtained via large-aperture vertical array techniques (for humpback whales ). APPROACH The experimental approach used by this project uses data...m depth. The motivation behind these multiple deployments is that multiple techniques can be used to estimate humpback whale call position, and
Water depth modifies back kinematics of horses during water treadmill exercise.
Nankervis, K J; Finney, P; Launder, L
2016-11-01
Water treadmill exercise can be incorporated into the rehabilitation programmes of horses recovering from back pathology, yet little is known about the effect of this type of exercise on thoracolumbar movement ranges. To measure the flexion-extension range of motion (FE ROM) of the thoracolumbar spine and pelvic vertical displacement during water treadmill walking at 3 water depths and compare these with the control condition. Within-subject trial using a crossover design in healthy horses. A total of 14 horses walked at 0.8 m/s on a water treadmill for 3 min at each of the following depths; hoof (control), metatarsophalangeal joint (low), tarsal joint (medium) and femoropatellar joint (high). Skin surface markers on T6, T10, T13, T18, L3, L5 and S3 were used to obtain FE ROM and the minimum and maximum angular motion pattern values (AMPmin and AMPmax) for T10, T13, T18, L3 and L5. Markers placed on left and right tuber coxae were used to obtain pelvic vertical displacement. Friedman's tests and post hoc Wilcoxon's signed ranks tests were used to determine the effects of water depth on measured variables. The FE ROM of T10 (8.4°), T13 (8.1°), T18 (6.9°) and L3 (6.4°) when walking at high depth was significantly greater than control (5.5, 5.7, 5.1 and 5.1°, respectively; P<0.008); T13 AMPmin was significantly lower in high water (-3.0°) than control (0.1°, P = 0.001) and L3 AMPmax significantly greater in high water (-1.9°) than control (-4.8°, P = 0.001). There was no significant association between pelvic vertical displacement and water depth. Walking in high water causes cranial thoracic extension and thoracolumbar flexion when compared with walking in water at hoof depth. This postural change should be considered when designing rehabilitation programmes for horses with back and/or hindlimb pathology. © 2015 EVJ Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Suresh; Zeidan, Omar; Ramirez, Eric
2013-09-15
Purpose: The main purposes of this study were to (1) investigate the dependency of lateral penumbra (80%–20% distance) of uniform scanning proton beams on various factors such as air gap, proton range, modulation width, compensator thickness, and depth, and (2) compare the lateral penumbra calculated by a treatment planning system (TPS) with measurements.Methods: First, lateral penumbra was measured using solid–water phantom and radiographic films for (a) air gap, ranged from 0 to 35 cm, (b) proton range, ranged from 8 to 30 cm, (c) modulation, ranged from 2 to 10 cm, (d) compensator thickness, ranged from 0 to 20 cm,more » and (e) depth, ranged from 7 to 15 cm. Second, dose calculations were computed in a virtual water phantom using the XiO TPS with pencil beam algorithm for identical beam conditions and geometrical configurations that were used for the measurements. The calculated lateral penumbra was then compared with the measured one for both the horizontal and vertical scanning magnets of our uniform scanning proton beam delivery system.Results: The results in the current study showed that the lateral penumbra of horizontal scanning magnet was larger (up to 1.4 mm for measurement and up to 1.0 mm for TPS) compared to that of vertical scanning magnet. Both the TPS and measurements showed an almost linear increase in lateral penumbra with increasing air gap as it produced the greatest effect on lateral penumbra. Lateral penumbra was dependent on the depth and proton range. Specifically, the width of lateral penumbra was found to be always lower at shallower depth than at deeper depth within the spread out Bragg peak (SOBP) region. The lateral penumbra results were less sensitive to the variation in the thickness of compensator, whereas lateral penumbra was independent of modulation. Overall, the comparison between the results of TPS with that of measurements indicates a good agreement for lateral penumbra, with TPS predicting higher values compared to measurements.Conclusions: Lateral penumbra of uniform scanning proton beams depends on air gap, proton range, compensator thickness, and depth, whereas lateral penumbra is not dependent on modulation. The XiO TPS typically overpredicted lateral penumbra compared to measurements, within 1 mm for most cases, but the difference could be up to 2.5 mm at a deep depth and large air gap.« less
75 FR 29246 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-25
.... Pacific Railroad. Just upstream of State None +2352 Highway 19. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the... Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level...
75 FR 59095 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... Mile 673........ +202 * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in...,434 upstream of Northeast 24th Street. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES...
NASA Astrophysics Data System (ADS)
Garvelmann, J.; Külls, C.; Weiler, M.
2011-10-01
Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid moutainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of porewater at various points along a fall line of a pasture hillslope in the southern Black Forest, Germany. The Porewater Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along two transects at the hillslopes. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in stream water during base flow. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.
Queiroz, Nuno; Humphries, Nicolas E.; Noble, Leslie R.; Santos, António M.; Sims, David W.
2012-01-01
Dramatic population declines among species of pelagic shark as a result of overfishing have been reported, with some species now at a fraction of their historical biomass. Advanced telemetry techniques enable tracking of spatial dynamics and behaviour, providing fundamental information on habitat preferences of threatened species to aid conservation. We tracked movements of the highest pelagic fisheries by-catch species, the blue shark Prionace glauca, in the North-east Atlantic using pop-off satellite-linked archival tags to determine the degree of space use linked to habitat and to examine vertical niche. Overall, blue sharks moved south-west of tagging sites (English Channel; southern Portugal), exhibiting pronounced site fidelity correlated with localized productive frontal areas, with estimated space-use patterns being significantly different from that of random walks. Tracked female sharks displayed behavioural variability in diel depth preferences, both within and between individuals. Diel depth use ranged from normal DVM (nDVM; dawn descent, dusk ascent), to reverse DVM (rDVM; dawn ascent, dusk descent), to behavioural patterns where no diel differences were apparent. Results showed that blue sharks occupy some of the most productive marine zones for extended periods and structure diel activity patterns across multiple spatio-temporal scales in response to particular habitat types. In so doing, sharks occupied an extraordinarily broad vertical depth range for their size (1.0–2.0 m fork length), from the surface into the bathypelagic realm (max. dive depth, 1160 m). The space-use patterns of blue sharks indicated they spend much of the time in areas where pelagic longlining activities are often highest, and in depth zones where these fisheries particularly target other species, which could account for the rapid declines recently reported for blue sharks in many parts of the world's oceans. Our results provide habitat targets for blue shark conservation that may also be relevant to other pelagic species. PMID:22393403
Hu, Chuanmin; Barnes, Brian B; Qi, Lin; Lembke, Chad; English, David
2016-09-01
The toxic marine dinoflagellate, Karenia brevis (the species responsible for most of red tides or harmful algal blooms in the Gulf of Mexico), is known to be able to swim vertically to adapt to the light and nutrient environments, nearly all such observations have been made through controlled experiments using cultures. Here, using continuous 3-dimensional measurements by an ocean glider across a K. brevis bloom in the northeastern Gulf of Mexico between 1 and 8 August 2014, we show the vertical migration behavior of K. brevis. Within the bloom where K. brevis concentration is between 100,000 and 1,000,000cellsL -1 , the stratified water shows a two-layer system with the depth of pycnocline ranging between 14-20m and salinity and temperature in the surface layer being <34.8 and >28°C, respectively. The bottom layer shows the salinity of >36 and temperature of <26°C. The low salinity is apparently due to coastal runoff, as the top layer also shows high amount of colored dissolved organic matter (CDOM). Within the top layer, chlorophyll-a fluorescence shows clear diel changes in the vertical structure, an indication of K. brevis vertical migration at a mean speed of 0.5-1mh -1 . The upward migration appears to start at sunrise at a depth of 8-10m, while the downward migration appears to start at sunset (or when surface light approaches 0) at a depth of ∼2m. These vertical migrations are believed to be a result of the need of K. brevis cells for light and nutrients in a stable, stratified, and CDOM-rich environment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Luehr, B. G.; Koulakov, I.; Kopp, H.; Rabbel, W.; Zschau, J.
2011-12-01
During the last decades many investigations were carried out at active continental margins to understand the link between the subduction of the fluid saturated oceanic plate and the process of ascent of fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose structural information are needed about the slap itself, the part above it, the ascent paths as well as the storage of fluids and partial melts in the mantle and the crust above the down going slap up to the volcanoes on the surface. If we consider statistically the distance between the trench and the volcanic chain as well as the inclination angle of the down going plate, then the mean value of the depth distance down to the Wadati Benioff zone results of approximately 100 kilometers. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical investigations in the lab have shown that the diving plate is maximal dehydrated around 100 km depth because of temperature and pressure conditions at this depth range. However, assuming a vertical fluid ascent there are exceptions. For instance at the Sunda Arc beneath Central Java the vertical distance results in approximately 150 km. But, in this case seismic investigations have shown that the fluids do not ascend vertically, but inclined even from a source area at around the 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be proved by seismic and seismological methods. With the seismic tomography these areas are imaged by lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined. They have to recover a range from before the trench to far behind the volcanic chain, to provide under favorable conditions information down to a depth of 150 km. In particular the record of the natural seismicity and its distribution allows the three-dimensional imaging of the entire crust and lithosphere structure above the Wadati Benioff zone with the help of tomographic procedures, and therewith the entire ascent path region of the fluids and melts, which are responsible for volcanism. The seismic velocity anomalies detected so far are within a range of a few per cent to more than 30% reduction. In the lecture findings of different subduction zones are compared and discussed.
A variable-collimation display system
NASA Astrophysics Data System (ADS)
Batchko, Robert; Robinson, Sam; Schmidt, Jack; Graniela, Benito
2014-03-01
Two important human depth cues are accommodation and vergence. Normally, the eyes accommodate and converge or diverge in tandem; changes in viewing distance cause the eyes to simultaneously adjust both focus and orientation. However, ambiguity between accommodation and vergence cues is a well-known limitation in many stereoscopic display technologies. This limitation also arises in state-of-the-art full-flight simulator displays. In current full-flight simulators, the out-the-window (OTW) display (i.e., the front cockpit window display) employs a fixed collimated display technology which allows the pilot and copilot to perceive the OTW training scene without angular errors or distortions; however, accommodation and vergence cues are limited to fixed ranges (e.g., ~ 20 m). While this approach works well for long-range, the ambiguity of depth cues at shorter range hinders the pilot's ability to gauge distances in critical maneuvers such as vertical take-off and landing (VTOL). This is the first in a series of papers on a novel, variable-collimation display (VCD) technology that is being developed under NAVY SBIR Topic N121-041 funding. The proposed VCD will integrate with rotary-wing and vertical take-off and landing simulators and provide accurate accommodation and vergence cues for distances ranging from approximately 3 m outside the chin window to ~ 20 m. A display that offers dynamic accommodation and vergence could improve pilot safety and training, and impact other applications presently limited by lack of these depth cues.
NASA Astrophysics Data System (ADS)
Blumenthal, J. M.; Austin, T. J.; Bothwell, J. B.; Broderick, A. C.; Ebanks-Petrie, G.; Olynik, J. R.; Orr, M. F.; Solomon, J. L.; Witt, M. J.; Godley, B. J.
2009-03-01
As historically abundant spongivores, hawksbill turtles Eretmochelys imbricata likely played a key ecological role on coral reefs. However, coral reefs are now experiencing global declines and many hawksbill populations are critically reduced. For endangered species, tracking movement has been recognized as fundamental to management. Since movements in marine vertebrates encompass three dimensions, evaluation of diving behavior and range is required to characterize marine turtle habitat. In this study, habitat use of hawksbill turtles on a Caribbean coral reef was elucidated by quantifying diel depth utilization and movements in relation to the boundaries of marine protected areas. Time depth recorders (TDRs) and ultrasonic tags were deployed on 21 Cayman Islands hawksbills, ranging in size from 26.4 to 58.4 cm straight carapace length. Study animals displayed pronounced diel patterns of diurnal activity and nocturnal resting, where diurnal dives were significantly shorter, deeper, and more active. Mean diurnal dive depth (±SD) was 8 ± 5 m, range 2-20 m, mean nocturnal dive depth was 5 ± 5 m, range 1-14 m, and maximum diurnal dive depth was 43 ± 27 m, range 7-91 m. Larger individuals performed significantly longer dives. Body mass was significantly correlated with mean dive depth for nocturnal but not diurnal dives. However, maximum diurnal dive depth was significantly correlated with body mass, suggesting partitioning of vertical habitat by size. Thus, variable dive capacity may reduce intraspecific competition and provide resistance to degradation in shallow habitats. Larger hawksbills may also represent important predators on deep reefs, creating a broad ecological footprint over a range of depths.
Predicting the vertical structure of tidal current and salinity in San Francisco Bay, California
Ford, Michael; Wang, Jia; Cheng, Ralph T.
1990-01-01
A two-dimensional laterally averaged numerical estuarine model is developed to study the vertical variations of tidal hydrodynamic properties in the central/north part of San Francisco Bay, California. Tidal stage data, current meter measurements, and conductivity, temperature, and depth profiling data in San Francisco Bay are used for comparison with model predictions. An extensive review of the literature is conducted to assess the success and failure of previous similar investigations and to establish a strategy for development of the present model. A σ plane transformation is used in the vertical dimension to alleviate problems associated with fixed grid model applications in the bay, where the tidal range can be as much as 20–25% of the total water depth. Model predictions of tidal stage and velocity compare favorably with the available field data, and prototype salinity stratification is qualitatively reproduced. Conclusions from this study as well as future model applications and research needs are discussed.
Hydrogeologic data from a 2,000-foot deep core hole at Polk City, Green Swamp area, central Florida
Navoy, A.S.
1986-01-01
Two core holes were drilled to depths of 906 and 1,996 feet, respectively, within the Tertiary limestone (Floridan) aquifers, at Polk City, central Florida. Data from the two holes revealed that the bottom of the zone of vigorous groundwater circulation is confined by carbonate rocks at a depth of about 1,000 feet (863 feet below sea level). The zone of circulation is divided into two high-permeability zones. The dissolved solids of the water within the high-permeability zones is approximately 150 milligrams per liter. Within the carbonate rocks, the dissolved solids content of the water reaches about 2,000 milligrams per liter at the bottom of the core hole. Water levels in the core holes declined a total of about 16 feet as the hole was drilled; most of the head loss occurred at depths below 1,800 feet. The porosities of selected cores ranged from 1.6 to 45.3 percent; the hydraulic conductivities ranged from less than 0.000024 to 19.0786 feet per day in the horizontal direction and from less than 0.000024 to 2.99 feet per day in the vertical direction; and the ratio of vertical to horizontal permeability ranged from 0.03 to 1.98. Due to drilling problems, packer tests and geophysical logging could not be accomplished. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puckett, T.M.
1991-05-01
The presence of abundant and diverse sighted ostracodes in chalk and marl of the Demopolis Chalk (Campanian and Maastrichtian) in Alabama and Mississippi strongly suggests that the Late Cretaceous sea floor was within the photic zone. The maximum depth of deposition is calculated from an equation based on eye morphology and efficiency and estimates of the vertical light attenuation. In this equation, K, the vertical light attenuation coefficient, is the most critical variable because it is the divisor for the rest of the equation. Rates of accumulation of coccoliths during the Cretaceous are estimated and are on the same ordermore » as those in modern areas of high phytoplankton production, suggesting similar pigment and coccolith concentrations in the water column. Values of K are known for a wide range of water masses and pigment concentrations, including areas of high phytoplankton production; thus light attenuation through the Cretaceous seas can be estimated reliably. Waters in which attenuation is due only to biogenic matter-conditions that result in deposition of relatively pure chalk-have values of K ranging between 0.2 and 0.3. Waters rich in phytoplankton and mud-conditions that result in deposition of marl-have K values as great as 0.5. Substituting these values for K results in depth range of 65 to 90 m for deposition of chalk and depth of 35 m for deposition of marl. These depth values suggest that deposition of many Cretaceous chalks and marls around the world were deposited under relatively shallow conditions.« less
Characterization of Site for Installing Open Loop Ground Source Heat Pump System
NASA Astrophysics Data System (ADS)
Yun, S. W.; Park, Y.; Lee, J. Y.; Yi, M. J.; Cha, J. H.
2014-12-01
This study was conducted to understand hydrogeological properties of site where open loop ground source heat pump system will be installed and operated. Groundwater level and water temperature were hourly measured at the well developed for usage of open loop ground source heat pump system from 11 October 2013 to 8 January 2014. Groundwater was sampled in January and August 2013 and its chemical and isotopic compositions were analyzed. The bedrock of study area is the Jurassic granodiorite that mainly consists of quartz (27.9 to 46.8%), plagioclase (26.0 to 45.5%), and alkali feldspar (9.5 to 18.7%). The groundwater level ranged from 68.30 to 68.94 m (above mean sea level). Recharge rate was estimated using modified watertable fluctuation method and the recharge ratios was 9.1%. The water temperature ranged from 14.8 to 15.0oC. The vertical Increase rates of water temperature were 1.91 to 1.94/100 m. The water temperature showed the significant seasonal variation above 50 m depth, but had constant value below 50 m depth. Therefore, heat energy of the groundwater can be used securely in open loop ground source heat pump system. Electrical conductivity ranged from 120 to 320 µS/cm in dry season and from 133 to 310 µS/cm in wet season. The electrical conductivity gradually decreased with depth. In particular, electrical conductivity in approximately 30 m depth decreased dramatically (287 to 249 µS/cm) in wet season. The groundwater was Ca-HCO3 type. The concentrations of dissolved components did not show the vertically significant variations from 0 to 250 m depth. The δ18O and δD ranged from -9.5 to -9.4‰ and from -69 to -68‰. This work is supported by the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).
Low, Dennis J.; Conger, Randall W.
2001-01-01
Between February 1996 and November 2000, geophysical logging was conducted in 27 open borehole wells in and adjacent to the Butz Landfill Superfund Site, Jackson Township, Monroe County, Pa., to determine casing depth and depths of water-producing zones, water-receiving zones, and zones of vertical borehole flow. The wells range in depth from 57 to 319 feet below land surface. The geophysical logging determined the placement of well screens and packers, which allow monitoring and sampling of water-bearing zones in the fractured bedrock so that the horizontal and vertical distribution of contaminated ground water migrating from known sources could be determined. Geophysical logging included collection of caliper, natural-gamma, single-point-resistance, fluid-resistivity, fluid-temperature, and video logs. Caliper and video logs were used to locate fractures, joints, and weathered zones. Inflections on single-point-resistance, fluid-temperature, and fluid-resistivity logs indicated possible water-bearing fractures, and heatpulse-flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy.
NASA Astrophysics Data System (ADS)
Eustace, Ryan M.; Ritchie, Heather; Kilgallen, Niamh M.; Piertney, Stuart B.; Jamieson, Alan J.
2016-03-01
The globally ubiquitous lysianassoid amphipod, Eurythenes gryllus, has been shown to consist of multiple genetically distinct cryptic taxa, with depth considered a major driver of speciation and morphological divergence. Here we examine morphological variation of E. gryllus sensu lato through a continuous depth distribution that spans from abyssal (3000-6000 m) into hadal depths (>6000 m) in the Peru-Chile Trench (SE Pacific Ocean). Three distinct morphospecies were identified: one was confirmed as being E. magellanicus (4602-5329 m) based on DNA sequence and morphological similarity. The other two morphologically distinct species were named based upon depth of occurrence; Abyssal (4602-6173 m) and Hadal (6173-8074 m). The three Eurythenes morphospecies showed vertical ontogenetic stratification across their bathymetric range, where juveniles were found shallower in their depth range and mature females deeper. Potential ecological and evolutionary drivers that explain the observed patterns of intra and inter-specific structure, such as hydrostatic pressure and topographical isolation, are discussed.
Upper ocean moored current and density profiler applied to winter conditions near Bermuda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.
1982-09-20
A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less
Analysis of influence of different pressure and different depth of pvd on soft foundation treatment
NASA Astrophysics Data System (ADS)
Li, Bin; Wang, XueKui
2018-02-01
According to the depth of plastic vertical drainage (pvd), the arrangement mode and the loading mode to analyze the influence of Vacuum preloading near the existing road. An arrangement mode of vacuum preloading to reduce the impact was put forward. The combination of different depth of pvd and loading modes are used to analyze the effect of vacuum preloading treatment and its influence range. The calculations show that the deformation and the influence distance are smaller by using the 40kPa vacuum loading and 41kPa surcharge load preloading. Reducing the depth of the pvd and vacuum combined surcharge preloading can weaken the influence to the existing highway.
Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers
NASA Astrophysics Data System (ADS)
Klevjer, T. A.; Irigoien, X.; Røstad, A.; Fraile-Nuez, E.; Benítez-Barrios, V. M.; Kaartvedt., S.
2016-01-01
Recent studies suggest that previous estimates of mesopelagic biomasses are severely biased, with the new, higher estimates underlining the need to unveil behaviourally mediated coupling between shallow and deep ocean habitats. We analysed vertical distribution and diel vertical migration (DVM) of mesopelagic acoustic scattering layers (SLs) recorded at 38 kHz across oceanographic regimes encountered during the circumglobal Malaspina expedition. Mesopelagic SLs were observed in all areas covered, but vertical distributions and DVM patterns varied markedly. The distribution of mesopelagic backscatter was deepest in the southern Indian Ocean (weighted mean daytime depth: WMD 590 m) and shallowest at the oxygen minimum zone in the eastern Pacific (WMD 350 m). DVM was evident in all areas covered, on average ~50% of mesopelagic backscatter made daily excursions from mesopelagic depths to shallow waters. There were marked differences in migrating proportions between the regions, ranging from ~20% in the Indian Ocean to ~90% in the Eastern Pacific. Overall the data suggest strong spatial gradients in mesopelagic DVM patterns, with implied ecological and biogeochemical consequences. Our results suggest that parts of this spatial variability can be explained by horizontal patterns in physical-chemical properties of water masses, such as oxygen, temperature and turbidity.
Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers.
Klevjer, T A; Irigoien, X; Røstad, A; Fraile-Nuez, E; Benítez-Barrios, V M; Kaartvedt, S
2016-01-27
Recent studies suggest that previous estimates of mesopelagic biomasses are severely biased, with the new, higher estimates underlining the need to unveil behaviourally mediated coupling between shallow and deep ocean habitats. We analysed vertical distribution and diel vertical migration (DVM) of mesopelagic acoustic scattering layers (SLs) recorded at 38 kHz across oceanographic regimes encountered during the circumglobal Malaspina expedition. Mesopelagic SLs were observed in all areas covered, but vertical distributions and DVM patterns varied markedly. The distribution of mesopelagic backscatter was deepest in the southern Indian Ocean (weighted mean daytime depth: WMD 590 m) and shallowest at the oxygen minimum zone in the eastern Pacific (WMD 350 m). DVM was evident in all areas covered, on average ~50% of mesopelagic backscatter made daily excursions from mesopelagic depths to shallow waters. There were marked differences in migrating proportions between the regions, ranging from ~20% in the Indian Ocean to ~90% in the Eastern Pacific. Overall the data suggest strong spatial gradients in mesopelagic DVM patterns, with implied ecological and biogeochemical consequences. Our results suggest that parts of this spatial variability can be explained by horizontal patterns in physical-chemical properties of water masses, such as oxygen, temperature and turbidity.
A porewater-based stable isotope approach for the investigation of subsurface hydrological processes
NASA Astrophysics Data System (ADS)
Garvelmann, J.; Külls, C.; Weiler, M.
2012-02-01
Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid mountainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of pore water at various points along two fall lines of a pasture hillslope in the southern Black Forest, Germany. The Porewater-based Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along transects at the hillslope. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in streamwater during base flow conditions indicating the importance of the groundwater component in the catchment. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.
NASA Astrophysics Data System (ADS)
Krumhansl, Kira A.; Head, Erica J. H.; Pepin, Pierre; Plourde, Stéphane; Record, Nicholas R.; Runge, Jeffrey A.; Johnson, Catherine L.
2018-03-01
Copepods of the genus Calanus play a critical trophic role in the North Atlantic ecosystems, where they serve as an important source of energy-rich food for fish and marine mammals, including the endangered North Atlantic right whale. As a strategy for coping with unfavorable near-surface conditions, Calanus enter diapause and migrate to deep water in late summer and fall after feeding and accumulating lipid stores in spring and summer. In order to assess the most important physical drivers of vertical distribution of diapausing Calanus, we synthesized existing depth-stratified abundance data of Calanus finmarchicus and Calanus hyperboreus from the Northwest Atlantic continental shelf and slope regions, spanning Newfoundland in the northeast to the Gulf of Maine in the southwest. Bottom depth strongly constrained the depth and shape of vertical distributions, with distributions becoming deeper and less compact as bottom depth increased. Diapausing Calanus, observed across a broad range of temperature (T) and in-situ density (σ) conditions (T = -1.0 to 14.4 °C, σ = 25.3-28.1 kg m-3), tended to distribute at depths with the coldest temperatures locally available. Over the shelf, diapausing Calanus in the GOM and SS generally did not have access to temperatures considered optimal for diapause (<5 °C), in many cases occurring at temperatures well above this threshold. Diapausing Calanus in both habitats were most commonly below the Cold Intermediate Layer (CIL), a feature formed through wind-driven mixing during the winter, but this effect was more obvious over the shelf than in slope waters. Our analysis highlights key differences in the vertical distributions of diapausing Calanus over the shelf vs. the slope, having regional implications for ecological dynamics and population persistence in the face of warming temperatures. In general, understanding factors that influence vertical distributions of diapausing Calanus will allow us to more accurately predict how the environmental conditions they encounter while overwintering may shift during climate change, which has implications for survival through diapause, and consequently, shelf-wide population dynamics.
Yang, Sheng-long; Jin, Shao-fei; Hua, Cheng-jun; Dai, Yang
2015-02-01
In order to analyze the correlation between spatial-temporal distribution of the bigeye tuna ( Thunnus obesus) and subsurface factors, the study explored the isothermal distribution of subsurface temperatures in the bigeye tuna fishing grounds in the tropical Atlantic Ocean, and built up the spatial overlay chart of the isothermal lines of 9, 12, 13 and 15 °C and monthly CPUE (catch per unit effort) from bigeye tuna long-lines. The results showed that the bigeye tuna mainly distributed in the water layer (150-450 m) below the lower boundary depth of thermocline. At the isothermal line of 12 °C, the bigeye tuna mainly lived in the water layer of 190-260 m, while few individuals were found at water depth more than 400 m. As to the 13 °C isothermal line, high CPUE often appeared at water depth less than 250 m, mainly between 150-230 m, while no CPUE appeared at water depth more than 300 m. The optimum range of subsurface factors calculated by frequency analysis and empirical cumulative distribution function (ECDF) exhibited that the optimum depth range of 12 °C isothermal depth was 190-260 m and the 13 °C isothermal depth was 160-240 m, while the optimum depth difference range of 12 °C isothermal depth was -10 to 100 m and the 13 °C isothermal depth was -40 to 60 m. The study explored the optimum range of subsurface factors (water temperature and depth) that drive horizontal and vertical distribution of bigeye tuna. The preliminary result would help to discover the central fishing ground, instruct fishing depth, and provide theoretical and practical references for the longline production and resource management of bigeye tuna in the Atlantic Ocean.
Observations of sound-speed fluctuations in the western Philippine Sea in the spring of 2009.
Colosi, John A; Van Uffelen, Lora J; Cornuelle, Bruce D; Dzieciuch, Matthew A; Worcester, Peter F; Dushaw, Brian D; Ramp, Steven R
2013-10-01
As an aid to understanding long-range acoustic propagation in the Philippine Sea, statistical and phenomenological descriptions of sound-speed variations were developed. Two moorings of oceanographic sensors located in the western Philippine Sea in the spring of 2009 were used to track constant potential-density surfaces (isopycnals) and constant potential-temperature surfaces (isotherms) in the depth range 120-2000 m. The vertical displacements of these surfaces are used to estimate sound-speed fluctuations from internal waves, while temperature/salinity variability along isopycnals are used to estimate sound-speed fluctuations from intrusive structure often termed spice. Frequency spectra and vertical covariance functions are used to describe the space-time scales of the displacements and spiciness. Internal-wave contributions from diurnal and semi-diurnal internal tides and the diffuse internal-wave field [related to the Garrett-Munk (GM) spectrum] are found to dominate the sound-speed variability. Spice fluctuations are weak in comparison. The internal wave and spice frequency spectra have similar form in the upper ocean but are markedly different below 170-m depth. Diffuse internal-wave mode spectra show a form similar to the GM model, while internal-tide mode spectra scale as mode number to the minus two power. Spice decorrelates rapidly with depth, with a typical correlation scale of tens of meters.
Web-based visualization of gridded dataset usings OceanBrowser
NASA Astrophysics Data System (ADS)
Barth, Alexander; Watelet, Sylvain; Troupin, Charles; Beckers, Jean-Marie
2015-04-01
OceanBrowser is a web-based visualization tool for gridded oceanographic data sets. Those data sets are typically four-dimensional (longitude, latitude, depth and time). OceanBrowser allows one to visualize horizontal sections at a given depth and time to examine the horizontal distribution of a given variable. It also offers the possibility to display the results on an arbitrary vertical section. To study the evolution of the variable in time, the horizontal and vertical sections can also be animated. Vertical section can be generated by using a fixed distance from coast or fixed ocean depth. The user can customize the plot by changing the color-map, the range of the color-bar, the type of the plot (linearly interpolated color, simple contours, filled contours) and download the current view as a simple image or as Keyhole Markup Language (KML) file for visualization in applications such as Google Earth. The data products can also be accessed as NetCDF files and through OPeNDAP. Third-party layers from a web map service can also be integrated. OceanBrowser is used in the frame of the SeaDataNet project (http://gher-diva.phys.ulg.ac.be/web-vis/) and EMODNET Chemistry (http://oceanbrowser.net/emodnet/) to distribute gridded data sets interpolated from in situ observation using DIVA (Data-Interpolating Variational Analysis).
Thompson, Ryan F.
2014-01-01
Shoreline erosion rates along Lake Sharpe, a Missouri River reservoir, near the community of Lower Brule, South Dakota, were studied previously during 2011–12 by the U.S. Geological Survey, the Lower Brule Sioux Tribe, and Oglala Lakota College. The rapid shoreline retreat has caused many detrimental effects along the shoreline of Lake Sharpe, including losses of cultural sites, recreation access points, wildlife habitat, irrigated cropland, and landmass. The Lower Brule Sioux Tribe is considering options to reduce or stop erosion. One such option for consideration is the placement of discontinuous rock breakwater structures in shallow water to reduce wave action at shore. Information on the depth of water and stability characteristics of bottom material in nearshore areas of Lake Sharpe is needed by the Lower Brule Sioux Tribe to develop structural mitigation alternatives. To help address this need, a bathymetric survey of nearshore areas of Lake Sharpe near Lower Brule, South Dakota, was completed in 2013 by the U.S. Geological Survey in cooperation with the Lower Brule Sioux Tribe.HYPACK® hydrographic survey software was used to plan data collection transects for a 7-mile reach of Lake Sharpe shoreline near Lower Brule, South Dakota. Regular data collection transects and oblique transects were planned to allow for quality-assurance/quality-control comparisons.Two methods of data collection were used in the bathymetric survey: (1) measurement from a boat using bathymetric instrumentation where water was more than 2 feet deep, and (2) wading using Real-Time Kinematic Global Navigation Satellite System equipment on shore and where water was shallower than 2 feet deep. A dual frequency, 24- or 200-kilohertz narrow beam, depth transducer was used in conjunction with a Teledyne Odom CV100 dual frequency echosounder for boat-based data collection. In water too shallow for boat navigation, the elevation and nature of the reservoir bottom were mapped using Real-Time Kinematic Global Navigation Satellite System equipment.Once the data collection effort was completed, data editing was performed in HYPACK® to remove erroneous data points and to apply water-surface elevations. Maps were developed separately for water depth and bottom elevation for the study area. Lines of equal water depth for 2, 3, 3.5, 4, and 5 feet from the water surface to the lake bottom were mapped in nearshore areas of Lake Sharpe. Overall, water depths stay shallow for quite a distance from shore. In the 288 transects that crossed a 2 foot depth line, this depth occurred an average of 88 feet from shore. Similarly, in the 317 transects that crossed a 3 foot depth line, this did not occur until an average of 343 feet from shore. Elevation contours of the lake bottom were mapped primarily for elevations ranging from 1,419 to 1,416 feet above North American Vertical Datum of 1988.Horizontal errors of the Real-Time Kinematic Global Navigation Satellite System equipment for the study area are essentially inconsequential because water depth and bottom elevation were determined to change relatively slowly. The estimated vertical error associated with the Real-Time Kinematic Global Navigation Satellite System equipment for the study area ranges from 0.6 to 0.9 inch. This vertical error is small relative to the accuracy of the bathymetric data.Accuracy assessments of the data collected for this study were computed according to the National Standard for Spatial Data Accuracy. The maps showing the lines of equal water depth and elevation contours of the lake bottom are able to support a 1-foot contour interval at National Standards for Spatial Data Accuracy vertical accuracy standards, which require a vertical root mean squared error of 0.30 foot or better and a fundamental vertical accuracy calculated at the 95-percent confidence level of 0.60 foot or better.
Tyminski, John P; de la Parra-Venegas, Rafael; González Cano, Jaime; Hueter, Robert E
2015-01-01
The whale shark (Rhincodon typus) is a wide-ranging, filter-feeding species typically observed at or near the surface. This shark's sub-surface habits and behaviors have only begun to be revealed in recent years through the use of archival and satellite tagging technology. We attached pop-up satellite archival transmitting tags to 35 whale sharks in the southeastern Gulf of Mexico off the Yucatan Peninsula from 2003-2012 and three tags to whale sharks in the northeastern Gulf off Florida in 2010, to examine these sharks' long-term movement patterns and gain insight into the underlying factors influencing their vertical habitat selection. Archived data were received from 31 tags deployed on sharks of both sexes with total lengths of 5.5-9 m. Nine of these tags were physically recovered facilitating a detailed long-term view into the sharks' vertical movements. Whale sharks feeding inshore on fish eggs off the northeast Yucatan Peninsula demonstrated reverse diel vertical migration, with extended periods of surface swimming beginning at sunrise followed by an abrupt change in the mid-afternoon to regular vertical oscillations, a pattern that continued overnight. When in oceanic waters, sharks spent about 95% of their time within epipelagic depths (<200 m) but regularly undertook very deep ("extreme") dives (>500 m) that largely occurred during daytime or twilight hours (max. depth recorded 1,928 m), had V-shaped depth-time profiles, and comprised more rapid descents (0.68 m sec-1) than ascents (0.50 m sec-1). Nearly half of these extreme dives had descent profiles with brief but conspicuous changes in vertical direction at a mean depth of 475 m. We hypothesize these stutter steps represent foraging events within the deep scattering layer, however, the extreme dives may have additional functions. Overall, our results demonstrate complex and dynamic patterns of habitat utilization for R. typus that appear to be in response to changing biotic and abiotic conditions influencing the distribution and abundance of their prey.
Tyminski, John P.; de la Parra-Venegas, Rafael; González Cano, Jaime; Hueter, Robert E.
2015-01-01
The whale shark (Rhincodon typus) is a wide-ranging, filter-feeding species typically observed at or near the surface. This shark’s sub-surface habits and behaviors have only begun to be revealed in recent years through the use of archival and satellite tagging technology. We attached pop-up satellite archival transmitting tags to 35 whale sharks in the southeastern Gulf of Mexico off the Yucatan Peninsula from 2003–2012 and three tags to whale sharks in the northeastern Gulf off Florida in 2010, to examine these sharks’ long-term movement patterns and gain insight into the underlying factors influencing their vertical habitat selection. Archived data were received from 31 tags deployed on sharks of both sexes with total lengths of 5.5–9 m. Nine of these tags were physically recovered facilitating a detailed long-term view into the sharks’ vertical movements. Whale sharks feeding inshore on fish eggs off the northeast Yucatan Peninsula demonstrated reverse diel vertical migration, with extended periods of surface swimming beginning at sunrise followed by an abrupt change in the mid-afternoon to regular vertical oscillations, a pattern that continued overnight. When in oceanic waters, sharks spent about 95% of their time within epipelagic depths (<200 m) but regularly undertook very deep (“extreme”) dives (>500 m) that largely occurred during daytime or twilight hours (max. depth recorded 1,928 m), had V-shaped depth-time profiles, and comprised more rapid descents (0.68 m sec-1) than ascents (0.50 m sec-1). Nearly half of these extreme dives had descent profiles with brief but conspicuous changes in vertical direction at a mean depth of 475 m. We hypothesize these stutter steps represent foraging events within the deep scattering layer, however, the extreme dives may have additional functions. Overall, our results demonstrate complex and dynamic patterns of habitat utilization for R. typus that appear to be in response to changing biotic and abiotic conditions influencing the distribution and abundance of their prey. PMID:26580405
Loher, Timothy; Seitz, Andrew C.
2006-01-01
Pop-up archival transmitting (PAT) tags were used to study the fall migration of halibut in the Gulf of Alaska (GOA). We tagged 6 Pacific halibut Hippoglossus stenolepis on summer feeding grounds in the eastern GOA and another 6 in the western GOA from June 13 to August 6, 2002. The tags were programed to be released from the fish on January 15, 2003, at the height of the winter spawning season: 10 tags successfully detached, transmitted archived environmental data (depth and temperature), and generated accurate latitude–longitude coordinates shortly after pop-up; 2 tags deployed off SE Alaska were lost. The tags revealed that 6 fish had moved a considerable distance (>200 km) between tagging and pop-up, and all of these had moved northward to some extent. The longest of the observed migrations was from the southern Alaska Peninsula to Yakutat Bay, a linear displacement of 1153 km; 4 fish showed little evidence of geographic displacement, exhibiting migrations that ranged only from 30 to 69 km. Although 2 fish had moved inshore by the end of the tagging period, all other fish had moved offshore regardless of their overall migration distance. The precise timing of offshore movements varied, beginning as early as August and as late as January. These observations generally corroborate conventional tagging, indicating migration of halibut toward winter spawning grounds in the northern GOA, and movement of fish to deep water in fall. However, no single stereotypic migration behavior was apparent, and a variety of vertical movement patterns and temperature profiles were observed. Halibut spent most time in waters of 5 to 7°C, but experienced temperatures ranging from 2.6 to 11.6°C. Depth observations ranged from 0 to 736 m, with summertime activity concentrated in depths from 0 to 400 m, and halibut that exhibited offshore movement were typically observed at 300 to 700 m by mid-winter. Vertical movement (short-period changes in depth) varied among fish and over time, with some fish displaying little vertical activity, others displaying short periods of activity, and still others displaying considerable activity throughout their time at liberty.
Mislan, K A S; Deutsch, Curtis A; Brill, Richard W; Dunne, John P; Sarmiento, Jorge L
2017-10-01
Oxygen concentrations are hypothesized to decrease in many areas of the ocean as a result of anthropogenically driven climate change, resulting in habitat compression for pelagic animals. The oxygen partial pressure, pO 2 , at which blood is 50% saturated (P 50 ) is a measure of blood oxygen affinity and a gauge of the tolerance of animals for low ambient oxygen. Tuna species display a wide range of blood oxygen affinities (i.e., P 50 values) and therefore may be differentially impacted by habitat compression as they make extensive vertical movements to forage on subdaily time scales. To project the effects of end-of-the-century climate change on tuna habitat, we calculate tuna P 50 depths (i.e., the vertical position in the water column at which ambient pO 2 is equal to species-specific blood P 50 values) from 21st century Earth System Model (ESM) projections included in the fifth phase of the Climate Model Intercomparison Project (CMIP5). Overall, we project P 50 depths to shoal, indicating likely habitat compression for tuna species due to climate change. Tunas that will be most impacted by shoaling are Pacific and southern bluefin tunas-habitat compression is projected for the entire geographic range of Pacific bluefin tuna and for the spawning region of southern bluefin tuna. Vertical shifts in P 50 depths will potentially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, and skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the Arabian Sea, and the Bay of Bengal. By establishing linkages between tuna physiology and environmental conditions, we provide a mechanistic basis to project the effects of anthropogenic climate change on tuna habitats. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
2015-09-30
dispersion of received signals with measured range. Two broad classes of calls are to be examined: deep-diving odontocetes such as sperm and potentially...comparison with satellite-tag positions (for sperm whales) or by comparison with ranges obtained via large-aperture vertical array techniques (for...depredating sperm whales, three of which had been tagged by satellite tags just before the deployment. Location fixes from the satellite tags are used to
Correlative velocity fluctuations over a gravel river bed
Dinehart, Randal L.
1999-01-01
Velocity fluctuations in a steep, coarse‐bedded river were measured in flow depths ranging from 0.8 to 2.2 m, with mean velocities at middepth from 1.1 to 3.1 m s−1. Analyses of synchronous velocity records for two and three points in the vertical showed a broad range of high coherence for wave periods from 10 to 100 s, centering around 10–30 s. Streamwise correlations over distances of 9 and 14 m showed convection velocities near mean velocity for the same wave periods. The range of coherent wave periods was a small multiple of predicted “boil” periods. Correlative fluctuations in synchronous velocity records in the vertical direction suggested the blending of short pulses into longer wave periods. The highest spectral densities were measured beyond the range of coherent wave periods and were probably induced by migration of low‐relief bed forms.
77 FR 6976 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to... Unincorporated Areas of approximately 0.5 mile Taney County. upstream of the White River confluence. Big Shoals... confluence. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground...
Laverick, Jack H; Andradi-Brown, Dominic A; Rogers, Alex D
2017-01-01
Shallow water zooxanthellate coral reefs grade into ecologically distinct mesophotic coral ecosystems (MCEs) deeper in the euphotic zone. MCEs are widely considered to start at an absolute depth limit of 30m deep, possibly failing to recognise that these are distinct ecological communities that may shift shallower or deeper depending on local environmental conditions. This study aimed to explore whether MCEs represent distinct biological communities, the upper boundary of which can be defined and whether the depth at which they occur may vary above or below 30m. Mixed-gas diving and closed-circuit rebreathers were used to quantitatively survey benthic communities across shallow to mesophotic reef gradients around the island of Utila, Honduras. Depths of up to 85m were sampled, covering the vertical range of the zooxanthellate corals around Utila. We investigate vertical reef zonation using a variety of ecological metrics to identify community shifts with depth, and the appropriateness of different metrics to define the upper MCE boundary. Patterns observed in scleractinian community composition varied between ordination analyses and approaches utilising biodiversity indices. Indices and richness approaches revealed vertical community transition was a gradation. Ordination approaches suggest the possibility of recognising two scleractinian assemblages. We could detect a mesophotic and shallow community while illustrating that belief in a static depth limit is biologically unjustified. The switch between these two communities occurred across bathymetric gradients as small as 10m and as large as 50m in depth. The difference between communities appears to be a loss of shallow specialists and increase in depth-generalist taxa. Therefore, it may be possible to define MCEs by a loss of shallow specialist species. To support a biological definition of mesophotic reefs, we advocate this analytical framework should be applied around the Caribbean and extended into other ocean basins where MCEs are present.
Sources, Transport, and Climate Impacts of Biomass Burning Aerosols
NASA Technical Reports Server (NTRS)
Chin, Mian
2010-01-01
In this presentation, I will first talk about fundamentals of modeling of biomass burning emissions of aerosols, then show the results of GOCART model simulated biomass burning aerosols. I will compare the model results with observations of satellite and ground-based network in terms of total aerosol optical depth, aerosol absorption optical depth, and vertical distributions. Finally the long-range transport of biomass burning aerosols and the climate effects will be addressed. I will also discuss the uncertainties associated with modeling and observations of biomass burning aerosols
Vertical Movement Patterns and Ontogenetic Niche Expansion in the Tiger Shark, Galeocerdo cuvier
Afonso, André S.; Hazin, Fábio H. V.
2015-01-01
Sharks are top predators in many marine ecosystems and can impact community dynamics, yet many shark populations are undergoing severe declines primarily due to overfishing. Obtaining species-specific knowledge on shark spatial ecology is important to implement adequate management strategies for the effective conservation of these taxa. This is particularly relevant concerning highly-mobile species that use wide home ranges comprising coastal and oceanic habitats, such as tiger sharks, Galeocerdo cuvier. We deployed satellite tags in 20 juvenile tiger sharks off northeastern Brazil to assess the effect of intrinsic and extrinsic factors on depth and temperature usage. Sharks were tracked for a total of 1184 d and used waters up to 1112 m in depth. The minimum temperature recorded equaled 4°C. All sharks had a clear preference for surface (< 5 m) waters but variability in depth usage was observed as some sharks used mostly shallow (< 60 m) waters whereas others made frequent incursions into greater depths. A diel behavioral shift was detected, with sharks spending considerably more time in surface (< 10 m) waters during the night. Moreover, a clear ontogenetic expansion in the vertical range of tiger shark habitat was observed, with generalized linear models estimating a ~4-fold increase in maximum diving depth from 150- to 300-cm size-classes. The time spent in the upper 5 m of the water column did not vary ontogenetically but shark size was the most important factor explaining the utilization of deeper water layers. Young-of-the-year tiger sharks seem to associate with shallow, neritic habitats but they progressively move into deeper oceanic habitats as they grow larger. Such an early plasticity in habitat use could endow tiger sharks with access to previously unavailable prey, thus contributing to a wider ecological niche. PMID:25629732
NASA Astrophysics Data System (ADS)
Ariza, A.; Landeira, J. M.; Escánez, A.; Wienerroither, R.; Aguilar de Soto, N.; Røstad, A.; Kaartvedt, S.; Hernández-León, S.
2016-05-01
Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400-500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500-600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s - 1 and the long-range ones at 11.5 ± 3.8 cm s - 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.
Vertical movement patterns and ontogenetic niche expansion in the tiger shark, Galeocerdo cuvier.
Afonso, André S; Hazin, Fábio H V
2015-01-01
Sharks are top predators in many marine ecosystems and can impact community dynamics, yet many shark populations are undergoing severe declines primarily due to overfishing. Obtaining species-specific knowledge on shark spatial ecology is important to implement adequate management strategies for the effective conservation of these taxa. This is particularly relevant concerning highly-mobile species that use wide home ranges comprising coastal and oceanic habitats, such as tiger sharks, Galeocerdo cuvier. We deployed satellite tags in 20 juvenile tiger sharks off northeastern Brazil to assess the effect of intrinsic and extrinsic factors on depth and temperature usage. Sharks were tracked for a total of 1184 d and used waters up to 1112 m in depth. The minimum temperature recorded equaled 4°C. All sharks had a clear preference for surface (< 5 m) waters but variability in depth usage was observed as some sharks used mostly shallow (< 60 m) waters whereas others made frequent incursions into greater depths. A diel behavioral shift was detected, with sharks spending considerably more time in surface (< 10 m) waters during the night. Moreover, a clear ontogenetic expansion in the vertical range of tiger shark habitat was observed, with generalized linear models estimating a ~4-fold increase in maximum diving depth from 150- to 300-cm size-classes. The time spent in the upper 5 m of the water column did not vary ontogenetically but shark size was the most important factor explaining the utilization of deeper water layers. Young-of-the-year tiger sharks seem to associate with shallow, neritic habitats but they progressively move into deeper oceanic habitats as they grow larger. Such an early plasticity in habitat use could endow tiger sharks with access to previously unavailable prey, thus contributing to a wider ecological niche.
McGinnis, L. D.; Otis, R. M.
1979-01-01
Velocities were obtained from unreversed, refracted arrivals on analog records from a 48‐channel, 3.6-km hydrophone cable (3.89 km from the airgun array to the last hydrophone array). Approximately 200 records were analyzed along 1500 km of ship track on Georges Bank, northwest Atlantic Ocean, to obtain regional sediment velocity distribution to a depth of 1.4 km below sea level. This technique provides nearly continuous coverage of refraction velocities and vertical velocity gradients. Because of the length of the hydrophone cable and the vertical velocity gradients, the technique is applicable only to the Continental Shelf and the shallower parts of the Continental Slope in water depths less than 300 m. Sediment diagenesis, the influence of overburden pressure on compaction, lithology, density, and porosity are inferred from these data. Velocities of the sediment near the water‐sediment interface range from less than 1500 m/sec on the north edge of Georges Bank to 1830 m/sec for glacial deposits in the northcentral part of the bank. Velocity gradients in the upper 400 m range from 1.0km/sec/km(sec−1) on the south edge of the bank to 1.7sec−1 on the north. Minimum gradients of 0.8sec−1 were observed south of Nantucket Island. Velocities and velocity gradients are explained in relation to physical properties of the Cretaceous, Tertiary, and Pleistocene sediments. Isovelocity contours at 100-m/sec intervals are nearly horizontal in the upper 400 m. Isovelocity contours at greater depths show a greater difference from a mean depth because of the greater structural and lithological variation. Bottom densities inferred from the velocities range from 1.7 to 1.9g/cm3 and porosities range from 48 to 62 percent. The most significant factor controlling velocity distribution on Georges Bank is overburden pressure and resulting compaction. From the velocity data we conclude that Georges Bank has been partially overridden by a continental ice sheet.
Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers
Klevjer, T. A.; Irigoien, X.; Røstad, A.; Fraile-Nuez, E.; Benítez-Barrios, V. M.; Kaartvedt., S.
2016-01-01
Recent studies suggest that previous estimates of mesopelagic biomasses are severely biased, with the new, higher estimates underlining the need to unveil behaviourally mediated coupling between shallow and deep ocean habitats. We analysed vertical distribution and diel vertical migration (DVM) of mesopelagic acoustic scattering layers (SLs) recorded at 38 kHz across oceanographic regimes encountered during the circumglobal Malaspina expedition. Mesopelagic SLs were observed in all areas covered, but vertical distributions and DVM patterns varied markedly. The distribution of mesopelagic backscatter was deepest in the southern Indian Ocean (weighted mean daytime depth: WMD 590 m) and shallowest at the oxygen minimum zone in the eastern Pacific (WMD 350 m). DVM was evident in all areas covered, on average ~50% of mesopelagic backscatter made daily excursions from mesopelagic depths to shallow waters. There were marked differences in migrating proportions between the regions, ranging from ~20% in the Indian Ocean to ~90% in the Eastern Pacific. Overall the data suggest strong spatial gradients in mesopelagic DVM patterns, with implied ecological and biogeochemical consequences. Our results suggest that parts of this spatial variability can be explained by horizontal patterns in physical-chemical properties of water masses, such as oxygen, temperature and turbidity. PMID:26813333
Tracey, Sean R.; Pepperell, Julian G.; Domeier, Michael L.; Bennett, Michael B.
2017-01-01
The black marlin (Istiompax indica) is a highly migratory billfish that occupies waters throughout the tropical and subtropical Indo-Pacific. To characterize the vertical habitat use of I. indica, we examined the temperature-depth profiles collected using 102 pop-up satellite archival tags deployed off the east coast of Australia. Modelling of environmental variables revealed location, sea-surface height deviation, mixed layer depth and dissolved oxygen to all be significant predictors of vertical habitat use. Distinct differences in diel movements were observed between the size classes, with larger size classes of marlin (greater than 50 kg) undertaking predictable bounce-diving activity during daylight hours, while diving behaviour of the smallest size class occurred randomly during both day and night. Overall, larger size classes of I. indica were found to use an increased thermal range and spend more time in waters below 150 m than fish of smaller size classes. The differences in the diving behaviour among size classes were suggested to reflect ontogenetic differences in foraging behaviour or physiology. The findings of this study demonstrate, for the first time to our knowledge, ontogenetic differences in vertical habitat in a species of billfish, and further the understanding of pelagic fish ecophysiology in the presence of global environmental change. PMID:29291060
NASA Astrophysics Data System (ADS)
Choi, Woo June; Wang, Ruikang K.
2015-10-01
We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.
The Effect of Projectile Density and Disruption on the Crater Excavation Flow-Field
NASA Technical Reports Server (NTRS)
Anderson, Jennifer L. B.; Schultz, P. H.
2005-01-01
The ejection parameters of material excavated by a growing crater directly relate to the subsurface excavation flow-field. The ejection angles and speeds define the end of subsurface material streamlines at the target surface. Differences in the subsurface flow-fields can be inferred by comparing observed ejection parameters of various impacts obtained using three-dimensional particle image velocimetry (3D PIV). The work presented here investigates the observed ejection speeds and angles of material ejected during vertical (90 impact angle) experimental impacts for a range of different projectile types. The subsurface flow-fields produced during vertical impacts are simple when compared with that of oblique impacts, affected primarily by the depth of the energy and momentum deposition of the projectile. This depth is highly controlled by the projectile/target density ratio and the disruption of the projectile (brittle vs. ductile deformation). Previous studies indicated that cratering efficiency and the crater diameter/depth ratio were affected by projectile disruption, velocity, and the projectile/target density ratio. The effect of these projectile properties on the excavation flow-field are examined by comparing different projectile materials.
Koeck, Barbara; Pastor, Jérémy; Saragoni, Gilles; Dalias, Nicolas; Payrot, Jérôme; Lenfant, Philippe
2014-03-01
Temporal movement patterns and spawning behaviour of the dusky grouper Epinephelus marginatus were investigated using depth and temperature sensors combined to acoustic telemetry. Results showed that these fish are year-round resident, remaining inside the fully protected area of the marine reserve of Cerbère-Banyuls (65 ha) and display a diurnal activity pattern. Records from depth sensors revealed that groupers range inside small, distinct, and individual territories. Individual variations in habitat depth are only visible on a seasonal scale, i.e., between the spawning season and the rest of the year. In fact, during summer months when the seawater temperature exceeded 20 °C, tagged groupers made vertical spawning migrations of 4-8 m in amplitude. These vertical migrations are characteristic of the reproductive behaviour of dusky groupers, during which they release their gametes. The results are notable for the implementation of management rules in marine protected areas, such as reduced navigation speed, boating or attendance during spawning season. Copyright © 2013 Elsevier Ltd. All rights reserved.
Precision depth measurement of through silicon vias (TSVs) on 3D semiconductor packaging process.
Jin, Jonghan; Kim, Jae Wan; Kang, Chu-Shik; Kim, Jong-Ahn; Lee, Sunghun
2012-02-27
We have proposed and demonstrated a novel method to measure depths of through silicon vias (TSVs) at high speed. TSVs are fine and deep holes fabricated in silicon wafers for 3D semiconductors; they are used for electrical connections between vertically stacked wafers. Because the high-aspect ratio hole of the TSV makes it difficult for light to reach the bottom surface, conventional optical methods using visible lights cannot determine the depth value. By adopting an optical comb of a femtosecond pulse laser in the infra-red range as a light source, the depths of TSVs having aspect ratio of about 7 were measured. This measurement was done at high speed based on spectral resolved interferometry. The proposed method is expected to be an alternative method for depth inspection of TSVs.
Piper, Jörg
2010-01-01
Several software solutions are powerful tools to enhance the depth of field and improve focus in digital photomicrography. By these means, the focal depth can be fundamentally optimized so that three-dimensional structures within specimens can be documented with superior quality. Thus, images can be created in light microscopy which will be comparable with scanning electron micrographs. The remaining sharpness will no longer be dependent on the specimen's vertical dimension or its range in regional thickness. Moreover, any potential lack of definition associated with loss of planarity and unsteadiness in the visual accommodation can be mitigated or eliminated so that the contour sharpness and resolution can be strongly enhanced.Through the use of complementary software, ultrahigh ranges in brightness and contrast (the so-called high-dynamic range) can be corrected so that the final images will also be free from locally over- or underexposed zones. Furthermore, fine detail in low natural contrast can be visualized in much higher clarity. Fundamental enhancements of the global visual information will result from both techniques.
Gestalt grouping via closure degrades suprathreshold depth percepts.
Deas, Lesley M; Wilcox, Laurie M
2014-08-19
It is well known that the perception of depth is susceptible to changes in configuration. For example, stereoscopic precision for a pair of vertical lines can be dramatically reduced when these lines are connected to form a closed object. Here, we extend this paradigm to suprathreshold estimates of perceived depth. Using a touch-sensor, observers made quantitative estimates of depth between a vertical line pair presented in isolation or as edges of a closed rectangular object with different figural interpretations. First, we show that the amount of depth estimated within a closed rectangular object is consistently reduced relative to the vertical edges presented in isolation or when they form the edges of two segmented objects. We then demonstrate that the reduction in perceived depth for closed objects is modulated by manipulations that influence perceived closure of the central figure. Depth percepts were most disrupted when the horizontal connectors and vertical lines matched in color. Perceived depth increased slightly when the connectors had opposite contrast polarity, but increased dramatically when flankers were added. Thus, as grouping cues were added to counter the interpretation of a closed object, the depth degradation effect was systematically eliminated. The configurations tested here rule out explanations based on early, local interactions such as inhibition or cue conflict; instead, our results provide strong evidence of the impact of Gestalt grouping, via closure, on depth magnitude percepts from stereopsis. © 2014 ARVO.
2011-01-01
676 677 Travel Time (sec) 678 45 95 £ 85 ? 75 £ 65 3 55 *§ 85 75 65 55 85 75 65 55 45’— 673 dB re 1 uPa A :,. 1.. i b , u . k , AL...1. u * .1 t., J. .1. 674 675 676 677 Travel Time (sec) 678 673 674 675 676 677 Travel Time (sec) 678 Range...hydrophone data at the 3892 -meter depth (Figure 2(d)). A more quantitative measure of the vertical extension of the cusp is the energy profile of the cusp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laney, R.; Laughlin, A.W.; Aldrich, M.J. Jr.
1981-07-01
Petrologic, geochemical, and structural analyses of cores and cuttings obtained from 3000 to 4389-m true vertical depth in drill hole EE-2 indicate that this deeper part of the Precambrian section at Fenton Hill, New Mexico is composed primarily of a very heterogeneous and structurally anisotropic metamorphic complex, locally intruded by dikes and sills of granodioritic and monzogranitic composition. In this borehole none of these igneous bodies approach in size the 335-m-thick biotite-granodiorite body encountered at 2591-m depth beneath Fenton Hill in the other two drill holes. Contacts between the igneous and metamorphic rocks range from sharp and discordant to gradational.more » Analysis of cuttings indicates that clay-rich alteration zones are relatively common in the openhole portion of EE-2. These zones average about 20 m in thickness. Fracture sets in the Precambrian basement rock intersected by the EE-2 well bore mostly trend northeast and are steeply dipping to vertical; however, one of the sets dips gently to the northwest. Slickensided fault planes are present in a core (No.5) taken from a true vertical depth of 4195 m. Available core orientation data and geologic inference suggest that the faults dip steeply and trend between N.42/sup 0/ and 59/sup 0/E.« less
Johnson, Carole D.; Lane, John W.
2016-01-01
Determining sediment thickness and delineating bedrock topography are important for assessing groundwater availability and characterizing contamination sites. In recent years, the horizontal-to-vertical spectral ratio (HVSR) seismic method has emerged as a non-invasive, cost-effective approach for estimating the thickness of unconsolidated sediments above bedrock. Using a three-component seismometer, this method uses the ratio of the average horizontal- and vertical-component amplitude spectrums to produce a spectral ratio curve with a peak at the fundamental resonance frequency. The HVSR method produces clear and repeatable resonance frequency peaks when there is a sharp contrast (>2:1) in acoustic impedance at the sediment/bedrock boundary. Given the resonant frequency, sediment thickness can be determined either by (1) using an estimate of average local sediment shear-wave velocity or by (2) application of a power-law regression equation developed from resonance frequency observations at sites with a range of known depths to bedrock. Two frequently asked questions about the HVSR method are (1) how accurate are the sediment thickness estimates? and (2) how much do sediment thickness/bedrock depth estimates change when using different published regression equations? This paper compares and contrasts different approaches for generating HVSR depth estimates, through analysis of HVSR data acquired in the vicinity of Tylerville, Connecticut, USA.
Modeling the hook depth distribution of pelagic longlining in the equatorial area of Indian Ocean
NASA Astrophysics Data System (ADS)
Song, Liming; Li, Jie; Gao, Panfeng; Zhou, Ji; Xu, Liuxiong
2012-12-01
A survey was conducted in the equatorial area of Indian Ocean for a better understanding of the dynamics of hook depth distribution of pelagic longline fishery. We determined the relationship between hook depth and vertical shear of current coefficiency, wind speed, hook position code, sine of wind angle, sine of angle of attack and weight of messenger weight. We identified the hook depth models by the analysis of covariance with a general linear model. The results showed that the wind effect on the hook depth can be ignored from October to November in the survey area; the surface current effect on the hook depth can be ignored; the equatorial undercurrent is the key factor for the hook depth in Indian Ocean; and there is a negative correlation between the hook depth and vertical shear of current and angle of attack. It was also found that the deeper the hook was set, the higher hook depth shoaling was. The proposed model improves the accuracy of the prediction of hook depth, which can be used to estimate the vertical distribution of pelagic fish in water column.
NASA Astrophysics Data System (ADS)
Sahin, Gokhan; Kerimli, Genber
2018-03-01
This article presented a modeling study of effect of the depth base initiating on vertical parallel silicon solar cell's photovoltaic conversion efficiency. After the resolution of the continuity equation of excess minority carriers, we calculated the electrical parameters such as the photocurrent density, the photovoltage, series resistance and shunt resistances, diffusion capacitance, electric power, fill factor and the photovoltaic conversion efficiency. We determined the maximum electric power, the operating point of the solar cell and photovoltaic conversion efficiency according to the depth z in the base. We showed that the photocurrent density decreases with the depth z. The photovoltage decreased when the depth base increases. Series and shunt resistances were deduced from electrical model and were influenced and the applied the depth base. The capacity decreased with the depth z of the base. We had studied the influence of the variation of the depth z on the electrical parameters in the base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, X.; Braverman, J.; Miranda, M.
2015-02-01
This report documents the results of a study to determine the depth-dependent V/H ratios of ground motion response spectra in the free field. The V/H ratios reported herein were developed from a worldwide database of surface and downhole acceleration recordings obtained from 45 vertical array stations. This database was specifically compiled for this project, and includes information from a diversity of active tectonic regions (California, Alaska, Taiwan, Japan), site conditions (rock to soft soil), ground motion intensity levels (PGAs between 0.01 g and 0.50 g), magnitudes (between ML 2.78 and JMA 8.1), epicentral distances (between 3.2 km and 812 km),more » and source depths (between 1.2 km and 112 km), as well as sensors at surface and at a wide range of depths relevant to the project. To study the significance of the depth effect, V/H ratios from all the records were sorted into a number of depth bins relevant to the project, and statistics (average, standard deviation, coefficient of variation, 16th, 50th, and 84th percentiles) of the V/H ratios within each bin were computed. Similar analyses were repeated, controlling for different site conditions, ground motion intensity levels, array locations, and source depths, to study their relative effect on the V/H ratios. Our findings confirm the importance of the depth effect on the V/H ratios. The research findings in this report can be used to provide guidance on the significance of the depth effect, and the extent to which this effect should be considered in the seismic design of deeply embedded SMR structures and NPP structures in general.« less
Analysis of aquifer tests in the Punjab region of West Pakistan
Bennett, Gordon D.; ,; Sheikh, Ijaz Ahmed; Alr, Sabire
1967-01-01
The results of 141 pumping tests in the Punjab Plain of West Pakistan are reported. Methods of test analysis are described in detail, and an outline of the theory underlying these methods is given. The lateral permeability of the screened interval is given for all tests; the specific yield of the material at water-table depth is given for 1(6 tests; and the vertical permeability of the material between the water table and the top of the screen is given for 14 tests. The lateral permeabilities are predominantly in the range 0.001 to 0.006 cfs per sq ft; the average value is 0.0032 cfs per sq ft. Specific yields generally range from 0.02 to 0.26; the average value is 0.14. All vertical permeability results fall in the range 10 -5 to 10 -3 cfs per sq ft.
NASA Astrophysics Data System (ADS)
Bell, S. W.; Forsyth, D. W.
2013-12-01
Typically there are very high noise levels at long periods on the horizontal components of ocean bottom seismographs due to the turbulent interaction of bottom currents with the seismometer package on the seafloor. When there is a slight tilt of the instrument, some of the horizontal displacement caused by bottom currents leaks onto the vertical component record, which can severely increase the apparent vertical noise. Another major type of noise, compliance noise, is created when pressure variations associated with water (gravity) waves deform the seabed. Compliance noise increases with decreasing water depth, and at water depths of less than a few hundred meters, compliance noise typically obscures most earthquake signals. Following Crawford and Webb (2000), we have developed a methodology for reducing these noise sources by 1-2 orders of magnitude, revealing many events that could not be distinguished before noise reduction. Our methodology relies on transfer functions between different channels. We calculate the compliance noise in the vertical displacement record by applying a transfer function to the differential pressure gauge record. Similarly, we calculate the tilt-induced bottom current noise in the vertical displacement record by applying a transfer function to the horizontal displacement records. Using data from the Cascadia experiment and other experiments, we calculate these transfer functions at a range of stations with varying tilts and water depths. The compliance noise transfer function depends strongly on water depth, and we provide a theoretical and empirical description of this dependence. Tilt noise appears to be very highly correlated with instrument design, with negligible tilt noise observed for the 'abalone' instruments from the Scripps Institute of Oceanography and significant tilt observed for the Woods Hole Oceanographic Institution instruments in the first year deployment of the Cascadia experiment. Tilt orientation appears relatively constant, but we observe significant day-to-day variation in tilt angle, requiring the calculation of a tilt transfer function for each individual day for optimum removal of bottom current noise. In removing the compliance noise, there is some distortion of the signal. We show how to correct for this distortion using theoretical and empirical transfer functions between pressure and displacement records for seismic signals.
Gómez, Iván; Huovinen, Pirjo
2015-01-01
A striking characteristic of endemic Antarctic brown algae is their broad vertical distribution. This feature is largely determined by the shade adaptation in order to cope with the seasonal variation in light availability. However, during spring-summer months, when light penetrates deep in the water column these organisms have to withstand high levels of solar radiation, including UV. In the present study we examine the light use characteristics in parallel to a potential for UV tolerance (measured as content of phenolic compounds, antioxidant activity and maximum quantum yield of fluorescence) in conspecific populations of four Antarctic brown algae (Ascoseira mirabilis, Desmarestia menziesii, D. anceps and Himantothallus grandifolius) distributed over a depth gradient between 5 and 30 m. The main results indicated that a) photosynthetic efficiency was uniform along the depth gradient in all the studied species, and b) short-term (6 h) exposure to UV radiation revealed a high tolerance measured as chlorophyll fluorescence, phlorotannin content and antioxidant capacity. Multivariate analysis of similarity indicated that light requirements for photosynthesis, soluble phlorotannins and antioxidant capacity are the variables determining the responses along the depth gradient in all the studied species. The suite of physiological responses of algae with a shallower distribution (A. mirabilis and D. menziesii) differed from those with deeper vertical range (D. anceps and H. grandifolius). These patterns are consistent with the underwater light penetration that defines two zones: 0–15 m, with influence of UV radiation (1% of UV-B and UV-A at 9 m and 15 m respectively) and a zone below 15 m marked by PAR incidence (1% up to 30 m). These results support the prediction that algae show a UV stress tolerance capacity along a broad depth range according to their marked shade adaptation. The high contents of phlorotannins and antioxidant potential appear to be strongly responsible for the lack of clear depth patterns in light demand characteristics and UV tolerance. PMID:26252953
USDA-ARS?s Scientific Manuscript database
Existence of a claypan layer in soils at depths ranging from 4 to 37 cm restricts vertical water movement and has contributed significantly to high rates of runoff, sediment transport, and other non-point source loadings from croplands in watersheds. The deposition of these pollutants in rivers, st...
Deformations and Rotational Ground Motions Inferred from Downhole Vertical Array Observations
NASA Astrophysics Data System (ADS)
Graizer, V.
2017-12-01
Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole vertical arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole vertical arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was observed at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was observed at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from vertical array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of vertical ground velocity is similar to the scaled tilt spectrum. Amplitudes of rotations at the site depend upon the size of the base and usually decrease with depth. They are also amplified by soft material. Earthquake data used in this study were downloaded from the Center for Engineering Strong Motion Data at http://www.strongmotioncenter.org/.
