Sample records for vertical drains

  1. Prefabricated vertical drains, vol. I : engineering guidelines.

    DOT National Transportation Integrated Search

    1986-09-01

    This volume presents procedures and guidelines applicable to the design and instal tion of prefabricated vertical drains to accelerate consolidation of soils. The contents represent the Consultant's interpretation of the state-of-the-art as of August...

  2. Evaluation of wick drain performance in Virginia soils.

    DOT National Transportation Integrated Search

    2003-01-01

    Prefabricated vertical drains (PVD), also known as wick drains, are commonly used to accelerate the consolidation of fine-grained soils in order to reduce future settlements and increase shear strength. Various drain designs are currently on the mark...

  3. Reduction in wick drain effectiveness with spacing for Utah silts and clays.

    DOT National Transportation Integrated Search

    2012-04-01

    Although decreasing the spacing of vertical drains usually decreases the time for consolidation, previous field tests have shown that there is a critical drain spacing for which tighter spacing does not decrease the time for consolidation. This...

  4. All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer

    NASA Astrophysics Data System (ADS)

    Wong, Man Hoi; Goto, Ken; Morikawa, Yoji; Kuramata, Akito; Yamakoshi, Shigenobu; Murakami, Hisashi; Kumagai, Yoshinao; Higashiwaki, Masataka

    2018-06-01

    A vertical β-Ga2O3 metal–oxide–semiconductor field-effect transistor featuring a planar-gate architecture is presented. The device was fabricated by an all-ion-implanted process without requiring trench etching or epitaxial regrowth. A Mg-ion-implanted current blocking layer (CBL) provided electrical isolation between the source and the drain except at an aperture opening through which drain current was conducted. Successful transistor action was realized by gating a Si-ion-implanted channel above the CBL. Thermal diffusion of Mg induced a large source–drain leakage current through the CBL, which resulted in compromised off-state device characteristics as well as a reduced peak extrinsic transconductance compared with the results of simulations.

  5. Partially to fully saturated flow through smooth, clean, open fractures: qualitative experimental studies

    NASA Astrophysics Data System (ADS)

    Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.

    2018-05-01

    Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.

  6. Durability of Drainage Improvement by Combination of Main Drain and Trench Drains with Vertical Drains in Clayey Field Converted from Paddy to Upland Use

    NASA Astrophysics Data System (ADS)

    Adachi, Kazuhide; Ohno, Satoshi; Furuhata, Masami; Ogura, Chikara; Tanimoto, Takeshi

    The drainage efficiency of a subsurface drainage system for avoidance of standing water on the plow pan of clayey field was evaluated. A subsurface drainage system with a main drain and orthogonally adjoined rice husk trench drains joined by vertical rice husk drains was constructed on a test plot and compared to an identical control plot of paddy field converted to upland use under soybean cultivation. The ratio of total underdrain discharge to rainfall in the improved plot greatly increased over two years compared to that in a control plot. In the improved plot, the peak underdrain discharge per hour associated with some heavy rainfalls was around 3 mm/h in the first year but decreased to about 2 mm/h in the second year. By improving drainage in the paddy field, standing water on the plow pan was quickly eliminated after rain events and the period of flooding on the plow pan during the soybean growing season was greatly reduced. However, underdrain discharge in the improved plot decreased greatly in the third year to be at the same level as in the control plot, and rain water flooded the plow pan for extended periods of time.

  7. Soil settlement analysis in soft soil by using preloading system and prefabricated vertical draining runway of Kualanamu Airport

    NASA Astrophysics Data System (ADS)

    Roesyanto; Iskandar, R.; Silalahi, S. A.; Fadliansyah

    2018-02-01

    The method of soil improvement, using the combination of prefabricated vertical drain (PVD) and preloading, was used to accelerate the process of consolidation and the consolidation settlement in the runway of Kualanamu International Airport, which was constructed on the soft soil sediment like silty clay. In this research, the investigated area was the runway of Kualanamu International Airport zone I which had 11 meter-thickness of soft soil. Geotechnic instruments surveyed was settlement plate. Monitoring was done toward the behavior of landfill such as basic soil settlement. The result were compared with the analysis of finite element method of full scale in Mohr-Coulomb model by verifying the vertical drain of asymmetric unit cell and equivalent plane strain unit cell condition. The results of the research showed that there were an interesting behavior between the data in field observation and finite element of Mohr-Coulomb model. It was also found that the result of soil settlement of finite element method of Mohr-Coulomb model was closed to the result of settlement plate monitoring.

  8. Design of double gate vertical tunnel field effect transistor using HDB and its performance estimation

    NASA Astrophysics Data System (ADS)

    Seema; Chauhan, Sudakar Singh

    2018-05-01

    In this paper, we demonstrate the double gate vertical tunnel field-effect transistor using homo/hetero dielectric buried oxide (HDB) to obtain the optimized device characteristics. In this concern, the existence of double gate, HDB and electrode work-function engineering enhances DC performance and Analog/RF performance. The use of electrostatic doping helps to achieve higher on-current owing to occurrence of higher tunneling generation rate of charge carriers at the source/epitaxial interface. Further, lightly doped drain region and high- k dielectric below channel and drain region are responsible to suppress the ambipolar current. Simulated results clarifies that proposed device have achieved the tremendous performance in terms of driving current capability, steeper subthreshold slope (SS), drain induced barrier lowering (DIBL), hot carrier effects (HCEs) and high frequency parameters for better device reliability.

  9. Vertical architecture for enhancement mode power transistors based on GaN nanowires

    NASA Astrophysics Data System (ADS)

    Yu, F.; Rümmler, D.; Hartmann, J.; Caccamo, L.; Schimpke, T.; Strassburg, M.; Gad, A. E.; Bakin, A.; Wehmann, H.-H.; Witzigmann, B.; Wasisto, H. S.; Waag, A.

    2016-05-01

    The demonstration of vertical GaN wrap-around gated field-effect transistors using GaN nanowires is reported. The nanowires with smooth a-plane sidewalls have hexagonal geometry made by top-down etching. A 7-nanowire transistor exhibits enhancement mode operation with threshold voltage of 1.2 V, on/off current ratio as high as 108, and subthreshold slope as small as 68 mV/dec. Although there is space charge limited current behavior at small source-drain voltages (Vds), the drain current (Id) and transconductance (gm) reach up to 314 mA/mm and 125 mS/mm, respectively, when normalized with hexagonal nanowire circumference. The measured breakdown voltage is around 140 V. This vertical approach provides a way to next-generation GaN-based power devices.

  10. The hydrology of a drained topographical depression within an agricutlural field in north-central Iowa

    USGS Publications Warehouse

    Roth, Jason L.; Capel, Paul D.

    2012-01-01

    North-central Iowa is an agriculturally intensive area comprising the southeastern portion of the Prairie Pothole Region, a landscape containing a high density of enclosed topographical depressions. Artificial drainage practices have been implemented throughout the area to facilitate agricultural production. Vertical surface drains are utilized to drain the topographical depressions that accumulate water. This study focuses on the hydrology of a drained topographical depression located in a 39.5 ha agricultural field. To assess the hydrology of the drained depression, a water balance was constructed for 11 ponding events during the 2008 growing season. Continuous pond and groundwater level data were obtained with pressure transducers. Flows into the vertical surface drain were calculated based on pond depth. Precipitation inflows and evaporative outflows of the ponds were calculated using climatic data. Groundwater levels were used to assess groundwater/pond interactions. Results of the water balances show distinct differences between the inflows to and outflows from the depression based on antecedent conditions. In wet conditions, groundwater inflow sustained the ponds. The ponds receded only after the groundwater level declined to below the land surface. In drier conditions, groundwater was not a source of water to the depression. During these drier conditions, infiltration comprised 30% of the outflows from the depression during declining pond stages. Over the entire study period, the surface drain, delivering water to the stream, was the largest outflow from the pond, accounting for 97% of the outflow, while evapotranspiration was just 2%. Precipitation onto the pond surface proved to be a minor component, accounting for 4% of the total inflows.

  11. [Dynamic simulation analysis of effects of project of ditching for drain on Oncomelania hupensis snail control and flood prevention security in Dongting Lake region].

    PubMed

    Zheng, Zhu; Wang-Yuan, Wei; Qian-Hui, Liu; Ben-Jiao, Hu; Ze-Min, Sun

    2017-01-19

    To evaluate the effects of the project of ditching for drain on Oncomelania hupensis snail control and flood prevention security and explore the optimal engineering design plan in Dongting Lake region. A retrospective study was performed on the previous studies about the project of ditching for drain. The reference values of project indices were determined. The outside levee of Nanhu New Distinct of Yueyang City in Dongting Lake region was selected as the study area, and the cross section of marshland perpendicular to the center line of the levee was extracted to research. According to the situations of various water levels, a dynamic simulation was performed on the effect and security of the project of ditching for drain through the software FLAC 3D . The retrospective study showed that the project would be effective when the relatively subsoil water level decreased by 0.35 m, and the soil water content decreased correspondingly. The dynamic simulation by FLAC 3D showed that the minimum safe distances between transverse ditch 1, vertical ditch and levee toe should be 25 m and 13 m respectively. The digging depth of transverse ditch and vertical ditch should be 1.2 m and 1.0 m respectively. If the width of marshland in drought period was less than 500 m, one transverse ditch was efficient. Otherwise, more transverse ditches should be set with the intervals of 300 m. The project of ditching for drain is an effective ecological snail elimination method. Optimizing the digging depth of ditches and distances between transverse ditches, vertical ditch and levee toe will ensure the effects and security of the project.

  12. The decline of soil due to the pile of highway project Medan-Kualanamu (STA 35 + 901) with the finite element method

    NASA Astrophysics Data System (ADS)

    Hastuty, I. P.; Roesyanto; Sihite, A. B.

    2018-02-01

    Consolidation is the process of discharge of water from the ground through the pore cavity. Consolidation occurs in soft soil or unstable soil that allows an improvement in order to make the soil more stable. The method of using Prefabricated Vertical Drain (PVD) is one way to improve unstable soils. PVD works like a sand column that can drain water vertically. This study aims to determine the decrease, pore water pressure and soil consolidation rate with Prefabricated Vertical Drain (PVD) and without PVD analytically and using finite element method that affect the duration of soil decline to reach 90% consolidation or in other words soil does not decline anymore. Based on the analytical calculation, the decrease obtained is equal to 0.47 m meanwhile the result of calculation using finite element method is 0.45 m. The consolidation rate obtained from analytical calculation is 19 days with PVD and 115 days without PVD. The consolidation rate obtained from finite element method is 63 days with PVD and 110 days without PVD. And the pore water pressure is 0.92 KN/m2.

  13. The Revival of a Failed Constructed Wetland Treating of a High Fe Load AMD

    Treesearch

    A.D. Karathanasis; C.D. Barton

    1999-01-01

    Acid mine drainage (AMD) from abandoned mines has significantly impaired water quality in eastern Kentucky. A small surface flow wetland constructed in 1989 to reduce AMD effects and subsequently failed after six months of operation was renovated by incorporating anoxic limestone drains (ALDs) and anaerobic subsurface drains promoting vertical flow through successive...

  14. Gate Tunable Transport in Graphene/MoS₂/(Cr/Au) Vertical Field-Effect Transistors.

    PubMed

    Nazir, Ghazanfar; Khan, Muhammad Farooq; Aftab, Sikandar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Rehman, Malik Abdul; Seo, Yongho; Eom, Jonghwa

    2017-12-28

    Two-dimensional materials based vertical field-effect transistors have been widely studied due to their useful applications in industry. In the present study, we fabricate graphene/MoS₂/(Cr/Au) vertical transistor based on the mechanical exfoliation and dry transfer method. Since the bottom electrode was made of monolayer graphene (Gr), the electrical transport in our Gr/MoS₂/(Cr/Au) vertical transistors can be significantly modified by using back-gate voltage. Schottky barrier height at the interface between Gr and MoS₂ can be modified by back-gate voltage and the current bias. Vertical resistance (R vert ) of a Gr/MoS₂/(Cr/Au) transistor is compared with planar resistance (R planar ) of a conventional lateral MoS₂ field-effect transistor. We have also studied electrical properties for various thicknesses of MoS₂ channels in both vertical and lateral transistors. As the thickness of MoS₂ increases, R vert increases, but R planar decreases. The increase of R vert in the thicker MoS₂ film is attributed to the interlayer resistance in the vertical direction. However, R planar shows a lower value for a thicker MoS₂ film because of an excess of charge carriers available in upper layers connected directly to source/drain contacts that limits the conduction through layers closed to source/drain electrodes. Hence, interlayer resistance associated with these layers contributes to planer resistance in contrast to vertical devices in which all layers contribute interlayer resistance.

  15. 2D Vertical Heterostructures for Novel Tunneling Device Applications

    DTIC Science & Technology

    2017-03-01

    controlled by a combination of the drain-source voltage bias (VDS) and the top and bottom gate biases (VTG and VBG, respectively). The drain-source...properties that can potentially overcome some of the limitations of epitaxial 3D semiconductor heterostructures. Simulations of 2D...interlayer barrier, such as h-BN, a high-k dielectric material, or a van der Waal gap. Under appropriate bias conditions, charge carriers can tunnel

  16. Localized Glacier Deformation Associated with Filling and Draining of a Glacier-Dammed Lake and Implications for Outburst Flood Hydraulics

    NASA Astrophysics Data System (ADS)

    Cunico, M. L.; Walder, J. S.; Fountain, A. G.; Trabant, D. C.

    2001-12-01

    During the summer of 2000, we measured displacements of 22 survey targets on the surface of Kennicott Glacier, Alaska, in the vicinity of Hidden Creek Lake, an ice-dammed lake in a tributary valley that fills and drains annually. Targets were distributed over a domain about equal in width to the lake, from near the glacier/lake margin to a distance of about 1 km from the margin. Targets were surveyed over a 24-day period as the lake filled and then drained. Lake stage was independently monitored. Vertical movement of targets generally fell off with distance d from the lake. As the lake filled, targets with d < 300 to 400 m rose at nearly the same rate as the lake--typically about 0.5 m/d--with a few targets rising slightly faster than the lake. The rate of vertical movement fell off rapidly with distance from the lake: for d = ca. 600 m--roughly twice the local ice thickness--targets moved upward only about 10% as fast as lake stage. Vertical movement of targets with d > ca. 1 km seemed to be uncorrelated with lake stage. The general pattern is consistent with the idea that a wedge of water extended beneath the glacier to a distance of perhaps 300 to 400 m from the visible margin of the lake and exerts buoyant stresses on the ice that were transmitted into the main body of the glacier and caused flexure. This scenario bears some resemblance to tidal deflections of ice shelves or tidewater glaciers. For a given value of lake stage, target elevations were invariably higher as the lake drained than as the lake filled. Moreover, survey targets at a distance of about 400 m or more from the lake continued to rise for some time even after the lake began to drain. The lag time between the beginning of lake drainage and the beginning of target downdrop increased with distance from the lake, with the lag being about 14 hours at a distance of 400 m from the lake. (The lake drained completely in approximately 75 hours.) The likeliest explanations for the departure from reversibility and the existence of the time lag are either (i) a "viscous" response of the glacier to the flexural stresses imposed by the subglacial water wedge, or (ii) movement of water from the lake into temporary storage--a sort of hydraulic jacking. We favor the latter explanation and suggest that as the lake drained, water "backed up" from a main drainage channel into a basal cavity system and perhaps englacial voids as well; the stored water then drained back out as pressure eventually fell in the main channel. Assuming that all the vertical downdrop of the ice is due to the evacuation of water, the total volume of the putative subglacial "wedge" plus the water released from distributed storage is about 7 to 11 million cubic meters, or about 25 to 40% of the volume of the subaerial lake.

  17. Features of lava lake filling and draining and their implications for eruption dynamics

    USGS Publications Warehouse

    Stovall, W.K.; Houghton, Bruce F.; Harris, A.J.L.; Swanson, D.A.

    2009-01-01

    Lava lakes experience filling, circulation, and often drainage depending upon the style of activity and location of the vent. Features formed by these processes have proved difficult to document due to dangerous conditions during the eruption, inaccessibility, and destruction of features during lake drainage. Kilauea Iki lava lake, Kilauea, Hawai'i, preserves many such features, because lava ponded in a pre-existing crater adjacent to the vent and eventually filled to the level of, and interacted with, the vent and lava fountains. During repeated episodes, a cyclic pattern of lake filling to above vent level, followed by draining back to vent level, preserved features associated with both filling and draining. Field investigations permit us to describe the characteristic features associated with lava lakes on length scales ranging from centimeters to hundreds of meters in a fashion analogous to descriptions of lava flows. Multiple vertical rinds of lava coating the lake walls formed during filling as the lake deepened and lava solidified against vertical faces. Drainage of the lake resulted in uneven formation of roughly horizontal lava shelves on the lakeward edge of the vertical rinds; the shelves correlate with stable, staggered lake stands. Shelves either formed as broken relict slabs of lake crust that solidified in contact with the wall or by accumulation, accretion, and widening at the lake surface in a dynamic lateral flow regime. Thin, upper lava shelves reflect an initially dynamic environment, in which rapid lake lowering was replaced by slower and more staggered drainage with the formation of thicker, more laterally continuous shelves. At all lava lakes experiencing stages of filling and draining these processes may occur and result in the formation of similar sets of features. ?? Springer-Verlag 2009.

  18. Estimation and Uncertainty of Recent Carbon Accumulation and Vertical Accretion in Drained and Undrained Forested Peatlands of the Southeastern USA

    NASA Astrophysics Data System (ADS)

    Drexler, Judith Z.; Fuller, Christopher C.; Orlando, James; Salas, Antonia; Wurster, Frederic C.; Duberstein, Jamie A.

    2017-10-01

    The purpose of this study was to determine how drainage impacts carbon densities and recent rates (past 50 years) of vertical accretion and carbon accumulation in southeastern forested peatlands. We compared these parameters in drained maple-gum (MAPL), Atlantic white cedar (CDR), and pocosin (POC) communities in the Great Dismal Swamp National Wildlife Refuge (GDS) of Virginia/North Carolina and in an intact (undrained) CDR swamp in the Alligator River National Wildlife Refuge (AR) of North Carolina. Peat cores were analyzed for bulk density, percent organic carbon, and 137Cs and 210Pb. An uncertainty analysis of both 137Cs and 210Pb approaches was used to constrain error at least partially related to mobility of both radioisotopes. GDS peats had lower porosities (89.6% (SD = 1.71) versus 95.3% (0.18)) and higher carbon densities (0.082 (0.021) versus 0.037 (0.009) g C cm-3) than AR. Vertical accretion rates (0.10-0.56 cm yr-1) were used to estimate a time period of 84-362 years for reestablishment of peat lost during the 2011 Lateral West fire at the GDS. Carbon accumulation rates ranged from 51 to 389 g C m-2 yr-1 for all sites. In the drained (GDS) versus intact (AR) CDR sites, carbon accumulation rates were similar with 137Cs (87GDS versus 92AR g C m-2 yr-1) and somewhat less at the GDS than AR as determined with 210Pb (111GDS versus 159AR g C m-2 yr-1). Heightened productivity and high polyphenol content of peat may be responsible for similar rates of carbon accumulation in both drained and intact CDR peatlands.

  19. Paleosol sequences within Lower Permian cyclothems of Kansas: Evidence of climatic cyclicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, K.B.; McCahon, T.J.

    The Lower Permian (Wolfcampian) cycles of Kansas are broadly similar to the better known Upper Pennsylvanian (Missourian) cyclothems of the midcontinent. The morphological features of paleosols within five successive variegated mudstone units of the Council Grove and Chase Groups have been described in detail. A consistent pattern has emerged with aridic paleosols near the bases of the mudstones intervals and vertic paleosols toward the tops. The lower paleosol profiles are typically calcareous with well-developed carbonate accumulation (Bk) horizons. These may contain carbonate nodules, rhizocretions, or less commonly calcretes (K-horizons). Drab haloed root races are a common feature of these grayishmore » reddish brown B horizons. The reddish color records oxidation under fairly well drained conditions, the underlying greenish gray horizons probably indicating the average position of the water table. Thin greenish gray to gray elluvial (E) horizons are preserved at the tops of many profiles. The upper paleosols within each variegated interval are characterized by well-developed vertic structures. Pedogenic slickensides, pseudoanticlines, and occasional gilgai result from the expansion and contraction of the soil such as occurs in a seasonal wet/dry environment. These paleosols are greenish gray to olive gray and often have abundant concertina root traces. The absence of a red oxidized horizon suggests more poorly drained conditions. The upward trend from drier, better drained soils to vertic, poorly drained soils could have been generated by short-term climate change toward increasing, though still seasonal, precipitation. If so, this observation suggests that cyclic climatic change may have been an important factor in generating Lower Permian cyclothems. Such a conclusion is consistent with other evidence that the limestone and shale facies of these cyclothems were deposited in consistently shallow depositional environments.« less

  20. Flexural-response of the McMurdo Ice Shelf to surface lake filling and drainage

    NASA Astrophysics Data System (ADS)

    Banwell, A. F.; MacAyeal, D. R.; Willis, I.; Macdonald, G. J.; Goodsell, B.

    2017-12-01

    Antarctic ice-shelf instability and break-up, as exhibited by the Larsen B ice shelf in 2002, remains one of the most difficult glaciological processes to observe directly. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have previously been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain. During the austral summer of 2016/2017, we monitored the filling and draining of four surface lakes on the McMurdo Ice Shelf, Antarctica, and the effect of these processes on ice-shelf flexure. Water-depth data from pressure sensors reveal that two lakes filled to >2 m in depth and subsequently drained over multiple week timescales, which had a simultaneous effect on vertical ice deflection in the area. Differential GPS data from 12 receivers over three months show that vertical deflection varies as a function of distance from the maximum load change (i.e. at the lake centre). Using remote sensing techniques applied to both Landsat 8 and Worldview imagery, we also quantify the meltwater volume in these two lakes through the melt season, which, together with the vertical deflection data, are used to constrain key flexural parameter values in numerical models of ice-shelf flexure.

  1. Floating baffle to improve efficiency of liquid transfer from tanks

    NASA Technical Reports Server (NTRS)

    Howard, F. S. (Inventor)

    1973-01-01

    A floating baffle is described which rides up and down on a vertical shaft over a drain in a tank as the liquid level within the tank varies. When the baffle is in the raised position, the liquid is allowed to flow out of the drain at an unrestricted rate. When the baffle is in the lowered position, pull-through of air or gas that is above the liquid is presented, which would interfere and reduce the flow of liquid from the tank.

  2. Low voltage operation of GaN vertical nanowire MOSFET

    NASA Astrophysics Data System (ADS)

    Son, Dong-Hyeok; Jo, Young-Woo; Seo, Jae Hwa; Won, Chul-Ho; Im, Ki-Sik; Lee, Yong Soo; Jang, Hwan Soo; Kim, Dae-Hyun; Kang, In Man; Lee, Jung-Hee

    2018-07-01

    GaN gate-all-around (GAA) vertical nanowire MOSFET (VNWMOSFET) with channel length of 300 nm and diameter of 120 nm, the narrowest GaN-based vertical nanowire transistor ever achieved from the top-down approach, was fabricated by utilizing anisotropic side-wall wet etching in TMAH solution and photoresist etch-back process. The VNWMOSFET exhibited output characteristics with very low saturation drain voltage of less than 0.5 V, which is hardly observed from the wide bandgap-based devices. Simulation results indicated that the narrow diameter of the VNWMOSFET with relatively short channel length is responsible for the low voltage operation. The VNWMOSFET also demonstrated normally-off mode with threshold voltage (VTH) of 0.7 V, extremely low leakage current of ∼10-14 A, low drain-induced barrier lowering (DIBL) of 125 mV/V, and subthreshold swing (SS) of 66-122 mV/decade. The GaN GAA VNWMOSFET with narrow channel diameter investigated in this work would be promising for new low voltage logic application. He has been a Professor with the School of Electrical Engineering and Computer Science, Kyungpook National University, Daegu, Korea, since 1993

  3. Remaining Sites Verification Package for the 100-F-46, 119-F Stack Sampling French Drain, Waste Site Reclassification Form 2008-021

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. M. Capron

    2008-08-08

    The 100-F-46 french drain consisted of a 1.5 to 3 m long, vertically buried, gravel-filled pipe that was approximately 1 m in diameter. Also included in this waste site was a 5 cm cast-iron pipeline that drained condensate from the 119-F Stack Sampling Building into the 100-F-46 french drain. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do notmore » preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.« less

  4. Analysis and optimization of RC delay in vertical nanoplate FET

    NASA Astrophysics Data System (ADS)

    Woo, Changbeom; Ko, Kyul; Kim, Jongsu; Kim, Minsoo; Kang, Myounggon; Shin, Hyungcheol

    2017-10-01

    In this paper, we have analyzed short channel effects (SCEs) and RC delay with Vertical nanoplate FET (VNFET) using 3-D Technology computer-aided design (TCAD) simulation. The device is based on International Technology Road-map for Semiconductor (ITRS) 2013 recommendations, and it has initially gate length (LG) of 12.2 nm, channel thickness (Tch) of 4 nm, and spacer length (LSD) of 6 nm. To obtain improved performance by reducing RC delay, each dimension is adjusted (LG = 12.2 nm, Tch = 6 nm, LSD = 11.9 nm). It has each characteristic in this dimension (Ion/Ioff = 1.64 × 105, Subthreshold swing (S.S.) = 73 mV/dec, Drain-induced barrier lowering (DIBL) = 60 mV/V, and RC delay = 0.214 ps). Furthermore, with long shallow trench isolation (STI) length and thick insulator thickness (Ti), we can reduce RC delay from 0.214 ps to 0.163 ps. It is about a 23.8% reduction. Without decreasing drain current, there is a reduction of RC delay as reducing outer fringing capacitance (Cof). Finally, when source/drain spacer length is set to be different, we have verified RC delay to be optimum.

  5. Skyrmion based universal memory operated by electric current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zang, Jiadong; Chien, Chia-Ling; Li, Yufan

    2017-09-26

    A method for generating a skyrmion, comprising: depositing a vertical metallic nanopillar electrode on a first side of a helimagnetic thin film, the helimagnetic thin film having a contact on a second side to provide a current drain; injecting a current through the vertical metallic nanopillar electrode to generate a rotating field; and applying a static upward magnetic field perpendicular to the helimagnetic thin film to maintain an FM phase background.

  6. Local response of a glacier to annual filling and drainage of an ice-marginal lake

    USGS Publications Warehouse

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.

    2006-01-01

    Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  7. Estimation and uncertainty of recent carbon accumulation and vertical accretion in drained and undrained forested peatlands of the southeastern USA

    USGS Publications Warehouse

    Drexler, Judith; Fuller, Christopher C.; Orlando, James; Salas, Antonia; Wurster, Frederic C.; Duberstein, Jamie A.

    2017-01-01

    The purpose of this study was to determine how drainage impacts carbon densities and recent rates (past 50 years) of vertical accretion and carbon accumulation in southeastern forested peatlands. We compared these parameters in drained maple-gum (MAPL), Atlantic white cedar (CDR), and pocosin (POC) communities in the Great Dismal Swamp National Wildlife Refuge (GDS) of Virginia/North Carolina and in an intact (undrained) CDR swamp in the Alligator River National Wildlife Refuge (AR) of North Carolina. Peat cores were analyzed for bulk density, percent organic carbon, and 137Cs and 210Pb. An uncertainty analysis of both 137Cs and 210Pb approaches was used to constrain error at least partially related to mobility of both radioisotopes. GDS peats had lower porosities (89.6% (SD = 1.71) versus 95.3% (0.18)) and higher carbon densities (0.082 (0.021) versus 0.037 (0.009) g C cm−3) than AR. Vertical accretion rates (0.10–0.56 cm yr−1) were used to estimate a time period of ~84–362 years for reestablishment of peat lost during the 2011 Lateral West fire at the GDS. Carbon accumulation rates ranged from 51 to 389 g C m−2 yr−1 for all sites. In the drained (GDS) versus intact (AR) CDR sites, carbon accumulation rates were similar with 137Cs (87GDS versus 92AR g C m−2 yr−1) and somewhat less at the GDS than AR as determined with 210Pb (111GDS versus 159AR g C m−2 yr−1). Heightened productivity and high polyphenol content of peat may be responsible for similar rates of carbon accumulation in both drained and intact CDR peatlands.

  8. Apparatus for supporting contactors used in extracting nuclear materials from liquids

    DOEpatents

    Leonard, Ralph A.; Frank, Robert C.

    1991-01-01

    Apparatus is provided for supporting one or more contactor stages used to remove radioactive materials from aqueous solutions. The contactor stages include a housing having an internal rotor, a motor secured to the top of the housing for rotating the rotor, and a drain in the bottom of the housing. The support apparatus includes two or more vertical members each secured to a ground support that is horizontal and perpendicular to the frame member, and a horizontally disposed frame member. The frame member may be any suitable shape, but is preferably a rectangular tube having substantially flat, spaced top and bottom surfaces separated by substantially vertical side surfaces. The top and bottom surfaces each have an opening through which the contactor housing is secured so that the motor is above the frame and the drain is below the frame during use.

  9. Effects of morphological control on the characteristics of vertical-type OTFTs using Alq3.

    PubMed

    Kim, Young Do; Park, Jong Wook; Kang, In Nam; Oh, Se Young

    2008-09-01

    We have fabricated vertical-type organic thin-film transistors (OTFTs) using tris-(8-hydroxyquinoline) aluminum (Alq(3)) as an n-type active material. Vertical-type OTFT using Alq(3) has a layered structure of Al(source electrode)/Alq(3)(active layer)/Al(gate electrode)/Alq(3)(active layer)/ITO glass(drain electrode). Alq(3) thin films containing various surface morphologies could be obtained by the control of evaporation rate and substrate temperature. The effects of the morphological control of Alq(3) thin layer on the grain size and the flatness of film surface were investigated. The characteristics of vertical-type OTFT significantly influenced the growth condition of Alq(3) layer.

  10. Characterization of a vertically movable gate field effect transistor using a silicon-on-insulator wafer

    NASA Astrophysics Data System (ADS)

    Song, In-Hyouk; Forfang, William B. D.; Cole, Bryan; You, Byoung Hee

    2014-10-01

    The vertically movable gate field effect transistor (VMGFET) is a FET-based sensing element, whose gate moves in a vertical direction over the channel. A VMGFET gate covers the region between source and drain. A 1 μm thick air layer separates the gate and the substrate of the VMGFET. A novel fabrication process to form a VMGFET using a silicon-on-insulator (SOI) wafer provides minimal internal stress of the gate structure. The enhancement-type n-channel VMGFET is fabricated with the threshold voltage of 2.32 V in steady state. A non-inverting amplifier is designed and integrated on a printable circuit board (PCB) to characterize device sensitivity and mechanical properties. The VMGFET is mechanically coupled to a speaker membrane to apply mechanical vibration. The oscillated drain current of FET are monitored and sampled with NI LabVIEW. The frequency of the output signal correlates with that of the input stimulus. The resonance frequency of the fabricated VMGFET is measured to be 1.11 kHz. The device sensitivity linearly increases by 0.106 mV/g Hz in the range of 150 Hz and 1 kHz.

  11. Improvement of reverse blocking performance in vertical power MOSFETs with Schottky-drain-connected semisuperjunctions

    NASA Astrophysics Data System (ADS)

    Mao, Wei; Wang, Hai-Yong; Wang, Xiao-Fei; Du, Ming; Zhang, Jin-Feng; Zheng, Xue-Feng; Wang, Chong; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue

    2017-04-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61574112, 61334002, 61306017, 61474091, and 61574110) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 605119425012).

  12. Generation of airborne Listeria innocua from model floor drains.

    PubMed

    Berrang, Mark E; Frank, Joseph F

    2012-07-01

    Listeria monocytogenes can colonize floor drains in poultry processing and further processing facilities, remaining present even after cleaning and disinfection. Therefore, during wash down, workers exercise caution to avoid spraying hoses directly into drains in an effort to prevent the escape and transfer of drain microflora to food contact surfaces. The objective of this study was to examine the extent to which an inadvertent water spray into a colonized floor drain can cause the spread of airborne Listeria. Listeria innocua was used to inoculate a polyvinyl chloride model floor drain, resulting in approximately 10(8) cells per ml of phosphate-buffered saline and 10(4) attached cells per square centimeter of inner surface. Each model drain was subjected to a 2-s spray of tap water at 68.9 kPa from a distance of 1 m. Drains were sprayed while filled and again after emptying. Airborne cells were collected by using sedimentation plates containing Listeria selective agar which were placed on the floor and walls of a contained room at incremental horizontal and vertical distances of 0.6, 1.2, 2.4, or 4.0 m from the drain. Sedimentation plates were exposed for 10 min. A mechanical sampler was used to also collect air by impaction on the surface of Listeria selective agar to determine the number of cells per liter of air. The experiment was conducted in triplicate rooms for each of four replications. L. innocua was detected on sedimentation plates on the floor as far as 4.0 m from the drain and on walls as high as 2.4 m above the floor and 4 m from the drain. A 2-s spray with a water hose into a contaminated drain can cause airborne spread of Listeria, resulting in the potential for cross-contamination of food contact surfaces, equipment, and exposed product.

  13. Differential Draining of Parallel-Fed Propellant Tanks in Morpheus and Apollo Flight

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric; Guardado, Hector; Hernandez, Humberto; Desai, Pooja

    2015-01-01

    Parallel-fed propellant tanks are an advantageous configuration for many spacecraft. Parallel-fed tanks allow the center of gravity (cg) to be maintained over the engine(s), as opposed to serial-fed propellant tanks which result in a cg shift as propellants are drained from tank one tank first opposite another. Parallel-fed tanks also allow for tank isolation if that is needed. Parallel tanks and feed systems have been used in several past vehicles including the Apollo Lunar Module. The design of the feedsystem connecting the parallel tank is critical to maintain balance in the propellant tanks. The design must account for and minimize the effect of manufacturing variations that could cause delta-p or mass flowrate differences, which would lead to propellant imbalance. Other sources of differential draining will be discussed. Fortunately, physics provides some self-correcting behaviors that tend to equalize any initial imbalance. The question concerning whether or not active control of propellant in each tank is required or can be avoided or not is also important to answer. In order to provide data on parallel-fed tanks and differential draining in flight for cryogenic propellants (as well as any other fluid), a vertical test bed (flying lander) for terrestrial use was employed. The Morpheus vertical test bed is a parallel-fed propellant tank system that uses passive design to keep the propellant tanks balanced. The system is operated in blow down. The Morpheus vehicle was instrumented with a capacitance level sensor in each propellant tank in order to measure the draining of propellants in over 34 tethered and 12 free flights. Morpheus did experience an approximately 20 lb/m imbalance in one pair of tanks. The cause of this imbalance will be discussed. This paper discusses the analysis, design, flight simulation vehicle dynamic modeling, and flight test of the Morpheus parallel-fed propellant. The Apollo LEM data is also examined in this summary report of the flight data.

  14. Near vertical view of Lubbock area in west Texas as seen from Apollo 9

    NASA Image and Video Library

    1969-03-11

    AS09-23-3561 (3-13 March 1969) --- Near vertical view of the Lubbock area in west Texas as photographed from the Apollo 9 spacecraft during its Earth-orbital mission. Conspicuous patterns of farmland surround the city and extend eastward (up) to the Caprock Escarpment. The Double Mountain fork of the Brazos River drains east (toward upper center); Leeland is at lower center; Brownfield at lower right. The sharp edge of a cloud disk cuts across the upper right corner.

  15. Vertical resonant tunneling transistors with molecular quantum dots for large-scale integration.

    PubMed

    Hayakawa, Ryoma; Chikyow, Toyohiro; Wakayama, Yutaka

    2017-08-10

    Quantum molecular devices have a potential for the construction of new data processing architectures that cannot be achieved using current complementary metal-oxide-semiconductor (CMOS) technology. The relevant basic quantum transport properties have been examined by specific methods such as scanning probe and break-junction techniques. However, these methodologies are not compatible with current CMOS applications, and the development of practical molecular devices remains a persistent challenge. Here, we demonstrate a new vertical resonant tunneling transistor for large-scale integration. The transistor channel is comprised of a MOS structure with C 60 molecules as quantum dots, and the structure behaves like a double tunnel junction. Notably, the transistors enabled the observation of stepwise drain currents, which originated from resonant tunneling via the discrete molecular orbitals. Applying side-gate voltages produced depletion layers in Si substrates, to achieve effective modulation of the drain currents and obvious peak shifts in the differential conductance curves. Our device configuration thus provides a promising means of integrating molecular functions into future CMOS applications.

  16. A two-dimensional transient analytical solution for a ponded ditch drainage system under the influence of source/sink

    NASA Astrophysics Data System (ADS)

    Sarmah, Ratan; Tiwari, Shubham

    2018-03-01

    An analytical solution is developed for predicting two-dimensional transient seepage into ditch drainage network receiving water from a non-uniform steady ponding field from the surface of the soil under the influence of source/sink in the flow domain. The flow domain is assumed to be saturated, homogeneous and anisotropic in nature and have finite extends in horizontal and vertical directions. The drains are assumed to be standing vertical and penetrating up to impervious layer. The water levels in the drains are unequal and invariant with time. The flow field is also assumed to be under the continuous influence of time-space dependent arbitrary source/sink term. The correctness of the proposed model is checked by developing a numerical code and also with the existing analytical solution for the simplified case. The study highlights the significance of source/sink influence in the subsurface flow. With the imposition of the source and sink term in the flow domain, the pathline and travel time of water particles started deviating from their original position and above that the side and top discharge to the drains were also observed to have a strong influence of the source/sink terms. The travel time and pathline of water particles are also observed to have a dependency on the height of water in the ditches and on the location of source/sink activation area.

  17. Novel CMOS photosensor with a gate-body tied NMOSFET structure

    NASA Astrophysics Data System (ADS)

    Kook, Youn-Jae; Jeong, Jae-Hun; Park, Young-June; Min, Hong-Shick

    2000-07-01

    A novel CMOS photosensor with a gate-body tied NMOSFET structure realized in the triple is well presented. The photocurrent is amplified by the lateral and vertical BJT action, which results in two different output photocurrents, which can be used for different applications within a pixel. The lateral action results in the drain current with a higher sensitivity at low light intensity. And the vertical action results in the collector current with uniform responsivity over wider range of the light intensity. The proposed photosensor in compatible with CMOS circuits.

  18. 78 FR 27953 - Notification of Proposed Production Activity, CNH America, LLC, Subzone 59B, (Agricultural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ....14(b), FTZ activity would be limited to the specific foreign-status materials and components and... housings; vertical auger tubes; chopper drive gearbox accessories; cotton picker frames and cabs; and, non... components and materials sourced from abroad include: sealant; sealant paste; oil drain assemblies; rubber...

  19. Stratification of living organisms in ballast tanks: how do organism concentrations vary as ballast water is discharged?

    PubMed

    First, Matthew R; Robbins-Wamsley, Stephanie H; Riley, Scott C; Moser, Cameron S; Smith, George E; Tamburri, Mario N; Drake, Lisa A

    2013-05-07

    Vertical migrations of living organisms and settling of particle-attached organisms lead to uneven distributions of biota at different depths in the water column. In ballast tanks, heterogeneity could lead to different population estimates depending on the portion of the discharge sampled. For example, concentrations of organisms exceeding a discharge standard may not be detected if sampling occurs during periods of the discharge when concentrations are low. To determine the degree of stratification, water from ballast tanks was sampled at two experimental facilities as the tanks were drained after water was held for 1 or 5 days. Living organisms ≥50 μm were counted in discrete segments of the drain (e.g., the first 20 min of the drain operation, the second 20 min interval, etc.), thus representing different strata in the tank. In 1 and 5 day trials at both facilities, concentrations of organisms varied among drain segments, and the patterns of stratification varied among replicate trials. From numerical simulations, the optimal sampling strategy for stratified tanks is to collect multiple time-integrated samples spaced relatively evenly throughout the discharge event.