NASA Astrophysics Data System (ADS)
Sogawa, Sayaka; Sugisaki, Hiroya; Saito, Hiroaki; Okazaki, Yuji; Ono, Tsuneo; Shimode, Shinji; Kikuchi, Tomohiko
2016-03-01
We studied seasonal and regional change in vertical distribution and DVM patterns of four euphausiid species (Euphausia pacifica, Thysanoessa inspinata, Thysanoessa longipes, and Tessarabrachion oculatum) from two years of surveys using MOCNESS above 1500 m depth across a transect in 3 regions of the northwestern (NW) Pacific, off east of Japan; Oyashio, Kuroshio, and Oyashio-Kuroshio Mixed Water Regions (MWR). The four euphausiid species exhibited a regional change in vertical distribution, i.e., slightly deeper in the MWR and much deeper in the Kuroshio region than in the Oyashio region. They found in higher and wider temperature ranges in the MWR than in the Oyashio region, which demonstrated that the four species were able to adapt to different temperatures in different regions. In the MWR and Oyashio regions, E. pacifica is a surface migrant (differences between day and night mean median depths, D-N, were ca. 300 m) and T. oculatum is a moderate subsurface migrant that performs short DVM in the upper mesopelagic zone (D-N ca. 100 m). The other two morphologically similar Thysanoessa species (T. inspinata and T. longipes) segregated vertically between E. pacifica and T. oculatum at night in the Oyashio region, suggesting vertical habitat partitioning with the former two species but not with themselves. However, a seasonal pattern was observed in the vertical distribution and DVM of T. longipes in the Oyashio region. It behaves as a surface migrant in May, whereas most of individuals were found in the mesopelagic layer in September. In contrast, T. inspinata did not exhibit a clear DVM throughout the year (i.e., a moderate subsurface migrant). This seasonal difference might be a strategy to minimize competition between related species. Among the four species, only E. pacifica was found in higher temperatures at night than during the daytime, and the highest temperatures at the median depth varied among species (from 7.5 °C to 13.7 °C) although the lowest temperature did not vary greatly (from 1.0 °C to 1.8 °C), which indicates high temperatures act as a limiting factor as opposed to low temperatures. Furthermore, the integrated chlorophyll a values exhibited significant negative correlation with median depths of only E. pacifica at night. These results indicate a strategy which makes E. pacifica the dominant species in the area, that is, it has a trade-off of long migrations and a warmer environment that accelerates metabolism, in return for obtaining a food-rich environment.
Convection currents in a water calorimeter.
Schulz, R J; Weinhous, M S
1985-10-01
A flexible, temperature-regulated water calorimeter has been constructed containing two pairs of thermistor sensors at depths of 6.23 and 10.0 cm. It may be irradiated by vertical or horizontal beams, and operated at temperatures in the range from 3 to 40 degrees C. When irradiated at 30 degrees C with a vertically downward 19 MeV electron beam, the responses of the proximal and midline thermistors were in accordance with the depth-dose curve. When irradiated horizontally, the initial patterns of temperature rise were the same, but after about 30 s (4 Gy) the rate of temperature rise decreased at the proximal thermistors and increased at the midline thermistors. Shortly after irradiation, the temperature curve and increased at the midline thermistors. Shortly after irradiation, the temperature curve of the midline thermistors crossed that for the proximal thermistors, a pattern that suggested the presence of convection currents. To test this hypothesis, the calorimeter was operated at 4 degrees C. The temperature patterns for horizontal irradiation became the same as those obtained with vertical beams, thus demonstrating the production of convection currents in water at a temperature of 30 degrees C for temperature gradients as small as 10(-3) degrees C cm-1.
McAuley, Steven D.
2004-01-01
On April 14?15, 2003, geophysical logging was conducted in five open-borehole wells in and adjacent to the Sharon Steel Farrell Works Superfund Site, Mercer County, Pa. Geophysical-logging tools used included caliper, natural gamma, single-point resistance, fluid temperature, and heatpulse flowmeter. The logs were used to determine casing depth, locate subsurface fractures, identify water-bearing fractures, and identify and measure direction and rate of vertical flow within the borehole. The results of the geophysical logging were used to determine the placement of borehole screens, which allows monitoring of water levels and sampling of water-bearing zones so that the U.S. Environmental Protection Agency can conduct an investigation of contaminant movement in the fractured bedrock. Water-bearing zones were identified in three of five boreholes at depths ranging from 46 to 119 feet below land surface. Borehole MR-3310 (MW03D) showed upward vertical flow from 71 to 74 feet below land surface to a receiving zone at 63-68 feet below land surface, permitting potential movement of ground water, and possibly contaminants, from deep to shallow zones. No vertical flow was measured in the other four boreholes.
Tomiyasu, Takashi; Kodamatani, Hitoshi; Imura, Ryusuke; Matsuyama, Akito; Miyamoto, Junko; Akagi, Hirokatsu; Kocman, David; Kotnik, Jože; Fajon, Vesna; Horvat, Milena
2017-10-01
The distributions of the total mercury (T-Hg), methylmercury (MeHg), and ethylmercury (EtHg) concentrations in soil and their relationship to chemical composition of the soil and total organic carbon content (TOC, %) were investigated. Core samples were collected from hill slope on the right and left riverbanks of the Idrija River. Former smelting plant is located on the right bank. The T-Hg average in each of the core samples ranged from 0.25 to 1650 mg kg -1 . The vertical T-Hg variations in the samples from the left bank showed no significant change with depth. Conversely, the T-Hg varied with depth, with the surface, or layers several centimeters from the surface, tending to show the highest values in the samples from the right bank. Since the right and left bank soils have different chemical compositions, different pathways of mercury delivery into soils were suggested. The MeHg and EtHg concentrations ranged from n.d. (not detected) to 444 μg kg -1 and n.d. to 17.4 μg kg -1 , respectively. The vertical variations of MeHg and EtHg were similar to those of TOC, except for the near-surface layers containing TOC greater than 20%. These results suggest that the decomposition of organic matter is closely related to organic mercury formation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mills, P.C.
1993-01-01
The U.S. Geological Survey investigated contaminant migration in the Galena-Platteville aquifer at the Parson's Casket Hardware site in Belvidere, Ill. This report presents the results of the first phase of the investigation, from August through December 1990. A packer assembly was used to isolate various depth intervals in three 150-foot-deep boreholes in the dolomite aquifer. Aquifer-test data include vertical distributions of vertical hydraulic gradient, horizontal hydraulic conductivity (K), and response of water levels in observation wells to borehole pumping. Water-quality data include vertical distributions of field-measured properties and laboratory determinations of concentrations of volatile organic compounds (VOC's). vertical hydraulic gradients in the aquifer were downward. The downward gradients ranged from less than 0.01 to 0.37 foot/foot. The largest gradient was associated with an elevated-K interval at 115 to 125 feet below land surface. The hydraulic characteristics of strata within the aquifer seem to be generally consistent across the site. The strata can be subdivided into five hydraulic units with the following approximate depth ranges-and K's : (1) a 1- to 5-foot-thick weathered surface at about 35 feet below land surface, 1-200 ft/d (feet per day); (2) 35-80 feet, 0.05-0.5 ft/d; (3) 80-115 feet, 0.5 ft/d; (4) 115-125 feet, 0.5-10 ft/d; and (5) 125-150 feet, 0.5 ft/d. Water-level drawdowns were detected in one shallow bedrock observation well during pumping of some of the packed intervals in a nearby borehole, indicating that the degree of vertical connection between some intervals in the aquifer may be greater than that between others. During development pumping of one borehole, drawdowns were detected in a nearby well screened in the lower part of the overlying glacial-drift deposits, indicating hydraulic connection between the glacial drift aquifer and the bedrock aquifer. VOC's were detected throughout the upper half (about 150 feet ) of the bedrock aquifer beneath the site. The detected compounds were predominantly chlorinated ethenes and ethanes (maximum concentration was 570 ppb (parts per billion) of trichloroethylene. There was a positive correlation between concentrations of VOC's, specific conductance, and K. The distribution of VOC concentrations indicate that the low-K dolomite beds in the Galena-Platteville aquifer may impede the downward migration of the VOC's and that the high-K beds and fissures may provide pathways for the lateral migration of VOC's through the aquifer. Contaminant migration is possibly affected by ground-water flow through vertical fractures that connect shallow beds with deeper beds in the aquifer, thus explaining the detections of some VOC species at intermittent depths.
NASA Astrophysics Data System (ADS)
Durkin, John
1997-01-01
The effect of a thin conducting sheet located at the earth-to-air interface on the surface vertical magnetic field created by a buried finite loop was studied. Expected field values as a function of frequency are provided for variations in the sheet's conductivity-thickness product. Since the results would be most beneficial for purposes of through-the-earth communications, such as communicating with trapped miners following a mine emergency, field values were derived for a range of frequencies, mine depths, and earth conductivity values that would be typically found in such an application.
NASA Astrophysics Data System (ADS)
Brown, K. L.; Paterson, S. R.; Barth, A. P.
2006-12-01
Detailed studies of North American Cordilleran sheeted plutons (Miller and Paterson, 2001; Mahan et al., 2003; Manduca et al., 1993) reveal that some have predominantly sub-vertical geometries, indicating construction within fundamentally vertical boundary zones in mid-crustal terrains. In contrast, the Bighorn sheeted complex of the eastern Transverse Ranges in southern California preserves fabrics that indicate a gently to moderately dipping geometry. Preliminary barometry shows that the eastern Transverse Ranges constitutes a tilted cross- section of the Mesozoic arc to depths of about 24 km. Whereas the shallow part of the tilted section is dominated by comparatively homogeneous Mesozoic plutons that intrude Proterozoic basement, the deeper part is dominated by mid-crustal sheeted plutons of Jurassic and Late Cretaceous age. Volumetrically dominant components of the western sheeted plutonic complex are biotite hornblende tonalite, granodiorite, and two mica-garnet granite sheets interlayered at meter to decimeter scale. Field observations indicate a transition from discordant plutons with weak magmatic fabrics to the contemporaneous deeper sheeted plutons with intense magmatic fabrics, suggesting that fabric intensity is related to pluton geometry and depth. Microscope investigations reveal that magmatic textures and fabrics are dominant in sheeted igneous rocks. Magmatic textures are defined by euhedral to subhedral plagioclase, hornblende, and biotite that do not show significant internal crystal-plastic deformation. Magmatic fabrics observable at the outcrop scale are defined by shape preferred orientations of euhedral to subhedral plagioclase, hornblende, and biotite grains. Although magmatic textures and fabrics are observed in all compositions, intense magmatic fabrics are prominent in granodiorite and fine-grained tonalite. Solid-state textures are defined by recrystallization of interstitial quartz and microfracturing of feldspar. Although the sheeted plutons were originally described as foliated metamorphic rocks, the preserved magmatic textures and fabrics suggest that this zone is melt dominated. In addition, the pluton geometries may be explained by changing melt-migration patterns with depth.
76 FR 49676 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-11
... shoreline......... *26 City of Deltona. * National Geodetic Vertical Datum. + North American Vertical Datum... Boulevard. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground... feet +1000 upstream of Southeast 45th Street. * National Geodetic Vertical Datum. + North American...
NASA Astrophysics Data System (ADS)
Ju, Wei; Shen, Jian; Qin, Yong; Meng, Shangzhi; Li, Chao; Li, Guozhang; Yang, Guang
2017-11-01
Understanding the distribution of in-situ stresses is extremely important in a wide range of fields such as oil and gas exploration and development, CO2 sequestration, borehole stability, and stress-related geohazards assessment. In the present study, the in-situ stress distribution in the Linxing area of eastern Ordos Basin, China, was analyzed based on well tested parameters. The maximum horizontal principal stress (S Hmax), minimum horizontal principal stress (S hmin), and vertical stress (S v ) were calculated, and they were linearly correlated with burial depth. In general, two types of in-situ stress fields were determined in the Linxing area: (i) the in-situ stress state followed the relation S v >S Hmax>S hmin in shallow layers with burial depths of less than about 940 m, indicating a normal faulting stress regime; (ii) the S Hmax magnitude increased conspicuously and was greater than the S v magnitude in deep layers with depths more than about 940 m, and the in-situ stress state followed the relation S Hmax>S v >S hmin, demonstrating a strike-slip faulting stress regime. The horizontal differential stress (S Hmax-S hmin) increased with burial depth, indicating that wellbore instability may be a potentially significant problem when drilling deep vertical wells. The lateral stress coefficient ranged from 0.73 to 1.08 with an average of 0.93 in the Linxing area. The coalbed methane (CBM) reservoir permeability was also analyzed. No obvious exponential relationship was found between coal permeability and effective in-situ stress magnitude. Coal permeability was relatively high under a larger effective in-situ stress magnitude. Multiple factors, including fracture development, contribute to the variation of CBM reservoir permeability in the Linxing area of eastern Ordos Basin.
Tiffan, K.F.; Kock, T.J.; Connor, W.P.; Steinhorst, R.K.; Rondorf, D.W.
2009-01-01
This study investigated behavioural thermoregulation by subyearling fall (autumn) Chinook salmon Oncorhynchus tshawytscha in a reservoir on the Snake River, Washington, U.S.A. During the summer, temperatures in the reservoir varied from 23?? C on the surface to 11?? C at 14 m depth. Subyearlings implanted with temperature-sensing radio transmitters were released at the surface at temperatures >20?? C during three blocks of time in summer 2004. Vertical profiles were taken to measure temperature and depth use as the fish moved downstream over an average of 5??6-7??2 h and 6??0-13??8 km. The majority of the subyearlings maintained average body temperatures that differed from average vertical profile temperatures during most of the time they were tracked. The mean proportion of the time subyearlings tracked within the 16-20?? C temperature range was larger than the proportion of time this range was available, which confirmed temperature selection opposed to random use. The subyearlings selected a depth and temperature combination that allowed them to increase their exposure to temperatures of 16-20?? C when temperatures 20?? C were available at lower and higher positions in the water column. A portion of the subyearlings that selected a temperature c. 17??0?? C during the day, moved into warmer water at night coincident with an increase in downstream movement rate. Though subyearlings used temperatures outside of the 16-20?? C range part of the time, behavioural thermoregulation probably reduced the effects of intermittent exposure to suboptimal temperatures. By doing so, it might enhance growth opportunity and life-history diversity in the population of subyearlings studied.
San Andreas fault zone drilling project: scientific objectives and technological challenges
Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,
1994-01-01
We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.
The biological pump: Profiles of plankton production and consumption in the upper ocean
NASA Astrophysics Data System (ADS)
Longhurst, Alan R.; Glen Harrison, W.
The ‘biological pump’ mediates flux of carbon to the interior of the ocean by interctions between the components of the vertically-structured pelagic ecosystem of the photic zone. Chlorophyll profiles are not a simple indicator of autotrophic biomass or production, because of non-linearities in the physiology of cells and preferential vertical distribution of taxa. Profiles of numbers or biomass of heterotrophs do not correspond with profiles of consumption, because of depth-selection (taxa, seasons) for reasons unconnected with feeding. Depths of highest plant biomass, chlorophyll and growth rate coincide when these depths are shallow, but become progressively separated in profiles where they are deeper - so that highest growth rate lies progressively shallower than the chloropyll maximum. It is still uncertain how plant biomass is distributed in deep profiles. Depths of greatest heterotroph biomass (mesozooplankton) are usually close to depths of fastest plant growth rate, and thus lie shallower than the chlorophyll maximum in profiles where this itself is deep. This correlation is functional, and relates to the role of heterotrophs in excreting metabolic wastes (especially ammonia), which may fuel a significant component of integrated algal production, especially in the oligotrophic ocean. Some, but not all faecal material from mesozooplankton of the photic zone appears in vertical flux below the pycnocine, depending on the size of the source organisms, and the degree of vertical mixing above the pycnocline. Diel, but probably not seasonal, vertical migration is significant in the vertical flux of dissolved nitrogen. Regional generalisations of the vertical relations of the main components of the ‘biological pump’ now appear within reach, and an approach is suggested.
Näkki, Pinja; Setälä, Outi; Lehtiniemi, Maiju
2017-06-15
Microplastics (MPs) are observed to be present on the seafloor ranging from coastal areas to deep seas. Because bioturbation alters the distribution of natural particles on inhabited soft bottoms, a mesocosm experiment with common benthic invertebrates was conducted to study their effect on the distribution of secondary MPs (different-sized pieces of fishing line<1mm). During the study period of three weeks, the benthic community increased MP concentration in the depth of 1.7-5.1cm in the sediment. The experiment revealed a clear vertical gradient in MP distribution with their abundance being highest in the uppermost parts of the sediment and decreasing with depth. The Baltic clam Macoma balthica was the only study animal that ingested MPs. This study highlights the need to further examine the vertical distribution of MPs in natural sediments to reliably assess their abundance on the seafloor as well as their potential impacts on benthic communities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solitary wave runup and force on a vertical barrier
NASA Astrophysics Data System (ADS)
Liu, Philip L.-F.; Al-Banaa, Khaled
2004-04-01
In this paper we investigate the interaction between a solitary wave and a thin vertical barrier. A set of laboratory experiments was performed with different values of incident wave height to water depth ratio, H/h, and the draught of the barrier to water depth ratio, D/h. While wave gauges were used to measure the reflected and transmitted waves, pressure transducers were installed on both sides of the barrier, enabling the calculation of wave force. The particle image velocimetry (PIV) technique is also employed to measure the velocity field in the vicinity of the barrier. A numerical model, based on the Reynolds-averaged Navier Stokes (RANS) equations and the k - epsilon turbulence closure model, was first checked with experimental data and then employed to obtain additional results for the range of parameters where the laboratory experiments were not performed. Using both experimental data and numerical results, formulae for the maximum runup height, and the maximum wave force are derived in terms of H/h and D/h.
PERSEUS QC: preparing statistic data sets
NASA Astrophysics Data System (ADS)
Belokopytov, Vladimir; Khaliulin, Alexey; Ingerov, Andrey; Zhuk, Elena; Gertman, Isaac; Zodiatis, George; Nikolaidis, Marios; Nikolaidis, Andreas; Stylianou, Stavros
2017-09-01
The Desktop Oceanographic Data Processing Module was developed for visual analysis of interdisciplinary cruise measurements. The program provides the possibility of data selection based on different criteria, map plotting, sea horizontal sections, and sea depth vertical profiles. The data selection in the area of interest can be specified according to a set of different physical and chemical parameters complimented by additional parameters, such as the cruise number, ship name, and time period. The visual analysis of a set of vertical profiles in the selected area allows to determine the quality of the data, their location and the time of the in-situ measurements and to exclude any questionable data from the statistical analysis. For each selected set of profiles, the average vertical profile, the minimal and maximal values of the parameter under examination and the root mean square (r.m.s.) are estimated. These estimates are compared with the parameter ranges, set for each sub-region by MEDAR/MEDATLAS-II and SeaDataNet2 projects. In the framework of the PERSEUS project, certain parameters which lacked a range were calculated from scratch, while some of the previously used ranges were re-defined using more comprehensive data sets based on SeaDataNet2, SESAME and PERSEUS projects. In some cases we have used additional sub- regions to redefine the ranges ore precisely. The recalculated ranges are used to improve the PERSEUS Data Quality Control.
NASA Astrophysics Data System (ADS)
Othman, Muhammad A.; Sabry, Yasser M.; Sadek, Mohamed; Nassar, Ismail M.; Khalil, Diaa A.
2016-03-01
In this work we report a novel optical MEMS deeply-etched mirror with metallic coating and vertical slot, where the later allows reflection and transmission by the micromirror. The micromirror as well as fiber grooves are fabricated using deep reactive ion etching technology, where the optical axis is in-plane and the components are self-aligned. The etching depth is 150 μm chosen to improve the micromirror optical throughput. The vertical optical structure is Al metal coated using the shadow mask technique. A fiber-coupled Fabry-Pérot filter is successfully realized using the fabricated structure. Experimental measurements were obtained based on a dielectric-coated optical fiber inserted into a fiber groove facing the slotted micromirror. A versatile performance in terms of the free spectral range and 3-dB bandwidth is achieved.
Revised Perturbation Statistics for the Global Scale Atmospheric Model
NASA Technical Reports Server (NTRS)
Justus, C. G.; Woodrum, A.
1975-01-01
Magnitudes and scales of atmospheric perturbations about the monthly mean for the thermodynamic variables and wind components are presented by month at various latitudes. These perturbation statistics are a revision of the random perturbation data required for the global scale atmospheric model program and are from meteorological rocket network statistical summaries in the 22 to 65 km height range and NASA grenade and pitot tube data summaries in the region up to 90 km. The observed perturbations in the thermodynamic variables were adjusted to make them consistent with constraints required by the perfect gas law and the hydrostatic equation. Vertical scales were evaluated by Buell's depth of pressure system equation and from vertical structure function analysis. Tables of magnitudes and vertical scales are presented for each month at latitude 10, 30, 50, 70, and 90 degrees.
Serrano, X; Baums, I B; O'Reilly, K; Smith, T B; Jones, R J; Shearer, T L; Nunes, F L D; Baker, A C
2014-09-01
The deep reef refugia hypothesis proposes that deep reefs can act as local recruitment sources for shallow reefs following disturbance. To test this hypothesis, nine polymorphic DNA microsatellite loci were developed and used to assess vertical connectivity in 583 coral colonies of the Caribbean depth-generalist coral Montastraea cavernosa. Samples were collected from three depth zones (≤10, 15-20 and ≥25 m) at sites in Florida (within the Upper Keys, Lower Keys and Dry Tortugas), Bermuda, and the U.S. Virgin Islands. Migration rates were estimated to determine the probability of coral larval migration from shallow to deep and from deep to shallow. Finally, algal symbiont (Symbiodinium spp.) diversity and distribution were assessed in a subset of corals to test whether symbiont depth zonation might indicate limited vertical connectivity. Overall, analyses revealed significant genetic differentiation by depth in Florida, but not in Bermuda or the U.S. Virgin Islands, despite high levels of horizontal connectivity between these geographic locations at shallow depths. Within Florida, greater vertical connectivity was observed in the Dry Tortugas compared to the Lower or Upper Keys. However, at all sites, and regardless of the extent of vertical connectivity, migration occurred asymmetrically, with greater likelihood of migration from shallow to intermediate/deep habitats. Finally, most colonies hosted a single Symbiodinium type (C3), ruling out symbiont depth zonation of the dominant symbiont type as a structuring factor. Together, these findings suggest that the potential for shallow reefs to recover from deep-water refugia in M. cavernosa is location-specific, varying among and within geographic locations likely as a consequence of local hydrology. © 2014 John Wiley & Sons Ltd.
Arbuscular mycorrhizal fungi in saline soils: Vertical distribution at different soil depth
Becerra, Alejandra; Bartoloni, Norberto; Cofré, Noelia; Soteras, Florencia; Cabello, Marta
2014-01-01
Arbuscular mycorrhizal fungi (AMF) colonize land plants in every ecosystem, even extreme conditions such as saline soils. In the present work we report for the first time the mycorrhizal status and the vertical fungal distribution of AMF spores present in the rhizospheric soil samples of four species of Chenopodiaceae (Allenrolfea patagonica, Atriplex argentina, Heterostachys ritteriana and Suaeda divaricata) at five different depths in two saline of central Argentina. Roots showed medium, low or no colonization (0–50%). Nineteen morphologically distinctive AMF species were recovered. The number of AMF spores ranged between 3 and 1162 per 100 g dry soil, and AMF spore number decreased as depth increased at both sites. The highest spore number was recorded in the upper soil depth (0–10 cm) and in S. divaricata. Depending of the host plant, some AMF species sporulated mainly in the deep soil layers (Glomus magnicaule in Allenrolfea patagonica, Septoglomus aff. constrictum in Atriplex argentina), others mainly in the top layers (G. brohultti in Atriplex argentina and Septoglomus aff. constrictum in Allenrolfea patagonica). Although the low percentages of colonization or lack of it, our results show a moderate diversity of AMF associated to the species of Chenopodiaceae investigated in this study. The taxonomical diversity reveals that AMF are adapted to extreme environmental conditions from saline soils of central Argentina. PMID:25242945
Where is the 1-million-year-old ice at Dome A?
NASA Astrophysics Data System (ADS)
Zhao, Liyun; Moore, John C.; Sun, Bo; Tang, Xueyuan; Guo, Xiaoran
2018-05-01
Ice fabric influences the rheology of ice, and hence the age-depth profile at ice core drilling sites. To investigate the age-depth profile to be expected of the ongoing deep ice coring at Kunlun station, Dome A, we use the depth-varying anisotropic fabric suggested by the recent polarimetric measurements around Dome A along with prescribed fabrics ranging from isotropic through girdle to single maximum in a three-dimensional, thermo-mechanically coupled full-Stokes model of a 70 × 70 km2 domain around Kunlun station. This model allows for the simulation of the near basal ice temperature and age, and ice flow around the location of the Chinese deep ice coring site. Ice fabrics and geothermal heat flux strongly affect the vertical advection and basal temperature which consequently control the age profile. Constraining modeled age-depth profiles with dated radar isochrones to 2/3 ice depth, the surface vertical velocity, and also the spatial variability of a radar isochrones dated to 153.3 ka BP, limits the age of the deep ice at Kunlun to between 649 and 831 ka, a much smaller range than previously inferred. The simple interpretation of the polarimetric radar fabric data that we use produces best fits with a geothermal heat flux of 55 mW m-2. A heat flux of 50 mW m-2 is too low to fit the deeper radar layers, and 60 mW m-2 leads to unrealistic surface velocities. The modeled basal temperature at Kunlun reaches the pressure melting point with a basal melting rate of 2.2-2.7 mm a-1. Using the spatial distribution of basal temperatures and the best fit fabric suggests that within 400 m of Kunlun station, 1-million-year-old ice may be found 200 m above the bed, and that there are large regions where even older ice is well above the bedrock within 5-6 km of the Kunlun station.
NASA Astrophysics Data System (ADS)
Lee, D.; Kearns, T.; Yang, L.; Wang, G.
2014-12-01
Houston and the surrounding Harris County have experienced the detrimental effects of subsidence even prior to World War II, to the extent that the land along Galveston Bay had sunk as much as 20 feet since 1906. One dramatic example is the Brownwood subdivision, a coastal community in Baytown where continuous flooding due to subsidence forced the area to be deemed unlivable and consequently abandoned. Thus, Houston's changes in groundwater and compaction of its aquifers are of relatively high concern to those in the public (infrastructure), private (oil & gas), and international (Port of Houston Authority) sectors. One of the key questions related to the subsidence issue in Houston area is what are the contributions of sediments at different depths, and what particularly is the contribution from shallow sediments? To address these questions, University of Houston has installed a vertical GPS array in the UH Coastal Center in March 2014. The GPS array includes four permanent GPS stations with the antenna pole foundations anchored at different depths below ground surface (-10 m, -7m, -4m, 0 m). A special, double-pipe GPS antenna monument was designed for GPS stations with the array. This project was funded by an NSF grant and a UH internal grant. Five groundwater wells with the depths ranging from 2 m to 100 m below the ground surface were also installed at the UH Coastal Center site. This study will investigate continuous GPS and groundwater level measurements (March-November, 2014) at the UHCC site. It is expected that the GPS array will provide total information on subsidence as well as compaction of aquifers within different depth ranges (0 to -4m, -4 to -7 m, -7 to -10m, and below -10 m). Correlation of land subsidence and groundwater fluctuation will also be investigated.
NASA Technical Reports Server (NTRS)
Chase, W. D.
1976-01-01
The use of blue and red color in out-of-window cockpit displays, in full-spectrum calligraphic computer-generated display systems, is studied with attention given to pilot stereographic depth perception and response to visual cues. Displays for vertical approach, with dynamic and frozen-range landing approach and perspective arrays, are analyzed. Pilot transfer function and the transfer function associated with the contrasted approach and perspective arrays are discussed. Out-of-window blue lights are perceived by pilots as indicating greater distance depth, red lights as indicating proximity. The computer-generated chromatic display was adapted to flight simulators for the tests.
Fisher, Jason C.; Twining, Brian V.
2011-01-01
During 2007 and 2008, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected quarterly depth-discrete measurements of fluid pressure and temperature in six boreholes located in the eastern Snake River Plain aquifer of Idaho. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Hydraulic heads (head) and water temperatures in boreholes were monitored at 86 hydraulically-isolated depth intervals located 448.0 to 1,377.6 feet below land surface. The calculation of head is most sensitive to fluid pressure and the altitude of the pressure transducer at each port coupling; it is least sensitive to barometric pressure and water temperature. An analysis of errors associated with the head calculation determined the accuracy of an individual head measurement at +/- 2.3 feet. Many of the sources of measurement error are diminished when considering the differences between two closely-spaced readings of head; therefore, a +/- 0.1 foot measurement accuracy was assumed for vertical head differences (and gradients) calculated between adjacent monitoring zones. Vertical head and temperature profiles were unique to each borehole, and were characteristic of the heterogeneity and anisotropy of the eastern Snake River Plain aquifer. The vertical hydraulic gradients in each borehole remained relatively constant over time with minimum Pearson correlation coefficients between head profiles ranging from 0.72 at borehole USGS 103 to 1.00 at boreholes USGS 133 and MIDDLE 2051. Major inflections in the head profiles almost always coincided with low permeability sediment layers. The presence of a sediment layer, however, was insufficient for identifying the location of a major head change in a borehole. The vertical hydraulic gradients were defined for the major inflections in the head profiles and were as much as 2.2 feet per foot. Head gradients generally were downward in boreholes USGS 133, 134, and MIDDLE 2050A, zero in boreholes USGS 103 and 132, and exhibited a reversal in direction in borehole MIDDLE 2051. Water temperatures in all boreholes ranged from 10.2 to 16.3 degrees Celsius. Boreholes USGS 103 and 132 are in an area of concentrated volcanic vents and fissures, and measurements show water temperature decreasing with depth. All other measurements in boreholes show water temperature increasing with depth. A comparison among boreholes of the normalized mean head over time indicates a moderately positive correlation.
Velocities of Subducted Sediments and Continents
NASA Astrophysics Data System (ADS)
Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.
2009-12-01
The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios <1.7 and >1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at shallow depths through trench-parallel at moderate depths to down-dip approaching sub-arc depths. Vertically incident waves have VP/ VS of 1.7-1.3 over the same range of depths, waves propagating up dip have VP/ VS of 1.7-1.3, and waves propagating along the slab at constant depth have VP/ VS of 1.7-1.45. These remarkably low VP/ VS ratios are due to the anomalous elastic behavior of quartz. More aluminous lithologies have elevated VP/ VS ratios: 1.85 for slab-normal waves, 1.75 for trench-parallel waves, and 1.65 for down-dip waves. Subducted continental crust that is too dry to transform to high-pressure minerals has relatively ordinary VP/ VS ratio of 1.71-1.75 for vertically incident waves, 1.6-1.7 for waves propagating up dip, and 1.65-1.75 for waves propagating along the slab. Thus, subducted mica-rich sediments can have high VP/ VS ratios, whereas quartzose lithologies generate low VP/ VS ratios.
Earthquake source parameters determined using the SAFOD Pilot Hole vertical seismic array
NASA Astrophysics Data System (ADS)
Imanishi, K.; Ellsworth, W. L.; Prejean, S. G.
2003-12-01
We determined source parameters of microearthquakes occurring at Parkfield, CA, using the SAFOD Pilot Hole vertical seismic array. The array consists of 32 stations with 3-component 15 Hz geophones at 40 meter spacing (856 to 2096 m depth) The site is about 1.8 km southwest of a segment of the San Andreas fault characterized by a combination of aseismic creep and repeating microearthquakes. We analyzed seismograms recorded at sample rates of 1kHz or 2kHz. Spectra have high signal-to-noise ratios at frequencies up to 300-400 Hz, showing these data include information on source processes of microearthquakes. By comparing spectra and waveforms at different levels of the array, we observe how attenuation and scattering in the shallow crust affect high-frequency waves. We estimated spectral level (Ω 0), corner frequency (fc) and path-averaged attenuation (Q) at each level of the array by fitting an omega squared model to displacement spectra. While the spectral level changes smoothly with depth, there is significant scatter in fc and Q due to the strong trade-off between these parameters. Because we expect source parameters to vary systematically with depth, we impose a smoothness constraint on Q, Ω 0 and fc as a function of depth. For some of the nearby events, take-off angles to the different levels of the array span a significant part of the focal sphere. Therefore corner frequencies should also change with depth. We smooth measurements using a linear first-difference operator that links Q, Ω 0 and fc at one level to the levels above and below, and use Akaike_fs Bayesian Information Criterion (ABIC) to weight the smoothing operators. We applied this approach to events with high signal-to-noise ratios. For the results with the minimum ABIC, fc does not scatter and Q decreases with decreasing depth. Seismic moments were determined by the spectral level and range from 109 and 1012 Nm. Source radii were estimated from the corner frequency using the circular crack model of Sato and Hirasawa (1973). Estimated values of static stress drop were roughly 1 MPa and do not vary with seismic moment. Q values from all earthquakes were averaged at each level of the array. Average Qp and Qs range from 250 to 350 and from 300 to 400 between the top and bottom of the array, respectively. Increasing Q values as a function of depth explain well the observed decrease in high-frequency content as waves propagate toward the surface. Thus, by jointly analyzing the entire vertical array we can both accurately determine source parameters of microearthquakes and make reliable Q estimates while suppressing the trade-off between fc and Q.
Topping, David J.; Rubin, David M.; Wright, Scott A.; Melis, Theodore S.
2011-01-01
Several common methods for measuring suspended-sediment concentration in rivers in the United States use depth-integrating samplers to collect a velocity-weighted suspended-sediment sample in a subsample of a river cross section. Because depth-integrating samplers are always moving through the water column as they collect a sample, and can collect only a limited volume of water and suspended sediment, they collect only minimally time-averaged data. Four sources of error exist in the field use of these samplers: (1) bed contamination, (2) pressure-driven inrush, (3) inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration, and (4) inadequate time averaging. The first two of these errors arise from misuse of suspended-sediment samplers, and the third has been the subject of previous study using data collected in the sand-bedded Middle Loup River in Nebraska. Of these four sources of error, the least understood source of error arises from the fact that depth-integrating samplers collect only minimally time-averaged data. To evaluate this fourth source of error, we collected suspended-sediment data between 1995 and 2007 at four sites on the Colorado River in Utah and Arizona, using a P-61 suspended-sediment sampler deployed in both point- and one-way depth-integrating modes, and D-96-A1 and D-77 bag-type depth-integrating suspended-sediment samplers. These data indicate that the minimal duration of time averaging during standard field operation of depth-integrating samplers leads to an error that is comparable in magnitude to that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. This random error arising from inadequate time averaging is positively correlated with grain size and does not largely depend on flow conditions or, for a given size class of suspended sediment, on elevation above the bed. Averaging over time scales >1 minute is the likely minimum duration required to result in substantial decreases in this error. During standard two-way depth integration, a depth-integrating suspended-sediment sampler collects a sample of the water-sediment mixture during two transits at each vertical in a cross section: one transit while moving from the water surface to the bed, and another transit while moving from the bed to the water surface. As the number of transits is doubled at an individual vertical, this error is reduced by ~30 percent in each size class of suspended sediment. For a given size class of suspended sediment, the error arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration depends only on the number of verticals collected, whereas the error arising from inadequate time averaging depends on both the number of verticals collected and the number of transits collected at each vertical. Summing these two errors in quadrature yields a total uncertainty in an equal-discharge-increment (EDI) or equal-width-increment (EWI) measurement of the time-averaged velocity-weighted suspended-sediment concentration in a river cross section (exclusive of any laboratory-processing errors). By virtue of how the number of verticals and transits influences the two individual errors within this total uncertainty, the error arising from inadequate time averaging slightly dominates that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. Adding verticals to an EDI or EWI measurement is slightly more effective in reducing the total uncertainty than adding transits only at each vertical, because a new vertical contributes both temporal and spatial information. However, because collection of depth-integrated samples at more transits at each vertical is generally easier and faster than at more verticals, addition of a combination of verticals and transits is likely a more practical approach to reducing the total uncertainty in most field situatio
Waveform inversion for D″ structure beneath northern Asia using Hi-net tiltmeter data
NASA Astrophysics Data System (ADS)
Kawai, Kenji; Sekine, Shutaro; Fuji, Nobuaki; Geller, Robert J.
2009-10-01
We invert shear-wave waveform data for the radial variation of (isotropic) shear-velocity in D″ beneath Northern Asia. We reduce source and receiver effects by using data for intermediate and deep events beneath Italy and Japan recorded respectively at stations in East Asia and Europe. Relative to PREM, we find a significantly higher S-wave velocity in the depth range from 150 to 300 km above the core-mantle boundary (CMB) and a slightly lower S-wave velocity in the depth range 0-150 km above the CMB. As our previous studies of D″ structure beneath Central America and the Arctic obtained similar S-wave velocity models, we suggest that this pattern of vertical dependence of shear wave velocity in D″ may be a general phenomenon, at least in relatively cold regions.
5-Beam ADCP Deployment Strategy Considerations
NASA Astrophysics Data System (ADS)
Moore, T.; Savidge, D. K.; Gargett, A.
2016-02-01
With the increasing availability of 5 beam ADCPs and expanding opportunities for their deployment within both observatory and dedicated process study settings, refinements in deployment strategies are needed.Measuring vertical velocities directly with a vertically oriented acoustic beam requires that the instrument be stably mounted and leveled within fractions of a degree. Leveled shallow water deployments to date have utilized divers to jet pipes into the sand for stability, manually mount the instruments on the pipes, and level them. Leveling has been guided by the deployed instrument's pitch and roll output, available in real-time because of the observatory settings in which the deployments occurred. To expand the range of feasible deployments to deeper, perhaps non-real-time capable settings, alternatives to diver deployment and leveling must be considered. To determine stability requirements, mooring motion (heading, pitch and roll) has been sampled at 1Hz by gimballed ADCPs at a range of instrument deployment depths, and in shrouded and unshrouded cages. Conditions under which ADCP cages resting on the bottom experience significant shifts in tilt, roll or heading are assessed using co-located wind and wave measurements. The accuracy of estimating vertical velocities using all five beams relative to a well leveled vertical single beam is assessed from archived high frequency five beam data, to explore whether easing the leveling requirement is feasible.
Diel Vertical Migration Thresholds of Karenia brevis (Dinophyceae).
Light and nutrient availability change throughout dinoflagellate diel vertical migration (DVM) and/or with subpopulation location in the water column along the west Florida shelf. Typically, the vertical depth of the shelf is greater than the distance a subpopulation can vertical...
NASA Astrophysics Data System (ADS)
Joyce, T. W.; Durban, J. W.; Fearnbach, H. H.; Claridge, D. E.; Ballance, L. T.
2016-02-01
Diving and spatial distribution data from small (55g) satellite transmitter tags attached to five species of deep-diving toothed whales were used to examine the physiological and ecological tradeoffs influencing vertical foraging ranges in the Bahamas. These tradeoffs have important consequences in terms of the ecological impacts of different toothed whale predators on meso- and bathypelagic prey populations, and also on relative vulnerabilities to human impacts (e.g., noise, vessel-strike). Within this assemblage, larger toothed-whales were hypothesized to more efficiently access deeper prey by having the capacity to sustain longer dives, based on a divergence of metabolic rates from oxygen storage capacity as mass increases. However, the observed vertical foraging ranges of melon-headed whales (Peponocephala electra, n=13), short-finned pilot whales (Globicephala macrorhynchus, n=15), Blainville's beaked whales (Mesoplodon densirostris, n=12), Cuvier's beaked whales (Ziphius cavirostris, n=7), and sperm whales (Physeter macrocephalus, n=27), only weakly support hypothesized increases in dive duration and depth as power law functions body mass (R2=0.36 & 0.23). In particular, the relatively small beaked whales (M.d. 853kg; Z.c. 1557kg) performed extremely long and deep foraging dives (M.d. max. 67mins & 1888m; Z.c. max. 103mins & 1888m) relative to expectations of simple allometric scaling. Based on foraging dive durations and post-foraging dive recovery patterns, both beaked whales appear to exceed aerobic dive limits, which enabled access to bathypelagic niches but at the cost of significantly longer recovery periods between foraging dives and comparatively low foraging time efficiency (<29% of time in foraging strata). The inclusion of aerobic and anaerobic dive strategies in allometric models of dive duration and depth yielded considerably greater explanatory power (R2=0.96 & 0.90), providing an improved framework for interpreting the tradeoffs between body size, diving efficiency, and access to different prey layers. Vertical foraging ranges in turn had important implications in terms of responses to diurnal variation in light intensity, and the relative affinities of different species to deep-scattering and benthic boundary layers of prey.
Brosseau, Chase Julian; Cline, Timothy J.; Cole, Jonathan J.; Hodgson, James R.; Pace, Michael L.; Weidel, Brian C.
2012-01-01
Diel vertical migration of zooplankton is influenced by a variety of factors including predation, food, and temperature. Research has recently shifted from a focus on factors influencing migration to how migration affects nutrient cycling and habitat coupling. Here we evaluate the potential for Daphnia migrations to incorporate metalimnetic productivity in a well-studied northern Wisconsin lake. We use prior studies conducted between 1985 and 1990 and current diel migration data (2008) to compare day and night Daphnia vertical distributions with the depth of the metalimnion (between the thermocline and 1% light depth). Daphnia migrate from a daytime mean residence depth of between about 1.7 and 2.5 m to a nighttime mean residence depth of between 0 and 2.0 m. These migrations are consistent between the prior period and current measurements. Daytime residence depths of Daphnia are rarely deep enough to reach the metalimnion; hence, metalimnetic primary production is unlikely to be an important resource for Daphnia in this system.
Use of coastal altimeter and tide gauge data for a seamless land-sea vertical datum in Taiwan
NASA Astrophysics Data System (ADS)
Yen-Ti, C.; Hwang, C.
2017-12-01
Conventional topographic and hydrographic mappings use two separate reference surfaces, called orthometric datum (TWVD2001 in Taiwan) and chart datum. In Taiwan, land elevations are heights tied to a leveling control network with its zero height at the mean sea surface of Keelung Harbor (realized by the height of Benchmark K999). Ocean depths are counted from the lowest tidal surface defined by tidal measurements near the sites of depth measurements. This paper usesa new method to construct a unified vertical datum for land elevations and ocean depths around Taiwan. First, we determine an optimal mean sea surface model (MSSHM) using refined offshore altimeter data. Then, the ellipsoidal heights of the mean sea levels at 36 tide gauges around Taiwan are determined using GPS measurements at their nearby benchmarks, and are then combined with the altimeter-derived MSSHM to generate a final MSSHM that has a smooth transition from land to sea. We also construct an improved ocean tide model to obtain various tidal surfaces. Using the latest land, shipborne, airborne and altimeter-derived gravity data, we construct a hybrid geoid model to define a vertical datum on land. The final MSSHM is the zero surface that defines ocean tidal heights and lowest tidal values in a ellipsoidal system that is fully consistent with the geodetic system of GNSS. The use of the MSSHM and the hybrid geoid model enables a seamless connection to combine or compare coastal land and sea elevations from a wide range of sources.
Ship localization in Santa Barbara Channel using machine learning classifiers.
Niu, Haiqiang; Ozanich, Emma; Gerstoft, Peter
2017-11-01
Machine learning classifiers are shown to outperform conventional matched field processing for a deep water (600 m depth) ocean acoustic-based ship range estimation problem in the Santa Barbara Channel Experiment when limited environmental information is known. Recordings of three different ships of opportunity on a vertical array were used as training and test data for the feed-forward neural network and support vector machine classifiers, demonstrating the feasibility of machine learning methods to locate unseen sources. The classifiers perform well up to 10 km range whereas the conventional matched field processing fails at about 4 km range without accurate environmental information.
Vertical structure of tropospheric winds on gas giants
NASA Astrophysics Data System (ADS)
Scott, R. K.; Dunkerton, T. J.
2017-04-01
Zonal mean zonal velocity profiles from cloud-tracking observations on Jupiter and Saturn are used to infer latitudinal variations of potential temperature consistent with a shear stable potential vorticity distribution. Immediately below the cloud tops, density stratification is weaker on the poleward and stronger on the equatorward flanks of midlatitude jets, while at greater depth the opposite relation holds. Thermal wind balance then yields the associated vertical shears of midlatitude jets in an altitude range bounded above by the cloud tops and bounded below by the level where the latitudinal gradient of static stability changes sign. The inferred vertical shear below the cloud tops is consistent with existing thermal profiling of the upper troposphere. The sense of the associated mean meridional circulation in the upper troposphere is discussed, and expected magnitudes are given based on existing estimates of the radiative timescale on each planet.
Scour around vertical wall abutment in cohesionless sediment bed
NASA Astrophysics Data System (ADS)
Pandey, M.; Sharma, P. K.; Ahmad, Z.
2017-12-01
At the time of floods, failure of bridges is the biggest disaster and mainly sub-structure (bridge abutments and piers) are responsible for this failure of bridges. It is very risky if these sub structures are not constructed after proper designing and analysis. Scour is a natural phenomenon in rivers or streams caused by the erosive action of the flowing water on the bed and banks. The abutment undermines due to river-bed erosion and scouring, which generally recognized as the main cause of abutment failure. Most of the previous studies conducted on scour around abutment have concerned with the prediction of the maximum scour depth (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005). Dey and Barbhuiya (2005) proposed a relationship for computing maximum scour depth near an abutment, based on laboratory experiments, for computing maximum scour depth around vertical wall abutment, which was confined to their experimental data only. However, this relationship needs to be also verified by the other researchers data in order to support the reliability to the relationship and its wider applicability. In this study, controlled experimentations have been carried out on the scour near a vertical wall abutment. The collected data in this study along with data of the previous investigators have been carried out on the scour near vertical wall abutment. The collected data in this study along with data of the previous have been used to check the validity of the existing equation (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005) of maximum scour depth around the vertical wall abutment. A new relationship is proposed to estimate the maximum scour depth around vertical wall abutment, it gives better results all relationships.
NASA Astrophysics Data System (ADS)
Shipley, Oliver N.; Howey, Lucy A.; Tolentino, Emily R.; Jordan, Lance K. B.; Brooks, Edward J.
2017-01-01
Acquiring movement data for small-bodied, deep-water chondrichthyans is challenged by extreme effects of capture and handling stress, and post-release predation, however, it is urgently required to examine important fisheries interactions and assess the ecological role of these species within deep-water food webs. Here we suggest a novel release-cage mechanism to deploy pop-up satellite archival tags, as well as present vertical habitat data for a data-deficient, small-bodied, deep-water bycatch species, the Cuban dogfish (Squalus cubensis). Data were gathered from seven of eight High Rate X-Tags deployed on mature Cuban dogfish in the Exuma Sound, The Bahamas. Recovery periods appeared variable between individuals and are likely driven by capture-and-handling stress and tag burden. Application of the cross-correlation function to time-series depth and temperature data indicated three of the seven individuals suffered mortality through predation, which occurred during daytime, and suggests Cuban dogfish may constitute a proportion of deep-water apex predator diet in the Exuma Sound. Two animals were successfully released via a novel release-cage mechanism and displayed either no, or rapid (<15 mins) vertically stationary recovery periods and were not consumed by predators; data for these individuals were recorded for the entire deployment duration (14 days). Vertical habitat data suggests Cuban dogfish are diel-vertical migrators, similar to other deep-water taxa, and exhibit a relatively broad temperature and depth range, which may be driven by preference for specific bathymetric structures. These techniques provide an important first step into acquiring and presenting vertical habitat data for small-bodied, deep-water chondrichthyans, which can be directly applied to fisheries and ecosystem-based management approaches.
Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R; Wang, Thomas D
2017-07-01
The epithelium is a thin layer of tissue that lines hollow organs, such as colon. Visualizing in vertical cross sections with sub-cellular resolution is essential to understanding early disease mechanisms that progress naturally in the plane perpendicular to the tissue surface. The dual axes confocal architecture collects optical sections in tissue by directing light at an angle incident to the surface using separate illumination and collection beams to reduce effects of scattering, enhance dynamic range, and increase imaging depth. This configuration allows for images to be collected in the vertical as well as horizontal planes. We designed a fast, compact monolithic scanner based on the principle of parametric resonance. The mirrors were fabricated using microelectromechanical systems (MEMS) technology and were coated with aluminum to maximize near-infrared reflectivity. We achieved large axial displacements [Formula: see text] and wide lateral deflections >20°. The MEMS chip has a 3.2×2.9 mm 2 form factor that allows for efficient packaging in the distal end of an endomicroscope. Imaging can be performed in either the vertical or horizontal planes with [Formula: see text] depth or 1 ×1 mm 2 area, respectively, at 5 frames/s. We systemically administered a Cy5.5-labeled peptide that is specific for EGFR, and collected near-infrared fluorescence images ex vivo from pre-malignant mouse colonic epithelium to reveal the spatial distribution of this molecular target. Here, we demonstrate a novel scanning mechanism in a dual axes confocal endomicroscope that collects optical sections of near-infrared fluorescence in either vertical or horizontal planes to visualize molecular expression in the epithelium.
Using tsunami deposits to determine the maximum depth of benthic burrowing
Shirai, Kotaro; Murakami-Sugihara, Naoko
2017-01-01
The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface. PMID:28854254
Using tsunami deposits to determine the maximum depth of benthic burrowing.
Seike, Koji; Shirai, Kotaro; Murakami-Sugihara, Naoko
2017-01-01
The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface.
A dynamic optimization model of the diel vertical distribution of a pelagic planktivorous fish
NASA Astrophysics Data System (ADS)
Rosland, Rune; Giske, Jarl
A stochastic dynamic optimization model for the diel depth distribution of juveniles and adults of the mesopelagic planktivore Maurolicus muelleri (Gmelin) is developed and used for a winter situation. Observations from Masfjorden, western Norway, reveal differences in vertical distribution, growth and mortality between juveniles and adults in January. Juveniles stay within the upper 100m with high feeding rates, while adults stay within the 100-150m zone with very low feeding rates during the diel cycle. The difference in depth profitability is assumed to be caused by age-dependent processes, and are calculated from a mechanistic model for visual feeding. The environment is described as a set of habitats represented by discrete depth intervals along the vertical axis, differing with respect to light intensity, food abundance, predation risk and temperature. The short time interval (24h) allows fitness to be linearly related to growth (feeding), assuming that growth increases the future reproductive output of the fish. Optimal depth position is calculated from balancing feeding opportunity against mortality risk, where the fitness reward gained by feeding is weighted against the danger of being killed by a predator. A basic run is established, and the model is validated by comparing predictions and observations. The sensitivity for different parameter values is also tested. The modelled vertical distributions and feeding patterns of juvenile and adult fish correspond well with the observations, and the assumption of age differences in mortality-feeding trade-offs seems adequate to explain the different depth profitability of the two age groups. The results indicate a preference for crepuscular feeding activity of the juveniles, and the vertical distribution of zooplankton seems to be the most important environmental factor regulating the adult depth position during the winter months in Masfjorden.
Habitat Parameters for Oxygen Minimum Zone Copepods from the Eastern Tropical North Pacific
NASA Astrophysics Data System (ADS)
Wishner, K. F.; Outram, D.; Grassian, B.
2016-02-01
Oxygen minimum zones (OMZs) affect zooplankton distributions and may be expanding in worldwide spatial and vertical extent from climate change. We studied zooplankton (especially copepod) distributions in the Eastern Tropical North Pacific (ETNP) OMZ, using day-night vertically-stratified MOCNESS tows (0-1000m). Habitat parameters (temperature, oxygen, depth) were defined for abundant copepod species and groups. Zooplankton layers, with a unique suite of species, occurred at upper and lower OMZ oxyclines. At the mesopelagic lower oxycline, there was a layer with a characteristic species assemblage and a sharp 10X biomass increase compared to nearby depths. The lower oxycline layer occurred within a narrow very low oxygen concentration (2µM). At two stations with different OMZ vertical extents, the lower oxycline layer depth changed with OMZ thickness, remaining at the same oxygen concentration but different temperature. Life history habitat (diapause depth, temperature) of the copepod Eucalanus inermis was also affected. In the upper water column at the two stations, large diel vertical migrators (fish, euphausiids) descended to taxon-specific daytime depths in the mid OMZ, regardless of oxygen level, but copepod species distributions showed more variability and sensitivity to habitat parameters. We predict that, with moderate OMZ expansion, the lower oxycline community will likely shift depth, thus re-distributing midwater biomass, species, and processes. In the upper water column, large vertical migrator distributions may be less affected, while smaller taxa (copepods) will likely be sensitive to habitat changes. At some point, the ability to withstand these changes may be exceeded for particular taxa, with consequences for assemblages, trophic webs, and export. In keeping with the session theme, we hope to compare our oceanic findings with others' results from coastal hypoxic situations.
An Annotated Bibliography of Patents Related to Coastal Engineering. Volume II. 1971-1973. Appendix.
1979-11-01
a- depth sounder of the type which produces an acoustic ranging pulse and which includes a transducer producing a receive signal representing the...having body-forming cavities for producing or repairing concrete strUctures of many shapes and sizes The apparatus includes such laminated sheeting formed...in two intersecting vertical planes. Thereafter, by / / - \\47 producing successive sets of such records , quadratic surfaces . . in which the true
Three-dimensional microscope tracking system using the astigmatic lens method and a profile sensor
NASA Astrophysics Data System (ADS)
Kibata, Hiroki; Ishii, Katsuhiro
2018-03-01
We developed a three-dimensional microscope tracking system using the astigmatic lens method and a profile sensor, which provides three-dimensional position detection over a wide range at the rate of 3.2 kHz. First, we confirmed the range of target detection of the developed system, where the range of target detection was shown to be ± 90 µm in the horizontal plane and ± 9 µm in the vertical plane for a 10× objective lens. Next, we attempted to track a motion-controlled target. The developed system kept the target at the center of the field of view and in focus up to a target speed of 50 µm/s for a 20× objective lens. Finally, we tracked a freely moving target. We successfully demonstrated the tracking of a 10-µm-diameter polystyrene bead suspended in water for 40 min. The target was kept in the range of approximately 4.9 µm around the center of the field of view. In addition, the vertical direction was maintained in the range of ± 0.84 µm, which was sufficiently within the depth of focus.
76 FR 43923 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... downstream of Big Bethel +9 Road. Approximately 20 feet upstream of the confluence +22 with Newmarket Creek... Approximately 30 feet downstream of I-64 +22 *National Geodetic Vertical Datum. +North American Vertical Datum... Center Street. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above...
NASA Astrophysics Data System (ADS)
Ellsworth, W. L.; Karrenbach, M. H.; Zumberge, M. A.
2017-12-01
The main borehole at the San Andreas Fault Observatory at Depth (SAFOD) contains optical fibers cemented in place in between casing strings from the surface to just below the top of the basement. The fibers are under tension of approximately 1 N and are housed in a 0.9 mm diameter stainless steel tube. Earth strain is transmitted to the fiber by frictional contact with the tube wall. One fiber has been in use as a vertical strainmeter since 2005, measuring the total strain between 9 and 740 m by laser interferometry. In June 2017 we attached an OptaSense Distributed Acoustic Sensing (DAS) system, model ODH3.1, to a second fiber that terminates at 864 m depth. The DAS laser interrogator measures the strain over a gauge length with a set spacing between gauge intervals. For this experiment we set the gauge length to 10 m with 1 m spacing between gauges. Including the surface run of the fiber, this gives us 936 channels measuring the vertical strain at a sample interval of 0.4 msec (2500 samples/s). Continuous recording of the string produces approximately 1 TB/day. During one month of data collection, we recorded local, regional and teleseismic earthquakes. With this recording geometry, the DAS system captures the full vertical wavefield between the basement interface and free surface, revealing direct, converted and refracted waves. Both P- and S- strain waves are clearly visible in the data, even for 10 km deep earthquakes located almost directly below the well (see figure). The incident and surface reflected wavefields can be separated by frequency-wavenumber filtering due to the large-aperture and fine spatial and temporal sampling. Up- and downgoing strain waves illuminate the subsurface within the sensor array's depth range. Accurate arrival time determinations of the initial arrival phase are possible due to consistent wave forms recorded at 1 m spatial intervals that can be used for fine-scale shallow velocity model estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayub, J. Juri; Velasco, R. H.; Rizzotto, M.
2008-08-07
Activity concentrations of {sup 40}K, {sup 226}Ra and {sup 137}Cs have been analyzed in soil and plant samples, collected in permanent grassland in central Argentina. Two near areas (A1 and A2) under field conditions with soil undisturbed at least in the last four decades were selected. For each of the three studied radionuclides we do not find differences in the inventories between both areas. The inventories range from 143 kBq m{sup -2} to 197 kBq m{sup -2} for {sup 40}K and from 13 kBq m{sup -2} to 18 kBq m{sup -2} for {sup 226}Ra. The vertical distributions of {sup 40}Kmore » and {sup 226}Ra are uniform through de soil profile. For {sup 137}Cs the inventories range from 0.33 kBq m{sup -2} to 0.73 kBq m{sup -2}. In spite of {sup 137}Cs inventories are similar in both areas the distribution through vertical profile is different. {sup 137}Cs activity concentration has a maximum for layers 5-10 cm depth in A1 and 10-15 cm depth in A2. For deeper layers both areas show similar activity concentrations. The diffusion coefficient (D{sub s}) and convection velocity (v{sub s}) are estimated with a convection-diffusion model. D{sub s} values are in the range reported in the bibliography, while v{sub s} values are one order of magnitude higher. After 40 years most {sup 137}Cs fallout is still in the layer 10-15 cm depth. The great penetration of {sup 137}Cs (25 cm) in these soils may be the result of a high sand and low fine materials content. {sup 137}Cs and {sup 226}Ra were not detected in grass samples. Activity concentration of {sup 40}K in vegetal samples ranges from 116 Bq kg{sup -1} to 613 Bq kg{sup -1}. The TF values obtained for {sup 40}K show a lognormal distribution and ranges from 0.05 to 0.42.« less
NASA Astrophysics Data System (ADS)
Riedo, Andreas; Grimaudo, Valentine; Moreno-García, Pavel; Brigitte Neuland, Maike; Tulej, Marek; Broekmann, Peter; Wurz, Peter
2015-04-01
Sensitive elemental and isotope analysis of solid samples are of considerable interest in nowadays in situ space research. For context in situ analysis, high spatial resolution is also of substantial importance. While the measurements conducted with high lateral resolution can provide compositional details of the surface of highly heterogeneous materials, depth profiling measurements yield information on compositional details of surface and subsurface. The mass spectrometric analysis with the vertical resolution at sub-µm levels is of special consideration and can deliver important information on processes, which may have modified the surface. Information on space weathering effects can be readily determined when the sample composition of the surface and sub-surface is studied with high vertical resolution. In this contribution we will present vertical depth resolution measurements conducted by our sensitive miniature laser ablation ionization time-of-flight mass spectrometer (160mm x Ø 60mm) designed for in situ space research [1-3]. The mass spectrometer is equipped with a fs-laser system (~190fs pulse width, λ = 775nm), which is used for ablation and ionization of the sample material [2]. Laser radiation is focussed on the target material to a spot size of about 10-20 µm in diameter. Mass spectrometric measurements are conducted with a mass resolution (m/Δm) of about 400-500 (at 56Fe mass peak) and with a superior dynamic range of more than eight orders of magnitude. The depth profiling performance studies were conducted on 10µm thick Cu films that were deposited by an additive-assisted electrochemical procedure on Si-wafers. The presented measurement study will show that the current instrument prototype is able to conduct quantitative chemical (elemental and isotope) analysis of solids with a vertical resolution at sub-nm level. Contaminants, incorporated by using additives (polymers containing e.g. C, N, O, S) and with layer thickness of a few nanometres, can be fully resolved [1]. The current measurement performance, including the sensitivity and the high vertical depth resolution, opens new perspectives for future applications in the laboratory, e.g. measurements of Genesis samples, and new measurement capabilities for in situ space research. References 1)V. Grimaudo, P. Moreno-García, M.B. Neuland, M. Tulej, P. Broekmann, P. Wurz and A. Riedo, "High-resolution chemical depth profiling of solid material using a miniature laser ablation/ionization mass spectrometer", Anal. Chem., 2015, submitted. 2)A. Riedo, M. Neuland, S. Meyer, M. Tulej, and P. Wurz, "Coupling of LMS with a fs-laser ablation ion source: elemental and isotope composition measurements", J. Anal. At. Spectrom., 2013, 28, 1256. 3)Tulej et al. CAMAM: A Miniature Laser Ablation Ionisation Mass Spectrometer and Microscope-Camera System for In Situ Investigation of the Composition and Morphology of Extraterrestrial Materials, Geostand. Geoanal. Res., 2014, doi: 10.1111/j.1751-908X.2014.00302.x
Connectivity algorithm with depth first search (DFS) on simple graphs
NASA Astrophysics Data System (ADS)
Riansanti, O.; Ihsan, M.; Suhaimi, D.
2018-01-01
This paper discusses an algorithm to detect connectivity of a simple graph using Depth First Search (DFS). The DFS implementation in this paper differs than other research, that is, on counting the number of visited vertices. The algorithm obtains s from the number of vertices and visits source vertex, following by its adjacent vertices until the last vertex adjacent to the previous source vertex. Any simple graph is connected if s equals 0 and disconnected if s is greater than 0. The complexity of the algorithm is O(n2).
Fertile fathoms: Deep reproductive refugia for threatened shallow corals
Holstein, Daniel M.; Smith, Tyler B.; Gyory, Joanna; Paris, Claire B.
2015-01-01
The persistence of natural metapopulations may depend on subpopulations that exist at the edges of species ranges, removed from anthropogenic stress. Mesophotic coral ecosystems (30–150 m) are buffered from disturbance by depth and distance, and are potentially massive reservoirs of coral diversity and fecundity; yet we know little about the reproductive capabilities of their constituent species and the potential for these marginal environments to influence patterns of coral reef persistence. We investigated the reproductive performance of the threatened depth-generalist coral Orbicella faveolata over the extent of its vertical range to assess mesophotic contributions to regional larval pools. Over equal habitat area, mesophotic coral populations were found to produce over an order of magnitude more eggs than nearby shallow populations. Positive changes with depth in both population abundance and polyp fecundity contributed to this discrepancy. Relative larval pool contributions of deeper living corals will likely increase as shallow habitats further degrade due to climate change and local habitat degradation. This is a compelling example of the potential for marginal habitat to be critical to metapopulation persistence as reproductive refugia. PMID:26196243
ATLID, the atmospheric lidar on board the Earthcare Satellite
NASA Astrophysics Data System (ADS)
Hélière, Arnaud; Gelsthorpe, Robert; Le Hors, Lénaïc.; Toulemont, Yves
2017-11-01
The EarthCARE mission is the sixth Earth Explorer Mission of the ESA Living Planet Programme, with a launch date planned in 2015. It addresses the interaction and impact of clouds and aerosols on the Earth's radiative budget. ATLID (ATmospheric LIDar), one of the four instruments of EarthCARE, shall determine vertical profiles of cloud and aerosol physical parameters (altitude, optical depth, backscatter ratio and depolarisation ratio) in synergy with other instruments. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes with a vertical resolution of about 100 m from ground to an altitude of 40 km. As a result of high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol (Mie) and molecular (Rayleigh) scattering, which gives access to aerosol optical depth. The purpose of the paper is to present the progress in the instrument and subsystem design. The instrument is currently in phase C where the detailed design of all sub-systems is being performed. Emphasis will be put on the major technological developments, in particular the laser Transmitter, the optical units and detector developments.
Mangrove peat analysis and reconstruction of vegetation history at the Pelican Cays, Belize
McKee, K.L.; Faulkner, P.L.
2000-01-01
The substrate beneath mangrove forests in the Pelican Cays complex is predominately peat composed mainly of mangrove roots. Leaves and wood account for less than 20% of the peat mass. At Cat Cay, the depth of the peat ranges from 0.2 m along the shoreline to 1.65 m in the island center, indicating that the island has expanded horizontally as well as vertically through below-ground, biogenic processes. Mangrove roots thus play a critical role in the soil formation, vertical accretion, and stability of these mangrove cays. The species composition of fossil roots changes markedly with depth: Rhizophora mangle (red mangrove) was the initial colonizer on a coral base, followed by Avicennia germinans (black mangrove), which increased in abundance and expanded radially from the center of the island. The center of the Avicennia stand ultimately died, leaving an unvegetated, shallow pond. The peat thus retains a record of mangrove development, succession, and deterioration in response to sea-level change and concomitant hydroedaphic conditions controlling dispersal, establishment, growth, and mortality of mangroves on oceanic islands in Belize.
High activity and Levy searches: jellyfish can search the water column like fish.
Hays, Graeme C; Bastian, Thomas; Doyle, Thomas K; Fossette, Sabrina; Gleiss, Adrian C; Gravenor, Michael B; Hobson, Victoria J; Humphries, Nicolas E; Lilley, Martin K S; Pade, Nicolas G; Sims, David W
2012-02-07
Over-fishing may lead to a decrease in fish abundance and a proliferation of jellyfish. Active movements and prey search might be thought to provide a competitive advantage for fish, but here we use data-loggers to show that the frequently occurring coastal jellyfish (Rhizostoma octopus) does not simply passively drift to encounter prey. Jellyfish (327 days of data from 25 jellyfish with depth collected every 1 min) showed very dynamic vertical movements, with their integrated vertical movement averaging 619.2 m d(-1), more than 60 times the water depth where they were tagged. The majority of movement patterns were best approximated by exponential models describing normal random walks. However, jellyfish also showed switching behaviour from exponential patterns to patterns best fitted by a truncated Lévy distribution with exponents (mean μ=1.96, range 1.2-2.9) close to the theoretical optimum for searching for sparse prey (μopt≈2.0). Complex movements in these 'simple' animals may help jellyfish to compete effectively with fish for plankton prey, which may enhance their ability to increase in dominance in perturbed ocean systems.
Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D
2013-03-15
Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
GOME-2A retrievals of tropospheric NO2 in different spectral ranges - influence of penetration depth
NASA Astrophysics Data System (ADS)
Behrens, Lisa K.; Hilboll, Andreas; Richter, Andreas; Peters, Enno; Eskes, Henk; Burrows, John P.
2018-05-01
In this study, we present a novel nitrogen dioxide (NO2) differential optical absorption spectroscopy (DOAS) retrieval in the ultraviolet (UV) spectral range for observations from the Global Ozone Monitoring Instrument 2 on board EUMETSAT's MetOp-A (GOME-2A) satellite. We compare the results to those from an established NO2 retrieval in the visible (vis) spectral range from the same instrument and investigate how differences between the two are linked to the NO2 vertical profile shape in the troposphere. As expected, radiative transfer calculations for satellite geometries show that the sensitivity close to the ground is higher in the vis than in the UV spectral range. Consequently, NO2 slant column densities (SCDs) in the vis are usually higher than in the UV if the NO2 is close to the surface. Therefore, these differences in NO2 SCDs between the two spectral ranges contain information on the vertical distribution of NO2 in the troposphere. We combine these results with radiative transfer calculations and simulated NO2 fields from the TM5-MP chemistry transport model to evaluate the simulated NO2 vertical distribution. We investigate regions representative of both anthropogenic and biomass burning NO2 pollution. Anthropogenic air pollution is mostly located in the boundary layer close to the surface, which is reflected by large differences between UV and vis SCDs of ˜ 60 %. Biomass burning NO2 in contrast is often uplifted into elevated layers above the boundary layer. This is best seen in tropical Africa south of the Equator, where the biomass burning NO2 is well observed in the UV, and the SCD difference between the two spectral ranges is only ˜ 36 %. In tropical Africa north of the Equator, however, the biomass burning NO2 is located closer to the ground, reducing its visibility in the UV. While not enabling a full retrieval of the vertical NO2 profile shape in the troposphere, our results can help to constrain the vertical profile of NO2 in the lower troposphere and, when analysed together with simulated NO2 fields, can help to better interpret the model output.
Tenggardjaja, Kimberly A; Bowen, Brian W; Bernardi, Giacomo
2014-01-01
Understanding vertical and horizontal connectivity is a major priority in research on mesophotic coral ecosystems (30-150 m). However, horizontal connectivity has been the focus of few studies, and data on vertical connectivity are limited to sessile benthic mesophotic organisms. Here we present patterns of vertical and horizontal connectivity in the Hawaiian Islands-Johnston Atoll endemic threespot damselfish, Chromis verater, based on 319 shallow specimens and 153 deep specimens. The mtDNA markers cytochrome b and control region were sequenced to analyze genetic structure: 1) between shallow (< 30 m) and mesophotic (30-150 m) populations and 2) across the species' geographic range. Additionally, the nuclear markers rhodopsin and internal transcribed spacer 2 of ribosomal DNA were sequenced to assess connectivity between shallow and mesophotic populations. There was no significant genetic differentiation by depth, indicating high levels of vertical connectivity between shallow and deep aggregates of C. verater. Consequently, shallow and deep samples were combined by location for analyses of horizontal connectivity. We detected low but significant population structure across the Hawaiian Archipelago (overall cytochrome b: ΦST = 0.009, P = 0.020; control region: ΦST = 0.012, P = 0.009) and a larger break between the archipelago and Johnston Atoll (cytochrome b: ΦST = 0.068, P < 0.001; control region: ΦST = 0.116, P < 0.001). The population structure within the archipelago was driven by samples from the island of Hawaii at the southeast end of the chain and Lisianski in the middle of the archipelago. The lack of vertical genetic structure supports the refugia hypothesis that deep reefs may constitute a population reservoir for species depleted in shallow reef habitats. These findings represent the first connectivity study on a mobile organism that spans shallow and mesophotic depths and provide a reference point for future connectivity studies on mesophotic fishes.
Tenggardjaja, Kimberly A.; Bowen, Brian W.; Bernardi, Giacomo
2014-01-01
Understanding vertical and horizontal connectivity is a major priority in research on mesophotic coral ecosystems (30–150 m). However, horizontal connectivity has been the focus of few studies, and data on vertical connectivity are limited to sessile benthic mesophotic organisms. Here we present patterns of vertical and horizontal connectivity in the Hawaiian Islands-Johnston Atoll endemic threespot damselfish, Chromis verater, based on 319 shallow specimens and 153 deep specimens. The mtDNA markers cytochrome b and control region were sequenced to analyze genetic structure: 1) between shallow (<30 m) and mesophotic (30–150 m) populations and 2) across the species' geographic range. Additionally, the nuclear markers rhodopsin and internal transcribed spacer 2 of ribosomal DNA were sequenced to assess connectivity between shallow and mesophotic populations. There was no significant genetic differentiation by depth, indicating high levels of vertical connectivity between shallow and deep aggregates of C. verater. Consequently, shallow and deep samples were combined by location for analyses of horizontal connectivity. We detected low but significant population structure across the Hawaiian Archipelago (overall cytochrome b: ΦST = 0.009, P = 0.020; control region: ΦST = 0.012, P = 0.009) and a larger break between the archipelago and Johnston Atoll (cytochrome b: ΦST = 0.068, P<0.001; control region: ΦST = 0.116, P<0.001). The population structure within the archipelago was driven by samples from the island of Hawaii at the southeast end of the chain and Lisianski in the middle of the archipelago. The lack of vertical genetic structure supports the refugia hypothesis that deep reefs may constitute a population reservoir for species depleted in shallow reef habitats. These findings represent the first connectivity study on a mobile organism that spans shallow and mesophotic depths and provide a reference point for future connectivity studies on mesophotic fishes. PMID:25517964
Sloto, Ronald A.; Grazul, Kevin E.
1998-01-01
Borehole geophysical logging, aquifer tests, and aquifer-isolation (packer) tests were conducted in four supply wells at the former U.S. Naval Air Warfare Center (NAWC) in Warminster, PA, to identify the depth and yield of water-bearing zones, occurrence of borehole flow, and effect of pumping on nearby wells. The study was conducted as part of an ongoing evaluation of ground-water contamination at the NAWC. Caliper, natural-gamma, single-point resistance, fluid resistivity, and fluid temperature logs and borehole television surveys were run in the supply wells, which range in depth from 242 to 560 ft (feet). Acoustic borehole televiewer and borehole deviation logs were run in two of the wells. The direction and rate of borehole-fluid movement under non-pumping conditions were measured with a high-resolution heatpulse flowmeter. The logs were used to locate water-bearing fractures, determine probable zones of vertical borehole-fluid movement, and determine the depth to set packers. An aquifer test was conducted in each well to determine open-hole specific capacity and the effect of pumping the open borehole on water levels in nearby wells. Specific capacities ranged from 0.21 to 1.7 (gal/min)/ft (gallons per minute per foot) of drawdown. Aquifer-isolation tests were conducted in each well to determine depth-discrete specific capacities and to determine the effect of pumping an individual fracture or fracture zone on water levels in nearby wells. Specific capacities of individual fractures and fracture zones ranged from 0 to 2.3 (gal/min)/ft. Most fractures identified as water-producing or water-receiving zones by borehole geophysical methods produced water when isolated and pumped. All hydrologically active fractures below 250 ft below land surface were identified as water-receiving zones and produced little water when isolated and pumped. In the two wells greater then 540 ft deep, downward borehole flow to the deep water-receiving fractures is caused by a large difference in head (as much as greater then 49 ft) between water-bearing fractured in the upper and lower part of the borehole. Vertical distribution of specific capacity between land surface and 250 ft below land surface is not related to depth.
NASA Astrophysics Data System (ADS)
Klein, E. C.; Holt, W. E.; Flesch, L. M.; Haines, A. J.
2006-12-01
The "jelly sandwich" and "crème brûlée" models divides continental lithosphere into distinct rheological layers. Dynamic models from thin sheet approximations provide estimates of the total strength of the lithosphere, but only to a thickness governed by the degree of mechanical coupling between rheological layers. If either the "jelly sandwich" or the "crème brûlée" model of the lithosphere is appropriate for the diffuse plate boundary zone setting of western North America, we expect a sharp contrast or decoupling between the strong upper crust ("bread") layer overlying the weak lower crustal ("jelly") layer. We examine the strength of the upper crust with and without strength contribution from the lower crust using thin sheet modeling methodologies. We use seismically defined densities to constrain vertical integrals of vertical stress (GPE) within the crust. Neglecting stresses due to flexure as well as shear stresses at the base of the crustal layer, lateral differences in GPE within the layer, are balanced solely by gradients in horizontal deviatoric stress [Flesch et al., 2001, 2006]. We solve the force-balance equations for the minimum deviatoric stress field associated with gradients of GPE. This deviatoric stress field calibrates the magnitude of deviatoric stresses within the seismogenic layer. We then solve for stress field boundary conditions associated with the stress field contributions from sources outside the modeled region that together with the minimum solution from GPE differences provide a best match with stress field indicators within western North America. In order to infer appropriate stress field indicators we develop a long-term kinematic strain rate and velocity field model. Where we use this strain rate field we assume that the relationship between deviatoric stress directions and kinematic strain rate directions is isotropic. In our calculations the seismogenic layer extends from the surface to either a uniform depth below sea level or to a variable depth below sea level constrained by heat flow. For the case of a long-term seismogenic layer with a uniform base 20 km below sea level, the long-term vertically integrated deviatoric stress magnitudes range between 0.05-0.75x10^{12} N/m, while the long-term vertically integrated strength magnitudes of the layer are of the order of 0.05-1.5x10^{12} N/m. These strength values constrain low long-term friction coefficients of 0.02-0.30 under hydrostatic to wet conditions in the Basin and Range region. We test the sensitivity of our solutions to different assumed brittle-ductile transition depths and find that coefficients of friction on faults, along with magnitudes of vertically integrated strength, are relatively insensitive to these assumed layer thicknesses. Moreover, through this sensitivity modeling we find evidence that our assumption of decoupling is valid for most of the Basin and Range region in that we find evidence for diminishing contributions to crustal strength with depth. We model the interface between the upper and lower crust by parameterization of a variable seismogenic thickness in the thin sheet equations. This allows us to estimate the strength of the top slice of "bread" without the incorporation of any "jelly". We find that most of the long-term strength of the crust within the diffuse plate boundary zone of western North America resides in the seismogenic layer of the upper crust.
Stereoscopic perception of real depths at large distances.
Palmisano, Stephen; Gillam, Barbara; Govan, Donovan G; Allison, Robert S; Harris, Julie M
2010-06-01
There has been no direct examination of stereoscopic depth perception at very large observation distances and depths. We measured perceptions of depth magnitude at distances where it is frequently reported without evidence that stereopsis is non-functional. We adapted methods pioneered at distances up to 9 m by R. S. Allison, B. J. Gillam, and E. Vecellio (2009) for use in a 381-m-long railway tunnel. Pairs of Light Emitting Diode (LED) targets were presented either in complete darkness or with the environment lit as far as the nearest LED (the observation distance). We found that binocular, but not monocular, estimates of the depth between pairs of LEDs increased with their physical depths up to the maximum depth separation tested (248 m). Binocular estimates of depth were much larger with a lit foreground than in darkness and increased as the observation distance increased from 20 to 40 m, indicating that binocular disparity can be scaled for much larger distances than previously realized. Since these observation distances were well beyond the range of vertical disparity and oculomotor cues, this scaling must rely on perspective cues. We also ran control experiments at smaller distances, which showed that estimates of depth and distance correlate poorly and that our metric estimation method gives similar results to a comparison method under the same conditions.
Fisher, M.A.; Ratchkovski, N.A.; Nokleberg, W.J.; Pellerin, L.; Glen, J.M.G.
2004-01-01
Geophysical information, including deep-crustal seismic reflection, magnetotelluric (MT), gravity, and magnetic data, cross the aftershock zone of the 3 November 2002 Mw 7.9 Denali fault earthquake. These data and aftershock seismicity, jointly interpreted, reveal the crustal structure of the right-lateral-slip Denali fault and the eastern Alaska Range orogen, as well as the relationship between this structure and seismicity. North of the Denali fault, strong seismic reflections from within the Alaska Range orogen show features that dip as steeply as 25?? north and extend downward to depths between 20 and 25 km. These reflections reveal crustal structures, probably ductile shear zones, that most likely formed during the Late Cretaceous, but these structures appear to be inactive, having produced little seismicity during the past 20 years. Furthermore, seismic reflections mainly dip north, whereas alignments in aftershock hypocenters dip south. The Denali fault is nonreflective, but modeling of MT, gravity, and magnetic data suggests that the Denali fault dips steeply to vertically. However, in an alternative structural model, the Denali fault is defined by one of the reflection bands that dips to the north and flattens into the middle crust of the Alaska Range orogen. Modeling of MT data indicates a rock body, having low electrical resistivity (>10 ??-m), that lies mainly at depths greater than 10 km, directly beneath aftershocks of the Denali fault earthquake. The maximum depth of aftershocks along the Denali fault is 10 km. This shallow depth may arise from a higher-than-normal geothermal gradient. Alternatively, the low electrical resistivity of deep rocks along the Denali fault may be associated with fluids that have weakened the lower crust and helped determine the depth extent of the after-shock zone.
Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS
Haas, Kevin A.; Warner, John C.
2009-01-01
Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales.
Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS
Haas, K.A.; Warner, J.C.
2009-01-01
Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.
Cheng, Zhineng; Wang, Yan; Wang, Shaorui; Luo, Chunling; Li, Jun; Chaemfa, Chakra; Jiang, Haoyu; Zhang, Gan
2014-08-01
The vertical distribution of polybrominated diphenyl ethers (PBDEs) in soil at four sites within an e-waste recycling region of South China was investigated. PBDE concentrations in soil ranged from 1.38 to 765 ng/g. There was a trend of decreasing PBDE concentration with soil depth, especially in the paddy field. However, high concentrations of BDE-209 were found in deeper soils indicating a highly preferential migration. There was a stronger correlation between PBDEs and total organic carbon (TOC), compared to dissolved organic carbon (DOC), which suggests that the association between non-dissolved organic carbon (NDOC) and PBDEs is stronger than for DOC. Different land use types, in particular differences in farming activities, significantly influenced the vertical distribution of PBDEs in soils. PBDEs displayed a higher leaching tendency in moist paddy soil than in drier soils. The frequent flooding condition in paddy field may facilitate the vertical transfer of PBDEs to the deeper soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
A vertical wall in the Whittard Canyon with a novel community assemblage
NASA Astrophysics Data System (ADS)
Johnson, Mark; White, Martin; Wilson, Annette; Wuerzberg, Laura; Schwabe, Enrico; Folch, Helka; Allcock, Louise
2013-04-01
We describe a hitherto unreported community from a vertical wall in the Whittard Canyon system on the Atlantic Margin. The wall extended vertically for about 100 m from approximately 750 m depth. We explored the wall with an ROV and discovered an assemblage cominated by large limid bivalves Acesta excavata and deep-water oysters Neopycnodonte zibrowii at very high densities, particularly at overhangs. The assemblage also contained deep-water corals (including solitary corals). It had high numbers of flytrap anemones and had many mobile species associated with it including crustaceans such as Paramola cuvieri and Bathynectes longispina, echinoderms and fishes. We took CTD transects in the area of the wall and beam attenuation indicated nepheloid layers present in the water column. The greatest densities of suspended material at the ROV dive site were at the depth of the wall. We hypothesise that internal waves concentrate suspended sediment at the foot of the vertical wall. This may provide the resources to support the high density of large filter feeders at these depths.
Williams, R.A.; Simpson, R.W.; Jachens, R.C.; Stephenson, W.J.; Odum, J.K.; Ponce, D.A.
2005-01-01
A 1.6-km-long seismic reflection profile across the creeping trace of the southern Hayward fault near Fremont, California, images the fault to a depth of 650 m. Reflector truncations define a fault dip of about 70 degrees east in the 100 to 650 m depth range that projects upward to the creeping surface trace, and is inconsistent with a nearly vertical fault in this vicinity as previously believed. This fault projects to the Mission seismicity trend located at 4-10 km depth about 2 km east of the surface trace and suggests that the southern end of the fault is as seismically active as the part north of San Leandro. The seismic hazard implication is that the Hayward fault may have a more direct connection at depth with the Calaveras fault, affecting estimates of potential event magnitudes that could occur on the combined fault surfaces, thus affecting hazard assessments for the south San Francisco Bay region.
Eaton, J.P.; Lee, W.H.K.; Pakiser, L.C.
1970-01-01
A small, dense network of independently recording portable seismograph stations was used to delineate the slip surface associated with the 1966 Parkfield-Cholame earthquake by precise three dimensional mapping of the hypocenters of its aftershocks. The aftershocks were concentrated in a very narrow vertical zone beneath or immediately adjacent to the zone of surf ace fracturing that accompanied the main shock. Focal depths ranged from less than 1 km to a maximum of 15 km. The same type of portable network was used to study microearthquakes associated with an actively creeping section of the San Andreas fault south of Hollister during the summer of 1967. Microearthquake activity during the 6-week operation of this network was dominated by aftershocks of a magnitude-4 earthquake that occurred within the network near Bear Valley on July 23. Most of the aftershocks were concentrated in an equidimensional region about 2 1 2km across that contained the hypocenter of the main shock. The zone of the concentrated aftershocks was centered near the middle of the rift zone at a depth of about 3 1 2km. Hypocenters of other aftershocks outlined a 25 km long zone of activity beneath the actively creeping strand of the fault and extending from the surface to a depth of about 13 km. A continuing study of microearthquakes along the San Andreas, Hayward, and Calaveras faults between Hollister and San Francisco has been under way for about 2 years. The permanent telemetered network constructed for this purpose has grown from about 30 stations in early 1968 to about 45 stations in late 1969. Microearthquakes between Hollister and San Francisco are heavily concentrated in narrow, nearly vertical zones along sections of the Sargent, San Andreas, and Calaveras faults. Focal depths range from less than 1 km to about 14 km. ?? 1970.
River-induced flow dynamics in long-screen wells and impact on aqueous samples.
Vermeul, Vince R; McKinley, James P; Newcomer, Darrell R; Mackley, Robert D; Zachara, J M
2011-01-01
Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. This article builds on the existing body of literature by (1) demonstrating the utility of continuous (i.e., hourly measurements for ∼1 month) ambient wellbore flow monitoring and (2) presenting results from a field experiment where relatively large wellbore flows (up to 4 L/min) were induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an electromagnetic borehole flowmeter allowed these effects to be evaluated in concert with continuously monitored river-stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multilevel well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth. Copyright © 2010 Battelle Memorial Institute. Journal compilation © 2010 National Ground Water Association.
Behavioral ecology of jumbo squid (Dosidicus gigas) in relation to oxygen minimum zones
NASA Astrophysics Data System (ADS)
Stewart, Julia S.; Field, John C.; Markaida, Unai; Gilly, William F.
2013-10-01
Habitat utilization, behavior and food habits of the jumbo or Humboldt squid, Dosidicus gigas, were compared between an area recently inhabited in the northern California Current System (CCS) and a historically established area of residence in the Gulf of California (GOC). Low dissolved oxygen concentrations at midwater depths define the oxygen minimum zone (OMZ), an important environmental feature in both areas. We analyzed vertical diving behavior and diet of D. gigas and hydrographic properties of the water column to ascertain the extent to which squid utilized the OMZ in the two areas. The upper boundary of the OMZ has been shoaling in recent decades in the CCS, and this phenomenon has been proposed to vertically compress the pelagic environment inhabited by aerobic predators. A shoaling OMZ will also bring mesopelagic communities into a depth range with more illumination during daytime, making these organisms more vulnerable to predation by visual predators (i.e. jumbo squid). Because the OMZ in the GOC is considerably shallower than in the CCS, our study provides insight into the behavioral plasticity of jumbo squid and how they may respond to a shoaling OMZ in the CCS. We propose that shoaling OMZs are likely to be favorable to jumbo squid and could be a key indirect factor behind the recent range expansion of this highly migratory predator.
The principal factors contributing to the flux of salt in a narrow, partially stratified estuary
NASA Astrophysics Data System (ADS)
Lewis, R. E.; Lewis, J. O.
1983-06-01
Observations of the velocity and salinity structure of the Tees estuary were made at eight stations along the estuary axis between Victoria Bridge and the sea during the summer of 1975. The measurements were made on ten separate tidal periods covering neap and spring tides. The data were collected over a period of relatively low freshwater flows and the residual current was found to have a strong dependence on the Stokes drift. At the upstream stations, the residuals were more than an order of magnitude greater than the currents anticipated from the freshwater discharge. Although the mean stratification decreased as the tidal range increased, the vertical circulation was stronger on spring tides than on neaps. Vertical variations in the amplitude and phase of the tidal current results in a current which strengthens the vertical circulation. However, this effect only made a relatively small contribution to the observed vertical circulation. The relative contribution of the individual salt flux terms to the net upstream transport of salt varies along the estuary. As the estuary narrows, the contribution by the oscillatory terms dominates that from the shear in the steady state flow. Of these oscillatory terms, the correlation of velocity and salinity fluctuations plays a key rôle in the salt transport. The depth mean values make a greater contribution than deviations from the depth mean and the flux due to phase variations over depth is smaller than either of these. Since the Stokes drift is compensated by a down-stream steady state flow, it does not contribute to the tidal mean transport of salt. At the seaward end of the estuary, the salt fluxes due to the steady state vertical shear and the convariance of the tidal fluctuations act in a complementary way to counter the seaward transport of salt by the freshwater flow. With the possible exceptions of the wide or narrow reaches of the Tees, the longitudinal fluxes of salt due to transverse variations in velocity, salinity and depth and turbulent fluctuations are of secondary importance as contributors to the estuary salt budget. On both neap and spring tides, the computed total salt transports at the Newport and Victoria bridges did not match the values required for a salt balance with the corresponding freshwater flows. These fluxes were probably the cause of the observed downstream displacement of the tidal mean salinity distribution between neap and spring tides.
Lithologic boundaries from gravity and magnetic anomalies over Proterozoic Dalma volcanics
NASA Astrophysics Data System (ADS)
Yadav, Pramod Kumar; Adhikari, P. K.; Srivastava, Shalivahan; Maurya, Ved P.; Tripathi, Anurag; Singh, Shailendra; Singh, Roshan K.; Bage, Ashish K.
2018-03-01
Dalma volcanics (DVs) has intruded the older Singhbhum Group of Metapelites. Despite DVs being rich in mineralisation, its boundaries are not clearly demarcated. Gravity and magnetic surveys have been attempted for mapping the boundaries in DVs. These surveys were made in the northern fringe of the DVs over an area of ˜ 0.70 km2 along 13 parallel lines at 50 m spacing. The data was acquired at ˜ 25 m spacing. The surveys were taken for determination of lithological boundaries, depths and nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and magnetic intensity show the same trend as that of Bouguer gravity anomaly and total magnetic intensity anomaly map indicating towards shallow sources. The magnetic map in general follows the same pattern as that of gravity anomaly maps. The map shows coincident high gravity and magnetic anomalies. These anomalies together with resistivity signatures confirm that the northern fringe of DVs hosts volcanogenic massive sulphide settings. The Euler depth solution delineated the lateral boundaries and nature of the source. It seems that the source is of spherical nature lying within a depth range of 25-40 m. The obtained lithological (vertical) units from RAPS are between Lower DVs, Upper DVs and Singhbhum Group Metapelites at depths of ˜ 15, ˜ 25 and ˜ 40 m, respectively. The metallogeny is associated with the Upper DVs and the corresponding delineated lithological (vertical) unit is indicative of the top of the ore body. Good agreement is observed with the geological succession from the drilling data and resistivity data. The findings suggest that the northern fringe of DVs could be a preferred target for drilling.
The Caribbean conundrum of Holocene sea level.
NASA Astrophysics Data System (ADS)
Jackson, Luke; Mound, Jon
2014-05-01
In the tropics, pre-historic sea-level curve reconstruction is often problematic because it relies upon sea-level indicators whose vertical relationship to the sea surface is poorly constrained. In the Caribbean, fossil corals, mangrove peats and shell material dominate the pre-historic indicator record. The common approach to reconstruction involves the use of modern analogues to these indicators to establish a fixed vertical habitable range. The aim of these reconstructions is to find spatial variability in the Holocene sea level in an area gradually subsiding (< 1.2 mm yr-1) due the water loading following the deglaciation of the Laurentide ice sheet. We construct two catalogues: one of published Holocene sea-level indicators and the other of published, modern growth rates, abundance and coverage of mangrove and coral species for different depths. We use the first catalogue to calibrate 14C ages to give a probabilistic age range for each indicator. We use the second catalogue to define a depth probability distribution function (pdf) for mangroves and each coral species. The Holocene indicators are grouped into 12 sub-regions around the Caribbean. For each sub-region we apply our sea-level reconstruction, which involves stepping a fixed-length time window through time and calculating the position (and rate) of sea-level (change) using a thousand realisations of the time/depth pdfs to define an envelope of probable solutions. We find that the sub-regional relative sea-level curves display spatio-temporal variability including a south-east to north-west 1500 year lag in the arrival of Holocene sea level to that of the present day. We demonstrate that these variations are primarily due to glacial-isostatic-adjustment induced sea-level change and that sub-regional variations (where sufficient data exists) are due to local uplift variability.
NASA Astrophysics Data System (ADS)
Nerot, Caroline; Meziane, Tarik; Schaal, Gauthier; Grall, Jacques; Lorrain, Anne; Paulet, Yves-Marie; Kraffe, Edouard
2015-10-01
The spatial variability of food resources along continental margins can strongly influence the physiology and ecology of benthic bivalves. We explored the variability of food sources of the great scallop Pecten maximus, by determining their fatty acid (FA) composition along an inshore-offshore gradient in the Bay of Biscay (from 15 to 190 m depth). The FA composition of the digestive gland showed strong differences between shallow and deep-water habitats. This trend was mainly driven by their content in diatom-characteristic fatty acids, which are abundant near the coast. Scallops collected from the middle of the continental shelf were characterized by higher contents of flagellate markers than scallops from shallow habitats. This could be related to a permanent vertical stratification in the water column, which reduced vertical mixing of waters, thereby enhancing organic matter recycling through the microbial loop. In the deeper water station (190 m), FA compositions were close to the compositions found in scallops from shallow areas, which suggest that scallops could have access to the same resources (i.e. diatoms). Muscle FA composition was more indicative of the physiological state of scallops over this depth range, revealing contrasting reproductive strategies among the two coastal sites and metabolic or physiological adaptation at greater depth (e.g. structural and functional adjustments of membrane composition). This study therefore revealed contrasted patterns between shallow and deeper habitats for both P. maximus muscle and digestive gland tissues. This emphasizes the variability in the diet of this species along its distribution range, and stresses the importance of analyzing different tissues for their FA composition in order to better understand their physiology and ecology.
Spatial and vertical distribution of bacterial community in the northern South China Sea.
Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Sun, Cui-Ci; Cheng, Hao
2015-10-01
Microbial communities are highly diverse in coastal oceans and response rapidly with changing environments. Learning about this will help us understand the ecology of microbial populations in marine ecosystems. This study aimed to assess the spatial and vertical distributions of the bacterial community in the northern South China Sea. Multi-dimensional scaling analyses revealed structural differences of the bacterial community among sampling sites and vertical depth. Result also indicated that bacterial community in most sites had higher diversity in 0-75 m depths than those in 100-200 m depths. Bacterial community of samples was positively correlation with salinity and depth, whereas was negatively correlation with temperature. Proteobacteria and Cyanobacteria were the dominant groups, which accounted for the majority of sequences. The α-Proteobacteria was highly diverse, and sequences belonged to Rhodobacterales bacteria were dominant in all characterized sequences. The current data indicate that the Rhodobacterales bacteria, especially Roseobacter clade are the diverse group in the tropical waters.
NASA Astrophysics Data System (ADS)
Bense, V. F.; Kurylyk, B. L.
2017-12-01
Sustained ground surface warming on a decadal time scale leads to an inversion of thermal gradients in the upper tens of meters. The magnitude and direction of vertical groundwater flow should influence the propagation of this warming signal, but direct field observations of this phenomenon are rare. Comparison of temperature-depth profiles in boreholes in the Veluwe area, Netherlands, collected in 1978-1982 and 2016 provided such direct measurement. We used these repeated profiles to track the downward propagation rate of the depth at which the thermal gradient is zero. Numerical modeling of the migration of this thermal gradient "inflection point" yielded estimates of downward groundwater flow rates (0-0.24 m a-1) that generally concurred with known hydrogeological conditions in the area. We conclude that analysis of inflection point depths in temperature-depth profiles impacted by surface warming provides a largely untapped opportunity to inform sustainable groundwater management plans that rely on accurate estimates of long-term vertical groundwater fluxes.
Fuis, Gary S.; Bauer, Klaus; Goldman, Mark R.; Ryberg, Trond; Langenheim, Victoria; Scheirer, Daniel S.; Rymer, Michael J.; Stock, Joann M.; Hole, John A.; Catchings, Rufus D.; Graves, Robert; Aagaard, Brad T.
2017-01-01
The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a fault‐crossing profile just north of the Salton Sea, sedimentary basin depth reaches 4 km southwest of the SAF. On our line 6, a fault‐crossing profile at the north end of the Coachella Valley, sedimentary basin depth is ∼2–3 km">∼2–3 km and centered on the central, most active trace of the SAF. Subsurface geometry of the SAF and nearby faults along these two lines is determined using a new method of seismic‐reflection imaging, combined with potential‐field studies and earthquakes. Below a 6–9 km depth range, the SAF dips ∼50°–60°">∼50°–60° NE, and above this depth range it dips more steeply. Nearby faults are also imaged in the upper 10 km, many of which dip steeply and project to mapped surface fault traces. These secondary faults may join the SAF at depths below about 10 km to form a flower‐like structure. In Appendix D, we show that rupture on a northeast‐dipping SAF, using a single plane that approximates the two dips seen in our study, produces shaking that differs from shaking calculated for the Great California ShakeOut, for which the southern SAF was modeled as vertical in most places: shorter‐period (T<1 s">T<1 s) shaking is increased locally by up to a factor of 2 on the hanging wall and is decreased locally by up to a factor of 2 on the footwall, compared to shaking calculated for a vertical fault.
A measurement system for vertical seawater profiles close to the air-sea interface
NASA Astrophysics Data System (ADS)
Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.
2017-09-01
This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.
Hingsamer, Peter; Peeters, Frank; Hofmann, Hilmar
2014-01-01
Consequences of internal wave motion for phytoplankton and in particular for the distribution and production of the harmful and buoyant cyanobacterium Planktothrix rubescens were investigated based on data from two field campaigns conducted in Lake Ammer during summer 2009 and 2011. In both years, P. rubescens dominated the phytoplankton community and formed a deep chlorophyll maximum (DCM) in the metalimnion. Internal wave motions caused vertical displacement of P. rubescens of up to 6 m and 10 m, respectively. Vertical displacements of isotherms and of iso-concentration lines of P. rubescens from the same depth range coincided, suggesting that P. rubescens did not or could not regulate its buoyancy to prevent wave-induced vertical displacements. Diatoms dominated the phytoplankton community in the epilimnion and were vertically separated from P. rubescens. The thickness of the diatom layer, but not the diatom concentrations within the layer, changed in phase with the changes in the thickness of the epilimnion caused by internal wave motions. Seiche induced vertical displacements of P. rubescens caused fluctuations in the light intensity available at the depth of the P. rubescens layer. The interplay between seiche induced vertical displacements of the P. rubescens layer and the daily cycle of incident light lead to differences in the daily mean available light intensity between lake ends by up to a factor of ∼3. As a consequence, the daily mean specific oxygen production rate of P. rubescens differed by up to a factor of ∼7 between lake ends. The horizontal differences in the specific oxygen production rate of P. rubescens were persistent over several days suggesting that the associated production of P. rubescens biomass may lead to phytoplankton patchiness. The effect of internal seiches on the spatial heterogeneity and the persistence of horizontal differences in production, however, depend on the timing and the synchronization between internal wave motion and the daily course of incident light intensity. Vertical displacements caused by internal waves could be distinguished from other factors influencing the distribution of P. rubescens (e.g. active buoyancy control, production, vertical mixing) by a temperature-based data transformation. This technique may be of general use for separating wave-induced transport from other processes (e.g. sedimentation, vertical mixing) that affect the distributions of dissolved substances and suspended particles. PMID:25102279
77 FR 26959 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... Creek confluence. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet... County, Indiana, and Incorporated Areas Docket No.: FEMA-B-1171 Big Walnut Creek Approximately 845 feet... feet upstream +692 of Houck Road (North County Road 25 East). * National Geodetic Vertical Datum...
Estimate of Boundary-Layer Depth Over Beijing, China, Using Doppler Lidar Data During SURF-2015
NASA Astrophysics Data System (ADS)
Huang, Meng; Gao, Zhiqiu; Miao, Shiguang; Chen, Fei; LeMone, Margaret A.; Li, Ju; Hu, Fei; Wang, Linlin
2017-03-01
Planetary boundary-layer (PBL) structure was investigated using observations from a Doppler lidar and the 325-m Institute of Atmospheric Physics (IAP) meteorological tower in the centre of Beijing during the summer 2015 Study of Urban-impacts on Rainfall and Fog/haze (SURF-2015) field campaign. Using six fair-weather days of lidar and tower data under clear to cloudy skies, we evaluate the ability of the Doppler lidar to probe the urban boundary-layer structure, and then propose a composite method for estimating the diurnal cycle of the PBL depth using the Doppler lidar. For the convective boundary layer (CBL), a threshold method using vertical velocity variance (σ _w^2 >0.1 m2s^{-2}) is used, since it provides more reliable CBL depths than a conventional maximum wind-shear method. The nocturnal boundary-layer (NBL) depth is defined as the height at which σ _w^2 decreases to 10 % of its near-surface maximum minus a background variance. The PBL depths determined by combining these methods have average values ranging from ≈ 270 to ≈ 1500 m for the six days, with the greatest maximum depths associated with clear skies. Release of stored and anthropogenic heat contributes to the maintenance of turbulence until late evening, keeping the NBL near-neutral and deeper at night than would be expected over a natural surface. The NBL typically becomes more shallow with time, but grows in the presence of low-level nocturnal jets. While current results are promising, data over a broader range of conditions are needed to fully develop our PBL-depth algorithms.
Groundwater flow and velocity in a 500 ka pre-Illinoian till, eastern Iowa
Schilling, K.E.; Tassier-Surine, S.
2006-01-01
Few hydrology studies have investigated glacial till older than Illinoian time (> 300,000 BP) despite these older tills overlying a large portion of North America. An 8- and 6-well monitoring well nest installed into a 31 m thick pre-Illinoian till sequence near Cedar Rapids, Iowa was characterized using traditional hydrologic methods and chemical tracers. The aquitard system consists of about 9 m of fine-grained oxidized pre-Illinoian till overlying 22 m of unoxidized till and Devonian dolomite bedrock. Hydraulic conductivity ranged from 10-7 m/s in oxidized till and 10-10 m/s in unoxidized till. Hydraulic head relations indicated downward groundwater flow through the till profile with hydraulic gradients steepest near the unoxidized till/bedrock interface. Tritium and nitrate concentrations indicated recent (< 50 years old) recharge to a depth of 9-12 m below land surface. 18O and 2H results ranged between -6.2 to -7.9% and -38.0 to -50.9%, respectively, and plotted near the local Meteoric Water Line. A 1 per mil shift toward less negative 18O values with depth may suggest a climate change signal contained in the till water but more data are needed to verify this trend. Vertical groundwater velocity through the unoxidized till was estimated to range from 0.4 to 5.7 cm/year. The thickness of unoxidized pre-Illinoian till in Linn County was estimated from available records and contoured against vertical travel times to evaluate the effectiveness of pre-Illinoian till in preventing nitrate migration to underlying bedrock aquifers. ?? Springer-Verlag 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, J.S.; Brown, L.R.; Thieling, S.C.
1995-12-31
The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. Allmore » three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.« less
Balch, William M; Bowler, Bruce C; Drapeau, David T; Lubelczyk, Laura C; Lyczkowski, Emily
2018-01-01
Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m -3 ) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained-variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone.
Bowler, Bruce C.; Drapeau, David T.; Lubelczyk, Laura C.; Lyczkowski, Emily
2018-01-01
Abstract Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m−3) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained‐variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone. PMID:29576683
The effect of particle properties on the depth profile of buoyant plastics in the ocean
NASA Astrophysics Data System (ADS)
Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.
2016-10-01
Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.
The effect of particle properties on the depth profile of buoyant plastics in the ocean
Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.
2016-01-01
Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5–1.5 and 1.5–5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04–30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies. PMID:27721460
The effect of particle properties on the depth profile of buoyant plastics in the ocean.
Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F; Schmid, Moritz S; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E W; Schoeneich-Argent, Rosanna I; Koelmans, Albert A
2016-10-10
Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types ('fragments' and 'lines'), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.
Minimalistic models of the vertical distribution of roots under stochastic hydrological forcing
NASA Astrophysics Data System (ADS)
Laio, Francesco
2014-05-01
The assessment of the vertical root profile can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root profile is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the vertical root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the vertical root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root profile we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between observed and modeled mean root depths. The merit of this minimalistic approach to the modeling of the vertical root distribution relies on the fact that it allows a quantitative estimation of the main features of the vertical root distribution without resorting to time- and money-demanding measuring surveys.
Variation in depth of whitetip reef sharks: does provisioning ecotourism change their behaviour?
NASA Astrophysics Data System (ADS)
Fitzpatrick, Richard; Abrantes, Kátya G.; Seymour, Jamie; Barnett, Adam
2011-09-01
In the dive tourism industry, shark provisioning has become increasingly popular in many places around the world. It is therefore important to determine the impacts that provisioning may have on shark behaviour. In this study, eight adult whitetip reef sharks Triaenodon obesus were tagged with time-depth recorders at Osprey Reef in the Coral Sea, Australia. Tags collected time and depth data every 30 s. The absolute change in depth over 5-min blocks was considered as a proxy for vertical activity level. Daily variations in vertical activity levels were analysed to determine the effects of time of day on whitetip reef shark behaviour. This was done for days when dive boats were absent from the area, and for days when dive boats were present, conducting shark provisioning. Vertical activity levels varied between day and night, and with the presence of boats. In natural conditions (no boats present), sharks remained at more constant depths during the day, while at night animals continuously moved up and down the water column, showing that whitetip reef sharks are nocturnally active. When boats were present, however, there were also long periods of vertical activity during the day. If resting periods during the day are important for energy budgets, then shark provisioning may affect their health. So, if this behaviour alteration occurs frequently, e.g., daily, this has the potential to have significant negative effects on the animals' metabolic rates, net energy gain and overall health, reproduction and fitness.
Size matters: Perceived depth magnitude varies with stimulus height.
Tsirlin, Inna; Wilcox, Laurie M; Allison, Robert S
2016-06-01
Both the upper and lower disparity limits for stereopsis vary with the size of the targets. Recently, Tsirlin, Wilcox, and Allison (2012) suggested that perceived depth magnitude from stereopsis might also depend on the vertical extent of a stimulus. To test this hypothesis we compared apparent depth in small discs to depth in long bars with equivalent width and disparity. We used three estimation techniques: a virtual ruler, a touch-sensor (for haptic estimates) and a disparity probe. We found that depth estimates were significantly larger for the bar stimuli than for the disc stimuli for all methods of estimation and different configurations. In a second experiment, we measured perceived depth as a function of the height of the bar and the radius of the disc. Perceived depth increased with increasing bar height and disc radius suggesting that disparity is integrated along the vertical edges. We discuss size-disparity correlation and inter-neural excitatory connections as potential mechanisms that could account for these results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impact of plunging breaking waves on a partially submerged cube
NASA Astrophysics Data System (ADS)
Wang, A.; Ikeda, C.; Duncan, J. H.
2013-11-01
The impact of a deep-water plunging breaking wave on a partially submerged cube is studied experimentally in a tank that is 14.8 m long and 1.2 m wide with a water depth of 0.91 m. The breakers are created from dispersively focused wave packets generated by a programmable wave maker. The water surface profile in the vertical center plane of the cube is measured using a cinematic laser-induced fluorescence technique with movie frame rates ranging from 300 to 4,500 Hz. The pressure distribution on the front face of the cube is measured with 24 fast-response sensors simultaneously with the wave profile measurements. The cube is positioned vertically at three heights relative to the mean water level and horizontally at a distance from the wave maker where a strong vertical water jet is formed. The portion of the water surface between the contact point on the front face of the cube and the wave crest is fitted with a circular arc and the radius and vertical position of the fitted circle is tracked during the impact. The vertical acceleration of the contact point reaches more than 50 times the acceleration of gravity and the pressure distribution just below the free surface shows a localized high-pressure region with a very high vertical pressure gradient. This work is supported by the Office of Naval Research under grant N000141110095.
NASA Astrophysics Data System (ADS)
Smith, Joshua G.; Lindholm, James
2016-08-01
The geographic distributions of many coastal marine fish assemblages are strongly driven by habitat features, particularly among demersal fishes that live along the seafloor. Ecologists have long recognized the importance of characterizing fish habitat associations, especially where spatial management is under consideration. However, little is known about fish distributions and habitat suitability in unique demersal habitats such as submarine canyons. The active continental margin of the California coast is cut by eight submarine canyons, several of which extend from the shore to the deep abyssal plain. We sampled the demersal fish assemblages in two of those canyons: (1) the Scripps submarine canyon in the San-Diego-Scripps State Marine Conservation Area (SMCA) and (2) the La Jolla canyon in the Matlahuayl State Marine Reserve (SMR) to gain insight into both the distributions and habitat associations of demersal fishes in canyons. A remotely operated vehicle was used to conduct 21 vertically oriented transects along the canyon walls in depths ranging from 20 to 300 m. Species composition was assessed in three depth-stratified zones (100 m per zone) along the canyon walls. Species richness, abundance, and attributes of the surrounding canyon habitat structure (slope and benthic terrain ruggedness) were quantified. Three distinct assemblage groupings were identified, which comprised 35 species of demersal fishes from 17 families. Among all factors analyzed in this study, depth, slope, and ruggedness were strong explanatory variables of patterns of species richness and abundance; however, the relationship between depth and assemblage structure was non-linear. The greatest number of species was observed in the mid depth-stratified zone. These trends suggest that variation in canyon dynamics across depth strata may facilitate distinct assemblage groupings of demersal fishes, which can in turn be used to better manage these unique habitats.
NASA Astrophysics Data System (ADS)
Glas, R. L.; Lautz, L.; McKenzie, J. M.; Baker, E. A.; Somers, L. D.; Aubry-Wake, C.; Wigmore, O.; Mark, B. G.; Moucha, R.
2016-12-01
Groundwater- surface water interactions in alpine catchments are often poorly understood as groundwater and hydrologic data are difficult to acquire in these remote areas. The Cordillera Blanca of Peru is a region where dry-season water supply is increasingly stressed due to the accelerated melting of glaciers throughout the range, affecting millions of people country-wide. The alpine valleys of the Cordillera Blanca have shown potential for significant groundwater storage and discharge to valley streams, which could buffer the dry-season variability of streamflow throughout the watershed as glaciers continue to recede. Known as pampas, the clay-rich, low-relief valley bottoms are interfingered with talus deposits, providing a likely pathway for groundwater recharged at the valley edges to be stored and slowly released to the stream throughout the year by springs. Multiple geophysical methods were used to determine areas of groundwater recharge and discharge as well as aquifer geometry of the pampa system. Seismic refraction tomography, vertical electrical sounding (VES), electrical resistivity tomography (ERT), and horizontal-to-vertical spectral ratio (HVSR) seismic methods were used to determine the physical properties of the unconsolidated valley sediments, the depth to saturation, and the depth to bedrock for a representative section of the Quilcayhuanca Valley in the Cordillera Blanca. Depth to saturation and lithological boundaries were constrained by comparing geophysical results to continuous records of water levels and sediment core logs from a network of seven piezometers installed to depths of up to 6 m. Preliminary results show an average depth to bedrock for the study area of 25 m, which varies spatially along with water table depths across the valley. The conceptual model of groundwater flow and storage derived from these geophysical data will be used to inform future groundwater flow models of the area, allowing for the prediction of groundwater resources for the region in the absence of glacial meltwater.
Papaspyrou, Sokratis; Smith, Cindy J.; Dong, Liang F.; Whitby, Corinne; Dumbrell, Alex J.; Nedwell, David B.
2014-01-01
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This raises interesting questions as to what the alternative metabolic roles for the various nitrate reductases could be, analogous to the alternative metabolic roles found for nitrite reductases. PMID:24728381
Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.
Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio
2016-01-01
Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. © 2015 John Wiley & Sons Ltd.
Karstification at Beskonak dam site and reservoir area, southern Turkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degirmenci, M.
1993-10-01
Beskonak dam and hydroelectric power plant are planned to be constructed on the Koepruecay river, 40 km east of the Antalya city. In the dam site and reservoir area, Koepruecay Conglomerates of Miocene age and the Beskonak Formation (sandstone-claystone) alternating with each other crop out vertically. Koepruecay conglomerates, with the components of limestone fragments and carbonate texture, are karstic and permeable, whereas the Beskonak Formation is impermeable. At the northern edge of the reservoir area, the Olukkoeprue karst springs discharge at a minimum of 30 m{sup 3}/s. These springs discharge mainly through vertical and subvertical joint systems. Intensive superficial karstificationmore » developed along the joint systems and the terrane reveals columns of rocks, called {open_quotes}fairy chimneys.{close_quotes} Olukkoeprue springs represent the discharge point for a large and continuous system of underground solution cavities. In the Koepruecay basin, there are numerous karstic features within the conglomerates. Within the reservoir area, Kurukoeprue cave, with a length of 530 m, is an example of these caves developed within the conglomerates. In some parts of the reservoir area, where the groundwater level is lower than the surface-river elevation, a highly developed karstification zone is present within the fluctuation range of groundwater between depths of 40 and 50 m. The above-mentioned Kurukoeprue cave is an active cave developed in the dam site and its vicinity. The solution conduits developed along the system of mostly vertical fractures and joints are interconnected, thus giving rise to a three-dimensional conduit network. On the other hand, a majority of these conduits have clay and calcite filling materials. Karstification in the dam site varies with depths exponentially. Data suggest that karstification has a vertical extention as deep as -220 m. 4 refs., 9 figs.« less
NASA Astrophysics Data System (ADS)
Pinzuti, Paul; Mignan, Arnaud; King, Geoffrey C. P.
2010-10-01
Tectonic-stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localised magma intrusion, with normal faults accommodating extension and subsidence only above the maximum reach of the magma column. In these magmatic rifting models, or so-called magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Vertical profiles of normal fault scarps from levelling campaign in the Asal Rift, where normal faults seem sub-vertical at surface level, have been analysed to discuss the creation and evolution of normal faults in massive fractured rocks (basalt lava flows), using mechanical and kinematics concepts. We show that the studied normal fault planes actually have an average dip ranging between 45° and 65° and are characterised by an irregular stepped form. We suggest that these normal fault scarps correspond to sub-vertical en echelon structures, and that, at greater depth, these scarps combine and give birth to dipping normal faults. The results of our analysis are compatible with the magmatic intrusion models instead of tectonic-stretching models. The geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.
Kim, Jemin; Wilson, Margaret A; Singhal, Kunal; Gamblin, Sarah; Suh, Cha-Young; Kwon, Young-Hoo
2014-09-01
The purpose of this study was to investigate the vertical angular momentum generation strategies used by skilled ballet dancers in pirouette en dehors. Select kinematic parameters of the pirouette preparation (stance depth, vertical center-of-mass motion range, initial shoulder line position, shoulder line angular displacement, and maximum trunk twist angle) along with vertical angular momentum parameters during the turn (maximum momentums of the whole body and body parts, and duration and rate of generation) were obtained from nine skilled collegiate ballet dancers through a three-dimensional motion analysis and compared among three turn conditions (single, double, and triple). A one-way ('turn') multivariate analysis of variance of the kinematic parameters and angular momentum parameters of the whole body and a two-way analysis of variance ('turn' × 'body') of the maximum angular momentums of the body parts were conducted. Significant 'turn' effects were observed in the kinematic/angular momentum parameters (both the preparation and the turn) (p < 0.05). As the number of turns increased, skilled dancers generated larger vertical angular momentums by predominantly increasing the rate of momentum generation using rotation of the upper trunk and arms. The trail (closing) arm showed the largest contribution to whole-body angular momentum followed by the lead arm.
Direct-current vertical electrical-resistivity soundings in the Lower Peninsula of Michigan
Westjohn, D.B.; Carter, P.J.
1989-01-01
Ninety-three direct-current vertical electrical-resistivity soundings were conducted in the Lower Peninsula of Michigan from June through October 1987. These soundings were made to assist in mapping the depth to brine in areas where borehole resistivity logs and water-quality data are sparse or lacking. The Schlumberger array for placement of current and potential electrodes was used for each sounding. Vertical electrical-resistivity sounding field data, shifted and smoothed sounding data, and electric layers calculated using inverse modeling techniques are presented. Also included is a summary of the near-surface conditions and depths to conductors and resistors for each sounding location.
Deep seafloor arrivals: an unexplained set of arrivals in long-range ocean acoustic propagation.
Stephen, Ralph A; Bolmer, S Thompson; Dzieciuch, Matthew A; Worcester, Peter F; Andrew, Rex K; Buck, Linda J; Mercer, James A; Colosi, John A; Howe, Bruce M
2009-08-01
Receptions, from a ship-suspended source (in the band 50-100 Hz) to an ocean bottom seismometer (about 5000 m depth) and the deepest element on a vertical hydrophone array (about 750 m above the seafloor) that were acquired on the 2004 Long-Range Ocean Acoustic Propagation Experiment in the North Pacific Ocean, are described. The ranges varied from 50 to 3200 km. In addition to predicted ocean acoustic arrivals and deep shadow zone arrivals (leaking below turning points), "deep seafloor arrivals," that are dominant on the seafloor geophone but are absent or very weak on the hydrophone array, are observed. These deep seafloor arrivals are an unexplained set of arrivals in ocean acoustics possibly associated with seafloor interface waves.
NASA Astrophysics Data System (ADS)
Briggs, M.; Lautz, L. K.; McKenzie, J. M.
2010-12-01
Small dams enhance hyporheic interaction by creating punctuated head differentials along streams, thereby affecting redox conditions and nutrient cycling in the streambed. As beaver populations return, they create dams that alter hyporheic flowpaths locally, an effect which may integrate at the reach scale to produce a net hydrological and ecological functional change. Streambed heterogeneity around beaver dams combines with varied morphology, head differentials and stream velocities to create patterns of hyporheic seepage flux that vary in both space and time. Heat has been used as a groundwater tracer for many years, but it’s dependence on spatially disperse point measurements has only recently been resolved by the development of Distributed Temperature Sensing (DTS) fiber-optic technology. Modified applications of DTS include wrapping the fiber around a mandrel to increase spatial resolution dramatically. Wrapped configurations can be installed vertically in the streambed to provide data for heat transport modeling of vertical hyporheic flux. The vertically continuous dataset generated with DTS may be more informative regarding subsurface heterogeneity than more commonly used spatially discrete thermocouples. We installed a total of nine wrapped DTS rods with 1.4 cm vertical spatial resolution above two beaver dams in Cherry Creek, a tributary of the Little Popo Agie River in Lander, Wyoming, USA. Data was collected over 20 min periods in dual-ended mode continuously for one month (10-Jul to 10-Aug 2010) during baseflow recession, as discharge dropped from 384 Ls-1 to 211 Ls-1. The temperature rods were installed to at least 0.75 m depth within bed sediments at varied distances upstream of the dams in diverse stream morphological units, which ranged from gravel bars to clay lined pools. Diurnal fluctuations in stream temperature were generally between 4.5 and 5.5 oC in amplitude, imparting a strong potential signal for propagation into the bed due to advective hyporheic flux. In many locations monthly temperature standard deviations at the 10 cm depth were larger than that of the overlying stream water, indicating direct heating of the streambed by solar radiation was an important process, even in that high velocity system. The high-resolution temperature records revealed local heterogeneity in the streambed at each rod and indicated the largest hyporheic flux was within gravel bars close to the dams. The smallest flux was through a gravel bar farther upstream of the dam, and through the deepest portions of pools closer to the dam. High flux regions had monthly temperature standard deviations close to that of the stream (1.5 oC) at shallow depths, while shallow sediments in pools had much more muted temperature oscillations. At 0.5 m depth, all rods had similar, smaller temperature standard deviations, ranging from 0.64-0.80 oC. The extensive and spatially continuous data set generated using DTS allowed us to determine hyporheic flux patterns for virtually any depth and time along the high-resolution temperature rods, a crucial step for understanding transient patterns in biogeochemical processing around beaver dams.
Hershberger, W A; Stewart, M R; Laughlin, N K
1976-05-01
Motion projections (pictures) simulating a horizontal array of vertical lines rotating in depth about its central vertical line were observed by 24 college students who rotated a crank handle in the direction of apparent rotation. All displays incorporated contradictory motion perspective: Whereas the perspective transformation in the vertical (y) dimension stimulated one direction of rotation, the transformation in the horizontal (x) dimension simulated the opposite direction. The amount of perspective in each dimension was varied independently of the other by varying the projection ratio used for each dimension. We used the same five ratios for each dimension, combining them factorially to generate the 25 displays. Analysis of variance of the duration of crank turning which agreed with y-axis information yielded main effects of both x and y projection ratios but no interaction, revealing that x- and y-axis motion perspectives mediate kinetic depth effects which are functionally independent.
Ortho-para-hydrogen equilibration on Jupiter
NASA Technical Reports Server (NTRS)
Carlson, Barbara E.; Lacis, Andrew A.; Rossow, William B.
1992-01-01
Voyager IRIS observations reveal that the Jovian para-hydrogen fraction is not in thermodynamic equilibrium near the NH3 cloud top, implying that a vertical gradient exists between the high-temperature equilibrium value of 0.25 at depth and the cloud top values. The height-dependent para-hydrogen profile is obtained using an anisotropic multiple-scattering radiative transfer model. A vertical correlation is found to exist between the location of the para-hydrogen gradient and the NH3 cloud, strongly suggesting that paramagnetic conversion on NH3 cloud particle surfaces is the dominant equilibration mechanism. Below the NH3 cloud layer, the para fraction is constant with depth and equal to the high-temperature equilibrium value of 0.25. The degree of cloud-top equilibration appears to depend on the optical depth of the NH3 cloud layer. Belt-zone variations in the para-hydrogen profile seem to be due to differences in the strength of the vertical mixing.
NASA Astrophysics Data System (ADS)
Chen, Sean Kuanhsiang; Wu, Yih-Min; Hsu, Ya-Ju; Chan, Yu-Chang
2017-07-01
We study internal deformation of the Taiwan orogen, a young arc-continental collision belt, which the spatial heterogeneity remains unclear. We aim to ascertain heterogeneity of the orogenic crust in depth when specifying general mechanisms of the Taiwan orogeny. To reach this goal, we used updated data of continuous GPS (cGPS) and earthquake focal mechanisms to reassess geodetic strain-rate and seismic stress fields of Taiwan, respectively. We updated the both data sets from 1990 to 2015 to provide large amount of constraints on surficial and internal deformation of the crust for a better understanding. We estimated strain-rate tensors by calculating gradient tensors of cGPS station velocities in horizontal 0.1°-spacing grids via Delaunay triangulation. We determined stress tensors within a given horizontal and vertical grid cell of 0.1° and 10 km, respectively, by employing the spatial and temporal stress inversion. To minimize effects of the 1999 Mw 7.6 Chi-Chi earthquake on trends of the strain and stress, we modified observational possible bias of the cGPS velocities after the earthquake and removed the first 15-month focal mechanisms within the fault rupture zone. We also calculated the Anderson fault parameter (Aϕ) based on stress ratios and rake angles to quantitatively describe tectonic regimes of Taiwan. By examining directions of seismic compressive axes and styles of faulting, our results indicate that internal deformation of the crust is presently heterogeneous in the horizontal and vertical spaces. Directions of the compressive axes are fan-shaped oriented between N10°W and N110°W in the western and mid-eastern Taiwan at the depths of 0-20 km and near parallel to orientations of geodetic compressional axes. The orientations agreed with predominantly reverse faulting in the western Taiwan at the same depth range, implying a brittle deformation regime against the Peikang Basement High. Orientations of the compressive axes most rotated counter-clockwise at the depths of 20-40 km, coinciding with transition of styles of faulting from reverse to strike-slip faulting along the depths as revealed by variation of the Aϕ values. The features indicate that internal deformation of the upper crust is primarily driven by the same compressional mechanism. It implies that geodetic strains could detect the deformation from surface down to a maximal depth of 20 km in most regimes of Taiwan. We find that heterogeneity in orientations of compressive axes and styles of faulting is strong in two regimes at the northern and southern Central Range, coinciding to areas of the orogenic thinned/thickened crust. Conversely, the heterogeneity is weak in the central Western Foothills at surrounding area of root of the overthickened crust. This observation, coupled with regional seismological observations, may imply that vertical deformation from crustal thickening and thinning and thinning-related dynamics from mantle flows may have joint influence on degree of stress heterogeneity.
Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides
Serrano, Xaymara M.; Baums, Iliana B.; Smith, Tyler B.; Jones, Ross J.; Shearer, Tonya L.; Baker, Andrew C.
2016-01-01
To date, most assessments of coral connectivity have emphasized long-distance horizontal dispersal of propagules from one shallow reef to another. The extent of vertical connectivity, however, remains largely understudied. Here, we used newly-developed and existing DNA microsatellite loci for the brooding coral Porites astreoides to assess patterns of horizontal and vertical connectivity in 590 colonies collected from three depth zones (≤10 m, 15–20 m and ≥25 m) at sites in Florida, Bermuda and the U.S. Virgin Islands (USVI). We also tested whether maternal transmission of algal symbionts (Symbiodinium spp.) might limit effective vertical connectivity. Overall, shallow P. astreoides exhibited high gene flow between Florida and USVI, but limited gene flow between these locations and Bermuda. In contrast, there was significant genetic differentiation by depth in Florida (Upper Keys, Lower Keys and Dry Tortugas), but not in Bermuda or USVI, despite strong patterns of depth zonation in algal symbionts at two of these locations. Together, these findings suggest that P. astreoides is effective at dispersing both horizontally and vertically despite its brooding reproductive mode and maternal transmission of algal symbionts. In addition, these findings might help explain the ecological success reported for P. astreoides in the Caribbean in recent decades. PMID:26899614
Mars atmosphere studies with the SPICAM IR emission phase function observations
NASA Astrophysics Data System (ADS)
Trokhimovskiy, Alexander; Fedorova, Anna; Montmessin, Franck; Korablev, Oleg; Bertaux, Jean-Loup
Emission Phase Function (EPF) observations is a powerful tool for characterization of atmosphere and surface. EPF sequence provides the extensive coverage of scattering angles above the targeted surface location which allow to separate the surface and aerosol scattering, study a vertical distribution of minor species and aerosol properties. SPICAM IR instrument on Mars Express mission provides continuous atmospheric observations in near IR (1-1.7 mu) in nadir and limb starting from 2004. For the first years of SPICAM operation only a very limited number of EPFs was performed. But from the mid 2013 (Ls=225, MY31) SPICAM EPF observations become rather regular. Based on the multiple-scattering radiative transfer model SHDOM, we analyze equivalent depths of carbon dioxide (1,43 mu) and water vapour (1,38 mu) absorption bands and their dependence on airmass during observation sequence to get aerosol optical depths and properties. The derived seasonal dust opacities from near IR can be used to retrieve the size distribution from comparison with simultaneous results of other instruments in different spectral ranges. Moreover, the EPF observations of water vapour band allow to access poorly known H2O vertical distribution for different season and locations.
Morphology and dynamics of explosive vents
NASA Astrophysics Data System (ADS)
Gisler, Galen R.; Galland, Olivier; Haug, Øystein T.
2014-05-01
Eruptive processes in nature produce a wide variety of morphologies, including cone sheets, dykes, sills, and pipes. The choice of a particular eruptive style is determined partly by local inhomogeneities, and partly by the gross overall properties of the country rock and the physical properties of the eruptive fluid. In this study we report on experimental and numerical designed to capture a range of morphologies in an eruptive system. Using dimensional analysis we link the experimental and numerical work together and draw implications for field studies. Our experimental work uses silica flour in a Hele-Shaw cell, with air as the eruptive fluid. A phase diagram demonstrates a separation between two distinct morphologies, with vertical structures occurring at high pressure or low depth of fill and diagonal ones at low pressure or high depth of fill. In the numerical work the eruptive fluid is a mixture of basaltic magma, supercritical water, and carbon dioxide, and the ambient material is a fill of basalt with varying material properties. In the numerical work we see three distinct morphologies: vertical pipes are produced at high pressures and softer backgrounds, diagonal pipes at lower pressures and stiffer backgrounds, while horizontal sills are produced in intermediate regimes.
Summary of extensometric measurements in El Paso, Texas
Heywood, Charles E.
2003-01-01
Two counter-weighted-pipe borehole extensometers were installed on the left bank of the Rio Grande between El Paso, Texas, and Ciudad Juarez, Chihuahua, Mexico, in 1992. A shallow extensometer measures vertical compaction in the 6- to 100-meter aquifer-system depth interval. A deep extensometer measures vertical compaction in the 6- to 305-meter aquifer-system depth interval. Both extensometers are referenced to the same surface datum, which allows time-series differencing to determine vertical compaction in the depth interval between 100 and 305 meters. From April 2, 1993, through June 13, 2002, 1.6 centimeters of compaction occurred in the 6-to 305-m depth interval. Until February 1999, most aquifer-system compaction occurred in the deeper aquifer-system interval between 100 and 305 meters, from which ground water was extracted. After that time, compaction in the shallow interval from 6 to 100 meters was predominant and attained a maximum of 7.6 millimeters by June 13, 2002. Minor residual compaction is expected to continue; continued maintenance of the El Paso extensometers would document this process.
Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR
NASA Astrophysics Data System (ADS)
Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel
2016-10-01
Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.
Arroyo channel head evolution in a flash-flood-dominated discontinuous ephemeral stream system
DeLong, Stephen B.; Johnson, Joel P.L.; Whipple, Kelin X.
2014-01-01
We study whether arroyo channel head retreat in dryland discontinuous ephemeral streams is driven by surface runoff, seepage erosion, mass wasting, or some combination of these hydrogeomorphic processes. We monitored precipitation, overland flow, soil moisture, and headcut migration over several seasonal cycles at two adjacent rangeland channel heads in southern Arizona. Erosion occurred by headward retreat of vertical to overhanging faces, driven dominantly by surface runoff. No evidence exists for erosion caused by shallow-groundwater–related processes, even though similar theater-headed morphologies are sometimes attributed to seepage erosion by emerging groundwater. At our field site, vertical variation in soil shear strength influenced the persistence of the characteristic theater-head form. The dominant processes of erosion included removal of grains and soil aggregates during even very shallow (1–3 cm) overland flow events by runoff on vertical to overhanging channel headwalls, plunge-pool erosion during higher-discharge runoff events, immediate postrunoff wet mass wasting, and minor intra-event dry mass wasting on soil tension fractures developing subparallel to the headwall. Multiple stepwise linear regression indicates that the migration rate is most strongly correlated with flow duration and total precipitation and is poorly correlated with peak flow depth or time-integrated flow depth. The studied channel heads migrated upslope with a self-similar morphologic form under a wide range of hydrological conditions, and the most powerful flash floods were not always responsible for the largest changes in landscape form in this environment.
Oxygen and Temperature Effects on Vertically Migrating Animals in Oxygen Minimum Zones
NASA Astrophysics Data System (ADS)
Seibel, B.
2016-02-01
Large populations of oceanic nekton and zooplankton undergo daily migrations from shallow water at night to depths greater than 200 m during the daytime. In some regions, these migrations cross extreme gradients of temperature, oxygen and carbon dioxide. Oxygen minimum zones (OMZs) are extensive and characterized by deep-water (100-800 m) oxygen partial pressures that would be lethal to most marine organisms, yet are tolerated by vertical migrators. Climate change is predicted to further deplete oxygen, and measurable reductions in oxygen have already been documented in some regions. Increases in shallow water temperature and carbon dioxide are occurring simultaneously. Oxygen levels and temperature are important drivers of biodiversity and distribution, and documented changes in community structure and function are reportedly associated with OMZ expansion and warming. Here I answer fundamental questions concerning zooplankton distributions, adaptations, and functions in oxygen minimum zones. In particular I report that metabolic suppression is a common strategy that facilitates diel occupancy of extreme hypoxia in many oceanic taxa. Anaerobic metabolic pathways play a minimal role in compensating for reduced aerobic ATP production. Numerous epigenetic mechanisms lead to reductions in energetically costly cellular processes, such as transcription and translation. Total metabolism is reduced by 50% or more during exposure to levels of hypoxia that characterize the daytime habitat for most vertically-migrating zooplankton. I further show that many migrators approach their upper thermal maximum in shallow water at night. Thus expanding OMZs and global warming may together compress the habitable depth range for many species.
A new world survey expression for cosmic ray vertical intensity vs. depth in standard rock
NASA Technical Reports Server (NTRS)
Crouch, M.
1985-01-01
The cosmic ray data on vertical intensity versus depth below 10 to the 5th power g sq cm is fitted to a 5 parameter empirical formula to give an analytical expression for interpretation of muon fluxes in underground measurements. This expression updates earlier published results and complements the more precise curves obtained by numerical integration or Monte Carlo techniques in which the fit is made to an energy spectrum at the top of the atmosphere. The expression is valid in the transitional region where neutrino induced muons begin to be important, as well as at great depths where this component becomes dominant.
NFLUX: a test of vertical nitrogen flux by diel migrant biota
NASA Astrophysics Data System (ADS)
Longhurst, A. R.; Bedo, A.; Harrison, W. G.; Head, E. J. H.; Horne, E. P.; Irwin, B.; Morales, C.
1989-11-01
At a station (NFLUX), occupied for 10 days in the northern Sargasso Sea, we assembled data to test the hypothesis that diel migrant biota in the open ocean induce a downward flux of dissolved inorganic nitrogen that is significant in relation to the passive flux under gravity of particulate organic nitrogen at the base on the photic zone. We founf taht NH 4+ excretion rates by day at depths below the photic zone were approximately 8% of particulate nitrogen flux obtained by a sediment trap array at the same depth. This figure is in the lower part of the range of values calculated previously for 10 published station data sets; we attribute this to the quite high rate of passive flux relative to primary production at the NFLUX station.
Shannon, H.D.; Young, G.S.; Yates, M.; Fuller, Mark R.; Seegar, W.
2003-01-01
An examination of boundary-layer meteorological and avian aerodynamic theories suggests that soaring birds can be used to measure the magnitude of vertical air motions within the boundary layer. These theories are applied to obtain mixed-layer normalized thermal updraft intensity over both flat and complex terrain from the climb rates of soaring American white pelicans and from diagnostic boundary-layer model-produced estimates of the boundary-layer depth zi and the convective velocity scale w*. Comparison of the flatland data with the profiles of normalized updraft velocity obtained from previous studies reveals that the pelican-derived measurements of thermal updraft intensity are in close agreement with those obtained using traditional research aircraft and large eddy simulation (LES) in the height range of 0.2 to 0.8 zi. Given the success of this method, the profiles of thermal vertical velocity over the flatland and the nearby mountains are compared. This comparison shows that these profiles are statistically indistinguishable over this height range, indicating that the profile for thermal updraft intensity varies little over this sample of complex terrain. These observations support the findings of a recent LES study that explored the turbulent structure of the boundary layer using a range of terrain specifications. For terrain similar in scale to that encountered in this study, results of the LES suggest that the terrain caused less than an 11% variation in the standard deviation of vertical velocity.
Step-off, vertical electromagnetic responses of a deep resistivity layer buried in marine sediments
NASA Astrophysics Data System (ADS)
Jang, Hangilro; Jang, Hannuree; Lee, Ki Ha; Kim, Hee Joon
2013-04-01
A frequency-domain, marine controlled-source electromagnetic (CSEM) method has been applied successfully in deep water areas for detecting hydrocarbon (HC) reservoirs. However, a typical technique with horizontal transmitters and receivers requires large source-receiver separations with respect to the target depth. A time-domain EM system with vertical transmitters and receivers can be an alternative because vertical electric fields are sensitive to deep resistive layers. In this paper, a time-domain modelling code, with multiple source and receiver dipoles that are finite in length, has been written to investigate transient EM problems. With the use of this code, we calculate step-off responses for one-dimensional HC reservoir models. Although the vertical electric field has much smaller amplitude of signal than the horizontal field, vertical currents resulting from a vertical transmitter are sensitive to resistive layers. The modelling shows a significant difference between step-off responses of HC- and water-filled reservoirs, and the contrast can be recognized at late times at relatively short offsets. A maximum contrast occurs at more than 4 s, being delayed with the depth of the HC layer.
Periodontal healing after bonding treatment of vertical root fracture.
Sugaya, T; Kawanami, M; Noguchi, H; Kato, H; Masaka, N
2001-08-01
Vertical root fractures lead to advanced periodontal breakdown with deep periodontal pockets and vertical bone defects. The purpose of this study is to evaluate clinically the periodontal healing of root fracture treatment using adhesive resin cement. In 22 patients, 23 teeth with vertical root fractures were treated with 4-META/MMA-TBB resin cement. Eleven fractured roots were bonded through the root canal (group A) and 12 fractured roots were bonded extra-orally and replanted (group B). All teeth were then restored with full cast crowns (n=20) or coping (n=3). Mean probing depth was 6.6 mm at pre-treatment and 4.4 mm 6 months after the treatment in group A, and 7.4 mm and 4.6 mm, respectively, in group B. Bleeding scores were 100% at pre-treatment and 36.4% after 6 months in group A and 91.7% and 8.3%, respectively in group B. Radiographic bone level was 56.8% at pretreatment and 59.1% after 6 months in group A, and 18.8% and 29.2%, respectively, in group B. Two roots of group A and three roots of group B were extracted due to refracture, deterioration of periodontal inflammation, mobility, and luxation. The remaining roots (n=18) presented no discomfort to the patients and there was no deterioration of periodontal conditions over a mean period of 33 months (range 14-74 months) in group A and over a mean period of 22 months (range 6-48 months) in group B. There was no ankylosed teeth nor was any root resorption detected. The results suggested that the treatment of vertical root fracture using 4-META/MMA-TBB resin has good prognostic possibilities.
Diapycnal diffusivity in the core and oxycline of the tropical North Atlantic oxygen minimum zone
NASA Astrophysics Data System (ADS)
Köllner, Manuela; Visbeck, Martin; Tanhua, Toste; Fischer, Tim
2016-08-01
Diapycnal diffusivity estimates from two Tracer Release Experiments (TREs) and microstructure measurements in the oxycline and core of the oxygen minimum zone (OMZ) in the Eastern Tropical North Atlantic (ETNA) are compared. For the first time, two TREs within the same area at different depths were realized: the Guinea Upwelling Tracer Release Experiment (GUTRE) initiated in 2008 in the oxycline at approximately 320 m depth, and the Oxygen Supply Tracer Release Experiment (OSTRE) initiated in 2012 in the core of the OMZ at approximately 410 m depth. The mean diapycnal diffusivity Dz was found to be insignificantly smaller in the OMZ core with (1.06 ± 0.24) × 10- 5 m2 s- 1 compared to (1.11 ± 0.22) × 10- 5 m2 s- 1 90 m shallower in the oxycline. Unexpectedly, GUTRE tracer was detected during two of the OSTRE surveys which showed that the estimated diapycnal diffusivity from GUTRE over a time period of seven years was within the uncertainty of the previous estimates over a time period of three years. The results are consistent with the Dz estimates from microstructure measurements and demonstrate that Dz does not vary significantly vertically in the OMZ within the depth range of 200-600 m and does not change with time. The presence of a seamount chain in the vicinity of the GUTRE injection region did not cause enhanced Dz compared to the smoother bottom topography of the OSTRE injection region, although the analysis of vertical shear spectra from ship ADCP data showed elevated internal wave energy level in the seamount vicinity. However, the two tracer patches covered increasingly overlapping areas with time and thus spatially integrated increasingly similar fields of local diffusivity, as well as the difference in local stratification counteracted the influence of roughness on Dz. For both experiments no significant vertical displacements of the tracer were observed, thus diapycnal upwelling within the ETNA OMZ is below the uncertainty level of 5 m yr- 1.