  20. 75 FR 46903 - Notice of Proposed Changes to the National Handbook of Conservation Practices for the Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-04

    ... Treatment (Code 521D), Pond Sealing or Lining--Soil Dispersant Treatment (Code 521B), Salinity and Sodic Soil Management (Code 610), Stream Habitat Improvement and Management (Code 395), Vertical Drain (Code... the criteria section; an expansion of the considerations section to include fish and wildlife and soil...

  1. Graphene and PbS quantum dot hybrid vertical phototransistor

    NASA Astrophysics Data System (ADS)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2017-04-01

    A field-effect phototransistor based on a graphene and lead sulfide quantum dot (PbS QD) hybrid in which PbS QDs are embedded in a graphene matrix has been fabricated with a vertical architecture through a solution process. The n-type Si/SiO2 substrate (gate), Au/Ag nanowire transparent source electrode, active layer and Au drain electrode are vertically stacked in the device, which has a downscaled channel length of 250 nm. Photoinduced electrons in the PbS QDs leap into the conduction band and fill in the trap states, while the photoinduced holes left in the valence band transfer to the graphene and form the photocurrent under biases from which the photoconductive gain is evaluated. The graphene/QD-based vertical phototransistor shows a photoresponsivity of 2 × 103 A W-1, and specific detectivity up to 7 × 1012 Jones under 808 nm laser illumination with a light irradiance of 12 mW cm-2. The solution-processed vertical phototransistor provides a new facile method for optoelectronic device applications.

  2. Gummel Symmetry Test on charge based drain current expression using modified first-order hyperbolic velocity-field expression

    NASA Astrophysics Data System (ADS)

    Singh, Kirmender; Bhattacharyya, A. B.

    2017-03-01

    Gummel Symmetry Test (GST) has been a benchmark industry standard for MOSFET models and is considered as one of important tests by the modeling community. BSIM4 MOSFET model fails to pass GST as the drain current equation is not symmetrical because drain and source potentials are not referenced to bulk. BSIM6 MOSFET model overcomes this limitation by taking all terminal biases with reference to bulk and using proper velocity saturation (v -E) model. The drain current equation in BSIM6 is charge based and continuous in all regions of operation. It, however, adopts a complicated method to compute source and drain charges. In this work we propose to use conventional charge based method formulated by Enz for obtaining simpler analytical drain current expression that passes GST. For this purpose we adopt two steps: (i) In the first step we use a modified first-order hyperbolic v -E model with adjustable coefficients which is integrable, simple and accurate, and (ii) In the second we use a multiplying factor in the modified first-order hyperbolic v -E expression to obtain correct monotonic asymptotic behavior around the origin of lateral electric field. This factor is of empirical form, which is a function of drain voltage (vd) and source voltage (vs) . After considering both the above steps we obtain drain current expression whose accuracy is similar to that obtained from second-order hyperbolic v -E model. In modified first-order hyperbolic v -E expression if vd and vs is replaced by smoothing functions for the effective drain voltage (vdeff) and effective source voltage (vseff), it will as well take care of discontinuity between linear to saturation regions of operation. The condition of symmetry is shown to be satisfied by drain current and its higher order derivatives, as both of them are odd functions and their even order derivatives smoothly pass through the origin. In strong inversion region and technology node of 22 nm the GST is shown to pass till sixth-order derivative and for weak inversion it is shown till fifth-order derivative. In the expression of drain current major short channel phenomena like vertical field mobility reduction, velocity saturation and velocity overshoot have been taken into consideration.

  3. On the design of GaN vertical MESFETs on commercial LED sapphire wafers

    NASA Astrophysics Data System (ADS)

    Atalla, Mahmoud R. M.; Noor Elahi, Asim M.; Mo, Chen; Jiang, Zhenyu; Liu, Jie; Ashok, S.; Xu, Jian

    2016-12-01

    Design of GaN-based vertical metal-semiconductor field-effect transistors (MESFETs) on commercial light-emitting-diode (LED) epi-wafers has been proposed and proof of principle devices have been fabricated. In order to better understand the IV curves, these devices have been simulated using the charge transport model. It was found that shrinking the drain pillar size would significantly help in reaching cut-off at much lower gate bias even at high carrier concentration of unintentionally doped GaN and considerable leakage current caused by the Schottky barrier lowering. The realization of these vertical MESFETs on LED wafers would allow their chip-level integration. This would open a way to many intelligent lighting applications like on-chip current regulator and signal regulation/communication in display technology.

  4. Experimental insights into pyroclast-ice heat transfer in water-drained, low-pressure cavities during subglacial explosive eruptions

    NASA Astrophysics Data System (ADS)

    Woodcock, D. C.; Lane, S. J.; Gilbert, J. S.

    2017-07-01

    Subglacial explosive volcanism generates hazards that result from magma-ice interaction, including large flow rate meltwater flooding and fine-grained volcanic ash. We consider eruptions where subglacial cavities produced by ice melt during eruption establish a connection to the atmosphere along the base of the ice sheet that allows accumulated meltwater to drain. The resulting reduction of pressure initiates or enhances explosive phreatomagmatic volcanism within a steam-filled cavity with pyroclast impingement on the cavity roof. Heat transfer rates to melt ice in such a system have not, to our knowledge, been assessed previously. To study this system, we take an experimental approach to gain insight into the heat transfer processes and to quantify ice melt rates. We present the results of a series of analogue laboratory experiments in which a jet of steam, air, and sand at approximately 300°C impinged on the underside of an ice block. A key finding was that as the steam to sand ratio was increased, behavior ranged from predominantly horizontal ice melting to predominantly vertical melting by a mobile slurry of sand and water. For the steam to sand ratio that matches typical steam to pyroclast ratios during subglacial phreatomagmatic eruptions at 300°C, we observed predominantly vertical melting with upward ice melt rates of 1.5 mm s-1, which we argue is similar to that within the volcanic system. This makes pyroclast-ice heat transfer an important contributing ice melt mechanism under drained, low-pressure conditions that may precede subaerial explosive volcanism on sloping flanks of glaciated volcanoes.

  5. Shallow Groundwater Discharge into Urban Drains: Identifying the Missing Link to Define Urban Typologies for Impact Assessment of Urbanization on Water and Nutrient Balances

    NASA Astrophysics Data System (ADS)

    Ocampo, C. J.; Oldham, C. E.

    2015-12-01

    Groundwater and surface water (GW-SW) interaction in drains of many sandy coastal plain areas displays an ephemeral hydrological regime, as often shifts occur in their hydraulic functioning from a losing to a gaining water conditions upon the position of the surrounding shallow water table (SWT). Urbanization in such areas and stormwater management strategies enhancing infiltration have the potential to alter the infiltration rates and the subsurface water storage dynamics with consequences for the residence time of the water and nutrient transformations prior their discharge into receiving SW drains. Identifying first order control on the above processes will assist the improvement of assessment tools for better urban development. This work presents findings on the hydrodynamics of the GW-SW water exchange in two drains of the Perth Coastal Plain area (Western Australia, Australia) impacted by a SWT developing on a layered variable texture soil: a peri-urban drain and a restored living stream drain in urban residential area. A multi-technique approach was used to investigate water mass balance and fluxes over a reach scale and involved continuous records of hydrometric data for GW-SW interactions, passive tracers for water pathway identification, pore water temperature for vertical water exchange, and differential SW discharge using an Acoustic Doppler Current Profiler. Results highlighted differences in the GW-SW interactions between both drains under stormflow and baseflow conditions. A substantial increase of GW discharge into the drain coincided with the full development of a SWT over a seasonal scale at the peri-urban drain, which suggests a more natural water infiltration and redistribution in the subsurface. In contrast, a large volume of infiltrated rain water was discharged into the living stream over a period of few weeks regardless of the development of the surrounding SWT, which suggests the influence of underground pipe system in water redistribution. The results contributed to identify key physical parameters to define urban typologies, quantify the subsurface storage discharge and residence time, and finally assess the transport and transformations of nutrients using a generalised Damköhler number. Future work will populate the framework with other study cases.

  6. Influence of landscape position and transient water table on soil development and carbon distribution in a steep, headwater catchment

    Treesearch

    Scott W. Bailey; Patricia A. Brousseau; Kevin J. McGuire; Donald S. Ross

    2014-01-01

    Upland headwater catchments, such as those in the AppalachianMountain region, are typified by coarse textured soils, flashy hydrologic response, and low baseflow of streams, suggesting well drained soils and minimal groundwater storage. Model formulations of soil genesis, nutrient cycling, critical loads and rainfall/runoff response are typically based on vertical...

  7. Stable carbon and nitrogen isotopes in vertical peat profiles of natural and drained boreal peatlands

    NASA Astrophysics Data System (ADS)

    Nykänen, Hannu; Mpamah, Promise; Rissanen, Antti; Pitkänen, Aki; Turunen, Jukka; Simola, Heikki

    2015-04-01

    Peatlands form a significant carbon pool in the global carbon cycle. Change in peat hydrology, due to global warming is projected to change microbiological processes and peat carbon pool. We tested if bulk stable carbon and nitrogen isotopes serve as indicators of severe long term drying in peatlands drained for forestry. Depth profile analysis of peat, for their carbon and nitrogen content as well as their carbon and nitrogen stable isotopic signatures, were conducted for peatlands in southern and eastern Finland, having ombrotrophic and minerotrophic natural and corresponding drained pairs or separate drained sites. The selection of sites allowed us to compare changes due to different fertility and changes due to long term artificial drying. Drainage lasting over 40 years has led to changes in hydrology, vegetation, nutrient mineralization and respiration. Furthermore, increased nutrient uptake and possible recycling of peat nitrogen and carbon trough vegetation back to the peat surface, also possibly has an effect on the stable isotopic composition of peat carbon and nitrogen. We think that drainage induced changes somehow correspond to those caused by changed hydrology due to climate change. We will present data from these measurements and discuss their implications for carbon and nitrogen flows in peatlands.

  8. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Elementmore » Analysis of the system are presented.« less

  9. Rapid breakthrough of pesticides via biopres into tile drains and shallow groundwater: a combined experimental and model study

    NASA Astrophysics Data System (ADS)

    Klaus, J.; Zehe, E.; Palm, J.; Schroeder, B.

    2009-04-01

    Preferential flow in macropores is a key process which strongly affects infiltration and may cause rapid transport of pesticides into depths of 80 to 150 cm. At these depths they experience a much slower degradation, may leach into shallow groundwater or enter a tile-drain and are transported in surface water bodies. Therefore, preferential transport is an environ¬mental problem because the topsoil is bypassed, which has been originally thought to act as a filter to protect the subsoil and shallow groundwater. To get a better insight in the process of pesticide transport in agricultural soils an irrigation experiment was performed on a 400 m² field site. The experimental plot is located in the Weiherbach valley, south-west Germany, which basic geology consists of Loess and Keuper layers, the soil at the test site is a gleyic Colluvisol. The distance of the irrigation site to the Weiherbach brook is aprox. 12 m, the field is drained with a tile-drain in about 1.2 m depth and the shows runoff over the entire year. Three hours before the irrigation started the farmer applied a pesticide solution consisting of Isoproturon and Flufenacet according to conventional agricultural practice. The irrigation took place in three time blocks (80 min, 60 min, 80 min) and had a total irrigation rate of 33.6 mm measured with ten precipitation samplers. During the first block a tracer solution of 1600 g Bromide and 2000 g Brilliant Blue was irrigated on the test site. The drainage outlet was instrumented with a pressure probe to measure the water level. About 50 water samples were taken on the day of the experiment from the drainage outlet by hand, and in an eight hour interval for six days with an automatic sample procedure. Discharge at the drainage outlet showed two peaks in response irrigation. The breakthrough of the tracer into the brook is much faster then the reaction of the discharge on the precipitation impulse. To gain insight in the vertical transport behaviour three vertical soil profiles were excavated on the first day after the irrigation and two vertical profiles were excavated one week after the experiment. In those profiles soil samples were taken in a 10cm*10cm grid to analyse for the tracer concentrations. Based on that information the probability distribution function of the travel depths for each tracer could be calculated for two points in time. As burrows of deep digging earth worms often act as preferential pathways we counted the individuals of worm burrows using a nested sampling procedure. Though endogeic earthworms were apparent we didn't find any individuals of Lumbricus Terrestris nor macropores with diameter larger than 2 mm at a depth larger than 30-35 cm. So far we didn't identify those pathways that caused this rapid pesticide breakthrough into the tile drain, though a very small number macropores would suffice. Based on the collected data we will setup up a numerical model to simulate observed and flow and transport and test the hypothesis that earthworm burrows are the reason for this rapid breakthrough of pesticides into the tile drain.

  10. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    USGS Publications Warehouse

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  11. Effects of Ion Atomic Number on Single-Event Gate Rupture (SEGR) Susceptibility of Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Goldsman, Neil; Liu, Sandra; Titus, Jeffrey L.; Ladbury, Raymond L.; Kim, Hak S.; Phan, Anthony M.; LaBel, Kenneth A.; Zafrani, Max; Sherman, Phillip

    2012-01-01

    The relative importance of heavy-ion interaction with the oxide, charge ionized in the epilayer, and charge ionized in the drain substrate, on the bias for SEGR failure in vertical power MOSFETs is experimentally investigated. The results indicate that both the charge ionized in the epilayer and the ion atomic number are important parameters of SEGR failure. Implications on SEGR hardness assurance are discussed.

  12. 16. VIEW OF BULKHEAD IN FISH HOLD. NOTE SCANTLINGS WHICH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF BULKHEAD IN FISH HOLD. NOTE SCANTLINGS WHICH FORM A VERTICAL SLOT FOR BOARDS. THESE BOARDS ALSO ENABLED THE FISHERMAN TO SORT THE CATCH BY SPECIES INTO VARIOUS COMPARTMENTS. THE HOLES AT THE BASE OF THE BULKHEAD ALLOWED WATER FROM MELTED ICE TO DRAIN OUT OF THE COMPARTMENT. - Auxiliary Fishing Schooner "Evelina M. Goulart", Essex Shipbuilding Museum, 66 Main Street, Essex, Essex County, MA

  13. A novel transanal tube designed to prevent anastomotic leakage after rectal cancer surgery: the WING DRAIN.

    PubMed

    Nishigori, Hideaki; Ito, Masaaki; Nishizawa, Yuji

    2017-04-01

    We introduce a novel transanal tube (TAT), named the "WING DRAIN", designed to prevent anastomotic leakage after rectal cancer surgery, and report the fundamental experiments that led to its development. We performed the basic experiments to evaluate the effect of TATs on intestinal decompression, the changes they make in patterns of watery fluid drainage, the changes in their decompression effect when the extension tube connecting the TAT to the collection bag fills with watery drainage fluid, and the variations in intestinal contact and crushing pressure made by some types of TAT. Any type of TAT contributed to decompression in the intestinal tract. Watery drainage commenced from when the water level first rose to the hole in the tip of drain. The intestinal pressure increased with the length of the vertical twist in an extension tube. The crushing pressures of most types of TAT were high enough to cause injury to the intestine. We resolved the problems using an existing TAT for the purpose of intestinal decompression and by creating the first specialized TAT designed to prevent anastomotic leakage after rectal cancer surgery in Japan.

  14. Transport in a capacitive ultracold atomtronic circuit

    NASA Astrophysics Data System (ADS)

    Eller, Benjamin; Warren, Kayla; Eckel, Stephen; Clark, Charles; Edwards, Mark

    2016-05-01

    A recent NIST experiment studied the transport of a gaseous Bose-Einstein condensate (BEC) confined in an atomtronic ``dumbbell'' circuit. The optically created condensate potential consisted of a tight harmonic potential in the vertical direction confining the BEC to a horizontial plane. The horizontal potential consisted of two cylindrical wells separated by a channel produced by a harmonic oscillator potential transverse to the line joining the wells. The BEC, formed in the ``source'' well, was released to flow toward the ``drain'' well. We modeled this system with the Gross-Pitaevskii (GP) equation and found good agreement with the data provided that the channel potential is carefully reproduced. The GP simulations show behavior, not detectable in the experiment, that atoms can jump out of the dumbbell area after filling up the drain well. We describe the GP evolution of this system with a model RCL circuit having a time-dependent resistance. This resistance exhibits a strong connection to the time-dependence of the atom loss in the drain. We also studied and present the dependence of the R and L parameters of this model circuit on the channel shape. Supported by NSF Grant PHY-1413768 and ARO Atomtronics MURI.

  15. RF dual-gate-trench LDMOS on InGaAs with improved performance

    NASA Astrophysics Data System (ADS)

    Payal, M.; Singh, Y.

    2018-02-01

    A new power dual-gate-trench LDMOSFET (DGTLDMOS) structure implemented on emerging InGaAs material is proposed. The proposed device consists of two gates out of which one gate is placed horizontally on the surface while other gate is located vertically in a trench. The dual-gate structure of DGTLDMOS creates two channels in p-base which carry current simultaneously from drain to source. This not only enhances the drain current (ID) but also reduces specific on-resistance (Ron,sp) and improves the peak transconductance (gm) resulting higher cut-off frequency (fT) and maximum oscillation frequency (fmax). Another trench filled with Al2O3 is placed in the drift region between gate and drain to enhance reduced-surface-field effect leading to higher breakdown voltage (Vbr) even at increased drift region doping. Based on 2D simulations, it is demonstrate that a DGTLDMOS designed for Vbr of 90 V achieves 2.2 times higher ID, 10 times reduction in Ron,sp, 1.8 times improvement in gm, 2.8 times increase in fT, and 1.8 times improvement in fmax with 3.3 times reduction in cell pitch as compared to the conventional LDMOS.

  16. Groundwater hydrology and estimation of horizontal groundwater flux from the Rio Grande at selected locations in Albuquerque, New Mexico, 2003-9

    USGS Publications Warehouse

    Rankin, Dale R.; McCoy, Kurt J.; More, Geoff J.M.; Worthington, Jeffrey A.; Bandy-Baldwin, Kimberly M.

    2013-01-01

    The Albuquerque, New Mexico, area has two principal sources of water: groundwater from the Santa Fe Group aquifer system and surface water from the San Juan-Chama Diversion Project. From 1960 to 2002, groundwater withdrawals from the Santa Fe Group aquifer system have caused water levels to decline more than 120 feet in some places within the Albuquerque area, resulting in a great deal of interest in quantifying the river-aquifer interaction associated with the Rio Grande. In 2003, the U.S. Geological Survey in cooperation with the Bureau of Reclamation, the Middle Rio Grande Endangered Species Collaborative Program, and the U.S. Army Corps of Engineers began a detailed characterization of the hydrogeology of the Rio Grande riparian corridor in the Albuquerque, New Mexico, area to provide hydrologic data and enhance the understanding of rates of water leakage from the Rio Grande to the alluvial aquifer, groundwater flow through the aquifer, and discharge of water from the aquifer to the riverside drains. A simple conceptual model of flow indicates that the groundwater table gently slopes from the Rio Grande towards riverside drains and the outer boundaries of the inner valley. Water infiltrating from the Rio Grande initially moves vertically below the river, but, as flow spreads farther into the Rio Grande inner valley alluvial aquifer, flow becomes primarily horizontal. The slope of the water-table surface may be strongly controlled by the riverside drains and influenced by other more distal hydrologic boundary conditions, such as groundwater withdrawals by wells. Results from 35 slug tests performed in the Rio Grande inner valley alluvial aquifer during January and February 2009 indicate that hydraulic-conductivity values ranged from 5 feet per day to 160 feet per day with a median hydraulic-conductivity for all transects of 40 feet per day. Median annual horizontal hydraulic gradients in the Rio Grande inner valley alluvial aquifer ranged from 0.011 to 0.002. Groundwater fluxes through the alluvial aquifer calculated by using median slug-test results (qmslug) and Darcy's law ranged from about 0.1 feet per day to about 0.7 feet per day. Groundwater fluxes calculated by using the Suzuki-Stallman method (qmheat) ranged from 0.52 feet per day to 0.23 feet per day. Results from the Darcy's law and Suzuki-Stallman flux calculations were compared to discharge measured in riverside drains on both sides of the river north of the Montaño Bridge on February 26, 2009. Flow in the Corrales Riverside Drain increased by 1.4 cubic feet per second from mile 2 to mile 4, about 12 cubic feet per day per linear foot of drain. Flow in the Albuquerque Riverside Drain increased by 15 cubic feet per second between drain miles 0 and 3, about 82 cubic feet per day per linear foot of drain. The flux of water from the river to the aquifer was calculated to be 2.2 cubic feet per day per linear foot of river by using the median qmslug of 0.09 feet per day at Montaño transects west of the river. The total flux was calculated to be 6.0 cubic feet per day per linear foot of river by using the mean(qmheat of 0.24 feet per day for the Montaño transects west of the river. Assuming the Corrales Riverside Drain intercepted all of this flow, the qmslug or qmheat fluxes account for 18 to 50 percent, respectively, of the increase of flow in the drain. The flux of water from the river to the aquifer was calculated to be 15 cubic feet per day per linear foot of river by using the median qmslug of 0.30 feet per day at the Montaño transects east of the river. The flux of water from the river to the aquifer was calculated to be 17 cubic feet per day per linear foot of river by using the mean flux calculated from the Suzuki-Stallman method for the Montaño East transects of 0.34 feet per day. Assuming the Albuquerque Riverside Drain intercepted all this flow, the qmslug or (qmheat fluxes would only account for 18 to 21 percent, respectively, of the increase in flow in the drain. The comparison of these results with those of previous investigations suggests that calculated flux through the Rio Grande inner valley alluvial aquifer is strongly scale dependent and that the thickness of aquifer through which river water flows may be greater than indicated by the vertical temperature profiles.

  17. Analysis of electrical characteristics and proposal of design guide for ultra-scaled nanoplate vertical FET and 6T-SRAM

    NASA Astrophysics Data System (ADS)

    Seo, Youngsoo; Kim, Shinkeun; Ko, Kyul; Woo, Changbeom; Kim, Minsoo; Lee, Jangkyu; Kang, Myounggon; Shin, Hyungcheol

    2018-02-01

    In this paper, electrical characteristics of gate-all-around (GAA) nanoplate (NP) vertical FET (VFET) were analyzed for single transistor and 6T-SRAM cell through 3D technology computer-aided design (TCAD) simulation. In VFET, gate and extension lengths are not limited by the area of device because theses lengths are vertically located. The height of NP is assumed in 40 nm considering device fabrication method (top-down approach). According to the sizes of devices, we analyzed the performances of device such as total resistance, capacitance, intrinsic gate delay, sub-threshold swing (S.S), drain-induced barrier lowering (DIBL) and static noise margin (SNM). As the gate length becomes larger, the resistance should be smaller because the total height of NP is fixed in 40 nm. Also, when the channel thickness becomes thicker, the total resistance becomes smaller since the sheet resistances of channel and extension become smaller and the contact resistance becomes smaller due to the increasing contact area. In addition, as the length of channel pitch increases, the parasitic capacitance comes to be larger due to the increasing area of gate-drain and gate-source. The performance of RC delay is best in the shortest gate length (12 nm), the thickest channel (6 nm) and the shortest channel pitch (17 nm) owing to the reduced resistance and parasitic capacitance. However, the other performances such as DIBL, S.S, on/off ratio and SNM are worst because the short channel effect is highest in this situation. Also, we investigated the performance of the multi-channel device. As the number of channels increases, the performance of device and the reliability of SRAM improve because of reduced contact resistance, increased gate dimension and multi-channel compensation effect.

  18. Investigation of veritcal graded channel doping in nanoscale fully-depleted SOI-MOSFET

    NASA Astrophysics Data System (ADS)

    Ramezani, Zeinab; Orouji, Ali A.

    2016-10-01

    For achieving reliable transistor, we investigate an amended channel doping (ACD) engineering which improves the electrical and thermal performances of fully-depleted silicon-on-insulator (SOI) MOSFET. We have called the proposed structure with the amended channel doping engineering as ACD-SOI structure and compared it with a conventional fully-depleted SOI MOSFET (C-SOI) with uniform doping distribution using 2-D ATLAS simulator. The amended channel doping is a vertical graded doping that is distributed from the surface of structure with high doping density to the bottom of channel, near the buried oxide, with low doping density. Short channel effects (SCEs) and leakage current suppress due to high barrier height near the source region and electric field modification in the ACD-SOI in comparison with the C-SOI structure. Furthermore, by lower electric field and electron temperature near the drain region that is the place of hot carrier generation, we except the improvement of reliability and gate induced drain lowering (GIDL) in the proposed structure. Undesirable Self heating effect (SHE) that become a critical challenge for SOI MOSFETs is alleviated in the ACD-SOI structure because of utilizing low doping density near the buried oxide. Thus, refer to accessible results, the ACD-SOI structure with graded distribution in vertical direction is a reliable device especially in low power and high temperature applications.

  19. Large current modulation and tunneling magnetoresistance change by a side-gate electric field in a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor.

    PubMed

    Kanaki, Toshiki; Yamasaki, Hiroki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki

    2018-05-08

    A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current I DS modulation by a gate-source voltage V GS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large I DS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that I DS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by V GS . This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.

  20. Hydrological patterns in warming permafrost: comparing results from a control and drained site on a floodplain tundra near Chersky, Northeast Siberia

    NASA Astrophysics Data System (ADS)

    Boelck, Sandra; Goeckede, Mathias; Hildebrandt, Anke; Vonk, Jorien; Heimann, Martin

    2017-04-01

    Permafrost areas represent a major reservoir for organic carbon. At the same time, permafrost ecosystems are very susceptible to changing climate conditions. The stability of this reservoir, i.e. changes in lateral and vertical carbon fluxes in permafrost ecosystems, largely depends on groundwater level, temperature and vegetation community. Particularly during summer when the soil thaws and a so-called active layer develops, fluctuations in carbon flux rates are often dominantly driven by water availability. Such dry soil conditions are expected to become more frequent in the future due to deepening active layers as a consequence of climate change. This could result in degradation of polygonal tundra landscape properties with channelled water transport pathways. Therefore, water table depth and the associated groundwater fluxes are crucial to understand transport patterns and to quantify the lateral export of carbon through an aquatic system. Consequently, a fundamental understanding of hydrological patterns on ecosystem structure and function is required to close the carbon balance of permafrost ecosystems. This study focuses on small-scale hydrological patterns and its influencing factors, such as topography and precipitation events. Near Chersky, Northeast Siberia, we monitored (i) a control site of floodplain tundra, and (ii) a drained site, characterised by a drainage ring which was constructed in 2004, to study the effects of water availability on the carbon cycle. This experimental disturbance simulates drainage effects following the degradation of ice-rich permafrost ecosystems under future climate change. Continuous monitoring of water table depth in drained and control areas revealed small-scale water table variations. At several key locations, we collected water samples to determine the isotopic composition (δ18O, δD) of surface water, suprapermafrost groundwater and precipitation. Furthermore, a weir at the drainage ditch was constructed to directly measure the discharge of the drained system. This hydrological sampling programme was complemented by continuous monitoring of atmospheric vertical turbulent carbon fluxes and meteorological conditions by two eddy-covariance towers on each site. Our results from the hydrological sampling campaign of summer 2016 indicate that total discharge through the drained system was mainly driven by precipitation events as well as modified evaporative loss due to temperature changes. The distributed network of groundwater gauges allows deriving lateral, local scale groundwater flow direction and its spatial variability, as well as the response to precipitation events within different parts of this ecosystem. Isotopic analysis of water samples showed the contribution of specific end member water sources, and how these vary across the season while the active layer deepens. Future research will focus on carbon fluxes, distribution and sources in relation to hydrological patterns.

  1. Method of evaporation

    NASA Technical Reports Server (NTRS)

    Dufresne, Eugene R.

    1987-01-01

    Liquids, such as juices, milk, molten metal and the like are concentrated by forming uniformly-sized, small droplets in a precision droplet forming assembly and deploying the droplets in free fall downwardly as a central column within an evacuated column with cool walls. A portion of the solvent evaporates. The vapor flows to the wall, condenses, and usually flows down the wall as a film to condensate collector and drain. The vertical column of freely falling droplets enters the splash guard. The condensate can be collected, sent to other towers or recycled.

  2. Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Carbone, Daniele; Poland, Michael P.; Patrick, Matthew R.; Orr, Tim R.

    2013-01-01

    On 5 March 2011, the lava lake within the summit eruptive vent at Kīlauea Volcano, Hawai‘i, began to drain as magma withdrew to feed a dike intrusion and fissure eruption on the volcanoʼs east rift zone. The draining was monitored by a variety of continuous geological and geophysical measurements, including deformation, thermal and visual imagery, and gravity. Over the first ∼14 hours of the draining, the ground near the eruptive vent subsided by about 0.15 m, gravity dropped by more than 100 μGal, and the lava lake retreated by over 120 m. We used GPS data to correct the gravity signal for the effects of subsurface mass loss and vertical deformation in order to isolate the change in gravity due to draining of the lava lake alone. Using a model of the eruptive vent geometry based on visual observations and the lava level over time determined from thermal camera data, we calculated the best-fit lava density to the observed gravity decrease — to our knowledge, the first geophysical determination of the density of a lava lake anywhere in the world. Our result, 950 +/- 300 kg m-3, suggests a lava density less than that of water and indicates that Kīlaueaʼs lava lake is gas-rich, which can explain why rockfalls that impact the lake trigger small explosions. Knowledge of such a fundamental material property as density is also critical to investigations of lava-lake convection and degassing and can inform calculations of pressure change in the subsurface magma plumbing system.

  3. High-Performance Organic Vertical Thin Film Transistor Using Graphene as a Tunable Contact.

    PubMed

    Liu, Yuan; Zhou, Hailong; Weiss, Nathan O; Huang, Yu; Duan, Xiangfeng

    2015-11-24

    Here we present a general strategy for the fabrication of high-performance organic vertical thin film transistors (OVTFTs) based on the heterostructure of graphene and different organic semiconductor thin films. Utilizing the unique tunable work function of graphene, we show that the vertical carrier transport across the graphene-organic semiconductor junction can be effectively modulated to achieve an ON/OFF ratio greater than 10(3). Importantly, with the OVTFT design, the channel length is determined by the organic thin film thickness rather than by lithographic resolution. It can thus readily enable transistors with ultrashort channel lengths (<200 nm) to afford a delivering current greatly exceeding that of conventional planar TFTs, thus enabling a respectable operation frequency (up to 0.4 MHz) while using low-mobility organic semiconductors and low-resolution lithography. With this vertical device architecture, the entire organic channel is sandwiched and naturally protected between the source and drain electrodes, which function as the self-passivation layer to ensure stable operation of both p- and n-type OVTFTs in ambient conditions and enable complementary circuits with voltage gain. The creation of high-performance and highly robust OVTFTs can open up exciting opportunities in large-area organic macroelectronics.

  4. Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures

    NASA Astrophysics Data System (ADS)

    Kuiri, Manabendra; Chakraborty, Biswanath; Paul, Arup; Das, Subhadip; Sood, A. K.; Das, Anindya

    2016-02-01

    MoTe2 with a narrow band-gap of ˜1.1 eV is a promising candidate for optoelectronic applications, especially for the near-infrared photo detection. However, the photo responsivity of few layers MoTe2 is very small (<1 mA W-1). In this work, we show that a few layer MoTe2-graphene vertical heterostructures have a much larger photo responsivity of ˜20 mA W-1. The trans-conductance measurements with back gate voltage show on-off ratio of the vertical transistor to be ˜(0.5-1) × 105. The rectification nature of the source-drain current with the back gate voltage reveals the presence of a stronger Schottky barrier at the MoTe2-metal contact as compared to the MoTe2-graphene interface. In order to quantify the barrier height, it is essential to measure the work function of a few layers MoTe2, not known so far. We demonstrate a method to determine the work function by measuring the photo-response of the vertical transistor as a function of the Schottky barrier height at the MoTe2-graphene interface tuned by electrolytic top gating.

  5. Hydrogen-terminated diamond vertical-type metal oxide semiconductor field-effect transistors with a trench gate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Muta, Tsubasa; Kobayashi, Mikinori

    2016-07-18

    The hydrogen-terminated diamond surface (C-H diamond) has a two-dimensional hole gas (2DHG) layer independent of the crystal orientation. A 2DHG layer is ubiquitously formed on the C-H diamond surface covered by atomic-layer-deposited-Al{sub 2}O{sub 3}. Using Al{sub 2}O{sub 3} as a gate oxide, C-H diamond metal oxide semiconductor field-effect transistors (MOSFETs) operate in a trench gate structure where the diamond side-wall acts as a channel. MOSFETs with a side-wall channel exhibit equivalent performance to the lateral C-H diamond MOSFET without a side-wall channel. Here, a vertical-type MOSFET with a drain on the bottom is demonstrated in diamond with channel current modulationmore » by the gate and pinch off.« less

  6. Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor

    DOEpatents

    Gluntz, Douglas M.

    1996-01-01

    An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.

  7. Modeling of asymmetric degradation based on a non-uniform electric field and temperature in amorphous In-Ga-Zn-O thin film transistors

    NASA Astrophysics Data System (ADS)

    In Kim, Jong; Jeong, Chan-Yong; Kwon, Hyuck-In; Jung, Keum Dong; Park, Mun Soo; Kim, Ki Hwan; Seo, Mi Seon; Lee, Jong-Ho

    2017-03-01

    We propose a new local degradation model based on a non-uniform increase in donor-like traps (DLTs) determined by distributions of an electric field and measured device temperature in amorphous In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs). A systematic investigation of the degradation model reveals that vertical field-dependent DLTs are essential for modeling of measured asymmetric electrical characteristics between the source and drain after positive gate and drain bias stressing. An increased temperature due to self-heating is found to play a role in intensifying the asymmetric degradation. From the individual simulation of measured transfer curves at different stress times, the model parameters and an asymmetry index as a function of stress time are extracted. It is expected that this novel methodology will provide new insight into asymmetric degradation and be utilized to predict the influence of electric field and heat on degradation under various bias-stress conditions in a-IGZO TFTs.

  8. High performance multi-finger MOSFET on SOI for RF amplifiers

    NASA Astrophysics Data System (ADS)

    Adhikari, M. Singh; Singh, Y.

    2017-10-01

    In this paper, we propose structural modifications in the conventional planar metal-oxide-semiconductor field-effect transistor (MOSFET) on silicon-on-insulator by utilizing trenches in the epitaxial layer. The proposed multi-finger MOSFET (MF-MOSFET) has dual vertical-gates placed in separate trenches to form multiple channels in the p-base which carry the drain current in parallel. The proposed device uses TaN as gate electrode and SiO2 as gate dielectric. Simultaneous conduction of multiple channels enhances the drain current (ID) and provides higher transconductance (gm) leading to significant improvement in cut-off frequency (ft). Two-dimensional simulations are performed to evaluate and compare the performance of the MF-MOSFET with the conventional MOSFET. At a gate length of 60 nm, the proposed device provides 4 times higher ID, 3 times improvement in gm and 1.25 times increase in ft with better control over the short channel effects as compared with the conventional device.

  9. Effects of ultra-thin Si-fin body widths upon SOI PMOS FinFETs

    NASA Astrophysics Data System (ADS)

    Liaw, Yue-Gie; Chen, Chii-Wen; Liao, Wen-Shiang; Wang, Mu-Chun; Zou, Xuecheng

    2018-05-01

    Nano-node tri-gate FinFET devices have been developed after integrating a 14 Å nitrided gate oxide upon the silicon-on-insulator (SOI) wafers established on an advanced CMOS logic platform. These vertical double gate (FinFET) devices with ultra-thin silicon fin (Si-fin) widths ranging from 27 nm to 17 nm and gate length down to 30 nm have been successfully developed with a 193 nm scanner lithography tool. Combining the cobalt fully silicidation and the CESL strain technology beneficial for PMOS FinFETs was incorporated into this work. Detailed analyses of Id-Vg characteristics, threshold voltage (Vt), and drain-induced barrier lowering (DIBL) illustrate that the thinnest 17 nm Si-fin width FinFET exhibits the best gate controllability due to its better suppression of short channel effect (SCE). However, higher source/drain resistance (RSD), channel mobility degradation due to dry etch steps, or “current crowding effect” will slightly limit its transconductance (Gm) and drive current.

  10. Applying Hillslope Hydrology to Bridge between Ecosystem and Grid-Scale Processes within an Earth System Model

    NASA Astrophysics Data System (ADS)

    Subin, Z. M.; Sulman, B. N.; Malyshev, S.; Shevliakova, E.

    2013-12-01

    Soil moisture is a crucial control on surface energy fluxes, vegetation properties, and soil carbon cycling. Its interactions with ecosystem processes are highly nonlinear across a large range, as both drought stress and anoxia can impede vegetation and microbial growth. Earth System Models (ESMs) generally only represent an average soil-moisture state in grid cells at scales of 50-200 km, and as a result are not able to adequately represent the effects of subgrid heterogeneity in soil moisture, especially in regions with large wetland areas. We addressed this deficiency by developing the first ESM-coupled subgrid hillslope-hydrological model, TiHy (Tiled-hillslope Hydrology), embedded within the Geophysical Fluid Dynamics Laboratory (GFDL) land model. In each grid cell, one or more representative hillslope geometries are discretized into land model tiles along an upland-to-lowland gradient. These geometries represent ~1 km hillslope-scale hydrological features and allow for flexible representation of hillslope profile and plan shapes, in addition to variation of subsurface properties among or within hillslopes. Each tile (which may represent ~100 m along the hillslope) has its own surface fluxes, vegetation state, and vertically-resolved state variables for soil physics and biogeochemistry. Resolution of water state in deep layers (~200 m) down to bedrock allows for physical integration of groundwater transport with unsaturated overlying dynamics. Multiple tiles can also co-exist at the same vertical position along the hillslope, allowing the simulation of ecosystem heterogeneity due to disturbance. The hydrological model is coupled to the vertically-resolved Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) model, which captures non-linearity resulting from interactions between vertically-heterogeneous soil carbon and water profiles. We present comparisons of simulated water table depth to observations. We examine sensitivities to alternative parameterizations of hillslope geometry, macroporosity, and surface runoff / inundation, and to the choice of global topographic dataset and groundwater hydraulic conductivity distribution. Simulated groundwater dynamics among hillslopes tend to cluster into three regimes of wet and well-drained, wet but poorly-drained, and dry. In the base model configuration, near-surface gridcell-mean water tables exist in an excessively large area compared to observations, including large areas of the Eastern U.S. and Northern Europe. However, in better-drained areas, the decrease in water table depth along the hillslope gradient allows for realistic increases in ecosystem water availability and soil carbon downslope. The inclusion of subgrid hydrology can increase the equilibrium 0-2 m global soil carbon stock by a large factor, due to the nonlinear effect of anoxia. We conclude that this innovative modeling framework allows for the inclusion of hillslope-scale processes and the potential for wetland dynamics in an ESM without need for a high-resolution 3-dimensional groundwater model. Future work will include investigating the potential for future changes in land carbon fluxes caused by the effects of changing hydrological regime, particularly in peatland-rich areas poorly treated by current ESMs.

  11. Salt-water-freshwater transient upconing - An implicit boundary-element solution

    USGS Publications Warehouse

    Kemblowski, M.

    1985-01-01

    The boundary-element method is used to solve the set of partial differential equations describing the flow of salt water and fresh water separated by a sharp interface in the vertical plane. In order to improve the accuracy and stability of the numerical solution, a new implicit scheme was developed for calculating the motion of the interface. The performance of this scheme was tested by means of numerical simulation. The numerical results are compared to experimental results for a salt-water upconing under a drain problem. ?? 1985.

  12. Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration.

    PubMed

    Avila, Cristina; Nivala, Jaime; Olsson, Linda; Kassa, Kinfe; Headley, Tom; Mueller, Roland A; Bayona, Josep Maria; García, Joan

    2014-10-01

    Four side-by-side pilot-scale vertical flow (VF) constructed wetlands of different designs were evaluated for the removal of eight widely used emerging organic contaminants from municipal wastewater (i.e. ibuprofen, acetaminophen, diclofenac, tonalide, oxybenzone, triclosan, ethinylestradiol, bisphenol A). Three of the systems were free-draining, with one containing a gravel substrate (VGp), while the other two contained sand substrate (VS1p and VS2p). The fourth system had a saturated gravel substrate and active aeration supplied across the bottom of the bed (VAp). All beds were pulse-loaded on an hourly basis, except VS2p, which was pulse-loaded every 2h. Each system had a surface area of 6.2m(2), received a hydraulic loading rate of 95 mm/day and was planted with Phragmites australis. The beds received an organic loading rate of 7-16 gTOC/m(2)d. The sand-based VF (VS1p) performed significantly better (p<0.05) than the gravel-based wetland (VGp) both in the removal of conventional water quality parameters (TSS, TOC, NH4-N) and studied emerging organic contaminants except for diclofenac (85 ± 17% vs. 74 ± 15% average emerging organic contaminant removal for VS1p and VGp, respectively). Although loading frequency (hourly vs. bi-hourly) was not observed to affect the removal efficiency of the cited conventional water quality parameters, significantly lower removal efficiencies were found for tonalide and bisphenol A for the VF wetland that received bi-hourly dosing (VS2p) (higher volume per pulse), probably due to the more reducing conditions observed in that system. However, diclofenac was the only contaminant showing an opposite trend to the rest of the compounds, achieving higher elimination rates in the wetlands that exhibited less-oxidizing conditions (VS2p and VGp). The use of active aeration in the saturated gravel bed (VAp) generally improved the treatment performance compared to the free-draining gravel bed (VGp) and achieved a similar performance to the free-draining sand-based VF wetlands (VS1p). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Vertical versus Lateral Two-Dimensional Heterostructures: On the Topic of Atomically Abrupt p/n-Junctions.

    PubMed

    Zhou, Ruiping; Ostwal, Vaibhav; Appenzeller, Joerg

    2017-08-09

    The key appeal of two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), or phosphorene for electronic applications certainly lies in their atomically thin nature that offers opportunities for devices beyond conventional transistors. It is also this property that makes them naturally suited for a type of integration that is not possible with any three-dimensional (3D) material, that is, forming heterostructures by stacking dissimilar 2D materials together. Recently, a number of research groups have reported on the formation of atomically sharp p/n-junctions in various 2D heterostructures that show strong diode-type rectification. In this article, we will show that truly vertical heterostructures do exhibit much smaller rectification ratios and that the reported results on atomically sharp p/n-junctions can be readily understood within the framework of the gate and drain voltage response of Schottky barriers that are involved in the lateral transport.

  14. Static and Turn-on Switching Characteristics of 4H-Silicon Carbide SITs to 200 deg C

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    2005-01-01

    Test results are presented for normally-off 4H-SiC Static Induction Transistors (SITs) intended for power switching and are among the first normally-off such devices realized in SiC. At zero gate bias, the gate p-n junction depletion layers extend far enough into the conduction channel to cut off the channel. Application of forward gate bias narrows the depletion regions, opening up the channel to conduction by majority carriers. In the present devices, narrow vertical channels get pinched by depletion regions from opposite sides. Since the material is SiC, the devices are usable at temperatures above 150 C. Static curve and pulse mode switching observations were done at selected temperatures up to 200 C on a device with average static characteristics from a batch of similar devices. Gate and drain currents were limited to about 400 mA and 3.5 A, respectively. The drain voltage was limited to roughly 300 V, which is conservative for this 600 V rated device. At 23 C, 1 kW, or even more, could be pulse mode switched in 65 ns (10 to 90 percent) into a 100 load. But at 200 C, the switching capability is greatly reduced in large part by the excessive gate current required. Severe collapse of the saturated drain-to-source current was observed at 200 C. The relation of this property to channel mobility is reviewed.

  15. Printing Semiconductor-Insulator Polymer Bilayers for High-Performance Coplanar Field-Effect Transistors.

    PubMed

    Bu, Laju; Hu, Mengxing; Lu, Wanlong; Wang, Ziyu; Lu, Guanghao

    2018-01-01

    Source-semiconductor-drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next-generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross-talk among different devices, and simplify the fabrication process of circuits. Here, a one-step, drop-casting-like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3-hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO 2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor-insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor-insulator bilayer structure is an ideal system for injecting charges into the insulator via gate-stress, and the thus-formed PS electret layer acts as a "nonuniform floating gate" to tune the threshold voltage and effective mobility of the transistors. Effective field-effect mobility higher than 1 cm 2 V -1 s -1 with an on/off ratio > 10 7 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High soil solution carbon und nitrogen concentrations in a drained Atlantic bog are reduced to natural levels by 10 yr of rewetting

    NASA Astrophysics Data System (ADS)

    Frank, S.; Tiemeyer, B.; Gelbrecht, J.; Freibauer, A.

    2013-10-01

    Artificial drainage of peatlands causes dramatic changes in the release of greenhouse gases and in the export of dissolved carbon (C) and nutrients to downstream ecosystems. Rewetting anthropogenically altered peatlands offers a possibility to reduce nitrogen (N) and C losses. In this study, we investigate the impact of drainage and rewetting on the cycling of dissolved C and N as well as on dissolved gases over a period of 1 yr and 4 month, respectively. The peeper technique was used to receive a high vertical sampling resolution. Within one Atlantic bog complex a near natural site, two drained grasslands sites with different mean water table positions, and a former peat cutting area rewetted 10 yr ago were chosen. Our results clearly indicate that drainage increased the concentration of dissolved organic carbon (DOC), ammonia, nitrate and dissolved organic nitrogen (DON) compared to the near natural site. Drainage depth further determined the release and therefore the concentration level of DOC and N species, but the biochemical cycling and therefore dissolved organic matter (DOM) quality and N species composition were unaffected. Thus, especially deep drainage can cause high DOC losses. In general, DOM at drained sites was enriched in aromatic moieties as indicated by SUVA280 and showed a higher degradation status (lower DOC to DON ratio) compared to the near natural site. At the drained sites, equal C to N ratios of uppermost peat layer and DOC to DON ratio of DOM in soil solution suggest that the uppermost degraded peat layer is the main source of DOM. Nearly constant DOC to DON ratios and SUVA280 values with depth furthermore indicated that DOM moving downwards through the drained sites remained largely unchanged. DON and ammonia contributed most to the total dissolved nitrogen (TN). The subsoil concentrations of nitrate were negligible due to strong decline in nitrate around mean water table depth. Methane production during the winter months at the drained sites moved downwards to areas which were mostly water saturated over the whole year (>40 cm). Above these depths, the recovery of the water table in winter months led to the production of nitrous oxide around mean water table depth at drained sites. 10 yr after rewetting, the DOM quality (DOC to DON ratio and SUVA280) and quantity were comparable to the near natural site, indicating the re-establishment of mostly pristine biochemical processes under continuously water logged conditions. The only differences occur in elevated dissolved methane and ammonia concentrations reflecting the former disturbance by drainage and peat extraction. Rewetting via polder technique seems to be an appropriate way to revitalize peatlands on longer timescales and to improve the water quality of downstream water bodies.

  17. Seismic evidence for the erosion of subglacial sediments by rapidly draining supraglacial lakes on the West Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Booth, Adam; Hubbard, Alun; Dow, Christine; Doyle, Samuel; Clark, Roger; Gusmeroli, Alessio; Lindbäck, Katrin; Pettersson, Rickard; Jones, Glenn; Murray, Tavi

    2013-04-01

    As part of a multi-disciplinary, multi-national project investigating the ice-dynamic implications of rapidly draining supraglacial lakes on the West Greenland Ice Sheet, we have conducted a series of seismic reflection experiments immediately following the rapid drainage of Lake F in the land-terminating Russell Glacier catchment to [1] isolate the principal mode of basal motion, and [2] identify and characterise the modification of that mode as forced by ingress of surface-derived meltwaters. Lake F had a surface area of ~3.84 km2 and drained entirely in less than two hours at a maximum rate of ~ 3300 m3 s-1, marked by local ice extension and uplift of up to 1 m. Two seismic profiles (A and B) were acquired and optimised for amplitude versus angle (AVA) characterisation of the substrate. All seismic data were recorded with a Geometrics GEODE system, using 48 vertically-orientated 100-Hz geophones installed at 10 m intervals. 250 g pentalite charges were fired in shallow auger holes at 80 m intervals along each line, providing six-fold coverage. Profile A targets the subglacial hydrological basin into which the Lake-F waters drained, and reveals a uniform, flat glacier bed beneath ~1.3 km of ice, characterised by the presence of a very stiff till with an acoustic impedance of 4.17 ± 0.11 x 106 kg m-2 s1 and a Poisson's ratio of 0.06 ± 0.05. In profile B, to the southeast of Lake F in an isolated subglacial hydrological basin, ice thickness is 1.0-1.1 km and a discrete sedimentary basin is evident; within this feature, we interpret a stratified subglacial till deposit, having lodged till (acoustic impedance = 4.26 ± 0.59×106 kgm-2 s-1) underlying a water-saturated dilatant till layer (thickness

  18. Mo1-xWxSe2-Based Schottky Junction Photovoltaic Cells.

    PubMed

    Yi, Sum-Gyun; Kim, Sung Hyun; Park, Sungjin; Oh, Donggun; Choi, Hwan Young; Lee, Nara; Choi, Young Jai; Yoo, Kyung-Hwa

    2016-12-14

    We developed Schottky junction photovoltaic cells based on multilayer Mo 1-x W x Se 2 with x = 0, 0.5, and 1. To generate built-in potentials, Pd and Al were used as the source and drain electrodes in a lateral structure, and Pd and graphene were used as the bottom and top electrodes in a vertical structure. These devices exhibited gate-tunable diode-like current rectification and photovoltaic responses. Mo 0.5 W 0.5 Se 2 Schottky diodes with Pd and Al electrodes exhibited higher photovoltaic efficiency than MoSe 2 and WSe 2 devices with Pd and Al electrodes, likely because of the greater adjusted band alignment in Mo 0.5 W 0.5 Se 2 devices. Furthermore, we showed that Mo 0.5 W 0.5 Se 2 -based vertical Schottky diodes yield a power conversion efficiency of ∼16% under 532 nm light and ∼13% under a standard air mass 1.5 spectrum, demonstrating their remarkable potential for photovoltaic applications.

  19. Core-shell homojunction silicon vertical nanowire tunneling field-effect transistors.

    PubMed

    Yoon, Jun-Sik; Kim, Kihyun; Baek, Chang-Ki

    2017-01-23

    We propose three-terminal core-shell (CS) silicon vertical nanowire tunneling field-effect transistors (TFETs), which can be fabricated by conventional CMOS technology. CS TFETs show lower subthreshold swing (SS) and higher on-state current than conventional TFETs through their high surface-to-volume ratio, which increases carrier-tunneling region with no additional device area. The on-state current can be enhanced by increasing the nanowire height, decreasing equivalent oxide thickness (EOT) or creating a nanowire array. The off-state current is also manageable for power saving through selective epitaxial growth at the top-side nanowire region. CS TFETs with an EOT of 0.8 nm and an aspect ratio of 20 for the core nanowire region provide the largest drain current ranges with point SS values below 60 mV/dec and superior on/off current ratio under all operation voltages of 0.5, 0.7, and 1.0 V. These devices are promising for low-power applications at low fabrication cost and high device density.

  20. Electrical characterization of vertically stacked p-FET SOI nanowires

    NASA Astrophysics Data System (ADS)

    Cardoso Paz, Bruna; Cassé, Mikaël; Barraud, Sylvain; Reimbold, Gilles; Vinet, Maud; Faynot, Olivier; Antonio Pavanello, Marcelo

    2018-03-01

    This work presents the performance and transport characteristics of vertically stacked p-type MOSFET SOI nanowires (NWs) with inner spacers and epitaxial growth of SiGe raised source/drain. The conventional procedure to extract the effective oxide thickness (EOT) and Shift and Ratio Method (S&R) have been adapted and validated through tridimensional numerical simulations. Electrical characterization is performed for NWs with [1 1 0]- and [1 0 0]-oriented channels, as a function of both fin width (WFIN) and channel length (L). Results show a good electrostatic control and reduced short channel effects (SCE) down to 15 nm gate length, for both orientations. Effective mobility is found around two times higher for [1 1 0]- in comparison to [1 0 0]-oriented NWs due to higher holes mobility contribution in (1 1 0) plan. Improvements obtained on ION/IOFF by reducing WFIN are mainly due to subthreshold slope decrease, once small and none mobility increase is obtained for [1 1 0]- and [1 0 0]-oriented NWs, respectively.

  1. Vertical Silicon Nanowire Field Effect Transistors with Nanoscale Gate-All-Around

    NASA Astrophysics Data System (ADS)

    Guerfi, Youssouf; Larrieu, Guilhem

    2016-04-01

    Nanowires are considered building blocks for the ultimate scaling of MOS transistors, capable of pushing devices until the most extreme boundaries of miniaturization thanks to their physical and geometrical properties. In particular, nanowires' suitability for forming a gate-all-around (GAA) configuration confers to the device an optimum electrostatic control of the gate over the conduction channel and then a better immunity against the short channel effects (SCE). In this letter, a large-scale process of GAA vertical silicon nanowire (VNW) MOSFETs is presented. A top-down approach is adopted for the realization of VNWs with an optimum reproducibility followed by thin layer engineering at nanoscale. Good overall electrical performances were obtained, with excellent electrostatic behavior (a subthreshold slope (SS) of 95 mV/dec and a drain induced barrier lowering (DIBL) of 25 mV/V) for a 15-nm gate length. Finally, a first demonstration of dual integration of n-type and p-type VNW transistors for the realization of CMOS inverter is proposed.

  2. Improved transfer of graphene for gated Schottky-junction, vertical, organic, field-effect transistors.

    PubMed

    Lemaitre, Maxime G; Donoghue, Evan P; McCarthy, Mitchell A; Liu, Bo; Tongay, Sefaattin; Gila, Brent; Kumar, Purushottam; Singh, Rajiv K; Appleton, Bill R; Rinzler, Andrew G

    2012-10-23

    An improved process for graphene transfer was used to demonstrate high performance graphene enabled vertical organic field effect transistors (G-VFETs). The process reduces disorder and eliminates the polymeric residue that typically plagues transferred films. The method also allows for purposely creating pores in the graphene of a controlled areal density. Transconductance observed in G-VFETs fabricated with a continuous (pore-free) graphene source electrode is attributed to modulation of the contact barrier height between the graphene and organic semiconductor due to a gate field induced Fermi level shift in the low density of electronic-states graphene electrode. Pores introduced in the graphene source electrode are shown to boost the G-VFET performance, which scales with the areal pore density taking advantage of both barrier height lowering and tunnel barrier thinning. Devices with areal pore densities of 20% exhibit on/off ratios and output current densities exceeding 10(6) and 200 mA/cm(2), respectively, at drain voltages below 5 V.

  3. Revisiting a classification scheme for U.S.-Mexico alluvial basin-fill aquifers.

    PubMed

    Hibbs, Barry J; Darling, Bruce K

    2005-01-01

    Intermontane basins in the Trans-Pecos region of westernmost Texas and northern Chihuahua, Mexico, are target areas for disposal of interstate municipal sludge and have been identified as possible disposal sites for low-level radioactive waste. Understanding ground water movement within and between these basins is needed to assess potential contaminant fate and movement. Four associated basin aquifers are evaluated and classified; the Red Light Draw Aquifer, the Northwest Eagle Flat Aquifer, the Southeast Eagle Flat Aquifer, and the El Cuervo Aquifer. Encompassed on all but one side by mountains and local divides, the Red Light Draw Aquifer has the Rio Grande as an outlet for both surface drainage and ground water discharge. The river juxtaposed against its southern edge, the basin is classified as a topographically open, through-flowing basin. The Northwest Eagle Flat Aquifer is classified as a topographically closed and drained basin because surface drainage is to the interior of the basin and ground water discharge occurs by interbasin ground water flow. Mountains and ground water divides encompass this basin aquifer on all sides; yet, depth to ground water in the interior of the basin is commonly >500 feet. Negligible ground water discharge within the basin indicates that ground water discharges from the basin by vertical flow and underflow to a surrounding basin or basins. The most likely mode of discharge is by vertical, cross-formational flow to underlying Permian rocks that are more porous and permeable and subsequent flow along regional flowpaths beneath local ground water divides. The Southeast Eagle Flat Aquifer is classified as a topographically open and drained basin because surface drainage and ground water discharge are to the adjacent Wildhorse Flat area. Opposite the Eagle Flat and Red Light Draw aquifers is the El Cuervo Aquifer of northern Chihuahua, Mexico. The El Cuervo Aquifer has interior drainage to Laguna El Cuervo, which is a phreatic playa that also serves as a focal point of ground water discharge. Our evidence suggests that El Cuervo Aquifer may lose a smaller portion of its discharge by interbasin ground water flow to Indian Hot Springs, near the Rio Grande. Thus, El Cuervo Aquifer is a topographically closed basin that is either partially drained if a component of its ground water discharge reaches Indian Hot Springs or undrained if all its natural ground water discharge is to Laguna El Cuervo.

  4. Weight-controlled capillary viscometer

    NASA Astrophysics Data System (ADS)

    Digilov, Rafael M.; Reiner, M.

    2005-11-01

    The draining of a water column through a vertical discharge capillary tube is examined with the aid of a force sensor. The change of the mass of the liquid in the column with time is found to be not purely exponential as implied by Poiseuille's law. Using observed residuals associated with a kinetic energy correction, an approximate formula for the mass as a function of time is derived and excellent agreement with experimental data is attained. These results are verified by a viscosity test of distilled water at room temperature. A simple and inexpensive weight-controlled capillary viscometer is proposed that is especially suitable for undergraduate physics and chemistry laboratories.

  5. Mapping of the Marangoni effect in soap films using Young's double-slit experiment

    NASA Astrophysics Data System (ADS)

    Emile, Janine; Emile, Olivier

    2013-10-01

    We report on the thickness variation measurement of a soap film due to a local perturbation, using Young's double-slit experiment configuration. We map a laser-heated deformation of a vertical free-standing draining thin soap film using the differential change of optical path in the interferometer. The experiment has a resolution of about 0.1 nm and enables to follow the liquid flow dynamics. We evidence a bottleneck formation in the heated region of the film that perturbs the usual flow. Such an experimental set-up could then be adapted to measure other tiny variations in fluctuating hydrodynamics such as capillary waves for example.

  6. Naphthalenetetracarboxylic diimide layer-based transistors with nanometer oxide and side chain dielectrics operating below one volt.

    PubMed

    Jung, Byung Jun; Martinez Hardigree, Josue F; Dhar, Bal Mukund; Dawidczyk, Thomas J; Sun, Jia; See, Kevin Cua; Katz, Howard E

    2011-04-26

    We designed a new naphthalenetetracarboxylic diimide (NTCDI) semiconductor molecule with long fluoroalkylbenzyl side chains. The side chains, 1.2 nm long, not only aid in self-assembly and kinetically stabilize injected electrons but also act as part of the gate dielectric in field-effect transistors. On Si substrates coated only with the 2 nm thick native oxide, NTCDI semiconductor films were deposited with thicknesses from 17 to 120 nm. Top contact Au electrodes were deposited as sources and drains. The devices showed good transistor characteristics in air with 0.1-1 μA of drain current at 0.5 V of V(G) and V(DS) and W/L of 10-20, even though channel width (250 μm) is over 1000 times the distance (20 nm) between gate and drain electrodes. The extracted capacitance-times-mobility product, an expression of the sheet transconductance, can exceed 100 nS V(-1), 2 orders of magnitude higher than typical organic transistors. The vertical low-frequency capacitance with gate voltage applied in the accumulation regime reached as high as 650 nF/cm(2), matching the harmonic sum of capacitances of the native oxide and one side chain and indicating that some gate-induced carriers in such devices are distributed among all of the NTCDI core layers, although the preponderance of the carriers are still near the gate electrode. Besides demonstrating and analyzing thickness-dependent NTCDI-based transistor behavior, we also showed <1 V detection of dinitrotoluene vapor by such transistors.

  7. Preferential transport of isoproturon at a plot scale and a field scale tile-drained site

    NASA Astrophysics Data System (ADS)

    Zehe, Erwin; Flühler, Hannes

    2001-06-01

    Irrigation experiments using the tracers Brilliant Blue (BB) and Bromide (Br) were conducted on three plots of 1.4×1.4 m 2 (plot scale) and a field scale subsurface drained test site (900 m 2) to clarify mechanisms causing rapid transport of surface applied Isoproturon (IPU) during preferential flow events. One of the small plots (site 10) and the field scale test site are located on the same field. One day after irrigation of the plot scale sites the Br and IPU concentration in two vertical soil profiles as well as the macroporousity on separate profiles and hydraulic properties of single macropores were determined. During irrigation of the field scale test site discharge, soil moisture as well as the concentration of IPU and Br in the drainage outlet were measured. Preferential flow in deep penetrating earthworm burrows caused a fast breakthrough of IPU and Br into the tile drain (1.2 m depth) at the field scale site as well as leaching of IPU into the subsoil (>0.8 m) at site 10. The results suggest a hierarchy of preconditions for the occurrence of preferential flow events of which a sufficient number of deep penetrating macropores interconnected to the soil surface seems to be the most important one. Moreover there is evidence that facilitated transport of IPU attached to mobile soil particles occurred during the preferential flow events at the field scale site and site 10. The susceptibility for preferential flow as well as the susceptibility for facilitated transport appear to be intrinsic properties of the investigated soil.

  8. Decontamination systems information and research program. Quarterly report, April--June 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains separate reports on the following subtasks: analysis of the Vortec cyclone melting system for remediation of PCB contaminated soils using CFD; drain enhanced soil flushing using prefabricated vertical drains; performance and characteristics evaluation of acrylates as grout barriers; development of standard test protocol barrier design models for desiccation barriers, and for in-situ formed barriers; in-situ bioremediation of chlorinated solvents at Portsmouth Gaseous Diffusion Plant; development of a decision support system and a prototype database for management of the EM50 technology development program; GIS-based infrastructure for site characterization and remediation; treatment of mixed wastes via fluidized bed steammore » reforming; use of centrifugal membrane technology to treat hazardous/radioactive waste; environmental pollution control devices based on novel forms of carbon; development of instrumental methods for analysis of nuclear wastes and environmental materials; production and testing of biosorbents and cleaning solutions for D and D; use of SpinTek centrifugal membrane and sorbents/cleaning solutions for D and D; West Virginia High Tech Consortium Foundation--Environmental support program; small business interaction opportunities; and approach for assessing potential voluntary environmental protection.« less

  9. Self-Powered UV-Near Infrared Photodetector Based on Reduced Graphene Oxide/n-Si Vertical Heterojunction.

    PubMed

    Li, Guanghui; Liu, Lin; Wu, Guan; Chen, Wei; Qin, Sujie; Wang, Yi; Zhang, Ting

    2016-09-01

    A novel self-powered photodetector based on reduced graphene oxide (rGO)/n-Si p-n vertical heterojunction with high sensitivity and fast response time is presented. The photodetector contains a p-n vertical heterojunction between a drop-casted rGO thin film and n-Si. Contacts between the semiconductor layer (rGO, n-Si) and source-drain Ti/Au electrodes allow efficient transfer of photogenerated charge carriers. The self-powered UV-near infrared photodetector shows high sensitivity toward a spectrum of light from 365 to 1200 nm. Under the 600 nm illumination (0.81 mW cm -2 ), the device has a photoresponsivity of 1.52 A W -1 , with fast response and recover time (2 ms and 3.7 ms), and the ON/OFF ratios exceed 10 4 when the power density reaches ≈2.5 mW cm -2 . The high photoresponse primarily arises from the built-in electric field formed at the interface of n-Si and rGO film. The effect of rGO thickness, rGO reduction level, and layout of rGO/n-Si effective contact area on device performance are also systematically investigated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Simulation of a long-term aquifer test conducted near the Rio Grande, Albuquerque, New Mexico

    USGS Publications Warehouse

    McAda, Douglas P.

    2001-01-01

    A long-term aquifer test was conducted near the Rio Grande in Albuquerque during January and February 1995 using 22 wells and piezometers at nine sites, with the City of Albuquerque Griegos 1 production well as the pumped well. Griegos 1 discharge averaged about 2,330 gallons per minute for 54.4 days. A three-dimensional finite-difference ground-water-flow model was used to estimate aquifer properties in the vicinity of the Griegos well field and the amount of infiltration induced into the aquifer system from the Rio Grande and riverside drains as a result of pumping during the test. The model was initially calibrated by trial-and-error adjustments of the aquifer properties. The model was recalibrated using a nonlinear least-squares regression technique. The aquifer system in the area includes the middle Tertiary to Quaternary Santa Fe Group and post-Santa Fe Group valley- and basin-fill deposits of the Albuquerque Basin. The Rio Grande and adjacent riverside drains are in hydraulic connection with the aquifer system. The hydraulic-conductivity values of the upper part of the Santa Fe Group resulting from the model calibrated by trial and error varied by zone in the model and ranged from 12 to 33 feet per day. The hydraulic conductivity of the inner-valley alluvium was 45 feet per day. The vertical to horizontal anisotropy ratio was 1:140. Specific storage was 4 x 10-6 per foot of aquifer thickness, and specific yield was 0.15 (dimensionless). The sum of squared errors between the observed and simulated drawdowns was 130 feet squared. Not all aquifer properties could be estimated using nonlinear regression because of model insensitivity to some aquifer properties at observation locations. Hydraulic conductivity of the inner-valley alluvium, middle part of the Santa Fe Group, and riverbed and riverside-drain bed and specific yield had low sensitivity values and therefore could not be estimated. Of the properties estimated, hydraulic conductivity of the upper part of the Santa Fe Group was estimated to be 12 feet per day, the vertical to horizontal anisotropy ratio was estimated to be 1:82, and specific storage was estimated to be 1.2 x 10-6 per foot of aquifer thickness. The overall sum of squared errors between the observed and simulated drawdowns was 87 feet squared, a significant improvement over the model calibrated by trial and error. At the end of aquifer-test pumping, induced infiltration from the Rio Grande and riverside drains was simulated to be 13 percent of the total amount of water pumped. The remainder was water removed from aquifer storage. After pumping stopped, induced infiltration continued to replenish aquifer storage. Simulations estimated that 5 years after pumping began (about 4.85 years after pumping stopped), 58 to 72 percent of the total amount of water pumped was replenished by induced infiltration from the Rio Grande surface-water system.

  11. Ultrathin strain-gated field effect transistor based on In-doped ZnO nanobelts

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Du, Junli; Li, Bing; Zhang, Shuhao; Hong, Mengyu; Zhang, Xiaomei; Liao, Qingliang; Zhang, Yue

    2017-08-01

    In this work, we fabricated a strain-gated piezoelectric transistor based on single In-doped ZnO nanobelt with ±(0001) top/bottom polar surfaces. In the vertical structured transistor, the Pt tip of the AFM and Au film are used as source and drain electrode. The electrical transport performance of the transistor is gated by compressive strains. The working mechanism is attributed to the Schottky barrier height changed under the coupling effect of piezoresistive and piezoelectric. Uniquely, the transistor turns off under the compressive stress of 806 nN. The strain-gated transistor is likely to have important applications in high resolution mapping device and MEMS devices.

  12. Wide-Bandgap Semiconductor Devices for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Sugimoto, M.; Ueda, H.; Uesugi, T.; Kachi, T.

    2007-06-01

    In this paper, we discuss requirements of power devices for automotive applications, especially hybrid vehicles and the development of GaN power devices at Toyota. We fabricated AlGaN/GaN HEMTs and measured their characteristics. The maximum breakdown voltage was over 600V. The drain current with a gate width of 31mm was over 8A. A thermograph image of the HEMT under high current operation shows the AlGaN/GaN HEMT operated at more than 300°C. And we confirmed the operation of a vertical GaN device. All the results of the GaN HEMTs are really promising to realize high performance and small size inverters for future automobiles.

  13. Multitracer Study of Flow to Tile Drains in Irrigated Macroporous Soil

    NASA Astrophysics Data System (ADS)

    Bishop, J. M.; Callaghan, M. V.; Cey, E.; Bentley, L. R.

    2010-12-01

    Multiple tracer experiments have been conducted to test the effectiveness of using irrigation along with a tile drain system for salt remediation in west central Alberta, Canada. The experiments were designed to characterize the shallow flow system as part of a salt flushing pilot study and to determine the role of macroporosity in groundwater flow and transport. Soils at the site are primarily silty glaciolacustrine material underlain by a relatively impermeable till layer at approximately 2.5 m below ground surface. A 20 m by 20 m infiltration test plot is underlain by two tile drains at 2 m depth that are separated by 10 m. The test plot contains a drip irrigation system and has been irrigated regularly in the summer months over the past three seasons (2008-2010). Two reportedly conservative tracers, 2,6-difluorobenzoic acid [2,6-DFBA] and pentafluorobenzoic acid [PFBA], have been used on the plot and the pre-existing soil salinity was also used as a tracer. In August of 2009 a 2,6-DFBA solution (865g/L) was applied to the surface of the plot. Irrigation of the study plot continued after tracer application on a schedule that averaged roughly 12mm/day, applied 3 days a week. During the 2010 field season, a PFBA solution (at 4.2 g/L) was injected into two separate monitoring wells. One monitoring well is situated 0.5 m directly above the north tile drain (in which samples were collected regularly). The other well is situated at 2 m depth in the center of the study plot and samples were collected from a down gradient well. Tracer concentrations in the subsurface were monitored through sampling of tile drain effluent and monitoring wells in and around the plot, in addition to soil core extractions taken at several locations within the test plot at the end of the 2009 field season. Initial breakthrough of the DFBA in the tile drains occurred 24 hours after application and remained in all subsequent water samples at concentrations of 2 to 6 mg/L. Results from the DFBA analysis showed that the tiles are highly affected by the lateral and vertical contributions to the drains. Distribution of the DFBA in the soil showed that 82% of the tracer remained in the top 75 cm of the soil profile at the end of the 2009 season. This indicates that macropore flow is occurring, but has a minor influence on the movement of the salt mass. This result is important because it illustrates that although the salt mass has migrated slowly, macroporosity can transport contaminants quickly enough to exceeded drinking water quality guidelines. Breakthrough of the PFBA occurred in the north tile drain 13 hrs after application and peaked at a concentration of 10 mg/L, followed by a sharp decrease and stabilization to concentrations of 1.0 mg/L. This shows that macropore flow is occurring at depth in addition to the surface and that contaminant transport can occur rapidly in soils with lower hydraulic conductivity. Salt concentrations in the effluent were measured at high concentrations, showing that effective salt flushing of the matrix is still occurring.

  14. Randomized Controlled Trial to Reduce Bacterial Colonization of Surgical Drains After Breast and Axillary Operations

    PubMed Central

    Degnim, Amy C.; Scow, Jeffrey S.; Hoskin, Tanya L.; Miller, Joyce P.; Loprinzi, Margie; Boughey, Judy C.; Jakub, James W.; Throckmorton, Alyssa; Patel, Robin; Baddour, Larry M.

    2014-01-01

    Objective To determine if bacterial colonization of drains can be reduced by local antiseptic interventions. Summary Background Drains are a potential source of bacterial entry into surgical wounds and may contribute to surgical site infection (SSI) after breast surgery. Methods Following IRB approval, patients undergoing total mastectomy and/or axillary lymph node dissection were randomized to standard drain care (control) or drain antisepsis (treated). Standard drain care comprised twice daily cleansing with alcohol swabs. Antisepsis drain care included 1) a chlorhexidine disc at the drain exit site and 2) irrigation of the drain bulb twice daily with dilute sodium hypochlorite (Dakin’s) solution. Cultures results of drain fluid and tubing were compared between control and antisepsis groups. Results Overall, 100 patients with 125 drains completed the study with 48 patients (58 drains) in the control group and 52 patients (67 drains) in the antisepsis group. Cultures of drain bulb fluid at one week were positive (1+ or greater growth) in 66% (38/58) of control drains compared to 21% of antisepsis drains (14/67), (p=0.0001). Drain tubing cultures demonstrated >50 CFU in 19% (8/43) of control drains versus 0% (0/53) of treated drains (p=0.004). SSI was diagnosed in 6 patients (6%) - 5 patients in the control group and 1 patient in the antisepsis group (p=0.06). Conclusions Simple and inexpensive local antiseptic interventions with a chlorhexidine disc and hypochlorite solution reduce bacterial colonization of drains. Based on these data, further study of drain antisepsis and its potential impact on SSI rate is warranted. PMID:23518704

  15. Force and light tuning vertical tunneling current in the atomic layered MoS2.

    PubMed

    Li, Feng; Lu, Zhixing; Lan, Yann-Wen; Jiao, Liying; Xu, Minxuan; Zhu, Xiaoyang; Zhang, Xiankun; Wu, Hualin; Qi, Junjie

    2018-07-06

    In this work, the vertical electrical transport behavior of bilayer MoS 2 under the coupling of force and light was explored by the use of conductive atomic force microscopy. We found that the current-voltage behavior across the tip-MoS 2 -Pt junction is a tunneling current that can be well fitted by a Simmons approximation. The transport behavior is direct tunneling at low bias and Fowler-Nordheim tunneling at high bias, and the transition voltage and tunnel barrier height are extracted. The effect of force and light on the effective band gap of the junction is investigated. Furthermore, the source-drain current drops surprisingly when we continually increase the force, and the dropping point is altered by the provided light. This mechanism is responsible for the tuning of tunneling barrier height and width by force and light. These results provide a new way to design devices that take advantage of ultrathin two-dimensional materials. Ultrashort channel length electronic components that possess tunneling current are important for establishing high-efficiency electronic and optoelectronic systems.

  16. Field determination of vertical permeability to air in the unsaturated zone

    USGS Publications Warehouse

    Weeks, Edwin P.

    1978-01-01

    The vertical permeability to air of layered materials in the unsaturated zone may be determined from air pressure data obtained at depth during a period when air pressure is changing at land surface. Such data may be obtained by monitoring barometric pressure with a microbarograph or surveying altimeter and simultaneously measuring down-hole pneumatic head differences in specially constructed piezometers. These data, coupled with air-filled porosity data from other sources, may be compared with the results of electric-analog or numerical solution of the one-dimensional diffusion equation to make a trial-and-error determination of the air permeability for each layer. The permeabilities to air may in turn be converted to equivalent hydraulic conductivity values if the materials are well drained, are permeable enough that the Klinkenberg effect is small, and are structurally unaffected by wetting. The method offers potential advantages over present methods to evaluate sites for artificial recharge by spreading; to evaluate ground-water pollution hazards from feedlots, sanitary landfills , and land irrigated with sewage effluent; and to evaluate sites for temporary storage of gas in the unsaturated zone. (Woodard-USGS)

  17. Phase structure within a fracture network beneath a surface pond: Field experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GLASS JR.,ROBERT J.; NICHOLL,M.J.

    2000-05-09

    The authors performed a simple experiment to elucidate phase structure within a pervasively fractured welded tuff. Dyed water was infiltrated from a surface pond over a 36 minute period while a geophysical array monitored the wetted region within vertical planes directly beneath. They then excavated the rock mass to a depth of {approximately}5 m and mapped the fracture network and extent of dye staining in a series of horizontal pavements. Near the pond the network was fully stained. Below, the phase structure immediately expanded and with depth, the structure became fragmented and complicated exhibiting evidence of preferential flow, fingers, irregularmore » wetting patterns, and varied behavior at fracture intersections. Limited transient geophysical data suggested that strong vertical pathways form first followed by increased horizontal expansion and connection within the network. These rapid pathways are also the first to drain. Estimates also suggest that the excavation captured from {approximately}10% to 1% or less of the volume of rock interrogated by the infiltration slug and thus the penetration depth could have been quite large.« less

  18. Ultrasensitive near-infrared photodetectors based on graphene-MoTe2-graphene vertical van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Ye, Yu; Dai, Lun; School of Physics, Peking University Team

    Two-dimensional (2D) materials have rapidly established themselves as exceptional building blocks for optoelectronic applications, due to their unique properties and atomically thin nature. Nevertheless, near-infrared (NIR) photodetectors based on layered 2D semiconductors are rarely realized. In this work, we fabricate graphene-MoTe2-graphene vertical vdWs heterostructure by a facile and reliable site controllable transfer method, and apply it for photodetection from visible to the NIR wavelength range. Compared to the 2D semiconductor based photodetectors reported thus far, the graphene-MoTe2-graphene photodetector has superior performance, including high photoresponsivity (110 mA W-1 at 1064 nm and 205 mA W-1 at 473 nm), high external quantum efficiency (EQE, 12.9% at 1064 nm and 53.8% at 473 nm), rapid response and recovery processes (rise time of 24 μs, fall time of 46 μs under 1064 nm illumination), and free from an external source-drain power supply. The all-2D-materials heterostructure has promising applications in future novel high responsivity, high speed and flexible NIR devices.

  19. Organic permeable-base transistors - superb power efficiency at highest frequencies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Klinger, Markus P.; Fischer, Axel; Kaschura, Felix; Scholz, Reinhard; Lüssem, Björn; Kheradmand-Boroujeni, Bahman; Ellinger, Frank; Kasemann, Daniel; Leo, Karl

    2016-11-01

    Organic field-effect transistors (OFET) are important elements in thin-film electronics, being considered for flat-panel or flexible displays, radio frequency identification systems, and sensor arrays. To optimize the devices for high-frequency operation, the channel length, defined as the horizontal distance between the source and the drain contact, can be scaled down. Here, an architecture with a vertical current flow, in particular the Organic Permeable-Base Transistors (OPBT), opens up new opportunities, because the effective transit length in vertical direction is precisely tunable in the nanometer range by the thickness of the semiconductor layer. We present an advanced OPBT, competing with best OFETs while a low-cost, OLED-like fabrication with low-resolution shadow masks is used (Klinger et al., Adv. Mater. 27, 2015). Its design consists of a stack of three parallel electrodes separated by two semiconductor layers of C60 . The vertical current flow is controlled by the middle base electrode with nano-sized openings passivated by an native oxide. Using insulated layers to structure the active area, devices show an on/off ratio of 10⁶ , drive 11 A/cm² at an operation voltage of 1 V, and have a low subthreshold slope of 102 mV/decade. These OPBTs show a unity current-gain transit frequency of 2.2 MHz and off-state break-down fields above 1 MV/cm. Thus, our optimized setup does not only set a benchmark for vertical organic transistors, but also outperforms best lateral OFETs using similar low-cost structuring techniques in terms of power efficiency at high frequencies.

  20. Carbon-Nanotube-Confined Vertical Heterostructures with Asymmetric Contacts.

    PubMed

    Zhang, Jin; Zhang, Kenan; Xia, Bingyu; Wei, Yang; Li, Dongqi; Zhang, Ke; Zhang, Zhixing; Wu, Yang; Liu, Peng; Duan, Xidong; Xu, Yong; Duan, Wenhui; Fan, Shoushan; Jiang, Kaili

    2017-10-01

    Van der Waals (vdW) heterostructures have received intense attention for their efficient stacking methodology with 2D nanomaterials in vertical dimension. However, it is still a challenge to scale down the lateral size of vdW heterostructures to the nanometer and make proper contacts to achieve optimized performances. Here, a carbon-nanotube-confined vertical heterostructure (CCVH) is employed to address this challenge, in which 2D semiconductors are asymmetrically sandwiched by an individual metallic single-walled carbon nanotube (SWCNT) and a metal electrode. By using WSe 2 and MoS 2 , the CCVH can be made into p-type and n-type field effect transistors with high on/off ratios even when the channel length is 3.3 nm. A complementary inverter was further built with them, indicating their potential in logic circuits with a high integration level. Furthermore, the Fermi level of SWCNTs can be efficiently modulated by the gate voltage, making it competent for both electron and hole injection in the CCVHs. This unique property is shown by the transition of WSe 2 CCVH from unipolar to bipolar, and the transition of WSe 2 /MoS 2 from p-n junction to n-n junction under proper source-drain biases and gate voltages. Therefore, the CCVH, as a member of 1D/2D mixed heterostructures, shows great potentials in future nanoelectronics and nano-optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High-performance PbS quantum dot vertical field-effect phototransistor using graphene as a transparent electrode

    NASA Astrophysics Data System (ADS)

    Che, Yongli; Zhang, Yating; Cao, Xiaolong; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan

    2016-12-01

    Solution processed photoactive PbS quantum dots (QDs) were used as channel in high-performance near-infrared vertical field-effect phototransistor (VFEpT) where monolayer graphene embedded as transparent electrode. In this vertical architecture, the PbS QD channel was sandwiched and naturally protected between the drain and source electrodes, which made the device ultrashort channel length (110 nm) simply the thickness of the channel layer. The VFEpT exhibited ambipolar operation with high mobilities of μe = 3.5 cm2/V s in n-channel operation and μh = 3.3 cm2/V s in p-channel operation at low operation voltages. By using the photoactive PbS QDs as channel material, the VFEpT exhibited good photoresponse properties with a responsivity of 4.2 × 102 A/W, an external quantum efficiency of 6.4 × 104% and a photodetectivity of 2.1 × 109 Jones at the light irradiance of 36 mW/cm2. Additionally, the VFEpT showed excellent on/off switching with good stability and reproducibility and fast response speed with a short rise time of 12 ms in n-channel operation and 10.6 ms in p-channel operation. These high mobilities, good photoresponse properties and simplistic fabrication of our VFEpTs provided a facile route to the high-performance inorganic photodetectors.