NASA Astrophysics Data System (ADS)
Boodoo, K. S.; Schelker, J.; Battin, T. J.
2016-12-01
Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. During warm summer months, diurnal vertical temperature patterns were most pronounced and were detected throughout all one-meter-depth profiles. Furthermore, permanently wetted GB sediment (-56 cm depth) temperatures above that of stream and groundwater occurred 17% of the year, particularly during summer. This is further evidence for downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB temperatures were associated with increased CO2 evasion fluxes; the strength of the relationship increased with depth (max. r2 = 0.61 at -100cm depth). This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn and winter, while downward heat transfer in summer may enhance GB metabolism and therefore CO2 evasion. The importance of these processes is likely to increase, particularly in cold-water streams, due to the occurrence of more frequent and intense warm temperature events, as well as altered flow regimes, likely consequences of climatic change.
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Chen, Yi-Shiuan; Chang, Yi-Wei; Lin, Shyh-Tsong; Yeh, Sheng Lih
2013-01-01
In this research, new nano-scale measurement methodology based on spectrally-resolved chromatic confocal interferometry (SRCCI) was successfully developed by employing integration of chromatic confocal sectioning and spectrally-resolve white light interferometry (SRWLI) for microscopic three dimensional surface profilometry. The proposed chromatic confocal method (CCM) using a broad band while light in combination with a specially designed chromatic dispersion objective is capable of simultaneously acquiring multiple images at a large range of object depths to perform surface 3-D reconstruction by single image shot without vertical scanning and correspondingly achieving a high measurement depth range up to hundreds of micrometers. A Linnik-type interferometric configuration based on spectrally resolved white light interferometry is developed and integrated with the CCM to simultaneously achieve nanoscale axis resolution for the detection point. The white-light interferograms acquired at the exit plane of the spectrometer possess a continuous variation of wavelength along the chromaticity axis, in which the light intensity reaches to its peak when the optical path difference equals to zero between two optical arms. To examine the measurement accuracy of the developed system, a pre-calibrated accurate step height target with a total step height of 10.10 μm was measured. The experimental result shows that the maximum measurement error was verified to be less than 0.3% of the overall measuring height.
NASA Astrophysics Data System (ADS)
Dickinson-Lovell, Haylee; Huang, Mong-Han; Freed, Andrew M.; Fielding, Eric; Bürgmann, Roland; Andronicos, Christopher
2018-06-01
The 2010 Mw7.2 El Mayor-Cucapah earthquake provides a unique target of postseismic study as deformation extends across several distinct geological provinces, including the cold Mesozoic arc crust of the Peninsular Ranges and newly formed, hot, extending lithosphere within the Salton Trough. We use five years of global positioning system measurements to invert for afterslip and constrain a 3-D finite-element model that simulates viscoelastic relaxation. We find that afterslip cannot readily explain far-field displacements (more than 50 km from the epicentre). These displacements are best explained by viscoelastic relaxation of a horizontally and vertically heterogeneous lower crust and upper mantle. Lower viscosities beneath the Salton Trough compared to the Peninsular Ranges and other surrounding regions are consistent with inferred differences in the respective geotherms. Our inferred viscosity structure suggests that the depth of the Lithosphere/Asthenosphere Boundary (LAB) is ˜65 km below the Peninsular Ranges and ˜32 km beneath the Salton Trough. These depths are shallower than the corresponding seismic LAB. This suggests that the onset of partial melting in peridotite may control the depth to the base of the mechanical lithosphere. In contrast, the seismic LAB may correspond to an increase in the partial melt percentage associated with the change from a conductive to an adiabatic geotherm.
Steep-dip seismic imaging of the shallow San Andreas Fault near Parkfield
Hole, J.A.; Catchings, R.D.; St. Clair, K.C.; Rymer, M.J.; Okaya, D.A.; Carney, B.J.
2001-01-01
Seismic reflection and refraction images illuminate the San Andreas Fault to a depth of 1 kilometer. The prestack depth-migrated reflection image contains near-vertical reflections aligned with the active fault trace. The fault is vertical in the upper 0.5 kilometer, then dips about 70° to the southwest to at least 1 kilometer subsurface. This dip reconciles the difference between the computed locations of earthquakes and the surface fault trace. The seismic velocity cross section shows strong lateral variations. Relatively low velocity (10 to 30%), high electrical conductivity, and low density indicate a 1-kilometer-wide vertical wedge of porous sediment or fractured rock immediately southwest of the active fault trace.
NASA Astrophysics Data System (ADS)
Ursella, Laura; Cardin, Vanessa; Batistić, Mirna
2017-04-01
The E2-M3A Station is deployed in the southern Adriatic Sea, at about 1200 m depth, in the center of the cyclonic gyre where deep convection process takes place, involving both the atmosphere and the ocean dynamics and forming new dense and oxygenated waters, thus triggering the solubility and the biological pump. In particular, the E2M3A is equipped with an upward looking 150 kHz RDI-Acoustic Doppler Current Profiler (ADCP) positioned between 265 and 320 m depth, with a vertical resolution of 5 m and a range of 250-300 m. The mooring line has been in water since November 2006, with an interruption from September 2010 until May 2011. ADCP backscattering signal is very useful in determining zooplankton distribution and variability at various time scales, including seasonal/annual behavior and diel vertical migration (DVM). From ADCP backscattering signal, backscattering strength (Sv) was calculated for the entire dataset. Sv permits to quantify qualitatively the scatters present in the water, i.e. the particulate and/or the phyto/zoo-plankton. Zooplankton distribution is dependent on phytoplankton presence and blooms, which on its own depend on nutrients availability (related to wind-induced vertical mixing), but also on sunlight. The variation in time of Sv together with vertical velocity allows for measuring DVM of zooplankton and its variability with seasons and years. Alternation of high and low values for Sv are present all year long with differences in intensities in particular in the surface layer. Quite high values for Sv are found in spring and summer; in spring they are found along a large part of the water column, while in summer they are detected prevalently in the upper part of the measurement range. This behavior is related to the conditions of the water column, i.e. mixing and nutrients availability, which influence phytoplankton blooms and therefore zooplankton growing and movements. Correlating Net Primary Production obtained from model and Mixed Layer Depth, a delay of two months in the bloom of phytoplankton with respect to deepest mixing is found. Power Spectra of Sv show a major peak at 24 h that corresponds to the classical nocturnal-diurnal migration, and a secondary important peak at the period of 12 hours that indicates a different type of DVM pattern, the twilight migration. The ultimate factor behind DVM seems to be the minimization of the risk of predation from fishes and other carnivorous groups. Calculating the monthly mean daily cycle of the Sv, it is evident that there is a decrease in Sv at sunrise, while it increases at sunset. The highest values in the derivative of Sv, as well as highest values in the vertical velocity (w), coincide in time with sunset and sunrise. In particular, w is negative (downward movement) at sunrise while it is positive (upward movement) at sunset, and in some cases absolute value of w (|w|) reaches 5 cm/s. The hour of occurrence of |w| greater than 4.5 cm/s follows the curves in time of the hours of sunset and sunrise, which are changing throughout the year.
Sundby, Svein; Kristiansen, Trond
2015-01-01
Buoyancy acting on plankton, i.e. the difference in specific gravity between plankton and the ambient water, is a function of salinity and temperature. From specific gravity measurements of marine fish eggs salinity appears to be the only determinant of the buoyancy indicating that the thermal expansions of the fish egg and the ambient seawater are equal. We analyze the mechanisms behind thermal expansion in fish eggs in order to determine to what extent it can be justified to neglect the effects of temperature on buoyancy. Our results confirm the earlier assumptions that salinity is the basic determinant on buoyancy in marine fish eggs that, in turn, influence the vertical distributions and, consequently, the dispersal of fish eggs from the spawning areas. Fish populations have adapted accordingly by producing egg specific gravities that tune the egg buoyancy to create specific vertical distributions for each local population. A wide variety of buoyancy adaptations are found among fish populations. The ambient physical conditions at the spawning sites form a basic constraint for adaptation. In coastal regions where salinity increases with depth, and where the major fraction of the fish stocks spawns, pelagic and mesopelagic egg distributions dominate. However, in the larger part of worlds' oceans salinity decreases with depth resulting in different egg distributions. Here, the principles of vertical distributions of fish eggs in the world oceans are presented in an overarching framework presenting the basic differences between regions, mainly coastal, where salinity increases with depth and the major part of the world oceans where salinity decreases with depth. We show that under these latter conditions, steady-state vertical distribution of mesopelagic fish eggs cannot exist as it does in most coastal regions. In fact, a critical spawning depth must exist where spawning below this depth threshold results in eggs sinking out of the water column and become lost for recruitment to the population. An example of adaptation to such conditions is Cape hake spawning above the critical layer in the Northern Benguela upwelling ecosystem. The eggs rise slowly in the onshore subsurface current below the Ekman layer, hence being advected inshore where the hatched larvae concentrate with optimal feeding conditions.
NASA Astrophysics Data System (ADS)
Packard, T. T.; Osma, N.; Fernández-Urruzola, I.; Codispoti, L. A.; Christensen, J. P.; Gómez, M.
2016-02-01
Oceanic depth profiles of seawater respiration (R) and vertical carbon flux are described by similar power functions and because they are conceptually and mathematically related, they can be calculated from one another. The maximum curvature of the respiration depth profile controls carbon flux. When the curvature is sharp, the carbon flux (FC) from the epipelagic ocean is low and the nutrient retention efficiency (NRE) is high allowing these waters to maintain high productivity. When the curvature is weak, NRE is low, seawater becomes nutrient impoverished, and productivity is reduced. This means that the attenuation of respiration in ocean water columns is critical in understanding and predicting vertical FC, the capacity of epipelagic ecosystems to retain their nutrients, and primary productivity. The new metric, NRE, is the ratio of nutrient regeneration in a seawater layer to the nutrients introduced into it. In other words, NRE = R/FC. A depth profile of FC is the integral of water column R. This relationship facilitates calculating ocean sections of FC. In a FC section across the Peru upwelling system we found a carbon flux maximum extending down to 400 m, 50 km off the Peru coast. Along this same section, by coupling respiratory electron transport system activity to heterotrophic oxidative phosphorylation, we calculated an ocean section of heterotrophic energy production (HEP). In the euphotic zone, HEP ranged from 250 to 500 J d-1 m-3. Below 200m, HEP dropped to less than 5 J d-1 m-3.
Saros, Jasmine E.; Stone, Jeffery R.; Pederson, Gregory T.; Slemmons, Krista; Spanbauer, Trisha; Schliep, Anna; Cahl, Douglas; Williamson, Craig E.; Engstrom, Daniel R.
2015-01-01
Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests might be affected by mixing depth. Comparative lake surveys and growth rate experiments revealed that these species respond to lake thermal structure when nitrogen is sufficient, with species optima ranging from shallower to deeper mixing depths. The diatom-based mixing depth model was applied to sedimentary diatom profiles extending back to 1750 AD in two lakes with moderate nitrate concentrations but differing climate settings. Thermal reconstructions were consistent with expected changes, with shallower mixing depths inferred for an alpine lake where treeline has advanced, and deeper mixing depths inferred for a boreal lake where wind strength has increased. The inference model developed here provides a new tool to expand and refine understanding of climate-induced changes in lake ecosystems.
Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.
2017-01-01
Current observations and sediment characteristics acquired within and along the rim of two pockmarks in Belfast Bay, Maine, were used to characterize periods of sediment transport and to investigate conditions favorable to the settling of suspended sediment. Hourly averaged Shields parameters determined from horizontal current velocity profiles within the center of each pockmark never exceed the critical value (approximated with the theoretical model of Dade et al. 1992). However, Shields parameters estimated at the pockmark rims periodically exceed the critical value, consistent with conditions that support the onset of sediment transport and suspension. Below the rim in the near-center of each pockmark, depth-averaged vertical velocities were less than zero (downward) 60% and 55% of the time in the northern and southern pockmarks, and were often comparable to depth-averaged horizontal velocities. Along the rim, depth-averaged vertical velocities over the lower 8 m of the water column were primarily downward but much less than depth-averaged horizontal velocities indicating that suspended sediment may be moved to distant locations. Maximum grain sizes capable of remaining in suspension under terminal settling flow conditions (ranging 10–170 μm) were typically much greater than the observed median grain diameter (about 7 μm) at the bed. During upwelling flow within the pockmarks, and in the absence of flocculation, suspended sediment would not settle. The greater frequency of predicted periods of sediment transport along the rim of the southern pockmark is consistent with pockmark morphology in Belfast Bay, which transitions from more spherical to more elongated toward the south, suggesting near-bed sediment transport may contribute to post-formation pockmark evolution during typical conditions in Belfast Bay.
Approximation of wave action flux velocity in strongly sheared mean flows
NASA Astrophysics Data System (ADS)
Banihashemi, Saeideh; Kirby, James T.; Dong, Zhifei
2017-08-01
Spectral wave models based on the wave action equation typically use a theoretical framework based on depth uniform current to account for current effects on waves. In the real world, however, currents often have variations over depth. Several recent studies have made use of a depth-weighted current U˜ due to [Skop, R. A., 1987. Approximate dispersion relation for wave-current interactions. J. Waterway, Port, Coastal, and Ocean Eng. 113, 187-195.] or [Kirby, J. T., Chen, T., 1989. Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res. 94, 1013-1027.] in order to account for the effect of vertical current shear. Use of the depth-weighted velocity, which is a function of wavenumber (or frequency and direction) has been further simplified in recent applications by only utilizing a weighted current based on the spectral peak wavenumber. These applications do not typically take into account the dependence of U˜ on wave number k, as well as erroneously identifying U˜ as the proper choice for current velocity in the wave action equation. Here, we derive a corrected expression for the current component of the group velocity. We demonstrate its consistency using analytic results for a current with constant vorticity, and numerical results for a measured, strongly-sheared current profile obtained in the Columbia River. The effect of choosing a single value for current velocity based on the peak wave frequency is examined, and we suggest an alternate strategy, involving a Taylor series expansion about the peak frequency, which should significantly extend the range of accuracy of current estimates available to the wave model with minimal additional programming and data transfer.
Ups and Downs in the Ocean: Effects of Biofouling on Vertical Transport of Microplastics.
Kooi, Merel; Nes, Egbert H van; Scheffer, Marten; Koelmans, Albert A
2017-07-18
Recent studies suggest size-selective removal of small plastic particles from the ocean surface, an observation that remains unexplained. We studied one of the hypotheses regarding this size-selective removal: the formation of a biofilm on the microplastics (biofouling). We developed the first theoretical model that is capable of simulating the effect of biofouling on the fate of microplastic. The model is based on settling, biofilm growth, and ocean depth profiles for light, water density, temperature, salinity, and viscosity. Using realistic parameters, the model simulates the vertical transport of small microplastic particles over time, and predicts that the particles either float, sink to the ocean floor, or oscillate vertically, depending on the size and density of the particle. The predicted size-dependent vertical movement of microplastic particles results in a maximum concentration at intermediate depths. Consequently, relatively low abundances of small particles are predicted at the ocean surface, while at the same time these small particles may never reach the ocean floor. Our results hint at the fate of "lost" plastic in the ocean, and provide a start for predicting risks of exposure to microplastics for potentially vulnerable species living at these depths.
Rotzoll, Kolja
2012-01-01
The Pearl Harbor aquifer in southern O‘ahu is one of the most important sources of freshwater in Hawai‘i. A thick freshwater lens overlays brackish and saltwater in this coastal aquifer. Salinity profiles collected from uncased deep monitor wells (DMWs) commonly are used to monitor freshwater-lens thickness. However, vertical flow in DMWs can cause the measured salinity to differ from salinity in the adjacent aquifer or in an aquifer without a DWM. Substantial borehole flow and displacement of salinity in DMWs over several hundred feet have been observed in the Pearl Harbor aquifer. The objective of this study was to evaluate the effects of borehole flow on measured salinity profiles from DMWs. A numerical modeling approach incorporated aquifer hydraulic characteristics and recharge and withdrawal rates representative of the Pearl Harbor aquifer. Borehole flow caused by vertical hydraulic gradients associated with both the natural regional flow system and groundwater withdrawals was simulated. Model results indicate that, with all other factors being equal, greater withdrawal rates, closer withdrawal locations, or higher hydraulic conductivities of the well cause greater borehole flow and displacement of salinity in the well. Borehole flow caused by the natural groundwater-flow system is five orders of magnitude greater than vertical flow in a homogeneous aquifer, and borehole-flow directions are consistent with the regional flow system: downward flow in inland recharge areas and upward flow in coastal discharge areas. Displacement of salinity inside the DMWs associated with the regional groundwater-flow system ranges from less than 1 to 220 ft, depending on the location and assumed hydraulic conductivity of the well. For example, upward displacements of the 2 percent and 50 percent salinity depths in a well in the coastal discharge part of the flow system are 17 and 4.4 ft, respectively, and the average salinity difference between aquifer and borehole is 0.65 percent seawater salinity. Groundwater withdrawals and drawdowns generally occur at shallow depths in the freshwater system with respect to the depth of the DMW and cause upward flow in the DMW. Simulated groundwater withdrawal of 4.3 million gallons per day that is 100 ft from a DMW causes thirty times more borehole flow than borehole flow that is induced by the regional flow field alone. The displacement of the 2 percent borehole salinity depth increases from 17 to 33 ft, and the average salinity difference between aquifer and borehole is 0.85 percent seawater salinity. Peak borehole flow caused by local groundwater withdrawal near DMWs is directly proportional to the pumping rate in the nearby production well. Increasing groundwater withdrawal to 16.7 million gallons per day increases upward displacement of the 50 percent salinity depth (midpoint of the transition zone) from 4.6 to 77 ft, and the average salinity difference between aquifer and borehole is 1.4 percent seawater salinity. Simulated groundwater withdrawal that is 3,000 ft away from DMWs causes less borehole flow and salinity displacements than nearby withdrawal. Simulated effects of groundwater withdrawal from a horizontal shaft and withdrawal from a vertical well in a homogeneous aquifer were similar. Generally, the 50 percent salinity depths are less affected by borehole flow than the 2 percent salinity depths. Hence, measured salinity profiles are useful for calibration of regional numerical models despite borehole-flow effects. Commonly, a 1 percent error in salinity is acceptable in numerical modeling studies. Incorporation of heterogeneity in the model is necessary to simulate long vertical steps observed in salinity profiles in southern O‘ahu. A thick zone of low aquifer hydraulic conductivity limits exchange of water between aquifer and well and creates a long vertical step in the salinity profile. A heterogeneous basalt-aquifer scenario simulates observed vertical salinity steps and borehole flow that is consistent with measured borehole flow from DMWs in southern O‘ahu. However, inclusion of local-scale heterogeneities in regional models generally is not warranted.
Hydraulic characteristics of, and ground-water flow in, coal-bearing rocks of southwestern Virginia
Harlow, George E.; LeCain, Gary D.
1993-01-01
This report presents the results of a study by the U.S Geological Survey, in cooperation with the Virginia Department of Mines, Minerals, and Energy, Division of Mined Land Reclamation, and the Powell River Project, to describe the hydraulic characteristics of major water-bearing zones in the coal-bearing rocks of southwestern Virginia and to develop a conceptual model of the ground-water-flow system. Aquifer testing in1987 and 1988 of 9-ft intervals in coal-exploration coreholes indicates that transmissivity decreases with increasing depth. Most rock types are permeable to a depth of approximately 100 ft; however, only coal seams are consistently permeable (transmissivity greater than 0.001 ft/d) at depths greater than 200 ft . Constant-head injection testing of rock intervals adjacent to coal seams usually indicated lower values of transmissivity than those values obtained when coal seams were isolated within the test interval; thus, large values of horizontal hydraulic conductivity at depth are associated with coal seams. Potentiometric-head measurements indicate that high topographic areas (ridges) function as recharge areas; water infiltrates through the surface, percolates into regolith, and flows downward and laterally through fractures in the shallow bedrock. Hydraulic conductivity decreases with increasing depth, and ground water flows primarily in the lateral direction along fractures or bedding planes or through coal seams. If vertical hydraulic conductivity is negligible, ground water continues to flow laterally, discharging as springs or seeps on hill slopes. Where vertical hydraulic conductivity is appreciable, groundwater follows a stair step path through the regolith, fractures, bedding planes, and coal seams, discharging to streams and (or) recharging coal seams at depth. Permeable coal seams probably underlie valleys in the region; however, aquifer-test data indicate that the horizontal hydraulic conductivity of coal is a function of depth and probably decreases under ridges because of increased overburden pressures. Ground water beneath valleys that does not discharge to streams probably flows down gradient as underflow beneath the streams. Topographic relief in the area provides large hydraulic-head differences (greater than 300 ft in some instances) for the ground-water-flow system. Transmissivity data from the range of depths tested during this study indicate that most ground-water flow takes place at moderate depths (less than 300 ft) and that little deep regional ground-water flow occurs.
NASA Astrophysics Data System (ADS)
Moline, Mark A.; Oliver, Matthew J.; Mobley, Curtis D.; Sundman, Lydia; Bensky, Thomas; Bergmann, Trisha; Bissett, W. Paul; Case, James; Raymond, Erika H.; Schofield, Oscar M. E.
2007-11-01
Nighttime water-leaving radiance is a function of the depth-dependent distribution of both the in situ bioluminescence emissions and the absorption and scattering properties of the water. The vertical distributions of these parameters were used as inputs for a modified one-dimensional radiative transfer model to solve for spectral bioluminescence water-leaving radiance from prescribed depths of the water column. Variation in the water-leaving radiance was consistent with local episodic physical forcing events, with tidal forcing, terrestrial runoff, particulate accumulation, and biological responses influencing the shorter timescale dynamics. There was a >90 nm shift in the peak water-leaving radiance from blue (˜474 nm) to green as light propagated to the surface. In addition to clues in ecosystem responses to physical forcing, the temporal dynamics in intensity and spectral quality of water-leaving radiance provide suitable ranges for assessing detection. This may provide the information needed to estimate the depth of internal light sources in the ocean, which is discussed in part 2 of this paper.
NASA Technical Reports Server (NTRS)
Horvath, P.; Latham, G. V.; Nakamura, Y.; Dorman, H. J.
1980-01-01
The horizontal-to-vertical amplitude ratios of the long-period seismograms are reexamined to determine the shear wave velocity distributions at the Apollo 12, 14, 15, and 16 lunar landing sites. Average spectral ratios, computed from a number of impact signals, were compared with spectral ratios calculated for the fundamental mode Rayleigh waves in media consisting of homogeneous, isotropic, horizontal layers. The shear velocities of the best fitting models at the different sites resemble each other and differ from the average for all sites by not more than 20% except for the bottom layer at station 14. The shear velocities increase from 40 m/s at the surface to about 400 m/s at depths between 95 and 160 m at the various sites. Within this depth range the velocity-depth functions are well represented by two piecewise linear segments, although the presence of first-order discontinuities cannot be ruled out.
Potential of hydraulically induced fractures to communicate with existing wellbores
NASA Astrophysics Data System (ADS)
Montague, James A.; Pinder, George F.
2015-10-01
The probability that new hydraulically fractured wells drilled within the area of New York underlain by the Marcellus Shale will intersect an existing wellbore is calculated using a statistical model, which incorporates: the depth of a new fracturing well, the vertical growth of induced fractures, and the depths and locations of existing nearby wells. The model first calculates the probability of encountering an existing well in plan view and combines this with the probability of an existing well-being at sufficient depth to intersect the fractured region. Average probability estimates for the entire region of New York underlain by the Marcellus Shale range from 0.00% to 3.45% based upon the input parameters used. The largest contributing parameter on the probability value calculated is the nearby density of wells meaning that due diligence by oil and gas companies during construction in identifying all nearby wells will have the greatest effect in reducing the probability of interwellbore communication.
Imaging high-pressure rock exhumation along the arc-continent suture in eastern Taiwan
NASA Astrophysics Data System (ADS)
Brown, Dennis; Feng, Kuan-Fu; Wu, Yih-Min; Huang, Hsin-Hua
2015-04-01
Imaging high-pressure rock exhumation in active tectonic settings is considered to be one of the important observations that could potentially help to move forward the understanding of how this process works. Petrophysical analyses carried out along a high velocity zone imaged by seismic travel time tomography along the suture zone between the actively colliding Luzon Arc and the southeastern margin of Eurasia in Taiwan suggests that high-pressure rocks are being exhumed from at least a depth of 50 km below the arc-continent suture to the shallow subsurface where they coincide with an outcropping tectonic mélange called the Yuli Belt. The Yuli Belt comprises mainly greenschist facies quartz-mica schist, with lesser metabasite, metamorphosed mantle fragments and, importantly, minor blueschist. Modeling of published data bases of measured seismic velocities for a large suite of rocks suggests that all of the Yuli belt lithologies fit well with the measured Vp, Vs, and Vp/Vs at ambient pressures and temperatures (a 20 oC/km geotherm is used) from 10 to about 20 km depth. With the exception of hornblendite, mantle rocks need 30% to 40 % serpentinization to approximate the in situ range of Vp and and Vs at these depths. From about 20 km to 30 km, most continental crust and volcanic arc lithologies move out of the range of velocities measured by the tomography model at these depths. Blueschist (including the calculated Vp and Vs for the Yuli Belt samples), pyroxenite, and harzburgite, lherzolite, and dunite with around 20% to 30% serpentinization now enter into the range of velocities for these depths. From 40 km to 50 km depth, the mantle rocks pyroxenite, and weakly to unserpentinized harzburgite, lherzolite, and dunite, together with mafic eclogite velocities best fit the range of Vp, Vs and Vp/Vs at these depths. Seismicity along the arc-continent suture, the upper bounding fault of the high velocity zone examined here, indicate that it is a moderately oblique-slip thrust. The western boundary is a near vertical, sharp velocity gradient that, in the upper 10 to 15 km appears to link with a sinistral strike-slip fault. The high velocity zone itself is very seismically active down to a depth of 50 km. Focal mechanisms determined from within the high velocity zone are mostly strike-slip, oblique-slip, and extensional, with rare thrust mechanisms.
Fish depth distributions in the Lower Mississippi River
Killgore, K. J.; Miranda, Leandro E.
2014-01-01
A substantial body of literature exists about depth distribution of fish in oceans, lakes and reservoirs, but less is known about fish depth distribution in large rivers. Most of the emphasis on fish distributions in rivers has focused on longitudinal and latitudinal spatial distributions. Knowledge on depth distribution is necessary to understand species and community habitat needs. Considering this void, our goal was to identify patterns in fish benthic distribution along depth gradients in the Lower Mississippi River. Fish were collected over 14 years in depths down to 27 m. Fish exhibited non-random depth distributions that varied seasonally and according to species. Species richness was highest in shallow water, with about 50% of the 62 species detected no longer collected in water deeper than 8 m and about 75% no longer collected in water deeper than 12 m. Although richness was highest in shallow water, most species were not restricted to shallow water. Rather, most species used a wide range of depths. A weak depth zonation occurred, not as strong as that reported for deep oceans and lakes. Larger fish tended to occur in deeper water during the high-water period of an annual cycle, but no correlation was evident during the low-water period. The advent of landscape ecology has guided river research to search for spatial patterns along the length of the river and associated floodplains. Our results suggest that fish assemblages in large rivers are also structured vertically.
High aerosol load over the Pearl River Delta, China, observed with Raman lidar and Sun photometer
NASA Astrophysics Data System (ADS)
Ansmann, Albert; Engelmann, Ronny; Althausen, Dietrich; Wandinger, Ulla; Hu, Min; Zhang, Yuanghang; He, Qianshan
2005-07-01
Height-resolved data of the particle optical properties, the vertical extend of the haze layer, aerosol stratification, and the diurnal cycle of vertical mixing over the Pearl River Delta in southern China are presented. The observations were performed with Raman lidar and Sun photometer at Xinken (22.6°N, 113.6°E) near the south coast of China throughout October 2004. The lidar run almost full time on 21 days. Sun photometer data were taken on 23 days, from about 0800 to 1700 local time. The particle optical depth (at about 533-nm wavelength) ranged from 0.3-1.7 and was, on average, 0.92. Ångström exponents varied from 0.65-1.35 (for wavelengths 380 to 502 nm) and from 0.75-1.6 (for 502 to 1044 nm), mean values were 0.97 and 1.22. The haze-layer mean extinction-to-backscatter ratio ranged from 35-59 sr, and was, on average, 46.7 sr. The top of the haze layer reached to heights of 1.5-3 km in most cases.
Using heart rate to prescribe physical exercise during head-out water immersion.
Kruel, Luiz F M; Peyré-Tartaruga, Leonardo A; Coertjens, Marcelo; Dias, Adriana B C; Da Silva, Rafael C; Rangel, Antônio C B
2014-01-01
The purpose of this study was to compare and correlate the effect of age group, sex, depth of water immersion, and the heart rate (HR) assessed out of the water on the HR behavior in individuals subjected to head-out water immersion. A total of 395 healthy individuals of both sexes, aged between 07 and 75 years, underwent vertical head-out water immersion. Heart rate was assessed out of the water in the supine and orthostatic (OHR) positions and at immersion depths corresponding to the ankle, knee, hip, umbilicus, xiphoid process, acromion, neck, and also the neck with the arms out of the water. The formula (ΔHR = OHR - HR immersion depth) was used to calculate the reduction in HR at each immersion depth. No age-based or sex-based differences in HR were found. The greater the depth of the water, the greater was the decrease in HR (p < 0.05); however, no differences were found between the HR values obtained below the depth corresponding to the umbilicus. Similarly, there was a significant relationship between OHR and ΔHR measured at levels below the depth corresponding to the umbilicus (e.g., xiphoid process level: r = 0.62; p < 0.05). Therefore, this study suggests to appropriately prescribe the intensity of water-based exercise intensity performed during vertical immersion: OHR should be measured before the individual entering the aquatic environment; ΔHR should be measured according to the depth at which exercise is to be performed, and we suggest an adaptation to Karvonen's HRmax prediction formula (predicted HRmax: 220 - age - ΔHR) to prescribe and control the intensity of the exercise performed during vertical immersion.
What are the associated parameters and temporal coverage?
Atmospheric Science Data Center
2014-12-08
... Extinction Coefficient, Cloud Vertical Profile, Radar-only Liquid Water Content, Radar-only Liquid Ice Content, Vertical Flux Profile, ... ISCCP-D2like Cloud fraction, Effective Pressure, Temperature, optical depth, IWP/LWP, particle size, IR Emissivity in ...
NASA Astrophysics Data System (ADS)
Catchings, R. D.; Fuis, G.; Rymer, M. J.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.
2012-12-01
The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas fault (SAF) and adjacent basins (Imperial and Coachella Valleys) in southernmost California. Data and preliminary results from many of the seismic profiles are reported elsewhere (including Fuis et al., Rymer et al., Goldman et al., Langenheim et al., this meeting). Here, we focus on SSIP Line 6, one of four 2-D seismic profiles that were acquired across the Coachella Valley. The 44-km-long, SSIP-Line-6 seismic profile extended from the east flank of Mt. San Jacinto northwest of Palm Springs to the Little San Bernardino Mountains and crossed the SAF (Mission Creek (MCF), Banning (BF), and Garnet Hill (GHF) strands) roughly normal to strike. Data were generated by 10 downhole explosive sources (most spaced about 3 to 5 km apart) and were recorded by approximately 347 Texan seismographs (average spacing 126 m). We used first-arrival refractions to develop a P-wave refraction tomography velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 7 km depth, P-wave velocities range from about 2.5 km/s to about 7.2 km/s, with the lowest velocities within an ~2-km-deep, ~20-km-wide basin, and the highest velocities below the transition zone from the Coachella Valley to Mt. San Jacinto and within the Little San Bernardino Mountains. The BF and GHF strands bound a shallow sub-basin on the southwestern side of the Coachella Valley, but the underlying shallow-depth (~4 km) basement rocks are P-wave high in velocity (~7.2 km/s). The lack of a low-velocity zone beneath BF and GHF suggests that both faults dip northeastward. In a similar manner, high-velocity basement rocks beneath the Little San Bernardino Mountains suggest that the MCF dips vertically or southwestward. However, there is a pronounced low-velocity zone in basement rocks between about 2 and 7 km depth beneath and southwest of the MCF, suggesting a vertical or slightly southwest-dipping MCF. The apparent northeast dip of the BF and the apparent vertical or southwest dip of the MCF suggests that the two main strands of the SAF (MCF and BF) merge at about 10 km depth. A plot of double-difference earthquake hypocenters (Hauksson, 2000) along the seismic profile shows events that occurred between 1980-2000 (excluding those in 1992, prior to and after the Joshua Tree and Landers earthquakes) are largely confined to the vicinity of the basement low-velocity zone between the MCF and BF. However, a separate alignment of hypocenters occurs southwest of the BF and projects toward the surface beneath Mt. San Jacinto. Collectively, the velocity images and the seismicity data suggest the BF strand of the SAF dips to the northeast at about 50 degrees in the upper 10 km, and the MCF strand is either vertical or dips southwestward about 80 degrees, with both strands merging at about 10 km depth and forming a near-vertical zone of faults to at least 15 km depth. The SSIP Line 6 data are consistent with structures interpreted by Catchings et al. (2009).
NASA Astrophysics Data System (ADS)
Youngbluth, M.; Sørnes, T.; Hosia, A.; Stemmann, L.
2008-01-01
Fourteen dives were conducted with the ROVs Aglantha and Bathysaurus to depths of 2335 m along the Mid-Atlantic Ridge (42∘52'- 53∘17'N). The most frequently observed gelatinous fauna in order of overall abundance included medusae, ctenophores, siphonophores, appendicularians, and tunicates. All of these animals, except the tunicates, occurred throughout the water column. Their relative abundances differed with depth and location. Identification to species was limited to easily recognized fauna because relatively few gelatinous animals were collected. Each group of gelatinous zooplankton tended to be most numerous in a region just south of the Charlie-Gibbs Fracture Zone. Medusae (mainly Aeginura grimaldii) were the most frequently encountered animals (up to 25 individuals per 100m3). On a vertical scale their abundance peaked from 550 to 800 m and these maxima were consistently within the SAIW and NACWe. In the NACW their densities were notably lower (up 2 individuals per 100m3) and the majority of the population was deeper, ranging from 800 to 1050 m. Ctenophores (mainly Bathocyroe fosteri) were most prominent (as many as 27 individuals per 100m3) in a zone from 300 to 600 m in the NACWe. Appendicularians (primarily oikopleurids) had a broader vertical distribution in all water masses, mainly from 450 to 1000 m. Up to 12 houses per 100m3 were noted in the NACWe, and these estimates are considered to be very conservative. Sorties near the sea floor (as deep as 2100 m) indicated these detritivores were a prominent component (up to 5 houses per 100m3) of the epibenthic macrozooplankton. Siphonophores (mostly calycophorans) reached densities of about 14 colonies per 100m3 in the NACWe and occurred mainly from 300 to 600 m, at most locations. Tunicates (salps and doliolids) were patchy in their distribution and infrequently observed. Salps were numerous (up to 3 solitary individuals per 100m3) at only one location (sta. 50) near the surface. Deep-living doliolids (up to 1 individual per 100m3) appeared from 400 to 500 m at this site and occasionally within the same depth range at most of the other stations.
NASA Astrophysics Data System (ADS)
Vermeul, V.; McKinley, J. P.; Newcomer, D.; Fritz, B. G.; Mackley, R.; Zachara, J. M.
2010-12-01
Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. In this study, simultaneous measurement of 1) wellbore flow using an electromagnetic borehole flowmeter (EBF), 2) depth discrete hydraulic head, and 3) aqueous uranium concentrations were used to quantify wellbore flow and assess the associated impacts on measured aqueous concentrations. Monitoring results demonstrate the utility of continuous (i.e., hourly measurements for ~ one month) ambient wellbore flow monitoring and show that relatively large wellbore flows (up to 4 LPM) can be induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an EBF system allowed these effects to be evaluated in concert with continuously monitored river stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multi-level well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth. In addition, observed variability in aqueous concentrations measured during active tracer transport experiments provided additional evidence of wellbore flow impacts and showed that the magnitude and direction of wellbore flow varied spatially across the wellfield. An approach to mitigate these effects based on increasing hydraulic resistance within the wellbore was evaluated. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.
Fabric and texture at Siple Dome, Antarctica
Diprinzio, C.L.; Wilen, Lawrence A.; Alley, R.B.; Fitzpatrick, J.J.; Spencer, M.K.; Gow, A.J.
2005-01-01
Preferred c-axis orientations are present in the firn at Siple Dome, West Antarctica, and recrystallization begins as shallow as 200 m depth in ice below -20??C, based on digital analysis of c-axis fabrics, grain-sizes and other characteristics of 52 vertical thin sections prepared in the field from the kilometer-long Siple Dome ice core. The shallowest section analyzed, from 22 m, shows clustering of c axes toward the vertical. By 200 m depth, girdle fabric and other features of recrystallized ice are evident in layers (or regions), separated by layers (regions) of typically finer-grained ice lacking evidence of recrystallization. Ice from about 700-780 m depth, which was deposited during the last ice age, is especially fine-grained, with strongly vertical c axes, but deeper ice shows much larger crystals and strong evidence of recrystallization. Azimuthal asymmetry of some c-axis fabrics, trends in grain-size, and other indicators reveal additional information on processes and history of ice flow at Siple Dome.
Liu, Xian; Chen, Chengrong; Wang, Weijin; Hughes, Jane M; Lewis, Tom; Hou, Enqing; Shen, Jupei
2015-11-01
Soil biogeochemical cycles are largely mediated by microorganisms, while fire significantly modifies biogeochemical cycles mainly via altering microbial community and substrate availability. Majority of studies on fire effects have focused on the surface soil; therefore, our understanding of the vertical distribution of microbial communities and the impacts of fire on nitrogen (N) dynamics in the soil profile is limited. Here, we examined the changes of soil denitrification capacity (DNC) and denitrifying communities with depth under different burning regimes, and their interaction with environmental gradients along the soil profile. Results showed that soil depth had a more pronounced impact than the burning treatment on the bacterial community size. The abundance of 16S rRNA and denitrification genes (narG, nirK, and nirS) declined exponentially with soil depth. Surprisingly, the nosZ-harboring denitrifiers were enriched in the deeper soil layers, which was likely to indicate that the nosZ-harboring denitrifiers could better adapt to the stress conditions (i.e., oxygen deficiency, nutrient limitation, etc.) than other denitrifiers. Soil nutrients, including dissolved organic carbon (DOC), total soluble N (TSN), ammonium (NH(4)(+)), and nitrate (NO(3)(-)), declined significantly with soil depth, which probably contributed to the vertical distribution of denitrifying communities. Soil DNC decreased significantly with soil depth, which was negligible in the depths below 20 cm. These findings have provided new insights into niche separation of the N-cycling functional guilds along the soil profile, under a varied fire disturbance regime.
Sadiq Aliyu, Abubakar; Musa, Yahaya; Liman, M S; Abba, Habu T; Chaanda, Mohammed S; Ngene, Nnamani C; Garba, N N
2018-01-01
The Keffi area hosts abundant pegmatite bodies as a result of the surrounding granitic intrusions. Keffi is part of areas that are geologically classified as North Central Basement Complex. Data on the mineralogy and mineralogical zonation of the Keffi pegmatite are scanty. Hence the need to understand the geology and mineralogical zonation of Keffi pegmatites especially at different depth profiles is relevant as a study of the elemental composition of the pegmatite is essential for the estimation of its economic viability. Here, the relative standardization method of instrumental neutron activation analysis (INAA) has been used to investigate the vertical deviations of the elemental concentrations of rare earth elements (REEs) at different depth profile of Keffi pegmatite. This study adopted the following metrics in investigating the vertical variations of REEs concentrations. Namely, the total contents of rare earth elements (∑REE); ratio of light to heavy rare earth elements (LREE/HREE), which defines the enrichment or depletion of REEs; europium anomaly (Eu/Sm); La/Lu ratio relative to chondritic meteorites. The study showed no significant variations in the total content of rare elements between the vertical depth profiles (100-250m). However, higher total concentrations of REEs (~ 92.65ppm) were recorded at the upper depth of the pegmatite and the europium anomaly was consistently negative at all the depth profiles suggesting that the Keffi pegmatite is enriched with light REEs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sample, James C.; Reid, Mary R.; Tols, Harold J.; Moore, J. Casey
1993-06-01
To understand the relation between fluid seeps and structures, sedimentary rocks were collected with the DSRV Alvin from a vertical fault zone that transects the deformation front of the Cascadia accretionary wedge. The rocks contained diagenetic carbonate cement that was precipitated from fluids expelled during accretion. Carbon, oxygen, and strontium isotope data are consistent with a fluid source at >2 km depth. Most carbon isotopes range from -1‰ to -25‰ (PDB [Peedee belemnitel] standard) consistent with a thermogenic methane source. Oxygen isotopes show extreme 18O depletions (-4‰ to -13‰ PDB) that are consistent with precipitation from fluids with temperatures as high as 100 °C. 87Sr/86Sr values of 0.70975 to 0.71279 may be due to strontium in fluids derived from clay-rich parts of the stratigraphic section. The ubiquity of carbonate precipitates and the isotope data indicate that the vertical fault zone is an efficient conduit for fluid dewatering from deep levels of the accretionary wedge.
NASA Astrophysics Data System (ADS)
Zoback, M. D.; Xu, S.; Rassouli, F.; Ma, X.
2016-12-01
In this paper we extend the viscoplastic stress relaxation model of Sone and Zoback (Jour. Petrol. Sci. and Eng., 2014) for predicting variations of least principal stress with stress and its impact on the vertical propagation of hydraulic fractures. Viscoplastic stress relaxation in clay-rich (or diagenetically immature) sedimentary rocks makes the stress field more isotropic. In normal faulting and strike-slip faulting environments, this causes the least principal stress to increase making such formations likely barriers to vertical hydraulic fracture growth. In order to predict the magnitude of viscoplastic stress relaxation in different unconventional formations, we generalize a constitutive law developed from a wide range of creep experiments in our lab over the past several years and apply it to areas of stacked pay in Oklahoma and Texas. Using frac gradients were measured from minifrac and DFIT (Diagnostic Fracture Injection Test) experiments. The viscoplastic model does a good job of explaining vertical hydraulic fracture propagation, as indicated by the distribution of microseismic events recorded during stimulation.
Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Yue, Guangyang; Liu, Guimin; Chen, Hao
2017-12-31
Vertical patterns and determinants of soil nutrients are critical to understand nutrient cycling in high-altitude ecosystems; however, they remain poorly understood in the alpine grassland due to lack of systematic field observations. In this study, we examined vertical distributions of soil nutrients and their influencing factors within the upper 1m of soil, using data of 68 soil profiles surveyed in the alpine grassland of the eastern Qinghai-Tibet Plateau. Soil organic carbon (SOC) and total nitrogen (TN) stocks decreased with depth in both alpine meadow (AM) and alpine steppe (AS), but remain constant along the soil profile in alpine swamp meadow (ASM). Total phosphorus, Ca 2+ , and Mg 2+ stocks slightly increased with depth in ASM. K + stock decreased with depth, while Na + stock increased slightly with depth among different vegetation types; however, SO 4 2- and Cl - stocks remained relatively uniform throughout different depth intervals in the alpine grassland. Except for SOC and TN, soil nutrient stocks in the top 20cm soils were significantly lower in ASM compared to those in AM and AS. Correlation analyses showed that SOC and TN stocks in the alpine grassland positively correlated with vegetation coverage, soil moisture, clay content, and silt content, while they negatively related to sand content and soil pH. However, base cation stocks revealed contrary relationships with those environmental variables compared to SOC and TN stocks. These correlations varied between vegetation types. In addition, no significant relationship was detected between topographic factors and soil nutrients. Our findings suggest that plant cycling and soil moisture primarily control vertical distributions of soil nutrients (e.g. K) in the alpine grassland and highlight that vegetation types in high-altitude permafrost regions significantly affect soil nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.
Seismic anisotropy in the uppermost mantle beneath oceanic regions from data of broadband OBSs
NASA Astrophysics Data System (ADS)
Takeo, A.; Nishida, K.; Isse, T.; Kawakatsu, H.; Shiobara, H.; Sugioka, H.; Ito, A.; Kanazawa, T.; Suetsugu, D.
2011-12-01
For improving vertical resolution of seismic-anisotropy structure at depths of 10-100 km beneath oceanic regions, we measured phase velocities of surface waves in a broadband frequency range by two methods: the ambient noise interferometry in frequency higher than 0.035 Hz, and array analysis of event waveforms in lower frequency. We use seismograms recorded by broadband ocean bottom seismometers (BBOBSs) in two regions: (i) the Shikoku Basin in the Philippine Sea by Stagnant Slab Project, and (ii) east of Tahiti Island by a project called the tomographic investigation by seafloor array experiment for Society hotspot (TIARES). The frequency ranges of phase-velocity measurements in each region are summarized in Table. For the case of Shikoku Basin, we invert phase velocities for radially anisotropic structure. The resultant structure shows decrease of shear-wave velocity by 6-8 % at depths of 50-70 km, and intensification of radial anisotropy (VSH>VSV) from 1-2 % at 10-20 km depth to 4-6 % at 40-70 km depth. These results indicate increasing amount of preferred-oriented olivine crystal, and/or horizontal layering of partial melt near the boundary between the lithosphere and the asthenosphere. The azimuthal anisotropy of phase velocity in the Shikoku Basin is also investigated by array analysis of event waveforms for the fundamental mode of Rayleigh wave at 0.03 Hz. The fastest direction is NW, and consistent with direction of present plate motion. The velocity difference between fastest and slowest directions is 1-2 %. These results mainly reflect shear-wave velocity at depth of 30-60 km, and imply that lattice preferred orientation is, at least, partly (though may not be fully) responsible for the anisotropy in the depth range. We will obtain radially anisotropic structure and azimuthal anisotropy in Tahiti region, and will present difference between two regions.
Frequency range of phase-velocity measurements for two regions of analyses.
NASA Astrophysics Data System (ADS)
Miyagi, Isoji; Kita, Noriko; Morishita, Yuichi
2017-09-01
Evaluating the magma depth and its physical properties is critical to conduct a better geophysical assessment of magma chambers of caldera volcanoes that may potentially cause future volcanic hazards. To understand pre-eruptive conditions of a magma chamber before its first appearance at the surface, this paper describes the case of Hijiori caldera volcano in northeastern Japan, which emerged approximately 12,000 years ago at a place where no volcano ever existed. We estimated the depth, density, bulk modulus, vesicularity, crystal content, and bulk H_2O content of the magma chamber using petrographic interpretations, bulk and microchemical compositions, and thermodynamic calculations. The chemical mass balance calculations and thermodynamic modeling of the erupted magmas indicate that the upper portion of the Hijiori magmatic plumbing system was located at depths between 2 and 4 km, and had the following characteristics: (1) pre-eruptive temperature: about 780 °C; (2) bulk magma composition: 66 ± 1.5 wt% SiO2; (3) bulk magmatic H_2O: approximately 2.5 wt%, and variable characteristics that depend on depth; (4) crystal content: ≤57 vol%; (5) bulk modulus of magma: 0.1-0.8 GPa; (6) magma density: 1.8-2.3 g/cm3; and (7) amount of excess magmatic H_2O: 11-32 vol% or 48-81 mol%. The range of melt water contents found in quartz-hosted melt inclusions (2-9 wt%) suggests the range of depth phenocrysts growth to be wide (2˜13 km). Our data suggest the presence of a vertically elongated magma chamber whose top is nearly solidified but highly vesiculated; this chamber has probably grown and re-mobilized by repeated injections of a small amount of hot dacitic magma originated from the depth.
Overpressure and hydrocarbon accumulations in Tertiary strata, Gulf Coast of Louisiana
Nelson, Philip H.
2012-01-01
Many oil and gas reservoirs in Tertiary strata of southern Louisiana are located close to the interface between a sand-rich, normally pressured sequence and an underlying sand-poor, overpressured sequence. This association, recognized for many years by Gulf Coast explorationists, is revisited here because of its relevance to an assessment of undiscovered oil and gas potential in the Gulf Coast of Louisiana. The transition from normally pressured to highly overpressured sediments is documented by converting mud weights to pressure, plotting all pressure data from an individual field as a function of depth, and selecting a top and base of the pressure transition zone. Vertical extents of pressure transition zones in 34 fields across southern onshore Louisiana range from 300 to 9000 ft and are greatest in younger strata and in the larger fields. Display of pressure transition zones on geologic cross sections illustrates the relative independence of the depth of the pressure transition zone and geologic age. Comparison of the depth distribution of pressure transition zones with production intervals confirms previous findings that production intervals generally overlap the pressure transition zone in depth and that the median production depth lies above the base of the pressure transition zone in most fields. However, in 11 of 55 fields with deep drilling, substantial amounts of oil and gas have been produced from depths deeper than 2000 ft below the base of the pressure transition zone. Mud-weight data in 7 fields show that "local" pressure gradients range from 0.91 to 1.26 psi/ft below the base of the pressure transition zone. Pressure gradients are higher and computed effective stress gradients are negative in younger strata in coastal areas, indicating that a greater potential for fluid and sediment movement exists there than in older Tertiary strata.
NASA Astrophysics Data System (ADS)
Tian, You; Zhao, Dapeng
2012-06-01
We used 190,947 high-quality P-wave arrival times from 8421 local earthquakes and 1,098,022 precise travel-time residuals from 6470 teleseismic events recorded by the EarthScope/USArray transportable array to determine a detailed three-dimensional P-wave velocity model of the crust and mantle down to 1000 km depth under the western United States (US). Our tomography revealed strong heterogeneities in the crust and upper mantle under the western US. Prominent high-velocity anomalies are imaged beneath Idaho Batholith, central Colorado Plateau, Cascadian subduction zone, stable North American Craton, Transverse Ranges, and Southern Sierra Nevada. Prominent low-velocity anomalies are imaged at depths of 0-200 km beneath Snake River Plain, which may represent a small-scale convection beneath the western US. The low-velocity structure deviates variably from a narrow vertical plume conduit extending down to ˜1000 km depth, suggesting that the Yellowstone hotspot may have a lower-mantle origin. The Juan de Fuca slab is imaged as a dipping high-velocity anomaly under the western US. The slab geometry and its subducted depth vary in the north-south direction. In the southern parts the slab may have subducted down to >600 km depth. A "slab hole" is revealed beneath Oregon, which shows up as a low-velocity anomaly at depths of ˜100 to 300 km. The formation of the slab hole may be related to the Newberry magmatism. The removal of flat subducted Farallon slab may have triggered the vigorous magmatism in the Basin and Range and southern part of Rocky Mountains and also resulted in the uplift of the Colorado Plateau and Rocky Mountains.
Development of Vertical Cable Seismic System (2)
NASA Astrophysics Data System (ADS)
Asakawa, E.; Murakami, F.; Tsukahara, H.; Ishikawa, K.
2012-12-01
The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have carried out two field surveys in 2011. One is a 3D survey with a boomer for a high-resolution surface source and the other one for an actual field survey in the Izena Cauldron an active hydrothermal area in the Okinawa Trough. Through these surveys, we have confirmed that the uncertainty in the locations of the source and of the hydrophones in water could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures an accurate positioning and a deployment techniques. In case of shooting on sea surface, GPS navigation system are available, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging as requested for the SMS survey. We will incorporate the accurate LBL navigation systems with VCs. The LBL navigation system has been developed by IIS of the University of Tokyo. The error is estimated less than 10cm at the water depth of 3000m. Another approach is that the shot points can be calculated using the first break of the VCS after the VCS locations are estimated by slant-ranging from the sea surface. Our VCS system has been designed as a survey tool for hydrothermal deposit, but it will be also applicable for deep water site surveys or geohazard assessment such as active faults.
NASA Astrophysics Data System (ADS)
von Cosel, Rudo; Olu, Karine
2009-12-01
Two new genera and three new species of large Vesicomyidae are described from cold-seep sites on pockmarks and other sulfide-rich environments in the Gulf of Guinea (tropical east Atlantic) off Gabon, Congo (Brazzaville) and northern Angola, from 500 to 4000 m depth: " Calyptogena" (s.l.) regab n. sp., Wareniconcha (n.g.) guineensis (Thiele and Jaeckel 1931), Elenaconcha guiness n.g. n. sp., and Isorropodon atalantae n. sp. For two other species already taken by the R/V Valdivia in 1898, Calyptogena valdiviae (Thiele and Jaeckel 1931) and Isorropodon striatum (Thiele and Jaeckel 1931) new localities were discovered, and the species are rediscussed. E. guiness n.g. n.sp. is also recorded from off Banc d'Arguin, Mauritania, collected by commercial fishing vessels. The vesicomyid species here treated were encountered in different depth ranges along the Gabon-Congo-Angola margin, between 500 and 4000 m depth, and it was found that, in comparison with the dredge samples taken by the Valdivia expedition off southern Cameroon and off Rio de Oro (both at 2500 m), the same species occur in other depth ranges, in some cases with a vertical difference of more than 1000 m. .That means that the species are not confined to a given depth thought being typical for them and that the characteristics of the biotope are likely to play a major role in the distribution of the vesicomyids associated to cold seeps or other reduced environments along the West African margin.
Depth indicator and stop aid machining to precise tolerances
NASA Technical Reports Server (NTRS)
Laverty, J. L.
1966-01-01
Attachment for machine tools provides a visual indication of the depth of cut and a positive stop to prevent overcutting. This attachment is used with drill presses, vertical milling machines, and jig borers.
An analysis of the vertical structure equation for arbitrary thermal profiles
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1989-01-01
The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.
An analysis of the vertical structure equation for arbitrary thermal profiles
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1987-01-01
The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.
NASA Astrophysics Data System (ADS)
Fabry, V. J.; Deuser, W. G.
1992-04-01
Seasonal variations in the oxygen and carbon isotopic compositions and fluxes of five euthecosomatous pteropods were determined from a 14-month series of sediment trap deployments in the Sargasso Sea. Medium and large shell sizes of Styliola subula, Clio pyramidata, Limacina inflata, Creseis acicula, and Cuvierina columnella were collected throughout the sampling period. Comparisons of the δ18O of shell samples with the vertical and temporal variations in the calculated δ18O of aragonite in equilibrium with seawater suggest that these pteropods deposited the bulk of their shell mass at the following depths: S. subula and L. inflata at 50 m, C. pyramidata at 75 m, C. acicula in the upper 25 m, and C. columnella at 50-75 m. Although several of these species undergo diel vertical migration of several hundred meters in this region, the estimated depths of calcification match the upper parts of the species' vertical ranges, where the mean populations occur only at night. In all species, seasonal changes in the δ18O of shells were closely coupled to those of equilibrium δ18O for aragonite, suggesting that most of the shell mass of these individuals was formed within several months. Flux-weighted, mean δ18O values for the species reveal that seasonal variations in the sinking fluxes of shells would not affect the isotopic compositions of shell accumulations in Bermuda Rise sediments. Carbon and oxygen isotopes were positively correlated in all species except C. columnella, which suggests that temperature may influence the δ13C of the shells of these species.
NASA Astrophysics Data System (ADS)
Brandt, T.; Schmidt, C.; Fleckenstein, J. H.; Vieweg, M.; Harjung, A.
2015-12-01
The spatial and temporal distribution of dissolved oxygen (DO) at highly reactive aquatic interfaces, e.g. in the hyporheic zone (HZ), is a primary indicator of redox and interlinked biogeochemical zonations. However, continuous measuring of DO over time and depths is challenging due to the dynamic and potentially heterogenic nature of the HZ. We further developed a novel technology for spatially continuous in situ vertical oxygen profiling based on optical sensing (Vieweg et al, 2013). Continuous vertical measurements to a depth of 50 cm are obtained by the motor-controlled insertion of a side-firing Polymer Optical Fiber (POF) into tubular DO probes. Our technology allows minimally invasive DO measurements without DO consumption at high spatial resolution in the mm range. The reduced size of the tubular probe (diameter 5 mm) substantially minimizes disturbance of flow conditions. We tested our technology in situ in the HZ of an intermittent stream during the drying period. Repeated DO measurements were taken over a total duration of six weeks at two locations up- and downstream of a pool-cascade sequence. We were able to precisely map the spatial DO distribution which exhibited sharp gradients and rapid temporal changes as a function of changing hydrologic conditions. Our new vertical oxygen sensing technology will help to provide new insights to the coupling of transport of DO and biogeochemical reactions at aquatic interfaces. Vieweg, M., Trauth, N., Fleckenstein, J. H., Schmidt, C. (2013): Robust Optode-Based Method for Measuring in Situ Oxygen Profiles in Gravelly Streambeds. Environmental Science & Technology. doi:10.1021/es401040w
An improvement approach to the interpretation of magnetic data
NASA Astrophysics Data System (ADS)
Zhang, H. L.; Hu, X. Y.; Liu, T. Y.
2012-04-01
There are numerous existing semi-automated data processing approaches being implemented which specialize in edge and depth of potential field source. The mathematical expression of tilt-angle has recently been developed into a depth-estimation routine, known as "tilt-depth". The tilt-depth was first introduced by Salem et al (2007) based on the tilt-angle which use first-order derivative to detect edge. In this paper, we propose the improvement on the tilt-depth method, which is based on the second-order derivatives of the reduced to pole (RTP) magnetic field, called edge detection and depth estimation based on vertical second-order derivatives (V2D-depth). Under certain assumptions such as when the contacts are nearly vertical and infinite depth extent and the magnetic field is vertical or RTP, the general expression published by Nabighian (1972) for the magnetic field over contacts located at a horizontal location of x=0 and at a depth of z0 is ( ) -x-- ΔT (x,z) = 2kFc·arctan z0 - z (1) Where kis the susceptibility contrast at the contact, F the magnitude of the magnetic field, c = 1 - cos2i · sin2A, A the angle between the positive h-axis and magnetic north, i the inclination of earth's field. The expressions for the vertical and horizontal derivatives of the magnetic field can be written as dΔT-= 2kF c·--z0--z-- dh x2 +(z0 - z)2 (2) dΔT-= 2kF c·--- x-- dz x2 +(z0 - z)2 (3) Based on Equations 2 and 3, we have 2 Tzz = d-ΔT-= 2kF c·--2x(z0--z)- dz2 [x2 + (z0 - z)2]2 (4) 2 2 2 Tzh = d-ΔT-= 2kF c·-(z0 -z)--x-2 dzdh [x2 + (z0 - z)2] (5) ° ---- x2 + (z - z)2 TzG = Tz2h +T 2zz = 2kFc ·----0--2- [x2 + (z0 - z)2] (6) Using Equations 4, 5 and 6, when z=0, we can get Tzz x T--+-T-= z- zG zh 0 (7) The V2D-depth is defined as ( T ) ( x ) θ = tan- 1 --zz-- = tan-1 - TzG + Tzh z0 (8) The V2D-depth amplitudes are restricted to values between -45° and +45° . It has the same interesting properties like the tilt-depth. Its responses vary from negative to positive. Its value is negative when outside the source region, passes through zero when over, or near, the edge, and is positive when over the source. This can not only outline edge but also indicate the relative magnetization contrast. As we know that tilt-depth which use the zero amplitude of first-order vertical derivative for edge detection is not the best. The tilt-depth calculates the depth to top by measuring the physical distance between tilt-angle pairs, with particular emphasis on the locus of the complementary 0° and ±45° pairs. As Ahmed Salem et al pointed out in 2007, because of the anomaly interference and the breakdown of the two dimensionality assumption, the distance between the two ±45° contours and the 0° contours is not everywhere identical around the perimeter of each body. Comparison with the tilt-depth approach, this V2D-depth method can obtain a clearer field source edge and inverse a more realistic depth, while it also overcomes the interference by superimposed anomaly which tilt-depth approach does. The numerical experiment shows the method is effective.
A molecular and isotopic study of the organic matter from the Paris Basin, France
NASA Technical Reports Server (NTRS)
Lichtfouse, E.; Albrecht, P.; Behar, F.; Hayes, J. M.
1994-01-01
Thirteen Liassic sedimentary rocks of increasing depth and three petroleums from the Paris Basin were studied for 13C/12C isotopic compositions and biological markers, including steranes, sterenes, methylphenanthrenes, methylanthracenes, and triaromatic steroids. The isotopic compositions of n-alkanes from mature sedimentary rocks and petroleums fall in a narrow range (2%), except for the deepest Hettangian rock and the Trias petroleum, for which the short-chain n-alkanes are enriched and depleted in 13C, respectively. Most of the molecular parameters increase over the 2000-2500 m depth range, reflecting the transformation of the organic matter at the onset of petroleum generation. In this zone, carbonate content and carbon isotopic composition of carbonates, as well as molecular parameters, are distinct for the Toarcian and Hettangian source rocks and suggest a migration of organic matter from these two formations. Two novel molecular parameters were defined for this task: one using methyltriaromatic steroids from organic extracts; the other using 1-methylphenanthrene and 2-methylanthracene from kerogen pyrolysates. The anomalous high maturity of the Dogger petroleum relative to the maturity-depth trend of the source rocks is used to estimate the minimal vertical distance of migration of the organic matter from the source rock to the reservoir.
Reservoir characterization of the Mt. Simon Sandstone, Illinois Basin, USA
Frailey, S.M.; Damico, J.; Leetaru, H.E.
2011-01-01
The integration of open hole well log analyses, core analyses and pressure transient analyses was used for reservoir characterization of the Mt. Simon sandstone. Characterization of the injection interval provides the basis for a geologic model to support the baseline MVA model, specify pressure design requirements of surface equipment, develop completion strategies, estimate injection rates, and project the CO2 plume distribution.The Cambrian-age Mt. Simon Sandstone overlies the Precambrian granite basement of the Illinois Basin. The Mt. Simon is relatively thick formation exceeding 800 meters in some areas of the Illinois Basin. In the deeper part of the basin where sequestration is likely to occur at depths exceeding 1000 m, horizontal core permeability ranges from less than 1 ?? 10-12 cm 2 to greater than 1 ?? 10-8 cm2. Well log and core porosity can be up to 30% in the basal Mt. Simon reservoir. For modeling purposes, reservoir characterization includes absolute horizontal and vertical permeability, effective porosity, net and gross thickness, and depth. For horizontal permeability, log porosity was correlated with core. The core porosity-permeability correlation was improved by using grain size as an indication of pore throat size. After numerous attempts to identify an appropriate log signature, the calculated cementation exponent from Archie's porosity and resistivity relationships was used to identify which porosity-permeability correlation to apply and a permeability log was made. Due to the relatively large thickness of the Mt. Simon, vertical permeability is an important attribute to understand the distribution of CO2 when the injection interval is in the lower part of the unit. Only core analyses and specifically designed pressure transient tests can yield vertical permeability. Many reservoir flow models show that 500-800 m from the injection well most of the CO2 migrates upward depending on the magnitude of the vertical permeability and CO2 injection rate (CO2 velocity). Assigning a specific value of vertical permeability to model cells is dependent on the vertical height of the model cell. Measured vertical permeability on core is scale dependent, such that lower vertical permeability is expected over longer core lengths compared to smaller lengths. Consequently, a series of vertical permeability tests were conducted on whole core varying in lengths of samples from 7 cm to 30 cm that showed vertical perm could change by an order of magnitude over a 30 cm height. For one well, the results from a series of pressure transient tests over a perforated interval much smaller than the gross thickness (<2%) confirmed the core-log based geologic model for vertical and horizontal permeability. A partial penetration model was used to estimate the horizontal and vertical permeability over a portion of the modeled area using series and parallel flow averaging techniques. ?? 2011 Published by Elsevier Ltd.
The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials
NASA Astrophysics Data System (ADS)
Martisek, Dalibor; Prochazkova, Jana
2017-12-01
The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.
NASA Astrophysics Data System (ADS)
Les, A.; Klemperer, S. L.; Keranen, K.; Khan, A.; Maguire, P.
2003-12-01
In January 2003, as part of the Ethiopia-Afar Geoscientific Lithospheric Experiment (EAGLE) we conducted a refraction and wide-angle reflection survey of the Main Ethiopian Rift. 757 RefTek "Texan" seismographs with vertical geophones were deployed in 400 km-long axial and cross-rift lines, with another 231 in a central 3D array 100 km in diameter. An 80-instrument passive array of intermediate and broadband sensors was active during our experiment. We recorded 19 borehole shots loaded in nominal 50-meter boreholes, 2 quarry shots, and 2 lake shots. The shots ranged in size from 50-5750 kg, with the most common shot size being 1 tonne. Prior to loading each shot-hole, we measured distances between shots and the nearest structure, typically un-reinforced mud-and-wood houses, occasionally concrete irrigation ditches and aqueducts. We then used semi-empirical formulae derived by Oriard (Hendron and Oriard, 1972) to calculate expected maximum and minimum bounds on ground velocity at these structures, and selected an appropriate shot size to keep the predicted velocity below the "threshold for cosmetic damage", or 2 inches per second, at the most vulnerable structure. The Oriard formulae are derived from measurements associated with blasting for mining and civil engineering purposes and may not accurately predict the ground velocity from the source depths and explosive type used in the EAGLE and other controlled-source experiments. A detailed, trace-by-trace analysis of maximum ground velocities at our closest seismographs can provide data that will be useful in planning future large-scale seismic experiments. Preliminary results from traces within 20 km of our borehole shots suggest that maximum recorded ground velocities were within or below the maximum-minimum range predicted by Oriard, and hence that larger shot sizes could have been used with acceptable risks. A lake shot fired at the optimum depth (84 m for a 1 tonne shot) produced ground velocities that exceeded the predicted maximum at a few recodrers. However, optimum-depth shots are typically a significant distance offshore (c. 2.3 km for our shot) because of the required depth, so are unlikely to present a hazard to onshore structures. A lake shot fired in a shallower lake at half the optimum depth did not produce ground-velocities that exceed the Oriard maximum. Although we fired shots within 100 m of an unreinforced concrete aqueduct, and within 200 m of poorly engineered native buildings in poor structural condition, no damage was recorded. Our "Texan" seismometers recorded only vertical component velocity, using 4.5 Hz geophones. After removal of the geophone response the peak vertical velocity is typically measured at about 3 Hz and occurs shortly after the first arrival, presumably due to surface waves (ground roll). We are currently extending our analysis to include data from broadband, three-component recorders.
Conger, Randall W.
2000-01-01
Between November 1998 and May 1999, geophysical logging was conducted in 29 boreholes at the Crossley Farms Superfund Site, Hereford Township, Berks County, Pa., to determine the fluidproducing zones, fluid-receiving zones, zones of vertical borehole flow, and casing depth. The wells range in depth from 96 to 500 feet below land surface. Gamma logs only were collected in three bedrock wells. The geophysical logging determined the placement of well screens and packers, which allow monitoring and sampling of water-bearing zones in the fractured bedrock so that the horizontal and vertical distribution of contaminated ground water migrating from known sources could be determined. Geophysical logging included collection of caliper, video, fluid-temperature, fluid-resistivity, single-point-resistance, natural-gamma, fluid-flow, and acoustic-televiewer logs. Caliper and video logs were used to locate fractures, joints, and weathered zones. Inflections on fluidtemperature and fluid-resistivity logs indicated possible water-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical, video logs, and drillers notes, 24 of the wells were reconstructed such that water levels can be monitored and water samples collected from discrete water-bearing fractures in each well.
Occlusal wear and occlusal condition in a convenience sample of young adults.
Van't Spijker, A; Kreulen, C M; Bronkhorst, E M; Creugers, N H J
2015-01-01
To study progression of tooth wear quantitatively in a convenient sample of young adults and to assess possible correlations with occlusal conditions. Twenty-eight dental students participated in a three-year follow up study on tooth wear. Visible wear facets on full arch gypsum casts were assessed using a flatbed scanner and measuring software. Regression analyses were used to assess possible associations between the registered occlusal conditions 'occlusal guidance scheme', 'vertical overbite', 'horizontal overbite', 'depth of sagittal curve', 'canine Angle class relation', 'history of orthodontic treatment', and 'self-reported grinding/clenching' (independent variables) and increase of wear facets (dependent variable). Mean increase in facet surface areas ranged from 1.2 mm2 (premolars, incisors) to 3.4 mm2 (molars); the relative increase ranged from 15% to 23%. Backward regression analysis showed no significant relation for 'group function', 'vertical overbite', 'depth of sagittal curve', 'history of orthodontic treatment' nor 'self-reported clenching. The final multiple linear regression model showed significant associations amongst 'anterior protected articulation' and 'horizontal overbite' and increase of facet surface areas. For all teeth combined, only 'anterior protected articulation' had a significant effect. 'Self reported grinding' did not have a significant effect (p>0.07). In this study 'anterior protected articulation' and 'horizontal overbite', were significantly associated with the progression of tooth wear. Self reported grinding was not significantly associated with progression of tooth wear. Occlusal conditions such as anterior protected articulation and horizontal overbite seem to have an effect on the progression of occlusal tooth wear in this convenient sample of young adults. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bird, Philip H.; Conger, Randall W.