  2. Modelling rapid flow response of a tile drained hillslope with explicit representation of preferential flow paths and consideration of equifinal model structures

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Zehe, Erwin

    2010-05-01

    Rapid water flow along spatially connected - often biologically mediated - flow paths of minimum flow resistance is widely acknowledged to play a key role in runoff generation at the hillslope and small catchment scales but also in the transport of solutes like agro chemicals and nutrients in cohesive soils. Especially at tile drained fields site connected vertical flow structures such as worm burrows, roots or shrinkage cracks act as short cuts allowing water flow to bypass the soil matrix. In the present study we propose a spatially explicit approach to represent worm burrows as connected structures of high conductivity and low retention capacity in a 2D physically model. With this approach tile drain discharge and preferential flow patterns in soil observed during the irrigation of a tile drained hillslope in the Weiherbach catchment were modelled. The model parameters derived from measurements and are considered to be uncertain. Given this uncertainty of key factors that organise flow and transport at tile drained sites the main objectives of the present studies are to shed light on the following three questions: 1. Does a simplified approach that explicitly represents worm burrows as continuous flow paths of small flow resistance and low retention properties in a 2D physically model allow successful reproduction of event flow response at a tile drained field site in the Weiherbach catchment? 2. Does the above described uncertainty in key factors cause equifinality i.e. are there several model structural setups that reproduce event flow response in an acceptable manner without compromising our physical understanding of the system? 3. If so, what are the key factors that have to be known at high accuracy to reduce the equifinality of model structures? The issue of equifinality is usually discussed in catchment modelling to indicate that often a large set of conceptual model parameter sets allows acceptable reproduction of the behaviour of the system of interest - in many cases catchment stream flow response. Beven and Binley (1992) suggest that these model structures should be considered to be equally likely to account for predictive uncertainty. In this study we show that the above outline approach allows successful prediction of the tile drain discharge and preferential flow patterns in soil observed during the irrigation of a tile drained hillslope in the Weiherbach catchment flow event. Strikingly we a found a considerable equifinality in the model structural setup, when key parameters such as the area density of worm burrows, their hydraulic conductivity and the conductivity of the tile drains were varied within the ranges of either our measurements or measurements reported in the literature. Thirteen different model setups yielded a normalised time-shifted Nash-Sutcliffe of more than 0.9, which means that more than 90% of the flow variability is explained by the model. Also the flow volumes were in good accordance and timing errors were less or equal than 20 min (which corresponds to two simulation output time steps). It is elaborated that this uncertainty/equifinality could be reduced when more precise data on initial states of the subsurface and on the drainage area of a single drainage tube could be made available. However, such data are currently most difficult to assess even at very well investigated site as the one that is dealt with here. We thus suggest non uniqueness of process based model structures seems thus to be an important factor causing predictive uncertainty at many sites where preferential flow dominates systems response. References Beven, K.J. and Binley, A.M., 1992. The future of distributed models: model calibration and uncertainty prediction, Hydrological Processes, 6, p.279-298.

  3. Development and fabrication of low ON resistance high current vertical VMOS power FETs

    NASA Technical Reports Server (NTRS)

    Kay, S.

    1979-01-01

    The design of a VMOS Power FET exhibiting low ON resistance, high current as well as high breakdown voltage and fast switching speeds is described. The design which is based on a 1st-order device model, features a novel polysilicon-gate structure and fieldplated groove termination to achieve high packing density and high breakdown voltage, respectively. One test chip, named VNTKI, can block 180 V at an ON resistence of 2.5 ohm. A 150 mil x 200 mil (.19 sq cm) experimental chip has demonstrated a breakdown voltage of 200v, an ON resistance of 0.12 ohm, a switching time of less than 100 ns, and a pulse drain - current of 50 A with 10 V gate drive.

  4. Epidural abscess treated with a medial supraorbital craniotomy through an incision in the eyebrow. Case report.

    PubMed

    Rosen, David S; Shafizadeh, Stephen; Baroody, Fuad M; Yamini, Bakhtiar

    2008-02-01

    The authors describe a medial supraorbital craniotomy performed through a medial eyebrow skin incision to approach an epidural abscess located in the medial anterior fossa of the skull. An 8-year-old boy presented with fevers and facial swelling. Imaging demonstrated pansinusitis and an epidural fluid collection adjacent to the frontal sinus. A medial supraorbital craniotomy was performed to access and drain the epidural abscess. The supraorbital nerve laterally and the supratrochlear nerve medially were preserved by incising the frontalis muscle vertically, parallel to the course of the nerves, and dissecting the subperiosteal plane to mobilize the nerves. This approach may be a useful access corridor for other lesions located near the medial anterior fossa.

  5. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent feature in this view is the Expansion Nozzle . The rings that loop around the nozzle, vertically in this view, add structural stability to the nozzle walls and are referred to Hatbands. The ring on the left most edge of the nozzle is the Coolant Inlet Manifold. The tubes that branch off and connect to the manifold are Coolant Transfer Ducts and the tubes that terminate with a visible opening at the manifold are Drain Lines. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. Closeup view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent feature in this view is the Expansion Nozzle . The rings that loop around the nozzle, vertically in this view, add structural stability to the nozzle walls and are referred to Hatbands. The ring on the left most edge of the nozzle is the Coolant Inlet Manifold. The tubes that branch off and connect to the manifold are Coolant Transfer Ducts and the tubes that terminate with a visible opening at the manifold are Drain Lines. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. Emission and detection of surface acoustic waves by AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Shao, Lei; Zhang, Meng; Banerjee, Animesh; Bhattacharya, Pallab; Pipe, Kevin P.

    2011-12-01

    Using integrated interdigital transducers (IDTs), we demonstrate the emission of surface acoustic waves (SAWs) by AlGaN/GaN high electron mobility transistors (HEMTs) under certain bias conditions through dynamic screening of the HEMTs vertical field by modulation of its two-dimensional electron gas. We show that a strong SAW signal can be detected if the IDT geometry replicates the HEMT electrode geometry at which RF bias is applied. In addition to characterizing SAW emission during both gate-source and drain-source modulation, we demonstrate SAW detection by HEMTs. Integrated HEMT-IDT structures could enable real-time evaluation of epitaxial degradation as well as high-speed, amplified detection of SAWs.

  8. Self-sustaining dynamical nuclear polarization oscillations in quantum dots.

    PubMed

    Rudner, M S; Levitov, L S

    2013-02-22

    Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce a minimal albeit realistic model of coupled electron and nuclear spin dynamics which supports self-sustained oscillations. Our mechanism relies on a nuclear spin analog of the tunneling magnetoresistance phenomenon (spin-dependent tunneling rates in the presence of an inhomogeneous Overhauser field) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The proposed framework naturally explains the differences in phenomenology between vertical and lateral quantum dot structures as well as the extremely long oscillation periods.

  9. 14 CFR 23.1021 - Oil system drains.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil system drains. 23.1021 Section 23.1021 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain...

  10. 14 CFR 23.1021 - Oil system drains.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil system drains. 23.1021 Section 23.1021 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain...

  11. A prospective randomized study of use of drain versus no drain after burr-hole evacuation of chronic subdural hematoma.

    PubMed

    Singh, Amit Kumar; Suryanarayanan, Bhaskar; Choudhary, Ajay; Prasad, Akhila; Singh, Sachin; Gupta, Laxmi Narayan

    2014-01-01

    Chronic subdural hematoma (CSDH) recurs after surgical evacuation in 5-30% of patients. Inserting subdural drain might reduce the recurrence rate, but is not commonly practiced. There are few prospective studies to evaluate the effect of subdural drains. A prospective randomized study to investigate the effect of subdural drains in the on recurrence rates and clinical outcome following burr-hole drainage (BHD) of CSDH was undertaken. During the study period, 246 patients with CSDH were assessed for eligibility. Among 200 patients fulfilling the eligibility criteria, 100 each were assigned to "drain group" (drain inserted into the subdural space following BHD) and "without drain group" (subdural drain was not inserted following BHD) using random allocation software. The primary end point was recurrence needing re-drainage up to a period of 6 months from surgery. Recurrence occurred in 9 of 100 patients with a drain, and 26 of 100 patients in without drain group (P = 0.002). The mortality was 5% in patients with drain and 4% in patients without drain group (P = 0.744). The medical and surgical complications were comparable between the two study groups. Use of a subdural drain after burr-hole evacuation of a CSDH reduces the recurrence rate and is not associated with increased complications.

  12. 14 CFR 23.1021 - Oil system drains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil system drains. 23.1021 Section 23.1021... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain...

  13. 14 CFR 29.1021 - Oil system drains.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil system drains. 29.1021 Section 29.1021... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible...

  14. 14 CFR 27.1021 - Oil system drains.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil system drains. 27.1021 Section 27.1021... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible; and (b...

  15. 14 CFR 25.1021 - Oil system drains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil system drains. 25.1021 Section 25.1021... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible...

  16. 14 CFR 25.1021 - Oil system drains.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil system drains. 25.1021 Section 25.1021... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible...

  17. 14 CFR 23.1021 - Oil system drains.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil system drains. 23.1021 Section 23.1021... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain...

  18. 14 CFR 29.1021 - Oil system drains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil system drains. 29.1021 Section 29.1021... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible...

  19. 14 CFR 27.1021 - Oil system drains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil system drains. 27.1021 Section 27.1021... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1021 Oil system drains. A drain (or drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible; and (b...

  20. On the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Liu, Jin

    2017-03-01

    Conventional models of pumping tests in unconfined aquifers often neglect the unsaturated flow process. This study concerns the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells positioned in an unconfined aquifer. A mathematical model is established with special consideration of the coupled unsaturated-saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace-finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W) during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant) in unconfined aquifers affected from above by the unsaturated flow process.

  1. Timing of Re-Transfusion Drain Removal Following Total Knee Replacement

    PubMed Central

    Leeman, MF; Costa, ML; Costello, E; Edwards, D

    2006-01-01

    INTRODUCTION The use of postoperative drains following total knee replacement (TKR) has recently been modified by the use of re-transfusion drains. The aim of our study was to investigate the optimal time for removal of re-transfusion drains following TKR. PATIENTS AND METHODS The medical records of 66 patients who had a TKR performed between October 2003 and October 2004 were reviewed; blood drained before 6 h and the total volume of blood drained was recorded. RESULTS A total of 56 patients had complete records of postoperative drainage. The mean volume of blood collected in the drain in the first 6 h was 442 ml. The mean total volume of blood in the drain was 595 ml. Therefore, of the blood drained, 78% was available for transfusion. CONCLUSION Re-transfusion drains should be removed after 6 h, when no further re-transfusion is permissible. PMID:16551400

  2. A Brief History of Two Common Surgical Drains.

    PubMed

    Meyerson, Joseph M

    2016-01-01

    The use of surgical drains is commonplace in all types of surgical procedures, and rarely do we take the time to contemplate or investigate the origins of these critical devices. Every surgeon should be familiar with the Jackson-Pratt drain and Blake drain, 2 of the most frequently used closed suction, negative-pressure drainage devices in surgery. These drains are used throughout the body in a wide variety of surgical procedures. The development and differences between these 2 devices are seldom known by the practicing surgeon. In this article, we delve into the ancient history of drains, the creation and alterations of the closed suction, negative-pressure drain that paved the way for the Jackson-Pratt and Blake drain. Finally, we will discuss the variety of reservoirs that attach to these drains and the origin of the well-known adage of when to pull a drain.

  3. A study of the complications of small bore 'Seldinger' intercostal chest drains.

    PubMed

    Davies, Helen E; Merchant, Shairoz; McGown, Anne

    2008-06-01

    Use of small bore chest drains (<14F), inserted via the Seldinger technique, has increased globally over the last few years. They are now used as first line interventions in most acute medical situations when thoracostomy is required. Limited data are available on the associated complications. In this study, the frequency of complications associated with 12F chest drains, inserted using the Seldinger technique, was quantified. A retrospective case note audit was performed of consecutive patients requiring pleural drainage over a 12-month period. One hundred consecutive small bore Seldinger (12F) chest drain insertions were evaluated. Few serious complications occurred. However, 21% of the chest drains were displaced ('fell out') and 9% of the drains became blocked. This contributed to high morbidity rates, with 13% of patients requiring repeat pleural procedures. The frequency of drain blockage in pleural effusion was reduced by administration of regular normal saline drain flushes (odds ratio for blockage in flushed drains compared with non-flushed drains 0.04, 95% CI: 0.01-0.37, P < 0.001). Regular chest drain flushes are advocated in order to reduce rates of drain blockage, and further studies are needed to determine optimal fixation strategies that may reduce associated patient morbidity.

  4. Comparison of a large and small-calibre tube drain for managing spontaneous pneumothoraces.

    PubMed

    Benton, Ian J; Benfield, Grant F A

    2009-10-01

    To compare treatment success of large- and small-bore chest drains in the treatment of spontaneous pneumothoraces the case-notes were reviewed of those admitted to our hospital with a total of 73 pneumothoraces and who were treated by trainee doctors of varying experience. Both a large- and a small-bore intercostal tube drain system were in use during the two-year period reviewed. Similar pneumothorax profile and numbers treated with both drains were recorded, resulting in a similar drain time and numbers of successful and failed re-expansion of pneumothoraces. Successful pneumothorax resolution was the same for both drain types and the negligible tube drain complications observed with the small-bore drain reflected previously reported experiences. However the large-bore drain was associated with a high complication rate (32%) with more infectious complications (24%). The small-bore drain was prone to displacement (21%). There was generally no evidence of an increased failure and morbidity, reflecting poorer expertise, in the non-specialist trainees managing the pneumothoraces. A practical finding however was that in those large pneumothoraces where re-expansion failed, the tip of the drain had not been sited at the apex of the pleural cavity irrespective of the drain type inserted.

  5. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices

    PubMed Central

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines. PMID:25763152

  6. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices.

    PubMed

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines.

  7. An LOD with improved breakdown voltage in full-frame CCD devices

    NASA Astrophysics Data System (ADS)

    Banghart, Edmund K.; Stevens, Eric G.; Doan, Hung Q.; Shepherd, John P.; Meisenzahl, Eric J.

    2005-02-01

    In full-frame image sensors, lateral overflow drain (LOD) structures are typically formed along the vertical CCD shift registers to provide a means for preventing charge blooming in the imager pixels. In a conventional LOD structure, the n-type LOD implant is made through the thin gate dielectric stack in the device active area and adjacent to the thick field oxidation that isolates the vertical CCD columns of the imager. In this paper, a novel LOD structure is described in which the n-type LOD impurities are placed directly under the field oxidation and are, therefore, electrically isolated from the gate electrodes. By reducing the electrical fields that cause breakdown at the silicon surface, this new structure permits a larger amount of n-type impurities to be implanted for the purpose of increasing the LOD conductivity. As a consequence of the improved conductance, the LOD width can be significantly reduced, enabling the design of higher resolution imaging arrays without sacrificing charge capacity in the pixels. Numerical simulations with MEDICI of the LOD leakage current are presented that identify the breakdown mechanism, while three-dimensional solutions to Poisson's equation are used to determine the charge capacity as a function of pixel dimension.

  8. Vertical distribution of mercury and MeHg in Nandagang and Beidagang wetlands: Influence of microtopography

    NASA Astrophysics Data System (ADS)

    Liu, Ruhai; Zhang, Yanyan; Wang, Yan; Zhao, Jin; Shan, Huayao

    2018-02-01

    Wetlands often show different small-scale topography, such as riffle, habitat island, deep water, shallow water zone and dry zone. Core soils in different micro topographical landforms of Nandagang and Beidagang wetlands in North China were sampled for THg and MeHg to analyze the influence of microtopography. Results showed that THg content in surface soil (<2 cm) was little higher than that at depth 2-4 cm of all stations. There were several peaks in the profile, which reflected mercury pollution in past. High THg content in undisturbed natural wetland soil implied accumulation of mercury. Harvest of plant, drained water decreased the accumulation of mercury in wetlands. Water level caused by microtopography affected the production of MeHg. Depth of the highest MeHg content decreased from N1, N2, N6, N3 to N4 following the increase of water level. Plant type and coverage also affected the vertical distribution of MeHg. More detailed profiles of MeHg, organic matter and total phosphorus in different sites show strong differences in soil chemistry, suggesting a complex interplay among hydrology, biogeochemistry and microtopography.

  9. First record of lobed trace fossils in Brazil's Upper Cretaceous paleosols: Rhizoliths or evidence of insects and their social behavior?

    NASA Astrophysics Data System (ADS)

    Luciano do Nascimento, Diego; Batezelli, Alessandro; Bernardes Ladeira, Francisco Sérgio

    2017-11-01

    This is the first report of trace fossils potentially associated with insect social behavior in sandy and well-drained paleosols of the Upper Cretaceous continental sequence of Brazil. The trace fossils consist of dozens of lobed and vertical structures cemented by CaCO3 and preserved mainly in full relief in paleosols of the Marilia Formation (Bauru Basin) in the state of Minas Gerais. The described ichnofossils are predominantly vertical, up to 2 m long, and are composed of horizontal lobed structures connected by vertical tunnel-like structures that intersect in the center and at the edges. The lobed structures range from 3 to 15 cm long and 2-6 cm thick. Two different hypotheses are analyzed to explain the origin of the trace fossils; the less probable one is that the structures are laminar calcretes associated with rhizoliths and rhizoconcretions. The hypothesis involving social insects was considered because the trace fossils described herein partially resemble a modern ant nest and the ichnofossil Daimoniobarax. The micromorphological analysis of the lobed and tunnel-like structures indicates modifications of the walls, such as the presence of inorganic fluidized linings, dark linings and oriented grains, supporting the hypothesis that they are chambers and shafts. The architecture and size of the reported nests suggest the possibility that social insect colonies existed during the Maastrichtian and are direct evidence of the social behavior and reproductive strategies of the Cretaceous pedofauna.

  10. Chest Drain Fall-Out Rate According to Suturing Practices: A Retrospective Direct Comparison.

    PubMed

    Asciak, Rachelle; Addala, Dinesh; Karimjee, Juzer; Rana, Maaz Suhail; Tsikrika, Stamatoula; Hassan, Maged Fayed; Mercer, Rachel Mary; Hallifax, Robert John; Wrightson, John Matthew; Psallidas, Ioannis; Benamore, Rachel; Rahman, Najib Mahboob

    2018-06-14

    Chest drains often become displaced and require replacement, adding unnecessary risks to patients. Simple measures such as suturing of the drain may reduce fall-out rates; however, there is no direct data to demonstrate this and no standardized recommended practice that is evidence based. The study aimed to analyze the rate of chest drain fall out according to suturing practice. Retrospective analysis of all chest drain insertions (radiology and pleural teams) in 2015-2016. Details of chest drain fall out were collected from patient electronic records. Drain "fall out" was pre-hoc defined as the drain tip becoming dislodged outside the pleural cavity unintentionally before a clinical decision was taken to remove the drain. A total of 369 chest drains were inserted: sutured (n = 106, 28.7%; 44 male [41.5%], median age 74 [interquartile range (IQR) 21] years), and unsutured (n = 263, 71.3%; 139 male [52.9%], median age 68 [IQR 21] years). Of the sutured drains, 7 (6.6%) fell out after a mean of 3.3 days (SD 2.6) compared to 39 (14.8%; p = 0.04) unsutured drains falling out after a mean of 2.7 days (SD 2.0; p = 0.8). Within the limits of this retrospective analysis, these results -suggest that suturing of drains is associated with lower fall-out rates. © 2018 S. Karger AG, Basel.

  11. Might digital drains speed up the time to thoracic drain removal?

    PubMed

    Afoke, Jonathan; Tan, Carol; Hunt, Ian; Zakkar, Mustafa

    2014-07-01

    A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed was: might digital drains speed up the time to thoracic drain removal in terms of time till chest drain removal, hospital stay and overall cost? A total of 296 papers were identified as a result of the search as described below. Of these, five papers provided the best evidence to answer the clinical question. The author, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of the papers are tabulated. A literature search revealed that several single-centre prospective randomized studies have shown significantly earlier removal of chest drains with digital drains ranging between 0.8 and 2.1 days sooner. However, there was heterogeneity in studies in the management protocol of chest drains in terms of the use of suction, number of drains and assessment for drain removal. Some protocols such as routinely keeping drains irrespective of the presence of air leak or drain output may have skewed results. Differences in exclusion criteria and protocols for discharging home with portable devices may have biased results. Due to heterogeneity in the management protocol of chest drains, there is conflicting evidence regarding hospital stay. The limited data on cost suggest that there may be significantly lower postoperative costs in the digital drain group. All the studies were single-centre series generally including patients with good preoperative lung function tests. Further larger studies with more robust chest drain management protocols are required especially to assess length of hospital stay, cost and whether the results are applicable to a larger patient population. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  12. Charge plasma based source/drain engineered Schottky Barrier MOSFET: Ambipolar suppression and improvement of the RF performance

    NASA Astrophysics Data System (ADS)

    Kale, Sumit; Kondekar, Pravin N.

    2018-01-01

    This paper reports a novel device structure for charge plasma based Schottky Barrier (SB) MOSFET on ultrathin SOI to suppress the ambipolar leakage current and improvement of the radio frequency (RF) performance. In the proposed device, we employ dual material for the source and drain formation. Therefore, source/drain is divided into two parts as main source/drain and source/drain extension. Erbium silicide (ErSi1.7) is used as main source/drain material and Hafnium metal is used as source/drain extension material. The source extension induces the electron plasma in the ultrathin SOI body resulting reduction of SB width at the source side. Similarly, drain extension also induces the electron plasma at the drain side. This significantly increases the SB width due to increased depletion at the drain end. As a result, the ambipolar leakage current can be suppressed. In addition, drain extension also reduces the parasitic capacitances of the proposed device to improve the RF performance. The optimization of length and work function of metal used in the drain extension is performed to achieve improvement in device performance. Moreover, the proposed device makes fabrication simpler, requires low thermal budget and free from random dopant fluctuations.

  13. Drain Insertion in Chronic Subdural Hematoma: An International Survey of Practice.

    PubMed

    Soleman, Jehuda; Kamenova, Maria; Lutz, Katharina; Guzman, Raphael; Fandino, Javier; Mariani, Luigi

    2017-08-01

    To investigate whether, after the publication of grade I evidence that it reduces recurrence rates, the practice of drain insertion after burr-hole drainage of chronic subdural hematoma has changed. Further, we aimed to document various practice modalities concerning the insertion of a drain adopted by neurosurgeons internationally. We administered a survey to neurosurgeons worldwide with questions relating to the surgical treatment of chronic subdural hematoma, with an emphasis on their practices concerning the use of a drain. The preferred surgical technique was burr-hole drainage (89%). Most surgeons prefer to place a drain (80%), whereas in 56% of the cases the reason for not placing a drain was brain expansion after evacuation. Subdural drains are placed by 50% and subperiosteal drains by 27% of the responders, whereas 23% place primarily a subdural drain if possible and otherwise a subperiosteal drain. Three quarters of the responders leave the drain for 48 hours and give prophylactic antibiotic treatment, mostly a single-shot dose intraoperatively (70%). Routine postoperative computed tomography is done by 59% mostly within 24-48 hours after surgery (94%). Adjunct treatment to surgery rarely is used (4%). The publication of grade I evidence in favor of drain use influenced positively this practice worldwide. Some surgeons are still reluctant to insert a drain, especially when the subdural space is narrow after drainage of the hematoma. The insertion of a subperiosteal drain could be a good alternative solution. However, its outcome and efficacy must be evaluated in larger studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Dependence of Internal Crystal Structures of InAs Nanowires on Electrical Characteristics of Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Han, Sangmoon; Choi, Ilgyu; Lee, Kwanjae; Lee, Cheul-Ro; Lee, Seoung-Ki; Hwang, Jeongwoo; Chung, Dong Chul; Kim, Jin Soo

    2018-02-01

    We report on the dependence of internal crystal structures on the electrical properties of a catalyst-free and undoped InAs nanowire (NW) formed on a Si(111) substrate by metal-organic chemical vapor deposition. Cross-sectional transmission electron microscopy images, obtained from four different positions of a single InAs NW, indicated that the wurtzite (WZ) structure with stacking faults was observed mostly in the bottom region of the NW. Vertically along the InAs NW, the amount of stacking faults decreased and a zinc-blende (ZB) structure was observed. At the top of the NW, the ZB structure was prominently observed. The resistance and resistivity of the top region of the undoped InAs NW with the ZB structure were measured to be 121.5 kΩ and 0.19 Ω cm, respectively, which are smaller than those of the bottom region with the WZ structure, i.e., 251.8 kΩ and 0.39 Ω cm, respectively. The reduction in the resistance of the top region of the NW is attributed to the improvement in the crystal quality and the change in the ZB crystal structure. For a field effect transistor with an undoped InAs NW channel, the drain current versus drain-source voltage characteristic curves under various negative gate-source voltages were successfully observed at room temperature.

  15. Recent accretion in two managed marsh impoundments in coastal Louisiana

    USGS Publications Warehouse

    Cahoon, D.R.

    1994-01-01

    Recent accretion was measured by the feldspar marker horizon method in two gravity-drained, managed, marsh impoundments and unmanaged reference marshes located on the rapidly subsiding coast of Louisiana. Water level management was designed to limit hydrologic exchange to the managed marsh by regulating the direction and rate of water flows. During a drawdown-flooding water management cycle, the unmanaged reference marshes had significantly higher vertical accretion rates, higher soil bulk density and soil mineral matter content, lower soil organic matter content, and higher rates of organic matter accumulation than the managed marsh. The rate of mineral matter accumulation was higher in both reference marshes, but was significantly higher in only one. Spatial variability in accumulation rates was low when analyzed in one managed marsh site, suggesting a primarily autochthonous source of matter. In contrast, the associated reference marsh apparently received allochthonous material that settled out in a distinct spatial pattern as water velocity decreased. The impoundment marshes experienced an accretion deficit of one full order of magnitude (0.1 vs. 1.0 m/yr) based on comparison of accretion and sea level rise data, while the unmanaged reference marshes experienced a five-fold smaller deficit or no deficit. These data suggest that the gravity-drained impoundments likely have a shorter life expectancy than the reference marshes in the rapidly subsiding Louisiana coast.

  16. [Acute appendicitis: clinico-diagnostic and therapeutic considerations].

    PubMed

    Carditello, A; Bartolotta, M; Bonavita, G; Lentini, B; Sturniolo, G

    1985-04-01

    Since january 1970-december 1982, 58 patients underwent emergently appendectomy for acute appendicitis. 31 (53,4 percent) where males; the average age was 21 +/- 2,3 years (M +/- SEM). The duration of symptoms ranged from 1-6 hours (10,3 percent of cases) to over 48 hours, before the hospital admission (15,4 percent of cases). 27 patients (46,5 percent) had a clinical examination at home by a physician. 21 patients (36,4 percent) came to hospital emergency unit without previous physical examination; 10 (17,2 percent) were transferred from other departments. In 6,9 percent of cases was present a perforated appendicitis with peritonitis. During operation, in 50 percent of patients was performed a therapeutic peritoneal lavage. In 63,7 percent of cases multiple drains were placed in peritoneal cavity. In all patients was effected postoperative antibiotic profilaxis. The mortality rate was 3,4 percent. General complications were observed more in patients with perforated appendicitis. This review suggests the following remarcable data: morbidity of this disease is still high; the physical examination is more important than laboratory work (especially in the elderly patients, which are often immunodepressed and in children, with leucocitosis-lack at hospital admission); early surgery is the most important factor to the improvement of prognosis in these cases and the results of surgical treatment are improved by large vertical incisions, peritoneal lavage and application of multiple intracavitary drains.

  17. Tunable Electrical and Optical Characteristics in Monolayer Graphene and Few-Layer MoS2 Heterostructure Devices.

    PubMed

    Rathi, Servin; Lee, Inyeal; Lim, Dongsuk; Wang, Jianwei; Ochiai, Yuichi; Aoki, Nobuyuki; Watanabe, Kenji; Taniguchi, Takashi; Lee, Gwan-Hyoung; Yu, Young-Jun; Kim, Philip; Kim, Gil-Ho

    2015-08-12

    Lateral and vertical two-dimensional heterostructure devices, in particular graphene-MoS2, have attracted profound interest as they offer additional functionalities over normal two-dimensional devices. Here, we have carried out electrical and optical characterization of graphene-MoS2 heterostructure. The few-layer MoS2 devices with metal electrode at one end and monolayer graphene electrode at the other end show nonlinearity in drain current with drain voltage sweep due to asymmetrical Schottky barrier height at the contacts and can be modulated with an external gate field. The doping effect of MoS2 on graphene was observed as double Dirac points in the transfer characteristics of the graphene field-effect transistor (FET) with a few-layer MoS2 overlapping the middle part of the channel, whereas the underlapping of graphene have negligible effect on MoS2 FET characteristics, which showed typical n-type behavior. The heterostructure also exhibits a strongest optical response for 520 nm wavelength, which decreases with higher wavelengths. Another distinct feature observed in the heterostructure is the peak in the photocurrent around zero gate voltage. This peak is distinguished from conventional MoS2 FETs, which show a continuous increase in photocurrent with back-gate voltage. These results offer significant insight and further enhance the understanding of the graphene-MoS2 heterostructure.

  18. Novel Split Chest Tube Improves Post-Surgical Thoracic Drainage

    PubMed Central

    Olivencia-Yurvati, Albert H; Cherry, Brandon H; Gurji, Hunaid A; White, Daniel W; Newton, J Tyler; Scott, Gary F; Hoxha, Besim; Gourlay, Terence; Mallet, Robert T

    2014-01-01

    Objective Conventional, separate mediastinal and pleural tubes are often inefficient at draining thoracic effusions. Description We developed a Y-shaped chest tube with split ends that divide within the thoracic cavity, permitting separate intrathoracic placement and requiring a single exit port. In this study, thoracic drainage by the split drain vs. that of separate drains was tested. Methods After sternotomy, pericardiotomy, and left pleurotomy, pigs were fitted with separate chest drains (n=10) or a split tube prototype (n=9) with internal openings positioned in the mediastinum and in the costo-diaphragmatic recess. Separate series of experiments were conducted to test drainage of D5W or 0.58 M sucrose, an aqueous solution with viscosity approximating that of plasma. One litre of fluid was infused into the thorax, and suction was applied at −20 cm H2O for 30 min. Results When D5W was infused, the split drain left a residual volume of 53 ± 99 ml (mean value ± SD) vs. 148 ± 120 for the separate drain (P=0.007), representing a drainage efficiency (i.e. drained vol/[drained + residual vol]) of 95 ± 10% vs. 86 ± 12% for the separate drains (P = 0.011). In the second series, the split drain evacuated more 0.58 M sucrose in the first minute (967 ± 129 ml) than the separate drains (680 ± 192 ml, P<0.001). By 30 min, the split drain evacuated a similar volume of sucrose vs. the conventional drain (1089 ± 72 vs. 1056 ± 78 ml; P = 0.5). Residual volume tended to be lower (25 ± 10 vs. 62 ± 72 ml; P = 0.128) and drainage efficiency tended to be higher (98 ± 1 vs. 95 ± 6%; P = 0.111) with the split drain vs. conventional separate drains. Conclusion The split chest tube drained the thoracic cavity at least as effectively as conventional separate tubes. This new device could potentially alleviate postoperative complications. PMID:25478289

  19. Novel Split Chest Tube Improves Post-Surgical Thoracic Drainage.

    PubMed

    Olivencia-Yurvati, Albert H; Cherry, Brandon H; Gurji, Hunaid A; White, Daniel W; Newton, J Tyler; Scott, Gary F; Hoxha, Besim; Gourlay, Terence; Mallet, Robert T

    2014-01-01

    Conventional, separate mediastinal and pleural tubes are often inefficient at draining thoracic effusions. We developed a Y-shaped chest tube with split ends that divide within the thoracic cavity, permitting separate intrathoracic placement and requiring a single exit port. In this study, thoracic drainage by the split drain vs. that of separate drains was tested. After sternotomy, pericardiotomy, and left pleurotomy, pigs were fitted with separate chest drains (n=10) or a split tube prototype (n=9) with internal openings positioned in the mediastinum and in the costo-diaphragmatic recess. Separate series of experiments were conducted to test drainage of D5W or 0.58 M sucrose, an aqueous solution with viscosity approximating that of plasma. One litre of fluid was infused into the thorax, and suction was applied at -20 cm H2O for 30 min. When D5W was infused, the split drain left a residual volume of 53 ± 99 ml (mean value ± SD) vs. 148 ± 120 for the separate drain (P=0.007), representing a drainage efficiency (i.e. drained vol/[drained + residual vol]) of 95 ± 10% vs. 86 ± 12% for the separate drains (P = 0.011). In the second series, the split drain evacuated more 0.58 M sucrose in the first minute (967 ± 129 ml) than the separate drains (680 ± 192 ml, P<0.001). By 30 min, the split drain evacuated a similar volume of sucrose vs. the conventional drain (1089 ± 72 vs. 1056 ± 78 ml; P = 0.5). Residual volume tended to be lower (25 ± 10 vs. 62 ± 72 ml; P = 0.128) and drainage efficiency tended to be higher (98 ± 1 vs. 95 ± 6%; P = 0.111) with the split drain vs. conventional separate drains. The split chest tube drained the thoracic cavity at least as effectively as conventional separate tubes. This new device could potentially alleviate postoperative complications.

  20. Description and spatial inference of soil drainage using matrix soil colours in the Lower Hunter Valley, New South Wales, Australia

    PubMed Central

    McBratney, Alex B.; Minasny, Budiman

    2018-01-01

    Soil colour is often used as a general purpose indicator of internal soil drainage. In this study we developed a necessarily simple model of soil drainage which combines the tacit knowledge of the soil surveyor with observed matrix soil colour descriptions. From built up knowledge of the soils in our Lower Hunter Valley, New South Wales study area, the sequence of well-draining → imperfectly draining → poorly draining soils generally follows the colour sequence of red → brown → yellow → grey → black soil matrix colours. For each soil profile, soil drainage is estimated somewhere on a continuous index of between 5 (very well drained) and 1 (very poorly drained) based on the proximity or similarity to reference soil colours of the soil drainage colour sequence. The estimation of drainage index at each profile incorporates the whole-profile descriptions of soil colour where necessary, and is weighted such that observation of soil colour at depth and/or dominantly observed horizons are given more preference than observations near the soil surface. The soil drainage index, by definition disregards surficial soil horizons and consolidated and semi-consolidated parent materials. With the view to understanding the spatial distribution of soil drainage we digitally mapped the index across our study area. Spatial inference of the drainage index was made using Cubist regression tree model combined with residual kriging. Environmental covariates for deterministic inference were principally terrain variables derived from a digital elevation model. Pearson’s correlation coefficients indicated the variables most strongly correlated with soil drainage were topographic wetness index (−0.34), mid-slope position (−0.29), multi-resolution valley bottom flatness index (−0.29) and vertical distance to channel network (VDCN) (0.26). From the regression tree modelling, two linear models of soil drainage were derived. The partitioning of models was based upon threshold criteria of VDCN. Validation of the regression kriging model using a withheld dataset resulted in a root mean square error of 0.90 soil drainage index units. Concordance between observations and predictions was 0.49. Given the scale of mapping, and inherent subjectivity of soil colour description, these results are acceptable. Furthermore, the spatial distribution of soil drainage predicted in our study area is attuned with our mental model developed over successive field surveys. Our approach, while exclusively calibrated for the conditions observed in our study area, can be generalised once the unique soil colour and soil drainage relationship is expertly defined for an area or region in question. With such rules established, the quantitative components of the method would remain unchanged. PMID:29682425

  1. Description and spatial inference of soil drainage using matrix soil colours in the Lower Hunter Valley, New South Wales, Australia.

    PubMed

    Malone, Brendan P; McBratney, Alex B; Minasny, Budiman

    2018-01-01

    Soil colour is often used as a general purpose indicator of internal soil drainage. In this study we developed a necessarily simple model of soil drainage which combines the tacit knowledge of the soil surveyor with observed matrix soil colour descriptions. From built up knowledge of the soils in our Lower Hunter Valley, New South Wales study area, the sequence of well-draining → imperfectly draining → poorly draining soils generally follows the colour sequence of red → brown → yellow → grey → black soil matrix colours. For each soil profile, soil drainage is estimated somewhere on a continuous index of between 5 (very well drained) and 1 (very poorly drained) based on the proximity or similarity to reference soil colours of the soil drainage colour sequence. The estimation of drainage index at each profile incorporates the whole-profile descriptions of soil colour where necessary, and is weighted such that observation of soil colour at depth and/or dominantly observed horizons are given more preference than observations near the soil surface. The soil drainage index, by definition disregards surficial soil horizons and consolidated and semi-consolidated parent materials. With the view to understanding the spatial distribution of soil drainage we digitally mapped the index across our study area. Spatial inference of the drainage index was made using Cubist regression tree model combined with residual kriging. Environmental covariates for deterministic inference were principally terrain variables derived from a digital elevation model. Pearson's correlation coefficients indicated the variables most strongly correlated with soil drainage were topographic wetness index (-0.34), mid-slope position (-0.29), multi-resolution valley bottom flatness index (-0.29) and vertical distance to channel network (VDCN) (0.26). From the regression tree modelling, two linear models of soil drainage were derived. The partitioning of models was based upon threshold criteria of VDCN. Validation of the regression kriging model using a withheld dataset resulted in a root mean square error of 0.90 soil drainage index units. Concordance between observations and predictions was 0.49. Given the scale of mapping, and inherent subjectivity of soil colour description, these results are acceptable. Furthermore, the spatial distribution of soil drainage predicted in our study area is attuned with our mental model developed over successive field surveys. Our approach, while exclusively calibrated for the conditions observed in our study area, can be generalised once the unique soil colour and soil drainage relationship is expertly defined for an area or region in question. With such rules established, the quantitative components of the method would remain unchanged.

  2. Analytical solution for vacuum preloading considering the nonlinear distribution of horizontal permeability within the smear zone.

    PubMed

    Peng, Jie; He, Xiang; Ye, Hanming

    2015-01-01

    The vacuum preloading is an effective method which is widely used in ground treatment. In consolidation analysis, the soil around prefabricated vertical drain (PVD) is traditionally divided into smear zone and undisturbed zone, both with constant permeability. In reality, the permeability of soil changes continuously within the smear zone. In this study, the horizontal permeability coefficient of soil within the smear zone is described by an exponential function of radial distance. A solution for vacuum preloading consolidation considers the nonlinear distribution of horizontal permeability within the smear zone is presented and compared with previous analytical results as well as a numerical solution, the results show that the presented solution correlates well with the numerical solution, and is more precise than previous analytical solution.