2002-01-01
Borehole geophysical logging and aquifer-isolation (packer) tests were conducted at the North Penn Area 5 Superfund site in Bucks and Montgomery Counties, Pa. Caliper, naturalgamma, single-point-resistance, fluid-temperature, fluid-resistivity, heatpulse-flowmeter, and digital acoustic-televiewer logs and borehole television surveys were collected in 32 new and previously drilled wells that ranged in depth from 68 to 302 feet. Vertical borehole-fluid movement direction and rate were measured with a high-resolution heatpulse flowmeter under nonpumping conditions. The suite of logs was used to locate water-bearing fractures, determine zones of vertical borehole-fluid movement, select depths to set packers, and locate appropriate screen intervals for reconstructing new wells as monitoring wells. Aquifer-isolation tests were conducted in four wells to sample discrete intervals and to determine specific capacities of discrete water-bearing zones. Specific capacities of isolated zones during packer testing ranged from 0.12 to 15.30 gallons per minute per foot. Most fractures identified by borehole geophysical methods as water-producing or water-receiving zones produced water when isolated and pumped. The acoustic-televiewer logs define two basic fracture sets, bedding-plane partings with a mean strike of N. 62° E. and a mean dip of 27° NW., and high-angle fractures with a mean strike of N. 58° E. and a mean dip of 72° SE. Correlation of heatpulse-flowmeter data and acoustic-televiewer logs showed 83 percent of identified water-bearing fractures were high-angle fractures.
2008-01-01
exceeds the local water depth. The approximation eliminates the vertical dimension of the elliptic equation that is normally required for the fully non...used for vertical resolution. The shallow water equations (SWE) are a set of non-linear hyperbolic equations. As the equations are derived under...linear standing wave with a wavelength of 10 m in a square 10 m by 10 m basin. The still water depth is 0.5 m. In order to compare with the analytical
The effect of EDTA in attachment gain and root coverage.
Kassab, Moawia M; Cohen, Robert E; Andreana, Sebastiano; Dentino, Andrew R
2006-06-01
Root surface biomodification using low pH agents such as citric acid and tetracycline has been proposed to enhance root coverage following connective tissue grafting. The authors hypothesized that root conditioning with neutral pH edetic acid would improve vertical recession depth, root surface coverage, pocket depth, and clinical attachment levels. Twenty teeth in 10 patients with Miller class I and II recession were treated with connective tissue grafting. The experimental sites received 24% edetic acid in sterile distilled water applied to the root surface for 2 minutes before grafting. Controls were pretreated with only sterile distilled water. Measurements were evaluated before surgery and 6 months after surgery. Analysis of variance was used to determine differences between experimental and control groups. We found significant postoperative improvements in vertical recession depth, root surface coverage, and clinical attachment levels in test and control groups, compared to postoperative data. Pocket depth differences were not significant (P<.01).
Levander, A.; Fuis, G.S.; Wissinger, E.S.; Lutter, W.J.; Oldow, J.S.; Moore, Thomas E.
1994-01-01
We describe results of an integrated seismic reflection/refraction experiment across the Brooks Range and flanking geologic provinces in Arctic Alaska. The seismic acquisition was unusual in that reflection and refraction data were collected simultaneously with a 700 channel seismograph system deployed numerous times along a 315 km profile. Shot records show continuous Moho reflections from 0-180 km offset, as well as numerous upper- and mid-crustal wide-angle events. Single and low-fold near-vertical incidence common midpoint (CMP) reflection images show complex upper- and middle-crustal structure across the range from the unmetamorphosed Endicott Mountains allochthon (EMA) in the north, to the metamorphic belts in the south. Lower-crustal and Moho reflections are visible across the entire reflection profile. Travel-time inversion of PmP arrivals shows that the Moho, at 33 km depth beneath the North Slope foothills, deepens abruptly beneath the EMA to a maximum of 46 km, and then shallows southward to 35 km at the southern edge of the range. Two zones of upper- and middle-crustal reflections underlie the northern Brooks Range above ~ 12-15 km depth. The upper zone, interpreted as the base of the EMA, lies at a maximum depth of 6 km and extends over 50 km from the range front to the north central Brooks Range where the base of the EMA outcrops above the metasedimentary rocks exposed in the Doonerak window. We interpret the base of the lower zone, at ~ 12 km depth, to be from carbonate rocks above the master detachment upon which the Brooks Range formed. The seismic data suggest that the master detachment is connected to the faults in the EMA by several ramps. In the highly metamorphosed terranes south of the Doonerak window, the CMP section shows numerous south-dipping events which we interpret as a crustal scale duplex involving the Doonerak window rocks. The basal detachment reflections can be traced approximately 100 km, and dip southward from about 10-12 km near the range front, to 14-18 km beneath the Doonerak window, to 26-28 km beneath the metamorphic belts in the central Brooks Range. The section documents middle- and lower-crustal involvement in the formation of the Brooks Range. ?? 1994.
NASA Astrophysics Data System (ADS)
Friðleifsson, Guðmundur Ó.; Elders, Wilfred A.; Zierenberg, Robert A.; Stefánsson, Ari; Fowler, Andrew P. G.; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.
2017-11-01
The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ˜ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP-2 is a milestone in the development of geothermal resources and the study of hydrothermal systems. It is the first well that successfully encountered supercritical hydrothermal conditions, with potential high-power output, and in which on-going hydrothermal metamorphism at amphibolite facies conditions can be observed. The next step will be to carry out flow testing and fluid sampling to determine the chemical and thermodynamic properties of the formation fluids.
78 FR 43821 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
............ +902 Unincorporated Areas of LaGrange County. Big Long Lake Entire shoreline......... +957 Unincorporated Areas of LaGrange County. Big Turkey Lake Entire shoreline within +932 Unincorporated Areas of... Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level...
77 FR 71702 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
... from the requirements of 44 CFR part 10, Environmental Consideration. An environmental impact... Rock +3405 Creek (Lower) confluence. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES...
Sundby, Svein; Kristiansen, Trond
2015-01-01
Buoyancy acting on plankton, i.e. the difference in specific gravity between plankton and the ambient water, is a function of salinity and temperature. From specific gravity measurements of marine fish eggs salinity appears to be the only determinant of the buoyancy indicating that the thermal expansions of the fish egg and the ambient seawater are equal. We analyze the mechanisms behind thermal expansion in fish eggs in order to determine to what extent it can be justified to neglect the effects of temperature on buoyancy. Our results confirm the earlier assumptions that salinity is the basic determinant on buoyancy in marine fish eggs that, in turn, influence the vertical distributions and, consequently, the dispersal of fish eggs from the spawning areas. Fish populations have adapted accordingly by producing egg specific gravities that tune the egg buoyancy to create specific vertical distributions for each local population. A wide variety of buoyancy adaptations are found among fish populations. The ambient physical conditions at the spawning sites form a basic constraint for adaptation. In coastal regions where salinity increases with depth, and where the major fraction of the fish stocks spawns, pelagic and mesopelagic egg distributions dominate. However, in the larger part of worlds’ oceans salinity decreases with depth resulting in different egg distributions. Here, the principles of vertical distributions of fish eggs in the world oceans are presented in an overarching framework presenting the basic differences between regions, mainly coastal, where salinity increases with depth and the major part of the world oceans where salinity decreases with depth. We show that under these latter conditions, steady-state vertical distribution of mesopelagic fish eggs cannot exist as it does in most coastal regions. In fact, a critical spawning depth must exist where spawning below this depth threshold results in eggs sinking out of the water column and become lost for recruitment to the population. An example of adaptation to such conditions is Cape hake spawning above the critical layer in the Northern Benguela upwelling ecosystem. The eggs rise slowly in the onshore subsurface current below the Ekman layer, hence being advected inshore where the hatched larvae concentrate with optimal feeding conditions. PMID:26465149
Site characterisation in north-western Turkey based on SPAC and HVSR analysis of microtremor noise
NASA Astrophysics Data System (ADS)
Asten, Michael W.; Askan, Aysegul; Ekincioglu, E. Ezgi; Sisman, F. Nurten; Ugurhan, Beliz
2014-02-01
The geology of the north-western Anatolia (Turkey) ranges from hard Mesozoic bedrock in mountainous areas to large sediment-filled, pull-apart basins formed by the North Anatolian Fault zone system. Düzce and Bolu city centres are located in major alluvial basins in the region, and both suffered from severe building damage during the 12 November 1999 Düzce earthquake (Mw = 7.2). In this study, a team consisting of geophysicists and civil engineers collected and interpreted passive array-based microtremor data in the cities of Bolu and Düzce, both of which are localities of urban development located on topographically flat, geologically young alluvial basins of Miocene age. Interpretation of the microtremor data under an assumption of dominant fundamental-mode Rayleigh-wave noise allowed derivation of the shear-wave velocity (Vs) profile. The depth of investigation was ~100 m from spatially-averaged coherency (SPAC) data alone. High-frequency microtremor array data to 25 Hz allows resolution of a surface layer with Vs < 200 m/s and thickness 5 m (Bolu) and 6 m (Düzce). Subsequent inclusion of spectral ratios between horizontal and vertical components of microtremor data (HVSR) in the curve fitting process extends useful frequencies up to a decade lower than those for SPAC alone. This allows resolution of two interfaces of moderate Vs contrasts in soft Miocene and Eocene sediments, first, at a depth in the range 136-209 m, and second, at a depth in the range 2000 to 2200 m.
Double-diffusive instabilities in ancient seawater
NASA Astrophysics Data System (ADS)
Pawlowicz, Rich; Scheifele, Ben; Zaloga, Artem; Wuest, Alfred; Sommer, Tobias
2015-04-01
Powell Lake, British Columbia, Canada is a geothermally heated lake about 350m deep with a saline lower layer that was isolated from the ocean by coastal uplift about 11000 years ago, after the last ice age. Careful temperature and conductivity profiling measurements show consistent, stable, and spatially/temporally coherent steps resulting from double-diffusive processes in certain ranges of depth, vertically interspersed with other depth ranges where these signatures are not present. These features are quasi-stable for at least several years. Although molecular diffusion has removed about half the salt from the deepest waters and biogeochemical processes have slightly modified the water composition, the lack of tidal processes and shear-driven mixing, as well as an accurate estimate of heat flux from both sediment heat flux measurements and gradient measurements in a region not susceptible to diffusive instabilities, makes this a unique geophysical laboratory to study double diffusion. Here we present a detailed picture of the structure of Powell Lake and its double-diffusive stair cases, and suggest shortcomings with existing parameterizations for fluxes through such staircases.
Kim, Hye Min; Lee, Min Jin; Jung, Ji Young; Hwang, Chung Yeon; Kim, Mincheol; Ro, Hee-Myong; Chun, Jongsik; Lee, Yoo Kyung
2016-11-01
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.
Vertical distribution of the prokaryotic cell size in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
La Ferla, R.; Maimone, G.; Azzaro, M.; Conversano, F.; Brunet, C.; Cabral, A. S.; Paranhos, R.
2012-12-01
Distributions of prokaryotic cell size and morphology were studied in different areas of the Mediterranean Sea by using image analysis on samples collected from surface down to bathypelagic layers (max depth 4,900 m) in the Southern Tyrrhenian, Southern Adriatic and Eastern Mediterranean Seas. Distribution of cell size of prokaryotes in marine ecosystem is very often not considered, which makes our study first in the context of prokaryotic ecology. In the deep Mediterranean layers, an usually-not-considered form of carbon sequestration through prokaryotic cells has been highlighted, which is consistent with an increase in cell size with the depth of the water column. A wide range in prokaryotic cell volumes was observed (between 0.045 and 0.566 μm3). Increase in cell size with depth was opposed to cell abundance distribution. Our results from microscopic observations were confirmed by the increasing HNA/LNA ratio (HNA, cells with high nucleic acid content; LNA, cells with low nucleic acid content) along the water column. Implications of our results on the increasing cell size with depth are in the fact that the quantitative estimation of prokaryotic biomass changes along the water column and the amount of carbon sequestered in the deep biota is enhanced.
Turbulent Compressible Convection with Rotation. 2; Mean Flows and Differential Rotation
NASA Technical Reports Server (NTRS)
Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri
1998-01-01
The effects of rotation on turbulent, compressible convection within stellar envelopes are studied through three-dimensional numerical simulations conducted within a local f-plane model. This work seeks to understand the types of differential rotation that can be established in convective envelopes of stars like the Sun, for which recent helioseismic observations suggest an angular velocity profile with depth and latitude at variance with many theoretical predictions. This paper analyzes the mechanisms that are responsible for the mean (horizontally averaged) zonal and meridional flows that are produced by convection influenced by Coriolis forces. The compressible convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers encompassing both laminar and turbulent flow conditions under weak and strong rotational constraints. When the nonlinearities are moderate, the effects of rotation on the resulting laminar cellular convection leads to distinctive tilts of the cell boundaries away from the vertical. These yield correlations between vertical and horizontal motions that generate Reynolds stresses that can drive mean flows, interpretable as differential rotation and meridional circulations. Under more vigorous forcing, the resulting turbulent convection involves complicated and contorted fluid particle trajectories, with few clear correlations between vertical and horizontal motions, punctuated by an evolving and intricate downflow network that can extend over much of the depth of the layer. Within such networks are some coherent structures of vortical downflow that tend to align with the rotation axis. These yield a novel turbulent alignment mechanism, distinct from the laminar tilting of cellular boundaries, that can provide the principal correlated motions and thus Reynolds stresses and subsequently mean flows. The emergence of such coherent structures that can persist amidst more random motions is a characteristic of turbulence with symmetries broken by rotation and stratification. Such structure is here found to play a crucial role in defining the mean zonal and meridional flows that coexist with the convection. Though they are subject to strong inertial oscillations, the strength and type of the mean flows are determined by a combination of the laminar tilting and the turbulent alignment mechanisms. Varying the parameters produces a wide range of mean motions. Among these, some turbulent solutions exhibit a mean zonal velocity profile that is nearly constant with depth, much as deduced by helioseismology at midlatitudes within the Sun. The solutions exhibit a definite handedness, with the direction of the persistent mean flows often prescribing a spiral with depth near the boundaries, also in accord with helioseismic deductions. The mean helicity has a profile that is positive in the upper portion of the domain and negative in the lower portion, a property bearing on magnetic dynamo processes that may be realized within such rotating layers of turbulent convection.
NASA Astrophysics Data System (ADS)
Packard, T. T.; Osma, N.; Fernández-Urruzola, I.; Codispoti, L. A.; Christensen, J. P.; Gómez, M.
2014-11-01
Oceanic depth profiles of plankton respiration are described by a power function, RCO2 = (RCO2)0(z/z0)b similar to the vertical carbon flux profile. Furthermore, because both ocean processes are closely related, conceptually and mathematically, each can be calculated from the other. The exponent (b), always negative, defines the maximum curvature of the respiration depth-profile and controls the carbon flux. When b is large, the C flux (FC) from the epipelagic ocean is low and the nutrient retention efficiency (NRE) is high allowing these waters to maintain high productivity. The opposite occurs when b is small. This means that the attenuation of respiration in ocean water columns is critical in understanding and predicting both vertical FC as well as the capacity of epipelagic ecosystems to retain their nutrients. The NRE is a new metric defined as the ratio of nutrient regeneration in a seawater layer to the nutrients introduced into that layer via FC. A depth-profile of FC is the integral of water column respiration. This relationship facilitates calculating ocean sections of FC from water column respiration. In a FC section across the Peru upwelling system we found a FC maximum extending down to 400 m, 50 km off the Peru coast. Finally, coupling respiratory electron transport system activity to heterotrophic oxidative phosphorylation promoted the calculation of an ocean section of heterotrophic energy production (HEP). It ranged from 250 to 500 J d-1 m-3 in the euphotic zone, to less than 5 J d-1 m-3 below 200 m on this ocean section.
Czarnecki, John B.; Stanton, Gregory P.; Freiwald, David A.
2001-01-01
The Red River Aluminum site near Stamps, Arkansas, contains waste piles of salt cake and metal byproducts from the smelting of aluminum. The waste piles are subjected to about 50 inches of rainfall a year, resulting in the dissolution of the salts and metal. To assess the potential threat to underlying ground-water resources at the site, its hydrogeology was characterized by measuring water levels and field parameters of water quality in 23 wells and at 2 surface-water sites. Seventeen of these monitor wells were constructed at various depths for this study to allow for the separate characterization of the shallow and deep ground-water systems, the calculation of vertical gradients, and the collection of water samples at different depths within the flow system. Lithologic descriptions from drill-hole cuttings and geophysical logs indicate the presence of interbedded sands, gravels, silts, and clays to depths of 65 feet. The regionally important Sparta aquifer underlies the site. Water levels in shallow wells indicate radial flow away from the salt-cake pile located near the center of the site. Flow in the deep system is to the west and southwest toward Bodcau Creek. Water-level data from eight piezometer nests indicate a downward hydraulic gradient from the shallow to deep systems across the site. Values of specific conductance (an indicator of dissolved salts) ranged from 215 to 196,200 microsiemens per centimeter and indicate that saline waters are being transported horizontally and vertically downward away from the site
NASA Astrophysics Data System (ADS)
Grossmann, Mary M.; Nishikawa, Jun; Lindsay, Dhugal J.
2015-06-01
The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous with respect to salinity (ca. 34.00) and temperature (ca. 10 °C). The neighbouring Celebes Sea is more open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, especially at mesopelagic depths. At the surface, the cnidarian community was similar in both marginal seas, but, at depth, community structure was dependent first on sampling location and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in the Indo-Pacific. Mesopelagic and bathypelagic species recorded in the Sulu Sea did not have significantly different vertical distributions in the Celebes Sea. However, some deep mesopelagic genera were absent from the Sulu Sea in the sampled depth range. These results suggest that a combination of environmental and physiological parameters determine the distribution and dominance of pelagic cnidarians.
NASA Astrophysics Data System (ADS)
Klaus, M.; MacIntyre, S.; Hotchkiss, E. R.; Bergström, A. K.; Karlsson, J.
2015-12-01
Lake metabolism models based on the diel oxygen technique often assume that oxygen dynamics are mainly controlled by metabolic processes, only accounting for wind-driven atmospheric gas exchange. However, oxygen dynamics can also be affected by abiotic mass fluxes across oxygen gradients within lakes and atmospheric gas exchange driven by convection. Here, we quantify how much vertical fluxes of oxygen modify epilimnetic metabolism estimates for three pairs of small Swedish boreal lakes, one of each fertilized with nitrate, with dissolved organic carbon (DOC) concentrations of 7 to 22 mg l-1. Oxygen concentrations were measured every 10 min at 50 cm depth and biweekly across depths profiles during one full open water period. Based on additional two weeks of ten-minute oxygen profiling we calculated vertical fluxes of oxygen using equations for atmospheric gas exchange caused by wind shear (F1) and convection (F2), and lake-internal gas exchange caused by diffusion and mixed layer deepening (F3). We ran three inverse Bayesian models to estimate daily metabolism: (M1) accounting for F1, (M2) accounting for F1 and F2, and (M3) accounting for F1 and F3. Initial results suggest that gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) ranged from 0.1 to 0.2, -0.3 to -0.5 and -0.2 to -0.4 g C m-2 d-1, respectively. GPP and R were higher in fertilized lakes and at the lower end of previous worldwide estimates. Accounting for convection-driven gas exchange increased ER estimates by 10-40% (M2 vs. M1). This bias increased with DOC concentration but was not affected by fertilization. Including lake-internal vertical oxygen fluxes changed GPP and ER estimates by up to ±40% (M3 vs. M1), with inconsistent trends along the DOC-gradient. We conclude that vertical fluxes of oxygen can significantly affect diel oxygen dynamics in oligotrophic humic systems and should therefore be included in metabolism models applied to small boreal lakes.
Global distribution of pteropods representing carbonate functional type biomass
NASA Astrophysics Data System (ADS)
Bednaršek, N.; Možina, J.; Vučković, M.; Vogt, M.; O'Brien, C.; Tarling, G. A.
2012-05-01
Pteropods are a group of holoplanktonic gastropods for which global biomass distribution patterns remain poorly resolved. The aim of this study was to collect and synthesize existing pteropod (Gymnosomata, Thecosomata and Pseudothecosomata) abundance and biomass data, in order to evaluate the global distribution of pteropod carbon biomass, with a particular emphasis on its seasonal, temporal and vertical patterns. We collected 25 902 data points from several online databases and a number of scientific articles. The biomass data has been gridded onto a 360 × 180° grid, with a vertical resolution of 33 WOA depth levels. Data has been converted to NetCDF format which can be downloaded from PANGAEA, http://doi.pangaea.de/10.1594/PANGAEA.777387. Data were collected between 1951-2010, with sampling depths ranging from 0-1000 m. Pteropod biomass data was either extracted directly or derived through converting abundance to biomass with pteropod specific length to weight conversions. In the Northern Hemisphere (NH) the data were distributed evenly throughout the year, whereas sampling in the Southern Hemisphere was biased towards the austral summer months. 86% of all biomass values were located in the NH, most (42%) within the latitudinal band of 30-50° N. The range of global biomass values spanned over three orders of magnitude, with a mean and median biomass concentration of 8.2 mg C l-1 (SD = 61.4) and 0.25 mg C l-1, respectively for all data points, and with a mean of 9.1 mg C l-1 (SD = 64.8) and a median of 0.25 mg C l-1 for non-zero biomass values. The highest mean and median biomass concentrations were located in the NH between 40-50° S (mean biomass: 68.8 mg C l-1 (SD × 213.4) median biomass: 2.5 mg C l-1) while, in the SH, they were within the 70-80° S latitudinal band (mean: 10.5 mg C l-1 (SD × 38.8) and median: 0.2 mg C l-1). Biomass values were lowest in the equatorial regions. A broad range of biomass concentrations was observed at all depths, with the biomass peak located in the surface layer (0-25 m) and values generally decreasing with depth. However, biomass peaks were located at different depths in different ocean basins: 0-25 m depth in the N Atlantic, 50-100 m in the Pacific, 100-200 m in the Arctic, 200-500 m in the Brazilian region and >500 m in the Indo-Pacific region. Biomass in the NH was relatively invariant over the seasonal cycle, but more seasonally variable in the SH. The collected database provides a valuable tool for modellers for the study of ecosystem processes and global biogeochemical cycles.
NASA Astrophysics Data System (ADS)
Magaldi, Marcello G.; Haine, Thomas W. N.
2015-02-01
The cascade of dense waters of the Southeast Greenland shelf during summer 2003 is investigated with two very high-resolution (0.5-km) simulations. The first simulation is non-hydrostatic. The second simulation is hydrostatic and about 3.75 times less expensive. Both simulations are compared to a 2-km hydrostatic run, about 31 times less expensive than the 0.5 km non-hydrostatic case. Time-averaged volume transport values for deep waters are insensitive to the changes in horizontal resolution and vertical momentum dynamics. By this metric, both lateral stirring and vertical shear instabilities associated with the cascading process are accurately parameterized by the turbulent schemes used at 2-km horizontal resolution. All runs compare well with observations and confirm that the cascade is mainly driven by cyclones which are linked to dense overflow boluses at depth. The passage of the cyclones is also associated with the generation of internal gravity waves (IGWs) near the shelf. Surface fields and kinetic energy spectra do not differ significantly between the runs for horizontal scales L > 30 km. Complex structures emerge and the spectra flatten at scales L < 30 km in the 0.5-km runs. In the non-hydrostatic case, additional energy is found in the vertical kinetic energy spectra at depth in the 2 km < L < 10 km range and with frequencies around 7 times the inertial frequency. This enhancement is missing in both hydrostatic runs and is here argued to be due to the different IGW evolution and propagation offshore. The different IGW behavior in the non-hydrostatic case has strong implications for the energetics: compared to the 2-km case, the baroclinic conversion term and vertical kinetic energy are about 1.4 and at least 34 times larger, respectively. This indicates that the energy transfer from the geostrophic eddy field to IGWs and their propagation away from the continental slope is not properly represented in the hydrostatic runs.
NASA Astrophysics Data System (ADS)
Song, Huyue; Tong, Jinnan; Algeo, Thomas J.; Horacek, Micha; Qiu, Haiou; Song, Haijun; Tian, Li; Chen, Zhong-Qiang
2013-06-01
Vertical gradients in the δ13C of seawater dissolved inorganic carbon (Δδ13CDIC) can be estimated for paleomarine systems based on δ13Ccarb data from sections representing a range of depositional water depths. An analysis of eight Lower Triassic sections from the northern Yangtze Platform and Nanpanjiang Basin, representing water depths of ~ 50 to 500 m, allowed reconstruction of Δδ13CDIC in Early Triassic seas of the South China craton for seven time slices representing four negative (N) and three positive (P) carbon-isotope excursions: 8.5‰ (N1), 5.8‰ (P1), 3.5‰ (N2), 6.5‰ (P2), 7.8‰ (N3), - 1.9‰ (P3), and 2.2‰ (N4). These values are much larger than vertical δ13CDIC gradients in the modern ocean (~ 1-3‰) due to intensified stratification and reduced vertical mixing in Early Triassic seas. Peaks in Δδ13CDIC around the PTB (N1) and in the early to mid-Smithian (P2-N3) coincided with episodes of strong climatic warming, reduced marine productivity, and expanded ocean anoxia. The Dienerian-Smithian boundary marks the onset of a major mid-Early Triassic disturbance, commencing ~ 1 Myr after the latest Permian mass extinction, that we link to a second eruptive stage of the Siberian Traps. Inhospitable oceanic conditions generally persisted until the early Spathian, when strong climatic cooling caused re-invigoration of global-ocean circulation, leading to an interval of negative Δδ13CDIC values and a sharp increase in δ13Ccarb driven by upwelling of nutrient-rich deepwaters. These developments marked the end of the main eruptive stage of the Siberian Traps.
The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012-2013
NASA Astrophysics Data System (ADS)
Damerell, Gillian M.; Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan
2016-05-01
This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre-scale water mass changes. Below ˜150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode-1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ˜415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700-900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques.
78 FR 29652 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
..., Louisiana, and Incorporated Areas Docket No.: FEMA-B-1110 Big Creek Just upstream of Burke +78... confluence with +79 Unincorporated Areas of Big Creek. Richland Parish. Just upstream of Smalling +85 Road.... * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [supcaret...
Modeling studies for a Mars penetrator heat flow measurement
NASA Technical Reports Server (NTRS)
Keihm, S. J.; Langseth, M. G.
1976-01-01
There were, two different design concepts considered for the purpose of measuring heat flow as part of a Mars penetrator mission. The first of the tentative designs utilizes temperature sensors emplaced along the trailing umbilicus at regularly spaced intervals, no greater than 1m, which is thermally coupled to the adjacent regolith radiatively and possibly convectively or conductively. The second of the heat flow designs considered requires the radial deployment of two or more low thermal mass temperature sensors outward from the penetrator body over a vertical (depth) range on the order of 1m.
Realizing structural color generation with aluminum plasmonic V-groove metasurfaces
Wang, Wei; Rosenmann, Daniel; Czaplewski, David A.; ...
2017-08-14
The structural color printing based on all-aluminum plasmonic V-groove metasurfaces is demonstrated under both bright field and dark field illumination conditions. A broad visible color range is realized with the plasmonic V-groove arrays etched on aluminum surface by simply varying the groove depth while keeping the groove period as a constant. Polarization dependent structural color printing is further achieved with interlaced V-groove arrays along both the horizontal and vertical directions. Furthermore, these results pave the way towards the use of all-aluminum structural color printing platform for many practical applications such as security marking and information storage.
Realizing structural color generation with aluminum plasmonic V-groove metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Rosenmann, Daniel; Czaplewski, David A.
The structural color printing based on all-aluminum plasmonic V-groove metasurfaces is demonstrated under both bright field and dark field illumination conditions. A broad visible color range is realized with the plasmonic V-groove arrays etched on aluminum surface by simply varying the groove depth while keeping the groove period as a constant. Polarization dependent structural color printing is further achieved with interlaced V-groove arrays along both the horizontal and vertical directions. Furthermore, these results pave the way towards the use of all-aluminum structural color printing platform for many practical applications such as security marking and information storage.
Oceanic lithosphere and asthenosphere - Thermal and mechanical structure
NASA Technical Reports Server (NTRS)
Schubert, G.; Yuen, D. A.; Froidevaux, C.
1976-01-01
A coupled thermomechanical subsolidus model of the oceanic lithosphere and asthenosphere is developed which includes vertical heat conduction, a temperature-dependent thermal conductivity, heat advection by a horizontal and vertical mass flow that depends on depth and age, contributions of viscous dissipation or shear heating, a linear or nonlinear deformation law relating shear stress and strain rate, as well as a temperature- and pressure-dependent viscosity. The model requires a constant horizontal velocity and temperature at the surface, but zero horizontal velocity and constant temperature at great depths. The depth- and age-dependent temperature, horizontal and vertical velocities, and viscosity structure of the lithosphere and asthenosphere are determined along with the age-dependent shear stress in those two zones. The ocean-floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of ocean-floor age; seismic velocity profiles which exhibit a marked low-velocity zone are constructed from the age-dependent geotherms and assumed values of the elastic parameters. It is found that simple boundary-layer cooling determines the thermal structure at young ages, while effects of viscous dissipation become more important at older ages.
Magma reservoir subsidence mechanics: Theoretical summary and application to Kilauea Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Ryan, Michael P.; Blevins, James Y. K.; Okamura, Arnold T.; Koyanagi, Robert Y.
1983-05-01
An analytic model has been developed for the prediction of the three-dimensional deformation field generated by the withdrawal of magma from a sill-like storage compartment during an intrusion or eruption cycle. The model is based on the work of Berry and Sales (1961, 1962) and predicts the vertical displacement components over the areal plane. Model parameters are the depth of burial h, the intrusion half width a, the intrusion half length b, the thickness of the magmatic interior at the moment of melt withdrawal tm, and the planform aspect ratio ξ = a/b. The products of the model include areal deformation maps. Systematic variation in model parameters within the context of Kilauea Volcano, Hawaii, have revealed that circular and elliptical deformation patterns result from the collapse of draining rectilinear intrusions at depth. Moreover, the geometric parameters of a storage compartment may interact in complex ways to produce similar deformation patterns. The model has been applied to Kilauea Volcano for three periods of pronounced summit subsidence: (1) 1921-1927 (bracketing the steamblast eruptive phases of 1924); (2) June 1972 to December 1972, and (3) December 1972 to May 1973. Application of the model requires the simultaneous optimization of five predicted deformation features with respect to field measurements and the derivative deformation maps: (1) the vertical displacement maxima; (2) the vertical displacement gradients over the areal plane, (3) the lateral extent of the deformation field, (4) the aspect ratio of the subsidence pattern, and (5) the strike of the major axis of the deformation field. The constrained geometries and volumes of the inferred collapsed storage cavities for each period are (1) 1921-1927: depth ≅ 3 km, a ≅ 1500 m, b ≅ 4500 m, tm ≅ 20 m, V 540×106 m3, (2) June 1972 to December 1972: depth ≅ 3.3 km, a ≅ 600 m, b ≅ 2000 m, tm ≅ 1 m, V ≅ 4.8×106 m3, and (3) December 1972 to May 1973: depth ≅ 2.2 km, a ≅ 500 m, b ≅ 1612 m, tm ≅ 1 m, V ≅ 3.2×106 m3. For 2 and 3, calculated magmatic thicknesses tm happen to be in the range (3.48-0.15 m) of measurements for sill-like bodies in deeply dissected Hawaiian shield volcanoes. The fits obtained between calculated and observed deformation patterns allow quantification of the location, overall dimensions, orientation, and volume of the discrete, still molten, interior of sill-like compartments from which magma is tapped during eruption or intrusion.
Rotzoll, Kolja
2010-01-01
Water-resource managers in Hawai`i rely heavily on salinity profiles from deep monitor wells to estimate the thickness of freshwater and the depth to the midpoint of the transition zone between freshwater and saltwater in freshwater-lens systems. The deep monitor wells are typically open boreholes below the water table and extend hundreds of feet below sea level. Because of possible borehole-flow effects, there is concern that salinity profiles measured in these wells may not accurately reflect the salinity distribution in the aquifer and consequently lead to misinterpretations that adversely affect water-resource management. Steplike changes in salinity or temperature with depth in measured profiles from nonpumped deep monitor wells may be indicative of water moving within the well, and such changes are evident to some extent in all available profiles. The maximum vertical step length, or displacement, in measured profiles ranges from 7 to 644 feet. Vertical steps longer than 70 feet exceed the typical thickness of massive lava flows; they therefore cannot be attributed entirely to geologic structure and may be indicative of borehole flow. The longest vertical steps occur in monitor wells located in southern O'ahu, coinciding with the most heavily developed part of the aquifer. Although regional groundwater withdrawals have caused a thinning of the freshwater lens over the past several decades, the measured midpoint of the transition zone in most deep monitor wells has shown only inconsequential depth displacement in direct response to short-term variations in withdrawals from nearby production wells. For profiles from some deep monitor wells, however, the depth of the measured top of the transition zone, indicated by a specific-conductance value of 1,000 microsiemens per centimeter, has risen several hundred feet in response to withdrawals from nearby production wells. For these deep monitor wells, monitoring the apparent top of the transition zone may not provide an accurate indication of water quality in the adjacent aquifer. Hence, the measured midpoint in boreholes is a better proxy for freshwater-lens thickness. Brackish water transported upward in a deep monitor well can exit the borehole in the upper, freshwater part of the aquifer and affect the water quality in nearby production wells. Piezometers installed at different depths will provide the best information on aquifer salinity because they are unaffected by borehole flow. Despite the effects of borehole flow, monitoring the midpoint in deep monitor wells is still useful to identify long-term trends in the movement of the transition zone.
Harvey, J.W.; Newlin, J.T.; Krupa, S.L.
2006-01-01
Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d-1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to calculated recharge and discharge) is much less sensitive to vertical mixing compared with residence time alone. We conclude that a small but potentially significant component of flow through the Everglades is recharged to the aquifer and stored there for years to decades before discharged back to surface water. Long-term storage of water and solutes in the ground-water system beneath the wetlands has implications for restoration of Everglades water quality.
Seismic Velocity Structure across the Hayward Fault Zone Near San Leandro, California
NASA Astrophysics Data System (ADS)
Strayer, L. M.; Catchings, R.; Chan, J. H.; Richardson, I. S.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.
2017-12-01
In Fall 2016 we conducted the East Bay Seismic Investigation, a NEHRP-funded collaboration between California State University, East Bay and the United State Geological Survey. The study produced a large volume of seismic data, allowing us to examine the subsurface across the East Bay plain and hills using a variety of geophysical methods. We know of no other survey performed in the past that has imaged this area, at this scale, and with this degree of resolution. Initial models show that seismic velocities of the Hayward Fault Zone (HFZ), the East Bay plain, and the East Bay hills are illuminated to depths of 5-6 km. We used explosive sources at 1-km intervals along a 15-km-long, NE-striking ( 055°), seismic line centered on the HFZ. Vertical- and horizontal-component sensors were spaced at 100 m intervals along the entire profile, with vertical-component sensors at 20 m intervals across mapped or suspected faults. Preliminary seismic refraction tomography across the HFZ, sensu lato, (includes sub-parallel, connected, and related faults), shows that the San Leandro Block (SLB) is a low-velocity feature in the upper 1-3 km, with nearly the same Vp as the adjacent Great Valley sediments to the east, and low Vs values. In our initial analysis we can trace the SLB and its bounding faults (Hayward, Chabot) nearly vertically, to at least 2-4 km depth. Similarly, preliminary migrated reflection images suggest that many if not all of the peripheral reverse, strike-slip and oblique-slip faults of the wider HFZ dip toward the SLB, into a curtain of relocated epicenters that define the HFZ at depth, indicative of a `flower-structure'. Preliminary Vs tomography identifies another apparently weak zone at depth, located about 1.5 km east of the San Leandro shoreline, that may represent the northward continuation of the Silver Creek Fault. Centered 4 km from the Bay, there is a distinctive, 2 km-wide, uplifted, horst-like, high-velocity structure (both Vp & Vs) that bounds the SLB to the west, outboard of the HF. We acquired a 2-D shear-wave velocity results using the multichannel analysis of surface waves (MASW) method on Rayleigh waves generated along the seismic profile. Our MASW result shows 600m depth of investigation, and Vs100 results range from 228m/s to 335m/s at fault zones, which correspond to NEHRP site classification D.
NASA Astrophysics Data System (ADS)
Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.
2006-04-01
Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to calculated recharge and discharge) is much less sensitive to vertical mixing compared with residence time alone. We conclude that a small but potentially significant component of flow through the Everglades is recharged to the aquifer and stored there for years to decades before discharged back to surface water. Long-term storage of water and solutes in the ground-water system beneath the wetlands has implications for restoration of Everglades water quality.
Vertical Distribution of Radiation Stress for Non-linear Shoaling Waves
NASA Astrophysics Data System (ADS)
Webb, B. M.; Slinn, D. N.
2004-12-01
The flux of momentum directed shoreward by an incident wave field, commonly referred to as the radiation stress, plays a significant role in nearshore circulation and, therefore, has a profound impact on the transport of pollutants, biota, and sediment in nearshore systems. Having received much attention since the seminal work of Longuet-Higgins and Stewart in the early 1960's, use of the radiation stress concept continues to be refined and evidence of its utility is widespread in literature pertaining to coastal and ocean science. A number of investigations, both numerical and analytical in nature, have used the concept of the radiation stress to derive appropriate forcing mechanisms that initiate cross-shore and longshore circulation, but typically in a depth-averaged sense due to a lack of information concerning the vertical distribution of the wave stresses. While depth-averaged nearshore circulation models are still widely used today, advancements in technology have permitted the adaptation of three-dimensional (3D) modeling techniques to study flow properties of complex nearshore circulation systems. It has been shown that the resulting circulation in these 3D models is very sensitive to the vertical distribution of the nearshore forcing, which have often been implemented as either depth-uniform or depth-linear distributions. Recently, analytical expressions describing the vertical structure of radiation stress components have appeared in the literature (see Mellor, 2003; Xia et al., 2004) but do not fully describe the magnitude and structure in the region bound by the trough and crest of non-linear, propagating waves. Utilizing a three-dimensional, non-linear, numerical model that resolves the time-dependent free surface, we present mean flow properties resulting from a simulation of Visser's (1984, 1991) laboratory experiment on uniform longshore currents. More specifically, we provide information regarding the vertical distribution of radiation stress components (Sxx and Sxy) resulting from obliquely incident, non-linear shoaling waves. Vertical profiles of the radiation stress components predicted by the numerical model are compared with published analytical solutions, expressions given by linear theory, and observations from an investigation employing second-order cnoidal wave theory.
Factors Affecting Planting Depth and Standing of Rice Seedling in Parachute Rice Transplanting
NASA Astrophysics Data System (ADS)
Astika, I. W.; Subrata, I. D. M.; Pramuhadi, G.
2018-05-01
Parachute rice transplanting is a simple and practical rice transplanting method. It can be done manually or mechanically, with various possible designs of machines or tools. This research aimed at quantitatively formulating related factors to the planting depth and standing of rice seedling. Parachute seedlings of rice were grown at several sizes of parachute soil bulb sizes. The trays were specially designed with a 3D printer having bulb sizes 7, 8, 9, 10 mm in square sides and 15 mm depth. At seedling ages of 8-12 days after sowing the seedling bulbs were drops into puddled soil. Soil hardness was set at 3 levels of hardness, measured in hardness index using golf ball test. Angle of dropping was set at 3 levels: 0°, 30°and 45° from the vertical axis. The height of droppings was set at 100 cm, 75 cm, and 50 cm. The relationship between bulb size, height of dropping, soil hardness, dropping angle and planting depth was formulated with ANN. Most of input variables did not significantly affect the planting depth, except that hard soil significantly differs from mild soil and soft soil. The dropping also resulted in various positions of the planted seedlings: vertical standing, sloped, and falling. However, at any position of the planted seedlings, the seedlings would recover themselves into normally vertical position. With this result, the design of planting machinery, as well as the manual planting operation, can be made easier.
Theoretical analysis of nonnuniform skin effects on drawdown variation
NASA Astrophysics Data System (ADS)
Chen, C.-S.; Chang, C. C.; Lee, M. S.
2003-04-01
Under field conditions, the skin zone surrounding the well screen is rarely uniformly distributed in the vertical direction. To understand such non-uniform skin effects on drawdown variation, we assume the skin factor to be an arbitrary, continuous or piece-wise continuous function S_k(z), and incorporate it into a well hydraulics model for constant rate pumping in a homogeneous, vertically anisotropic, confined aquifer. Solutions of depth-specific drawdown and vertical average drawdown are determined by using the Gram-Schmidt method. The non-uniform effects of S_k(z) in vertical average drawdown are averaged out, and can be represented by a constant skin factor S_k. As a result, drawdown of fully penetrating observation wells can be analyzed by appropriate well hydraulics theories assuming a constant skin factor. The S_k is the vertical average value of S_k(z) weighted by the well bore flux q_w(z). In depth-specific drawdown, however, the non-uniform effects of S_k(z) vary with radial and vertical distances, which are under the influence of the vertical profile of S_k(z) and the vertical anisotropy ratio, K_r/K_z. Therefore, drawdown of partially penetrating observation wells may reflect the vertical anisotropy as well as the non-uniformity of the skin zone. The method of determining S_k(z) developed herein involves the use of q_w(z) as can be measured with the borehole flowmeter, and K_r/K_z and S_k as can be determined by the conventional pumping test.
NASA Technical Reports Server (NTRS)
Clarke, Antony D.; Porter, John N.
1997-01-01
Our research effort is focused on improving our understanding of aerosol properties needed for optical models for remote marine regions. This includes in-situ and vertical column optical closure and involves a redundancy of approaches to measure and model optical properties that must be self consistent. The model is based upon measured in-situ aerosol properties and will be tested and constrained by the vertically measured spectral differential optical depth of the marine boundary layer, MBL. Both measured and modeled column optical properties for the boundary layer, when added to the free-troposphere and stratospheric optical depth, will be used to establish spectral optical depth over the entire atmospheric column for comparison to and validation of satellite derived radiances (AVHRR).
NASA Astrophysics Data System (ADS)
Chun, J.; Lee, J.; Kim, J.; Bahk, J.; Ryu, B.
2009-12-01
Two UBGH cores were collected at vertical seismic chimney setting in the deep-water (> 2,000 m) Ulleung Basin, East Sea during UBGH-Expedition-01 in 2007. Gas hydrates were recovered from UBGH-10 and UBGH-09 sites with different occurrences associated with seismic chimney blanking zone. Site UBGH-10 is characterized by a small mound as well as a near-surface structure, indicated by a seafloor extension of vertical seismic chimney. Site UBGH-09 consists of acoustic blanking in the shallow section and seismic chimney in the deep section. Highly GH-concentrated zones have been found in vertical seismic chimney interval at these two sites from the Ulleung Basin. Methane is the dominant component of void gases with traces of C2 and C3 at UBGH-09. No C4 hydrocarbon gases were determined. The C1/C2+C3 ratio range from 3222 to 31654. The stable carbon (δ13C) and hydrogen (δD) isotope values of CH4 range from -71.8‰ to -59.8‰ PDB and -203.6‰ to -185.6 ‰ SMOW, respectivley. Methane is the main component of void gases at UBGH-10. The C1/C2+C3 ratio range from 657 to 7968. The δ13C of CH4 varies from -67.7‰ to -60.6‰ PDB, and δD of CH4 ranges from -201.9‰ to -183.3 ‰ SMOW. Isotopic properties of void gases from the two sites suggest that CH4 is largely microbial with CO2 reduction environment. In the vertical seismic chimney interval, void gases have low C1/C2+C3 ratio (> 10,000). At shallow depth (0-67 mbsf) in UBGH-09 contain relatively high C1/C2+C3 ratio (11115 to 31654). The stable carbon and hydrogen isotope values of hydrate-bound gases range from -63.1‰ to 61.9‰ PDB and -200.2‰ to -191.4‰ SMOW, respectively. The C1/C2+C3 ratio range from 979 to 5085. The molecular and stable isotopic compositions of hydrate-bound gases suggest that CH4 is largely microbial with CO2 reduction.
Fiber Optic Distributed Temperature Sensing of Recharge Basin Percolation Dynamics
NASA Astrophysics Data System (ADS)
Becker, M.; Allen, E. M.; Hutchinson, A.
2014-12-01
Infiltration (spreading) basins are a central component of managed aquifer and recovery operations around the world. The concept is simple. Water is percolated into an aquifer where it can be withdrawn at a later date. However, managing infiltration basins can be complicated by entrapped air in sediments, strata of low permeability, clogging of the recharge surface, and biological growth, among other factors. Understanding the dynamics of percolation in light of these complicating factors provides a basis for making management decisions that increase recharge efficiency. As an aid to understanding percolation dynamics, fiber optic distribute temperature sensing (DTS) was used to track heat as a tracer of water movement in an infiltration basin. The diurnal variation of temperature in the basin was sensed at depth. The time lag between the oscillating temperature signal at the surface and at depth indicated the velocity of water percolation. DTS fiber optic cables were installed horizontally along the basin and vertically in boreholes to measure percolation behavior. The horizontal cable was installed in trenches at 0.3 and 1 m depth, and the vertical cable was installed using direct push technology. The vertical cable was tightly wound to produce a factor of 10 increase in spatial resolution of temperature measurements. Temperature was thus measured every meter across the basin and every 10 cm to a depth of 10 m. Data from the trenched cable suggested homogeneous percolation across the basin, but infiltration rates were a function of stage indicating non-ideal percolation. Vertical temperature monitoring showed significant lateral flow in sediments underlying the basin both during saturation and operation of the basin. Deflections in the vertical temperature profile corresponded with fine grained layers identified in core samples indicating a transient perched water table condition. The three-dimensional flow in this relatively homogenous surficial geology calls into question the relevance of simple wetting models for predicting percolation behavior in infiltration basins.
Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki
2015-01-01
Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387
ERIC Educational Resources Information Center
Bremner, J. Gavin; Andreasen, Gillian
1997-01-01
Had children draw two blocks arranged in depth, and then moved either child or array and had children draw what was then a left-right arrangement; the transformation was then reversed for a final drawing. Found that when children moved to a new standpoint, there was a significant increase in vertical portrayal (as depth portrayal) between first…
NASA Astrophysics Data System (ADS)
Wagner, A. M.; Lindsey, N.; Ajo Franklin, J. B.; Gelvin, A.; Saari, S.; Ekblaw, I.; Ulrich, C.; Dou, S.; James, S. R.; Martin, E. R.; Freifeld, B. M.; Bjella, K.; Daley, T. M.
2016-12-01
We present preliminary results from an experimental study targeting the use of passive fiber-optic distributed temperature sensing (DTS) in a variety of geometries to estimate moisture content evolution in a dynamic permafrost system. A 4 km continuous 2D array of multi-component fiber optic cable (6 SM/6 MM) was buried at the Fairbanks Permafrost Experiment Station to investigate the possibility of using fiber optic distributed sensing as an early detection system for permafrost thaw. A heating experiment using 120 60 Watt heaters was conducted in a 140 m2 area to artificially thaw the topmost section of permafrost. The soils at the site are primarily silt but some disturbed areas include backfilled gravel to depths of approximately 1.0 m. Where permafrost exists, the depth to permafrost ranges from 1.5 to approximately 5 m. The experiment was also used to spatially estimate soil water content distribution throughout the fiber optic array. The horizontal fiber optic cable was buried at depths between 10 and 20 cm. Soil temperatures were monitored with a DTS system at 25 cm increments along the length of the fiber. At five locations, soil water content time-domain reflectometer (TDR) probes were also installed at two depths, in line with the fiber optic cable and 15 to 25 cm below the cable. The moisture content along the fiber optic array was estimated using diurnal effects from the dual depth temperature measurements. In addition to the horizontally installed fiber optic cable, vertical lines of fiber optic cable were also installed inside and outside the heater plot to a depth of 10 m in small diameter (2 cm) boreholes. These arrays were installed in conjunction with thermistor strings and are used to monitor the thawing process and to cross correlate with soil temperatures at the depth of the TDR probes. Results will be presented from the initiation of the artificial thawing through subsequent freeze-up. A comparison of the DTS measured temperatures and thermistors in vertically installed PVC pipes will also be shown. Initial results from a thermal model of the artificial heating experiment and the model's correlation to the actual soil temperature measurements will also be presented. These results show the possibility of using fiber optic cable to measure moisture contents along a longer array with only limited control points.
Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.
2011-09-30
Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines.more » Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.« less
Is Centrophorus squamosus a highly migratory deep-water shark?
NASA Astrophysics Data System (ADS)
Rodríguez-Cabello, Cristina; Sánchez, Francisco
2014-10-01
Deep-water sharks are considered highly vulnerable species due to their life characteristics and very low recovery capacity against overfishing. However, there is still limited information on the ecology or population connectivity of these species. The aim of this study was to investigate if the species Centrophorus squamosus could make long displacements and thus confirm the existence of connectivity between different deep-water areas. In addition, the study was the first attempt to use tagging techniques on deep-water sharks, since it has never been undertaken before. Five C. squamosus were tagged with satellite tags (PAT) in the El Cachucho Marine Protected Area (Le Danois Bank) located in waters of the North of Spain, Cantabrian Sea (NE Atlantic). Data from four of these tags were recovered. One of the sharks travelled approximately 287 nm toward the north east (French continental shelf) hypothetically following the continental slope at a mean depth of 901±109 m for 45 days. Two other sharks spent almost 4 months traveling, in which time they moved 143 and 168 nm, respectively, to the west (Galician coast). Finally, another leafscale gulper shark travelled to the NW (Porcupine Bank) during a period of 3 months at a mean depth of 940±132 m. Depth and temperature preferences for all the sharks are discussed. Minimum and maximum depths recorded were 496 and 1848 m, respectively. The temperature range was between 6.2 and 11.4 °C, but the mean temperature was approximately 9.9±0.7 °C. The sharks made large vertical displacements throughout the water column with a mean daily depth range of 345±27 m. These preliminary results support the suggestion of a whole population in the NE Atlantic and confirm the capacity of this species to travel long distances.
Firth, Louise B; Schofield, Meredith; White, Freya J; Skov, Martin W; Hawkins, Stephen J
2014-12-01
Coastal defence structures are proliferating to counter rising and stormier seas. With increasing concern about the ecological value of built environments, efforts are being made to create novel habitat to increase biodiversity. Rock pools are infrequent on artificial structures. We compared biodiversity patterns between rock pools and emergent rock and assessed the role of pool depth and substratum incline in determining patterns of biodiversity. Rock pools were more taxon rich than emergent substrata. Patterns varied with depth and incline with algal groups being more positively associated with shallow than deeper habitats. Substratum incline had little influence on colonising epibiota, with the exception of canopy algae in deeper habitats where vertical surfaces supported greater taxon richness than horizontal surfaces. The creation of artificial rock pools in built environments will have a positive effect on biodiversity. Building pools of varying depths and inclines and shore heights will provide a range of habitats, increase environmental heterogeneity, therefore creating more possible ecological niches, promoting local biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian
2017-04-01
The application of heat as a hydrological tracer has become a standard method for quantifying water fluxes between groundwater and surface water. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. The underlying assumption of a stationary, one-dimensional vertical flow field is frequently violated in natural systems. Here subsurface water flow often has a significant horizontal component. We developed a methodology for identifying the geometry of the subsurface flow field based on the variations of diurnal temperature amplitudes with depths. For instance: Purely vertical heat transport is characterized by an exponential decline of temperature amplitudes with increasing depth. Pure horizontal flow would be indicated by a constant, depth independent vertical amplitude profile. The decline of temperature amplitudes with depths could be fitted by polynomials of different order whereby the best fit was defined by the highest Akaike Information Criterion. The stepwise model optimization and selection, evaluating the shape of vertical amplitude ratio profiles was used to determine the predominant subsurface flow field, which could be systematically categorized in purely vertical and horizontal (hyporheic, parafluvial) components. Analytical solutions to estimate water fluxes from the observed temperatures are restricted to specific boundary conditions such as a sinusoidal upper temperature boundary. In contrast numerical solutions offer higher flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. There are several numerical models that simulate heat transport in porous media (e.g. VS2DH, HydroGeoSphere, FEFLOW) but there can be a steep learning curve to the modelling frameworks and may therefore not readily accessible to routinely infer water fluxes between groundwater and surface water. We developed a user-friendly, straightforeward to use software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB that calculates time variable vertical water fluxes in saturated sediments based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation (FLUX-BOT can be downloaded from the following web site: https://bitbucket.org/flux-bot/flux-bot). We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance. Both, the empirical analysis of temperature amplitudes as well as the numerical inversion of measured temperature time series to estimate the vertical magnitude of water fluxes extent the suite of current heat tracing methods and may provide insight into temperature data from an additional perspective.
Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?
Cullen, John J
2015-01-01
The phenomenon of subsurface chlorophyll maximum layers (SCMLs) is not a unique ecological response to environmental conditions; rather, a broad range of interacting processes can contribute to the formation of persistent layers of elevated chlorophyll a concentration (Chl) that are nearly ubiquitous in stratified surface waters. Mechanisms that contribute to the formation and maintenance of the SCMLs include a local maximum in phytoplankton growth rate near the nutricline, photoacclimation of pigment content that leads to elevated Chl relative to phytoplankton biomass at depth, and a range of physiologically influenced swimming behaviors in motile phytoplankton and buoyancy control in diatoms and cyanobacteria that can lead to aggregations of phytoplankton in layers, subject to grazing and physical control. A postulated typical stable water structure characterizes consistent patterns in vertical profiles of Chl, phytoplankton biomass, nutrients, and light across a trophic gradient structured by the vertical flux of nutrients and characterized by the average daily irradiance at the nutricline. Hypothetical predictions can be tested using a nascent biogeochemical global ocean observing system. Partial results to date are generally consistent with predictions based on current knowledge, which has strong roots in research from the twentieth century.
NASA Astrophysics Data System (ADS)
Juniper, S. Kim; Sastri, Akash; Mihaly, Steven; Duke, Patrick; Else, Brent; Thomas, Helmuth; Miller, Lisa
2017-04-01
Marine pCO2 sensor technology has progressed to the point where months-long time series from remotely-deployed pCO2 sensors can be used to document seasonal and higher frequency variability in pCO2 and its relationship to oceanographic processes. Ocean Networks Canada recently deployed pCO2 sensors on two cabled platforms: a bottom-moored (400 m depth), vertical profiler at the edge of the northeast Pacific continental shelf off Vancouver Island, Canada, and a subtidal seafloor platform in the Canadian High Arctic (69˚ N) at Cambridge Bay, Nunavut. Both platforms streamed continuous data to a shore-based archive from Pro-Oceanus pCO2 sensors and other oceanographic instruments. The vertical profiler time series revealed substantial intrusions of corrosive (high CO2/low O2), saltier, colder water masses during the summertime upwelling season and during winter-time reversals of along-slope currents. Step-wise profiles during the downcast provided the most reliable pCO2 data, permitting the sensor to equilibrate to the broad range of pCO2 concentrations encountered over the 400 metre depth interval. The Arctic pCO2 sensor was deployed in August 2015. Reversing seasonal trends in pCO2 and dissolved oxygen values can be related to the changing balance of photosynthesis and respiration under sea ice, as influenced by irradiance. Correlation of pCO2 and dissolved oxygen sensor data and the collection of calibration samples have permitted evaluation of sensor performance in relation to operational conditions encountered in vertical profiling and lengthy exposure to subzero seawater.
NASA Astrophysics Data System (ADS)
Abu Risha, U. A.; Al Temamy, A. M. M.
2016-05-01
This research presents a clear example of the significant role of basement relief on the formation of aquifers and the impact of geologic structures on groundwater occurrence. A basement relief map was constructed using the depth to basement data acquired from 20 vertical electrical soundings (VESes), 3 land magnetic profiles, and 27 drilled wells tapping the basement rocks in addition to the elevations of the basement outcrops in the area of study. The map shows three basins underlying the area. The geoelectric survey shows that these basins were formed as a result of series of step faults. The largest basin underlies El-Shab area. The medium basin underlies the area of Bir Kiseiba whereas the smallest one underlies Bir Abu El-Hussein area. The Nubian Sandstone aquifer occurs only in El-Shab basin whereas the other basins are filled completely with the confining layer of Kiseiba Formation. The depth to basement in El-Shab basin ranges from 11 m. (ves-20) to 197 m. (ves-1) m.b.g.s. The depth to basement in Kiseiba basin ranges from 20 m. (Bir Kurayim magnetic profile) to 122 m. (ves-13) m.b.g.s. The depth to basement in Abu El-Husein basin ranges from 0 (basement outcrops) to 64 m. (Abu El-Husein magnetic profile) m.b.g.s. The aquifer thickness ranges from 0 m (where the aquitard rests directly on the basement) to 153 m. (El Shab well No. 79). The aquifer is uncoformably overlain by Kiseiba Formation which represents the aquitard layer at Bir El-Shab. The thickness of the aquitard ranges from 0 (in areas covered by the Nubian Sandstone) to 120 m (ves-13). Each of the aquifer and aquitard consist of three layers. Two of the aquitard layers are water-bearing. However, the estimated transmissivity of the aquitard is very low (11.9 m2/d). The groundwater moves vertically into the overlying aquitard at Bir El-Shab and subsequently flows in concentric pattern into the surrounding areas. Faulting controls groundwater occurrence and quality. Some springs lie on the basement high associated with step faulting at the edges of El-Shab basin. An ENE low-salinity zone is associated with the basement high which separates El-Shab basin from Kiseiba basin. Focused groundwater recharge through the faults and fractures from paleo playas could be the mechanism of the formation of this anomaly. The isotope data shows local recharge of the groundwater most likely during the Pleistocene time. Two-dimension (2D) Electrical Resistivity Tomography (ERT) profiles reveal that the evaporation process has the main role in increasing the salinity of some water points. It is highly recommended to delineate the southern boundary of El-Shab basin which is expected to extend into Sudan.
Tidal asymmetries of velocity and stratification over a bathymetric depression in a tropical inlet
NASA Astrophysics Data System (ADS)
Waterhouse, Amy F.; Valle-Levinson, Arnoldo; Morales Pérez, Rubén A.
2012-10-01
Observations of current velocity, sea surface elevation and vertical profiles of density were obtained in a tropical inlet to determine the effect of a bathymetric depression (hollow) on the tidal flows. Surveys measuring velocity profiles were conducted over a diurnal tidal cycle with mixed spring tides during dry and wet seasons. Depth-averaged tidal velocities during ebb and flood tides behaved according to Bernoulli dynamics, as expected. The dynamic balance of depth-averaged quantities in the along-channel direction was governed by along-channel advection and pressure gradients with baroclinic pressure gradients only being important during the wet season. The vertical structure of the along-channel flow during flood tides exhibited a mid-depth maximum with lateral shear enhanced during the dry season as a result of decreased vertical stratification. During ebb tides, along-channel velocities in the vicinity of the hollow were vertically sheared with a weak return flow at depth due to choking of the flow on the seaward slope of the hollow. The potential energy anomaly, a measure of the amount of energy required to fully mix the water column, showed two peaks in stratification associated with ebb tide and a third peak occurring at the beginning of flood. After the first mid-ebb peak in stratification, ebb flows were constricted on the seaward slope of the hollow resulting in a bottom return flow. The sinking of surface waters and enhanced mixing on the seaward slope of the hollow reduced the potential energy anomaly after maximum ebb. The third peak in stratification during early flood occurred as a result of denser water entering the inlet at mid-depth. This dense water mixed with ambient deep waters increasing the stratification. Lateral shear in the along-channel flow across the hollow allowed trapping of less dense water in the surface layers further increasing stratification.
Königshausen, M; Jettkant, B; Sverdlova, N; Ehlert, C; Gessmann, J; Schildhauer, T A; Seybold, D
2015-01-01
There is no biomechanical basis to determine the influence of different length of the central peg of the baseplate anchored within the native scapula in glenoid defect reconstruction in cases of degenerative or posttraumatic glenoid bone loss in reversed shoulder arthroplasty. The purpose of this study was to analyse the stability of different peg lengths used in glenoid bone loss in reversed shoulder arthroplasty. Different lengths of metaglene pegs with different depths of peg anchorage performed with or without metaglene screws in sawbone foam blocks were loaded in vertical and horizontal directions for differentiating load capacities. Simulated physiological loadings were then applied to the peg implants to determine the limits of loading in each depth of anchorage. The loading capacity of the implant was reduced as less of the peg was anchored. The vertically loaded implants showed a significantly higher stability, in contrast to those loaded horizontally at a corresponding peg length and depth of anchorage (p < 0.05). The tests revealed that the metaglene screws are more essential for primary stability than is the peg particularly in the vertically directed loadings (2/3 anchored: peg contributed to 28% of the stability, 1/3 anchorage: peg contributed to 12%). Under the second test conditions, the lowest depth of peg anchorage (1/3) resulted in 322 Newtons [N] in the long peg with a vertical loading direction, and in 130 N in the long peg with a horizontal loading direction (p < 0.05). The pegs should be anchored as deeply as possible into the native scapula bone stock. The metaglene screws play a major role in the initial stability, in contrast to the peg, and they become more important when the depth of the peg anchorage is reduced. If possible, four metaglene screws should be used in cases of uncontained bone loss to guarantee the highest stability.
The vertical structure of the F ring of Saturn from ring-plane crossings
NASA Astrophysics Data System (ADS)
Scharringhausen, Britt R.; Nicholson, Philip D.
2013-11-01
We present a photometric model of the rings of Saturn which includes the main rings and an F ring, inclined to the main rings, with a Gaussian vertical profile of optical depth. This model reproduces the asymmetry in brightness between the east and west ansae of the rings of Saturn that was observed by the Hubble Space Telescope (HST) within a few hours after the Earth ring-plane crossing (RPX) of 10 August 1995. The model shows that during this observation the inclined F ring unevenly blocked the east and west ansae of the main rings. The brightness asymmetry produced by the model is highly sensitive to the vertical thickness and radial optical depth of the F ring. The F-ring model that best matches the observations has a vertical full width at half maximum of 13 ± 7 km and an equivalent depth of 10 ± 4 km. The model also reproduces the shape of the HST profiles of ring brightness vs. distance from Saturn, both before and after the time of ring-plane crossing. Smaller asymmetries observed before the RPX, when the Earth was on the dark side of the rings, cannot be explained by blocking of the main rings by the F ring or vice versa and are probably instead due to the intrinsic longitudinal variation exhibited by the F ring.
77 FR 41323 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
.... Approximately 800 feet +7655 upstream of Virginia Street. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter..., Illinois, and Incorporated Areas Docket No.: FEMA-B-1197 Big Rock Creek Approximately 1.68 miles +648...
Increase in Jumping Height Associated with Maximal Effort Vertical Depth Jumps.
ERIC Educational Resources Information Center
Bedi, John F.; And Others
1987-01-01
In order to assess if there existed a statistically significant increase in jumping performance when dropping from different heights, 32 males, aged 19 to 26, performed a series of maximal effort vertical jumps after dropping from eight heights onto a force plate. Results are analyzed. (Author/MT)
77 FR 49373 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
.... Macon Bayou Just upstream of Private +108 City of Eudora. Road. Just upstream of Verser +108 Road... Areas of Road. Logan County. Just downstream of Newton +563 Road. Just upstream of West 9th +621 Street... Road. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground...
Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing
Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.
2017-01-01
Field observations of current profiles and temperature, salinity, and density structure were used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current profiles were acquired from bottom-mounted acoustic Doppler current profilers deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity–temperature–depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5–8 m above the rim, and well-mixed water below the rim to the bottom. Vertical velocities show up- and down-welling events that extend into the depths of each pockmark. An observed temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. Vertical profiles of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented observation of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.
Experimental hypervelocity impact into quartz sand - Distribution and shock metamorphism of ejecta
NASA Technical Reports Server (NTRS)
Stoeffler, D.; Gault, D. E.; Wedekind, J.; Polkowski, G.
1975-01-01
Results are presented for vertical impacts of 0.3-g cylindrical plastic projectiles into noncohesive quartz sand in which vertical and horizontal reference strate were employed by using layers of colored sand. The impacts were performed at velocities of 5.9-6.9 km/sec with a vertical gun ballistic range. The craters, 30-33 cm in diameter, reveal a radial decay of the ejecta mass per unit area with a power of -2.8 to -3.5. Material displaced from the upper 15% of the crater depth d is represented within the whole ejecta blanked, material from deeper than 28% of d is deposited inside 2 crater radii, and no material from deeper than 33% of d was ejected beyond the crater rim. Shock-metamorphosed particles (glassy agglutinates, cataclastic breccias, and comminuted quartz) amount to some 4% of the total displaced mass and indicate progressive zones of decay of shock intensity from a peak pressure of 300 kbar. The shock-metamorphosed particles and the shock-induced change in the grain size distribution of ejected samples have close analogies to the basic characteristics of the lunar regolith. Possible applications to regolith formation and to ejecta formations of large-scale impact craters are discussed.
Oji, Tatsuo; Dornbos, Stephen Q; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-02-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the 'agronomic revolution'. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum . These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered.
Dornbos, Stephen Q.; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-01-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the ‘agronomic revolution’. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum. These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered. PMID:29515908
NASA Astrophysics Data System (ADS)
Oji, Tatsuo; Dornbos, Stephen Q.; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-02-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the `agronomic revolution'. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum. These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered.
Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise.
Ridge, Justin T; Rodriguez, Antonio B; Joel Fodrie, F; Lindquist, Niels L; Brodeur, Michelle C; Coleman, Sara E; Grabowski, Jonathan H; Theuerkauf, Ethan J
2015-10-07
Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species' ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20-40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR.
NASA Astrophysics Data System (ADS)
Madin, L. P.; Kremer, P.; Wiebe, P. H.; Purcell, J. E.; Horgan, E. H.; Nemazie, D. A.
2006-05-01
Sampling during four summers over a twenty-seven year period has documented dense populations of Salpa aspera in the Slope Water south of New England, northeastern United States. The salps demonstrated a strong pattern of diel vertical migration, moving to depth (mostly 600-800 m) during the day and aggregating in the epipelagic (<100m) at night. Filtration rates determined from both gut pigment analysis and direct feeding experiments indicated that both the aggregate and solitary stages filtered water at rates ranging from 0.5 to 6lh-1ml-1 biovolume. Maximum displacement volumes of salps measured were 5.7lm-2 in 1986 and 1.6lm-2 in 1993. Depending on the year, the sampled salp populations were calculated to clear between 8 and 74% of the upper 50 m during each 8 h night. Total fecal output for the same populations was estimated to be between 5 and 91mgCm-2night-1. These results, and other observations, suggest this region is a salp "hot spot", with swarms of S. aspera developing seasonally on a frequent basis.
Inventory and vertical migration of 90Sr fallout and 137Cs/90Sr ratio in Spanish mainland soils.
Herranz, M; Romero, L M; Idoeta, R; Olondo, C; Valiño, F; Legarda, F
2011-11-01
In this paper the inventory of (90)Sr in 34 points distributed along the Spanish peninsular territory is presented. Obtained values range between 173 Bq/m(2) and 2047 Bq/m(2). From these data set and those (137)Cs data obtained in a previous work the (137)Cs/(90)Sr activity ratio has been established, laying this value between 0.9 and 3.6. Also the migration depth of both radionuclides has been analysed obtaining for (137)Cs an average value 57% lower than that obtained for (90)Sr. Additionally, this paper presents the results obtained in 11 sampling points in which the activity vertical profile has been measured. These profiles have been analysed to state the behaviour of strontium in soils and after, by using a convective-diffusive model, the parameters of the model which governs the vertical migration of (90)Sr in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) have been evaluated. Mean values obtained are 0.20 cm/year and 3.67 cm(2)/year, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sutton, T. T.; Porteiro, F. M.; Heino, M.; Byrkjedal, I.; Langhelle, G.; Anderson, C. I. H.; Horne, J.; Søiland, H.; Falkenhaug, T.; Godø, O. R.; Bergstad, O. A.