  3. Analytical solution for vacuum preloading considering the nonlinear distribution of horizontal permeability within the smear zone

    PubMed Central

    Peng, Jie; He, Xiang; Ye, Hanming

    2015-01-01

    The vacuum preloading is an effective method which is widely used in ground treatment. In consolidation analysis, the soil around prefabricated vertical drain (PVD) is traditionally divided into smear zone and undisturbed zone, both with constant permeability. In reality, the permeability of soil changes continuously within the smear zone. In this study, the horizontal permeability coefficient of soil within the smear zone is described by an exponential function of radial distance. A solution for vacuum preloading consolidation considers the nonlinear distribution of horizontal permeability within the smear zone is presented and compared with previous analytical results as well as a numerical solution, the results show that the presented solution correlates well with the numerical solution, and is more precise than previous analytical solution. PMID:26447973

  4. Laser-induced vibration of a thin soap film.

    PubMed

    Emile, Olivier; Emile, Janine

    2014-09-21

    We report on the vibration of a thin soap film based on the optical radiation pressure force. The modulated low power laser induces a counter gravity flow in a vertical free-standing draining film. The thickness of the soap film is then higher in the upper region than in the lower region of the film. Moreover, the lifetime of the film is dramatically increased by a factor of 2. Since the laser beam only acts mechanically on the film interfaces, such a film can be employed in an optofluidic diaphragm pump, the interfaces behaving like a vibrating membrane and the liquid in-between being the fluid to be pumped. Such a pump could then be used in delicate micro-equipment, in chips where temperature variations are detrimental and even in biological systems.

  5. 3. DRAINING & DRYING BUILDING, REINFORCED CONCRETE MUSHROOM COLUMNS WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DRAINING & DRYING BUILDING, REINFORCED CONCRETE MUSHROOM COLUMNS WITH DROP PANELS SUPPORTING DRAINING BINS (IRON VALVES OF DRAINING BINS ARE EMBEDDED IN THE CEILING), VIEW LOOKING WEST - Mill "C" Complex, Sand Draining & Drying Building, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  6. Evisceration of Appendix through the Drain Site: A Rare Case Report.

    PubMed

    Ravishankaran, Praveen; Rajamani, A

    2013-06-01

    Placing a drain after surgery is a usual procedure in any emergency abdominal operation. The drain is removed as soon as its purpose of draining the intraabdominal collection in served. Evisceration of intraabdominal organs through the drain site is a rare occurance. This case report is about an 12 year old girl who was admitted with blunt trauma abdomen. After completion of emergency laparotomy a drain was placed in the right lower quadrant. When the drain was removed on the 6th post operative day, the appendix eviscerated out of the drain site. The wound was extended a little and an appendectomy was done. This case is presented for its rarity as only two similar instances have been reported in literature so far.

  7. A forgotten retained drain inside a knee for 10 years: A case report.

    PubMed

    Koaban, Saeed; Alatassi, Raheef; Alogayyel, Nawaf

    2018-05-29

    Surgical drains are inserted into the wound after an arthroscopic knee procedure mainly to decrease fluid collection after the operation. The use of postoperative surgical drains remains controversial. This report presents a rare case of a forgotten retained drain that was accidentally found inside a knee 10 years after an arthroscopic procedure. The drain was removed without any complications. A retained and broken drain during removal is a very rare and preventable complication that can be stressful for both the patient and surgeon. Most of the literature supports that retained drains in the soft tissues do not affect long-term outcomes, but if the drain fragment is in the intra-articular area, it might cause complications. Furthermore, there are several preventive measures to avoid retained surgical drains. By reporting this case of a forgotten drain retained inside a knee for approximately 10 years, we aim to illustrate the potential risk of leaving a drain inside the joint following an arthroscopic procedure. Furthermore, we advise that surgeons maintain a high index of suspicion for iatrogenic complications when a patient continues to complain about unexplained pain at the surgical site. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    NASA Astrophysics Data System (ADS)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  9. 14 CFR 27.999 - Fuel system drains.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system drains. 27.999 Section 27.999... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.999 Fuel system drains. (a) There must be at least one accessible drain at the lowest point in each fuel system to completely drain...

  10. 14 CFR 27.999 - Fuel system drains.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system drains. 27.999 Section 27.999... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.999 Fuel system drains. (a) There must be at least one accessible drain at the lowest point in each fuel system to completely drain...

  11. 14 CFR 27.999 - Fuel system drains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system drains. 27.999 Section 27.999... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.999 Fuel system drains. (a) There must be at least one accessible drain at the lowest point in each fuel system to completely drain...

  12. 14 CFR 29.999 - Fuel system drains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system drains. 29.999 Section 29.999... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.999 Fuel system drains. (a) There must be at least one accessible drain at the lowest point in each fuel system to completely drain...

  13. 14 CFR 27.999 - Fuel system drains.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system drains. 27.999 Section 27.999... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.999 Fuel system drains. (a) There must be at least one accessible drain at the lowest point in each fuel system to completely drain...

  14. 14 CFR 29.999 - Fuel system drains.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system drains. 29.999 Section 29.999... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.999 Fuel system drains. (a) There must be at least one accessible drain at the lowest point in each fuel system to completely drain...

  15. 14 CFR 29.999 - Fuel system drains.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system drains. 29.999 Section 29.999... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.999 Fuel system drains. (a) There must be at least one accessible drain at the lowest point in each fuel system to completely drain...

  16. 14 CFR 29.999 - Fuel system drains.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system drains. 29.999 Section 29.999... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.999 Fuel system drains. (a) There must be at least one accessible drain at the lowest point in each fuel system to completely drain...

  17. 14 CFR 29.999 - Fuel system drains.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system drains. 29.999 Section 29.999... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.999 Fuel system drains. (a) There must be at least one accessible drain at the lowest point in each fuel system to completely drain...

  18. 14 CFR 27.999 - Fuel system drains.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system drains. 27.999 Section 27.999... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.999 Fuel system drains. (a) There must be at least one accessible drain at the lowest point in each fuel system to completely drain...

  19. 21 CFR 868.5995 - Tee drain (water trap).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tee drain (water trap). 868.5995 Section 868.5995...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5995 Tee drain (water trap). (a) Identification. A tee drain (water trap) is a device intended to trap and drain water that collects in ventilator...

  20. 21 CFR 868.5995 - Tee drain (water trap).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tee drain (water trap). 868.5995 Section 868.5995...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5995 Tee drain (water trap). (a) Identification. A tee drain (water trap) is a device intended to trap and drain water that collects in ventilator...

  1. 21 CFR 868.5995 - Tee drain (water trap).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tee drain (water trap). 868.5995 Section 868.5995...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5995 Tee drain (water trap). (a) Identification. A tee drain (water trap) is a device intended to trap and drain water that collects in ventilator...

  2. 21 CFR 868.5995 - Tee drain (water trap).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tee drain (water trap). 868.5995 Section 868.5995...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5995 Tee drain (water trap). (a) Identification. A tee drain (water trap) is a device intended to trap and drain water that collects in ventilator...

  3. A mathematical model to optimize the drain phase in gravity-based peritoneal dialysis systems.

    PubMed

    Akonur, Alp; Lo, Ying-Cheng; Cizman, Borut

    2010-01-01

    Use of patient-specific drain-phase parameters has previously been suggested to improve peritoneal dialysis (PD) adequacy. Improving management of the drain period may also help to minimize intraperitoneal volume (IPV). A typical gravity-based drain profile consists of a relatively constant initial fast-flow period, followed by a transition period and a decaying slow-flow period. That profile was modeled using the equation VD(t) = (V(D0) - Q(MAX) x t) xphi + (V(D0) x e(-alphat)) x (1 - phi), where V(D)(t) is the time-dependent dialysate volume; V(D0), the dialysate volume at the start of the drain; Q(MAX), the maximum drain flow rate; alpha, the exponential drain constant; and phi, the unit step function with respect to the flow transition. We simulated the effects of the assumed patient-specific maximum drain flow (Q(MAX)) and transition volume (psi), and the peritoneal volume percentage when transition occurs,for fixed device-specific drain parameters. Average patient transport parameters were assumed during 5-exchange therapy with 10 L of PD solution. Changes in therapy performance strongly depended on the drain parameters. Comparing 400 mL/85% with 200 mL/65% (Q(MAX/psi), drain time (7.5 min vs. 13.5 min) and IPV (2769 mL vs. 2355 mL) increased when the initial drain flow was low and the transition quick. Ultrafiltration and solute clearances remained relatively similar. Such differences were augmented up to a drain time of 22 minutes and an IPV of more than 3 L when Q(MAX) was 100 mL/min. The ability to model individual drain conditions together with water and solute transport may help to prevent patient discomfort with gravity-based PD. However, it is essential to note that practical difficulties such as displaced catheters and obstructed flow paths cause variability in drain characteristics even for the same patient, limiting the clinical applicability of this model.

  4. Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment.

    PubMed

    Dzieciol, Monika; Schornsteiner, Elisa; Muhterem-Uyar, Meryem; Stessl, Beatrix; Wagner, Martin; Schmitz-Esser, Stephan

    2016-04-16

    Sanitation protocols are applied on a daily basis in food processing facilities to prevent the risk of cross-contamination with spoilage organisms. Floor drain water serves along with product-associated samples (slicer dust, brine or cheese smear) as an important hygiene indicator in monitoring Listeria monocytogenes in food processing facilities. Microbial communities of floor drains are representative for each processing area and are influenced to a large degree by food residues, liquid effluents and washing water. The microbial communities of drain water are steadily changing, whereas drain biofilms provide more stable niches. Bacterial communities of four floor drains were characterized using 16S rRNA gene pyrosequencing to better understand the composition and exchange of drain water and drain biofilm communities. Furthermore, the L. monocytogenes contamination status of each floor drain was determined by applying cultivation-independent real-time PCR quantification and cultivation-dependent detection according to ISO11290-1. Pyrosequencing of 16S rRNA genes of drain water and drain biofilm bacterial communities yielded 50,611 reads, which were clustered into 641 operational taxonomic units (OTUs), affiliated to 16 phyla dominated by Proteobacteria, Firmicutes and Bacteroidetes. The most abundant OTUs represented either product- (Lactococcus lactis) or fermentation- and food spoilage-associated phylotypes (Pseudomonas mucidolens, Pseudomonas fragi, Leuconostoc citreum, and Acetobacter tropicalis). The microbial communities in DW and DB samples were distinct in each sample type and throughout the whole processing plant, indicating the presence of indigenous specific microbial communities in each processing compartment. The microbiota of drain biofilms was largely different from the microbiota of the drain water. A sampling approach based on drain water alone may thus only provide reliable information on planktonic bacterial cells but might not allow conclusions on the bacterial composition of the microbiota in biofilms. Copyright © 2016. Published by Elsevier B.V.

  5. [Outpatient Drain Management in Patients with Clinically Relevant Postoperative Pancreatic Fistula (CR-POPF) - Current Status in Germany].

    PubMed

    Hempel, Sebastian; Püttmann, Pamela; Kahlert, Christoph; Seifert, Lena; Mees, Sören Torge; Welsch, Thilo; Weitz, Jürgen; Distler, Marius

    2018-06-01

    Postoperative pancreatic fistula (POPF) is a common complication after pancreatic surgery and is associated with extended hospitalisation, increased medical costs, and reduced quality of life. The aim of the present study was to assess the treatment of POPF in Germany, with a special focus on outpatient drain management in patients with clinically relevant POPF (CR-POPF). A questionnaire evaluating postoperative management once a CR-POPF is diagnosed - especially focusing on ambulatory drain management - was developed and sent to 211 German hospitals performing > 12 pancreatic operations per year. Statistical analysis was carried out using SPSS 21. The final response rate was 62% (n = 131). Outpatient drainage management is performed by most of the responding hospitals (n = 100, 76.3%). However, 30% of hospitals (n = 40) perform outpatient treatment only in 5% of their cases with clinically relevant POPF. There was no correlation between case load of the pancreatic centres and frequency of outpatient drain management. In general, discharge criteria for patients with drained POPF (n = 98, 74.8%), the drain management itself (n = 95, 72.5%) and criteria for drain removal (n = 74, 56.5%) are not standardised but made individually. In centres with standardised drain management criteria for drain removal, these criteria were drain volume < 20 ml (29.8%), no fluid collection (25.2%), no elevation of drain amylase/lipase (25.2%) and no specific symptoms (22.1%). This is the first survey in Germany evaluating outpatient drain management in patients with CR-POPF. Although the data in the literature are rare, the majority of German pancreatic surgeons perform outpatient drain management. However, discharge criteria, outpatient care and drain removal are standardised in only the minority of centres. Therefore, we recommend the evaluation of discharge criteria and a management algorithm for patients with drained CR-POPF to improve the perioperative course. Georg Thieme Verlag KG Stuttgart · New York.

  6. Drivers of variability in tree transpiration in a Boreal Black Spruce Forest Chronosequence

    NASA Astrophysics Data System (ADS)

    Angstmann, J. L.; Ewers, B. E.; Kwon, H.

    2009-12-01

    Boreal forests are of particular interest in climate change studies because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through the impact of more frequent wildfires, warmer, longer growing seasons, and potential drainage of forested wetlands. This study aims to quantify the influence of stand age, drainage condition, and species on tree transpiration and its drivers in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 113 trees (69 Picea mariana (black spruce), 25 Populus tremuloides (trembling aspen), and 19 Pinus banksiana (jack pine) at four stand ages, each containing a well- and poorly-drained site over three growing seasons (2006-2008). Sap flux per unit xylem area, JS, was expressed as transpiration per unit ground area, EC, and transpiration per unit leaf area, EL, using site- and species-specific allometry to obtain sapwood area (AS)and leaf area(AL)per unit ground area. Well-drained, younger Picea mariana daily JS was 47-64% greater than the older well-drained burn ages and younger poorly-drained stands were 64-68% greater than the two oldest poorly-drained stands. Daily EL in the well-drained Picea mariana stands was on average 12-33% higher in younger stand than in the two oldest stands whereas young, poorly-drained Picea mariana had 71% greater daily EL than the older stands. Well-drained Picea mariana trees had 52% higher daily EC than older trees and poorly-drained Picea mariana in the 1964 burn had 42-81% higher daily EC than the oldest stands. Populus tremuloides located in the two youngest stands had daily JS 38-58% greater rates than the 1930 burn, whereas daily EL and EC had no distint differences due to high interannual variability. Pinus banksiana experienced 21-33% greater daily JS in the 1989 burn than in the older 1964 burn for well- and poorly-drained sites. Poorly-drained Pinus banksiana trees from the older 1964 burn had 23-48% greater daily EL and 26-39% higher daily EC than the 1989 burn. Poorly-drained Picea mariana had 17-31% higher daily JS than the well-drained sites. Poorly-drained Picea mariana had 29-58% higher daily EL 42-50% higher daily EC than the well-drained trees. Poorly-drained Pinus banksiana on average had 27-28% higher daily JS than well-drained trees. Poorly-drained Pinus banskiana had 23.25% higher daily EL than well-drained trees and daily EC 32-67% lower than the well-drained trees. Drivers of these differences include midday leaf water potential, AS, and AL.

  7. Controlling the ambipolarity and improvement of RF performance using Gaussian Drain Doped TFET

    NASA Astrophysics Data System (ADS)

    Nigam, Kaushal; Gupta, Sarthak; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2018-05-01

    Ambipolar conduction in tunnel field-effect transistors (TFETs) has been occurred as an inherent issue due to drain-channel tunneling. It makes TFET less efficient and restricts its application in complementary digital circuits. Therefore, this manuscript reports the application of Gaussian doping profile on nanometer regime silicon channel TFETs to completely eliminate the ambipolarity. For this, Gaussian doping is used in the drain region of conventional gate-drain overlap TFET to control the tunneling of electrons from the valence band of channel to the conduction band of drain. As a result, barrier width at the drain/channel junction increases significantly leading to the suppression of an ambipolar current even when higher doping concentration (1 ? 10 ? cm ?) is considered in the drain region. However, significant improvement in terms of RF figure-of-merits such as cut-off frequency (f ?), gain bandwidth product (GBW), and gate-to-drain capacitance (C ?) is achieved with Gaussian doped gate on drain overlap TFET as compared to its counterpart TFET.

  8. Effect of abdominopelvic abscess drain size on drainage time and probability of occlusion

    PubMed Central

    Rotman, Jessica A.; Getrajdman, George I.; Maybody, Majid; Erinjeri, Joseph P.; Yarmohammadi, Hooman; Sofocleous, Constantinos T.; Solomon, Stephen B.; Boas, F. Edward

    2016-01-01

    Background The purpose of this study is to determine whether larger abdominopelvic abscess drains reduce the time required for abscess resolution, or the probability of tube occlusion. Methods 144 consecutive patients who underwent abscess drainage at a single institution were reviewed retrospectively. Results: Larger initial drain size did not reduce drainage time, drain occlusion, or drain exchanges (p>0.05). Subgroup analysis did not find any type of collection that benefitted from larger drains. A multivariate model predicting drainage time showed that large collections (>200 ml) required 16 days longer drainage time than small collections (<50 ml). Collections with a fistula to bowel required 17 days longer drainage time than collections without a fistula. Initial drain size and the viscosity of the fluid in the collection had no significant effect on drainage time in the multivariate model. Conclusions 8 F drains are adequate for initial drainage of most serous and serosanguineous collections. 10 F drains are adequate for initial drainage of most purulent or bloody collections. PMID:27634422

  9. Drain tube migration into the anastomotic site of an esophagojejunostomy for gastric small cell carcinoma: short report

    PubMed Central

    2010-01-01

    Background Intraluminal migration of a drain through an anastomotic site is a rare complication of gastric surgery. Case Presentation We herein report the intraluminal migration of a drain placed after a lower esophagectomy and total gastrectomy with Roux-en-Y anastomosis for gastric small cell carcinoma. Persistent drainage was noted 1 month after surgery, and radiographic studies were consistent with drain tube migration. Endoscopy revealed the drain had migrated into the esophagojejunostomy anastomotic site. The drain was removed from outside of abdominal wound while observing the anastomotic site endoscopically. The patient was treated with suction via a nasogastric tube drain for 5 days, and thereafter had an uneventful recovery. Conclusions Though drain tube migration is a rare occurrence, it should be considered in patients with persistent drainage who have undergone gastric surgery. PMID:20492665

  10. Drain tube migration into the anastomotic site of an esophagojejunostomy for gastric small cell carcinoma: short report.

    PubMed

    Lai, Peng-Sheng; Lo, Chiao; Lin, Long-Wei; Lee, Po-Chu

    2010-05-21

    Intraluminal migration of a drain through an anastomotic site is a rare complication of gastric surgery. We herein report the intraluminal migration of a drain placed after a lower esophagectomy and total gastrectomy with Roux-en-Y anastomosis for gastric small cell carcinoma. Persistent drainage was noted 1 month after surgery, and radiographic studies were consistent with drain tube migration. Endoscopy revealed the drain had migrated into the esophagojejunostomy anastomotic site. The drain was removed from outside of abdominal wound while observing the anastomotic site endoscopically. The patient was treated with suction via a nasogastric tube drain for 5 days, and thereafter had an uneventful recovery. Though drain tube migration is a rare occurrence, it should be considered in patients with persistent drainage who have undergone gastric surgery.

  11. Drain site evisceration of fallopian tube, another reason to discourage abdominal drain: report of a case and brief review of literature.

    PubMed

    Saini, Pradeep; Faridi, M S; Agarwal, Nitin; Gupta, Arun; Kaur, Navneet

    2012-04-01

    Placement of a drain following abdominal surgery is common despite a lack of convincing evidence in the current literature to support this practice. The use of intra-abdominal drain is associated with many potential and serious complications. We report a drain site evisceration of the right fallopian tube after the removal of an intra-abdominal drain. The drain was placed in the right iliac fossa in a patient who underwent a lower segment Caesarean section (LSCS) for meconium liquor with fetal distress. The Pfannenstiel incision made for LSCS was reopened and the protruding inflamed fimbrial end of the right fallopian tube was excised. The patient made an uneventful recovery. Routine intra-abdominal prophylactic drain following an abdominal surgery including LSCS should be discouraged.

  12. An elevated source/drain-on-insulator structure to maximize the intrinsic performance of extremely scaled MOSFETs

    NASA Astrophysics Data System (ADS)

    Zhang, Zhikuan; Zhang, Shengdong; Feng, Chuguang; Chan, Mansun

    2003-10-01

    In this paper, a source/drain structure separated from the silicon substrate by oxide isolation is fabricated and studied. The source/drain diffusion regions are connected to the shallow source/drain extension through a smaller opening defined by a double spacer process. Experimental results indicate that the source/drain on insulator significantly reduces the parasitic capacitance. Further optimization by simulation indicates a reduction of series resistance and band-to-band drain leakage at off-state can be achieved in extremely scaled devices. Compared with the conventional planner source/drain structure, the reduction of parasitic capacitance and series resistance can be as much as 80% and 30% respectively.

  13. Asymmetric Bulkheads for Cylindrical Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Ford, Donald B.

    2007-01-01

    Asymmetric bulkheads are proposed for the ends of vertically oriented cylindrical pressure vessels. These bulkheads, which would feature both convex and concave contours, would offer advantages over purely convex, purely concave, and flat bulkheads (see figure). Intended originally to be applied to large tanks that hold propellant liquids for launching spacecraft, the asymmetric-bulkhead concept may also be attractive for terrestrial pressure vessels for which there are requirements to maximize volumetric and mass efficiencies. A description of the relative advantages and disadvantages of prior symmetric bulkhead configurations is prerequisite to understanding the advantages of the proposed asymmetric configuration: In order to obtain adequate strength, flat bulkheads must be made thicker, relative to concave and convex bulkheads; the difference in thickness is such that, other things being equal, pressure vessels with flat bulkheads must be made heavier than ones with concave or convex bulkheads. Convex bulkhead designs increase overall tank lengths, thereby necessitating additional supporting structure for keeping tanks vertical. Concave bulkhead configurations increase tank lengths and detract from volumetric efficiency, even though they do not necessitate additional supporting structure. The shape of a bulkhead affects the proportion of residual fluid in a tank that is, the portion of fluid that unavoidably remains in the tank during outflow and hence cannot be used. In this regard, a flat bulkhead is disadvantageous in two respects: (1) It lacks a single low point for optimum placement of an outlet and (2) a vortex that forms at the outlet during outflow prevents a relatively large amount of fluid from leaving the tank. A concave bulkhead also lacks a single low point for optimum placement of an outlet. Like purely concave and purely convex bulkhead configurations, the proposed asymmetric bulkhead configurations would be more mass-efficient than is the flat bulkhead configuration. In comparison with both purely convex and purely concave configurations, the proposed asymmetric configurations would offer greater volumetric efficiency. Relative to a purely convex bulkhead configuration, the corresponding asymmetric configuration would result in a shorter tank, thus demanding less supporting structure. An asymmetric configuration provides a low point for optimum location of a drain, and the convex shape at the drain location minimizes the amount of residual fluid.

  14. Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity.

    PubMed

    Williams, G R; Doran, P M

    2000-01-01

    A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3-4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved reactor operating strategies and selection or development of root lines offering minimal resistance to liquid flow and low liquid retention characteristics are possible solutions to these problems.

  15. Prefabricated Vertical Drain (PVD) and Deep Cement Mixing (DCM)/Stiffened DCM (SDCM) techniques for soft ground improvement

    NASA Astrophysics Data System (ADS)

    Bergado, D. T.; Long, P. V.; Chaiyaput, S.; Balasubramaniam, A. S.

    2018-04-01

    Soft ground improvement techniques have become most practical and popular methods to increase soil strength, soil stiffness and reduce soil compressibility including the soft Bangkok clay. This paper focuses on comparative performances of prefabricated vertical drain (PVD) using surcharge, vacuum and heat preloading as well as the cement-admixed clay of Deep Cement Mixing (DCM) and Stiffened DCM (SDCM) methods. The Vacuum-PVD can increase the horizontal coefficient of consolidation, Ch, resulting in faster rate of settlement at the same magnitudes of settlement compared to Conventional PVD. Several field methods of applying vacuum preloading are also compared. Moreover, the Thermal PVD and Thermal Vacuum PVD can increase further the coefficient of horizontal consolidation, Ch, with the associated reduction of kh/ks values by reducing the drainage retardation effects in the smear zone around the PVD which resulted in faster rates of consolidation and higher magnitudes of settlements. Furthermore, the equivalent smear effect due to non-uniform consolidation is also discussed in addition to the smear due to the mechanical installation of PVDs. In addition, a new kind of reinforced deep mixing method, namely Stiffened Deep Cement Mixing (SDCM) pile is introduced to improve the flexural resistance, improve the field quality control, and prevent unexpected failures of the Deep Cement Mixing (DCM) pile. The SDCM pile consists of DCM pile reinforced with the insertion of precast reinforced concrete (RC) core. The full scale test embankment on soft clay improved by SDCM and DCM piles was also analysed. Numerical simulations using the 3D PLAXIS Foundation finite element software have been done to understand the behavior of SDCM and DCM piles. The simulation results indicated that the surface settlements decreased with increasing lengths of the RC cores, and, at lesser extent, increasing sectional areas of the RC cores in the SDCM piles. In addition, the lateral movements decreased by increasing the lengths (longer than 4 m) and, the sectional areas of the RC cores in the SDCM piles. The results of the numerical simulations closely agreed with the observed data and successfully verified the parameters affecting the performances and behavior of both SDCM and DCM piles.

  16. Prospective Validation of Optimal Drain Management "The 3 × 3 Rule" after Liver Resection.

    PubMed

    Mitsuka, Yusuke; Yamazaki, Shintaro; Yoshida, Nao; Masamichi, Moriguchi; Higaki, Tokio; Takayama, Tadatoshi

    2016-09-01

    We previously established an optimal postoperative drain management rule after liver resection (i.e., drain removal on postoperative day 3 if the drain fluid bilirubin concentration is <3 mg/dl) from the results of 514 drains of 316 consecutive patients. This test set predicts that 274 of 316 patients (87.0 %) will be safely managed without adverse events when drain management is performed without deviation from the rule. To validate the feasibility of our rule in recent time period. The data from 493 drains of 274 consecutive patients were prospectively collected. Drain fluid volumes, bilirubin levels, and bacteriological cultures were measured on postoperative days (POD) 1, 3, 5, and 7. The drains were removed according to the management rule. The achievement rate of the rule, postoperative adverse events, hospital stay, medical costs, and predictive value for reoperation according to the rule were validated. The rule was achieved in 255 of 274 (93.1 %) patients. The drain removal time was significantly shorter [3 days (1-30) vs. 7 (2-105), p < 0.01], drain fluid infection was less frequent [4 patients (1.5 %) vs. 58 (18.4 %), p < 0.01], postoperative hospital stay was shorter [11 days (6-73) vs. 16 (9-59), p = 0.04], and medical costs were decreased [1453 USD (968-6859) vs. 1847 (4667-9498), p < 0.01] in the validation set compared with the test set. Five patients who required reoperation were predicted by the drain-based information and treated within 2 days after operation. Our 3 × 3 rule is clinically feasible and allows for the early removal of the drain tube with minimum infection risk after liver resection.

  17. Assessment of the use of selected chemical and microbiological constituents as indicators of wastewater in curtain drains from home sewage-treatment systems in Medina County, Ohio

    USGS Publications Warehouse

    Dumouchelle, Denise H.

    2006-01-01

    Many home sewage-treatment systems (HSTS) in Ohio use curtain or perimeter drains to depress the level of the subsurface water in and around the systems. These drains could possibly intercept partially untreated wastewater and release potential pathogens to ground-water and surface-water bodies. The quality of water in curtain drains from two different HSTS designs in Medina County, Ohio, was investigated using several methods. Six evaporation-transpiration-absorption (ETA) and five leach-line (LL) systems were investigated by determining nutrient concentrations, chloride/bromide ratios (Cl/Br), Escherichia coli (E. coli ) concentrations, coliphage genotyping, and genetic fingerprinting of E. coli. Water samples were collected at 11 sites and included samples from curtain drains, septic tanks, and residential water wells. Nitrate concentrations in the curtain drains ranged from 0.03 to 3.53 mg/L (milligrams per liter), as N. Concentrations of chloride in 10 of the 11 curtain drains ranged from 5.5 to 21 mg/L; the chloride concentration in the eleventh curtain drain was 340 mg/L. Bromide concentrations in 11 curtain drains ranged from 0.01 to 0.22 mg/L. Cl/Br ratios ranged from 86 to 2,000. F-specific coliphage were not found in any curtain-drain samples. Concentrations of E. coli in the curtain drains ranged from 1 to 760 colonies per 100 milliliters. The curtain-drain water-quality data were evaluated to determine whether HSTS-derived water was present in the curtain drains. Nutrient concentrations were too low to be of use in the determination. The Cl/Br ratios appear promising. Coliphage was not detected in the curtain drains, so genotyping could not be attempted. E. coli concentrations in the curtain drains were all less than those from the corresponding HSTS; only one sample exceeded the Ohio secondary-contact water-quality standard. The genetic fingerprinting data were inconclusive because multiple links between unrelated sites were found. Although the curtain-drain samples from the ETA systems showed somewhat more evidence of the presence of HSTS water than did the LL systems, most of the approaches were inconclusive by themselves. The best evidence of HSTS water, from the Cl/Br ratios, indicates that the water in 10 of the 11 curtain drains, at both HSTS types, was a mixture of dilute ground water and HSTS-derived water; the 11th drain also show some effects of the HSTS, although road salt-affected water may be present. Therefore, it appears that there is no difference between the ETA and LL systems with respect to the water quality in curtain drains.

  18. Safety drain system for fluid reservoir

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2012-01-01

    A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.

  19. Containment vessel drain system

    DOEpatents

    Harris, Scott G.

    2018-01-30

    A system for draining a containment vessel may include a drain inlet located in a lower portion of the containment vessel. The containment vessel may be at least partially filled with a liquid, and the drain inlet may be located below a surface of the liquid. The system may further comprise an inlet located in an upper portion of the containment vessel. The inlet may be configured to insert pressurized gas into the containment vessel to form a pressurized region above the surface of the liquid, and the pressurized region may operate to apply a surface pressure that forces the liquid into the drain inlet. Additionally, a fluid separation device may be operatively connected to the drain inlet. The fluid separation device may be configured to separate the liquid from the pressurized gas that enters the drain inlet after the surface of the liquid falls below the drain inlet.

  20. Effect of abdominopelvic abscess drain size on drainage time and probability of occlusion.

    PubMed

    Rotman, Jessica A; Getrajdman, George I; Maybody, Majid; Erinjeri, Joseph P; Yarmohammadi, Hooman; Sofocleous, Constantinos T; Solomon, Stephen B; Boas, F Edward

    2017-04-01

    The purpose of this study is to determine whether larger abdominopelvic abscess drains reduce the time required for abscess resolution or the probability of tube occlusion. 144 consecutive patients who underwent abscess drainage at a single institution were reviewed retrospectively. Larger initial drain size did not reduce drainage time, drain occlusion, or drain exchanges (P > .05). Subgroup analysis did not find any type of collection that benefitted from larger drains. A multivariate model predicting drainage time showed that large collections (>200 mL) required 16 days longer drainage time than small collections (<50 mL). Collections with a fistula to bowel required 17 days longer drainage time than collections without a fistula. Initial drain size and the viscosity of the fluid in the collection had no significant effect on drainage time in the multivariate model. 8 F drains are adequate for initial drainage of most serous and serosanguineous collections. 10 F drains are adequate for initial drainage of most purulent or bloody collections. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional ground-water flow model using nonlinear regression

    USGS Publications Warehouse

    Hill, Mary Catherine

    1992-01-01

    This report documents a new version of the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model (MODFLOW) which, with the new Parameter-Estimation Package that also is documented in this report, can be used to estimate parameters by nonlinear regression. The new version of MODFLOW is called MODFLOWP (pronounced MOD-FLOW*P), and functions nearly identically to MODFLOW when the ParameterEstimation Package is not used. Parameters are estimated by minimizing a weighted least-squares objective function by the modified Gauss-Newton method or by a conjugate-direction method. Parameters used to calculate the following MODFLOW model inputs can be estimated: Transmissivity and storage coefficient of confined layers; hydraulic conductivity and specific yield of unconfined layers; vertical leakance; vertical anisotropy (used to calculate vertical leakance); horizontal anisotropy; hydraulic conductance of the River, Streamflow-Routing, General-Head Boundary, and Drain Packages; areal recharge rates; maximum evapotranspiration; pumpage rates; and the hydraulic head at constant-head boundaries. Any spatial variation in parameters can be defined by the user. Data used to estimate parameters can include existing independent estimates of parameter values, observed hydraulic heads or temporal changes in hydraulic heads, and observed gains and losses along head-dependent boundaries (such as streams). Model output includes statistics for analyzing the parameter estimates and the model; these statistics can be used to quantify the reliability of the resulting model, to suggest changes in model construction, and to compare results of models constructed in different ways.

  2. Land use and hydromechanical heterogeneities in marshland soils.

    NASA Astrophysics Data System (ADS)

    Tojo Radimy, Raymond; Dupont, Jean-Paul; Dudoignon, Patrick

    2017-04-01

    In the interpretation of soil moisture profiles, mechanical properties were most often considered homogeneous. The structural heterogeneities of the soil are knows to be at the origin of the distribution and the availability of water in the vadose zone. The soils study is located in the French Atlantic coastal marshlands, characterized by the succession polderization/desiccation/consolidation and maturation. The work is carried out within the framework of the farming of old salt marshes with two concerns in the farmers: the salinity of the soil and the distribution of the available water capacity of the soils according to the crop growth. The present work shows the knowledge of the soil storage transfers during seasonal cycles on drained corn field and undrained grassland. We analyze the vertical water profiles observed to reveal the hydromechanical heterogeneities in the soils depending the porosity and gravity water parameter. This approach is based on mechanical tests between the compaction pathways carried out in the laboratory using materials taken in situ. Comparing to grasslands profiles, we highlight the influence of agricultural practices and the establishment of drainage in the marshland. However, the vertical homogenization of hydromechanical structures, desalination has been taken into account for the estimation of water in crop. The concept of a homogeneous structure is not adapted to real vertical profile. Finally, the authors conclude by discussing the notion of the mechanical availability of water in terms of porosity and gravity water. These parameters are good tools to the sustainable management of marshland soils. Keywords: hydromechanics, vadose zone, soil structure, land use, available water capacity

  3. Energetics of eddy-mean flow interactions in the Brazil current between 20°S and 36°S

    NASA Astrophysics Data System (ADS)

    Magalhães, F. C.; Azevedo, J. L. L.; Oliveira, L. R.

    2017-08-01

    The energetics of eddy-mean flow interactions in the Brazil Current (BC) between 20°S and 36°S are investigated in 19 transects perpendicular to the 200 m isobath. Ten years (2000-2009) of output data from the Hybrid Coordinate Ocean Model (HYCOM) NCODA reanalysis, with a spatial resolution of 1/12.5° and 5 day averages, are used. The mean kinetic energy (MKE) and eddy kinetic energy (EKE) fields presented the same subsurface spatial pattern but with reduced values. The EKE increases southward, with high values along the BC path and the offshore portion of the jet. The values of the barotropic conversion term (BTC) are highest in the surface layers and decreased with depth, whereas the values of the baroclinic conversion term (BCC) and the vertical eddy heat flux (VEHF) are highest in the subsurface. Despite the vertical thickening of the BC, the highest energy conversion rates are confined to the upper 700 m of the water column. The energetic analysis showed that the current features mixed instability processes. The vertical weighted mean of the BTC and BCC presented an oscillatory pattern related to the bathymetry. The eddy field accelerates the time-mean flow upstream and downstream of bathymetric features and drains energy from the time-mean flow over the features. The BC is baroclinically unstable south of 28°S, and the highest energy conversion rates occur in Cabo de São Tomé, Cabo Frio, and the Cone do Rio Grande.

  4. Preferential flow estimates to an agricultural tile drain with implications for glyphosate transport

    USGS Publications Warehouse

    Stone, W.W.; Wilson, J.T.

    2006-01-01

    Agricultural subsurface drains, commonly referred to as tile drains, are potentially significant pathways for the movement of fertilizers and pesticides to streams and ditches in much of the Midwest. Preferential flow in the unsaturated zone provides a route for water and solutes to bypass the soil matrix and reach tile drains faster than predicted by traditional displacement theory. This paper uses chloride concentrations to estimate preferential flow contributions to a tile drain during two storms in May 2004. Chloride, a conservative anion, was selected as the tracer because of differences in chloride concentrations between the two sources of water to the tile drain, preferential and matrix flow. A strong correlation between specific conductance and chloride concentration provided a mechanism to estimate chloride concentrations in the tile drain throughout the storm hydrographs. A simple mixing analysis was used to identify the preferential flow component of the storm hydrograph. During two storms, preferential flow contributed 11 and 51% of total storm tile drain flow; the peak contributions, 40 and 81%, coincided with the peak tile drain flow. Positive relations between glyphosate [N-(phosphonomethyl)glycine] concentrations and preferential flow for the two storms suggest that preferential flow is an important transport pathway to the tile drain. ?? ASA, CSSA, SSSA.

  5. Phytoplankton abundance and structure as indicator of water quality in the drainage system of the Burullus Lagoon, southern Mediterranean coast, Egypt.

    PubMed

    El-Kassas, Hala Yassin; Gharib, Samiha Mahmoud

    2016-09-01

    This study represents the first detailed account of phytoplankton community structure and seasonal succession in eight drain sites and the Brimbal Canal influx into the Burullus Lagoon. The phytoplankton characteristics were studied based on the data collected seasonally over 4 years, from summer 2012 to spring 2016. Various indices such as Palmer's and Shannon's biotic indices were used for the assessment of the water quality of the different drains. There were a total of 194 species belonging to 65 genera and 6 groups: Bacillariophyceae (76 species), Chlorophyceae (59 species), Cyanophyceae (30 species), Euglenophyceae (25 species), Dinophyceae (3 species), and Xanthophyceae (1 species). The phytoplankton community was dominated with diatoms, green algae, and euglenoids such as Cyclotella, Scenedesmus, Navicula, Nitzschia, Ankistrodesmus, Chlorella, and Euglena. Maximum and minimum phytoplankton abundance was recorded at the Brimbal Canal and Hooks Drain. Maximum and minimum species diversities (H') were found at the Hooks Drain (2.564) and Burullus Drain (2.055). Species evenness fluctuated between 0.595 (Burullus Drain) and 0.750 (West Burullus Drain). The total score of algal genus pollution index and the algal species pollution index at the different drains showed that Drain 7 and the West Burullus Drain had moderate pollution, and the total score of the other drains were greater than 20 indicating the confirmed high organic pollution. Thus, the present investigation can be considered an attempt to use the phytoplankton community as a bioindicator of organic pollution.

  6. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets

    NASA Astrophysics Data System (ADS)

    Kelly, Adam G.; Hallam, Toby; Backes, Claudia; Harvey, Andrew; Esmaeily, Amir Sajad; Godwin, Ian; Coelho, João; Nicolosi, Valeria; Lauth, Jannika; Kulkarni, Aditya; Kinge, Sachin; Siebbeles, Laurens D. A.; Duesberg, Georg S.; Coleman, Jonathan N.

    2017-04-01

    All-printed transistors consisting of interconnected networks of various types of two-dimensional nanosheets are an important goal in nanoscience. Using electrolytic gating, we demonstrate all-printed, vertically stacked transistors with graphene source, drain, and gate electrodes, a transition metal dichalcogenide channel, and a boron nitride (BN) separator, all formed from nanosheet networks. The BN network contains an ionic liquid within its porous interior that allows electrolytic gating in a solid-like structure. Nanosheet network channels display on:off ratios of up to 600, transconductances exceeding 5 millisiemens, and mobilities of >0.1 square centimeters per volt per second. Unusually, the on-currents scaled with network thickness and volumetric capacitance. In contrast to other devices with comparable mobility, large capacitances, while hindering switching speeds, allow these devices to carry higher currents at relatively low drive voltages.

  7. Mixing, trapping and outwelling in the Klong Ngao mangrove swamp, Thailand

    NASA Astrophysics Data System (ADS)

    Wattayakorn, Gullaya; Wolanski, Eric; Kjerfve, Björn

    1990-11-01

    The Klong Ngao estuary in Thailand is a 7·5-km long tidal creek facing the Andaman Sea and drains 11·5 km 2 of mangrove swamps. Physical processes in the estuary differ greatly from the wet season to the dry season. In the dry season, vertical homogeneity prevails and the swamp behaves like an evaporation pond. Salt and water are trapped upstream, longitudinal gradients result and, through tidal dispersion, nutrient outwelling may result for SiO 2, possibly NO 2 and NO 3, but not PO 4. The outflow is trapped in a coastal boundary layer. In the wet season, short-lived local floods generate a strong stratification in salinity and episodical flushing of the estuary and may make measurements of nutrient budgets inconclusive. The Klong Ngao mangrove swamp traps land-derived sediments in the wet season.