2008-01-01
The assemblage structure and vertical distribution of deep-pelagic fishes relative to a mid-ocean ridge system are described from an acoustic and discrete-depth trawling survey conducted as part of the international Census of Marine Life field project MAR-ECO < http://www.mar-eco.no>. The 36-station, zig-zag survey along the northern Mid-Atlantic Ridge (MAR; Iceland to the Azores) covered the full depth range (0 to >3000 m), from the surface to near the bottom, using a combination of gear types to gain a more comprehensive understanding of the pelagic fauna. Abundance per volume of deep-pelagic fishes was highest in the epipelagic zone and within the benthic boundary layer (BBL; 0-200 m above the seafloor). Minimum fish abundance occurred at depths below 2300 m but above the BBL. Biomass per volume of deep-pelagic fishes over the MAR reached a maximum within the BBL, revealing a previously unknown topographic association of a bathypelagic fish assemblage with a mid-ocean ridge system. With the exception of the BBL, biomass per volume reached a water column maximum in the bathypelagic zone between 1500 and 2300 m. This stands in stark contrast to the general "open-ocean" paradigm that biomass decreases exponentially from the surface downwards. As much of the summit of the MAR extends into this depth layer, a likely explanation for this mid-water maximum is ridge association. Multivariate statistical analyses suggest that the dominant component of deep-pelagic fish biomass over the northern MAR was a wide-ranging bathypelagic assemblage that was remarkably consistent along the length of the ridge from Iceland to the Azores. Integrating these results with those of previous studies in oceanic ecosystems, there appears to be adequate evidence to conclude that special hydrodynamic and biotic features of mid-ocean ridge systems cause changes in the ecological structure of deep-pelagic fish assemblages relative to those at the same depths over abyssal plains. Lacking terrigenous input of allochthonous organic carbon, increased demersal fish diversity and biomass over the MAR relative to the abyssal plains may be maintained by increased bathypelagic food resources. The aggregation of bathypelagic fishes with MAR topographic features was primarily a large adult phenomenon. Considering the immense areal extent of mid-ocean ridge systems globally, this strategy may have significant trophic transfer and reproductive benefits for deep-pelagic fish populations.
NASA Astrophysics Data System (ADS)
Fernandez, Marina O.; Marques, Antonio C.
2018-03-01
Water depth is associated with significant environmental changes and gradients that, together with biotic, geological, and evolutionary processes, define bathymetric ranges of individuals, populations, species, and even communities. However, inferences on bathymetric ranges of marine invertebrates are usually based on a few taxa or on restricted regional scales. In this study, we present a comprehensive literature survey of hydroids for the Atlantic Ocean and adjacent Arctic and Antarctic seas for records deeper than 50 m. We used these records in bathymetrical analyses along latitude and compared major patterns under an evolutionary framework. Our results show that hydroids are frequent inhabitants of the deep sea with mainly eurybathic species that extend their distributions from shallower to deeper waters, being rarely exclusively bathyal or abyssal. We also found increasing bathymetric ranges with mean depths of occurrence of the species for both families and regions. Moreover, vertical distribution proved to be taxonomically and regionally dependent, with reduced eurybathy in "Antarctic" species but increased eurybathy in "Tropical" and "Subtropical North" regions. Data also support early colonization of the deep sea in the evolution of the group. Finally, the unequal number of records across latitudes, scant at Equatorial and southern Tropical latitudes, provides evidence to the historically uneven sampling effort in the different regions of the Atlantic.
Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics
NASA Astrophysics Data System (ADS)
Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.
2012-12-01
The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.
The Influence of Surface Gravity Waves on Marine Current Turbine Performance
NASA Astrophysics Data System (ADS)
Lust, E.; Luznik, L.; Flack, K. A.; Walker, J.; Van Benthem, M.
2013-12-01
Surface gravity waves can significantly impact operating conditions for a marine current turbine, imparting unsteady velocities several orders of magnitude larger than the ambient turbulence. The influence of surface waves on the performance characteristics of a two-bladed horizontal axis marine current turbine was investigated experimentally in a large towing tank facility at the United States Naval Academy. The turbine model had a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to lift coefficient in the operating range of Rec ≈ 4 x 105. The torque, thrust and rotational speed were measured at a range of tip speed ratios (TSR) from 5 < TSR < 11. Tests were performed at two rotor depths (1.3D and 2.25D) with and without waves. The average turbine performance characteristics were largely unchanged by depth or the presence of waves. However, tests with waves indicate large variations in thrust, rotational speed, and torque occurred with the passage of the wave. These results demonstrate the impact of surface gravity waves on power production and structural loading and suggest that turbines should be positioned vertically within the water column at a depth which maximizes power output while minimizing material fatigue. Keywords-- marine current turbine, tidal turbine, towing-tank experiments, surface gravity waves, fatigue loading, phase averaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteman, Charles D.; Haiden, Thomas S.; Pospichal, Bernhard
2004-08-01
Air temperature data from five enclosed limestone sinkholes of various sizes and shapes on the 1300 m MSL Duerrenstein Plateau near Lunz, Austria have been analyzed to determine the effect of sinkhole geometry on temperature minima, diurnal temperature ranges, temperature inversion strengths and vertical temperature gradients. Data were analyzed for a non-snow-covered October night and for a snow-covered December night when the temperature fell as low as -28.5°C. Surprisingly, temperatures were similar in two sinkholes with very different drainage areas and depths. A three-layer model was used to show that the sky-view factor is the most important topographic parameter controllingmore » cooling for basins in this size range and that the cooling slows when net longwave radiation at the floor of the sinkhole is nearly balanced by the ground heat flux.« less
NASA Technical Reports Server (NTRS)
Wenzinger, Carl J; Shortal, Joseph A
1932-01-01
Aerodynamic force tests on a slotted Clark Y wing were conducted in a vertical wind tunnel to determine the best position for a given auxiliary airfoil with respect to the main wing. A systematic series of 100 changes in location of the auxiliary airfoil were made to cover all the probable useful ranges of slot gap, slot width, and slot depth. The results of the investigation may be applied to the design of automatic or controlled slots on wings with geometric characteristics similar to the wing tested. The best positions of the auxiliary airfoil were covered by the range of the tests, and the position for desired aerodynamic characteristics may easily be obtained from charts prepared especially for the purpose.
The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012–2013
Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan
2016-01-01
Abstract This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre‐scale water mass changes. Below ∼150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode‐1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ∼415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700–900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques. PMID:27840785
NASA Astrophysics Data System (ADS)
Bertotti, Giovanni; Bisdom, Kevin; Bezerra, Hilario; Reijmer, John; Cazarin, Carol
2016-04-01
Despite the scarcity of major deformation structures such as folds and faults, the flat-lying, post-rift shallow water carbonates of the Jandaira Formation (Potiguar Basin, NE Brazil) display well-organized fracture systems distributed of tens of km2. Structures observed in the outcropping carbonates are sub-vertical, generally N-S trending mode I and hybrid veins and barren fractures, sub-vertical roughly E-W trending stylolites and sub-horizontal stylolites. These features developed during subsidence in a simple and constant stress field characterized by, beside gravity, a significant horizontal stress probably of tectonic origin. The corresponding depth curves have different origin and slopes and, therefore, cross each other resulting in position of the principal stresses which change with depth. As a result, the type and amount of fractures affecting subsiding rocks change despite the fact that the far-field stresses remain constant. Following early diagenesis and porosity elimination in the first 100-200m depth, Jandaira carbonates experienced wholesale fracturing at depths of 400-800m resulting in a network of NNW-NE trending fractures partly organized in conjugate sets with a low interfault angle and a sub-vertical intersection, and sub-vertical stylolites roughly perpendicular to the fractures. Intense fluid circulation was activated as a consequence through the carbonates. With increasing subsidence, sub-horizontal stylolites formed providing calcite which precipitated in the open fractures transforming them in veins. The Jandaira formation lost thereby the permeability it had reached during the previous stage. Because of the lack of major deformation, the outcrops of the Jandaira Formation is an excellent analog for carbonate reservoirs in the Middle East, South Atlantic and elsewhere.
Pierce, Herbert A.
2001-01-01
As of 1999, surface water collected and stored in reservoirs is the sole source of municipal water for the city of Williams. During 1996 and 1999, reservoirs reached historically low levels. Understanding the ground-water flow system is critical to managing the ground-water resources in this part of the Coconino Plateau. The nearly 1,000-meter-deep regional aquifer in the Redwall and Muav Limestones, however, makes studying or utilizing the resource difficult. Near-vertical faults and complex geologic structures control the ground-water flow system on the southwest side of the Kaibab Uplift near Williams, Arizona. To address the hydrogeologic complexities in the study area, a suite of techniques, which included aeromagnetic, gravity, square-array resistivity, and audiomagnetotelluric surveys, were applied as part of a regional study near Bill Williams Mountain. Existing well data and interpreted geophysical data were compiled and used to estimate depths to the water table and to prepare a potentiometric map. Geologic characteristics, such as secondary porosity, coefficient of anisotropy, and fracture-strike direction, were calculated at several sites to examine how these characteristics change with depth. The 14-kilometer-wide, seismically active northwestward-trending Cataract Creek and the northeastward-trending Mesa Butte Fault systems intersect near Bill Williams Mountain. Several north-south-trending faults may provide additional block faulting north and west of Bill Williams Mountain. Because of the extensive block faulting and regional folding, the volcanic and sedimentary rocks are tilted toward one or more of these faults. These faults provide near-vertical flow paths to the regional water table. The nearly radial fractures allow water that reaches the regional aquifer to move away from the Bill Williams Mountain area. Depth to the regional aquifer is highly variable and depends on location and local structures. On the basis of interpreted audiomagnetotelluric and square-array resistivity sounding curves and limited well data, depths to water may range from 450 to 1,300 meters.
Subsidence from an artificial permafrost warming experiment.
NASA Astrophysics Data System (ADS)
Gelvin, A.; Wagner, A. M.; Lindsey, N.; Dou, S.; Martin, E. R.; Ekblaw, I.; Ulrich, C.; James, S. R.; Freifeld, B. M.; Daley, T. M.; Saari, S.; Ajo Franklin, J. B.
2017-12-01
Using fiber optic sensing technologies (seismic, strain, and temperature) we installed a geophysical detection system to predict thaw subsidence in Fairbanks, Alaska, United States. Approximately 5 km of fiber optic was buried in shallow trenches (20 cm depth), in an area with discontinuous permafrost, where the top of the permafrost is approximately 4 - 4.5m below the surface. The thaw subsidence was enforced by 122 60-Watt vertical heaters installed over a 140 m2 area where seismic, strain, and temperature were continuously monitored throughout the length of the fiber. Several vertical thermistor strings were also recording ground temperatures to a depth of 10 m in parallel to the fiber optic to verify the measurements collected from the fiber optic cable. GPS, Electronic Distance Measurement (EDM) Traditional and LiDAR (Light and Detection and Ranging) scanning were used to investigate the surface subsidence. The heaters were operating for approximately a three month period starting in August, 2016. During the heating process the soil temperatures at the heater element increased from 3.5 to 45 °C at a depth of 3 - 4 m. It took approximately 7 months for the temperature at the heater elements to recover to their initial temperature. The depth to the permafrost table was deepened by about 1 m during the heating process. By the end of the active heating, the surface had subsided approximately 8 cm in the heating section where permafrost was closest to the surface. This was conclusively confirmed with GPS, EDM, and LiDAR. An additional LiDAR survey was performed about seven months after the heaters were turned off (in May 2017). A total subsidence of approximately 20 cm was measured by the end of the passive heating process. This project successfully demonstrates that this is a viable approach for simulating both deep permafrost thaw and the resulting surface subsidence.
Odum, Jackson K.; Williams, Robert; Stephenson, William J.; Tuttle, Martitia P.; Al-Shukri, Hadar
2016-01-01
We collected new high‐resolution P‐wave seismic‐reflection data to explore for possible faults beneath a roughly linear cluster of early to mid‐Holocene earthquake‐induced sand blows to the south of Marianna, Arkansas. The Daytona Beach sand blow deposits are located in east‐central Arkansas about 75 km southwest of Memphis, Tennessee, and about 80 km south of the southwestern end of the New Madrid seismic zone (NMSZ). Previous studies of these sand blows indicate that they were produced between 10,500 and 5350 yr B.P. (before A.D. 1950). The sand blows are large and similar in size to those in the heart of the NMSZ produced by the 1811–1812 earthquakes. The seismic‐reflection profiles reveal a previously unknown zone of near‐vertical faults imaged in the 100–1100‐m depth range that are approximately coincident with a cluster of earthquake‐induced sand blows and a near‐linear surface lineament composed of air photo tonal anomalies. These interpreted faults are expressed as vertical discontinuities with the largest displacement fault showing about 40 m of west‐side‐up displacement at the top of the Paleozoic section at about 1100 m depth. There are about 20 m of folding on reflections within the Eocene strata at 400 m depth. Increasing fault displacement with depth suggests long‐term recurrent faulting. The imaged faults within the vicinity of the numerous sand blow features could be a causative earthquake source, although it does not rule out the possibility of other seismic sources nearby. These newly located faults add to a growing list of potentially active Pleistocene–Holocene faults discovered over the last two decades that are within the Mississippi embayment region but outside of the historical NMSZ.
Geometry of the September 1971 eruptive fissure at Kilauea volcano, Hawaii
Dvorak, J.J.
1990-01-01
A three-dimensional model has been used to estimate the location and dimensions of the eruptive fissure for the 24-29 September 1971 eruption along the southwest rift zone of Kilauea volcano, Hawaii. The model is an inclined rectangular sheet embedded in an elastic half-space with constant displacement on the plane of the sheet. The set of "best" model parameters suggests that the sheet is vertical, extends from a depth of about 2 km to the surface, and has a length of about 14 km. Because this sheet intersects the surface where eruptive vents and extensive ground cracking formed during the eruption, this sheet probably represents the conduit for erupted lava. The amount of displacement perpendicular to the sheet is about 1.9 m, in the middle range of values measured for the amount of opening across the September 1971 eruptive fissure. The thickness of the eruptive fissure associated with the January 1983 east rift zone eruption was determined in an earlier paper to be 3.6 m, about twice the thickness determined here for the September 1971 eruption. Because the lengths (12 km for 1983 and 14 km for 1971) and heights (about 2 km) of the sheet models derived for the January 1983 and September 1971 rift zone eruptions are nearly identical, the greater thickness for the January 1983 eruptive fissure implies that the magma pressure was about a factor of two greater to form the January 1983 eruptive fissure. Because the September 1971 and January 1983 eruptive fissures extent to depths of only a few kilometers, the region of greatest compressive stress produced along the volcano's flank by either of these eruptive fissures would also be within a few kilometers of the surface. Previous work has shown that rift eruptions and intrusions contribute to the buildup of compressive stress along Kilauea's south flank and that this buildup is released by increased seismicity along the south flank. Because south flank earthquakes occur at significantly greater depths, i.e., from 5 to 13 km, than the vertical extent of the 1971 and 1983 eruptiv fissures, the depth of emplacement of these eruptive fissures cannot be the main factor in controlling the hypocentral depths of south flank earthquakes. Two possible explanations for the occurrence of south flank earthquakes in the depth range of 5-13 km are (1) a deeper pressure source, possibly related to deeper magma storage within the rift zone, and (2) a lowstrength region located between 5 and 13 km beneath Kilauea's south flank, possibly at the interface between oceanic sediments and the base of the Hawaiian volcanics. ?? 1990 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Smith, W. L., Jr.; Spangenberg, D.; Fleeger, C.; Sun-Mack, S.; Chen, Y.; Minnis, P.
2016-12-01
Determining accurate cloud properties horizontally and vertically over a full range of time and space scales is currently next to impossible using data from either active or passive remote sensors or from modeling systems. Passive satellite imagers provide horizontal and temporal resolution of clouds, but little direct information on vertical structure. Active sensors provide vertical resolution but limited spatial and temporal coverage. Cloud models embedded in NWP can produce realistic clouds but often not at the right time or location. Thus, empirical techniques that integrate information from multiple observing and modeling systems are needed to more accurately characterize clouds and their impacts. Such a strategy is employed here in a new cloud water content profiling technique developed for application to satellite imager cloud retrievals based on VIS, IR and NIR radiances. Parameterizations are developed to relate imager retrievals of cloud top phase, optical depth, effective radius and temperature to ice and liquid water content profiles. The vertical structure information contained in the parameterizations is characterized climatologically from cloud model analyses, aircraft observations, ground-based remote sensing data, and from CloudSat and CALIPSO. Thus, realistic cloud-type dependent vertical structure information (including guidance on cloud phase partitioning) circumvents poor assumptions regarding vertical homogeneity that plague current passive satellite retrievals. This paper addresses mixed phase cloud conditions for clouds with glaciated tops including those associated with convection and mid-latitude storm systems. Novel outcomes of our approach include (1) simultaneous retrievals of ice and liquid water content and path, which are validated with active sensor, microwave and in-situ data, and yield improved global cloud climatologies, and (2) new estimates of super-cooled LWC, which are demonstrated in aviation safety applications and validated with icing PIREPS. The initial validation is encouraging for single-layer cloud conditions. More work is needed to test and refine the method for global application in a wider range of cloud conditions. A brief overview of our current method, applications, verification, and plans for future work will be presented.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.
2001-01-01
To interface with other solids, many surfaces are engineered via methods such as plating, coating, and machining to produce a functional surface ensuring successful end products. In addition, subsurface properties such as hardness, residual stress, deformation, chemical composition, and microstructure are often linked to surface characteristics. Surface topography, therefore, contains the signatures of the surface and possibly links to volumetric properties, and as a result serves as a vital link between surface design, manufacturing, and performance. Hence, surface topography can be used to diagnose, monitor, and control fabrication methods. At the NASA Glenn Research Center, the measurement of surface topography is important in developing high-temperature structural materials and for profiling the surface changes of materials during microgravity combustion experiments. A prior study demonstrated that focused air-coupled ultrasound at 1 MHz could profile surfaces with a 25-m depth resolution and a 400-m lateral resolution over a 1.4-mm depth range. In this work, we address the question of whether higher frequency focused water-coupled ultrasound can improve on these specifications. To this end, we employed 10- and 25-MHz focused ultrasonic transducers in the water-coupled mode. The surface profile results seen in this investigation for 25-MHz water-coupled ultrasound, in comparison to those for 1-MHz air-coupled ultrasound, represent an 8 times improvement in depth resolution (3 vs. 25 m seen in practice), an improvement of at least 2 times in lateral resolution (180 vs. 400 m calculated and observed in practice), and an improvement in vertical depth range of 4 times (calculated).
NASA Astrophysics Data System (ADS)
Sanchez Velasco, L.; Ruvalcaba-Aroche, E. D.; Beier, E.; Godinez, V. M.; Barton, E. D.; Diaz-Viloria, N.; Pacheco, M.
2016-02-01
The three-dimensional distribution of the paralarvae of the complex Sthenoteuthis oualaniensis - Dosidicus gigas (Cephalopoda: Ommastrephidae) was analyzed in the northern limit of the shallow oxygen minimum zone in the Eastern Tropical Pacific (April, 2012). The hypoxic water ( 1 mL/L) rises from 100 m depth in the entrance of the Gulf of California to 20 m depth off Cabo Corrientes. Most of the paralarvae of this complex, dominated by D. gigas, were concentrated in the Gulf entrance, between the thermocline ( 20 to 50 m depth) and the sea surface, in the warmest (> 19oC) and oxygenated (> 4 mL/L) layer. The highest abundance of paralarvae was detected in an anticyclonic eddy ( 120 km diameter and > 500 m deep), which contained lower salinity water (< 35 g/kg), consistent with formation in the California Current. Lower paralarvae abundance was recorded further south off Cabo Corrientes, where hypoxic layers were elevated as water shoaled near shore. No paralarvae were found in the north of the study area beyond the strong salinity front ( 34.8 - 35.4 g/kg) that bounded the anticyclone. These results showed an affinity of the paralarvae for lower salinity, oxygenated water, illustrated by the influence of the mesoescale anticyclonic eddy and the salinity front in their distribution. Based on this study, it can be hypothesized that the expansion of the depth range of hypoxic water observed in the Eastern Tropical Pacific is vertically restricting the paralarvae habitat and likely causing a northward expansion of its range.
NASA Astrophysics Data System (ADS)
Brodic, Bojan; Malehmir, Alireza; Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti
2017-04-01
Higher resolution of S-wave seismic data compared to the P-wave ones are attractive for the researches working with the seismic methods. This is particularly true for near-surface applications due to significantly lower shear-wave velocities of unconsolidated sediments. Shear-wave imaging, however, poses certain restrictions on both source and receiver selections and also processing strategies. With three component (3C) seismic receivers becoming more affordable and used, shear-wave imaging from vertical sources is attracting more attention for near-surface applications. Theoretically, a vertical impact source will always excite both P- and S-waves although the excited S-waves are radially polarized (SV). There is an exchange of seismic energy between the vertical and radial component of the seismic wavefield. Additionally, it is theoretically accepted that there is no energy conversion or exchange from vertical into the transverse (or SH) component of the seismic wavefield, and the SH-waves can only be generated using SH sources. With the objectives of imaging esker structure (glacial sediments), water table and depth to bedrock, we conducted a seismic survey in Virttaankangas, in southwestern Finland. A bobcat-mounted vertical drop hammer (500 kg) was used as the seismic source. To obtain better source coupling, a 75×75×1.5 cm steel plate was mounted at the bottom of the hammer casing and all the hits made on this plate after placing it firmly on the ground at every shot point. For the data recording, we used a state-of-the-art comprising of 100 units, 240 m-long, 3C MEMS (micro electro-mechanical system) based seismic landstreamer developed at Uppsala University. Although the focus of the study was on the vertical component data, careful inspection of the transverse (SH) component of the raw data revealed clear shear wave reflections (normal moveout velocities ranging from 280-350 m/s at 50 m depth) on several shot gathers. This indicated potential for their analysis, hence shear-wave reflection imaging was carried out. Results show an excellent correspondence between the drilled depth to bedrock and the one independently obtained using P-wave first arrivals traveltime tomography with a reflection imaged on the stacked section of the SH component data. Aside from this reflection that follows the undulating bedrock topography, additional reflections are also observed on the stacked section that might be related to the sedimentary structures at the site. The section shows much finer resolution compared to the P-wave stacked section processed independently and reported earlier this year. This study illustrates the importance of 3C data recording and shows the potential of the landstreamer in imaging shallow subsurface using both P- and SH-waves generated from a vertical impact source. Whether the strong SH-wave energy observed is generated immediately at the source-ground contact, possible sliding of the base plate on which the impacts were made, an effect of near-surface heterogeneities or other factors remains to be carefully investigated. Acknowledgments: A contribution from Trust 2.2 project (http://trust-geoinfra.se) sponsored by Formas, BeFo, SBUF, SGU, Skanska, Tyréns, FQM, and NGI. We thank Turku Water Company, GTK and University of Turku, Department of Geography and Geology for supporting the data acquisition.
Boundary Layer Temporal Evolution Observed by Doppler LiDAR Upwind of a Lake-Effect Snow Event
NASA Astrophysics Data System (ADS)
King, D.; Kristovich, D.
2017-12-01
Lake-effect snow (LES) annually affects the Great Lakes region. It can impact communities economically, recreationally and perhaps result in fatalities. Previous studies have shown that the upwind shore of a LES system tends to be a region for mesoscale downdrafts. This study intends to show how the depth of the boundary (BL) on the upwind shore and how it could influence a LES event downstream. From December 7-10, 2016, we deployed a Halo-Photonics Streamline pulsed Doppler LiDAR at Illinois Beach State Park in Zion, Illinois, to observe the evolving BL wind structure and depth upwind of the growing LES over eastern Lake Michigan. The LiDAR scans included vertical stare, velocity-azimuth display (VAD), and range height indicator (RHI) modes to display the BL depth as well as LES cloud band structure. The BL depth was observed by turbulent velocities and backscatter profiles from the LiDAR. The BL was found to be approximately one kilometer during the day, and reduced to near surface at night. The BL depth, overall, increased from the 8th to the 9th, while snowfall rate decreased on the downwind shore. This suggests that local BL dynamics have less influence on downwind convection and snow production than originally anticipated. The larger scale environment appears to play a larger role in the multi-day BL evolution.
Up-dip partitioning of displacement components on the oblique-slip Clarence Fault, New Zealand
NASA Astrophysics Data System (ADS)
Nicol, Andrew; Van Dissen, Russell
2002-09-01
Active strike-slip faults in New Zealand occur within an obliquely-convergent plate boundary zone. Although the traces of these faults commonly delineate the base of mountain ranges, they do not always accommodate significant shortening at the free surface. Along the active trace of Clarence Fault in northeastern South Island, New Zealand, displaced landforms and slickenside striations indicate predominantly horizontal displacements at the ground surface, and a right-lateral slip rate of ca. 3.5-5 mm/year during the Holocene. The Inland Kaikoura mountain range occupies the hanging wall of the fault and rises steeply from the active trace to altitudes of ca. 3 km. The geomorphology of the range indicates active uplift and mountain building, which is interpreted to result, in part, from a vertical component of fault slip at depth. These data are consistent with the fault accommodating oblique-slip at depth aligned parallel to the plate-motion vector and compatible with regional geodetic data and earthquake focal-mechanisms. Oblique-slip on the Clarence Fault at depth is partitioned at the free surface into: (1) right-lateral displacement on the fault, and (2) hanging wall uplift produced by distributed displacement on small-scale faults parallel to the main fault. Decoupling of slip components reflects an up-dip transfer of fault throw to an off-fault zone of distributed uplift. Such zones are common in the hanging walls of thrusts and reverse faults, and support the idea that the dip of the oblique-slip Clarence Fault steepens towards the free surface.
Effect of inter- and intra-annual thermohaline variability on acoustic propagation
NASA Astrophysics Data System (ADS)
Chu, Peter C.; McDonald, Colleen M.; Kucukosmanoglu, Murat; Judono, Albert; Margolina, Tetyana; Fan, Chenwu
2017-05-01
This paper is to answer the question "How can inter- and intra-annual variability in the ocean be leveraged by the submarine Force?" through quantifying inter- and intra-annual variability in (T, S) fields and in turn underwater acoustic characteristics such as transmission loss, signal excess, and range of detection. The Navy's Generalized Digital Environmental Model (GDEM) is the climatological monthly mean data and represents mean annual variability. An optimal spectral decomposition method is used to produce a synoptic monthly gridded (SMG) (T, S) dataset for the world oceans with 1° ×1° horizontal resolution, 28 vertical levels (surface to 3,000 m depth), monthly time increment from January 1945 to December 2014 now available at the NOAA/NCEI website: http://data.nodc.noaa.gov/cgibin/iso?id=gov.noaa.nodc:0140938. The sound velocity decreases from 1945 to 1975 and increases afterwards due to global climate change. Effect of the inter- and intra-annual (T, S) variability on acoustic propagation in the Yellow Sea is investigated using a well-developed acoustic model (Bellhop) in frequencies from 3.5 kHz to 5 kHz with sound velocity profile (SVP) calculated from GDEM and SMG datasets, various bottom types (silty clay, fine sand, gravelly mud, sandy mud, and cobble or gravel) from the NAVOCEANO`s High Frequency Environmental Algorithms (HFEVA), source and receiver depths. Acoustic propagation ranges are extended drastically due to the inter-annual variability in comparison with the climatological SVP (from GDEM). Submarines' vulnerability of detection as its depth varies and avoidance of short acoustic range due to inter-annual variability are also discussed.
Cai, Minggang; Liu, Mengyang; Hong, Qingquan; Lin, Jing; Huang, Peng; Hong, Jiajun; Wang, Jun; Zhao, Wenlu; Chen, Meng; Cai, Minghong; Ye, Jun
2016-09-06
Semivolatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) have the potential to reach pristine environments through long-range transport. To investigate the long-range transport of the PAHs and their fate in Antarctic seawater, dissolved PAHs in the surface waters from the western Pacific to the Southern Ocean (17.5°N to 69.2°S), as well as down to 3500 m PAH profiles in Prydz Bay and the adjacent Southern Ocean, were observed during the 27th Chinese National Antarctic Research Expedition in 2010. The concentrations of Σ9PAH in the surface seawater ranged from not detected (ND) to 21 ng L(-1), with a mean of 4.3 ng L(-1); and three-ring PAHs were the most abundant compounds. Samples close to the Australian mainland displayed the highest levels across the cruise. PAHs originated mainly from pyrogenic sources, such as grass, wood, and coal combustion. Vertical profiles of PAHs in Prydz Bay showed a maximum at a depth of 50 m and less variance with depth. In general, we inferred that the water masses as well as the phytoplankton were possible influencing factors on PAH surface-enrichment depth-depletion distribution. Inventory estimation highlighted the contribution of intermediate and deep seawater on storing PAHs in seawater from Prydz Bay, and suggested that climate change rarely shows the rapid release of the PAHs currently stored in the major reservoirs (intermediate and deep seawater).
Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield.
Rime, Thomas; Hartmann, Martin; Brunner, Ivano; Widmer, Franco; Zeyer, Josef; Frey, Beat
2015-03-01
Spatial patterns of microbial communities have been extensively surveyed in well-developed soils, but few studies investigated the vertical distribution of micro-organisms in newly developed soils after glacier retreat. We used 454-pyrosequencing to assess whether bacterial and fungal community structures differed between stages of soil development (SSD) characterized by an increasing vegetation cover from barren (vegetation cover: 0%/age: 10 years), sparsely vegetated (13%/60 years), transient (60%/80 years) to vegetated (95%/110 years) and depths (surface, 5 and 20 cm) along the Damma glacier forefield (Switzerland). The SSD significantly influenced the bacterial and fungal communities. Based on indicator species analyses, metabolically versatile bacteria (e.g. Geobacter) and psychrophilic yeasts (e.g. Mrakia) characterized the barren soils. Vegetated soils with higher C, N and root biomass consisted of bacteria able to degrade complex organic compounds (e.g. Candidatus Solibacter), lignocellulolytic Ascomycota (e.g. Geoglossum) and ectomycorrhizal Basidiomycota (e.g. Laccaria). Soil depth only influenced bacterial and fungal communities in barren and sparsely vegetated soils. These changes were partly due to more silt and higher soil moisture in the surface. In both soil ages, the surface was characterized by OTUs affiliated to Phormidium and Sphingobacteriales. In lower depths, however, bacterial and fungal communities differed between SSD. Lower depths of sparsely vegetated soils consisted of OTUs affiliated to Acidobacteria and Geoglossum, whereas depths of barren soils were characterized by OTUs related to Gemmatimonadetes. Overall, plant establishment drives the soil microbiota along the successional gradient but does not influence the vertical distribution of microbiota in recently deglaciated soils. © 2014 John Wiley & Sons Ltd.
Orthogonal cutting of cancellous bone with application to the harvesting of bone autograft.
Malak, Sharif F F; Anderson, Iain A
2008-07-01
Autogenous bone graft harvesting results in cell death within the graft and trauma at the donor site. The latter can be mitigated by using minimally invasive tools and techniques, while cell morbidity may be reduced by improving cutter design and cutting parameters. We have performed orthogonal cutting experiments on bovine cancellous bone samples, to gain a basic understanding of the cutting mechanism and to determine design guidelines for tooling. Measurements were performed at cutting speeds from 11.2 to 5000 mm/min, with tool rake angles of 23 degrees, 45 degrees and 60 degrees, and depths of cut in the range of 0.1-3.0 mm. Horizontal and vertical cutting forces were measured, and the chip formation process video recorded. Continuous chip formation was observed for rake angles of 45 degrees and 60 degrees , and depths of cut greater than 0.8 mm. Chip formation for depths of cut greater than 1.0 mm was accompanied by bone marrow extruding out of the free surfaces and away from the rake face. Specific cutting energies decreased with increasing rake angle, increasing depth of cut and increasing cutting speed. Our orthogonal cutting experiments showed that a rake angle of 60 degrees and a depth of cut of 1mm, will avoid excessive fragmentation, keep specific cutting energy low and promote bone marrow extrusion, which may be beneficial for cell survival. We demonstrate how drill bit clearance angle and feed rate can be calculated facilitating a 1mm depth of cut.
NASA Astrophysics Data System (ADS)
Reiss, Martin; Chifflard, Peter
2016-04-01
Runoff generation processes in low mountain ranges in middle Europe are strongly influenced by lateral fluxes of soil water caused by periglacial cover beds. Less attention has been paid to the stratification of soils in hydrologic research as a major trigger of lateral slope water paths (REISS & CHIFFLARD 2014) although especially in the low mountain ranges in Middle Europe subsurface stormflow generation is strongly influenced by the periglacial cover beds (MOLDENHAUER et al. 2013) which are a typical example for stratified soils and almost widespread everywhere in the low mountain ranges. By contrast in soil science the Substrate-Oriented-Soil-Evolution-Model (LORZ et al. 2011) underlines the importance of stratified soils and lithological discontinuities (LD) as a key element controlling ecological processes and depth functions of soil properties. Whereas depth distributions of e.g. trace elements in the soil matrix at the point scale have been already detected, investigations of dissolved trace metal concentrations in the soil pore water and their depth distribution depending on soil stratification are scarce. Based on a typical depth distribution of trace metal concentrations in soil pore water depending on lithological discontinuities these depth functions may indicate zones of preferential transport. Additionally, there is still a missing link of investigations at different scales regarding the impacts of the geochemical barriers and the pronounced depth distributions on the chemical composition of the subsurface stormflow and consequently the hillslope runoff. Therefore, we validated the hypotheses that LDs act as geochemical barriers for their vertical distribution at the point and hillslope scale and that this typical depth functions of trace elements can be used to identify sources of subsurface stormflow at the catchment scale. To address these objectives, our research and sampling design is based on a multi-scale approach combining experimental research at the point and hillslope scale in a small forested catchment (0.24 square kilometer) in Central-Germany called "Krofdorfer Forst". The study area is totally covered by beech forest and characterized as a typically sloped terrain of the mid-latitudes with periglacial cover beds. The catchment is devoid of any riparian zone and is characterized by steep hillslopes that issue directly into the receiving creek. At the point scale the impacts of LDs on the depth distribution of metals (Cr, Mn, Fe, Ni, Cu, Zn, Ar, Se, Cd, Pb) and alkaline earths (Na, Mg, K, Ca) were investigated. Soil water samples were captured at several soil profiles along a hillslope (upper, middle, foot slope) by soil solution access tubes which are installed in different depths depending on the LDs ranging from 10 cm to 110 cm. Soil water samples were taken since October 2012 in an irregular interval. In a complementary effort the temporal variability of the same geochemical parameters mentioned above were investigated in a high temporal resolution in the catchment runoff by using an automatic water sampler. All water samples were filtered and analyzed by using an ICP-MS. First results show that especially manganese is a very suitable element to identify chemical depth functions in soil pore water at the point scale. For this element the LDs act as geochemical barrier. Further elements have to be considered under different aspects since their depth distribution depends not on the lithological discontinuities. At the catchment scale the temporal variability of manganese concentration during different rainfall-runoff events can be used to detect sources of subsurface stormflow. References Reiss, M. & Chifflard, P. (2014): Short Report: Identifying sources of subsurface flow - A theoretical framework assessing the hydrological implications of lithological discontinuities. In: Open Journal of Modern Hydrology 4(3):91-94 Moldenhauer, K.-M., Heller, K., Chifflard, P., Hübner, R. & Kleber, A. (2013): Influence of Cover Beds on Slope Hydrology. In: Kleber, A. & Terhorst, B. (eds.): Mid-Latitude Slope Deposits (Cover Beds). Elsevier, pp. 127-152 Lorz, C., Heller, K. & Kleber, A. (2011): Stratification of the Regolith Continuum - A Key Property for Processes and Functions of Landscapes. In: Zeitschrift für Geomorphologie 55:277-292
NASA Astrophysics Data System (ADS)
Kalscheuer, Thomas; Juhojuntti, Niklas; Vaittinen, Katri
2017-12-01
A combination of magnetotelluric (MT) measurements on the surface and in boreholes (without metal casing) can be expected to enhance resolution and reduce the ambiguity in models of electrical resistivity derived from MT surface measurements alone. In order to quantify potential improvement in inversion models and to aid design of electromagnetic (EM) borehole sensors, we considered two synthetic 2D models containing ore bodies down to 3000 m depth (the first with two dipping conductors in resistive crystalline host rock and the second with three mineralisation zones in a sedimentary succession exhibiting only moderate resistivity contrasts). We computed 2D inversion models from the forward responses based on combinations of surface impedance measurements and borehole measurements such as (1) skin-effect transfer functions relating horizontal magnetic fields at depth to those on the surface, (2) vertical magnetic transfer functions relating vertical magnetic fields at depth to horizontal magnetic fields on the surface and (3) vertical electric transfer functions relating vertical electric fields at depth to horizontal magnetic fields on the surface. Whereas skin-effect transfer functions are sensitive to the resistivity of the background medium and 2D anomalies, the vertical magnetic and electric field transfer functions have the disadvantage that they are comparatively insensitive to the resistivity of the layered background medium. This insensitivity introduces convergence problems in the inversion of data from structures with strong 2D resistivity contrasts. Hence, we adjusted the inversion approach to a three-step procedure, where (1) an initial inversion model is computed from surface impedance measurements, (2) this inversion model from surface impedances is used as the initial model for a joint inversion of surface impedances and skin-effect transfer functions and (3) the joint inversion model derived from the surface impedances and skin-effect transfer functions is used as the initial model for the inversion of the surface impedances, skin-effect transfer functions and vertical magnetic and electric transfer functions. For both synthetic examples, the inversion models resulting from surface and borehole measurements have higher similarity to the true models than models computed exclusively from surface measurements. However, the most prominent improvements were obtained for the first example, in which a deep small-sized ore body is more easily distinguished from a shallow main ore body penetrated by a borehole and the extent of the shadow zone (a conductive artefact) underneath the main conductor is strongly reduced. Formal model error and resolution analysis demonstrated that predominantly the skin-effect transfer functions improve model resolution at depth below the sensors and at distance of ˜ 300-1000 m laterally off a borehole, whereas the vertical electric and magnetic transfer functions improve resolution along the borehole and in its immediate vicinity. Furthermore, we studied the signal levels at depth and provided specifications of borehole magnetic and electric field sensors to be developed in a future project. Our results suggest that three-component SQUID and fluxgate magnetometers should be developed to facilitate borehole MT measurements at signal frequencies above and below 1 Hz, respectively.
NASA Astrophysics Data System (ADS)
Packard, T. T.; Osma, N.; Fernández-Urruzola, I.; Codispoti, L. A.; Christensen, J. P.; Gómez, M.
2015-05-01
Oceanic depth profiles of plankton respiration are described by a power function, RCO2 = (RCO2)0 (z/z
Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity
NASA Astrophysics Data System (ADS)
Allison, Kali L.; Dunham, Eric M.
2018-05-01
We simulate earthquake cycles with rate-and-state fault friction and off-fault power-law viscoelasticity for the classic 2D antiplane shear problem of a vertical, strike-slip plate boundary fault. We investigate the interaction between fault slip and bulk viscous flow with experimentally-based flow laws for quartz-diorite and olivine for the crust and mantle, respectively. Simulations using three linear geotherms (dT/dz = 20, 25, and 30 K/km) produce different deformation styles at depth, ranging from significant interseismic fault creep to purely bulk viscous flow. However, they have almost identical earthquake recurrence interval, nucleation depth, and down-dip coseismic slip limit. Despite these similarities, variations in the predicted surface deformation might permit discrimination of the deformation mechanism using geodetic observations. Additionally, in the 25 and 30 K/km simulations, the crust drags the mantle; the 20 K/km simulation also predicts this, except within 10 km of the fault where the reverse occurs. However, basal tractions play a minor role in the overall force balance of the lithosphere, at least for the flow laws used in our study. Therefore, the depth-integrated stress on the fault is balanced primarily by shear stress on vertical, fault-parallel planes. Because strain rates are higher directly below the fault than far from it, stresses are also higher. Thus, the upper crust far from the fault bears a substantial part of the tectonic load, resulting in unrealistically high stresses. In the real Earth, this might lead to distributed plastic deformation or formation of subparallel faults. Alternatively, fault pore pressures in excess of hydrostatic and/or weakening mechanisms such as grain size reduction and thermo-mechanical coupling could lower the strength of the ductile fault root in the lower crust and, concomitantly, off-fault upper crustal stresses.
Mesophotic depths as refuge areas for fishery-targeted species on coral reefs
NASA Astrophysics Data System (ADS)
Lindfield, Steven J.; Harvey, Euan S.; Halford, Andrew R.; McIlwain, Jennifer L.
2016-03-01
Coral reefs are subjected to unprecedented levels of disturbance with population growth and climate change combining to reduce standing coral cover and stocks of reef fishes. Most of the damage is concentrated in shallow waters (<30 m deep) where humans can comfortably operate and where physical disturbances are most disruptive to marine organisms. Yet coral reefs can extend to depths exceeding 100 m, potentially offering refuge from the threats facing shallower reefs. We deployed baited remote underwater stereo-video systems (stereo-BRUVs) at depths of 10-90 m around the southern Mariana Islands to investigate whether fish species targeted by fishing in the shallows may be accruing benefits from being at depth. We show that biomass, abundance and species richness of fishery-targeted species increased from shallow reef areas to a depth of 60 m, whereas at greater depths, a lack of live coral habitat corresponded to lower numbers of fish. The majority of targeted species were found to have distributions that ranged from shallow depths (10 m) to depths of at least 70 m, emphasising that habitat, not depth, is the limiting factor in their vertical distribution. While the gradient of abundance and biomass versus depth was steepest for predatory species, the first species usually targeted by fishing, we also found that fishery-targeted herbivores prevailed in similar biomass and species richness to 60 m. Compared to shallow marine protected areas, there was clearly greater biomass of fishery-targeted species accrued in mesophotic depths. Particularly some species typically harvested by depth-limited fishing methods (e.g., spearfishing), such as the endangered humphead wrasse Cheilinus undulatus, were found in greater abundance on deeper reefs. We conclude that mesophotic depths provide essential fish habitat and refuge for fishery-targeted species, representing crucial zones for fishery management and research into the resilience of disturbed coral reef ecosystems.
NASA Astrophysics Data System (ADS)
Asher, W.; Drushka, K.; Jessup, A. T.; Clark, D.
2016-02-01
Satellite-mounted microwave radiometers measure sea surface salinity (SSS) as an area-averaged quantity in the top centimeter of the ocean over the footprint of the instrument. If the horizontal variability in SSS is large inside this footprint, sub-grid-scale variability in SSS can affect comparison of the satellite-retrieved SSS with in situ measurements. Understanding the magnitude of horizontal variability in SSS over spatial scales that are relevant to the satellite measurements is therefore important. Horizontal variability of SSS at the ocean surface can be studied in situ using data recorded by thermosalinographs (TSGs) that sample water from a depth of a few meters. However, it is possible measurements made at this depth might underestimate the horizontal variability at the surface because salinity and temperature can become vertically stratified in a very near surface layer due to the effects of rain, solar heating, and evaporation. This vertical stratification could prevent horizontal gradients from propagating to the sampling depths of ship-mounted TSGs. This presentation will discuss measurements made using an underway salinity profiling system installed on the R/V Thomas Thompson that made continuous measurements of SSS and SST in the Pacific Ocean. The system samples at nominal depths of 2-m, 3-m, and 5-m, allowing the depth dependence of the horizontal variability in SSS and SST to be measured. Horizontal variability in SST is largest at low wind speeds during daytime, when a diurnal warm layer forms. In contrast, the diurnal signal in the variability of SSS was smaller with variability being slightly larger at night. When studied as a function of depth, the results show that over 100-km scales, the horizontal variability in both SSS and SST at a depth of 2 m is approximately a factor of 4 higher than the variability at 5 m.
Carlson, Amy E; Hoffmayer, Eric R; Tribuzio, Cindy A; Sulikowski, James A
2014-01-01
Spiny dogfish (Squalus acanthias) are assumed to be a highly migratory species, making habitual north-south migrations throughout their northwestern Atlantic United States (U.S.) range. Also assumed to be a benthic species, spiny dogfish stock structure is estimated through Northeast Fisheries Science Center (NEFSC) bottom-trawl surveys. Recent anomalies in population trends, including a recent four-fold increase in estimated spawning stock biomass, suggest alternative movement patterns could exist for this shark species. To obtain a better understanding of the horizontal and vertical movement dynamics of this species, Microwave Telemetry pop-up satellite archival X-Tags were attached to forty adult spiny dogfish at the northern (Gulf of Maine) and southern (North Carolina) extents of their core U.S. geographic range. Reconstructed geolocation tracks ranging in lengths from two to 12 months suggest that the seasonal migration patterns appear to be local in nature to each respective northern and southern deployment site, differing from previously published migration paradigms. Differences in distance and direction traveled between seasonal geolocations possibly indicate separate migratory patterns between groups. Kernel utilization distribution models also suggest strong separate core home ranges. Significant differences in seasonal temperature and depths between the two regions further substantiate the possibility of separate regional movement patterns between the two groups. Vertical utilization also suggests distinct diel patterns and that this species may not utilize the benthos as previously thought, potentially decreasing availability to benthic gear.
Carlson, Amy E.; Hoffmayer, Eric R.; Tribuzio, Cindy A.; Sulikowski, James A.
2014-01-01
Spiny dogfish (Squalus acanthias) are assumed to be a highly migratory species, making habitual north-south migrations throughout their northwestern Atlantic United States (U.S.) range. Also assumed to be a benthic species, spiny dogfish stock structure is estimated through Northeast Fisheries Science Center (NEFSC) bottom-trawl surveys. Recent anomalies in population trends, including a recent four-fold increase in estimated spawning stock biomass, suggest alternative movement patterns could exist for this shark species. To obtain a better understanding of the horizontal and vertical movement dynamics of this species, Microwave Telemetry pop-up satellite archival X-Tags were attached to forty adult spiny dogfish at the northern (Gulf of Maine) and southern (North Carolina) extents of their core U.S. geographic range. Reconstructed geolocation tracks ranging in lengths from two to 12 months suggest that the seasonal migration patterns appear to be local in nature to each respective northern and southern deployment site, differing from previously published migration paradigms. Differences in distance and direction traveled between seasonal geolocations possibly indicate separate migratory patterns between groups. Kernel utilization distribution models also suggest strong separate core home ranges. Significant differences in seasonal temperature and depths between the two regions further substantiate the possibility of separate regional movement patterns between the two groups. Vertical utilization also suggests distinct diel patterns and that this species may not utilize the benthos as previously thought, potentially decreasing availability to benthic gear. PMID:25068584
NASA Astrophysics Data System (ADS)
Anber, Usama; Wang, Shuguang; Sobel, Adam
2017-03-01
The effect of coupling a slab ocean mixed layer to atmospheric convection is examined in cloud-resolving model (CRM) simulations in vertically sheared and unsheared environments without Coriolis force, with the large-scale circulation parameterized using the Weak Temperature Gradient (WTG) approximation. Surface fluxes of heat and moisture as well as radiative fluxes are fully interactive, and the vertical profile of domain-averaged horizontal wind is strongly relaxed toward specified profiles with vertical shear that varies from one simulation to the next. Vertical wind shear is found to play a critical role in the simulated behavior. There exists a threshold value of the shear strength above which the coupled system develops regular oscillations between deep convection and dry nonprecipitating states, similar to those found earlier in a much more idealized model which did not consider wind shear. The threshold value of the vertical shear found here varies with the depth of the ocean mixed layer. The time scale of the spontaneously generated oscillations also varies with mixed layer depth, from 10 days with a 1 m deep mixed layer to 50 days with a 10 m deep mixed layer. The results suggest the importance of the interplay between convection organized by vertical wind shear, radiative feedbacks, large-scale dynamics, and ocean mixed layer heat storage in real intraseasonal oscillations.
Multiport well design for sampling of ground water at closely spaced vertical intervals
Delin, G.N.; Landon, M.K.
1996-01-01
Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples from the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Tracer experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorcarbon concentrations.
Examination for optimization of synchrotron radiation spectrum for the x ray depth lithography
NASA Astrophysics Data System (ADS)
Dany, Raimund
1992-06-01
The effect of reducing the vertical distribution of synchrotron radiation on its spectral distribution is examined through resin irradiation. The resulting filter effect is compared to that of absorption filters. Transmission coefficients of titanium, gold, and polyamide were calculated from linear absorption coefficients with the Beer law. The use of a diaphragm in X-ray depth lithography, which is the first step of the LIGA (Lithography Galvanoforming Molding) process, is discussed. A calorimetric device for determining the synchrotron radiation power and distribution was developed and tested. Measurements at the ELSA storage ring show a strong dependence of the vertical emittance on the electron current.
Magnetic Basement Depth Inversion in the Space Domain
NASA Astrophysics Data System (ADS)
Nunes, Tiago Mane; Barbosa, Valéria Cristina F.; Silva, João Batista C.
2008-10-01
We present a total-field anomaly inversion method to determine both the basement relief and the magnetization direction (inclination and declination) of a 2D sedimentary basin presuming negligible sediment magnetization. Our method assumes that the magnetic intensity contrast is constant and known. We use a nonspectral approach based on approximating the vertical cross section of the sedimentary basin by a polygon, whose uppermost vertices are forced to coincide with the basin outcrop, which are presumably known. For fixed values of the x coordinates our method estimates the z coordinates of the unknown polygon vertices. To obtain the magnetization direction we assume that besides the total-field anomaly, information about the basement’s outcrops at the basin borders and the basement depths at a few points is available. To obtain stable depth-to-basement estimates we impose overall smoothness and positivity constraints on the parameter estimates. Tests on synthetic data showed that the simultaneous estimation of the irregular basement relief and the magnetization direction yields good estimates for the relief despite the mild instability in the magnetization direction. The inversion of aeromagnetic data from the onshore Almada Basin, Brazil, revealed a shallow, eastward-dipping basement basin.
Nitrogen fluxes through unsaturated zones in five agricultural settings across the USA
NASA Astrophysics Data System (ADS)
Green, C. T.; Fisher, L. H.; Bekins, B. A.
2006-12-01
The main controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Washington, Nebraska, Indiana, and Maryland in 2004 and 2005. Sites included irrigated and non-irrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 0.5 to 20 m. Chemical analyses of water from lysimeters, shallow wells, and sediment cores indicate that advective transport of nitrate is the dominant process affecting the rate of N transport below the root zone. Vertical profiles of (1) N species, (2) stable N and O isotopes, and (3) oxygen gas in unsaturated zone air and shallow ground water, and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. Relatively stable concentrations at depths greater than a few meters allow calculation of nitrogen fluxes to the saturated zone. These fluxes are equivalent to 14 - 64% of the N application rates. At the same locations, median vertical fluxes of N in ground water are generally lower, ranging from 4 - 37% of N application rates. The lower nitrate fluxes in ground water reflect processes including lateral flow to tile drains and denitrification in the capillary fringe, as well as historical changes in N inputs.
NASA Astrophysics Data System (ADS)
Duffy-Anderson, Janet T.; Doyle, Miriam J.; Mier, Kathryn L.; Stabeno, Phyllis J.; Wilderbuer, Thomas K.
2010-07-01
We examined the patterns of abundance and distribution of Alaska plaice, Pleuronectes quadrituberculatus, eggs, larvae and pelagic juveniles over the southeastern Bering Sea shelf to better understand factors controlling transport and recruitment of flatfish in the Bering Sea. Ichthyoplankton data were derived from plankton surveys conducted in 1997, 1999, 2002, 2003, and 2005. Temperature, salinity, depth, and abundance of microzooplankton were measured concurrently. Eggs and larvae were primarily collected from depths < 200 m, with the majority occurring over bottom depths ranging 50-100 m. Eggs were present throughout the water column, though densities of preflexion stage larvae were concentrated at depths 10-20 m. There was no evidence of vertical migration for pre-flexion stages. Spawning in Alaska plaice occurs primarily east of Port Moller in April and May, and eggs and larvae appear to drift to the north and northeast, an observation based on satellite-tracked drifter information, model output, and collections of older, later-stage postlarvae. Connectivity between spawning areas and nursery habitats is likely influenced by wind forcing, so climate-mediated changes to dispersal trajectory or timing is expected to have significant impacts on recruitment in this species, though entrainment in consistent, directional currents may modify these effects.
Downhole measurements in the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica
Morin, R.; Williams, T.; Henrys, S.; Crosby, T.; Hansaraj, D.
2007-01-01
A comprehensive set of downhole measurements was collected in the AND-1B drillhole as part of the on-ice scientific programme defined for the McMurdo Ice Shelf (MIS) Project. Geophysical logs were recorded over two operation phases and consisted of calliper, temperature, fluid conductivity, induction resistivity, magnetic susceptibility, natural gamma activity, acoustic televiewer, borehole deviation, and dipmeter. In addition, two standard vertical seismic profiles (VSP) and one walk-away VSP were obtained. Radioactive logs (porosity and density) were not run because of unstable borehole conditions. Although the total depth of the hole is 1285 metres below seafloor (mbsf), the depth range for in situ measurements was limited by the length of the wireline (1018 mbsf) and by the nullification of some geophysical logs due to the presence of steel casing. A depth correction was derived to account for systematic discrepancies in depth between downhole measurements and cores; consequently, log responses can be directly compared to core properties. The resulting data are amenable to studies of cyclicity and climate, heat flux and fluid flow, and stricture and stress. When integrated with physical properties and fractures measured on the core, this information should play a significant role in addressing many of the scientific objectives of the ANDRILL programme.
Tephra layers in the Siple Dome and Taylor Dome ice cores, Antarctica: Sources and correlations
NASA Astrophysics Data System (ADS)
Dunbar, Nelia W.; Zielinski, Gregory A.; Voisins, Daniel T.
2003-08-01
Volcanic ash, or tephra layers, are found in the Taylor Dome, Siple Dome A, and Siple Dome B ice cores. Significant shard concentrations are found at a number of depths in all three cores. Electron and ion microprobe analyses indicate that the geochemical composition of most layers is basaltic, basanitic, or trachytic, and the geochemical signatures of the layers suggest derivation from the Pleiades volcanic center, Mt. Melbourne volcano, or small mafic centers, probably in the Royal Society Range area. Presence of tephra layers suggests an episode of previously unrecognized Antarctic volcanic activity between 1776 and 1805 A.D., from at least two volcanic centers. A strong geochemical correlation (D = 3.49 and 3.97 with a value of 4 considered identical) is observed between tephra layers at depth of 79.2 m in the Taylor Dome ice core, and layers between 97.2 and 97.7 m depth in the Siple B core. This correlation, and the highly accurate depth-age scale of the Siple B core suggest that the age of this horizon in the Taylor Dome ice core presented by [1998a, 2000] should be revised downward, to the younger age of 675 ± 25 years before 1995. This revised chronology is consistent with vertical strain measurements presented by [2003].
Nakanishi, Takahiro; Zheng, Jian; Aono, Tatsuo; Yamada, Masatoshi; Kusakabe, Masashi
2011-08-01
Using a sector-field ICP-MS the vertical distributions of the (99)Tc concentration and (99)Tc/(137)Cs activity ratio were measured in the coastal waters off Aomori Prefecture, Japan, where a spent-nuclear-fuel reprocessing plant has begun test operation. The (99)Tc concentrations in surface water ranged from 1.8 to 2.4 mBq/m(3), no greater than the estimated background level. Relatively high (99)Tc/(137)Cs activity ratios (10-12 × 10(-4)) would be caused by the inflow of the high-(99)Tc/(137)Cs water mass from the Japan Sea. There is no observable contamination from the reprocessing plant in the investigated area. The (99)Tc concentration and the (99)Tc/(137)Cs activity ratio in water column showed gradual decreases with depth. Our results implied that (99)Tc behaves in a more conservative manner than (137)Cs in marine environments. Copyright © 2011 Elsevier Ltd. All rights reserved.
75 FR 31368 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
... referenced ground [caret] Communities affected elevation Elevation in meters (MSL) Effective Modified Santa.... Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be... Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter...
77 FR 73324 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
.... Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. [[Page 73326.... + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the... Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Walnut Ridge Maps are available for...
Twining, Brian V.; Fisher, Jason C.
2012-01-01
During 2009 and 2010, the U.S. Geological Survey’s Idaho National Laboratory Project Office, in cooperation with the U.S. Department of Energy, collected quarterly, depth-discrete measurements of fluid pressure and temperature in nine boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Multilevel monitoring at the Idaho National Laboratory has been ongoing since 2006. This report summarizes data collected from three multilevel monitoring wells installed during 2009 and 2010 and presents updates to six multilevel monitoring wells. Hydraulic heads (heads) and groundwater temperatures were monitored from 9 multilevel monitoring wells, including 120 hydraulically isolated depth intervals from 448.0 to 1,377.6 feet below land surface. Quarterly head and temperature profiles reveal unique patterns for vertical examination of the aquifer’s complex basalt and sediment stratigraphy, proximity to aquifer recharge and discharge, and groundwater flow. These features contribute to some of the localized variability even though the general profile shape remained consistent over the period of record. Major inflections in the head profiles almost always coincided with low-permeability sediment layers and occasionally thick sequences of dense basalt. However, the presence of a sediment layer or dense basalt layer was insufficient for identifying the location of a major head change within a borehole without knowing the true areal extent and relative transmissivity of the lithologic unit. Temperature profiles for boreholes completed within the Big Lost Trough indicate linear conductive trends; whereas, temperature profiles for boreholes completed within the axial volcanic high indicate mostly convective heat transfer resulting from the vertical movement of groundwater. Additionally, temperature profiles provide evidence for stratification and mixing of water types along the southern boundary of the Idaho National Laboratory. Vertical head and temperature change were quantified for each of the nine multilevel monitoring systems. The vertical head gradients were defined for the major inflections in the head profiles and were as high as 2.1 feet per foot. Low vertical head gradients indicated potential vertical connectivity and flow, and large gradient inflections indicated zones of relatively low vertical connectivity. Generally, zones that primarily are composed of fractured basalt displayed relatively small vertical head differences. Large head differences were attributed to poor vertical connectivity between fracture units because of sediment layering and/or dense basalt. Groundwater temperatures in all boreholes ranged from 10.2 to 16.3˚C. Normalized mean hydraulic head values were analyzed for all nine multilevel monitoring wells for the period of record (2007-10). The mean head values suggest a moderately positive correlation among all boreholes, which reflects regional fluctuations in water levels in response to seasonality. However, the temporal trend is slightly different when the location is considered; wells located along the southern boundary, within the axial volcanic high, show a strongly positive correlation.
Bottom Interaction in Ocean Acoustic Propagation
2013-09-30
critical depth). What is the relationship between the seismic (ground motion) noise on the seafloor and the acoustic noise in the water column? What...detections and observations on non-traditional sensors such as deep boreholes in the seafloor in water depths well- below the critical depth. Third...press). "Estimating the horizontal 4 and vertical direction-of-arrival of water-borne seismic signals in the northern Philippine Sea," J. Acoust
Complex earthquake rupture and local tsunamis
Geist, E.L.
2002-01-01
In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a factor of 3 or more. These results indicate that there is substantially more variation in the local tsunami wave field derived from the inherent complexity subduction zone earthquakes than predicted by a simple elastic dislocation model. Probabilistic methods that take into account variability in earthquake rupture processes are likely to yield more accurate assessments of tsunami hazards.
Hodges, Arthur L.
1982-01-01
Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)
SUB-SURFACE MERIDIONAL FLOW, VORTICITY, AND THE LIFETIME OF SOLAR ACTIVE REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurya, R. A.; Ambastha, A., E-mail: ramajor@prl.res.i, E-mail: ambastha@prl.res.i
Solar sub-surface fluid topology provides an indirect approach to examine the internal characteristics of active regions (ARs). Earlier studies have revealed the prevalence of strong flows in the interior of ARs having complex magnetic fields. Using the Doppler data obtained by the Global Oscillation Network Group project for a sample of 74 ARs, we have discovered the presence of steep gradients in meridional velocity at depths ranging from 1.5 to 5 Mm in flare productive ARs. The sample of these ARs is taken from the Carrington rotations 1980-2052 covering the period 2001 August-2007 January. The gradients showed an interesting hemisphericmore » trend of negative (positive) signs in the northern (southern) hemisphere, i.e., directed toward the equator. We have discovered three sheared layers in the depth range of 0-10 Mm, providing evidence of complex flow structures in several ARs. An important inference derived from our analysis is that the location of the deepest zero vertical vorticity is correlated with the remaining lifetime of ARs. This new finding may be employed as a tool for predicting the life expectancy of an AR.« less
Ice shelf basal melt rates around Antarctica from simulations and observations
NASA Astrophysics Data System (ADS)
Schodlok, M. P.; Menemenlis, D.; Rignot, E. J.
2016-02-01
We introduce an explicit representation of Antarctic ice shelf cavities in the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) ocean retrospective analysis; and compare resulting basal melt rates and patterns to independent estimates from satellite observations. Two simulations are carried out: the first is based on the original ECCO2 vertical discretization; the second has higher vertical resolution particularly at the depth range of ice shelf cavities. The original ECCO2 vertical discretization produces higher than observed melt rates and leads to a misrepresentation of Southern Ocean water mass properties and transports. In general, thicker levels at the base of the ice shelves lead to increased melting because of their larger heat capacity. This strengthens horizontal gradients and circulation within and outside the cavities and, in turn, warm water transports from the shelf break to the ice shelves. The simulation with more vertical levels produces basal melt rates (1735 ± 164 Gt/a) and patterns that are in better agreement with observations. Thinner levels in the sub-ice-shelf cavities improve the representation of a fresh/cold layer at the ice shelf base and of warm/salty water near the bottom, leading to a sharper pycnocline and reduced vertical mixing underneath the ice shelf. Improved water column properties lead to more accurate melt rates and patterns, especially for melt/freeze patterns under large cold-water ice shelves. At the 18 km grid spacing of the ECCO2 model configuration, the smaller, warm-water ice shelves cannot be properly represented, with higher than observed melt rates in both simulations.
Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Yoo, Kwan-Hee; Baasantseren, Ganbat; Park, Jae-Hyeung; Kim, Eun-Soo; Kim, Nam
2014-04-15
We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.
NASA Astrophysics Data System (ADS)
Valencia, A.; Ibañez Tejero, L.; Ladah, L. B.; Sanchez Velasco, L.; Barton, E. D.
2016-02-01
Microzooplankton trophically connects phytoplankton and zooplanktonic adults. Their distribution and abundance can be directly related to the inherent physical processes in the marine environment. In coastal waters, the distribution and transport of zooplankton, including microzooplankton, can be influenced by high frequency effects such as internal tides. To date, most of the work on planktonic organisms and their interaction with the internal tide has been focused on a few species, such as barnacles, bryozoans and crabs. The aim of this study was to determine the effect of internal tide on the vertical distribution and abundance of microzooplankton, with an emphasis on copepod nauplii, during the evolution of the internal tide in a summer period of strong thermal stratification. Samples were obtained by vertical plankton net (150 micron mesh) hauls at three depth strata (surface, mid-water and bottom in 25 m depth), independently, with a sampling frequency of every hour. The internal tide was detected by rapid changes in temperature and currents observed with thermistor chains and a bottom-mounted upward looking ADCP. Preliminary results shows a strong mode-1 baroclinic tidal signal. The highest abundance of copepod nauplii and microzooplankton biomass occurred at depth, associated with a strong tidal current. The abundance of copepod nauplii and the abundance of microzooplankton biomass in the surface and intermediate strata showed strong vertical displacements between both strata. Data suggest the vertical distribution of microzooplankton can be dependent on the internal tide.
Origin and migration of hydrocarbon gases and carbon dioxide, Bekes Basin, southeastern Hungary
Clayton, J.L.; Spencer, C.W.; Koncz, I.; Szalay, A.
1990-01-01
The Bekes Basin is a sub-basin within the Pannonian Basin, containing about 7000 m of post-Cretaceous sedimentary rocks. Natural gases are produced from reservoirs (Precambrian to Tertiary in age) located on structural highs around the margins of the basin. Gas composition and stable carbon isotopic data indicate that most of the flammable gases were derived from humic kerogen contained in source rocks located in the deep basin. The depth of gas generation and vertical migration distances were estimated using quantitative source rock maturity-carbon isotope relationships for methane compared to known Neogene source rock maturity-depth relationships in the basin. These calculations indicate that as much as 3500 m of vertical migration has occured in some cases. Isotopically heavy (> - 7 > 0) CO2 is the predominant species present in some shallow reservoirs located on basin-margin structural highs and has probably been derived via long-distance vertical and lateral migration from thermal decompositon of carbonate minerals in Mesozoic and older rocks in the deepest parts of the basin. A few shallow reservoirs (< 2000m) contain isotopically light (-50 to -60%0) methane with only minor amounts of C2+ homologs (< 3% v/v). This methane is probably mostly microbial in origin. Above-normal pressures, occuring at depths greater than 1800 m, are believed to be the principal driving force for lateral and vertical gas migration. These pressures are caused in part by active hydrocarbon generation, undercompaction, and thermal decomposition of carbonates.
NASA Astrophysics Data System (ADS)
Wong, Pei-Syuan; Lin, Ming-Lang
2016-04-01
According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation (W). Compared to the investigation in field, rupture of the Greendale Fault, produced a 30-km-long, 300-m-wide zone of ground-surface rupture and deformation (W), involving 5.29 m maximum horizontal , 1.45 m maximum vertical (Dv, max) and 2.59 m average net displacement. Meanwhile, en echelon R shears and cracks were recorded in some region. Besides, the 400-m depth of deep sedimentation (Ds) in the Christchurch City area. Greendale Fault showed close ratio Dv/Ds and W/Ds compared to the experimental case (in the same order), which indicated the wide zone of ground-surface rupture and deformation may be normalized with the vertical displacement (Dv). The foundation located above the basement-fault trace had obvious horizontal displacements and counter-clockwise rotation with increasing displacement. Horizontal displacements and rotation decreased with deeper depth of soil. The deeper embedded foundation caused more rotation. Besides, the soil near the foundation is confined and pressed when it rotates. Key words: strike-slip fault, shallow foundation, ground deformation
Fine Scale Baleen Whale Behavior Observed via Tagging Over Daily Time Scales
2012-09-30
right whales and sei whales) and the diel vertical migration behavior of their copepod prey. I hypothesize that (1) right whales track the diel...vertical migration of copepods by feeding near the bottom during the day and at the surface at night, and (2) sei whales are unable to feed on copepods at...depth during the day, and are therefore restricted to feeding on copepods at the surface only. Because copepod diel vertical migration is variable
Fine Scale Baleen Whale Behavior Observed via Tagging Over Daily Time Scales
2013-09-30
sei whales) and the diel vertical migration behavior of their copepod prey. I hypothesize that (1) right whales track the diel vertical migration of... copepods by feeding near the bottom during the day and at the surface at night, and (2) sei whales are unable to feed on copepods at depth during the...day, and are therefore restricted to feeding on copepods at the surface only. Because copepod diel vertical migration is variable over time (days to
McBride, Jeffrey M; Kirby, Tyler J; Haines, Tracie L; Skinner, Jared
2010-12-01
The purpose of the current investigation was to determine the relationship between relative net vertical impulse (net vertical impulse (VI)) and jump height in the jump squat (JS) going to different squat depths and utilizing various loads. Ten males with two years of jumping experience participated in this investigation (Age: 21.8 ± 1.9 y; Height: 176.9 ± 5.2 cm; Body Mass: 79.0 ± 7.1 kg, 1RM: 131.8 ± 29.5 kg, 1RM/BM: 1.66 ± 0.27). Subjects performed a series of static jumps (SJS) and countermovement jumps (CMJJS) with various loads (Body Mass, 20% of 1RM, 40% of 1RM) in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth. During the concentric phase of each JS, peak force (PF), peak power (PP), jump height (JH) and relative VI were recorded and analyzed. Increasing squat depth corresponded to a decrease in PF and an increase in JH, relative VI for both SJS and CMJJS during all loads. Across all squat depths and loading conditions relative VI was statistically significantly correlated to JH in the SJS (r = .8956, P < .0001, power = 1.000) and CMJJS (r = .6007, P < .0001, power = 1.000). Across all squat depths and loading conditions PF was statistically nonsignificantly correlated to JH in the SJS (r = -0.1010, P = .2095, power = 0.2401) and CMJJS (r = -0.0594, P = .4527, power = 0.1131). Across all squat depths and loading conditions peak power (PP) was significantly correlated with JH during both the SJS (r = .6605, P < .0001, power = 1.000) and the CMJJS (r = .6631, P < .0001, power = 1.000). PP was statistically significantly higher at BM in comparison with 20% of 1RM and 40% of 1RM in the SJS and CMJJS across all squat depths. Results indicate that relative VI and PP can be used to predict JS performance, regardless of squat depth and loading condition. However, relative VI may be the best predictor of JS performance with PF being the worst predictor of JS performance.
VERTICAL DIFFUSION IN SMALL STRATIFIED LAKES: DATA AND ERROR ANALYSIS
Water temperature profiles were measured at 2-min intervals in a stratified temperate lake with a surface area of 0.06 km2 and a aximum depth of 10 m from May 7 to August 9, 1989. he data were used to calculate the vertical eddy diffusion coefficient K2 in the hypolimnion. he dep...