  8. Discharge characteristics of four highway drainage systems in Ohio

    USGS Publications Warehouse

    Straub, D.E.

    1995-01-01

    Excessive water in the subbase of high-way combined with large traffic volumes and heavy loads is a major cause of road deterioration. Prompt removal of any excess water in a subbase will decrease the road deterioration and extend the effective life of a highway. This study presents discharge characteristics of four highway subbase drainage systems. These systems consisted of shallow, longitudal trenches with geocomposite drain materials (edge drains made from a polyethylene core surrounded by a geotextile filter fabric) that underline the joint between the shoulder and the traffic lane of State Route 16, approximately 1.0 mile southeast of Granville, Ohio. For selected rainfall-runoff events the maximum discharge, discharge characteristics from April 1991 through November 1993 were computed for three geocomposite products- a post type, an oblong-pipe type, and a cusp type-and a conventional perforated pipe edge drain. In general, the discharge characteristics of the conventional edge drain and that of the oblong-pipe edge drain were similar for most of the rainfall-runoff event characteristics. Both produced most of the highest maximum discharges and largest discharge volumes among the four longitudal edge drains. The post edge drain produced smaller maximum discharge and volumes than the conventional and oblong-pipe edge drains, but it had the shortest lag times for most of the event characteristics. The cusp edge drain produced small maximum discharges and small volumes similar to those from the post edge drain, but it had the longest lag times of all the edge drains for most of the event characteristics. The cusp edge drain may have also had some problems during installation which could have affected the discharge characteristics.

  9. Fallopian Tube Herniation through Left Sided Abdominal Drain Site.

    PubMed

    Hussain, Khalid; Masood, Jovaria

    2016-06-01

    Intra-abdominal drains have been used since long to prevent intra-abdominal collection, and detect any anastomotic leaks. We report a case of left sided fallopian tube herniation from a left lower abdominal drain site in a 27-year female who underwent caesarian section for breach presentation. Several complications related to drain usage has been described but left sided fallopian tube prolapse through drain site has not been reported in literature.

  10. Modeling nitrate at domestic and public-supply well depths in the Central Valley, California

    USGS Publications Warehouse

    Nolan, Bernard T.; Gronberg, JoAnn M.; Faunt, Claudia C.; Eberts, Sandra M.; Belitz, Ken

    2014-01-01

    Aquifer vulnerability models were developed to map groundwater nitrate concentration at domestic and public-supply well depths in the Central Valley, California. We compared three modeling methods for ability to predict nitrate concentration >4 mg/L: logistic regression (LR), random forest classification (RFC), and random forest regression (RFR). All three models indicated processes of nitrogen fertilizer input at the land surface, transmission through coarse-textured, well-drained soils, and transport in the aquifer to the well screen. The total percent correct predictions were similar among the three models (69–82%), but RFR had greater sensitivity (84% for shallow wells and 51% for deep wells). The results suggest that RFR can better identify areas with high nitrate concentration but that LR and RFC may better describe bulk conditions in the aquifer. A unique aspect of the modeling approach was inclusion of outputs from previous, physically based hydrologic and textural models as predictor variables, which were important to the models. Vertical water fluxes in the aquifer and percent coarse material above the well screen were ranked moderately high-to-high in the RFR models, and the average vertical water flux during the irrigation season was highly significant (p < 0.0001) in logistic regression.

  11. Update on Simulating Ice-Cliff Failure

    NASA Astrophysics Data System (ADS)

    Parizek, B. R.; Christianson, K. A.; Alley, R. B.; Voytenko, D.; Vankova, I.; Dixon, T. H.; Walker, R. T.; Holland, D.

    2017-12-01

    Using a 2D full-Stokes diagnostic ice-flow model and engineering and glaciological failure criteria, we simulate the limiting physical conditions for rapid structural failure of subaerial ice cliffs. Previously, using a higher-order flowline model, we reported that the threshold height, in crevassed ice and/or under favorable conditions for hydrofracture or crack lubrication, may be only slightly above the 100-m maximum observed today and that under well-drained or low-melt conditions, mechanically-competent ice supports cliff heights up to 220 m (with a likely range of 180-275 m) before ultimately succumbing to tensional and compressive failure along a listric surface. However, proximal to calving fronts, bridging effects lead to variations in vertical normal stress from the background glaciostatic stress state that give rise to the along-flow gradients in vertical shear stress that are included within a full-Stokes momentum balance. When including all flowline stresses within the physics core, diagnostic solutions continue to support our earlier findings that slumping failure ultimately limits the upper bound for cliff heights. Shear failure still requires low cohesive strength, tensile failure leads to deeper dry-crevasse propagation (albeit, less than halfway through the cliff), and compressive failure drops the threshold height for triggering rapid ice-front retreat via slumping to 200 m (145-280 m).

  12. Drain Management after Pancreatoduodenectomy: Reappraisal of a Prospective Randomized Trial Using Risk Stratification.

    PubMed

    McMillan, Matthew T; Malleo, Giuseppe; Bassi, Claudio; Butturini, Giovanni; Salvia, Roberto; Roses, Robert E; Lee, Major K; Fraker, Douglas L; Drebin, Jeffrey A; Vollmer, Charles M

    2015-10-01

    A recent randomized trial used the Fistula Risk Score (FRS) to develop guidelines for selective drainage based on clinically relevant fistula (CR-POPF) risk. Additionally, postoperative day (POD) 1 drain and serum amylase have been identified as accurate postoperative predictors of CR-POPF. This study sought to identify patients who may benefit from selective drainage, as well as the optimal timing for drain removal after pancreatoduodenectomy. One hundred six pancreatoduodenectomies from a previously reported RCT were assessed using risk-adjustment. The incidence of CR-POPF was compared between FRS risk cohorts. Drain and serum amylase values from POD 1 were evaluated using receiver operating characteristic (ROC) analysis to establish cut-offs predictive of CR-POPF occurrence. A regression analysis compared drain removal randomizations (POD 3 vs POD 5). Three-quarters of patients had moderate/high CR-POPF risk. This group had a CR-POPF rate of 36.3% vs 7.7% among negligible/low risk patients (p = 0.005). The areas under the ROC curve for CR-POPF prediction using POD 1 drain and serum amylase values were 0.800 (p = 0.000001; 95% CI 0.70-0.90) and 0.655 (p = 0.012; 95% CI 0.55-0.77), respectively. No significant serum amylase cut-offs were identified. Moderate/high risk patients with POD 1 drain amylase ≤ 5,000 U/L had significantly lower rates of CR-POPF when randomized to POD 3 drain removal (4.2% vs 38.5%; p = 0.003); moreover, these patients experienced fewer complications and shorter hospital stays. A clinical care protocol is proposed whereby drains are recommended for moderate/high FRS risk patients, but may be omitted in patients with negligible/low risk. Drain amylase values in moderate/high risk patients should then be evaluated on POD 1 to determine the optimal timing for drain removal. Moderate/high risk patients with POD 1 drain amylase ≤ 5,000 U/L have lower rates of CR-POPF with POD 3 (vs POD ≥ 5) drain removal; early drain removal is recommended for these patients. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Cation exchange in a temporally fluctuating thin freshwater lens on top of saline groundwater

    NASA Astrophysics Data System (ADS)

    Eeman, S.; De Louw, P. G. B.; Van der Zee, S. E. A. T. M.

    2017-01-01

    In coastal-zone fields with a high groundwater level and sufficient rainfall, freshwater lenses are formed on top of saline or brackish groundwater. The fresh and the saline water meet at shallow depth, where a transition zone is found. This study investigates the mixing zone that is characterized by this salinity change, as well as by cation exchange processes, and which is forced by seepage and by rainfall which varies as a function of time. The processes are first investigated for a one-dimensional (1D) stream tube perpendicular to the interface concerning salt and major cation composition changes. The complex sequence of changes is explained with basic cation exchange theory. It is also possible to show that the sequence of changes is maintained when a two-dimensional field is considered where the upward saline seepage flows to drains. This illustrates that for cation exchange, the horizontal component (dominant for flow of water) has a small impact on the chemical changes in the vertical direction. The flow's horizontal orientation, parallel to the interface, leads to changes in concentration that are insignificant compared with those that are found perpendicular to the interface, and are accounted for in the 1D flow tube. Near the drains, differences with the 1D considerations are visible, especially in the longer term, exceeding 100 years. The simulations are compared with field data from the Netherlands which reveal similar patterns.

  14. Effect of polluted water on soil and plant contamination by heavy metals in El-Mahla El-Kobra, Egypt

    NASA Astrophysics Data System (ADS)

    Kasem Mahmoud, Esawy; Ghoneim, Adel Mohamed

    2016-04-01

    The discharge of untreated waste water in Zefta drain and drain no. 5 is becoming a problem for many farmers in the El-Mahla El-Kobra area, Egypt. The discharged water contains high levels of contaminants considered hazardous to the ecosystem. Some plants, soil, water, and sediment samples were collected from the El-Mahla El-Kobra area to evaluate the contamination by heavy metals. The results showed that the heavy metals, pH, sodium adsorption ratio (SAR), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) in the water of Zefta drain and drain no. 5 exceeded permissible limits for irrigation. In rice and maize shoots grown in soils irrigated by contaminated water from Zefta drain and drain no. 5, the bioaccumulation factors for Cd, Pb, Zn, Cu, and Mn were higher than 1.0. The heavy metals content of irrigated soils from Zefta drain and drain no. 5 exceeded the upper limit of background heavy metals. In this study, the mean contaminant factor values of the drain no. 5 sediments revealed that Zn, Mn, Cu, Cd, Pb, and Ni > 6, indicating very high contamination. The bioaccumulation coefficient values of Cynodon dactylon, Phragmites australis, and Typha domingensis aquatic plants growing in Zefta drain are high. These species can be considered as hyperaccumulators for the decontamination of contaminated water.

  15. A novel thin-film transistor with step gate-overlapped lightly doped drain and raised source/drain design

    NASA Astrophysics Data System (ADS)

    Chien, Feng-Tso; Chen, Jian-Liang; Chen, Chien-Ming; Chen, Chii-Wen; Cheng, Ching-Hwa; Chiu, Hsien-Chin

    2017-11-01

    In this paper, a novel step gate-overlapped lightly doped drain (GOLDD) with raised source/drain (RSD) structure (SGORSD) is proposed for TFT electronic device application. The new SGORSD structure could obtain a low electric field at channel near the drain side owing to a step GOLDD design. Compared to the conventional device, the SGORSD TFT exhibits a better kink effect and higher breakdown performance due to the reduced drain electric field (D-EF). In addition, the leakage current also can be suppressed. Moreover, the device stability, such as the threshold voltage shift and drain current degradation under a high gate bias, is improved by the design of SGORSD structure. Therefore, this novel step GOLDD structure can be a promising design to be used in active-matrix flat panel electronics.

  16. Detecting peatland drains with Object Based Image Analysis and Geoeye-1 imagery.

    PubMed

    Connolly, J; Holden, N M

    2017-12-01

    Peatlands play an important role in the global carbon cycle. They provide important ecosystem services including carbon sequestration and storage. Drainage disturbs peatland ecosystem services. Mapping drains is difficult and expensive and their spatial extent is, in many cases, unknown. An object based image analysis (OBIA) was performed on a very high resolution satellite image (Geoeye-1) to extract information about drain location and extent on a blanket peatland in Ireland. Two accuracy assessment methods: Error matrix and the completeness, correctness and quality (CCQ) were used to assess the extracted data across the peatland and at several sub sites. The cost of the OBIA method was compared with manual digitisation and field survey. The drain maps were also used to assess the costs relating to blocking drains vs. a business-as-usual scenario and estimating the impact of each on carbon fluxes at the study site. The OBIA method performed well at almost all sites. Almost 500 km of drains were detected within the peatland. In the error matrix method, overall accuracy (OA) of detecting the drains was 94% and the kappa statistic was 0.66. The OA for all sub-areas, except one, was 95-97%. The CCQ was 85%, 85% and 71% respectively. The OBIA method was the most cost effective way to map peatland drains and was at least 55% cheaper than either field survey or manual digitisation, respectively. The extracted drain maps were used constrain the study area CO 2 flux which was 19% smaller than the prescribed Peatland Code value for drained peatlands. The OBIA method used in this study showed that it is possible to accurately extract maps of fine scale peatland drains over large areas in a cost effective manner. The development of methods to map the spatial extent of drains is important as they play a critical role in peatland carbon dynamics. The objective of this study was to extract data on the spatial extent of drains on a blanket bog in the west of Ireland. The results show that information on drain extent and location can be extracted from high resolution imagery and mapped with a high degree of accuracy. Under Article 3.4 of the Kyoto Protocol Annex 1 parties can account for greenhouse gas emission by sources and removals by sinks resulting from "wetlands drainage and rewetting". The ability to map the spatial extent, density and location of peatlands drains means that Annex 1 parties can develop strategies for drain blocking to aid reduction of CO 2 emissions, DOC runoff and water discoloration. This paper highlights some uncertainty around using one-size-fits-all emission factors for GHG in drained peatlands and re-wetting scenarios. However, the OBIA method is robust and accurate and could be used to assess the extent of drains in peatlands across the globe aiding the refinement of peatland carbon dynamics .

  17. Detecting peatland drains with Object Based Image Analysis and Geoeye-1 imagery.

    PubMed

    Connolly, J; Holden, N M

    2017-12-01

    Peatlands play an important role in the global carbon cycle. They provide important ecosystem services including carbon sequestration and storage. Drainage disturbs peatland ecosystem services. Mapping drains is difficult and expensive and their spatial extent is, in many cases, unknown. An object based image analysis (OBIA) was performed on a very high resolution satellite image (Geoeye-1) to extract information about drain location and extent on a blanket peatland in Ireland. Two accuracy assessment methods: Error matrix and the completeness, correctness and quality ( CCQ ) were used to assess the extracted data across the peatland and at several sub sites. The cost of the OBIA method was compared with manual digitisation and field survey. The drain maps were also used to assess the costs relating to blocking drains vs. a business-as-usual scenario and estimating the impact of each on carbon fluxes at the study site. The OBIA method performed well at almost all sites. Almost 500 km of drains were detected within the peatland. In the error matrix method, overall accuracy (OA) of detecting the drains was 94% and the kappa statistic was 0.66. The OA for all sub-areas, except one, was 95-97%. The CCQ was 85%, 85% and 71% respectively. The OBIA method was the most cost effective way to map peatland drains and was at least 55% cheaper than either field survey or manual digitisation, respectively. The extracted drain maps were used constrain the study area CO 2 flux which was 19% smaller than the prescribed Peatland Code value for drained peatlands. The OBIA method used in this study showed that it is possible to accurately extract maps of fine scale peatland drains over large areas in a cost effective manner. The development of methods to map the spatial extent of drains is important as they play a critical role in peatland carbon dynamics. The objective of this study was to extract data on the spatial extent of drains on a blanket bog in the west of Ireland. The results show that information on drain extent and location can be extracted from high resolution imagery and mapped with a high degree of accuracy. Under Article 3.4 of the Kyoto Protocol Annex 1 parties can account for greenhouse gas emission by sources and removals by sinks resulting from "wetlands drainage and rewetting". The ability to map the spatial extent, density and location of peatlands drains means that Annex 1 parties can develop strategies for drain blocking to aid reduction of CO 2 emissions, DOC runoff and water discoloration. This paper highlights some uncertainty around using one-size-fits-all emission factors for GHG in drained peatlands and re-wetting scenarios. However, the OBIA method is robust and accurate and could be used to assess the extent of drains in peatlands across the globe aiding the refinement of peatland carbon dynamics .

  18. Comparative effect of tube drain on post operative inflammatory complications of impacted mandibular third molar surgery College Hospital, Ibadan, Nigeria.

    PubMed

    Obimakinde, O S; Fasola, A O; Arotiba, J T; Okoje, V N; Obiechina, A E

    2010-09-01

    Swelling, pain and trismus are acute reversible inflammatory complications of impacted mandibular third molar (M3) surgery. They contribute to the deterioration of quality of life and loss of several useful working hours. This study aimed to investigate whether the use of a surgical drain following M3 surgery can minimise these inflammatory complications. Eighty consecutive patients who gave consent were enrolled into the study. Patients were assigned into two groups (drain and no drain) by systematic sampling method which was modified to ensure matching of patients by age, sex and spatial relationship of the impacted mandibular third molar. The patients in the drain group (n=40) had a Foley's catheter drain inserted into the wound after the surgical procedure while the patients in the no drain group (n=40) had their wound closed without the use of drain. All patients had primary wound closure with 3.0 black silk sutures after the procedure. Demographic data, cheek dimension and maximal mouth opening were recorded before the procedure. Pain, swelling and trismus were evaluated in the two groups at 24 hours, 48 hours and 7th day after surgery. Post operative swelling and visual analogue scale score for pain were comparatively lesser in the drain group patients. The maximal interincisal distance was also more in the drain group patients. The findings from this study indicated that there is a significant benefit of using a surgical drain in minimising postoperative oedema, pain and trismus following surgical removal of impacted mandibular third molar.

  19. Calibration of a texture-based model of a ground-water flow system, western San Joaquin Valley, California

    USGS Publications Warehouse

    Phillips, Steven P.; Belitz, Kenneth

    1991-01-01

    The occurrence of selenium in agricultural drain water from the western San Joaquin Valley, California, has focused concern on the semiconfined ground-water flow system, which is underlain by the Corcoran Clay Member of the Tulare Formation. A two-step procedure is used to calibrate a preliminary model of the system for the purpose of determining the steady-state hydraulic properties. Horizontal and vertical hydraulic conductivities are modeled as functions of the percentage of coarse sediment, hydraulic conductivities of coarse-textured (Kcoarse) and fine-textured (Kfine) end members, and averaging methods used to calculate equivalent hydraulic conductivities. The vertical conductivity of the Corcoran (Kcorc) is an additional parameter to be evaluated. In the first step of the calibration procedure, the model is run by systematically varying the following variables: (1) Kcoarse/Kfine, (2) Kcoarse/Kcorc, and (3) choice of averaging methods in the horizontal and vertical directions. Root mean square error and bias values calculated from the model results are functions of these variables. These measures of error provide a means for evaluating model sensitivity and for selecting values of Kcoarse, Kfine, and Kcorc for use in the second step of the calibration procedure. In the second step, recharge rates are evaluated as functions of Kcoarse, Kcorc, and a combination of averaging methods. The associated Kfine values are selected so that the root mean square error is minimized on the basis of the results from the first step. The results of the two-step procedure indicate that the spatial distribution of hydraulic conductivity that best produces the measured hydraulic head distribution is created through the use of arithmetic averaging in the horizontal direction and either geometric or harmonic averaging in the vertical direction. The equivalent hydraulic conductivities resulting from either combination of averaging methods compare favorably to field- and laboratory-based values.

  20. 77 FR 70382 - Airworthiness Directives; Eurocopter France Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... the fuel tank draining system. This proposed AD is prompted by a closed fuel tank drain that, in the... fuel tank compartments' draining system. FAA's Determination These helicopters have been approved by... buoyancy fixed parts, the ASBs describe procedures to modify the fuel tank draining system by removing...

  1. 14 CFR 29.1021 - Oil system drains.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil system drains. 29.1021 Section 29.1021 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible...

  2. 14 CFR 25.1021 - Oil system drains.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil system drains. 25.1021 Section 25.1021 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible...

  3. 14 CFR 29.1021 - Oil system drains.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil system drains. 29.1021 Section 29.1021 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible...

  4. 14 CFR 25.1021 - Oil system drains.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil system drains. 25.1021 Section 25.1021 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... drains) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible...

  5. 14 CFR 125.139 - Oil system drains.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Oil system drains. 125.139 Section 125.139....139 Oil system drains. Accessible drains incorporating either a manual or automatic means for positive locking in the closed position must be provided to allow safe drainage of the entire oil system. ...

  6. 14 CFR 125.139 - Oil system drains.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Oil system drains. 125.139 Section 125.139....139 Oil system drains. Accessible drains incorporating either a manual or automatic means for positive locking in the closed position must be provided to allow safe drainage of the entire oil system. ...

  7. 14 CFR 125.139 - Oil system drains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Oil system drains. 125.139 Section 125.139....139 Oil system drains. Accessible drains incorporating either a manual or automatic means for positive locking in the closed position must be provided to allow safe drainage of the entire oil system. ...

  8. 46 CFR 45.157 - Scuppers and gravity drains.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Scuppers and gravity drains. 45.157 Section 45.157 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.157 Scuppers and gravity drains. Scuppers and gravity deck drains from spaces...

  9. 46 CFR 45.157 - Scuppers and gravity drains.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Scuppers and gravity drains. 45.157 Section 45.157 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.157 Scuppers and gravity drains. Scuppers and gravity deck drains from spaces...

  10. 46 CFR 45.157 - Scuppers and gravity drains.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Scuppers and gravity drains. 45.157 Section 45.157 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.157 Scuppers and gravity drains. Scuppers and gravity deck drains from spaces...

  11. 46 CFR 45.157 - Scuppers and gravity drains.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Scuppers and gravity drains. 45.157 Section 45.157 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.157 Scuppers and gravity drains. Scuppers and gravity deck drains from spaces...

  12. 46 CFR 45.157 - Scuppers and gravity drains.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Scuppers and gravity drains. 45.157 Section 45.157 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.157 Scuppers and gravity drains. Scuppers and gravity deck drains from spaces...

  13. Transient fluvial incision as an indicator of active faulting and surface uplift in the Moroccan High Atlas.

    NASA Astrophysics Data System (ADS)

    Boulton, Sarah; Stokes, Martin; Mather, Anne

    2013-04-01

    Quantifying the extent to which geomorphic features can be used to extract tectonic signals is a key challenge for the Earth Sciences. Here, we analyse the long profiles of rivers that drain southwards across the Southern Atlas Fault (SAF), a segmented thrust fault that forms the southern margin of the High Atlas Mountains in Morocco, with the aim of deriving new data on the recent activity of this little known fault system. River long profiles were extracted for the 32 major rivers that drain southwards into the Ouarzazate foreland basin. Of these, twelve exhibit concave-up river profiles with a mean concavity (Θ) of 0.61 and normalized steepness indices (Ksn) in the range 42-219; these are interpreted as rivers at or near steady-state. By contrast, 20 rivers are characterised by the presence of at least one knickpoint upstream of the thrust front. Knickzone height (the vertical distance between the knickpoint and the fault) varies from 100 - 1300 m, with calculated amounts of uplift at the range bounding fault ranging from 1040 - 80 m. In map view, knickpoint locations generally plot along sub-parallel lines to the thrust front and there are no obvious relationships with specific lithological units or boundaries. Furthermore, drainage areas upstream of the knickpoints range over several orders of magnitude indicating that they are not pinned at threshold drainage areas. Therefore, these features are interpreted as a transient response to base-level change. However, three distinct populations of knickpoints can be recognised based upon knickpoint elevation, these are termed K1, K2 and K3 and channel reaches are universally steeper below knickpoints than above. K1 and K2 knickpoints share common characteristics in that the elevation of the knickpoints, calculated incision and ksn all increase from west to east. Whereas, K3 knickpoints show little systematic variation along the range front, are observed at the lowest altitudes with calculated incision of < 200 m. Therefore, the K3 knickpoints are interpreted as the youngest forcing event possibly related to the regional capture of the Dades River by the Draa River < 300 ka. However, prior to this time the channels would have drained into an internally draining basin, so eustatic sea level fall cannot be a driving mechanism for the higher and therefore, older knickpoints. Thus it is more likely that these knickpoints have developed in response to Quaternary tectonic forcing along the SAF where rock uplift is greater in the east.

  14. Pontine infarction caused by medial branch injury of the basilar artery as a rare complication of cisternal drain placement.

    PubMed

    Horiuchi, Tetsuyoshi; Yamamoto, Yasunaga; Kuroiwa, Masafumi; Rahmah, Nunung Nur; Hongo, Kazuhiro

    2012-04-01

    We present a rare complication of cisternal drain placement during aneurysm surgery. A ruptured anterior communicating artery aneurysm was clipped through a right pterional approach. A cisternal drain was inserted from the retro-carotid to the prepontine cistern. Postoperatively, a left-sided paresis of the upper extremity had developed. A CT brain scan revealed that the drain was located between the pons and the basilar artery, resulting in a pontine infarction. Vascular neurosurgeons should keep this complication in mind when placing a cisternal drain tube. The drain tube should not be inserted too deep into the prepontine cistern. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Dong-Suk; Kang, Yu-Jin; Park, Jae-Hyung

    Highlights: • We developed and investigated source/drain electrodes in oxide TFTs. • The Mo S/D electrodes showed good output characteristics. • Intrinsic TFT parameters were calculated by the transmission line method. - Abstract: This paper investigates the feasibility of a low-resistivity electrode material (Mo) for source/drain (S/D) electrodes in thin film transistors (TFTs). The effective resistances between Mo source/drain electrodes and amorphous zinc–tin-oxide (a-ZTO) thin film transistors were studied. Intrinsic TFT parameters were calculated by the transmission line method (TLM) using a series of TFTs with different channel lengths measured at a low source/drain voltage. The TFTs fabricated with Momore » source/drain electrodes showed good transfer characteristics with a field-effect mobility of 10.23 cm{sup 2}/V s. In spite of slight current crowding effects, the Mo source/drain electrodes showed good output characteristics with a steep rise in the low drain-to-source voltage (V{sub DS}) region.« less

  16. Rupture disc

    DOEpatents

    Newton, Robert G.

    1977-01-01

    The intermediate heat transport system for a sodium-cooled fast breeder reactor includes a device for rapidly draining the sodium therefrom should a sodium-water reaction occur within the system. This device includes a rupturable member in a drain line in the system and means for cutting a large opening therein and for positively removing the sheared-out portion from the opening cut in the rupturable member. According to the preferred embodiment of the invention the rupturable member includes a solid head seated in the end of the drain line having a rim extending peripherally therearound, the rim being clamped against the end of the drain line by a clamp ring having an interior shearing edge, the bottom of the rupturable member being convex and extending into the drain line. Means are provided to draw the rupturable member away from the drain line against the shearing edge to clear the drain line for outflow of sodium therethrough.

  17. 14 CFR 25.999 - Fuel system drains.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system drains. 25.999 Section 25.999... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.999 Fuel system drains. (a) Drainage of the fuel system must be accomplished by the use of fuel strainer and fuel tank sump drains. (b...

  18. 14 CFR 25.999 - Fuel system drains.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system drains. 25.999 Section 25.999... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.999 Fuel system drains. (a) Drainage of the fuel system must be accomplished by the use of fuel strainer and fuel tank sump drains. (b...

  19. 14 CFR 25.999 - Fuel system drains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system drains. 25.999 Section 25.999... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.999 Fuel system drains. (a) Drainage of the fuel system must be accomplished by the use of fuel strainer and fuel tank sump drains. (b...

  20. 14 CFR 23.999 - Fuel system drains.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system drains. 23.999 Section 23.999... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.999 Fuel system drains. (a) There must be at least one drain to allow safe drainage of the entire...

  1. 14 CFR 23.999 - Fuel system drains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system drains. 23.999 Section 23.999... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.999 Fuel system drains. (a) There must be at least one drain to allow safe drainage of the entire...

  2. 14 CFR 23.999 - Fuel system drains.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system drains. 23.999 Section 23.999... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.999 Fuel system drains. (a) There must be at least one drain to allow safe drainage of the entire...

  3. 14 CFR 25.999 - Fuel system drains.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system drains. 25.999 Section 25.999... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.999 Fuel system drains. (a) Drainage of the fuel system must be accomplished by the use of fuel strainer and fuel tank sump drains. (b...

  4. 14 CFR 25.999 - Fuel system drains.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system drains. 25.999 Section 25.999... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.999 Fuel system drains. (a) Drainage of the fuel system must be accomplished by the use of fuel strainer and fuel tank sump drains. (b...

  5. 14 CFR 23.999 - Fuel system drains.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system drains. 23.999 Section 23.999... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.999 Fuel system drains. (a) There must be at least one drain to allow safe drainage of the entire...

  6. 14 CFR 23.999 - Fuel system drains.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system drains. 23.999 Section 23.999... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.999 Fuel system drains. (a) There must be at least one drain to allow safe drainage of the entire...

  7. Nutrient Drain Associated with Hardwood Plantation Culture

    Treesearch

    James B. Baker

    1978-01-01

    Past research and a tentative evaluation indicate that nutrient drain and possible site degradation could occur in southern hardwood plantations. The extent of nutrient drain on a given site would depend on the species, length of the rotation, and harvesting system used. The evaluation for cottonwood plantations in Mississippi indicates that nutrient drain is most...

  8. The management of vacuum neck drains in head and neck surgery and the comparison of two different practice protocols for drain removal.

    PubMed

    Kasbekar, A V; Davies, F; Upile, N; Ho, M W; Roland, N J

    2016-01-01

    Introduction The management of vacuum neck drains in head and neck surgery is varied. We aimed to improve early drain removal and therefore patient discharge in a safe and effective manner. Methods The postoperative management of head and neck surgical patients with vacuum neck drains was reviewed retrospectively. A new policy was then implemented to measure drainage three times daily (midnight, 6am, midday). The decision for drain removal was based on the most recent drainage period (at <3ml per hour). A further patient cohort was subsequently assessed prospectively. The length of hospital stay was compared between the cohorts. Results The retrospective audit included 51 patients while the prospective audit included 47. The latter saw 16 patients (33%) discharged at least one day earlier than they would have been under the previous policy. No adverse effects were noted from earlier drain removal. Conclusions Measuring drainage volumes three times daily allows for more accurate assessment of wound drainage, and this can lead to earlier removal of neck drains and safe discharge.

  9. The health workforce crisis: the brain drain scourge.

    PubMed

    Ike, Samuel O

    2007-01-01

    The magnitude of the health workforce crisis engendered by brain drain particularly in Africa, and nay more especially Nigeria, has been assuming increasingly alarming proportions in the past three decades. The challenge it poses in meeting the manpower needs in the healthcare sector as well as in the larger economy of the sending countries is enormous. This paper thus sets out to highlight the scope of this brain drain, its effects and the reasons sustaining it, as well as makes concrete suggestions to help stern the tide. A review of the literature on brain drain with particular emphasis on the health workforce sector was done, with focus on Africa, and specifically Nigeria. Literature search was done using mainly the Medline, as well as local journals. The historical perspectives, with the scope of external and internal brain drain are explored. The glaring effects of brain drain both in the global workforce terrain and specifically in the health sectors are portrayed. The countries affected most and the reasons for brain drain are outlined. Strategic steps to redress the brain drain crisis are proffered in this paper. The health workforce crisis resulting from brain drain must be brought to the front-burner of strategic policy decisions leading to paradigm shift in political, social and economic conditions that would serve as incentives to curb the scourge.

  10. Drain Tube-Induced Jejunal Penetration Masquerading as Bile Leak following Whipple's Operation.

    PubMed

    Bae, Sang Ho; Lee, Tae Hoon; Lee, Sae Hwan; Lee, Suck-Ho; Park, Sang-Heum; Kim, Sun-Joo; Kim, Chang Ho

    2011-05-01

    A 70-year-old man had undergone pancreaticoduodenectomy due to a distal common bile duct malignancy. After the operation, serous fluid discharge decreased from two drain tubes in the retroperitoneum. Over four weeks, the appearance of the serous fluid changed to a greenish bile color and the patient persistently drained over 300 ml/day. Viewed as bile leak at the choledochojejunostomy, treatment called for endoscopic diagnosis and therapy. Cap-fitted forward-viewing endoscopy demonstrated that the distal tip of a pancreatic drain catheter inserted at the pancreaticojejunostomy site had penetrated the opposite jejunum wall. One of the drain tubes primarily placed in the retroperitoneum had also penetrated the jejunum wall, with the distal tip positioned near the choledochojejunostomy site. No leak of contrast appeared beyond the jejunum or anastomosis site. Following repositioning of a penetrating catheter of the pancreaticojejunostomy, four days later, the patient underwent removal of two drain tubes without additional complications. In conclusion, the distal tip of the catheter, placed to drain pancreatic juice, penetrated the jejunum wall and may have caused localized perijejunal inflammation. The other drain tube, placed in the retroperitoneal space, might then have penetrated the inflamed wall of the jejunum, allowing persistent bile drainage via the drain tube. The results masqueraded as bile leakage following pancreaticoduodenectomy.

  11. Drain blocking: an effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland.

    PubMed

    Wallage, Zoe E; Holden, Joseph; McDonald, Adrian T

    2006-08-31

    Peatlands are an important terrestrial carbon store. However, heightened levels of degradation in response to environmental change have resulted in an increased loss of dissolved organic carbon (DOC) and an associated rise in the level of discolouration in catchment waters. A significant threat to peatland sustainability has been the installation of artificial drainage ditches. However, recent restoration schemes have pursued drain blocking as a possible strategy for reducing degradation, fluvial carbon loss and water discolouration. This paper investigates the effect of open cut drainage and the impact of drain blocking on DOC and colour dynamics in blanket peat soil-water solutions. Three treatments (intact peat, drained peat and drain-blocked peat) were monitored in an upland blanket peat catchment in the UK. DOC and colour values were significantly higher on the drained slopes compared with those of the intact peat, which in turn had greater DOC and colour values than the drain-blocked slopes. Consequently, drain blocking is shown to be a highly successful technique in reducing both the DOC concentration and level of discolouration in soil waters, even to values lower than those observed for the intact site, which suggests a process of store exhaustion and flushing may operate. The colour per carbon unit (C/C) ratio was significantly higher at the drain-blocked site than either the intact or the drained treatments, while the E4/E6 ratio (fulvic acid/humic acid) was significantly lower at the blocked site compared to the two other treatments. The high C/C and low E4/E6 ratios indicate that drain blocking also modifies the composition of DOC, such that darker-coloured humic substances become more dominant compared to the intact site. This implies disturbance to DOC production and/or transportation processes operating within the peat.

  12. Drain placement can be safely omitted after the majority of robotic partial nephrectomies.

    PubMed

    Abaza, Ronney; Prall, David

    2013-03-01

    Drain placement after partial nephrectomy is considered standard but it is based on routine and not on evidence. With experience we performed robotic partial nephrectomy and routinely omitted a drain even with significant collecting system violation. We have rarely used drains after robotic partial nephrectomy for several years, and we report our outcomes. We reviewed a single surgeon, prospective database of all robotic partial nephrectomies from February 2008 to March 2012, including the characteristics of those with and without a drain. The 150 patients underwent a total of 160 robotic partial nephrectomy procedures with a drain used in 11 patients and omitted in 93%. Mean patient age was 57 years (range 22 to 89), mean American Society of Anesthesiologists score was 2.8 (range 2 to 4) and mean body mass index was 32 kg/m(2) (range 18 to 54). Values were similar in patients with and without a drain. In patients without a drain and in those with a drain mean tumor size was 3.5 cm (range 1.0 to 11.0) and 4.6 cm (range 1.1 to 8.6), and mean R.E.N.A.L. (radius, exophytic/endophytic, nearness of tumor to collecting system or sinus, anterior/posterior, location relative to polar lines, hilar tumor touching main renal artery or vein) nephrometry score was 7.8 (range 4 to 12) and 8.8 (range 6 to 11), respectively. Collecting system violation occurred in 88 patients (59%), including 78 without a drain. Two patients (1.3%) required transfusion with no intervention for bleeding. All except 5 patients (97%) were discharged home on postoperative day 1 with all drains removed before discharge. In 2 patients (1.3%) without a drain small urinomas without infection developed more than 2 weeks postoperatively, which were treated with a week of Foley catheter drainage and percutaneous drainage, respectively. Drain placement after robotic partial nephrectomy can be routinely omitted with a low rate of urine leaks, which can be managed safely when they rarely occur. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  14. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  15. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  16. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  17. Responses of Young Slash Pine on Poorly Drained to Somewhat Poorly Drained Silt Loam Soils to Site Preparation and Fertilization Treatments

    Treesearch

    James D. Haywood

    1995-01-01

    Slash pines (Pinus elliottii Engelm. var. elliottii) were planted on poorly drained Wrightsville and somewhat poorly drained Vidrine silt loam soils in southwest Louisiana. Neither flat disking nor bedding increased pine growth and yield substantially after nine growing seasons, but broadcast application of triple superphoshate...

  18. 7 CFR 58.416 - Cheese vats, tanks and drain tables.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese vats, tanks and drain tables. 58.416 Section 58... Service 1 Equipment and Utensils § 58.416 Cheese vats, tanks and drain tables. (a) The vats, tanks and drain tables used for making cheese should be of metal construction with adequate jacket capacity for...

  19. 7 CFR 58.416 - Cheese vats, tanks and drain tables.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese vats, tanks and drain tables. 58.416 Section 58... Service 1 Equipment and Utensils § 58.416 Cheese vats, tanks and drain tables. (a) The vats, tanks and drain tables used for making cheese should be of metal construction with adequate jacket capacity for...

  20. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be incorporated...

  1. Method of draining water through a solid waste site without leaching

    DOEpatents

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  2. Minimally invasive surgical technique for tethered surgical drains

    PubMed Central

    Hess, Shane R; Satpathy, Jibanananda; Waligora, Andrew C; Ugwu-Oju, Obinna

    2017-01-01

    A feared complication of temporary surgical drain placement is from the technical error of accidentally suturing the surgical drain into the wound. Postoperative discovery of a tethered drain can frequently necessitate return to the operating room if it cannot be successfully removed with nonoperative techniques. Formal wound exploration increases anesthesia and infection risk as well as cost and is best avoided if possible. We present a minimally invasive surgical technique that can avoid the morbidity associated with a full surgical wound exploration to remove a tethered drain when other nonoperative techniques fail. PMID:28400669

  3. Method of draining water through a solid waste site without leaching

    DOEpatents

    Treat, R.L.; Gee, G.W.; Whyatt, G.A.

    1993-02-02

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  4. Abdominal drainage following cholecystectomy: high, low, or no suction?

    PubMed Central

    McCormack, T. T.; Abel, P. D.; Collins, C. D.

    1983-01-01

    A prospective trial to assess the effect of suction in an abdominal drain following cholecystectomy was carried out. Three types of closed drainage system were compared: a simple tube drain, a low negative pressure drain, and a high negative pressure drain: 120 consecutive patients undergoing cholecystectomy were randomly allocated to one of the three drainage groups. There was no significant difference in postoperative pyrexia, wound infection, chest infection, or hospital stay. This study failed to demonstrate any clinically useful difference between high negative pressure, low negative pressure, and static drainage system were compared: a simple tube drain, a low negative used, suction is not necessary and a simple tube drain (greater than 6 mm internal diameter) is the most effective form of drainage. PMID:6614773

  5. Leakage current conduction in metal gate junctionless nanowire transistors

    NASA Astrophysics Data System (ADS)

    Oproglidis, T. A.; Karatsori, T. A.; Barraud, S.; Ghibaudo, G.; Dimitriadis, C. A.

    2017-05-01

    In this paper, the experimental off-state drain leakage current behavior is systematically explored in n- and p-channel junctionless nanowire transistors with HfSiON/TiN/p+-polysilicon gate stack. The analysis of the drain leakage current is based on experimental data of the gate leakage current. It has been shown that the off-state drain leakage current in n-channel devices is negligible, whereas in p-channel devices it is significant and dramatically increases with drain voltage. The overall results indicate that the off-state drain leakage current in p-channel devices is mainly due to trap-assisted Fowler-Nordheim tunneling of electrons through the gate oxide of electrons from the metal gate to the silicon layer near the drain region.

  6. Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Davis, J.H.

    1998-01-01

    The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic conductivity in the intermediate layer, determined from one aquifer test, is 20 feet per day. An extensive stormwater drainage system is present at OU3 and the surrounding area. Some of the stormwater drains have been documented to be draining ground water from the upper layer of the surficial aquifer, whereas other drains are only suspected to be draining ground water. The subregional model contained 78 rows and 148 columns of square model cells that were 100 feet on each side. Vertically, the surficial aquifer was divided into two layers; layer 1 represented the upper layer and layer 2 represented the intermediate layer. Steady-state ground-water flow conditions were assumed. The model was calibrated to head data collected on October 29 and 30, 1996. After calibration, the model matched all 67 measured heads to within the calibration criterion of 1 foot; and 48 of 67 simulated heads (72 percent) were within 0.5 foot. Model simulated recharge rates ranged from 0.4 inch per year in areas that were largely paved to 13.0 inches per year in irrigated areas. Simulated hydraulic conductivities in the upper layer at OU3 ranged from 0.5 foot per day in the north to 1.0 foot per day in the south. Simulated vertical leakance between the upper and intermediate layers ranged from 1.0x10-6 per day in an area with low-permeability clays to 4.3x10-2 per day in an area that had been dredged. Simulated transmissivities in the intermediate layer ranged from 25 feet squared per day in an area of low-permeability channel-fill deposits to a high of 1,200 feet squared per day in areas covering most of OU3. Simulated riverbed conductances ranged from 4 to 60 feet squared per day and simulated bottom conductances of leaking stormwater drains ranged from 5 to 20 feet squared per day. The direction and velocity of ground-water flow was determined using particle-tracking techniques. Ground-water flow in the upper layer was generally eastward toward the St. Johns River. However, leaking stormwat

  7. Improved long-term survival with subdural drains following evacuation of chronic subdural haematoma.

    PubMed

    Guilfoyle, Mathew R; Hutchinson, Peter J A; Santarius, Thomas

    2017-05-01

    Chronic subdural haematoma (CSDH) is a common condition that is effectively managed by burrhole drainage but requires repeat surgery in a significant minority of patients. The Cambridge Chronic Subdural Haematoma Trial (CCSHT) was a randomised controlled study that showed placement of subdural drains for 48 h following burrhole evacuation significantly reduces the incidence of reoperation and improves survival at 6 months. The present study examined the long-term survival of the patients in the trial. In the original trial patients at a single neurosurgical centre from 2004-2007 were randomly assigned to receive a drain (n = 108) or no drain (n = 107) following burrhole drainage of CSDH. We ascertained whether the trial patients were alive in February 2016-a minimum of 8 years following enrollment-via the UK NHS tracing service. Survival was compared between the trial groups and against expected survival for the UK general population matched for age and sex. At 5 years following surgery the drain group continued to have significantly better survival than the no drain patients (p = 0.027), but this was no longer apparent at 10 years. Survival of patients in the drain group did not differ significantly from that of the general population whereas patients who did not receive a drain had significantly lower survival than expected (p = 0.0006). Subdural drains following CSDH evacuation are associated with improved long-term survival, which appears similar to that expected for the general population of the same age and sex. All patients having burrhole CSDH evacuation should receive a drain as standard practice unless specifically contraindicated.

  8. A novel method for electronic measurement and recording of surgical drain output.

    PubMed

    van Duren, Bernard Hendrik; van Boxel, Gijsbert Isaac

    2017-04-01

    Surgical drains are used to collect and measure fluids (e.g. serous fluid, lymph, blood, etc.). The volume of fluid in the container is measured using graded markings on the container and then recorded manually on a "drain chart" allowing for manual rate calculations. This method is dependant on regularly checking the volume of the drain and recording the value accurately; unfortunately, this is often not feasible due to staffing levels and time constraints. This results in inaccurate "drain charts" making clinical decisions based on these figures unreliable. Often the lack of confidence in these measurements leads to delayed drain removal with consequent increased infection risks and potential delayed discharge. Accurate digital measurement of drain content would have a significant impact on clinical care. This paper describes a digital technology to measure volume, making use of a positive terminal at the lowest point of the vessel and negative (sensor) terminals placed at accurate intervals along an axis of the vessel. A proof-of-concept prototype was developed using commercially available electronic components to test the feasibility of a technology for electronic measurement and recording of surgical drain content. In a simulated environment, the proposed technology was shown to be effective and accurate. The proposed electronic drain has a number of advantages over currently used devices in saving time and easing pressure on nursing staff, reduce disturbance of patients, and allows for preset alarms.

  9. Short-Channel Tunneling Field-Effect Transistor with Drain-Overlap and Dual-Metal Gate Structure for Low-Power and High-Speed Operations.

    PubMed

    Yoon, Young Jun; Eun, Hye Rim; Seo, Jae Hwa; Kang, Hee-Sung; Lee, Seong Min; Lee, Jeongmin; Cho, Seongjae; Tae, Heung-Sik; Lee, Jung-Hee; Kang, In Man

    2015-10-01

    We have investigated and proposed a highly scaled tunneling field-effect transistor (TFET) based on Ge/GaAs heterojunction with a drain overlap to suppress drain-induced barrier thinning (DIBT) and improve low-power (LP) performance. The highly scaled TFET with a drain overlap achieves lower leakage tunneling current because of the decrease in tunneling events between the source and drain, whereas a typical short-channel TFET suffers from a great deal of tunneling leakage current due to the DIBT at the off-state. However, the drain overlap inevitably increases the gate-to-drain capacitance (Cgd) because of the increase in the overlap capacitance (Cov) and inversion capacitance (Cinv). Thus, in this work, a dual-metal gate structure is additionally applied along with the drain overlap. The current performance and the total gate capacitance (Cgg) of the device with a dual-metal gate can be possibly controlled by adjusting the metal gate workfunction (φgate) and φoverlap-gate in the overlapping regions. As a result, the intrinsic delay time (τ) is greatly reduced by obtaining lower Cgg divided by the on-state current (Ion), i.e., Cgg/Ion. We have successfully demonstrated excellent LP and high-speed performance of a highly scaled TFET by adopting both drain overlap and dual-metal gate with DIBT minimization.

  10. Water table dynamics in undisturbed, drained and restored blanket peat

    NASA Astrophysics Data System (ADS)

    Holden, J.; Wallage, Z. E.; Lane, S. N.; McDonald, A. T.

    2011-05-01

    SummaryPeatland water table depth is an important control on runoff production, plant growth and carbon cycling. Many peatlands have been drained but are now subject to activities that might lead to their restoration including the damming of artificial drains. This paper investigates water table dynamics on intact, drained and restored peatland slopes in a blanket peat in northern England using transects of automated water table recorders. Long-term (18 month), seasonal and short-term (storm event) records are explored. The restored site had drains blocked 6 years prior to monitoring commencing. The spatially-weighted mean water table depths over an 18 month period were -5.8 cm, -8.9 cm and -11.5 cm at the intact, restored and drained sites respectively. Most components of water table behaviour at the restored site, including depth exceedance probability curves, seasonality of water table variability, and water table responses to individual rainfall events were intermediate between that of the drained and intact sites. Responses also depended on location with respect to the drains. The results show that restoration of drained blanket peat is difficult and the water table dynamics may not function in the same way as those in undisturbed blanket peat even many years after management intervention. Further measurement of hydrological processes and water table responses to peatland restoration are required to inform land managers of the hydrological success of those projects.

  11. Nurses’ knowledge of care of chest drain: A survey in a Nigerian semiurban university hospital

    PubMed Central

    Kesieme, Emeka Blessius; Essu, Ifeanyichukwu Stanley; Arekhandia, Bruno Jeneru; Welcker, Katrin; Prisadov, Georgi

    2016-01-01

    Background/Objective: Inefficient nursing care of chest drains may associated with unacceptable and sometimes life-threatening complications. This report aims to ascertain the level of knowledge of care of chest drains among nurses working in wards in a teaching hospital in Nigeria. Methods: A cross-sectional study among nurses at teaching hospital using pretested self-administered questionnaires. Results: The majority were respondents aged between 31 and 40 years (45.4%) and those who have nursing experience between 6 and 10 years. Only 37 respondents (26.2%) had a good knowledge of nursing care of chest drains. Knowledge was relatively higher among nurses who cared for chest drains daily, nurses who have a work experience of <10 years, low-rank nurses and those working in the female medical ward; however, the relationship cant (P > 0.05). Performance was poor on the questions on position of drainage system were not statistically significant with relationship to waist level while mobilizing the patient, application of suction to chest drains, daily changing of dressing over chest drain insertion site, milking of tubes and drainage system with dependent loop. Conclusion: The knowledge of care of chest drains among nurses is poor, especially in the key post procedural care. There is an urgent need to train them so as to improve the nursing care of patients managed with chest drains. PMID:26857934

  12. Growth and Seed Production of Sawtooth Oak (Quercus acutissima) 22 Years After Direct Seeding

    Treesearch

    J.C.G. Goelz; D.W. Carlson

    1997-01-01

    Sawtooth oak (Quercus acutissima Carruth.) was direct seeded at two locations, one with a poorly drained clay soil and the other with a well-drained silty clay loam. For comparison, Nuttall oak (Q. nuttallii Palmer) was direct seeded on the poorly drained clay soil. On the well-drained silty clay loam, sawtooth oak was 18 ft...

  13. Interaction of the Bored Sand and Gravel Drain Pile with the Surrounding Compacted Loam Soil and Foundation Raft Taking into Account Rheological Properties of the Loam Soil and Non-Linear Properties of the Drain Pile

    NASA Astrophysics Data System (ADS)

    Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Anzhelo, G. O.; Buslov, A. S.

    2018-01-01

    The task of the interaction of the sand and gravel drain pile with the surrounding loam soil after its preliminary deep compaction and formation of the composite ground cylinder from the drain pile and surrounding compacted loam soil (cells) is considered in the article. It is seen that the subsidence and carrying capacity of such cell considerably depends on physical and mechanical properties of the compacted drain piles and surrounding loam soil as well as their diameter and intercellular distance. The strain-stress state of the cell is considered not taking into account its component elements, but taking into account linear and elastic-plastic properties of the drain pile and creep flow of the surrounding loam soil. It is stated that depending on these properties the distribution and redistribution of the load on a cell takes place from the foundation raft between the drain pile and surrounding soil. Based on the results of task solving the formulas and charts are given demonstrating the ratio of the load between the drain pile and surrounding loam soil in time.

  14. Si1-yGey or Ge1-zSnz Source/Drain Stressors on Strained Si1-xGex-Channel P-Type Field-Effect Transistors: A Technology Computer-Aided Design Study

    NASA Astrophysics Data System (ADS)

    Eneman, Geert; De Keersgieter, An; Witters, Liesbeth; Mitard, Jerome; Vincent, Benjamin; Hikavyy, Andriy; Loo, Roger; Horiguchi, Naoto; Collaert, Nadine; Thean, Aaron

    2013-04-01

    The interaction between two stress techniques, strain-relaxed buffers (SRBs) and epitaxial source/drain stressors, is studied on short, Si1-xGex- and Ge-channel planar transistors. This work focuses on the longitudinal channel stress generated by these two techniques. Unlike for unstrained silicon-channel transistors, for strained channels on top of a strain-relaxed buffer a source/drain stressor without recess generates similar longitudinal channel stress than source/drain stressors with a deep recess. The least efficient stress transfer is obtained for source/drain stressors with a small recess that removes only the strained channel, not the substrate underneath. These trends are explained by a trade-off between elastic relaxation of the strained-channel during source/drain recess and the increased stress generation of thicker source/drain stressors. For Ge-channel pFETs, GeSn source/drains and Si1-xGex strain-relaxed buffers are efficient stressors for mobility enhancement. The former is more efficient for gate-last schemes than for gate-first, while the stress generated by the SRB is found to be independent of the gate-scheme.

  15. Enhanced performance of amorphous In-Ga-Zn-O thin-film transistors using different metals for source/drain electrodes

    NASA Astrophysics Data System (ADS)

    Pyo, Ju-Young; Cho, Won-Ju

    2017-09-01

    In this paper, we propose an amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) with off-planed source/drain electrodes. We applied different metals for the source/drain electrodes with Ni and Ti to control the work function as high and low. When we measured the configuration of Ni to drain and source to Ti, the a-IGZO TFT showed increased driving current, decreased leakage current, a high on/off current ratio, low subthreshold swing, and high mobility. In addition, we conducted a reliability test with a gate bias stress test at various temperatures. The results of the reliability test showed the Ni drain and Ti drain had an equivalent effective energy barrier height. Thus, we confirmed that the proposed off-planed structure improved the electrical characteristics of the fabricated devices without any degradation of characteristics. Through the a-IGZO TFT with different source/drain electrode metal engineering, we realized high-performance TFTs for next-generation display devices.

  16. Necessity of suction drains in gynecomastia surgery.

    PubMed

    Keskin, Mustafa; Sutcu, Mustafa; Cigsar, Bulent; Karacaoglan, Naci

    2014-05-01

    The aim of gynecomastia surgery is to restore a normal chest contour with minimal signs of breast surgery. The authors examine the rate of complications in gynecomastia surgery when no closed-suction drains are placed. One hundred thirty-eight consecutive male patients who underwent gynecomastia surgery without drains were retrospectively analyzed to determine whether the absence of drains adversely affected patient outcomes. Patients were managed by ultrasonic-assisted liposuction both with and without the pull-through technique. The mean age of the patients was 29 years, and the mean volume of breast tissue aspirated was 350 mL per beast. Pull-through was needed in 23 cases. There was only 1 postoperative hematoma. These results are comparable with previously published data for gynecomastia surgery in which drains were placed, suggesting that the absence of drains does not adversely affect postoperative recovery. Routine closed-suction drainage after gynecomastia surgery is unnecessary, and it may be appropriate to omit drains after gynecomastia surgery.

  17. High voltage MOSFET devices and methods of making the devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Sujit; Matocha, Kevin; Chatty, Kiran

    A SiC MOSFET device having low specific on resistance is described. The device has N+, P-well and JFET regions extended in one direction (Y-direction) and P+ and source contacts extended in an orthogonal direction (X-direction). The polysilicon gate of the device covers the JFET region and is terminated over the P-well region to minimize electric field at the polysilicon gate edge. In use, current flows vertically from the drain contact at the bottom of the structure into the JFET region and then laterally in the X direction through the accumulation region and through the MOSFET channels into the adjacent N+more » region. The current flowing out of the channel then flows along the N+ region in the Y-direction and is collected by the source contacts and the final metal. Methods of making the device are also described.« less

  18. A time-resolved image sensor for tubeless streak cameras

    NASA Astrophysics Data System (ADS)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  19. Characterization of structural and electrical properties of ZnO tetrapods

    NASA Astrophysics Data System (ADS)

    Gu, Yu-Dong; Mai, Wen-Jie; Jiang, Peng

    2011-12-01

    ZnO tetrapods were synthesized by a typical thermal vapor-solid deposition method in a horizontal tube furnace. Structural characterization was carried out by transmission electron microscopy (TEM) and select-area electron diffraction (SAED), which shows the presence of zinc blende nucleus in the center of tetrapods while the four branches taking hexagonal wurtzite structure. The electrical transport property of ZnO tetrapods was investigated through an in-situ nanoprobe system. The three branches of a tetrapod serve as source, drain, and "gate", respectively; while the fourth branch pointing upward works as the force trigger by vertically applying external force downward. The conductivity of each branch of ZnO-tetrapods increases 3-4 times under pressure. In such situation, the electrical current through the branches of ZnO tetrapods can be tuned by external force, and therefore a simple force sensor based on ZnO tetrapods has been demonstrated for the first time.

  20. Planar edge Schottky barrier-tunneling transistors using epitaxial graphene/SiC junctions.

    PubMed

    Kunc, Jan; Hu, Yike; Palmer, James; Guo, Zelei; Hankinson, John; Gamal, Salah H; Berger, Claire; de Heer, Walt A

    2014-09-10

    A purely planar graphene/SiC field effect transistor is presented here. The horizontal current flow over one-dimensional tunneling barrier between planar graphene contact and coplanar two-dimensional SiC channel exhibits superior on/off ratio compared to conventional transistors employing vertical electron transport. Multilayer epitaxial graphene (MEG) grown on SiC(0001̅) was adopted as the transistor source and drain. The channel is formed by the accumulation layer at the interface of semi-insulating SiC and a surface silicate that forms after high vacuum high temperature annealing. Electronic bands between the graphene edge and SiC accumulation layer form a thin Schottky barrier, which is dominated by tunneling at low temperatures. A thermionic emission prevails over tunneling at high temperatures. We show that neglecting tunneling effectively causes the temperature dependence of the Schottky barrier height. The channel can support current densities up to 35 A/m.

  1. Fabrication of Vertical Organic Light-Emitting Transistor Using ZnO Thin Film

    NASA Astrophysics Data System (ADS)

    Yamauchi, Hiroshi; Iizuka, Masaaki; Kudo, Kazuhiro

    2007-04-01

    Organic light-emitting diodes (OLEDs) combined with thin film transistor (TFT) are well suitable elements for low-cost, large-area active matrix displays. On the other hand, zinc oxide (ZnO) is a transparent material and its electrical conductivity is controlled from conductive to insulating by growth conditions. The drain current of ZnO FET is 180 μA. The OLED uses ZnO thin film (Al-doped) for the electron injection layer and is controlled by radio frequency (rf) and direct current (dc) sputtering conditions, such as Al concentration and gas pressure. Al concentration in the ZnO film and deposition rate have strong effects on electron injection. Furthermore, the OLED driven by ZnO FET shows a luminance of 13 cd/m2, a luminance efficiency of 0.7 cd/A, and an on-off ratio of 650.

  2. A reservoir management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allis, R.G.

    1989-06-16

    There are numerous documented cases of extraction of fluids from the ground causing surface subsidence. The cases include groundwater, oil and gas, as well as geothermal fluid withdrawal. A recent comprehensive review of all types of man-induced land subsidence was published by the Geological Survey of America. At the early stages of a geothermal power development project it is standard practice in most countries for an environmental impact report to be required. The possibility of geothermal subsidence has to be addressed, and usually it falls on the geophysicists and/or geologists to make some predictions. The advice given is vital formore » planning the power plant location and the borefield pipe and drain layout. It is not so much the vertical settlement that occurs with subsidence but the accompanying horizontal ground strains that can do the most damage to any man-made structure.« less

  3. High voltage MOSFET devices and methods of making the devices

    DOEpatents

    Banerjee, Sujit; Matocha, Kevin; Chatty, Kiran

    2015-12-15

    A SiC MOSFET device having low specific on resistance is described. The device has N+, P-well and JFET regions extended in one direction (Y-direction) and P+ and source contacts extended in an orthogonal direction (X-direction). The polysilicon gate of the device covers the JFET region and is terminated over the P-well region to minimize electric field at the polysilicon gate edge. In use, current flows vertically from the drain contact at the bottom of the structure into the JFET region and then laterally in the X direction through the accumulation region and through the MOSFET channels into the adjacent N+ region. The current flowing out of the channel then flows along the N+ region in the Y-direction and is collected by the source contacts and the final metal. Methods of making the device are also described.

  4. Prediction of axial limit capacity of stone columns using dimensional analysis

    NASA Astrophysics Data System (ADS)

    Nazaruddin A., T.; Mohamed, Zainab; Mohd Azizul, L.; Hafez M., A.

    2017-08-01

    Stone column is the most favorable method used by engineers in designing work for stabilization of soft ground for road embankment, and foundation for liquid structure. Easy installation and cheaper cost are among the factors that make stone column more preferable than other method. Furthermore, stone column also can acts as vertical drain to increase the rate of consolidation during preloading stage before construction work started. According to previous studied there are several parameters that influence the capacity of stone column. Among of them are angle friction of among the stones, arrangement of column (two pattern arrangement most applied triangular and square), spacing center to center between columns, shear strength of soil, and physical size of column (diameter and length). Dimensional analysis method (Buckingham-Pi Theorem) has used to carry out the new formula for prediction of load capacity stone columns. Experimental data from two previous studies was used for analysis of study.

  5. Concomitant Liposuction Reduces Complications of Vertical Medial Thigh Lift in Massive Weight Loss Patients.

    PubMed

    Schmidt, Manfred; Pollhammer, Michael S; Januszyk, Michael; Duscher, Dominik; Huemer, Georg M

    2016-06-01

    Medial thigh lift procedures in the massive weight loss population have been associated with significant complication rates. Liposuction-assisted medial thighplasty has recently been introduced as a technical advancement to improve outcomes. To date, no study is available directly comparing the traditional approach and this new technique. Here, the authors evaluate outcomes and complications of both techniques in a retrospective cohort study. Outcomes of 59 patients undergoing vertical medial thighplasty at the authors' institution between 2008 and 2014 were assessed retrospectively. Evaluated parameters include age, sex, body mass indices, method of weight loss, comorbidities, and complications (e.g., seroma, infection, wound dehiscence, hematoma, and surgical revision). Appropriate statistical analysis was performed. There were 29 patients in the excision-only group and 30 patients in the liposuction-assisted group (all women; average age, 41.5 years). The overall complication rate was significantly reduced in the liposuction-assisted group (13 percent versus 59 percent; p < 0.001). The incidence of individual complications such as seroma formation (zero patients versus 10 patients; p < 0.001) and wound infection (one patient versus eight patients; p = 0.01) was significantly less in the liposuction-assisted group. In addition, we observed a significantly shorter hospital stay (6.0 days versus 7.8 days), reduced number of follow-up visits (2.0 versus 4.4), and reduced time to drain removal (1.8 days versus 4.1 days; p < 0.001) in the liposuction-assisted group. Liposuction-assisted medial thighplasty led to a significant reduction of complications and faster recovery in the massive weight loss patient population. As a consequence, the excision-only vertical thigh lift has been completely abandoned in the authors' clinical practice. Therapeutic, III.

  6. Changes in urban-related precipitation in the summer over three city clusters in China

    NASA Astrophysics Data System (ADS)

    Zhao, Deming; Wu, Jian

    2017-09-01

    The impacts of urban surface expansion on the summer precipitations over three city clusters [Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD)] in eastern China under different monsoonal circulation backgrounds were explored using the nested fifth-generation Penn State/NCAR Mesoscale Model version 3.7 (MM5 V3.7), including the urban-related thermal and dynamical parameters. Ten-year integrations were performed using satellite image data from 2000 and 2010 to represent the urban surface distributions and expansions in China. Changes in the precipitation revealed obvious subregional characteristics, which could be explained by the influences of the vertical wind velocity and moisture flux. With urban-related warming, vertical wind motion generally intensified over urban surface-expanded areas. Meanwhile, the increase in impervious surface areas induced rapid rainwater runoff into drains, and the Bowen ratio increased over urban areas, which further contributed to changes in the local moisture fluxes in these regions. The intensities of the changes in precipitation were inconsistent over the three city clusters, although the changes in vertical motion and local evaporation were similar, which indicates that the changes in precipitation cannot be solely explained by the changes in the local evaporation-related moisture flux. The changes in precipitation were also influenced by the changes in the East Asian summer monsoon (EASM) circulation and the corresponding moisture flux, which are expressed in marked subregional characteristics. Therefore, the influence of urban-related precipitation over the three city clusters in China, for which changes in moisture flux from both the impacted local evaporation and EASM circulation should be considered, varied based on the precipitation changes of only a single city.

  7. Stochastic analysis of the efficiency of coupled hydraulic-physical barriers to contain solute plumes in highly heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele; Masetti, Marco; Beretta, Giovanni Pietro

    2017-10-01

    The expected long-term efficiency of vertical cutoff walls coupled to pump-and-treat technologies to contain solute plumes in highly heterogeneous aquifers was analyzed. A well-characterized case study in Italy, with a hydrogeological database of 471 results from hydraulic tests performed on the aquifer and the surrounding 2-km-long cement-bentonite (CB) walls, was used to build a conceptual model and assess a representative remediation site adopting coupled technologies. In the studied area, the aquifer hydraulic conductivity Ka [m/d] is log-normally distributed with mean E (Ya) = 0.32 , variance σYa2 = 6.36 (Ya = lnKa) and spatial correlation well described by an exponential isotropic variogram with integral scale less than 1/12 the domain size. The hardened CB wall's hydraulic conductivity, Kw [m/d], displayed strong scaling effects and a lognormal distribution with mean E (Yw) = - 3.43 and σYw2 = 0.53 (Yw =log10Kw). No spatial correlation of Kw was detected. Using this information, conservative transport was simulated across a CB wall in spatially correlated 1-D random Ya fields within a numerical Monte Carlo framework. Multiple scenarios representing different Kw values were tested. A continuous solute source with known concentration and deterministic drains' discharge rates were assumed. The efficiency of the confining system was measured by the probability of exceedance of concentration over a threshold (C∗) at a control section 10 years after the initial solute release. It was found that the stronger the aquifer heterogeneity, the higher the expected efficiency of the confinement system and the lower the likelihood of aquifer pollution. This behavior can be explained because, for the analyzed aquifer conditions, a lower Ka generates more pronounced drawdown in the water table in the proximity of the drain and consequently a higher advective flux towards the confined area, which counteracts diffusive fluxes across the walls. Thus, a higher σYa2 results in a larger amount of low Ka values in the proximity of the drain, and a higher probability of not exceeding C∗ .

  8. Hot-Electron-Induced Device Degradation during Gate-Induced Drain Leakage Stress

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Soo; Han, Chang-Hoon; Lee, Jun-Ki; Kim, Dong-Soo; Kim, Hyong-Joon; Shin, Joong-Shik; Lee, Hea-Beoum; Choi, Byoung-Deog

    2012-11-01

    We studied the interface state generation and electron trapping by hot electrons under gate-induced drain leakage (GIDL) stress in p-type metal oxide semiconductor field-effect transistors (P-MOSFETs), which are used as the high-voltage core circuit of flash memory devices. When negative voltage was applied to a drain in the off-state, a GIDL current was generated, but when high voltage was applied to the drain, electrons had a high energy. The hot electrons produced the interface state and electron trapping. As a result, the threshold voltage shifted and the off-state leakage current (trap-assisted drain junction leakage current) increased. On the other hand, electron trapping mitigated the energy band bending near the drain and thus suppressed the GIDL current generation.

  9. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, K.R.

    1985-07-29

    A drain valve for use in furnace for the melting of thermoplastic material is disclosed. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace.

  10. Effect of an intervention in storm drains to prevent Aedes aegypti reproduction in Salvador, Brazil.

    PubMed

    Souza, Raquel Lima; Mugabe, Vánio André; Paploski, Igor Adolfo Dexheimer; Rodrigues, Moreno S; Moreira, Patrícia Sousa Dos Santos; Nascimento, Leile Camila Jacob; Roundy, Christopher Michael; Weaver, Scott C; Reis, Mitermayer Galvão; Kitron, Uriel; Ribeiro, Guilherme Sousa

    2017-07-11

    Aedes aegypti, the principal vector for dengue, chikungunya and Zika viruses, is a synanthropic species that uses stagnant water to complete its reproductive cycle. In urban settings, rainfall water draining structures, such as storm drains, may retain water and serve as a larval development site for Aedes spp. reproduction. Herein, we describe the effect of a community-based intervention on preventing standing water accumulation in storm drains and their consequent infestation by adult and immature Ae. aegypti and other mosquitoes. Between April and May of 2016, local residents association of Salvador, Brazil, after being informed of water accumulation and Ae. aegypti infestation in the storm drains in their area, performed an intervention on 52 storm drains. The intervention consisted of placing concrete at the bottom of the storm drains to elevate their base to the level of the outflow tube, avoiding water accumulation, and placement of a metal mesh covering the outflow tube to avoid its clogging with debris. To determine the impact of the intervention, we compared the frequency at which the 52 storm drains contained water, as well as adult and immature mosquitoes using data from two surveys performed before and two surveys performed after the intervention. During the pre-intervention period, water accumulated in 48 (92.3%) of the storm drains, and immature Ae. aegypti were found in 11 (21.2%) and adults in 10 (19.2%). After the intervention, water accumulated in 5 (9.6%) of the storm drains (P < 0.001), none (0.0%) had immatures (P < 0.001), and 3 (5.8%) contained adults (P = 0.039). The total number of Ae. aegypti immatures collected decreased from 109 to 0 (P < 0.001) and adults decreased from 37 to 8 (P = 0.011) after the intervention. Collection of immature and adult non-Aedes mosquitoes (mainly Culex spp.) in the storm drains also decreased after the intervention. This study exemplifies how a simple intervention targeting storm drains can result in a major reduction of water retention, and, consequently, impact Ae. aegypti larval populations. Larger and multi-center evaluations are needed to confirm the potential of citywide structural modifications of storm drains to reduce Aedes spp. infestation level.

  11. Intra-abdominal drain fracture following pancreatic necrosectomy.

    PubMed

    Campbell, W; Wallace, W; Gibson, E; McCallion, K

    2011-06-01

    We describe a rare case of iatrogenic fracture of an intra-abdominal tube drain (Portex Robinson drain, Smiths Medical, Kent, UK) in a 74-year-old man. The fracture occurred at the level of an additionally placed fenestration and was identified on CT scanning prior to retrieval at planned re-laparotomy. This case highlights the potential dangers of modifying pre-formed drains and recommends against this practice.

  12. Effectiveness of Postoperative Wound Drains in One- and Two-Level Cervical Spine Fusions

    PubMed Central

    Poorman, Caroline E.; Bianco, Kristina M.; Boniello, Anthony; Yang, Sun; Gerling, Michael C.

    2014-01-01

    Background Cervical drains have historically been used to avoid postoperative wound and respiratory complications such as excessive edema, hematoma, infection, re-intubation, delayed extubation, or respiratory distress. Recently, some surgeons have ceased using drains because they may prolong hospital stay, operative time, or patient discomfort. The objective of this retrospective case-control series is to investigate the effectiveness of postoperative drains following one- and two-level cervical fusions. Methods A chart review was conducted at a single institution from 2010-2013. Outcome measures included operative time, hospital stay, estimated blood loss and incidence of wound complications (infection, hematoma, edema, and complications with wound healing or evacuation), respiratory complications (delayed extubation, re-intubation, and respiratory treatment), and overall complications (wound complications, respiratory complications, dysphagia, and other complications). Statistical analyses including independent samples t-test, chi-square, analysis of covariance, and linear regression were used to compare patients who received a postoperative drain to those who did not. Results The study population included 39 patients who received a postoperative drain and 42 patients who did not. There were no differences in demographics between the two groups. Patients with drains showed increased operative time (100.1 vs 69.3 min, p < 0.001), hospital stay (38.9 vs. 31.7 hrs, p = 0.021), and blood loss (62.7 vs 29.1 mL, p < 0.001) compared to patients without drains. The frequency of wound complications, respiratory complications, and overall complications did not vary significantly between groups. Conclusions/Level of Evidence Cervical drains may not be necessary for patients undergoing one- and two-level cervical fusion. While there were no differences in incidence of complications between groups, patients treated with drains had significantly longer operative time and length of hospital stay. Clinical relevance This could contribute to excessive costs for patients treated with drains, despite the lack of compelling evidence of the advantages of this treatment in the literature and in the current study. PMID:25694927

  13. Remote sensing for assessing the zone of benefit where deep drains improve productivity of land affected by shallow saline groundwater.

    PubMed

    Kobryn, H T; Lantzke, R; Bell, R; Admiraal, R

    2015-03-01

    The installation of deep drains is an engineering approach to remediate land salinised by the influence of shallow groundwater. It is a costly treatment and its economic viability is, in part, dependent on the lateral extent to which the drain increases biological productivity by lowering water tables and soil salinity (referred to as the drains' zone of benefit). Such zones may be determined by assessing the biological productivity response of adjacent vegetation over time. We tested a multi-temporal satellite remote sensing method to analyse temporal and spatial changes in vegetation condition surrounding deep drainage sites at five locations in the Western Australian wheatbelt affected by dryland salinity-Morawa, Pithara, Beacon, Narembeen and Dumbleyung. Vegetation condition as a surrogate for biological productivity was assessed by Normalised Difference Vegetation Index (NDVI) during the peak growing season. Analysis was at the site scale within a 1000 m buffer zone from the drains. There was clear evidence of NDVI increasing with elevation, slope and distance from the drain. After accounting for elevation, slope and distance from the drain, there was a significant increase in NDVI across the five locations after installation of deep drains. Changes in NDVI after drainage were broadly consistent with measured changes at each site in groundwater levels after installation of the deep drains. However, this study assessed the lateral extent of benefit for biological productivity and gave a measure of the area of benefit along the entire length of the drain. The method demonstrated the utility of spring NDVI images for rapid and relatively simple assessment of the change in site condition after implementation of drainage, but approaches for further improvement of the procedure were identified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Quantification of non-stormwater flow entries into storm drains using a water balance approach.

    PubMed

    Xu, Zuxin; Yin, Hailong; Li, Huaizheng

    2014-07-15

    To make decisions about correcting illicit or inappropriate connections to storm drains, quantification of non-stormwater entries into storm drains was performed using a water flow balance approach, based on data analysis from 2008 to 2011 in a separate storm drainage system in a Shanghai downtown area of 374 ha. The study revealed severe sewage connections to storm drains; meanwhile, misconnections between surface water and storm drains were found to drive frequent non-stormwater pumping discharges at the outfall, producing a much larger volume of outfall flows in a short period. This paper presented a methodology to estimate quantities of inappropriate sewage flow, groundwater infiltration and river water backflow into the storm drains. It was concluded that inappropriate sewage discharge and groundwater seepage into storm drains were approximately 17,860 m(3)/d (i.e., up to 51% of the total sewage flow in the catchment) and 3,624 m(3)/d, respectively, and surface water backflow was up to an average 28,593 m(3)/d. On the basis of this work, end-of-storm pipe interceptor sewers of 0.25 m(3)/s (i.e., 21,600 m(3)/d) would be effective to tackle the problem of sewage connections and groundwater seepage to storm drains. Under this circumstance, the follow-up non-stormwater outfall pumping events indicate misconnections between surface water and storm drains, featuring pumping discharge equivalent to surface water backflow; hence the misconnections should be repaired. The information provided here is helpful in estimating the magnitude of non-stormwater flow entries into storm drains and designing the necessary pollution control activities, as well as combating city floods in storm events. Copyright © 2014. Published by Elsevier B.V.

  15. Continuous 'Passive' Registration of Non-Point Contaminant Loads Via Agricultural Subsurface Drain Tubes

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.

    2014-12-01

    Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.

  16. 40 CFR 60.692-2 - Standards: Individual drain systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emissions From Petroleum Refinery Wastewater Systems § 60.692-2 Standards: Individual drain systems. (a)(1... section. (e) Refinery wastewater routed through new process drains and a new first common downstream...

  17. 40 CFR 60.692-2 - Standards: Individual drain systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emissions From Petroleum Refinery Wastewater Systems § 60.692-2 Standards: Individual drain systems. (a)(1... section. (e) Refinery wastewater routed through new process drains and a new first common downstream...

  18. 40 CFR 60.692-2 - Standards: Individual drain systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emissions From Petroleum Refinery Wastewater Systems § 60.692-2 Standards: Individual drain systems. (a)(1... section. (e) Refinery wastewater routed through new process drains and a new first common downstream...

  19. 40 CFR 60.692-2 - Standards: Individual drain systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions From Petroleum Refinery Wastewater Systems § 60.692-2 Standards: Individual drain systems. (a)(1... section. (e) Refinery wastewater routed through new process drains and a new first common downstream...

  20. 40 CFR 60.692-2 - Standards: Individual drain systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emissions From Petroleum Refinery Wastewater Systems § 60.692-2 Standards: Individual drain systems. (a)(1... section. (e) Refinery wastewater routed through new process drains and a new first common downstream...

  1. The fabrication of carbon nanotube field-effect transistors with semiconductors as the source and drain contact materials.

    PubMed

    Xiao, Z; Camino, F E

    2009-04-01

    Sb(2)Te(3) and Bi(2)Te(2)Se semiconductor materials were used as the source and drain contact materials in the fabrication of carbon nanotube field-effect transistors (CNTFETs). Ultra-purified single-walled carbon nanotubes (SWCNTs) were ultrasonically dispersed in N-methyl pyrrolidone solvent. Dielectrophoresis was used to deposit and align SWCNTs for fabrication of CNTFETs. The Sb(2)Te(3)- and Bi(2)Te(2)Se-based CNTFETs demonstrate p-type metal-oxide-silicon-like I-V curves with high on/off drain-source current ratio at large drain-source voltages and good saturation of drain-source current with increasing drain-source voltage. The fabrication process developed is novel and has general meaning, and could be used for the fabrication of SWCNT-based integrated devices and systems with semiconductor contact materials.

  2. Cannulation for veno-venous extracorporeal membrane oxygenation

    PubMed Central

    2018-01-01

    Extracorporeal membrane oxygenation (ECMO) is described as a modified, smaller cardiopulmonary bypass circuit. The veno-venous (VV) ECMO circuit drains venous blood, oxygenate the blood, and pump the blood back into the same venous compartment. Draining and reinfusing in the same compartment means there are a risk of recirculation. The draining position within the venous system, ECMO pump flow, return flow position within the venous system and the patients cardiac output (CO) all have an impact on recirculation. Using two single lumen cannulas or one dual lumen cannula, but also the design of the venous cannula, can have an impact on where within the venous system the cannula is draining blood and will affect the efficiency of the ECMO circuit. VV ECMO can be performed with different cannulation strategies. The use of two single lumen cannulas draining in inferior vena cava (IVC) and reinfusing in superior vena cava (SVC) or draining in SVC and reinfusing in IVC, or one dual lumen cannula inserted in right jugular vein is all possible cannulation strategies. Independent of cannulation strategy there will be a risk of recirculation. Efficiency can be reasonable in either strategy if the cannulas are carefully positioned and monitored during the dynamic procedure of pulmonary disease. The disadvantage draining from IVC only occurs when there is a need for converting from VV to veno-arterial (VA) ECMO, reinfusing in the femoral artery. Then draining from SVC is the most efficient strategy, draining low saturated venous blood, and also means low risk of dual circulation. PMID:29732177

  3. Comparison consequences of Jackson-Pratt drain versus chest tube after coronary artery bypass grafting: A randomized controlled clinical trial.

    PubMed

    Mirmohammad-Sadeghi, Mohsen; Pourazari, Pejman; Akbari, Mojtaba

    2017-01-01

    Chest tubes are used in every case of coronary artery bypass grafting (CABG) to evacuate shed blood from around the heart and lungs. This study was designed to assess the effective of Jackson-Pratt drain in compare with conventional chest drains after CABG. This was a randomized controlled trial that conducted on 218 patients in Chamran hospital from February to December 2016. Eligible patients were randomized in a 1:1 ratio. Jackson-Pratt drain group had 109 patients who received a chest tube insertion in the pleural space of the left lung and a Jackson-Pratt drain in mediastinum, and Chest tube drainage group had 109 patients who received double chest tube insertion in the pleural space of the left lung and the mediastinum. The incidence of pleural effusions in Jackson-Pratt drain group and chest tube group were not statistically different. The pain score at 2-h in Drain group was significantly higher than chest tube group ( P = 0.001), but the trend of pain score between groups was not significantly different ( P = 0.097). The frequency of tamponade and atrial fibrillation (AF) were significantly lower in Jackson-Pratt drain group ( P < 0.05). The Jackson-Pratt drain is equally effective for preventing cardiac tamponade, pleural effusions, and pain intensity in patients after CABG when compared with conventional chest tubes, but was significantly superior regarding efficacy to hospital and Intensive Care Unit length of stay and the incidence of AF.