2010-02-26
bottom waveguide. The lower contour plot demonstrates that this method, unlike other parabolic equations, can treat seismic sources. 20100308162...solitons. One illustration in Figure 8 shows depth-averaged data at the Naval Research Laboratory vertical line array (VLA) [dashed blue curves...vertical line array about 15 km from the source. The right panel [blue curves] compares corresponding simulations from a three-dimensional adiabatic mode
Broadband seismic noise attenuation versus depth at the Albuquerque Seismological Laboratory
Hutt, Charles R.; Ringler, Adam; Gee, Lind
2017-01-01
Seismic noise induced by atmospheric processes such as wind and pressure changes can be a major contributor to the background noise observed in many seismograph stations, especially those installed at or near the surface. Cultural noise such as vehicle traffic or nearby buildings with air handling equipment also contributes to seismic background noise. Such noise sources fundamentally limit our ability to resolve earthquake‐generated signals. Many previous seismic noise versus depth studies focused separately on either high‐frequency (>1 Hz">>1 Hz) or low‐frequency (<0.05 Hz"><0.05 Hz) bands. In this study, we use modern high‐quality broadband (BB) and very broadband (VBB) seismometers installed at depths ranging from 1.5 to 188 m at the Albuquerque Seismological Laboratory to evaluate noise attenuation as a function of depth over a broad range of frequencies (0.002–50 Hz). Many modern seismometer deployments use BB or VBB seismometers installed at various depths, depending on the application. These depths range from one‐half meter or less in aftershock study deployments, to one or two meters in the Incorporated Research Institutions for Seismology Transportable Array (TA), to a few meters (shallow surface vaults) up to 100 m or more (boreholes) in the permanent observatories of the Global Seismographic Network (GSN). It is important for managers and planners of these and similar arrays and networks of seismograph stations to understand the attenuation of surface‐generated noise versus depth so that they can achieve desired performance goals within their budgets as well as their frequency band of focus. The results of this study will assist in decisions regarding BB and VBB seismometer installation depths. In general, we find that greater installation depths are better and seismometer emplacement in hard rock is better than in soil. Attenuation for any given depth varies with frequency. More specifically, we find that the dependence of depth will be application dependent based on the frequency band and sensitive axes of interest. For quick deployments (like aftershock studies), 1 m may be deep enough to produce good data, especially when the focus is on vertical data where temperature stability fundamentally limits the low‐frequency noise levels and little low‐frequency data will be used. For temporary (medium‐term) deployments (e.g., TA) where low cost can be very important, 2–3 m should be sufficient, but such shallow installations will limit the ability to resolve low‐frequency signals, especially on horizontal components. Of course, one should try for maximum burial depth within the budget when there is interest in using the data for low‐frequency applications. For long‐term deployments like the permanent observatories of the GSN and similar networks, 100–200 m depth in hard rock is desirable to achieve lowest noise, although 30–60 m may be acceptable.
The role of internal waves in larval fish interactions with potential predators and prey
NASA Astrophysics Data System (ADS)
Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.; Tang, Dorothy
2014-09-01
Tidally driven internal wave packets in coastal environments have the potential to influence patchiness of larval fishes, prey, and gelatinous predators. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to synoptically sample larval fishes, copepods, and planktonic predators (ctenophores, hydromedusae, chaetognaths, and polychaetes) across these predictable features in the summer near Stellwagen Bank, Massachusetts, USA. Full water column profiles and fixed depth transects (∼10 m depth) were used to quantify vertical and horizontal components of the fish and invertebrate distributions during stable and vertically mixed conditions associated with tidally generated internal waves. Larval fishes, consisting mostly of Urophycis spp., Merluccius bilinearis, and Labridae, were concentrated near the surface, with larger sizes generally occupying greater depths. During stable water column conditions, copepods formed a near surface thin layer several meters above the chlorophyll-a maximum that was absent when internal waves were propagating. In contrast, ctenophores and other predators were much more abundant at depth, but concentrations near 10 m increased immediately after the internal hydraulic jump mixed the water column. During the propagation of internal waves, the fine-scale abundance of larval fishes was more correlated with the abundance of gelatinous predators and less correlated with copepods compared to the stable conditions. Vertical oscillations caused by the internal hydraulic jump can disperse patches of zooplankton and force surface dwelling larval fishes into deeper water where probability of predator contact is increased, creating conditions potentially less favorable for larval fish growth and survival on short time scales.
Kang, Seongjoo; Yoneda, Minoru; Shimada, Yoko; Satta, Naoya; Fujita, Yasutaka; Shin, In Hwan
2017-08-01
We investigated the deposition and depth distributions of radiocesium in the Takizawa Research Forest, Iwate Prefecture, in order to understand the behavior of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant. The deposition distribution and vertical depth distribution of radiocesium in the soil were compared between topographically distinct parts of the forest where two different tree species grow. The results for all investigated locations show that almost 85% of the radiocesium has accumulated in the region of soil from the topmost organic layer to a soil depth of 0-4 cm. However, no activity was detected at depths greater than 20 cm. Analysis of the radiocesium deposition patterns in forest locations dominated by either coniferous or deciduous tree species suggests that radiocesium was sequestered and retained in higher concentrations in coniferous areas. The deposition data showed large spatial variability, reflecting the differences in tree species and topography. The variations in the measured 137 Cs concentrations reflected the variability in the characteristics of the forest floor environment and the heterogeneity of the initial ground-deposition of the Fukushima fallout. Sequential extraction experiments showed that most of the 137 Cs was present in an un-exchangeable form with weak mobility. Nevertheless, the post-vertical distribution of 137 Cs is expected to be governed by the percentage of exchangeable 137 Cs in the organic layer and the organic-rich upper soil horizons.
Development status of the EarthCARE Mission and its atmospheric Lidar
NASA Astrophysics Data System (ADS)
Hélière, A.; Wallace, K.; Pereira Do Carmo, J.; Lefebvre, A.; Eisinger, M.; Wehr, T.
2016-09-01
The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes with a vertical resolution up to 100 m from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol (Mie) and molecular (Rayleigh) scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are also separated and measured on dedicated channels. This paper gives an overview of the mission science objective, the satellite configuration with its four instruments and details more specifically the implementation and development status of the Atmospheric Lidar. Manufacturing status and first equipment qualification test results, in particular for what concerns the laser transmitter development are presented.
Forecasting the Northern African Dust Outbreak Towards Europe in April 2011: A Model Intercomparison
NASA Technical Reports Server (NTRS)
Huneeus, N.; Basart, S.; Fiedler, S.; Morcrette, J.-J.; Benedetti, A.; Mulcahy, J.; Terradellas, E.; Pérez García-Pando, C.; Pejanovic, G.; Nickovic, S.
2016-01-01
In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 hours using observations of aerosol optical depth (AOD) from the AErosol RObotic NETwork (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distribution was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. Our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.
Bauerle, William L.; Bowden, Joseph D.
2011-01-01
A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions. PMID:21617246
NASA Astrophysics Data System (ADS)
Tomasovych, Adam; Gallmetzer, Ivo; Haselmair, Alexandra; Kaufman, Darrell S.; Zuschin, Martin
2016-04-01
Stratigraphic changes in temporal resolution of fossil assemblages and the degree of their stratigraphic mixing in the Holocene deposits are of high importance in paleoecology, conservation paleobiology and paleoclimatology. However, few studies quantified downcore changes in time averaging and in stratigraphic disorder on the basis of dating of multiple shells occurring in individual stratigraphic layers. Here, we investigate downcore changes in frequency distribution of postmortem ages of the infaunal bivalve Gouldia minima in two, ~150 cm-thick piston cores (separated by more than 1 km) in the northern Adriatic Sea, close to the Slovenian city Piran at a depth of 24 m. We use radiocarbon-calibrated amino acid racemization to obtain postmortem ages of 564 shells, and quantify age-frequency distributions in 4-5 cm-thick stratigraphic intervals (with 20-30 specimens sampled per interval). Inter-quartile range for individual 4-5 cm-thick layers varies between 850 and 1,700 years, and range encompassing 95% of age data varies between 2,000 and 5,000 years in both cores. The uppermost sediments (20 cm) are age-homogenized and show that median age of shells is ~700-800 years. The interval between 20 and 90 cm shows a gradual increase in median age from ~2,000 to ~5,000 years, with maximum age ranging to ~8,000 years. However, the lowermost parts of both cores show a significant disorder, with median age of 3,100-3,300 years. This temporal disorder implies that many shells were displaced vertically by ~1 m. Absolute and proportional abundance of the bivalve Gouldia minima strongly increases towards the top of the both cores. We hypothesize that such increase in abundance, when coupled with depth-declining reworking, can explain stratigraphic disorder because numerically abundant young shells from the top of the core were more likely buried to larger sediment depths than less frequent shells at intermediate sediment depths.
Comment on Rayleigh-Scattering Calculations for the Terrestrial Atmosphere
NASA Astrophysics Data System (ADS)
On, Ois-Marie
1998-01-01
It is shown that, for a given surface pressure, the atmospheric vertical temperature profile has a negligible influence on the Rayleigh optical depth. This contradicts the Bucholtz recommendation for the use of values that vary with air mass type. The influence of atmospheric water vapor amount on the Rayleigh optical depth is also investigated.
76 FR 46705 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
... ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the.... Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be... Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to...
30 CFR 250.428 - What must I do in certain cementing and casing situations?
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (c) Have indication of inadequate cement job (such as, but not limited to, lost returns, cement... situations? 250.428 Section 250.428 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... casing setting depths more than 100 feet true vertical depth (TVD) from the approved APD due to...
30 CFR 250.428 - What must I do in certain cementing and casing situations?
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (c) Have indication of inadequate cement job (such as, but not limited to, lost returns, cement... situations? 250.428 Section 250.428 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... casing setting depths more than 100 feet true vertical depth (TVD) from the approved APD due to...
30 CFR 250.428 - What must I do in certain cementing and casing situations?
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (c) Have indication of inadequate cement job (such as lost returns, cement channeling, or failure of... situations? 250.428 Section 250.428 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... casing setting depths more than 100 feet true vertical depth (TVD) from the approved APD due to...
Grounding the figure: surface attachment influences figure-ground organization.
Vecera, Shaun P; Palmer, Stephen E
2006-08-01
We investigated whether the lower region effect on figure-ground organization (Vecera, Vogel, and Woodman, 2002) would generalize to contextual depth planes in vertical orientations, as is predicted by a theoretical analysis based on the ecological statistics of edges arising from objects that are attached to surfaces of support. Observers viewed left/right ambiguous figure-ground displays that occluded middle sections of four types of contextual inducers: two types of attached, receding, vertical planes (walls) that used linear perspective and/or texture gradients to induce perceived depth and two types of similar trapezoidal control figures that used either uniform color or random texture to reduce or eliminate perceived depth. The results showed a reliable bias toward seeing as "figure" the side of the figure-ground display that was attached to the receding depth plane, but no such bias for the corresponding side in either of the control conditions. The results are interpreted as being consistent with the attachment hypothesis that the lower region cue to figure-ground organization results from ecological biases in edge interpretation that arise when objects are attached to supporting surfaces in the terrestrial gravitational field.
A singularity free approach to post glacial rebound calculations
NASA Technical Reports Server (NTRS)
Fang, Ming; Hager, Bradford H.
1994-01-01
Calculating the post glacial response of a viscoelastic Earth model using the exponential decay normal mode technique leads to intrinsic singularities if viscosity varies continuously as a function of radius. We develop a numerical implementation of the Complex Real Fourier transform (CRFT) method as an accurate and stable procedure to avoid these singularities. Using CRFT, we investigate the response of a set of Maxwell Earth models to surface loading. We find that the effect of expanding a layered viscosity structure into a continuously varying structure is to destroy the modes associated with the boundary between layers. Horizontal motion is more sensitive than vertical motion to the viscosity structure just below the lithosphere. Horizontal motion is less sensitive to the viscosity of the lower mantle than the vertical motion is. When the viscosity increases at 670 km depth by a factor of about 60, the response of the lower mantle is close to its elastic limit. Any further increase of the viscosity contrast at 670 km depth or further increase of viscosity as a continuous function of depth starting from 670 km depth is unlikely to be resolved.
Influence of Vertical Electromagnetic Brake on the Steel/Slag Interface Behavior in a Slab Mold
NASA Astrophysics Data System (ADS)
Li, Zhuang; Wang, Engang; Zhang, Lintao; Xu, Yu; Deng, Anyuan
2017-10-01
The steel/slag interface behavior under a new type of electromagnetic brake (EMBr), vertical electromagnetic brake (V-EMBr), was investigated. The influence of the magnetic induction intensity, the submerged entry nozzle (SEN) immersion depth, and the port angle of the SEN are investigated numerically. The effect of magnetic induction intensity on the meniscus fluctuation of molten alloy is further studied by the experiments. The results show that the meniscus fluctuation is depressed as the magnetic induction intensity is increased, especially for the region in the vicinity of the narrow face of the slab mold. This result is validated by the following experiments. For the influence of the SEN immersion depth and the port angle, the results show that the meniscus fluctuation is suppressed as the values of the immersion depth and the port angle are increased (absolute values for the port angle). However, the influence of the immersion depth and the port angle are not as sensitive as those in the other type of EMBr, e.g., EMBr Ruler. The industrial application of V-EMBr could benefit from this result.
NASA Astrophysics Data System (ADS)
Finocchio, Peter M.
The vertical wind shear measured between 200 and 850 hPa is commonly used to diagnose environmental interactions with a tropical cyclone (TC) and to forecast the storm's intensity and structural evolution. More often than not, stronger vertical shear within this deep layer prohibits the intensification of TCs and leads to predictable asymmetries in precipitation. But such bulk measures of vertical wind shear can occasionally mislead the forecaster. In the first part of this dissertation, we use a series of idealized numerical simulations to examine how a TC responds to changing the structure of unidirectional vertical wind shear while fixing the 200-850-hPa shear magnitude. These simulations demonstrate a significant intensity response, in which shear concentrated in shallow layers of the lower troposphere prevents vortex intensification. We attribute the arrested development of TCs in lower-level shear to the intrusion of mid-level environmental air over the surface vortex early in the simulations. Convection developing on the downshear side of the storm interacts with the intruding air so as to enhance the downward flux of low-entropy air into the boundary layer. We also construct a two-dimensional intensity response surface from a set of simulations that sparsely sample the joint shear height-depth parameter space. This surface reveals regions of the two-parameter space for which TC intensity is particularly sensitive. We interpret these parameter ranges as those which lead to reduced intensity predictability. Despite the robust response to changing the shape of a sheared wind profile in idealized simulations, we do not encounter such sensitivity within a large set of reanalyzed TCs in the Northern Hemisphere. Instead, there is remarkable consistency in the structure of reanalyzed wind profiles around TCs. This is evident in the distributions of two new parameters describing the height and depth of vertical wind shear, which highlight a clear preference for shallow layers of upper-level shear. Many of the wind profiles tested in the idealized simulations have shear height or depth values on the tails of these distributions, suggesting that the environmental wind profiles around real TCs do not exhibit enough structural variability to have the clear statistical relationship to intensity change that we expected. In the final part of this dissertation, we use the reanalyzed TC environments to initialize ensembles of idealized simulations. Using a new modeling technique that allows for time-varying environments, these simulations examine the predictability implications of exposing a TC to different structures and magnitudes of vertical wind shear during its life cycle. We find that TCs in more deeply distributed vertical wind shear environments have a more uncertain intensity evolution than TCs exposed to shallower layers of upper-level shear. This higher uncertainty arises from a more marginal boundary layer environment that the deeply distributed shear establishes, which enhances the TC sensitivity to the magnitude of deep-layer shear. Simulated radar reflectivity also appears to evolve in a more uncertain fashion in environments with deeply distributed vertical shear. However, structural predictability timescales, computed as the time it takes for errors in the amplitude or phase of azimuthal asymmetries of reflectivity to saturate, are similar for wind profiles with shallow upper-level shear and deeply distributed shear. Both ensembles demonstrate predictability timescales of two to three days for the lowest azimuthal wavenumbers of amplitude and phase. As the magnitude of vertical wind shear increases to universally destructive levels, structural and intensity errors begin to decrease. Shallow upper-level shear primes the TC for a more pronounced recovery in the predictability of the wavenumber-one precipitation structure in stronger shear. The recovered low-wavenumber predictability of TC precipitation structure and the collapse in intensity spread in strong shear suggests that vertical wind shear is most effective at reducing TC predictability when its magnitude is near the threshold between favorable and unfavorable values and when it is deeply distributed through the troposphere. By isolating the effect of the environmental flow, the simulations and analyses in this dissertation offer a unique understanding of how vertical wind shear affects TCs. In particular, the results have important implications for designing and implementing future environmental observing strategies that will be critical for improving forecasts of these destructive storms.
Spectral domain optical coherence tomography with extended depth-of-focus by aperture synthesis
NASA Astrophysics Data System (ADS)
Bo, En; Liu, Linbo
2016-10-01
We developed a spectral domain optical coherence tomography (SD-OCT) with an extended depth-of-focus (DOF) by synthetizing aperture. For a designated Gaussian-shape light source, the lateral resolution was determined by the numerical aperture (NA) of the objective lens and can be approximately maintained over the confocal parameter, which was defined as twice the Rayleigh range. However, the DOF was proportional to the square of the lateral resolution. Consequently, a trade-off existed between the DOF and lateral resolution, and researchers had to weigh and judge which was more important for their research reasonably. In this study, three distinct optical apertures were obtained by imbedding a circular phase spacer in the sample arm. Due to the optical path difference between three distinct apertures caused by the phase spacer, three images were aligned with equal spacing along z-axis vertically. By correcting the optical path difference (OPD) and defocus-induced wavefront curvature, three images with distinct depths were coherently summed together. This system digitally refocused the sample tissue and obtained a brand new image with higher lateral resolution over the confocal parameter when imaging the polystyrene calibration beads.
Geological structure analysis in Central Java using travel time tomography technique of S waves
NASA Astrophysics Data System (ADS)
Palupi, I. R.; Raharjo, W.; Nurdian, S. W.; Giamboro, W. S.; Santoso, A.
2016-11-01
Java is one of the islands in Indonesia that is prone to the earthquakes, in south of Java, there is the Australian Plate move to the Java island and press with perpendicular direction. This plate movement formed subduction zone and cause earthquakes. The earthquake is the release of energy due to the sudden movement of the plates. When an earthquake occurs, the energy is released and record by seismometers in the waveform. The first wave recorded is called the P waves (primary) and the next wave is called S waves (secondary). Both of these waves have different characteristics in terms of propagation and direction of movement. S wave is composed of waves of Rayleigh and Love waves, with each direction of movement of the vertical and horizontal, subsurface imaging by using S wave tomography technique can describe the type of the S wave through the medium. The variation of wave velocity under Central Java (esearch area) is ranging from -10% to 10% at the depth of 20, 30 and 40 km, the velocity decrease with the depth increase. Moho discontinuity is lies in the depth of 32 km under the crust, it is indicates there is strong heterogenity in Moho.
NASA Astrophysics Data System (ADS)
Wu, Yerong; de Graaf, Martin; Menenti, Massimo
2017-08-01
Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol vertical distribution. This study investigates the impact of aerosol vertical distribution on the AOD retrieval. We developed a new algorithm by considering dynamic vertical profiles, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol vertical profile extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the profile is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol vertical distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.
Implications of the nonlinear equation of state for upwelling in the ocean interior
NASA Astrophysics Data System (ADS)
McDougall, Trevor J.; You, Yuzhu
1990-08-01
The nonlinear nature of the in situ density of seawater as a function of the potential temperature, pressure and salinity causes two vertical advection processes (thermobaricity and cabbeling) and also complicates the use of microstructure data to deduce upwelling velocities. Cabbeling and thermobaricity are evaluated and mapped on some neutral surfaces in each of the world's oceans by taking the lateral flux of scalars to be parameterized by a lateral diffusivity. In most of the ocean, these two processes are weak, but where there is a significant epineutral gradient of potential temperature, the downwelling due to cabbeling is quite large. In the Southern ocean, where there is a large slope of the neutral surfaces, thermobaricity causes a larger downwelling velocity than cabbeling, and the two processes together cause a dianeutral velocity of about -2×10-7 m s-1. The complementary roles of vertical mixing and vertical advection in achieving water-mass conversion are demonstrated, since maps of the dianeutral motion caused by vertical mixing are quite different to maps of water-mass conversion caused by the same process. This emphasizes the need to include both vertical advection and vertical mixing in ocean models. The method that is used to infer the upwelling velocity from microstructure dissipation measurements is also significantly affected by the nonlinear nature of the equation of state. The extra term that needs to be included in this method is a strong function of depth, changing sign at a depth of about 1500m.
Circulation in the eastern North Pacific: results from a current meter array along 152°W
NASA Astrophysics Data System (ADS)
Hall, Melinda M.; Niiler, Pearn P.; Schmitz, William J.
1997-07-01
Data from four, 2-3 year long current meter records, at 28°N, 35°N, 39°N and 42°N, along 152°W in the eastern North Pacific, are used to describe the variability found in mesoscale period (< 200 days) and long period ( > 200 days) motions. Energy in the mesoscale energy band of 40-200 day periodicity is found in the upper ocean at each location, generally decreasing to the north and with depth. The long period flow is not coherent among these locations. Record length mean velocities at 3-4 separate depths were used to provide estimates of reference level velocities for vertical profiles of geostrophic currents derived from historical hydrographic data. The vertical profile of measured east-west vertical shear agrees well with the geostrophically computed value; the north-south measured vertical shear is not in as good agreement. Assuming a vorticity balance of fwz= βv, and with w( z=0) as the Ekman pumping, the vertical velocity profiles were also calculated at 28°N and 42dgN. Using these three-dimensional referenced vertical profiles of mean currents, an examination of the mean advection of density in the thermocline revealed significant residuals in the net three-dimensional advection of density (or heat and salt) above 850 m at 28°N and above 240 m at 42°N. These results are relatively independent of the reference level velocities.
Büchner, Vera Antonia; Hinz, Vera; Schreyögg, Jonas
2015-01-01
Several public policy initiatives, particularly those involving managed care, aim to enhance cooperation between partners in the health care sector because it is expected that such cooperation will reduce costs and generate additional revenue. However, empirical evidence regarding the effects of cooperation on hospital performance is scarce, particularly with respect to creating a comprehensive measure of cooperation behavior. The aim of this study is to investigate the impact of hospital cooperation behavior on organizational performance. We differentiate between horizontal and vertical cooperation using two alternative measures-cooperation depth and cooperation breadth-and include the interaction effects between both cooperation directions. Data are derived from a survey of German hospitals and combined with objective performance information from annual financial statements. Generalized linear regression models are used. The study findings provide insight into the nature of hospitals' cooperation behavior. In particular, we show that there are negative synergies between horizontal administrative cooperation behavior and vertical cooperation behavior. Whereas the depth and breadth of horizontal administrative cooperation positively affect financial performance (when there is no vertical cooperation), vertical cooperation positively affects financial performance (when there is no horizontal administrative cooperation) only when cooperation is broad (rather than deep). Horizontal cooperation is generally more effective than vertical cooperation at improving financial performance. Hospital managers should consider the negative interaction effect when making decisions about whether to recommend a cooperative relationship in a horizontal or vertical direction. In addition, managers should be aware of the limited financial benefit of cooperation behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dong; Pan, Jie; Zhu, Xiaojing
2011-02-15
Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure dropmore » in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)« less
Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning
Walsby, Anthony E; Holland, Daryl P
2005-01-01
Two particular difficulties in measuring the sinking velocities of phytoplankton cells are preventing convection within the sedimenting medium and determining the changing depth of the cells. These problems are overcome by using a density-stabilized sedimentation column scanned by a laser. For freshwater species, a suspension of phytoplankton is layered over a vertical density gradient of Percoll solution; as the cells sink down the column their relative concentration is measured by the forward scattering of light from a laser beam that repeatedly scans up and down the column. The Percoll gradient stabilizes the column, preventing vertical mixing by convection, radiation or perturbation of density by the descending cells. Measurements were made on suspensions of 15 μm polystyrene microspheres with a density of 1050 kg m−3; the mean velocity was 6.28 μm s−1, within 1.5% of that calculated by the Stokes equation, 6.36 μm s−1. Measurements made on the filamentous cyanobacterium Planktothrix rubescens gave mean velocities within the theoretical range of values based on the range of size, shape, orientation and density of the particles in a modified Stokes equation. Measurements on marine phytoplankton may require density gradients prepared with other substances. PMID:16849271
Analytical Model of Steam Chamber Evolution from Vertical Well
NASA Astrophysics Data System (ADS)
Shevchenko, D. V.; Usmanov, S. A.; Shangaraeva, A. I.; Murtaizin, T. A.
2018-05-01
This paper is aimed to check the possibility of applying the Steam Assisted Gravity Drainage in vertical wells. This challenge seems to be vital because most of the natural bitumen reservoirs are found to occur above the oil fields being developed so that a well system is already available at the stage of field management. The existing vertical wells are hard to be used for horizontal sidetracking in most of cases as the bitumen reservoir occurs at a shallow depth. The matter is to use the existing wells as vertical ones. At the same time, it is possible to drill an additional sidetrack as a producer or an injector.
Impact of Planetary Boundary Layer Depth on Climatological Tracer Transport in the GEOS-5 AGCM
NASA Astrophysics Data System (ADS)
McGrath-Spangler, E. L.; Molod, A.
2013-12-01
Planetary boundary layer (PBL) processes have large implications for tropospheric tracer transport since surface fluxes are diluted by the depth of the PBL through vertical mixing. However, no consensus on PBL depth definition currently exists and various methods for estimating this parameter can give results that differ by hundreds of meters or more. In order to facilitate comparisons between the Goddard Earth Observation System (GEOS-5) and other modeling and observational systems, seven PBL depth estimation methods are used to diagnose PBL depth and produce climatologies that are evaluated here. All seven methods evaluate a single atmosphere so differences are related solely to the definition chosen. PBL depths that are estimated using a Richardson number are shallower than those given by methods based on the scalar diffusivity during warm, moist conditions at midday and collapse to lower values at night. In GEOS-5, the PBL depth is used in the estimation of the turbulent length scale and so impacts vertical mixing. Changing the method used to determine the PBL depth for this length scale thus changes the tracer transport. Using a bulk Richardson number method instead of a scalar diffusivity method produces changes in the quantity of Saharan dust lofted into the free troposphere and advected to North America, with more surface dust in North America during boreal summer and less in boreal winter. Additionally, greenhouse gases are considerably impacted. During boreal winter, changing the PBL depth definition produces carbon dioxide differences of nearly 5 ppm over Siberia and gradients of about 5 ppm over 1000 km in Europe. PBL depth changes are responsible for surface carbon monoxide changes of 20 ppb or more over the biomass burning regions of Africa.
Gravity and the mechanics of dike intrusion
NASA Astrophysics Data System (ADS)
Townsend, M.
2017-12-01
Dikes are a diverse yet ubiquitous feature of terrestrial volcanic and magmatic settings, ranging in size from decimeter-thick aplite dikes in silicic plutons, to meters-thick dikes at basaltic shield volcanoes and rift zones, to 100-meter-thick "giant" dikes in swarms that can exceed over 2000 km in length. Dike profiles may be planar or curved, elliptical or teardrop-shaped, and blunt or tapered at the tips. The variety of size, shape, composition, and intrusion environment is in contrast with the ubiquitous observation that dikes tend to be vertically inclined, emanate from central reservoirs, and propagate laterally for distances that are 10 to over 100 times their height. In this talk, I will briefly review the geological and geophysical observations of dike geometry and propagation directions. These data motivate a 2D mechanical model for vertical dikes in which the primary loading is due to gravity. Using this model, I will explore fundamental relationships between density structure within the magma and surrounding crust, driving pressure, topographic and tectonic loading, and the size, shape, and depth at which dikes become vertically stable such that subsequent propagation is lateral. Modeling results highlight a dual effect of gravity, as both a source of diversity in stable dike geometries and as a robust mechanism for trapping dikes in the subsurface.
Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise
Ridge, Justin T.; Rodriguez, Antonio B.; Joel Fodrie, F.; Lindquist, Niels L.; Brodeur, Michelle C.; Coleman, Sara E.; Grabowski, Jonathan H.; Theuerkauf, Ethan J.
2015-01-01
Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species’ ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20–40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR. PMID:26442712
NASA Astrophysics Data System (ADS)
Jacox, M.; Edwards, C. A.; Kahru, M.; Rudnick, D. L.; Kudela, R. M.
2012-12-01
A 26-year record of depth integrated primary productivity (PP) in the Southern California Current System (SCCS) is analyzed with the goal of improving satellite net primary productivity (PP) estimates. The ratio of integrated primary productivity to surface chlorophyll correlates strongly to surface chlorophyll concentration (chl0). However, chl0 does not correlate to chlorophyll-specific productivity, and appears to be a proxy for vertical phytoplankton distribution rather than phytoplankton physiology. Modest improvements in PP model performance are achieved by tuning existing algorithms for the SCCS, particularly by empirical parameterization of photosynthetic efficiency in the Vertically Generalized Production Model. Much larger improvements are enabled by improving accuracy of subsurface chlorophyll and light profiles. In a simple vertically resolved production model, substitution of in situ surface data for remote sensing estimates offers only marginal improvements in model r2 and total log10 root mean squared difference, while inclusion of in situ chlorophyll and light profiles improves these metrics significantly. Autonomous underwater gliders, capable of measuring subsurface fluorescence on long-term, long-range deployments, significantly improve PP model fidelity in the SCCS. We suggest their use (and that of other autonomous profilers such as Argo floats) in conjunction with satellites as a way forward for improved PP estimation in coastal upwelling systems.
Urban, Istvan A; Monje, Alberto; Wang, Hom-Lay
2015-01-01
Severe vertical ridge deficiency in the anterior maxilla represents one of the most challenging clinical scenarios in the bone regeneration arena. As such, a combination of vertical bone augmentation using various biomaterials and soft tissue manipulation is needed to obtain successful outcomes. The present case series describes a novel approach to overcome vertical deficiencies in the anterior atrophied maxillae by using a mixture of autologous and anorganic bovine bone. Soft tissue manipulation including, but not limited to, free soft tissue graft was used to overcome the drawbacks of vertical bone augmentation (eg, loss of vestibular depth and keratinized mucosa). By combining soft and hard tissue grafts, optimum esthetic and long-term implant prosthesis stability can be achieved and sustained.
Evaluation of the depth-integration method of measuring water discharge in large rivers
Moody, J.A.; Troutman, B.M.
1992-01-01
The depth-integration method oor measuring water discharge makes a continuos measurement of the water velocity from the water surface to the bottom at 20 to 40 locations or verticals across a river. It is especially practical for large rivers where river traffic makes it impractical to use boats attached to taglines strung across the river or to use current meters suspended from bridges. This method has the additional advantage over the standard two- and eight-tenths method in that a discharge-weighted suspended-sediment sample can be collected at the same time. When this method is used in large rivers such as the Missouri, Mississippi and Ohio, a microwave navigation system is used to determine the ship's position at each vertical sampling location across the river, and to make accurate velocity corrections to compensate for shift drift. An essential feature is a hydraulic winch that can lower and raise the current meter at a constant transit velocity so that the velocities at all depths are measured for equal lengths of time. Field calibration measurements show that: (1) the mean velocity measured on the upcast (bottom to surface) is within 1% of the standard mean velocity determined by 9-11 point measurements; (2) if the transit velocity is less than 25% of the mean velocity, then average error in the mean velocity is 4% or less. The major source of bias error is a result of mounting the current meter above a sounding weight and sometimes above a suspended-sediment sampling bottle, which prevents measurement of the velocity all the way to the bottom. The measured mean velocity is slightly larger than the true mean velocity. This bias error in the discharge is largest in shallow water (approximately 8% for the Missouri River at Hermann, MO, where the mean depth was 4.3 m) and smallest in deeper water (approximately 3% for the Mississippi River at Vickbsurg, MS, where the mean depth was 14.5 m). The major source of random error in the discharge is the natural variability of river velocities, which we assumed to be independent and random at each vertical. The standard error of the estimated mean velocity, at an individual vertical sampling location, may be as large as 9%, for large sand-bed alluvial rivers. The computed discharge, however, is a weighted mean of these random velocities. Consequently the standard error of computed discharge is divided by the square root of the number of verticals, producing typical values between 1 and 2%. The discharges measured by the depth-integrated method agreed within ??5% of those measured simultaneously by the standard two- and eight-tenths, six-tenth and moving boat methods. ?? 1992.
Numerical analysis of seawater circulation in carbonate platforms: I. Geothermal convection
Sanford, W.E.; Whitaker, F.F.; Smart, P.L.; Jones, G.
1998-01-01
Differences in fluid density between cold ocean water and warm ground water can drive the circulation of seawater through carbonate platforms. The circulating water can be the major source of dissolved constituents for diagenetic reactions such as dolomitization. This study was undertaken to investigate the conditions under which such circulation can occur and to determine which factors control both the flux and the patterns of fluid circulation and temperature distribution, given the expected ranges of those factors in nature. Results indicate that the magnitude and distribution of permeability within a carbonate platform are the most important parameters. Depending on the values of horizontal and vertical permeability, heat transport within a platform can occur by one of three mechanisms: conduction, forced convection, or free convection. Depth-dependent relations for porosity and permeability in carbonate platforms suggest circulation may decrease rapidly with depth. The fluid properties of density and viscosity are controlled primarily by their dependency on temperature. The bulk thermal conductivity of the rocks within the platform affects the conductive regime to some extent, especially if evaporite minerals are present within the section. Platform geometry has only a second-order effect on circulation. The relative position of sealevel can create surface conditions that range from exposed (with a fresh-water lens present) to shallow water (with hypersaline conditions created by evaporation in constricted flow conditions) to submerged or drowned (with free surface water circulation), but these boundary conditions and associated ocean temperature profiles have only a second-order effect on fluid circulation. Deep, convective circulation can be caused by horizon tal temperature gradients and can occur even at depths below the ocean bottom. Temperature data from deep holes in the Florida and Bahama platforms suggest that geothermal circulation is actively occurring today to depths as great as several kilometers.
Ocean mixing in deep-sea trenches: New insights from the Challenger Deep, Mariana Trench
NASA Astrophysics Data System (ADS)
van Haren, Hans; Berndt, Christian; Klaucke, Ingo
2017-11-01
Reliable very deep shipborne SBE 911plus Conductivity Temperature Depth (CTD) data to within 60 m from the bottom and Kongsberg EM122 0.5° × 1° multibeam echosounder data are collected in the Challenger Deep, Mariana Trench. A new position and depth are given for the deepest point in the world's ocean. The data provide insight into the interplay between topography and internal waves in the ocean that lead to mixing of the lowermost water masses on Earth. Below 5000 m, the vertical density stratification is weak, with a minimum buoyancy frequency N = 1.0 ± 0.6 cpd, cycles per day, between 6500 and 8500 m. In that depth range, the average turbulence is coarsely estimated from Thorpe-overturning scales, with limited statistics to be ten times higher than the mean values of dissipation rate εT = 3 ± 2 × 10-11 m2 s-3 and eddy diffusivity KzT = 2 ± 1.5 × 10-4 m2 s-1 estimated for the depth range between 10,300 and 10,850 m, where N = 2.5 ± 0.6 cpd. Inertial and meridionally directed tidal inertio-gravity waves can propagate between the differently stratified layers. These waves are suggested to be responsible for the observed turbulence. The turbulence values are similar to those recently estimated from CTD and moored observations in the Puerto Rico Trench. Yet, in contrast to the Puerto Rico Trench, seafloor morphology in the Mariana Trench shows up to 500 m-high fault scarps on the incoming tectonic plate and a very narrow trench, suggesting that seafloor topography does not play a crucial role for mixing.
NASA Astrophysics Data System (ADS)
Ofomola, M. O.; Iserhien-Emekeme, R. E.; Okocha, F. O.; Adeoye, T. O.
2018-06-01
An integrated geophysical and geotechnical investigation has been carried out at site III of the Delta State University, Abraka, Nigeria. This took place in a bid to generate information on the competence of the soil in withstanding stress and strain emanating from overburden or pore pressure, swelling, cracking and other anthropogenic activity in relation to civil engineering and building structures. An electromagnetic method employing the very low frequency (VLF) technique, and electrical resistivity employing the Wenner and the vertical electrical sounding techniques were used for this study. Soil samples were also collected at depth for geotechnical analysis. Isoresistivity slices generated from the data of 33 VES stations at 1 m showed generally low resistivity values of subsurface earth materials, classified as clayey sand, sandy clay or clay, and ranging from 60-300 Ωm. However, at depths of 3 and 5 m, the result showed a generally high resistivity distribution with values ranging from 500-6000 Ωm, which is an indication of competent Earth materials of fine to coarse grain sand. The results of the liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction and clay content of the soil samples vary from 10%-17%, 18%-29%, 3%-15%, 45-95 KN m-2, 31°-35° and 14%-22% respectively. The low cohesion, low clay content and high angle of internal friction of the soil at the encountered depth makes it competent for engineering foundation. It is concluded that the subsoil in the area, starting at a depth of 3 m, is a competent material for hosting engineering structures.
NASA Astrophysics Data System (ADS)
Gülşen, Esra; Kurtulus, Bedri; Necati Yaylim, Tolga; Avsar, Ozgur
2017-04-01
In groundwater studies, quantification and detection of fluid flows in borehole is an important part of assessment aquifer characteristic at different depths. Monitoring wells disturbs the natural flow field and this disturbance creates different flow paths to an aquifer. Vertical flow fluid analyses are one of the important techniques to deal with the detection and quantification of these vertical flows in borehole/monitoring wells. Liwa region is located about 146 km to the south west of Abu Dhabi city and about 36 km southwest of Madinat Zayed. SWSR (Strategic Water Storage & Recovery Project) comprises three Schemes (A, B and C) and each scheme contains an infiltration basin in the center, 105 recovery wells, 10 clusters and each cluster comprises 3 monitoring wells with different depths; shallow ( 50 m), intermediate ( 75 m) and deep ( 100 m). The scope of this study is to calculate the transmissivity values at different depth and evaluate the Fluid Flow Log (FFL) data for Scheme A (105 recovery wells) in order to understand the aquifer characteristic at different depths. The transmissivity values at different depth levels are calculated using Razack and Huntley (1991) equation for vertical flow rates of 30 m3 /h, 60 m3 /h, 90 m3 /h, 120 m3 /h and then Empirical Bayesian Kriging is used for interpolation in Scheme A using ArcGIS 10.2 software. FFL are drawn by GeODin software. Derivative analysis of fluid flow data are done by Microsoft Office: Excel software. All statistical analyses are calculated by IBMSPSS software. The interpolation results show that the transmissivity values are higher at the top of the aquifer. In other word, the aquifer is found more productive at the upper part of the Liwa aquifer. We are very grateful for financial support and providing us the data to ZETAS Dubai Inc.
Behrendt, John Charles; Tibbetts, Benton L.; Bonini, William E.; Lavin, Peter M.; Love, J.D.; Reed, John C.
1968-01-01
An integrated geophysical study - comprising gravity, seismic refraction, and aeromagnetic surveys - was made of a 4,600-km2 area in Grand Teton National Park and vicinity, Wyoming, for the purpose of obtaining a better understanding of the structural relationships in the region. The Teton range is largely comprised of Precambrian crystalline rocks and layered metasedimentary gneiss, but it also includes granitic gneiss, hornblende-plagioclase gneiss, granodiorite, and pegmatite and diabase dikes. Elsewhere, the sedimentary section is thick. The presence of each system except Silurian provides a chronological history of most structures. Uplift of the Teton-Gros Ventre area began in the Late Cretaceous; most of the uplift occurred after middle Eocene time. Additional uplift of the Teton Range and downfaulting of Jackson Hole began in the late Pliocene and continues to the present. Bouguer anomalies range from -185 mgal over Precambrian rocks of the Teton Range to -240 mgal over low-density Tertiary and Cretaceous sedimentary rocks of Jackson Hole. The Teton fault (at the west edge of Jackson Hole), as shown by steep gravity gradients and seismic-refraction data, trends north-northeast away from the front of the Teton Range in the area of Jackson Lake. The Teton fault either is shallowly inclined in the Jenny Lake area, or it consists of a series of fault steps in the fault zone; it is approximately vertical in the Arizona Creek area. Seismic-refraction data can be fitted well by a three-layer gravity model with velocities of 2.45 km per sec for the Tertiary and Cretaceous rocks above the Cloverly Formation, 3.9 km per sec for the lower Mesozoic rocks, and 6.1 km per sec for the Paleozoic (limestone and dolomite) and Precambrian rocks. Gravity models computed along two seismic profiles are in good agreement (sigma=+- 2 mgal) if density contrasts with the assumed 2.67 g per cm2 Paleozoic and Precambrian rocks are assumed to be -0.35 and -0.10 g per cm2 for the 2.45 and 3.9 km per sec velocity layers, respectively. The Teton Range has a maximum vertical uplift of about 7 km, as inferred from the maximum depth to basement of about 5 km. Aeromagnetic data show a 400gamma positive anomaly in the Gros Ventre Range, which trends out of the surveyed area at the east edge. Exposed Precambrian rocks contain concentrations of magnetite and hematite. A prominent anomaly of about 100gamma is associated with the Gros Ventre Range, and 100gamma anomalies are associated with the layered gneiss of the Teton Range. On this basis the unmapped Precambrian rocks of the Gross Ventre Range are interpreted as layered gneiss. The sources of the magnetic anomalies, as indicated by depth determination, are at the surface of the Precambrian rocks. A model fitted to a profile across the Gros Ventre Range gives a depth to the Precambrian surface and a susceptibility of 0.0004 emu (electromagnetic units) for the source, which is consistent with modal analyses of the layered gneisses. A residual magnetic map shows that the granitic rocks and layered gneiss probably continue beneath the floor of Jackson Hole east of the Teton fault. The location of aeromagnetic anomalies is consistent with the interpretation that the Teton fault diverges from the front of the Teton Range.
Investigation of radar backscattering from second-year sea ice
NASA Technical Reports Server (NTRS)
Lei, Guang-Tsai; Moore, Richard K.; Gogineni, S. P.
1988-01-01
The scattering properties of second-year ice were studied in an experiment at Mould Bay in April 1983. Radar backscattering measurements were made at frequencies of 5.2, 9.6, 13.6, and 16.6 GHz for vertical polarization, horizontal polarization and cross polarizations, with incidence angles ranging from 15 to 70 deg. The results indicate that the second-year ice scattering characteristics were different from first-year ice and also different from multiyear ice. The fading properties of radar signals were studied and compared with experimental data. The influence of snow cover on sea ice can be evaluated by accounting for the increase in the number of independent samples from snow volume with respect to that for bare ice surface. A technique for calculating the snow depth was established by this principle and a reasonable agreement has been observed. It appears that this is a usable way to measure depth in snow or other snow-like media using radar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.
A regional hydrogeologic model is used to investigate the potential for water recharging in the Tushar Mountains to move at depth beneath the Mineral Mountains to discharge in Milford Valley. Simulations carried out over a range of water table positions and assumed depths to a lower impermeable boundary suggest it is unlikely that the topographic configuration alone could drive such a flow system. Specific geologic conditions are necessary if interbasin flow is to occur. However, simulations based on a simplified hydrologic model of the regional geology suggest this is not the case. A regional hydraulic anisotropy greater than 10:1 (Kx/Kz)more » leads to interflow if the granitic Mineral Mountain pluton and the volcanics in the Tushar Mountains have similar hydraulic conductivities. If either of these units is more nearly isotropic or if the granitic rocks have a greater vertical than horizontal hydraulic conductivity, no interbasin flow is observed. On the basis of available geologic evidence, this latter case seems to be the most likely.« less
A Tracer Test at the Los Alamos Canyon Weir
NASA Astrophysics Data System (ADS)
Levitt, D. G.; Stone, W. J.; Newell, D. L.; Wykoff, D. S.
2002-12-01
A low-head weir was constructed in the Los Alamos Canyon to reduce the transport of contaminant-bearing sediment caused by fire-enhanced runoff off Los Alamos National Laboratory (LANL) property towards the Rio Grande following the May 2000 Cerro Grande fire at Los Alamos, New Mexico. Fractured basalt was exposed in the channel by grading during construction of the weir, and water temporarily ponds behind the weir following periods of runoff. In order to monitor any downward transport of contaminants into fractured basalt, and potentially downward to the regional ground water, three boreholes (one vertical, one at 43 degrees, and one at 34 degrees from horizontal) were installed for environmental monitoring. The boreholes penetrate to depths ranging from approximately 9 to 82 m below the weir floor. The two angled boreholes are fitted with flexible FLUTe liners with resistance sensors to measure relative moisture content and absorbent sampling pads for contaminant and environmental tracer sampling within the vadose zone. The two angled boreholes are also monitored for relative changes in moisture content by neutron logging. The vertical borehole penetrates three perched water zones and is equipped with four screens and sampling ports. In April 2002, a tracer test was initiated with the application of a 0.2 M (16,000 ppm) solution of potassium bromide (KBr) onto the weir floor. The tracer experiment was intended to provide data on travel times through the complex hydrogeologic media of fractured basalt. A precipitation and runoff event in June 2002 resulted in approximately 0.61 m of standing water behind the weir. If the KBr and flood waters were well mixed, the concentration of KBr in the flood waters was approximately 24 ppm. Bromide was detected in the absorbent membrane in the 43 degree hole at concentrations up to 2 ppm. Resistance sensors in the 43 degree borehole detected moisture increases within 3 days at a depth of 27 m, indicating an average wetting front velocity of 8.9 m per day in the vadose zone. Increases in bromide concentrations were detected in water samples from two of the four sampling ports in the vertical well within 10 days of the precipitation event, indicating an average wetting front velocity of 5.5 m per day to the sample port at a depth of 55 m below the weir floor. Increases in bromide concentrations were detected at the bottom port of the vertical well at a depth of 78 m below the weir floor within 21 days, indicating an average wetting front velocity of 3.7 m per day. Modeling of this tracer test data will improve our understanding of: the impact of the fire on ground-water quality; the impact of the weir on ground-water quality; surface water/ground water interactions; and the hydraulic properties of the Cerros del Rio basalts underlying the eastern Pajarito Plateau.
Wang, Ming Feng; Otsuka, Takero; Akimoto, Susumu; Sato, Sadao
2013-01-01
The aim of the present study was to evaluate how vertical facial height correlates with mandibular plane angle, facial width and depth from a three dimensional (3D) viewing angle. In this study 3D cephalometric landmarks were identified and measurements from 43 randomly selected cone beam computed tomography (CBCT) images of dry skulls from the Weisbach collection of Vienna Natural History Museum were analyzed. Pearson correlation coefficients of facial height measurements and mandibular plane angle and the correlation coefficients of height-width and height-depth were calculated, respectively. The mandibular plane angle (MP-SN) significantly correlated with ramus height (Co-Go) and posterior facial height (PFH) but not with anterior lower face height (ALFH) or anterior total face height (ATFH). The ALFH and ATFH showed significant correlation with anterior cranial base length (S-N), whereas PFH showed significant correlation with the mandible (S-B) and maxilla (S-A) anteroposterior position. High or low mandibular plane angle might not necessarily be accompanied by long or short anterior face height, respectively. The PFH rather than AFH is assumed to play a key role in the vertical facial type whereas AFH seems to undergo relatively intrinsic growth.
NASA Astrophysics Data System (ADS)
Roth, M.; MacMahan, J.; Reniers, A.; Ozgokmen, T. M.
2016-02-01
Recent work has demonstrated that wind and waves are important forcing mechanisms for the inner shelf vertical current structure. Here, the inner shelf flows are evaluated away from an adjacent inlet where a small-scale buoyant plume emerges. The plume's nearshore extent, speed, vertical thickness, and density are controlled by the passage of low-pressure extratropical cyclones that are common in the northern Gulf of Mexico. The colder, brackish plume water provides vertical stratification and a cross-shore density gradient with the warmer, saline oceanic water. An Acoustic Doppler Current Profiler (ADCP) was deployed in 10m water depth as part of an intensive 2-week experiment (SCOPE), which also obtained wind and cross-shelf temperature, salinity, and velocity. The 10m ADCP remained collecting an additional year of velocity observations. The plume was not always present, but episodically influenced the experiment site. When the plume reached the site, the alongshore surface and subsurface typically flowed in opposite directions, likely caused by plume-induced pressure gradients. Plumes that extended into the subsurface appear to have caused depth-averaged onshore flow above that expected from wind and wave-driven forcing. Observations from SCOPE and the 1-year ADCP are used to describe seasonal full-depth flow patterns influenced by wind, waves, and plume presence.
Jäger, Christoph G; Diehl, Sebastian; Emans, Maximilian
2010-04-01
Most phytoplankters face opposing vertical gradients in light versus nutrient supplies but have limited capacities for vertical habitat choice. We therefore explored a dynamical model of negatively buoyant algae inhabiting a one-dimensional water column to ask how water column depth and turbulence constrain total (areal) phytoplankton biomass. We show that the population persistence boundaries in water column depth-turbulence space are set by sinking losses and light limitation but that nutrients are most limiting to total biomass in water columns that are neither too shallow or too weakly mixed (where sinking losses prevail) nor too deep and turbulent (where light limitation prevails). In shallow waters, the most strongly limiting process is nutrient influx to the bottom of the water column (e.g., from sediments). In deep waters, the most strongly limiting process is turbulent upward transport of nutrients to the photic zone. Consequently, the highest total biomasses are attained in turbulent waters at intermediate water column depths and in deep waters at intermediate turbulences. These patterns are insensitive to the assumption of fixed versus flexible algal carbon-to-nutrient stoichiometry, and they arise irrespective of whether the water column is a surface layer above a deep water compartment or has direct contact with sediments.
The depth-dependence of rain noise in the Philippine Sea.
Barclay, David R; Buckingham, Michael J
2013-05-01
During the Philippine Sea experiment in May 2009, Deep Sound, a free-falling instrument platform, descended to a depth of 5.1 km and then returned to the surface. Two vertically aligned hydrophones monitored the ambient noise continuously throughout the descent and ascent. A heavy rainstorm passed over the area during the deployment, the noise from which was recorded over a frequency band from 5 Hz to 40 kHz. Eight kilometers from the deployment site, a rain gauge on board the R/V Kilo Moana provided estimates of the rainfall rate. The power spectral density of the rain noise shows two peaks around 5 and 30 kHz, elevated by as much as 20 dB above the background level, even at depths as great as 5 km. Periods of high noise intensity in the acoustic data correlate well with the rainfall rates recovered from the rain gauge. The vertical coherence function of the rain noise has well-defined zeros between 1 and 20 kHz, which are characteristic of a localized source on the sea surface. A curve-fitting procedure yields the vertical directional density function of the noise, which is sharply peaked, accurately tracking the storm as it passed over the sensor station.
The ZH ratio Analysis of Global Seismic Data
NASA Astrophysics Data System (ADS)
Yano, T.; Shikato, S.; Rivera, L.; Tanimoto, T.
2007-12-01
The ZH ratio, the ratio of vertical to horizontal component of the fundamental Rayleigh wave as a function of frequency, is an alternative approach to phase/group velocity analysis for constructing the S-wave velocity structure. In this study, teleseismic Rayleigh wave data for the frequency range between 0.004Hz to 0.04Hz is used to investigate the interior structure. We have analyzed most of the GEOSCOPE network data and some IRIS GSN stations using a technique developed by Tanimoto and Rivera (2007). Stable estimates of the ZH ratios were obtained for the frequency range for most stations. We have performed the inversion of the measured ZH ratios for the structure in the crust and mantle by using nonlinear iterative scheme. The depth sensitivity kernels for inversion are numerically calculated. Depth sensitivity of the lowest frequency extends to depths beyond 500 km but the sensitivity of the overall data for the frequency band extends down to about 300km. We found that an appropriate selection of an initial model, particularly the depth of Mohorovicic discontinuity, is important for this inversion. The inversion result depends on the initial model and turned out to be non-unique. We have constructed the initial model from the CRUST 2.0. Inversion with equal weighting to each data point tends to reduce variance of certain frequency range only. Therefore, we have developed a scheme to increase weighting to data points that do not fit well after the fifth iteration. This occurs more often for low frequency range, 0.004-0.007Hz. After fitting the lower frequency region, the low velocity zone around a depth of 100km is observed under some stations such as KIP (Kipapa, Hawaii) and ATD (Arta Cave, Djibouti). We have also carried out an analysis on the resolving power of data by examining the eigenvalues-eigenvectors of the least-squares problem. Unfortunately, the normal matrix usually has 1-2 very large eigenvalues, followed by much smaller eigenvalues. The third one is often an order of magnitude smaller. The largest eigenvalue is always dominated by an eigenfunction that has the peak at the surface. It indicates that the ZH ratio is sensitive to shallow structure but it has limited form in resolving power for underlying structure. We will report on the details on the resolving capabilities of the ZH ratios.
Shifts of radiocesium vertical profiles in sediments and their modelling in Japanese lakes.
Fukushima, Takehiko; Komatsu, Eiji; Arai, Hiroyuki; Kamiya, Koichi; Onda, Yuichi
2018-02-15
Vertical profiles of radiocesium concentrations were measured in sediment cores collected at various times after the 2011 Fukushima nuclear accident in five Japanese lakes (Hinuma, Kasumigaura, Kitaura, Onogawa and Sohara) with different morphological and trophic characteristics in order to investigate the sedimentation-diffusion processes. In lakes where sediments had high porosities and experienced considerable wave action due to shallowness, we observed rapid penetration of radiocesium to a certain depth just after the accident, followed by downward movement of the peak depths. In contrast, gradual downward transfers of distinct peaks were found in other types of lakes. A one-dimensional differential sediment model with water-sediments interaction processes was constructed to describe the vertical shift of radiocesium profiles. Our proposed submodels relating to the length scales of the mixing using wind-induced stress and porosity of sediments were constructed based on one measurement of the vertical distribution of radiocesium in three lakes (Hinuma, Kasumigaura and Sohara). This model was then validated using samples from those lakes in different years, as well as from two other lakes. Good agreement was obtained. We discuss our findings, the limits of model application, and future research targets. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wang, Pi-Huan; Minnis, Patrick; McCormick, M. Patrick; Kent, Geoffrey S.; Yue, Glenn K.; Young, David F.; Skeens, Kristi M.
1998-01-01
The tropical cloud data obtained by the satellite instrument of the Stratospheric Aerosol and Gas Experiment (SAGE) II from October 1984 to May 1991 have been used to study cloud vertical distribution, including thickness and multilayer structure, and to estimate cloud optical depth. The results indicate that the SAGE-II-observed clouds are generally optically thin clouds, corresponding to a range of optical depth between approximately 8 x 10(exp -4) and 3 x 10(exp -1) with a mean of about 0.035. Two-thirds are classified as subvisual cirrus and one-third thin cirrus. Clouds between 2- to 3-km thick occur most frequently. Approximately 30% of the SAGE II cloud measurements are isolated single-layer clouds, while 65% are high clouds contiguous with an underlying opaque cloud that terminates the SAGE II profile. Thin clouds above detached opaque clouds at altitudes greater than 6.5 km occur less often. Only about 3% of the SAGE II single-layer clouds are located above the tropopause, while 58% of the cloud layers never reach the tropopause. More than one-third of the clouds appear at the tropopause. This study also shows that clouds occur more frequently and extend higher above the tropopause over the western Pacific than than over the eastern Pacific, especially during northern winter. The uncertainty of the derived results due to the SAGE II sampling constraints, data processing, and cloud characteristics is discussed.
How much of the global aerosol optical depth is found in the boundary layer and free troposphere?
NASA Astrophysics Data System (ADS)
Bourgeois, Quentin; Ekman, Annica M. L.; Renard, Jean-Baptiste; Krejci, Radovan; Devasthale, Abhay; Bender, Frida A.-M.; Riipinen, Ilona; Berthet, Gwenaël; Tackett, Jason L.
2018-06-01
The global aerosol extinction from the CALIOP space lidar was used to compute aerosol optical depth (AOD) over a 9-year period (2007-2015) and partitioned between the boundary layer (BL) and the free troposphere (FT) using BL heights obtained from the ERA-Interim archive. The results show that the vertical distribution of AOD does not follow the diurnal cycle of the BL but remains similar between day and night highlighting the presence of a residual layer during night. The BL and FT contribute 69 and 31 %, respectively, to the global tropospheric AOD during daytime in line with observations obtained in Aire sur l'Adour (France) using the Light Optical Aerosol Counter (LOAC) instrument. The FT AOD contribution is larger in the tropics than at mid-latitudes which indicates that convective transport largely controls the vertical profile of aerosols. Over oceans, the FT AOD contribution is mainly governed by long-range transport of aerosols from emission sources located within neighboring continents. According to the CALIOP aerosol classification, dust and smoke particles are the main aerosol types transported into the FT. Overall, the study shows that the fraction of AOD in the FT - and thus potentially located above low-level clouds - is substantial and deserves more attention when evaluating the radiative effect of aerosols in climate models. More generally, the results have implications for processes determining the overall budgets, sources, sinks and transport of aerosol particles and their description in atmospheric models.
Galuardi, Benjamin; Lutcavage, Molly
2012-01-01
Between 2005 and 2009, we deployed 58 miniature pop-up satellite archival tags (PSAT) and 132 implanted archival tags on juvenile Atlantic bluefin tuna (age 2–5) in the northwest Atlantic Ocean. Data returned from these efforts (n = 26 PSATs, 1 archival tag) revealed their dispersal routes, horizontal and vertical movements and habitat utilization. All of the tagged bluefin tuna remained in the northwest Atlantic for the duration observed, and in summer months exhibited core-use of coastal seas extending from Maryland to Cape Cod, MA, (USA) out to the shelf break. Their winter distributions were more spatially disaggregated, ranging south to the South Atlantic Bight, northern Bahamas and Gulf Stream. Vertical habitat patterns showed that juvenile bluefin tuna mainly occupied shallow depths (mean = 5–12 m, sd = 15–23.7 m) and relatively warm water masses in summer (mean = 17.9–20.9°C, sd = 4.2–2.6°C) and had deeper and more variable depth patterns in winter (mean = 41–58 m, sd = 48.9–62.2 m). Our tagging results reveal annual dispersal patterns, behavior and oceanographic associations of juvenile Atlantic bluefin tuna that were only surmised in earlier studies. Fishery independent profiling from electronic tagging also provide spatially and temporally explicit information for evaluating dispersals rates, population structure and fisheries catch patterns. PMID:22629461
Low, Dennis J.; Conger, Randall W.
1998-01-01
Between February 1998 and April 1998, geophysical logs were collected in nine boreholes adjacent to the Berkley Products Superfund Site, West Cocalico Township, Lancaster County, Pa. Video surveys were conducted on four of the nine boreholes. The boreholes range in depth from 320 to 508 feet below land surface, are completed open holes, have ambient vertical flow of water, and penetrate a series of interbedded siltstone, sandstone, and conglomerate units. The purpose of collecting geophysical-log data was to help determine horizontal and vertical distribution of contaminated ground water migrating from known or suspected sources and to aid in the placement of permanent borehole packers. The primary contaminants were derived from paint waste that included pigment sludges and wash solvents. The chlorinated volatile organic compounds probably originated from the wash solvents.Caliper logs and video surveys were used to locate fractures; inflections on fluid-resistivity and fluid-temperature logs were used to locate possible water-bearing fractures. Heatpulse-flowmeter measurements were used to verify the locations of water-producing or water-receiving zones and to measure rates of flow between water-bearing fractures. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video surveys, and driller's logs, permanent multiple-packer systems were installed in each borehole to obtain depth specific water samples from one or more water-bearing fractures in each borehole.
Shahzad, Muhammad I; Nichol, Janet E; Wang, Jun; Campbell, James R; Chan, Pak W
2013-09-01
Hong Kong's surface visibility has decreased in recent years due to air pollution from rapid social and economic development in the region. In addition to deteriorating health standards, reduced visibility disrupts routine civil and public operations, most notably transportation and aviation. Regional estimates of visibility solved operationally using available ground and satellite-based estimates of aerosol optical properties and vertical distribution may prove more effective than standard reliance on a few existing surface visibility monitoring stations. Previous studies have demonstrated that such satellite measurements correlate well with near-surface optical properties, despite these sensors do not consider range-resolved information and indirect parameterizations necessary to solve relevant parameters. By expanding such analysis to include vertically resolved aerosol profile information from an autonomous ground-based lidar instrument, this work develops six models for automated assessment of surface visibility. Regional visibility is estimated using co-incident ground-based lidar, sun photometer visibility meter and MODerate-resolution maging Spectroradiometer (MODIS) aerosol optical depth data sets. Using a 355 nm extinction coefficient profile solved from the lidar MODIS AOD (aerosol optical depth) is scaled down to the surface to generate a regional composite depiction of surface visibility. These results demonstrate the potential for applying passive satellite depictions of broad-scale aerosol optical properties together with a ground-based surface lidar and zenith-viewing sun photometer for improving quantitative assessments of visibility in a city such as Hong Kong.
Repeated Earthquakes in the Vrancea Subcrustal Source and Source Scaling
NASA Astrophysics Data System (ADS)
Popescu, Emilia; Otilia Placinta, Anica; Borleasnu, Felix; Radulian, Mircea
2017-12-01
The Vrancea seismic nest, located at the South-Eastern Carpathians Arc bend, in Romania, is a well-confined cluster of seismicity at intermediate depth (60 - 180 km). During the last 100 years four major shocks were recorded in the lithosphere body descending almost vertically beneath the Vrancea region: 10 November 1940 (Mw 7.7, depth 150 km), 4 March 1977 (Mw 7.4, depth 94 km), 30 August 1986 (Mw 7.1, depth 131 km) and a double shock on 30 and 31 May 1990 (Mw 6.9, depth 91 km and Mw 6.4, depth 87 km, respectively). The probability of repeated earthquakes in the Vrancea seismogenic volume is relatively large taking into account the high density of foci. The purpose of the present paper is to investigate source parameters and clustering properties for the repetitive earthquakes (located close each other) recorded in the Vrancea seismogenic subcrustal region. To this aim, we selected a set of earthquakes as templates for different co-located groups of events covering the entire depth range of active seismicity. For the identified clusters of repetitive earthquakes, we applied spectral ratios technique and empirical Green’s function deconvolution, in order to constrain as much as possible source parameters. Seismicity patterns of repeated earthquakes in space, time and size are investigated in order to detect potential interconnections with larger events. Specific scaling properties are analyzed as well. The present analysis represents a first attempt to provide a strategy for detecting and monitoring possible interconnections between different nodes of seismic activity and their role in modelling tectonic processes responsible for generating the major earthquakes in the Vrancea subcrustal seismogenic source.
NASA Astrophysics Data System (ADS)
Tetreault, J. L.; Jones, C. H.
2007-12-01
The Coalinga Anticline is a one of a series of fault-related folds in the central Coast Ranges, California, oriented subparallel to the San Andreas Fault (SAF). The development of the Central Coast Range anticlines can be related to the relative strength of the SAF. If positing a weak SAF, fault-normal slip is partitioned to these subparallel compressional folds. If the SAF is strong, these folds rotated to their current orientation during wrenching. Another possibility is that the Coast Range anticlines are accommodating oblique-slip partitioned from the SAF. The 1983 Coalinga earthquake does not have a purely thrusting focal mechanism (rake =100°), reflecting the likelihood that oblique slip is being partitioned to this anticline, even though surface expression of fold-axis-parallel slip has not been identified. Paleomagnetic vertical-axis rotations and focal mechanism strain inversions were used to quantify oblique-slip deformation within the Coalinga Anticline. Clockwise rotations of 10° to 16° are inferred from paleomagnetic sites located in late Miocene to Pliocene beds on the steeply dipping forelimb and backlimb of the fold. Significant vertical-axis rotations are not identified in the paleomagnetic sites within the nose of the anticline. The varying vertical axis rotations conflict with wrench tectonics (strong SAF) as the mechanism of fold development. We use focal mechanisms inversions of earthquakes that occurred between 1983 to 2006 to constrain the seismogenic strain within the fold that presumably help to build it over time. In the upper 7 km, the principal shortening axis is oriented N37E to N40E, statistically indistinguishable from normal to the fold (N45E). The right-lateral shear in the folded strata above the fault tip, evident from the paleomagnetically determined clockwise vertical-axis rotations, is being accommodated aseismically or interseismically. In the region between 7 and 11 km, where the mainshock occurred, the shortening direction ranges from oblique to normal to the fold trend. Our results show that right-lateral slip is resolved along the main fault plane and not distributed to the smaller aftershocks at depths of 7-11 km. The principal strain axes and clockwise paleomagnetic rotations indicate that the Coalinga Anticline is accommodating minor right-lateral shearing and thus shares some of the strike-slip motion of the San Andreas system.
2014-09-30
to establish the performance of algorithms detecting dives, strokes , clicks, respiration and gait changes. We have also found that a combination of...whale click count, total click count, vocal duration, SOC2 depth, EOC3 depth) Descent 40 bits (duration, vertical speed, stroke count 0...100 m, stroke count 100-400 m, OBDA4, sum sr35) Bottom 26 bits (movement index6, OBDA, jerk events7, median jerk depth) Ascent
Cerro Prieto reinjection tests: studies of a multilayer system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, C.F.; Mangold, D.C.; Doughty, C.
1981-01-01
The response of the two-reservoir system to reinjection was modeled assuming a semi-realistic vertical distribution of materials. Different depths of production and reinjection, and the possible influence of an intervening layer of lower permeability between these two depths were incorporated into the model. Reinjection at different depths and at different flowrates was studied in order to analyze the thermohydrological responses of this two-layered reservoir system to a number of possible reinjection schemes.
Deriving depths of deep chlorophyll maximum and water inherent optical properties: A regional model
NASA Astrophysics Data System (ADS)
Xiu, Peng; Liu, Yuguang; Li, Gang; Xu, Qing; Zong, Haibo; Rong, Zengrui; Yin, Xiaobin; Chai, Fei
2009-10-01
The Bohai Sea is a semi-enclosed inland sea with case-2 waters near the coast. A comprehensive set of optical data was collected during three cruises in June, August, and September 2005 in the Bohai Sea. The vertical profile measurements, such as chlorophyll concentration, water turbidity, downwelling irradiance, and diffuse attenuation coefficient, showed that the Bohai Sea was vertically stratified with a relative clear upper layer superimposed on a turbid lower layer. The upper layer was found to correspond to the euphotic zone and the deep chlorophyll maximum (DCM) occurs at the base of this layer. By tuning a semi-analytical model (Lee et al., 1998, 1999) for the Bohai Sea, we developed a method to derive water inherent optical properties and the depth of DCM from above-surface measurements. Assuming a 'fake' bottom in the stratified water, this new method retrieves the 'fake' bottom depth, which is highly correlated with the DCM depth. The average relative error between derived and measured values is 33.9% for phytoplankton absorption at 440 nm, 25.6% for colored detrital matter (detritus plus gelbstoff) absorption at 440 nm, and 24.2% for the DCM depth. This modified method can retrieve water inherent optical properties and monitor the depth of DCM in the Bohai Sea, and the method is also applicable to other stratified waters.
Stelzer, R.S.; Bartsch, L.A.; Richardson, W.B.; Strauss, E.A.
2011-01-01
1.Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70cm. 2.Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5cm accounted for 68% of the mean depth-integrated denitrification rate. 3.Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two-source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5cm) in Emmons Creek. 4.Vertical profiles showed that nitrate concentration in shallow ground water was about 10-60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73mgNO3-NL-1, respectively. 5.Deep ground water tended to be oxic (6.9mgO2L-1) but approached anoxia (0.8mgO2L-1) after passing through shallow, organic carbon-rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6.Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments. ?? 2011 Blackwell Publishing Ltd.
Methane Emissions from Small Lakes: Dynamics and Distribution Patterns
NASA Astrophysics Data System (ADS)
Encinas Fernández, J. M.; Peeters, F.; Hofmann, H.
2014-12-01
The dynamics of dissolved methane were measured during three years in five small lakes with different surface areas and maximum water depth. We analyze and compare the horizontal and vertical distribution of dissolved methane within these lakes during different time periods: the stratified period in summer, the autumn overturn, the winter mixing period, and the period from spring to summer stratification. The horizontal distributions of dissolved methane within the lakes suggest that the relation between surface area and maximum water-depth is a key factor determining the heterogeneity of methane concentrations in the surface water. During most of the year littoral zones are the main source of the methane that is emitted to the atmosphere except for the overturn periods. The vertical distributions of temperature and dissolved oxygen within the different seasons affect the vertical distribution of dissolved methane and thus the methane budget within lakes. Anoxic conditions in the hypolimnion and the intense mixing during overturn periods are key factors for the overall annual methane emissions from lakes.
Oceanic lithosphere and asthenosphere: The thermal and mechanical structure
NASA Technical Reports Server (NTRS)
Schubert, G.; Froidevaux, C.; Yuen, D. A.
1976-01-01
A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.
Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadgu, Teklu; Stein, Emily; Hardin, Ernest
2015-11-01
Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predictmore » that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.« less
Differential patterns of 2D location versus depth decoding along the visual hierarchy.
Finlayson, Nonie J; Zhang, Xiaoli; Golomb, Julie D
2017-02-15
Visual information is initially represented as 2D images on the retina, but our brains are able to transform this input to perceive our rich 3D environment. While many studies have explored 2D spatial representations or depth perception in isolation, it remains unknown if or how these processes interact in human visual cortex. Here we used functional MRI and multi-voxel pattern analysis to investigate the relationship between 2D location and position-in-depth information. We stimulated different 3D locations in a blocked design: each location was defined by horizontal, vertical, and depth position. Participants remained fixated at the center of the screen while passively viewing the peripheral stimuli with red/green anaglyph glasses. Our results revealed a widespread, systematic transition throughout visual cortex. As expected, 2D location information (horizontal and vertical) could be strongly decoded in early visual areas, with reduced decoding higher along the visual hierarchy, consistent with known changes in receptive field sizes. Critically, we found that the decoding of position-in-depth information tracked inversely with the 2D location pattern, with the magnitude of depth decoding gradually increasing from intermediate to higher visual and category regions. Representations of 2D location information became increasingly location-tolerant in later areas, where depth information was also tolerant to changes in 2D location. We propose that spatial representations gradually transition from 2D-dominant to balanced 3D (2D and depth) along the visual hierarchy. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of Relative Disparity Sensitivity in Human Visual Cortex.
Norcia, Anthony M; Gerhard, Holly E; Meredith, Wesley J
2017-06-07
Stereopsis is the primary cue underlying our ability to make fine depth judgments. In adults, depth discriminations are supported largely by relative rather than absolute binocular disparity, and depth is perceived primarily for horizontal rather than vertical disparities. Although human infants begin to exhibit disparity-specific responses between 3 and 5 months of age, it is not known how relative disparity mechanisms develop. Here we show that the specialization for relative disparity is highly immature in 4- to 6-month-old infants but is adult-like in 4- to 7-year-old children. Disparity-tuning functions for horizontal and vertical disparities were measured using the visual evoked potential. Infant relative disparity thresholds, unlike those of adults, were equal for vertical and horizontal disparities. Their horizontal disparity thresholds were a factor of ∼10 higher than adults, but their vertical disparity thresholds differed by a factor of only ∼4. Horizontal relative disparity thresholds for 4- to 7-year-old children were comparable with those of adults at ∼0.5 arcmin. To test whether infant immaturity was due to spatial limitations or insensitivity to interocular correlation, highly suprathreshold horizontal and vertical disparities were presented in alternate regions of the display, and the interocular correlation of the interdigitated regions was varied from 0% to 100%. This manipulation regulated the availability of coarse-scale relative disparity cues. Adult and infant responses both increased with increasing interocular correlation by similar magnitudes, but adult responses increased much more for horizontal disparities, further evidence for qualitatively immature stereopsis based on relative disparity at 4-6 months of age. SIGNIFICANCE STATEMENT Stereopsis, our ability to sense depth from horizontal image disparity, is among the finest spatial discriminations made by the primate visual system. Fine stereoscopic depth discriminations depend critically on comparisons of disparity relationships in the image that are supported by relative disparity cues rather than the estimation of single, absolute disparities. Very young human and macaque infants are sensitive to absolute disparity, but no previous study has specifically studied the development of relative disparity sensitivity, a hallmark feature of adult stereopsis. Here, using high-density EEG recordings, we show that 4- to 6-month-old infants display both quantitative and qualitative response immaturities for relative disparity information. Relative disparity responses are adult-like no later than 4-7 years of age. Copyright © 2017 the authors 0270-6474/17/375608-12$15.00/0.
USDA-ARS?s Scientific Manuscript database
Renewed interests in home gardening heighten the concern of human lead exposure. Negative effects of lead on human health are well known. Horizontal and vertical movement of lead (Pb) around houses has been studied, but Pb bioaccessiblity as a function of distance and depth from the house needs to...
Review of Models of Beam-Noise Statistics
1977-11-01
depth. Rays are traced according to Snell’s Law from the receiver depth in 10 I vertical-angle steps for one cycle. If tte 10 increments are not...Blvd. Rockville, MD 20850 Attn: J. T. Gottwald TRW Systems Group 7600 Colshire Drive McLean, VA 22101 Attn: R. T. Brown 1 I. B. Gereben 1 Undersea
Timing and nature of tertiary plutonism and extension in the Grouse Creek Mountains, Utah
Egger, A.E.; Dumitru, T.A.; Miller, E.L.; Savage, C.F.I.; Wooden, J.L.
2003-01-01
The Grouse Creek-Albion-Raft River metamorphic core complex in northwestern Utah and southern Idaho is characterized by several Tertiary plutons with a range of ages and crosscutting relations that help constrain the timing of extensional deformation. In the Grouse Creek Mountains, at least three distinct, superimposed, extension-related Tertiary deformational events are bracketed by intrusive rocks, followed by a fourth event: motion on range-bounding faults. The Emigrant Pass plutonic complex was emplaced at depths of less than 10 km into Permianage rocks. SHRIMP U-Pb zircon analysis indicates a three-stage intrusion of the complex at 41.3 ?? 0.3 Ma, 36.1 ?? 0.2 Ma, and 34.3 ?? 0.3 Ma. The two youngest phases represent distinctly younger intrusive event(s) than the oldest phase, separated by more than 5 m.y. The oldest phase cuts several metamorphosed and deformed younger-on-older faults, providing a pre-41 Ma age bracket for oldest extension-related deformation in the region. The youngest phase(s) are interpreted to have been intruded during delelopment of a map-scale. N-S-trending recumbent fold, the Bovine Mountain fold, formed during vertical shortening of roof rocks during intrusion. This second event folded older normal faults that are likely pre-41 Ma. Zircons from the youngest part of the pluton show inheritance from Archean basement (???2.5 Ga) and from its Proterozoic sedimentary cover (???1.65 Ga). The Red Butte pluton, emplaced at 15-20 km depth, intruded highly metamorphosed Archean orthogneiss at 25.3 ?? 0.5 Ma; cores of some zircons yield latest Archean ages of 2.55 Ga. The pluton is interpreted to have been intruded during a third deformational and metamorphic event that resulted in vertical flattening fabrics formed during NW to EW stretching, ultimately leading to thinning of cover and top-to-the west motion on the Ingham Pass fault. The Ingham Pass fault represents an important structure in the Grouse Creek Mountains, as it juxtaposes two parts of the crust that apparently resided as much as 10 km apart (in depth) at times as young as the Miocene. The varied structural, metamorphic, and intrusive relations obsreved in the Grouse Creek Mountains reflect their formation at different levels within the crust. Data from these various levels argue that plutonism has been a key mechanism far transferring heat into the middle and upper crust, and localizing strain during regional extension. Interestingly, events documented here correlate in a broad way with cooling events documented in the Raft River Mountains, although plutons are not exposed there. Major and trace element geochemistry imply a crustal component in all of the studied plutons, indicating significant degrees of crustal melting at depth during extension, and point to mantle heat sources during the timespan of Basin and Range extension as the cause of melting. Basin and Range faulting and final uplift of the range is recorded by apatite fission track ages, averaging 13.4 Ma, and deposition of about 2 km of syn-faulting basin fill deposits along the Grouse Creek fault mapped along the western flank of the range. Similar apatite ages from the Albion Mountains to the north indicate that the western side of the Albion-Raft River-Grouse Creek core complex behaved as a single rigid crustal block at this time.
NASA Astrophysics Data System (ADS)
Fuis, G. S.; Catchings, R.; Scheirer, D. S.; Goldman, M.; Zhang, E.; Bauer, K.
2016-12-01
The San Andreas fault (SAF) in the northern Salton Trough, or Coachella Valley, in southern California, appears non-vertical and non-planar. In cross section, it consists of a steeply dipping segment (75 deg dip NE) from the surface to 6- to 9-km depth, and a moderately dipping segment below 6- to 9-km depth (50-55 deg dip NE). It also appears to branch upward into a flower-like structure beginning below about 10-km depth. Images of the SAF zone in the Coachella Valley have been obtained from analysis of steep reflections, earthquakes, modeling of potential-field data, and P-wave tomography. Review of seismological and geodetic research on the 1989 M 6.9 Loma Prieta earthquake, in central California (e.g., U.S. Geological Survey Professional Paper 1550), shows several features of SAF zone structure similar to those seen in the northern Salton Trough. Aftershocks in the Loma Prieta epicentral area form two chief clusters, a tabular zone extending from 18- to 9-km depth and a complex cluster above 5-km depth. The deeper cluster has been interpreted to surround the chief rupture plane, which dips 65-70 deg SW. When double-difference earthquake locations are plotted, the shallower cluster contains tabular subclusters that appear to connect the main rupture with the surface traces of the Sargent and Berrocal faults. In addition, a diffuse cluster may surround a steep to vertical fault connecting the main rupture to the surface trace of the SAF. These interpreted fault connections from the main rupture to surface fault traces appear to define a flower-like structure, not unlike that seen above the moderately dipping segment of the SAF in the Coachella Valley. But importantly, the SAF, interpreted here to include the main rupture plane, appears segmented, as in the Coachella Valley, with a moderately dipping segment below 9-km depth and a steep to vertical segment above that depth. We hope to clarify fault-zone structure in the Loma Prieta area by reanalyzing active-source data collected after the earthquake for steep reflections.
Climate change for the last 1,000 years inferred from borehole temperatures
NASA Astrophysics Data System (ADS)
Kitaoka, K.; Arimoto, H.; Hamamoto, H.; Taniguchi, M.; Takeuchi, T.
2013-12-01
Subsurface temperatures are an archive of temperature changes occurred at the ground surface in the recent past (Lachenbruch and Marshall, 1986; Pollack, 1993). In order to investigate the local surface temperature histories in Osaka Plane, Japan, we observed subsurface temperatures in existing boreholes, using a thermometer logger. Many temperature-depth profiles within 200 m depth from the ground surface have been obtained, but they show considerable variability. The geological formations in the area consist of horizontally stratified sedimentary layers of about 1,000 m in thickness overlaid on bedrock of granite. There exists a vertical disordered structure in the formations, which may be relating to an active fault (Uemachi fault) in the bedrock (Takemura, et al, 2013). It is considered that groundwater in the horizontal layers cannot move vertically, but can move vertically along the vertical disordered zone. Various temperature profiles might be related to occurrence of vertical groundwater flow in the zone. Analytical models of subsurface temperature which include heat conduction and convection due to vertical groundwater flow in the zone have been constructed under the boundary conditions of prescribing time dependent surface temperature and uniform geothermal flux from greater depths. To solve as one-dimensional problem, heat transfer between the vertical zone and the surrounding medium of no groundwater flow is assumed. Prescribing surface temperatures were given as exponential and periodic functions of the time. Climate change can be considered to comprise both natural and artificial changes. Artificial change, which occurs by the increasing combustion of fossil fuels, is considered roughly to be an exponential increase of the ground surface temperature during the last 150 years. Natural change, which can correlate to solar activity (Lassen and Friis-Christensen, 1995), is assumed roughly to be periodic with the period of about 1200 y at the minimum time of 1620 AD for the last 2,000 years, based on the proxy data in literature (Kitagawa, 1995; Moberg, et al, 2005). Analytical solutions have been obtained by applying a superimpose method. Optimum values of parameters included in the model have been obtained by fitting the solutions to the data of temperature-depth profiles by a least-square method. As a result, the amplitude of natural oscillation in the area is about 0.8 degree in average, which is in agreement with the result of tree ring analysis of Yakushima cedar (Kitagawa, 1995). Greater upward groundwater flow rates (up to 1.0 m/y, Darcy flux) are seen along the vertical disordered structure. However, the increasing rate of ground surface temperature is greater than that in atmospheric temperature during the last 140 years at Osaka Meteorological Observatory, Japan Meteorological Agency. The high increasing rate of the ground surface temperature suggests that the change in atmospheric temperature is influenced by the change in long wave radiation from the ground surface.
Howey-Jordan, Lucy A; Brooks, Edward J; Abercrombie, Debra L; Jordan, Lance K B; Brooks, Annabelle; Williams, Sean; Gospodarczyk, Emily; Chapman, Demian D
2013-01-01
Oceanic whitetip sharks (Carcharhinus longimanus) have recently been targeted for conservation in the western North Atlantic following severe declines in abundance. Pop-up satellite archival tags were applied to 11 mature oceanic whitetips (10 females, 1 male) near Cat Island in the central Bahamas 1-8 May 2011 to provide information about the horizontal and vertical movements of this species. Another large female was opportunistically tagged in the U.S. Exclusive Economic Zone (EEZ). Data from 1,563 total tracking days and 1,142,598 combined depth and temperature readings were obtained. Sharks tagged at Cat Island stayed within 500 km of the tagging site for ~30 days before dispersing across 16,422 km(2) of the western North Atlantic. Maximum individual displacement from the tagging site ranged from 290-1940 km after times at liberty from 30-245 days, with individuals moving to several different destinations (the northern Lesser Antilles, the northern Bahamas, and north of the Windward Passage). Many sharks returned to The Bahamas after ~150 days. Estimated residency times within The Bahamas EEZ, where longlining and commercial trade of sharks is illegal, were generally high (mean = 68.2% of time). Sharks spent 99.7% of their time shallower than 200 m and did not exhibit differences in day and night mean depths. There was a positive correlation between daily sea surface temperature and mean depth occupied, suggesting possible behavioral thermoregulation. All individuals made short duration (mean = 13.06 minutes) dives into the mesopelagic zone (down to 1082 m and 7.75°C), which occurred significantly more often at night. Ascent rates during these dives were significantly slower than descent rates, suggesting that these dives are for foraging. The sharks tracked appear to be most vulnerable to pelagic fishing gear deployed from 0-125 m depths, which they may encounter from June to October after leaving the protected waters of The Bahamas EEZ.
Aircraft laser sensing of sound velocity in water - Brillouin scattering
NASA Technical Reports Server (NTRS)
Hickman, G. D.; Harding, John M.; Carnes, Michael; Pressman, AL; Kattawar, George W.; Fry, Edward S.
1991-01-01
A real-time data source for sound speed in the upper 100 m has been proposed for exploratory development. This data source is planned to be generated via a ship- or aircraft-mounted optical pulsed laser using the spontaneous Brillouin scattering technique. The system should be capable (from a single 10 ns 500 mJ pulse) of yielding range resolved sound speed profiles in water to depths of 75-100 m to an accuracy of 1 m/s. The 100 m profiles will provide the capability of rapidly monitoring the upper-ocean vertical structure. They will also provide an extensive, subsurface-data source for existing real-time, operational ocean nowcast/forecast systems.
Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie
2013-05-20
We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.
Near Surface Seismic Hazard Characterization in the Presence of High Velocity Contrasts
NASA Astrophysics Data System (ADS)
Gribler, G.; Mikesell, D.; Liberty, L. M.
2017-12-01
We present new multicomponent surface wave processing techniques that provide accurate characterization of near-surface conditions in the presence of large lateral or vertical shear wave velocity boundaries. A common problem with vertical component Rayleigh wave analysis in the presence of high contrast subsurface conditions is Rayleigh wave propagation mode misidentification due to an overlap of frequency-phase velocity domain dispersion, leading to an overestimate of shear wave velocities. By using the vertical and horizontal inline component signals, we isolate retrograde and prograde particle motions to separate fundamental and higher mode signals, leading to more accurate and confident dispersion curve picks and shear wave velocity estimates. Shallow, high impedance scenarios, such as the case with shallow bedrock, are poorly constrained when using surface wave dispersion information alone. By using a joint inversion of dispersion and horizontal-to-vertical (H/V) curves within active source frequency ranges (down to 3 Hz), we can accurately estimate the depth to high impedance boundaries, a significant improvement compared to the estimates based on dispersion information alone. We compare our approach to body wave results that show comparable estimates of bedrock topography. For lateral velocity contrasts, we observe horizontal polarization of Rayleigh waves identified by an increase in amplitude and broadening of the horizontal spectra with little variation in the vertical component spectra. The horizontal spectra offer a means to identify and map near surface faults where there is no topographic or clear body wave expression. With these new multicomponent active source seismic data processing and inversion techniques, we better constrain a variety of near surface conditions critical to the estimation of local site response and seismic hazards.
Eslava, Nora; González, Leo W; Gaertner, Daniel
2003-03-01
The longline hooks suspension depth was estimated using the Mechanic Imitation of Flexible Systems method. The vertical distribution of tunas and billfish was determined by the relative abundance index, obtained from the catch by 11 to 25 m -long longline vessels, -based at Cumaná, Venezuela, South-eastern Caribbean Sea in depths of 65 to 142 m. The CPUE was evaluated per species, according to depth. High values were found for most of the captured species in the layer from 105 to 125 m. Yellowfin tuna (Thunnus albacares) showed the highest yield (3.37 fish/100 hooks) and blue marlin (Makaira nigricans) the lowest (0.04 fish/100 hooks). However, the statistical comparison did not allow to reject the hypothesis of lack of depth efect (Kruskal-Wallis p > .05), and demonstrated a homogeneous distribution of yellowfin tuna (Thunnus albacares), albacore (Thunnus alalunga), bigeye tuna (Thunnus obesus), sailfish (Istiophorus albicans), white marlin (Tetrapturus albidus) and blue marlin (Makaira nigricans) in the water column. The conclusion is that fish concentration in the Southern border of the Caribbean Sea is possibly due to several hydroclimatic factors--which affect tuna and billfish catching--such as water temperature and dissolved oxygen concentration which limit the distribution according to depth.
Lupini, A.R.; de Jonge, N.
2012-01-01
Aberration-correction reduces the depth of field in scanning transmission electron microscopy (STEM) and thus allows three-dimensional imaging by depth-sectioning. This imaging mode offers the potential for sub-Ångstrom lateral resolution and nanometer-scale depth sensitivity. For biological samples, which may be many microns across and where high lateral resolution may not always be needed, optimizing the depth resolution even at the expense of lateral resolution may be desired, aiming to image through thick specimens. Although there has been extensive work examining and optimizing the probe formation in two-dimensions, there is less known about the probe shape along the optical axis. Here the probe shape is examined in three-dimensions in an attempt to better understand the depth-resolution in this mode. Examples are presented of how aberrations change the probe shape in three-dimensions, and it is found that off-axial aberrations may need to be considered for focal series of large areas. It is shown that oversized or annular apertures theoretically improve the vertical resolution for 3D imaging of nanoparticles. When imaging nanoparticles of several nanometer size, regular STEM can thereby be optimized such that the vertical full width at half maximum approaches that of the aberration corrected STEM with a standard aperture. PMID:21878149
Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.
2016-01-01
Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.
Assessing the vertical structure of baroclinic tidal currents in a global model
NASA Astrophysics Data System (ADS)
Timko, Patrick; Arbic, Brian; Scott, Robert
2010-05-01
Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.
NASA Astrophysics Data System (ADS)
Chen, P.-C.; Lin, P.-T.; Mikolas, D. G.; Tsai, Y.-W.; Wang, Y.-L.; Fu, C.-C.; Chang, S.-L.
2015-01-01
To provide coherent x-ray sources for probing the dynamic structures of solid or liquid biological substances on the picosecond timescale, a high-aspect-ratio x-ray resonator cavity etched from a single crystal substrate with a nearly vertical sidewall structure is required. Although high-aspect-ratio resonator cavities have been produced in silicon, they suffer from unwanted multiple beam effects. However, this problem can be avoided by using the reduced symmetry of single-crystal sapphire in which x-ray cavities may produce a highly monochromatic transmitted x-ray beam. In this study, we performed nominal 100 µm deep etching and vertical sidewall profiles in single crystal sapphire using inductively coupled plasma (ICP) etching. The large depth is required to intercept a useful fraction of a stopped-down x-ray beam, as well as for beam clearance. An electroplated Ni hard mask was patterned using KMPR 1050 photoresist and contact lithography. The quality and performance of the x-ray cavity depended upon the uniformity of the cavity gap and therefore verticality of the fabricated vertical sidewall. To our knowledge, this is the first report of such deep, vertical etching of single-crystal sapphire. A gas mixture of Cl2/BCl3/Ar was used to etch the sapphire with process variables including BCl3 flow ratio and bias power. By etching for 540 min under optimal conditions, we obtained an x-ray resonant cavity with a depth of 95 µm, width of ~30 µm, gap of ~115 µm and sidewall profile internal angle of 89.5°. The results show that the etching parameters affected the quality of the vertical sidewall, which is essential for good x-ray resonant cavities.
Selbig, William R.
2017-01-01
Collection of water-quality samples that accurately characterize average particle concentrations and distributions in channels can be complicated by large sources of variability. The U.S. Geological Survey (USGS) developed a fully automated Depth-Integrated Sample Arm (DISA) as a way to reduce bias and improve accuracy in water-quality concentration data. The DISA was designed to integrate with existing autosampler configurations commonly used for the collection of water-quality samples in vertical profile thereby providing a better representation of average suspended sediment and sediment-associated pollutant concentrations and distributions than traditional fixed-point samplers. In controlled laboratory experiments, known concentrations of suspended sediment ranging from 596 to 1,189 mg/L were injected into a 3 foot diameter closed channel (circular pipe) with regulated flows ranging from 1.4 to 27.8 ft3 /s. Median suspended sediment concentrations in water-quality samples collected using the DISA were within 7 percent of the known, injected value compared to 96 percent for traditional fixed-point samplers. Field evaluation of this technology in open channel fluvial systems showed median differences between paired DISA and fixed-point samples to be within 3 percent. The range of particle size measured in the open channel was generally that of clay and silt. Differences between the concentration and distribution measured between the two sampler configurations could potentially be much larger in open channels that transport larger particles, such as sand.
Bleibinhaus, F.; Hole, J.A.; Ryberg, T.; Fuis, G.S.
2007-01-01
A seismic reflection and refraction survey across the San Andreas Fault (SAF) near Parkfield provides a detailed characterization of crustal structure across the location of the San Andreas Fault Observatory at Depth (SAFOD). Steep-dip prestack migration and frequency domain acoustic waveform tomography were applied to obtain highly resolved images of the upper 5 km of the crust for 15 km on either side of the SAF. The resulting velocity model constrains the top of the Salinian granite with great detail. Steep-dip reflection seismic images show several strong-amplitude vertical reflectors in the uppermost crust near SAFOD that define an ???2-km-wide zone comprising the main SAF and two or more local faults. Another prominent subvertical reflector at 2-4 km depth ???9 km to the northeast of the SAF marks the boundary between the Franciscan terrane and the Great Valley Sequence. A deep seismic section of low resolution shows several reflectors in the Salinian crust west of the SAF. Two horizontal reflectors around 10 km depth correlate with strains of seismicity observed along-strike of the SAF. They represent midcrustal shear zones partially decoupling the ductile lower crust from the brittle upper crust. The deepest reflections from ???25 km depth are interpreted as crust-mantle boundary. Copyright 2007 by the American Geophysical Union.
Tracer-based characterization of hyporheic exchange and benthic biolayers in streams
NASA Astrophysics Data System (ADS)
Knapp, Julia L. A.; González-Pinzón, Ricardo; Drummond, Jennifer D.; Larsen, Laurel G.; Cirpka, Olaf A.; Harvey, Judson W.
2017-02-01
Shallow benthic biolayers at the top of the streambed are believed to be places of enhanced biogeochemical turnover within the hyporheic zone. They can be investigated by reactive stream tracer tests with tracer recordings in the streambed and in the stream channel. Common in-stream measurements of such reactive tracers cannot localize where the processing primarily takes place, whereas isolated vertical depth profiles of solutes within the hyporheic zone are usually not representative of the entire stream. We present results of a tracer test where we injected the conservative tracer bromide together with the reactive tracer resazurin into a third-order stream and combined the recording of in-stream breakthrough curves with multidepth sampling of the hyporheic zone at several locations. The transformation of resazurin was used as an indicator of metabolism, and high-reactivity zones were identified from depth profiles. The results from our subsurface analysis indicate that the potential for tracer transformation (i.e., the reaction rate constant) varied with depth in the hyporheic zone. This highlights the importance of the benthic biolayer, which we found to be on average 2 cm thick in this study, ranging from one third to one half of the full depth of the hyporheic zone. The reach-scale approach integrated the effects of processes along the reach length, isolating hyporheic processes relevant for whole-stream chemistry and estimating effective reaction rates.
Depth-encoded all-fiber swept source polarization sensitive OCT
Wang, Zhao; Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Lee, ByungKun; Choi, WooJhon; Potsaid, Benjamin; Liu, Jonathan; Jayaraman, Vijaysekhar; Cable, Alex; Kraus, Martin F.; Liang, Kaicheng; Hornegger, Joachim; Fujimoto, James G.
2014-01-01
Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of conventional OCT and can assess depth-resolved tissue birefringence in addition to intensity. Most existing PS-OCT systems are relatively complex and their clinical translation remains difficult. We present a simple and robust all-fiber PS-OCT system based on swept source technology and polarization depth-encoding. Polarization multiplexing was achieved using a polarization maintaining fiber. Polarization sensitive signals were detected using fiber based polarization beam splitters and polarization controllers were used to remove the polarization ambiguity. A simplified post-processing algorithm was proposed for speckle noise reduction relaxing the demand for phase stability. We demonstrated systems design for both ophthalmic and catheter-based PS-OCT. For ophthalmic imaging, we used an optical clock frequency doubling method to extend the imaging range of a commercially available short cavity light source to improve polarization depth-encoding. For catheter based imaging, we demonstrated 200 kHz PS-OCT imaging using a MEMS-tunable vertical cavity surface emitting laser (VCSEL) and a high speed micromotor imaging catheter. The system was demonstrated in human retina, finger and lip imaging, as well as ex vivo swine esophagus and cardiovascular imaging. The all-fiber PS-OCT is easier to implement and maintain compared to previous PS-OCT systems and can be more easily translated to clinical applications due to its robust design. PMID:25401008
NASA Astrophysics Data System (ADS)
Bode, Maya; Hagen, Wilhelm; Cornils, Astrid; Kaiser, Patricia; Auel, Holger
2018-02-01
Vertical distribution, community structure and diversity of calanoid copepods were studied at six stations along a latitudinal transect from 24°N to 21°S in the eastern Atlantic Ocean, resolving nine discrete depth layers to 2000 m. Total copepod abundances integrated from 0 to 2000 m ranged from 148,000 to 197,000 ind m-2. Usually, abundance and biomass were highest in the upper 100 m, exponentially decreasing with increasing depth. Only at the northern- and southernmost stations, a deeper biomass maximum was observed at 100-200 m and 200-400 m, respectively. In total, 26 families, 79 genera and at least 172 species were identified among calanoid copepods. Although there were certain regional differences in species composition between tropical and subtropical stations from north to south, depth had the strongest impact on the community structure of calanoids, resulting in statistically distinct communities in different depth zones. Maximum diversity of calanoids was observed between 100-200 m in the tropical zone and between 400-700 m in subtropical regions. Various interacting mechanisms such as vast spatial extent of the ecosystem, physical stability, avoidance from predators under dim light, small population sizes and high biologically generated heterogeneity possibly contribute to the biodiversity maxima in the twilight zone.
Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.
2017-01-01
Partial-depth impermeable guidance structures (or guide walls) are used as a method to assist in the downstream passage of fish at a hydroelectric facility. However, guide walls can result in a strong downward velocity causing the approaching fish to pass below the wall and into the direction of the turbine intakes. The objective of this study was to describe how the ratio of the vertical velocity to the sweeping velocity magnitude changes along the full length and depth of a guide wall under a wide range of bypass flow percentages within a power canal. This paper focused on two guide wall configurations, each set at an angle of 45 ° to the approaching flow field and at a depth of 10 and 20 ft (3.05 and 6.10 m). The hydraulic conditions upstream of each guide wall configuration were shown to be impacted by a change in the bypass flow percentage, not only near the bypass but also at upstream sections of the guide wall. Furthermore, the effect of changing the bypass flow percentage was similar for both guide wall depths. In both cases, the effect of increasing the bypass flow percentage was magnified closer to the bypass and deeper in the water column along the guide wall.
Tracer-based characterization of hyporheic exchange and benthic biolayers in streams
Knapp, Julia L.A.; González-Pinzón, Ricardo; Drummond, Jennifer D.; Larsen, Laurel G.; Cirpka, Olaf A.; Harvey, Judson W.
2017-01-01
Shallow benthic biolayers at the top of the streambed are believed to be places of enhanced biogeochemical turnover within the hyporheic zone. They can be investigated by reactive stream tracer tests with tracer recordings in the streambed and in the stream channel. Common in-stream measurements of such reactive tracers cannot localize where the processing primarily takes place, whereas isolated vertical depth profiles of solutes within the hyporheic zone are usually not representative of the entire stream. We present results of a tracer test where we injected the conservative tracer bromide together with the reactive tracer resazurin into a third-order stream and combined the recording of in-stream breakthrough curves with multidepth sampling of the hyporheic zone at several locations. The transformation of resazurin was used as an indicator of metabolism, and high-reactivity zones were identified from depth profiles. The results from our subsurface analysis indicate that the potential for tracer transformation (i.e., the reaction rate constant) varied with depth in the hyporheic zone. This highlights the importance of the benthic biolayer, which we found to be on average 2 cm thick in this study, ranging from one third to one half of the full depth of the hyporheic zone. The reach-scale approach integrated the effects of processes along the reach length, isolating hyporheic processes relevant for whole-stream chemistry and estimating effective reaction rates.
Pichard, Hélène; Richoux, Olivier; Groby, Jean-Philippe
2012-10-01
The propagation of audible acoustic waves in two-dimensional square lattice tunable sonic crystals (SC) made of square cross-section infinitely rigid rods embedded in air is investigated experimentally. The band structure is calculated with the plane wave expansion (PWE) method and compared with experimental measurements carried out on a finite extend structure of 200 cm width, 70 cm depth and 15 cm height. The structure is made of square inclusions of 5 cm side with a periodicity of L = 7.5 cm placed inbetween two rigid plates. The existence of tunable complete band gaps in the audible frequency range is demonstrated experimentally by rotating the scatterers around their vertical axis. Negative refraction is then analyzed by use of the anisotropy of the equi-frequency surface (EFS) in the first band and of a finite difference time domain (FDTD) method. Experimental results finally show negative refraction in the audible frequency range.
NASA Astrophysics Data System (ADS)
Coughlan, Carolyn A.; Chou, Li-Dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.
2016-03-01
Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx.
Magma explains low estimates of lithospheric strength based on flexure of ocean island loads
NASA Astrophysics Data System (ADS)
Buck, W. Roger; Lavier, Luc L.; Choi, Eunseo
2015-04-01
One of the best ways to constrain the strength of the Earth's lithosphere is to measure the deformation caused by large, well-defined loads. The largest, simple vertical load is that of the Hawaiian volcanic island chain. An impressively detailed recent analysis of the 3D response to that load by Zhong and Watts (2013) considers the depth range of seismicity below Hawaii and the seismically determined geometry of lithospheric deflection. These authors find that the friction coefficient for the lithosphere must be in the normal range measured for rocks, but conclude that the ductile flow strength has to be far weaker than laboratory measurements suggest. Specifically, Zhong and Watts (2013) find that stress differences in the mantle lithosphere below the island chain are less than about 200 MPa. Standard rheologic models suggest that for the ~50 km thick lithosphere inferred to exist below Hawaii yielding will occur at stress differences of about 1 GPa. Here we suggest that magmatic accommodation of flexural extension may explain Hawaiian lithospheric deflection even with standard mantle flow laws. Flexural stresses are extensional in the deeper part of the lithosphere below a linear island load (i.e. horizontal stresses orthogonal to the line load are lower than vertical stresses). Magma can accommodate lithospheric extension at smaller stress differences than brittle and ductile rock yielding. Dikes opening parallel to an island chain would allow easier downflexing than a continuous plate, but wound not produce a freely broken plate. The extensional stress needed to open dikes at depth depends on the density contrast between magma and lithosphere, assuming magma has an open pathway to the surface. For a uniform lithospheric density ρL and magma density ρM the stress difference to allow dikes to accommodate extension is: Δσxx (z) = g z (ρM - gρL), where g is the acceleration of gravity and z is depth below the surface. For reasonable density values (i.e. ρL = 3300 Kg/m3 and ρM = 2800 kg/m3) this 'magmatic yield stress' is 250 MPa at 50 km depth. Dikes accommodating flexing below Hawaii would be at most about 2 km wide. This amount of intrusion would significantly heat the lithosphere, leading to lower stress differences below the islands. Since Hawaii marks the highest magma flux on Earth today it seems that 'magma assisted flexure' offers a viable alternative to extremely weak lithospheric rheology as an explanation for low stresses below this load.
Airborne Aerosol Closure Studies During PRIDE
NASA Technical Reports Server (NTRS)
Redemann, Jens; Livingston, John M.; Russell, Philip B.; Schmid, Beat; Reid, Jeff
2000-01-01
The Puerto Rico Dust Experiment (PRIDE) was conducted during June/July of 2000 to study the properties of Saharan dust aerosols transported across the Atlantic Ocean to the Caribbean Islands. During PRIDE, the NASA Ames Research Center six-channel (380 - 1020 nm) airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane alongside a suite of in situ aerosol instruments. The in situ aerosol instrumentation relevant to this paper included a Forward Scattering Spectrometer Probe (FSSP-100) and a Passive Cavity Aerosol Spectrometer Probe (PCASP), covering the radius range of approx. 0.05 to 10 microns. The simultaneous and collocated measurement of multi-spectral aerosol optical depth and in situ particle size distribution data permits a variety of closure studies. For example, vertical profiles of aerosol optical depth obtained during local aircraft ascents and descents can be differentiated with respect to altitude and compared to extinction profiles calculated using the in situ particle size distribution data (and reasonable estimates of the aerosol index of refraction). Additionally, aerosol extinction (optical depth) spectra can be inverted to retrieve estimates of the particle size distributions, which can be compared directly to the in situ size distributions. In this paper we will report on such closure studies using data from a select number of vertical profiles at Cabras Island, Puerto Rico, including measurements in distinct Saharan Dust Layers. Preliminary results show good agreement to within 30% between mid-visible aerosol extinction derived from the AATS-6 optical depth profiles and extinction profiles forward calculated using 60s-average in situ particle size distributions and standard Saharan dust aerosol refractive indices published in the literature. In agreement with tendencies observed in previous studies, our initial results show an underestimate of aerosol extinction calculated based on the in situ size distributions relative to the extinction obtained from the sunphotometer measurements. However, a more extensive analysis of all available AATS-6 and in situ size distribution data is necessary to ascertain whether the preliminary results regarding the degree of extinction closure is representative of the entire range of dust conditions encountered in PRIDE. Finally, we will compare the spectral extinction measurements obtained in PRIDE to similar data obtained in Saharan dust layers encountered above the Canary Islands during ACE-2 (Aerosol Characterization Experiment) in July 1997. Thus, the evolution of Saharan dust spectral properties during its transport across the Atlantic can be investigated, provided the dust origin and microphysical properties are found to be comparable.
Using computational modeling of river flow with remotely sensed data to infer channel bathymetry
Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Shimizu, Y.
2012-01-01
As part of an ongoing investigation into the use of computational river flow and morphodynamic models for the purpose of correcting and extending remotely sensed river datasets, a simple method for inferring channel bathymetry is developed and discussed. The method is based on an inversion of the equations expressing conservation of mass and momentum to develop equations that can be solved for depth given known values of vertically-averaged velocity and water-surface elevation. The ultimate goal of this work is to combine imperfect remotely sensed data on river planform, water-surface elevation and water-surface velocity in order to estimate depth and other physical parameters of river channels. In this paper, the technique is examined using synthetic data sets that are developed directly from the application of forward two-and three-dimensional flow models. These data sets are constrained to satisfy conservation of mass and momentum, unlike typical remotely sensed field data sets. This provides a better understanding of the process and also allows assessment of how simple inaccuracies in remotely sensed estimates might propagate into depth estimates. The technique is applied to three simple cases: First, depth is extracted from a synthetic dataset of vertically averaged velocity and water-surface elevation; second, depth is extracted from the same data set but with a normally-distributed random error added to the water-surface elevation; third, depth is extracted from a synthetic data set for the same river reach using computed water-surface velocities (in place of depth-integrated values) and water-surface elevations. In each case, the extracted depths are compared to the actual measured depths used to construct the synthetic data sets (with two- and three-dimensional flow models). Errors in water-surface elevation and velocity that are very small degrade depth estimates and cannot be recovered. Errors in depth estimates associated with assuming water-surface velocities equal to depth-integrated velocities are substantial, but can be reduced with simple corrections.
Striker, Lora K.; Burns, Ronda L.
1997-01-01
76-ft-long, two-lane bridge consisting of two 37-foot concrete Tee-beam spans (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening. The computed opening-skew-to-roadway was 30 degrees but the historical records indicate this angle is 25 degrees. Scour protection measures at the site consist of type-1 stone fill (less than 12 inches diameter) along the downstream banks and the upstream right wing wall. Type-2 (less than 36 inches diameter) stone fill protection is noted on the upstream and downstream left wingwalls and upstream along the left bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 1.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.2 to 10.7 ft. The worst-case abutment scour occurred at the 500-year discharge for the right abutment. Pier scour ranged from 7.3 to 8.6 ft. The worst-case pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Gajewski, Jan; Michalski, Radosław; Buśko, Krzysztof; Mazur-Różycka, Joanna; Staniak, Zbigniew
2018-01-01
The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.
2017-01-01
Inverted effective ONVMS for an M30 Bomb in a test-stand scenario. The target is oriented 45 degrees at a depth of 150 cm depth (top) and oriented...vertically at a depth of 210 cm (bottom). The red lines are the total ONVMS for a library AN M30 Bomb , and the other lines correspond to the...Centimeter DE Differential Evolution DLL Dynamic Link Libraries DoD Department of Defense EM Electromagnetic EMA Expectation
High Spectral Resolution Lidar Data
Eloranta, Ed
2004-12-01
The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.
NASA Astrophysics Data System (ADS)
Clanet, Christophe; Guillet, Thibault; Coux, Martin; Quéré, David
2017-11-01
Many seabirds (gannets, pelicans, gulls, albatrosses) dive into water at high speeds (25 m/s) in order to capture underwater preys. Diving depths of 20 body lengths are reported in the literature. This value is much larger than the one achieved by men, which is typically of the order of 3. We study this difference by comparing the vertical impact of slender vs bluff bodies. We quantify the influence of wetting and of the geometry on the trajectory and discuss the different laws that govern the diving depth.
Fine resolution 3D temperature fields off Kerguelen from instrumented penguins
NASA Astrophysics Data System (ADS)
Charrassin, Jean-Benoît; Park, Young-Hyang; Le Maho, Yvon; Bost, Charles-André
2004-12-01
The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals' behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins ( Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature-time-depth recorders (TTDRs) to record dive depth and sea temperature. The penguins' foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0-200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen Plateau.
NASA Astrophysics Data System (ADS)
Wu, Mingching; Fang, Weileun
2006-02-01
This work attempts to integrate poly-Si thin film and single-crystal-silicon (SCS) structures in a monolithic process. The process integrated multi-depth DRIE (deep reactive ion etching), trench-refilled molding, a two poly-Si MUMPs process and (1 1 1) Si bulk micromachining to accomplish multi-thickness and multi-depth structures for superior micro-optical devices. In application, a SCS scanning mirror driven by self-aligned vertical comb-drive actuators was demonstrated. The stiffness of the mirror was significantly increased by thick SCS structures. The thin poly-Si film served as flexible torsional springs and electrical routings. The depth difference of the vertical comb electrodes was tuned by DRIE to increase the devices' stroke. Finally, a large moving space was available after the bulk Si etching. In summary, the present fabrication process, named (1 1 1) MOSBE (molded surface-micromachining and bulk etching release on (1 1 1) Si substrate), can further integrate with the MUMPs devices to establish a more powerful platform.
Effect of water table fluctuations on phreatophytic root distribution.
Tron, Stefania; Laio, Francesco; Ridolfi, Luca
2014-11-07
The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodriguez, J. M.; Gonzalez-Pola, C.; Lopez-Urrutia, A.; Nogueira, E.
2011-09-01
During summer, wind driven coastal upwelling dominates in the Central Cantabrian Sea (southern Bay of Biscay). Nevertheless, atmospheric forcing is highly variable and wind pulses may cause noticeable and fast hydrographic responses in the shelf region. In this paper, the composition and vertical distribution of the summer ichthyoplankton assemblage during the daytime at a fixed station, located on the Central Cantabrian Sea shelf, are documented. Also, the impact of a short-time scale hydrographic event on the abundance and structure of the larval fish assemblage is examined. Significant small-scale temporal hydrographic variability was observed. Currents showed changes in speed and direction and significant changes in thermocline depth were also observed. A total of 34 taxa of fish larvae were identified. Engraulis encrasicolus eggs and larvae of the shelf-dwelling species Trachurus trachurus, Capros aper and E. encrasicolus dominated the ichthyoplankton assemblage. The distribution of E. encrasicolus eggs and fish larvae was vertically structured. E. encrasicolus egg concentration increased exponentially towards the surface. Fish larvae showed a subsurface peak of concentration and their vertical distribution was not conditioned by thermocline depths. The short term hydrographic event did not affect the vertical distribution of fish larvae but it accounted for significant temporal changes in larval fish assemblage structure and abundance. Results suggest that temperature and light intensity are important factors in the vertical distribution of fish larvae. They also indicate that the temporal monitoring of the larval fish assemblage in this region requires multiple sampling sites.
NASA Astrophysics Data System (ADS)
Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.
2017-06-01
Heat and salt balances in the upper 200 m are examined using data from Seaglider spatial surveys June 2008 to January 2010 surrounding a NOAA surface mooring at Ocean Station Papa (OSP; 50°N, 145°W). A least-squares approach is applied to repeat Seaglider survey and moored measurements to solve for unknown or uncertain monthly three-dimensional circulation and vertical diffusivity. Within the surface boundary layer, the estimated heat and salt balances are dominated throughout the surveys by turbulent flux, vertical advection, and for heat, radiative absorption. When vertically integrated balances are considered, an estimated upwelling of cool water balances the net surface input of heat, while the corresponding large import of salt across the halocline due to upwelling and diffusion is balanced by surface moisture input and horizontal import of fresh water. Measurement of horizontal gradients allows the estimation of unresolved vertical terms over more than one annual cycle; diffusivity in the upper-ocean transition layer decreases rapidly to the depth of the maximum near-surface stratification in all months, with weak seasonal modulation in the rate of decrease and profile amplitude. Vertical velocity is estimated to be on average upward but with important monthly variations. Results support and expand existing evidence concerning the importance of horizontal advection in the balances of heat and salt in the Gulf of Alaska, highlight time and depth variability in difficult-to-measure vertical transports in the upper ocean, and suggest avenues of further study in future observational work at OSP.
The effects of vertical motion on the performance of current meters
Thibodeaux, K.G.; Futrell, J. C.
1987-01-01
A series of tests to determine the correction coefficients for Price type AA and Price type OAA current meters, when subjected to vertical motion in a towing tank, have been conducted. During these tests, the meters were subjected to vertical travel that ranged from 1.0 to 4.0 ft and vertical rates of travel that ranged from 0.33 to 1.20 ft/sec while being towed through the water at speeds ranging from 0 to 8 ft/sec. The tests show that type AA and type OAA current meters are affected adversely by the rate of vertical motion and the distance of vertical travel. In addition, the tests indicate that when current meters are moved vertically, correction coefficients must be applied to the observed meter velocities to correct for the registration errors that are induced by the vertical motion. The type OAA current meter under-registers and the type AA current meter over-registers in observed meter velocity. These coefficients for the type OAA current meter range from 0.99 to 1.49 and for the type AA current meter range from 0.33 to 1.07. When making current meter measurements from a boat or a cableway, errors in observed current meter velocity will occur when the bobbing of a boat or cableway places the current meter into vertical motion. These errors will be significant when flowing water is < 2 ft/sec and the rate of vertical motion is > 0.3 ft/sec. (Author 's abstract)
Howard, Keith A.
2005-01-01
Tilted slabs expose as much as the top 8–15 km of the upper crust in many parts of the Basin and Range province. Exposures of now-recumbent crustal sections in these slabs allow analysis of pre-tilt depth variations in dike swarms, plutons, and thermal history. Before tilting the slabs were panels between moderately dipping, active Tertiary normal faults. The slabs and their bounding normal faults were tilted to piggyback positions on deeper footwalls that warped up isostatically beneath them during tectonic unloading. Stratal dips within the slabs are commonly tilted to vertical or even slightly overturned, especially in the southern Basin and Range where the thin stratified cover overlies similarly tilted basement granite and gneiss. Some homoclinal recumbent slabs of basement rock display faults that splay upward into forced folds in overlying cover sequences, which thereby exhibit shallower dips. The 15-km maximum exposed paleodepth for the slabs represents the base of the brittle upper crust, as it coincides with the depth of the modern base of the seismogenic zone and the maximum focal depths of large normal-fault earthquakes in the Basin and Range. Many upended slabs accompany metamorphic core complexes, but not all core complexes have corresponding thick recumbent hanging-wall slabs. The Ruby Mountains core complex, for example, preserves only scraps of upper-plate rocks as domed-up extensional klippen, and most of the thick crustal section that originally overlay the uplifted metamorphic core now must reside below little-tilted hanging-wall blocks in the Elko-Carlin area to the west. The Whipple and Catalina Mountains core complexes in contrast are footwall to large recumbent hanging-wall slabs of basement rock exposing 8-15 km paleodepths that originally roofed the metamorphic cores; the exposed paleodepths require that a footwall rolled up beneath the slabs.
Jochum, Lara M.; Chen, Xihan; Lever, Mark A.; Loy, Alexander; Jørgensen, Bo Barker; Schramm, Andreas
2017-01-01
ABSTRACT Most sulfate-reducing microorganisms (SRMs) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRMs, and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRMs by amplicon sequencing and quantifying the dsrB gene, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRMs were present in all geochemical zones, including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurred across the transition from bioturbated surface sediments to nonbioturbated sediments below, where redox fluctuations and the input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed a weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by the persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community. IMPORTANCE Sulfate-reducing microorganisms (SRMs) are key players in the marine carbon and sulfur cycles, especially in coastal sediments, yet little is understood about the environmental factors controlling their depth distribution. Our results suggest that macrofaunal activity is a key driver of SRM abundance and community structure in marine sediments and that a small subset of SRM species of high relative abundance in the subsurface SRM community persists from the sulfate-rich surface sediment to sulfate-depleted methanogenic subsurface sediment. More generally, we conclude that SRM communities inhabiting the subsurface seabed assemble by the selective survival of members of the surface community. PMID:28939599
Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River
NASA Astrophysics Data System (ADS)
Gran, K. B.
2015-12-01
Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a series of inset terraces within the valley. The importance of sand on channel behavior thus extends beyond transport rates, affecting the depth of incision and volume of material excavated during a rainy to dry season transition.
Gas Chemistry of Submarine Hydrothermal Venting at Maug Caldera, Mariana Arc
NASA Astrophysics Data System (ADS)
Embley, R. W.; Lupton, J. E.; Butterfield, D. A.; Lilley, M. D.; Evans, L. J.; Olson, E. J.; Resing, J. A.; Buck, N.; Larson, B. I.; Young, C.
2014-12-01
Maug volcano consists of 3 islands that define the perimeter of a submerged caldera that was formed by an explosive eruption. The caldera reaches a depth of ~225 meters, and has a prominent central cone or pinnacle that ascends within 20 meters of the sea surface. Our exploration of Maug began in 2003, when a single hydrocast in the caldera detected a strong suspended particle and helium plume reaching a maximum of δ3He = 250% at ~180 meters depth, clearly indicating hydrothermal activity within the caldera. In 2004 we returned armed with the ROPOS ROV, and two ROPOS dives discovered and sampled low temperature (~4 °C) diffuse venting associated with bacterial mats on the NE flank of the central pinnacle at 145 m depth. Samples collected with titanium gas tight bottles were badly diluted with ambient seawater but allowed an estimate of end-member 3He/4He of 7.3 Ra. Four vertical casts lowered into the caldera in 2004 all had a strong 3He signal (δ3He = 190%) at 150-190 meters depth. A recent expedition in 2014 focused on the shallow (~10 m) gas venting along the caldera interior. Scuba divers were able to collect samples of the gas bubbles using evacuated SS bottles fitted with plastic funnels. The gas samples had a consistent ~170 ppm He, 8 ppmNe, 60% CO2, 40%N2, and 0.8% Ar, and an end-member 3He/4He ratio of 6.9 Ra. This 3He/4He ratio falls within the range for typical arc volcanoes. The rather high atmospheric component (N2, Ar, Ne) in these samples is not contamination but appears to be derived from subsurface exchange between the ascending CO2 bubbles and air saturated seawater. A single vertical cast in 2014 had a maximum δ3He = 55% at 140 m depth, much lower than in 2003 and 2004. This decrease is possibly due to recent flushing of the caldera by a storm event, or may reflect a decrease in the deep hydrothermal activity. This area of shallow CO2 venting in Maug caldera is of particular interest as a natural laboratory for studying the effects of ocean acidification on corals.
Estimation of bedrock depth using the horizontal‐to‐vertical (H/V) ambient‐noise seismic method
Lane, John W.; White, Eric A.; Steele, Gregory V.; Cannia, James C.
2008-01-01
Estimating sediment thickness and the geometry of the bedrock surface is a key component of many hydrogeologic studies. The horizontal‐to‐vertical (H/V) ambient‐noise seismic method is a novel, non‐invasive technique that can be used to rapidly estimate the depth to bedrock. The H/V method uses a single, broad‐band three‐component seismometer to record ambient seismic noise. The ratio of the averaged horizontal‐to‐vertical frequency spectrum is used to determine the fundamental site resonance frequency, which can be interpreted using regression equations to estimate sediment thickness and depth to bedrock. The U.S. Geological Survey used the H/V seismic method during fall 2007 at 11 sites in Cape Cod, Massachusetts, and 13 sites in eastern Nebraska. In Cape Cod, H/V measurements were acquired along a 60‐kilometer (km) transect between Chatham and Provincetown, where glacial sediments overlie metamorphic rock. In Nebraska, H/V measurements were acquired along approximately 11‐ and 14‐km transects near Firth and Oakland, respectively, where glacial sediments overlie weathered sedimentary rock. The ambient‐noise seismic data from Cape Cod produced clear, easily identified resonance frequency peaks. The interpreted depth and geometry of the bedrock surface correlate well with boring data and previously published seismic refraction surveys. Conversely, the ambient‐noise seismic data from eastern Nebraska produced subtle resonance frequency peaks, and correlation of the interpreted bedrock surface with bedrock depths from borings is poor, which may indicate a low acoustic impedance contrast between the weathered sedimentary rock and overlying sediments and/or the effect of wind noise on the seismic records. Our results indicate the H/V ambient‐noise seismic method can be used effectively to estimate the depth to rock where there is a significant acoustic impedance contrast between the sediments and underlying rock. However, effective use of the method is challenging in the presence of gradational contacts such as gradational weathering or cementation. Further work is needed to optimize interpretation of resonance frequencies in the presence of extreme wind noise. In addition, local estimates of bedrock depth likely could be improved through development of regional or study‐area‐specific regression equations relating resonance frequency to bedrock depth.
Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity.
Lemmon, M T; Wolff, M J; Smith, M D; Clancy, R T; Banfield, D; Landis, G A; Ghosh, A; Smith, P H; Spanovich, N; Whitney, B; Whelley, P; Greeley, R; Thompson, S; Bell, J F; Squyres, S W
2004-12-03
A visible atmospheric optical depth of 0.9 was measured by the Spirit rover at Gusev crater and by the Opportunity rover at Meridiani Planum. Optical depth decreased by about 0.6 to 0.7% per sol through both 90-sol primary missions. The vertical distribution of atmospheric dust at Gusev crater was consistent with uniform mixing, with a measured scale height of 11.56 +/- 0.62 kilometers. The dust's cross section weighted mean radius was 1.47 +/- 0.21 micrometers (mm) at Gusev and 1.52 +/- 0.18 mm at Meridiani. Comparison of visible optical depths with 9-mm optical depths shows a visible-to-infrared optical depth ratio of 2.0 +/- 0.2 for comparison with previous monitoring of infrared optical depths.
NASA Astrophysics Data System (ADS)
Bouchez, Julien; Galy, Valier; Hilton, Robert G.; Gaillardet, Jérôme; Moreira-Turcq, Patricia; Pérez, Marcela Andrea; France-Lanord, Christian; Maurice, Laurence
2014-05-01
In order to reveal particulate organic carbon (POC) source and mode of transport in the largest river basin on Earth, we sampled the main sediment-laden tributaries of the Amazon system (Solimões, Madeira and Amazon) during two sampling campaigns, following vertical depth-profiles. This sampling technique takes advantage of hydrodynamic sorting to access the full range of solid erosion products transported by the river. Using the Al/Si ratio of the river sediments as a proxy for grain size, we find a general increase in POC content with Al/Si, as sediments become finer. However, the sample set shows marked variability in the POC content for a given Al/Si ratio, with the Madeira River having lower POC content across the measured range in Al/Si. The POC content is not strongly related to the specific surface area (SSA) of the suspended load, and bed sediments have a much lower POC/SSA ratio. These data suggest that SSA exerts a significant, yet partial, control on POC transport in Amazon River suspended sediment. We suggest that the role of clay mineralogy, discrete POC particles and rock-derived POC warrant further attention in order to fully understand POC transport in large rivers.
NASA Astrophysics Data System (ADS)
Ciarletti, Valérie; Clifford, Stephen; Plettemeier, Dirk; Le Gall, Alice; Hervé, Yann; Dorizon, Sophie; Quantin-Nataf, Cathy; Benedix, Wolf-Stefan; Schwenzer, Susanne; Pettinelli, Elena; Heggy, Essam; Herique, Alain; Berthelier, Jean-Jacques; Kofman, Wlodek; Vago, Jorge L.; Hamran, Svein-Erik; WISDOM Team
2017-07-01
The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples.
Fisher, M.A.; Nokleberg, W.J.; Ratchkovski, N.A.; Pellerin, L.; Glen, J.M.; Brocher, T.M.; Booker, J.
2004-01-01
The aftershock zone of the 3 November 2002, M = 7.9 earthquake that ruptured along the right-slip Denali fault in south-central Alaska has been investigated by using gravity and magnetic, magnetotelluric, and deep-crustal, seismic reflection data as well as outcrop geology and earthquake seismology. Strong seismic reflections from within the Alaska Range orogen north of the Denali fault dip as steeply as 25°N and extend to depths as great as 20 km. These reflections outline a relict crustal architecture that in the past 20 yr has produced little seismicity. The Denali fault is nonreflective, probably because this fault dips steeply to vertical. The most intriguing finding from geophysical data is that earthquake aftershocks occurred above a rock body, with low electrical resistivity (>10 Ω·m), that is at depths below ∼10 km. Aftershocks of the Denali fault earthquake have mainly occurred shallower than 10 km. A high geothermal gradient may cause the shallow seismicity. Another possibility is that the low resistivity results from fluids, which could have played a role in locating the aftershock zone by reducing rock friction within the middle and lower crust.
Origin of the scaling laws of sediment transport
NASA Astrophysics Data System (ADS)
Ali, Sk Zeeshan; Dey, Subhasish
2017-01-01
In this paper, we discover the origin of the scaling laws of sediment transport under turbulent flow over a sediment bed, for the first time, from the perspective of the phenomenological theory of turbulence. The results reveal that for the incipient motion of sediment particles, the densimetric Froude number obeys the `(1 + σ)/4' scaling law with the relative roughness (ratio of particle diameter to approach flow depth), where σ is the spectral exponent of turbulent energy spectrum. However, for the bedforms, the densimetric Froude number obeys a `(1 + σ)/6' scaling law with the relative roughness in the enstrophy inertial range and the energy inertial range. For the bedload flux, the bedload transport intensity obeys the `3/2' and `(1 + σ)/4' scaling laws with the transport stage parameter and the relative roughness, respectively. For the suspended load flux, the non-dimensional suspended sediment concentration obeys the `-Z ' scaling law with the non-dimensional vertical distance within the wall shear layer, where Z is the Rouse number. For the scour in contracted streams, the non-dimensional scour depth obeys the `4/(3 - σ)', `-4/(3 - σ)' and `-(1 + σ)/(3 - σ)' scaling laws with the densimetric Froude number, the channel contraction ratio (ratio of contracted channel width to approach channel width) and the relative roughness, respectively.
Comparisons of seismic and electromagnetic structures of the MELT area
NASA Astrophysics Data System (ADS)
Evans, R. L.; Hirth, G.; Forsyth, D.; Baba, K.; Chave, A.
2003-04-01
Both seismic and electromagnetic (EM) models from the MELT experiment show similar broad scale features in the mantle beneath the Southern EPR. In all EM models, the conductivity in the upper 50-60˜km is considerably higher to the west of the ridge than to the east. Similarly, seismic models of short period Love waves are asymmetric in velocity structure, with slower velocities to the west of the ridge within the upper 60˜km. Body wave data suggest a similar asymmetry, although the depth extent is not as well defined. West of the ridge, both the higher conductivities and lower velocities have been attributed to the presence of a small melt fraction, although the anomalous regions estimated from different techniques do not entirely agree. To the east, there is a rapid increase in resistivity and S-wave velocity, indicating that within 25˜km of the axis the mantle above 70˜km is both dry and melt-free. Further away from the ridge, the boundary between a conductive asthenospheric mantle and a resistive overlying mantle flattens, at a depth around 60-80˜km. Rayleigh wave inversions also show fairly flat velocity contours with a broad minimum centered at 60-80˜km. Both of these features are consistent with a transition from dry to damp mantle. Also away from the ridge, EM data, shear-wave splitting, and Rayleigh waves all require an azimuthally anisotropic mantle consistent with the a-axis of olivine being preferentially oriented horizontally and perpendicular to the ridge. Anisotropy in EM data suggests damp mantle conditions in the 100-200˜km depth range, with enhanced conduction along the a-axis of olivine. Rayleigh waves are most sensitive to shallower structure and require anisotropy in the upper 70˜km. In the uppermost 40˜km, the most conductive and lowest velocity regions are close to the axis but offset 5-10˜km to the west. Some anisotropic inversions recover a vertically conductive feature that could be interpreted as a few percent melt distributed in vertically aligned channels or tubes. However, modeling of seismic data rule out the presence of a vertical melt bearing channel larger than 5˜km wide with a velocity reduction of 0.5˜kms-1 (3-4% melt fraction). This apparent discrepancy may provide clues as to how melt is distributed.
Holtschlag, David J.
2009-01-01
Two-dimensional hydrodynamic and transport models were applied to a 34-mile reach of the Ohio River from Cincinnati, Ohio, upstream to Meldahl Dam near Neville, Ohio. The hydrodynamic model was based on the generalized finite-element hydrodynamic code RMA2 to simulate depth-averaged velocities and flow depths. The generalized water-quality transport code RMA4 was applied to simulate the transport of vertically mixed, water-soluble constituents that have a density similar to that of water. Boundary conditions for hydrodynamic simulations included water levels at the U.S. Geological Survey water-level gaging station near Cincinnati, Ohio, and flow estimates based on a gate rating at Meldahl Dam. Flows estimated on the basis of the gate rating were adjusted with limited flow-measurement data to more nearly reflect current conditions. An initial calibration of the hydrodynamic model was based on data from acoustic Doppler current profiler surveys and water-level information. These data provided flows, horizontal water velocities, water levels, and flow depths needed to estimate hydrodynamic parameters related to channel resistance to flow and eddy viscosity. Similarly, dye concentration measurements from two dye-injection sites on each side of the river were used to develop initial estimates of transport parameters describing mixing and dye-decay characteristics needed for the transport model. A nonlinear regression-based approach was used to estimate parameters in the hydrodynamic and transport models. Parameters describing channel resistance to flow (Manning’s “n”) were estimated in areas of deep and shallow flows as 0.0234, and 0.0275, respectively. The estimated RMA2 Peclet number, which is used to dynamically compute eddy-viscosity coefficients, was 38.3, which is in the range of 15 to 40 that is typically considered appropriate. Resulting hydrodynamic simulations explained 98.8 percent of the variability in depth-averaged flows, 90.0 percent of the variability in water levels, 93.5 percent of the variability in flow depths, and 92.5 percent of the variability in velocities. Estimates of the water-quality-transport-model parameters describing turbulent mixing characteristics converged to different values for the two dye-injection reaches. For the Big Indian Creek dye-injection study, an RMA4 Peclet number of 37.2 was estimated, which was within the recommended range of 15 to 40, and similar to the RMA2 Peclet number. The estimated dye-decay coefficient was 0.323. Simulated dye concentrations explained 90.2 percent of the variations in measured dye concentrations for the Big Indian Creek injection study. For the dye-injection reach starting downstream from Twelvemile Creek, however, an RMA4 Peclet number of 173 was estimated, which is far outside the recommended range. Simulated dye concentrations were similar to measured concentration distributions at the first four transects downstream from the dye-injection site that were considered vertically mixed. Farther downstream, however, simulated concentrations did not match the attenuation of maximum concentrations or cross-channel transport of dye that were measured. The difficulty of determining a consistent RMA4 Peclet was related to the two-dimension model assumption that velocity distributions are closely approximated by their depth-averaged values. Analysis of velocity data showed significant variations in velocity direction with depth in channel reaches with curvature. Channel irregularities (including curvatures, depth irregularities, and shoreline variations) apparently produce transverse currents that affect the distribution of constituents, but are not fully accounted for in a two-dimensional model. The two-dimensional flow model, using channel resistance to flow parameters of 0.0234 and 0.0275 for deep and shallow areas, respectively, and an RMA2 Peclet number of 38.3, and the RMA4 transport model with a Peclet number of 37.2, may have utility for emergency-planning purposes. Emergency-response efforts would be enhanced by continuous streamgaging records downstream from Meldahl Dam, real-time water-quality monitoring, and three-dimensional modeling. Decay coefficients are constituent specific.
Warren, L.P.; Church, P.E.; Turtora, Michael
1996-01-01
Hydraulic conductivities of a sand and gravel aquifer were estimated by three methods: constant- head multiport-permeameter tests, grain-size analyses (with the Hazen approximation method), and slug tests. Sediment cores from 45 boreholes were undivided or divided into two or three vertical sections to estimate hydraulic conductivity based on permeameter tests and grain-size analyses. The cores were collected from depth intervals in the screened zone of the aquifer in each observation well. Slug tests were performed on 29 observation wells installed in the boreholes. Hydraulic conductivities of 35 sediment cores estimated by use of permeameter tests ranged from 0.9 to 86 meters per day, with a mean of 22.8 meters per day. Hydraulic conductivities of 45 sediment cores estimated by use of grain-size analyses ranged from 0.5 to 206 meters per day, with a mean of 40.7 meters per day. Hydraulic conductivities of aquifer material at 29 observation wells estimated by use of slug tests ranged from 0.6 to 79 meters per day, with a mean of 32.9 meters per day. The repeatability of estimated hydraulic conductivities were estimated to be within 30 percent for the permeameter method, 12 percent for the grain-size method, and 9.5 percent for the slug test method. Statistical tests determined that the medians of estimates resulting from the slug tests and grain-size analyses were not significantly different but were significantly higher than the median of estimates resulting from the permeameter tests. Because the permeameter test is the only method considered which estimates vertical hydraulic conductivity, the difference in estimates may be attributed to vertical or horizontal anisotropy. The difference in the average hydraulic conductivities estimated by use of each method was less than 55 percent when compared to the estimated hydraulic conductivity determined from an aquifer test conducted near the study area.
Mercury speciation in sediments at a municipal sewage sludge marine disposal site.
Shoham-Frider, E; Shelef, G; Kress, N
2007-12-01
Mercury speciation was performed in excess activated sewage sludge (ASS) and in marine sediments collected at the AAS disposal site off the Mediterranean coast of Israel in order to characterize the spatial and vertical distribution of different mercury species and assess their environmental impact. Total Hg (HgT) concentrations ranged between 0.19 and 1003ng/g at the polluted stations and 5.7 and 72.8ng/g at the background station, while the average concentration in ASS was 1181+/-273ng/g. Only at the polluted stations did HgT concentrations decrease exponentially with sediment depth, reaching background values at 16-20cm, the vertical distribution resulting from mixing of natural sediment with ASS solids and bioturbation by large populations of polycheates. Average Methyl Hg (MeHg) concentration in ASS was 39.7+/-7.1ng/g, ca. 3% of the HgT concentration, while the background concentrations ranged between 0.1 and 0.61ng/g. MeHg concentrations in surficial polluted sediments were 0.7-5.9ng/g (ca. 0.5% of the HgT) and decreased vertically, similar to HgT. A positive correlation between MeHg and Hg only at the polluted stations, higher MeHg concentrations at the surface of the sediment and not below the redoxline, and no seasonality in the concentrations suggest that the MeHg originated from the ASS and not from in situ methylation. By doing selective extractions, we found that ca. 80% of the total Hg in ASS and polluted sediments was strongly bound to amorphous organo-sulfur and to inorganic sulfide species that are not bioavailable. The fractions with potential bioaccessible Hg had maximal concentrations in the range in which biotic effects should be expected. Therefore, although no bioaccumulation was found in the biota in the area, the concentration in the polluted sediments are not negligible and should be carefully monitored.
A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves
NASA Technical Reports Server (NTRS)
Sassi, Fabrizio; Garcia, Rolando R.
1994-01-01
A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.
NASA Astrophysics Data System (ADS)
Zhidkin, A. P.; Gennadiev, A. N.
2016-07-01
Approaches to the quantification of the vertical translocation rate of soil solid-phase material by the magnetic tracer method have been developed; the tracer penetration depth and rate have been determined, as well as the radial distribution of the tracer in chernozems (Chernozems) and dark gray forest soils (Luvisols) of Belgorod oblast under natural steppe and forest vegetation and in arable lands under agricultural use of different durations. It has been found that the penetration depth of spherical magnetic particles (SMPs) during their 150-year-occurrence in soils of a forest plot is 68 cm under forest, 58 cm on a 100-year old plowland, and only 49 cm on a 150-year-old plowland. In the chernozems of the steppe plot, the penetration depth of SMPs exceeds the studied depth of 70 cm both under natural vegetation and on the plowlands. The penetration rates of SMPs deep into the soil vary significantly among the key plots: 0.92-1.32 mm/year on the forest plot and 1.47-1.63 mm/year on the steppe plot, probably because of the more active recent turbation activity of soil animals.
Kim, Young Sug; Jeong, Chang Su; Seong, Gi Tak; Han, In Sung; Lee, Young Sik
2010-09-01
The diurnal vertical migration of Cochlodinium polykrikoides (C. polykrikoides), which caused a red tide in the Korean coastal waters of the East Sea/Sea of Japan in September 2003, was examined by determining the time-dependent changes in the density of living cells in relation to the depth of the water column. The ascent of this species into the surface layer (depth of water 2 m) occurred during 1400-1500. The descent started at 1600 and a high distribution rate (86%) at 15-20 m was observed at 0300. During the ascent, the cells were widely distributed at each depth level from 0600 hr and at 0800-1100, the cells were primarily distributed in the middle layer (0-6 m). The concentration of dissolved inorganic nitrogen was generally < or = 2.86 micromol l(-1), but at 1400-1500, the concentration in the surface layer reduced to < or = 0.14 micromol l(-1). Moreover, the concentration gradually increased as the depth increased to > or = 5 m. These results showed that the nutrient-consumption rate associated with the proliferation of C. polykrikoides during a red tide is more influenced by the inorganic-nitrogen resources ratherthan the inorganic-phosphorus compounds.
Program helps quickly calculate deviated well path
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, M.P.
1993-11-22
A BASIC computer program quickly calculates the angle and measured depth of a simple directional well given only the true vertical depth and total displacement of the target. Many petroleum engineers and geologists need a quick, easy method to calculate the angle and measured depth necessary to reach a target in a proposed deviated well bore. Too many of the existing programs are large and require much input data. The drilling literature is full of equations and methods to calculate the course of well paths from surveys taken after a well is drilled. Very little information, however, covers how tomore » calculate well bore trajectories for proposed wells from limited data. Furthermore, many of the equations are quite complex and difficult to use. A figure lists a computer program with the equations to calculate the well bore trajectory necessary to reach a given displacement and true vertical depth (TVD) for a simple build plant. It can be run on an IBM compatible computer with MS-DOS version 5 or higher, QBasic, or any BASIC that does no require line numbers. QBasic 4.5 compiler will also run the program. The equations are based on conventional geometry and trigonometry.« less
Vertical Cable Seismic Survey for Hydrothermal Deposit
NASA Astrophysics Data System (ADS)
Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.
2012-04-01
The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques. We have carried out two field surveys in FY2011. One is a 3D survey with a boomer for a high-resolution surface source and the other one for an actual field survey in the Izena Cauldron an active hydrothermal area in the Okinawa Trough. Through these surveys, the VCS will become a practical exploration tool for the exploration of seafloor hydrothermal deposits.