  4. Carbon Dioxide Flux from Rice Paddy Soils in Central China: Effects of Intermittent Flooding and Draining Cycles

    PubMed Central

    Liu, Yi; Wan, Kai-yuan; Tao, Yong; Li, Zhi-guo; Zhang, Guo-shi; Li, Shuang-lai; Chen, Fang

    2013-01-01

    A field experiment was conducted to (i) examine the diurnal and seasonal soil carbon dioxide (CO2) fluxes pattern in rice paddy fields in central China and (ii) assess the role of floodwater in controlling the emissions of CO2 from soil and floodwater in intermittently draining rice paddy soil. The soil CO2 flux rates ranged from −0.45 to 8.62 µmol.m−2.s−1 during the rice-growing season. The net effluxes of CO2 from the paddy soil were lower when the paddy was flooded than when it was drained. The CO2 emissions for the drained conditions showed distinct diurnal variation with a maximum efflux observed in the afternoon. When the paddy was flooded, daytime soil CO2 fluxes reversed with a peak negative efflux just after midday. In draining/flooding alternating periods, a sudden pulse-like event of rapidly increasing CO2 efflux occured in response to re-flooding after draining. Correlation analysis showed a negative relation between soil CO2 flux and temperature under flooded conditions, but a positive relation was found under drained conditions. The results showed that draining and flooding cycles play a vital role in controlling CO2 emissions from paddy soils. PMID:23437170

  5. Drain amylase aids detection of anastomotic leak after esophagectomy.

    PubMed

    Baker, Erin H; Hill, Joshua S; Reames, Mark K; Symanowski, James; Hurley, Susie C; Salo, Jonathan C

    2016-04-01

    Anastomotic leak following esophagectomy is associated with significant morbidity and mortality. As hospital length of stay decreases, the timely diagnosis of leak becomes more important. We evaluated CT esophagram, white blood count (WBC), and drain amylase levels in the early detection of anastomotic leak. The diagnostic performance of CT esophagram, drain amylase >800 IU/L, and WBC >12,000/µL within the first 10 days after surgery in predicting leak at any time after esophagectomy was calculated. Anastomotic leak occurred in 13 patients (13%). CT esophagram performed within 10 days of surgery diagnosed six of these leaks with a sensitivity of 0.54. Elevation in drain amylase level within 10 days of surgery diagnosed anastomotic leak with a sensitivity of 0.38. When the CT esophagram and drain amylase were combined, the sensitivity rose to 0.69 with a specificity of 0.98. WBC elevation had a sensitivity of 0.92, with a specificity of 0.34. Among 30 patients with normal drain amylase and a normal WBC, one developed an anastomotic leak. Drain amylase adds to the sensitivity of CT esophagram in the early detection of anastomotic leak. Selected patients with normal drain amylase levels and normal WBC may be able to safely forgo CT esophagram.

  6. Placement of percutaneous transhepatic biliary stent using a silicone drain with channels

    PubMed Central

    Yoshida, Hiroshi; Mamada, Yasuhiro; Taniai, Nobuhiko; Mineta, Sho; Mizuguchi, Yoshiaki; Kawano, Yoichi; Sasaki, Junpei; Nakamura, Yoshiharu; Aimoto, Takayuki; Tajiri, Takashi

    2009-01-01

    This report describes a method for percutaneous transhepatic biliary stenting with a BLAKE Silicone Drain, and discusses the usefulness of placement of the drain connected to a J-VAC Suction Reservoir for the treatment of stenotic hepaticojejunostomy. Percutaneous transhepatic biliary drainage was performed under ultrasonographic guidance in a patient with stenotic hepaticojejunostomy after hepatectomy for hepatic hilum malignancy. The technique used was as follows. After dilatation of the drainage root, an 11-Fr tube with several side holes was passed through the stenosis of the hepaticojejunostomy. A 10-Fr BLAKE Silicone Drain is flexible, which precludes one-step insertion. One week after insertion of the 11-Fr tube, a 0.035-inch guidewire was inserted into the tube. After removal of the 11-Fr tube, the guidewire was put into the channel of a 10-Fr BLAKE Silicone Drain. The drain was inserted into the jejunal limb through the intrahepatic bile duct and was connected to a J-VAC Suction Reservoir. Low-pressure continued suction was applied. Patients can be discharged after insertion of the 10-Fr BLAKE Silicone Drain connected to the J-VAC Suction Reservoir. Placement of a percutaneous transhepatic biliary stent using a 10-Fr BLAKE Silicone Drain connected to a J-VAC Suction Reservoir is useful for the treatment of stenotic hepaticojejunostomy. PMID:19725159

  7. Thoracic Trauma: Which Chest Tube When and Where?

    PubMed

    Molnar, Tamas F

    2017-02-01

    Clinical suspicion of hemo/pneumothorax: when in doubt, drain the chest. Stable chest trauma with hemo/pneumothorax: drain and wait. Unstable patient with dislocated trachea must be approached with drain in hand and scalpel ready. Massive hemo/pneumothorax may be controlled by drainage alone. The surgeon should not hesitate to open the chest if too much blood drains over a short period. The chest drainage procedure does not end with the last stitch; the second half of the match is still ahead. The drained patient is in need of physiotherapy and proper pain relief with an extended pleural space: control the suction system. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Numerical Simulation of Liquids Draining From a Tank Using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Sakri, Fadhilah Mohd; Sukri Mat Ali, Mohamed; Zaki Shaikh Salim, Sheikh Ahmad; Muhamad, Sallehuddin

    2017-08-01

    Accurate simulation of liquids draining is a challenging task. It involves two phases flow, i.e. liquid and air. In this study draining a liquid from a cylindrical tank is numerically simulated using OpenFOAM. OpenFOAM is an open source CFD package and it becomes increasingly popular among the academician and also industries. Comparisons with theoretical and results from previous published data confirmed that OpenFOAM is able to simulate the liquids draining very well. This is done using the gas-liquid interface solver available in the standard library of OpenFOAM. Additionally, this study was also able to explain the physics flow of the draining tank.

  9. Data on Streamflow and Quality of Water and Bottom Sediment in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1998-2000

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.

    2003-01-01

    This study was initiated to expand upon previous findings that indicated concentrations of dissolved solids, arsenic, boron, mercury, molybdenum, selenium, and uranium were either above geochemical background concentrations or were approaching or exceeding ecological criteria in the lower Humboldt River system. Data were collected from May 1998 to September 2000 to further characterize streamflow and surface-water and bottom-sediment quality in the lower Humboldt River, selected agricultural drains, Upper Humboldt Lake, and Lower Humboldt Drain (ephemeral outflow from Humboldt Sink). During this study, flow in the lower Humboldt River was either at or above average. Flows in Army and Toulon Drains generally were higher than reported in previous investigations. An unnamed agricultural drain contributed a small amount to the flow measured in Army Drain. In general, measured concentrations of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium were higher in water from agricultural drains than in Humboldt River water during this study. Mercury concentrations in water samples collected during the study period typically were below the laboratory reporting level. However, low-level mercury analyses showed that samples collected in August 1999 from Army Drain had higher mercury concentrations than those collected from the river or Toulon Drain or the Lower Humboldt Drain. Ecological criteria and effect concentrations for sodium, chloride, dissolved solids, arsenic, boron, mercury, and molybdenum were exceeded in some water samples collected as part of this study. Although water samples from the agricultural drains typically contained higher concentrations of sodium, chloride, dissolved solids, arsenic, boron, and uranium, greater instantaneous loads of these constituents were carried in the river near Lovelock than in agricultural drains during periods of high flow or non-irrigation. During this study, the high flows in the lower Humboldt River produced the maximum instantaneous loads of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium at all river-sampling sites, except molybdenum near Imlay. Nevada Division of Environmental Protection monitoring reports on mine-dewatering discharge for permitted releases of treated effluent to the surface waters of the Humboldt River and its tributaries were reviewed for reported discharges and trace-element concentrations from June 1998 to September 1999. These data were compared with similar information for the river near Imlay. In all bottom sediments collected for this study, arsenic concentrations exceeded the Canadian Freshwater Interim Sediment-Quality Guideline for the protection of aquatic life and probable-effect level (concentration). Sediments collected near Imlay, Rye Patch Reservoir, Lovelock, and from Toulon Drain and Army Drain were found to contain cadmium and chromium concentrations that exceeded Canadian criteria. Chromium concentrations in sediments collected from these sites also exceeded the consensus-based threshold-effect concentration. The Canadian criterion for sediment copper concentration was exceeded in sediments collected from the Humboldt River near Lovelock and from Toulon, Army, and the unnamed agricultural drains. Mercury in sediments collected near Imlay and from Toulon Drain in August 1999 exceeded the U.S. Department of the Interior sediment probable-effect level. Nickel concentrations in sediments collected during this study were above the consensus-based threshold-effect concentration. All other river and drain sediments had constituent concentrations below protective criteria and toxicity thresholds. In Upper Humboldt Lake, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium concentrations in surface-water samples collected near the mouth of the Humboldt River generally were higher than in samples collected near the mouth of Army Drain. Ecological criteria or effect con

  10. Closed flume inlet efficiency : [summary].

    DOT National Transportation Integrated Search

    2014-04-01

    The storm drain is an inconspicuous but critical : part of the roadway, especially in Florida. Drains : look deceptively simple, but they must capture : water as efficiently as possible. To help assure : the performance of storm drains, the Florida :...

  11. Self-contained all-terrain living apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeser, J.

    1980-10-21

    A living apparatus comprises a first reservoir within the ground surface of circular form and having a quantity of water therein. A building having a roof and a peripheral side wall of circular form is concentrically nested and spaced within said reservoir. A convex hull is peripherally connected and sealed to the bottom of said building wall and immersed within the water and floatingly projected into said reservoir, a substantial portion of said building wall extending above said ground surface. A second reservoir within the ground surface is spaced from and below said first reservoir. A drain outlet is spacedmore » above the bottom of said first reservoir; and a conduit interconnects said outlet and said second reservoir. A valve on said outlet is adapted to variably control the drain of water from said first reservoir to said second reservoir with the building adapted to controllably descend within said first reservoir throughout any desired distance up to the building roof yet, buoyantly immersed within the remaining water in said first reservoir for protectively enclosing the building within said first reservoir against storms , tornados, earthquakes, extreme temperatures or other conditions endangering the intergrity of the building. A power-operated pump is connected to a conduit between said reservoirs for returning water from said second reservoir to said first said reservoir and controllably regulating elevation of the building within said first reservoir. Within a central vertical axis of the building, there is provided an energy core upon the hull. An apertured support column is coaxially mounted upon said core and at its upper end, supports the roof.« less

  12. Observation of incomplete drainage of a branched negative stepped leader system during the initial return stroke, and its implications

    NASA Astrophysics Data System (ADS)

    Petersen, D.; Beasley, W. H.

    2012-12-01

    We present high-speed video, taken at 75,000 frames per second, of an anomalous lightning flash that involved two distinct return strokes from different branches of the same branched negative stepped leader system. During the initial return stroke the leader system was incompletely drained, resulting in the continued development of a large side branch. The upper portions of this side branch exhibited a pulse of luminosity during the initial return stroke, but the luminosity did not extend down the branch. The lower portion of the branch continued to develop downward as a negative stepped leader, but at a much slower velocity. Continued stepping activity was observed in this branch as it continued downward at a significantly reduced velocity, finally attaching to the earth 1.8 milliseconds after the main return stroke. The ensuing return stroke was characterized by a slower vertical velocity and weaker luminous pulse. Based on this observation, we coin the term "orphaned branch" to describe a branch of a leader system that is not drained during a return stroke. While our case involves a branch that eventually connected to the ground and produced a return stroke, we also consider the possibility that such branches may also simply cease to progress and effectively deposit large amounts of space charge near their extremities. Such space charge would have a strong influence on subsequent breakdown activity in their vicinity, such as shielding subsequent descending negative stepped leaders or triggering upward positive leaders from earth's surface.

  13. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and Burrows pond rearing system

    USGS Publications Warehouse

    Moffitt, Christine M.

    2016-01-01

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal efficiency, and measures of velocity using several tools. Computational fluid dynamics was used first to characterize hydraulics in the proposed retrofit that included removal of the traditional Burrows pond dividing wall and establishment of four counter rotating cells with appropriate drains and inlet water jets. Hydraulic residence time was subsequently established in the four full scale test tanks using measures of conductivity of a salt tracer introduced into the systems both with and without fish present. Vertical and horizontal velocities were also measured with acoustic Doppler velocimetry in transects across each of the rearing systems. Finally, we introduced ABS sinking beads that simulated fish solids then followed the kinetics of their removal via the drains to establish relative purge rates. The mixed cell raceway provided higher mean velocities and a more uniform velocity distribution than did the Burrows pond. Vectors revealed well-defined, counter-rotating cells in the mixed cell raceway, and were likely contributing factors in achieving a relatively high particle removal efficiency-88.6% versus 8.0% during the test period. We speculate retrofits of rearing ponds to mixed cell systems will improve both the rearing environments for the fish and solids removal, improving the efficiency and bio-security of fish culture. We recommend further testing in hatchery production trials to evaluate fish physiology and growth.

  14. Statistical variability study of random dopant fluctuation on gate-all-around inversion-mode silicon nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yoon, Jun-Sik; Rim, Taiuk; Kim, Jungsik; Kim, Kihyun; Baek, Chang-Ki; Jeong, Yoon-Ha

    2015-03-01

    Random dopant fluctuation effects of gate-all-around inversion-mode silicon nanowire field-effect transistors (FETs) with different diameters and extension lengths are investigated. The nanowire FETs with smaller diameter and longer extension length reduce average values and variations of subthreshold swing and drain-induced barrier lowering, thus improving short channel immunity. Relative variations of the drain currents increase as the diameter decreases because of decreased current drivability from narrower channel cross-sections. Absolute variations of the drain currents decrease critically as the extension length increases due to decreasing the number of arsenic dopants penetrating into the channel region. To understand variability origins of the drain currents, variations of source/drain series resistance and low-field mobility are investigated. All these two parameters affect the variations of the drain currents concurrently. The nanowire FETs having extension lengths sufficient to prevent dopant penetration into the channel regions and maintaining relatively large cross-sections are suggested to achieve suitable short channel immunity and small variations of the drain currents.

  15. Cleanup Verification Package for the 118-H-6:2, 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils; the 118-H-6:3, 105-H Reactor Fuel Storage Basin and Underlying Soils; The 118-H-6:3 Fuel Storage Basin Deep Zone Side Slope Soils; the 100-H-9, 100-H-10, and 100-H-13 French Drains; the 100-H-11 and 100-H-12 Expansion Box French Drains; and the 100-H-14 and 100-H-31 Surface Contamination Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Appel

    2006-06-29

    This cleanup verification package documents completion of removal actions for the 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils (subsite 118-H-6:2); 105-H Reactor Fuel Storage Basin and Underlying Soils (118-H-6:3); and Fuel Storage Basin Deep Zone Side Slope Soils. This CVP also documents remedial actions for the following seven additional waste sties: French Drain C (100-H-9), French Drain D (100-H-10), Expansion Box French Drain E (100-H-11), Expansion Box French Drain F (100-H-12), French Drain G (100-H-13), Surface Contamination Zone H (100-H-14), and the Polychlorinated Biphenyl Surface Contamination Zone (100-H-31).

  16. Direction of ground-water flow in the surficial aquifer in the vicinity of impact areas G-10 and K-2, Camp Lejeune Marine Corps Base, North Carolina, 2004

    USGS Publications Warehouse

    Harden, Stephen L.; Howe, Stephen S.; Terziotti, Silvia

    2004-01-01

    Marine Corps Base Camp Lejeune is located in Onslow County in the North Carolina Coastal Plain. In support of North Carolina Department of Environment and Natural Resource requirements, Camp Lejeune is developing a site closure plan for two Resource Conservation and Recovery Act (RCRA) regulated open burn/open detonation (OB/OD) facilities located within Impact Area K-2 and Impact Area G-10, respectively. Both Impact Areas are used for training activities involving live artillery fire. The two OB/OD facilities are used to treat RCRA regulated waste munitions. To provide Base officials with information needed for assessing the quality of ground water at these sites, hydrologic data were used to characterize groundwater flow directions and hydraulic gradients in the surficial aquifer underlying the Impact Areas. Water-level data in the unconfined surficial aquifer and potentiometric head data in the underlying Castle Hayne aquifer were compiled from existing and newly drilled wells. Water-table contour maps were developed for Impact Areas K-2 and G-10 to examine the direction of ground-water flow in the surficial aquifer. The primary directions of ground-water flow beneath K-2 are southward and eastward toward discharge zones along the New River and its tributaries. Beneath interior areas of G-10, water in the surficial aquifer flows outward in all directions toward discharge zones along local streams that drain westward to the New River or to streams that drain southward and eastward to the Intracoastal Waterway and the Atlantic Ocean. Long-term water-level data for the period October 1994 through September 2004 at selected Camp Lejeune well sites were used to examine trends in ground-water levels and vertical hydraulic gradients between the surficial and Castle Hayne aquifers. Evaluation of water-level data for three wells in the surficial aquifer indicated no significant trends for this period of record. The apparent water-level declines in two of the three Castle Hayne wells examined are likely the result of local pumping of the Castle Hayne aquifer. Vertical hydraulic gradients determined for two well cluster sites indicate a downward flow of water from the surficial aquifer into the underlying Castle Hayne aquifer.

  17. Regional Big Injun (Price/Pocono) subsurface stratigraphy of West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaldson, A.C.; Zou, Xiangdong

    1992-01-01

    The lower Big Injun (Lower Mississippian) is the oil reservoir of the Granny Creek and Rock Creek fields and consists of multiple sandstones that were deposited in different fluvial-deltaic depositional environments. These multiple sandstones became amalgamated and now appear as a widespread blanket sandstone as a result of ancient cut and fill processes associated with river-channel sedimentation. The regional study of this Price Formation subsurface equivalent considers the continuity and thickness variations of the composite sandstones of the Big Injun mainly within western West Virginia. The major fluvial drainage system apparently flowed southward through Ohio (much of it later erodedmore » by the pre-Pottsville unconformity) during Big Injun time (and earlier) and part of the system was diverted into southwestern West Virginia as vertically stacked channel and river-mouth bar deposits (Rock Creek field). This ancient Ontario River system apparently drained a huge area including the northern craton as well as the orogenic belt. The emerging West Virginia Dome probably sourced the sediment transported by small rivers developing southwestward prograding deltas across Clay County (Granny Creek field). Sedimentation was affected by differential subsidence in the basin. Paleovalley fill was considered for areas with vertically stacked sandstones, but evidence for their origin is not convincing. Oil-reservoir sandstones are classified as dip-trending river channel (D1) and deltaic shoreline (D2) deposits.« less

  18. Nitrogen fluxes through unsaturated zones in five agricultural settings across the USA

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Fisher, L. H.; Bekins, B. A.

    2006-12-01

    The main controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Washington, Nebraska, Indiana, and Maryland in 2004 and 2005. Sites included irrigated and non-irrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 0.5 to 20 m. Chemical analyses of water from lysimeters, shallow wells, and sediment cores indicate that advective transport of nitrate is the dominant process affecting the rate of N transport below the root zone. Vertical profiles of (1) N species, (2) stable N and O isotopes, and (3) oxygen gas in unsaturated zone air and shallow ground water, and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. Relatively stable concentrations at depths greater than a few meters allow calculation of nitrogen fluxes to the saturated zone. These fluxes are equivalent to 14 - 64% of the N application rates. At the same locations, median vertical fluxes of N in ground water are generally lower, ranging from 4 - 37% of N application rates. The lower nitrate fluxes in ground water reflect processes including lateral flow to tile drains and denitrification in the capillary fringe, as well as historical changes in N inputs.

  19. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors.

    PubMed

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-08-18

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing.

  20. Radiation Effects in Advanced Multiple Gate and Silicon-on-Insulator Transistors

    NASA Astrophysics Data System (ADS)

    Simoen, Eddy; Gaillardin, Marc; Paillet, Philippe; Reed, Robert A.; Schrimpf, Ron D.; Alles, Michael L.; El-Mamouni, Farah; Fleetwood, Daniel M.; Griffoni, Alessio; Claeys, Cor

    2013-06-01

    The aim of this review paper is to describe in a comprehensive manner the current understanding of the radiation response of state-of-the-art Silicon-on-Insulator (SOI) and FinFET CMOS technologies. Total Ionizing Dose (TID) response, heavy-ion microdose effects and single-event effects (SEEs) will be discussed. It is shown that a very high TID tolerance can be achieved by narrow-fin SOI FinFET architectures, while bulk FinFETs may exhibit similar TID response to the planar devices. Due to the vertical nature of FinFETs, a specific heavy-ion response can be obtained, whereby the angle of incidence becomes highly important with respect to the vertical sidewall gates. With respect to SEE, the buried oxide in the SOI FinFETs suppresses the diffusion tails from the charge collection in the substrate compared to the planar bulk FinFET devices. Channel lengths and fin widths are now comparable to, or smaller than the dimensions of the region affected by the single ionizing ions or lasers used in testing. This gives rise to a high degree of sensitivity to individual device parameters and source-drain shunting during ion-beam or laser-beam SEE testing. Simulations are used to illuminate the mechanisms observed in radiation testing and the progress and needs for the numerical modeling/simulation of the radiation response of advanced SOI and FinFET transistors are highlighted.

  1. Randomised clinical trial of chest drainage systems.

    PubMed Central

    Graham, A N; Cosgrove, A P; Gibbons, J R; McGuigan, J A

    1992-01-01

    BACKGROUND: Problems in the management of thoracic trauma have stimulated the search for an alternative to underwater seals for drainage of the pleural cavity. A chest drainage bag incorporating a one way flutter valve has been compared with underwater seal drains in a randomised clinical trial. METHODS: During June-December 1989 119 patients undergoing elective thoracotomy were randomised to receive postoperative chest drainage by drainage bags (56 patients, 87 drains) or by underwater seal drains (63 patients, 98 drains). Daily drainage volumes, the requirement for pleural suction, mobility, and complications were recorded prospectively. RESULTS: There was no significant difference between the two groups in the mean volume drained, the requirements for pleural suction, or the occurrence of complications. Patients with drainage bags were fully mobile 23 hours (95% confidence interval 0-47 hours) earlier than the others. CONCLUSIONS: When used after elective thoracotomy drainage bags are safe and effective and permit earlier mobility than underwater seal drains. PMID:1496507

  2. p-MOSFET total dose dosimeter

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)

    1994-01-01

    A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.

  3. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2011-04-30

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closedmore » by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation activities. (11) CAS 23-60-01, Mud Trap Drain and Outfall, will be clean closed by removing sediment from the mud trap. As a BMP, the mud trap and outfall pipe will be removed. (12) CAS 23-99-06, Grease Trap, will be clean closed by removing sediment from the grease trap and backfilling the grease trap with grout. (13) CAS 25-60-04, Building 3123 Outfalls, will be clean closed by removing contaminated soil and the sludge-containing outfall pipe.« less

  4. Comparative Evaluation of Immediate Post-Operative Sequelae after Surgical Removal of Impacted Mandibular Third Molar with or without Tube Drain - Split-Mouth Study.

    PubMed

    Kumar, Barun; Bhate, Kalyani; Dolas, R S; Kumar, Sn Santhosh; Waknis, Pushkar

    2016-12-01

    Third molar surgery is one of the most common surgical procedures performed in general dentistry. Post-operative variables such as pain, swelling and trismus are major concerns after impacted mandibular third molar surgery. Use of passive tube drain is supposed to help reduce these immediate post-operative sequelae. The current study was designed to compare the effect of tube drain on immediate post-operative sequelae following impacted mandibular third molar surgery. To compare the post-operative sequelae after surgical removal of impacted mandibular third molar surgery with or without tube drain. Thirty patients with bilateral impacted mandibular third molars were divided into two groups: Test (with tube drain) and control (without tube drain) group. In the test group, a tube drain was inserted through the releasing incision, and kept in place for three days. The control group was left without a tube drain. The post-operative variables like, pain, swelling, and trismus were calculated after 24 hours, 72 hours, 7 days, and 15 days in both the groups and analyzed statistically using chi-square and t-test analysis. The test group showed lesser swelling as compared to control group, with the swelling variable showing statistically significant difference at post-operative day 3 and 7 (p≤ 0.05) in both groups. There were no statistically significant differences in pain and trismus variables in both the groups. The use of tube drain helps to control swelling following impacted mandibular third molar surgery. However, it does not have much effect on pain or trismus.

  5. Abdominal Drainage and Amylase Measurement for Detection of Leakage After Gastrectomy for Gastric Cancer.

    PubMed

    Schots, Judith P M; Luyer, Misha D P; Nieuwenhuijzen, Grard A P

    2018-05-07

    To investigate the value of daily measurement of drain amylase for detecting leakage in gastric cancer surgery. This was a retrospective analysis including all patients who underwent a gastrectomy for gastric cancer. From January 2013 until December 2015, an intra-abdominal drain was routinely placed. Drain amylase was measured daily. Receiver operator characteristic curves were created to assess the ability of amylase to predict leakage. Sensitivity, specificity, and negative and positive predictive value of amylase in drain fluid were determined. Leakage of the gastrojejunostomy or esophagojejunostomy, enteroenterostomy, duodenal stump, or pancreas was diagnosed by CT scan, endoscopy, or during re-operation. From January 2016 until April 2017, no drain was inserted. Surgical outcome and postoperative complications were compared between both groups. Median drain amylase concentrations were higher for each postoperative day in patients with leakage. The optimal cutoff value was 1000 IU/L (sensitivity 77.8%, specificity 98.2%, negative predictive value 96.6%). Sixty-seven consecutive procedures were performed with a drain and 40 procedures without. No differences in group characteristics were observed except for gender. Fourteen patients (13.1%) had a leakage. The incidence and severity of leakage were not different between the patients with and without a drain. There was no significant difference in time to diagnosis (1 vs. 0 days; p 0.34), mortality rate (7.5 vs. 2.5%; p 0.41), and median length of hospital stay (9 days in both groups; p 0.46). Daily amylase measurement in drain fluid does not influence the early recognition and management of leakage in gastric cancer surgery.

  6. Current practice patterns of drain usage amongst UK and Irish surgeons performing bilateral breast reductions: Evidence down the drain.

    PubMed

    Sugrue, Conor M; McInerney, Niall; Joyce, Cormac W; Jones, Deidre; Hussey, Alan J; Kelly, Jack L; Kerin, Michael J; Regan, Padraic J

    2015-01-01

    Bilateral breast reduction (BBR) is one of the most frequently performed female breast operations. Despite no evidence supporting efficacy of drain usage in BBRs, postoperative insertion is common. Recent high quality evidence demonstrating potential harm from drain use has subsequently challenged this traditional practice. The aim of this study is to assess the current practice patterns of drains usage by Plastic & Reconstructive and Breast Surgeons in UK and Ireland performing BBRs. An 18 question survey was created evaluating various aspects of BBR practice. UK and Irish Plastic & Reconstructive and Breast Surgeons were invited to participate by an email containing a link to a web-based survey. Statistical analysis was performed with student t-test and chi-square test. Two hundred and eleven responding surgeons were analysed, including 80.1% (171/211) Plastic Surgeons and 18.9% (40/211) Breast Surgeons. Of the responding surgeons, 71.6% (151/211) routinely inserted postoperative drains, for a mean of 1.32 days. Drains were used significantly less by surgeons performing ≥20 BBRs (p = 0.02). With the majority of BBRs performed as an inpatient procedure, there was a trend towards less drain usage in surgeons performing this procedure as an outpatient; however, this was not statistically significant (p = 0.07). Even with the high level of evidence demonstrating the safety of BBR without drains, they are still routinely utilised. In an era of evidence- based medicine, surgeons performing breast reductions must adopt the results from scientific research into their clinical practice.

  7. Multiple variations of the renal and testicular vessels: possible embryological basis and clinical importance.

    PubMed

    Mazengenya, Pedzisai

    2016-08-01

    During routine dissection of the abdominal cavity of a 55-year-old African male cadaver, multiple anomalies including renal and testicular vessels were encountered. The right kidney was supplied by three right hilar renal arteries arising from the abdominal aorta at different vertebral levels whereas only one left renal artery supplied the left kidney. On the right three renal veins drained the kidney into the inferior vena cava. In contrast, the left kidney was drained by a single renal vein which received a large primary posterior tributary. The primary posterior tributary had three tributaries from the posterior lumbar region. The right testis had two sources of arterial supply; one from the subcostal artery and another from the abdominal aorta. The left testis was supplied normally by a single testicular artery. The right testis was drained by four testicular veins as follows: one drained into the subcostal vein, the other two drained separately for a longer course and joined shortly before draining into the right main renal vein, the fourth one drained into the anterior aspect of the inferior vena cava at the level of the second lumbar vertebra. On the left, the testicle was drained by two testicular veins which travelled separately from the deep inguinal ring and joined shortly before they drain into the left renal vein. This variation may represent an immature form of complicated development of kidneys and testes. Additionally, emphasis must be put on preoperative vascular examination to avoid surgical complications from variant vessels in this region.

  8. Comparison consequences of Jackson-Pratt drain versus chest tube after coronary artery bypass grafting: A randomized controlled clinical trial

    PubMed Central

    Mirmohammad-Sadeghi, Mohsen; Pourazari, Pejman; Akbari, Mojtaba

    2017-01-01

    Background: Chest tubes are used in every case of coronary artery bypass grafting (CABG) to evacuate shed blood from around the heart and lungs. This study was designed to assess the effective of Jackson-Pratt drain in compare with conventional chest drains after CABG. Materials and Methods: This was a randomized controlled trial that conducted on 218 patients in Chamran hospital from February to December 2016. Eligible patients were randomized in a 1:1 ratio. Jackson-Pratt drain group had 109 patients who received a chest tube insertion in the pleural space of the left lung and a Jackson-Pratt drain in mediastinum, and Chest tube drainage group had 109 patients who received double chest tube insertion in the pleural space of the left lung and the mediastinum. Results: The incidence of pleural effusions in Jackson-Pratt drain group and chest tube group were not statistically different. The pain score at 2-h in Drain group was significantly higher than chest tube group (P = 0.001), but the trend of pain score between groups was not significantly different (P = 0.097). The frequency of tamponade and atrial fibrillation (AF) were significantly lower in Jackson-Pratt drain group (P < 0.05). Conclusion: The Jackson-Pratt drain is equally effective for preventing cardiac tamponade, pleural effusions, and pain intensity in patients after CABG when compared with conventional chest tubes, but was significantly superior regarding efficacy to hospital and Intensive Care Unit length of stay and the incidence of AF. PMID:29387121

  9. Impact of Drain Insertion After Perforated Peptic Ulcer Repair in a Japanese Nationwide Database Analysis.

    PubMed

    Okumura, K; Hida, K; Kunisawa, S; Nishigori, T; Hosogi, H; Sakai, Y; Imanaka, Y

    2018-03-01

    Many perforated peptic ulcers (PPUs) require surgical repair due to diffuse peritonitis. However, few studies have examined the clinical effects of postoperative drainage after PPU repair. This study aimed to investigate the drain insertion rates in patients who underwent PPU repair in Japan, and to clarify the impact of drain insertion on the postoperative clinical course. A retrospective nationwide cohort study was performed using administrative claims data of patients who had undergone PPU repair between 2010 and 2016. These patients were divided into two groups based on whether or not they had received a postoperative abdominal drain. Using propensity score matching, we compared the incidences of postoperative interventions for abdominal complications between both groups. A total of 4869 patients from 324 hospitals were analyzed. At the hospital level, drains were placed in all PPU repair patients in 229 (70.7%) hospitals. At the patient level, 4401 patients (90.4%) had drains inserted. The drain group was associated with a higher emergency admission rate, poorer preoperative shock status, longer anesthetic time, and a higher amount of intra-abdominal irrigation. In the propensity score-matched patients, the drain group had a significantly lower incidence of postoperative interventions than the no-drain group (1.9 vs. 5.6%; risk ratio = 0.35; 95% confidence interval 0.16-0.73; P = 0.003). Postoperative drainage was performed in the majority of patients who underwent PPU repair in Japan. Drainage following PPU repair may facilitate patient recovery by reducing the need for postoperative interventions.

  10. Using Smoke Injection in Drains to Identify Potential Preferential Pathways in a Drained Arable Field

    NASA Astrophysics Data System (ADS)

    Nielsen, M. H.; Petersen, C. T.; Hansen, S.

    2014-12-01

    Macropores forming a continuous pathway between the soil surface and subsurface drains favour the transport of many contaminants from agricultural fields to surface waters. The smoke injection method presented by Shipitalo and Gibbs (2000) used for demonstrating and quantifying such pathways has been further developed and used on a drained Danish sandy loam. In order to identify the preferential pathways to drains, smoke was injected in three 1.15 m deep tile drains (total drain length 93 m), and smoke emitting macropores (SEMP) at the soil surface were counted and characterized as producing either strong or weak plumes compared to reference plumes from 3 and 6 mm wide tubes. In the two situations investigated in the present study - an early spring and an autumn situation, smoke only penetrated the soil surface layer via earthworm burrows located in a 1.0 m wide belt directly above the drain lines. However, it is known from previous studies that desiccation fractures in a dry summer situation also can contribute to the smoke pattern. The distance between SEMP measured along the drain lines was on average 0.46 m whereas the average spacing between SEMP with strong plumes was 2.3 m. Ponded water was applied in 6 cm wide rings placed above 52 burrows including 17 reference burrows which did not emit smoke. Thirteen pathways in the soil were examined using dye tracer and profile excavation. SEMP with strong plumes marked the entrance of highly efficient transport pathways conducting surface applied water and dye tracer into the drain. However, no single burrow was traced all the way from the surface into the drain, the dye patterns branched off in a network of other macropores. Water infiltration rates were significantly higher (P < 0.05) in SEMP with strong plumes (average rate: 247 mL min-1 n = 19) compared to SEMP with weak plumes (average rate: 87 mL min-1 n = 16) and no plumes (average rate: 56 mL min-1 n = 17). The results suggest that the smoke injection method is useful for identification of potentially efficient pathways for surface applied contaminants to drains and surface waters, pathways being associated primarily with unevenly distributed SEMP producing strong smoke plumes.

  11. A theoretical approach to study the optical sensitivity of a MESFET

    NASA Astrophysics Data System (ADS)

    Dutta, Sutanu

    2018-05-01

    A theoretical model to study the optical sensitivity of a metal-semiconductor field effect transistor has been proposed for a relatively high drain field. An analytical expression of drain current of the device has been derived for a MESFET under optical illumination considering field dependent mobility of electrons across the channel. The variation of drain current with and without optical illumination has been studied with drain and gate voltages. The optical sensitivity of the drain current has been studied for different biasing conditions and gate lengths. In addition, the shift in threshold voltage of a MESFET under optical illumination is determined and optical sensitivity of the device in terms of its threshold voltage has been studied.

  12. Enhancement of capacitance benefit by drain offset structure in tunnel field-effect transistor circuit speed associated with tunneling probability increase

    NASA Astrophysics Data System (ADS)

    Asai, Hidehiro; Mori, Takahiro; Matsukawa, Takashi; Hattori, Junichi; Endo, Kazuhiko; Fukuda, Koichi

    2018-04-01

    The effect of a drain offset structure on the operation speed of a tunnel field-effect transistor (TFET) ring oscillator is investigated by technology computer-aided design (TCAD) simulation. We demonstrate that the reduction of gate-drain capacitance by the drain offset structure dramatically increases the operation speed of the ring oscillators. Interestingly, we find that this capacitance benefit to operation speed is enhanced by the increase in band-to-band tunneling probability. The “synergistic” speed enhancement by the drain offset structure and the tunneling rate increase will have promising application to the significant improvement of the operation speed of TFET circuits.

  13. Characterization of vertical GaN p-n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Kizilyalli, I. C.; Aktas, O.

    2015-12-01

    There is great interest in wide-bandgap semiconductor devices and most recently in vertical GaN structures for power electronic applications such as power supplies, solar inverters and motor drives. In this paper the temperature-dependent electrical behavior of vertical GaN p-n diodes and vertical junction field-effect transistors fabricated on bulk GaN substrates of low defect density (104 to 106 cm-2) is described. Homoepitaxial MOCVD growth of GaN on its native substrate and the ability to control the doping in the drift layers in GaN have allowed the realization of vertical device architectures with drift layer thicknesses of 6 to 40 μm and net carrier electron concentrations as low as 1 × 1015 cm-3. This parameter range is suitable for applications requiring breakdown voltages of 1.2 kV to 5 kV. Mg, which is used as a p-type dopant in GaN, is a relatively deep acceptor (E A ≈ 0.18 eV) and susceptible to freeze-out at temperatures below 200 K. The loss of holes in p-GaN has a deleterious effect on p-n junction behavior, p-GaN contacts and channel control in junction field-effect transistors at temperatures below 200 K. Impact ionization-based avalanche breakdown (BV > 1200 V) in GaN p-n junctions is characterized between 77 K and 423 K for the first time. At higher temperatures the p-n junction breakdown voltage improves due to increased phonon scattering. A positive temperature coefficient in the breakdown voltage is demonstrated down to 77 K; however, the device breakdown characteristics are not as abrupt at temperatures below 200 K. On the other hand, contact resistance to p-GaN is reduced dramatically above room temperature, improving the overall device performance in GaN p-n diodes in all cases except where the n-type drift region resistance dominates the total forward resistance. In this case, the electron mobility can be deconvolved and is found to decrease with T -3/2, consistent with a phonon scattering model. Also, normally-on vertical junction field-effect transistors with BV = 1000 V and drain currents of 4 A are fabricated and characterized over the same temperature range. It is demonstrated that vertical GaN devices (diodes and transistors) utilizing p-n junctions are suitable for most practical applications including automotive ones (210 K < T < 423 K). While devices are functional at cryogenic temperatures (77 K) there may be some limitations to their performance due the freeze-out of Mg acceptors.

  14. Homogenization of one-dimensional draining through heterogeneous porous media including higher-order approximations

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.

    2018-02-01

    We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.

  15. Effects of pond draining on biodiversity and water quality of farm ponds.

    PubMed

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo. © 2013 Society for Conservation Biology.

  16. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application.

    PubMed

    Chatterjee, Prasenjit; Chow, Hwang-Cherng; Feng, Wu-Shiung

    2016-08-30

    This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET) under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T(-1)), which is very effective as compared to other previously reported works for a single device.

  17. Vertical funding, non-governmental organizations, and health system strengthening: perspectives of public sector health workers in Mozambique.

    PubMed

    Mussa, Abdul H; Pfeiffer, James; Gloyd, Stephen S; Sherr, Kenneth

    2013-06-14

    In the rapid scale-up of human immunodeficiency virus (HIV) care and acquired immunodeficiency syndrome (AIDS) treatment, many donors have chosen to channel their funds to non-governmental organizations and other private partners rather than public sector systems. This approach has reinforced a private sector, vertical approach to addressing the HIV epidemic. As progress on stemming the epidemic has stalled in some areas, there is a growing recognition that overall health system strengthening, including health workforce development, will be essential to meet AIDS treatment goals. Mozambique has experienced an especially dramatic increase in disease-specific support over the last eight years. We explored the perspectives and experiences of key Mozambican public sector health managers who coordinate, implement, and manage the myriad donor-driven projects and agencies. Over a four-month period, we conducted 41 individual qualitative interviews with key Ministry workers at three levels in the Mozambique national health system, using open-ended semi-structured interview guides. We also reviewed planning documents. All respondents emphasized the value and importance of international aid and vertical funding to the health sector and each highlighted program successes that were made possible by recent increased aid flows. However, three serious concerns emerged: 1) difficulties coordinating external resources and challenges to local control over the use of resources channeled to international private organizations; 2) inequalities created within the health system produced by vertical funds channeled to specific services while other sectors remain under-resourced; and 3) the exodus of health workers from the public sector health system provoked by large disparities in salaries and work. The Ministry of Health attempted to coordinate aid by implementing a "sector-wide approach" to bring the partners together in setting priorities, harmonizing planning, and coordinating support. Only 14% of overall health sector funding was channeled through this coordinating process by 2008, however. The vertical approach starved the Ministry of support for its administrative functions. The exodus of health workers from the public sector to international and private organizations emerged as the issue of greatest concern to the managers and health workers interviewed. Few studies have addressed the growing phenomenon of "internal brain drain" in Africa which proved to be of greater concern to Mozambique's health managers.

  18. Mechanisms of surface runoff genesis on a subsurface drained soil affected by surface crusting: A field investigation

    NASA Astrophysics Data System (ADS)

    Augeard, Bénédicte; Kao, Cyril; Chaumont, Cédric; Vauclin, Michel

    Artificial drainage has been subject to widespread criticism because of its impact on water quality and because there is suspicion that it may have detrimental effects on flood genesis. The present work aims at a better understanding of the mechanisms controlling infiltration and surface runoff genesis, particularly in soils with artificial drainage and affected by surface crusting. A field experiment was conducted during one drainage season (November 2003-March 2004) in the Brie region (80 km east of Paris, France) on a subsurface drained silty soil. Water table elevation and surface runoff were monitored above the drain and at midpoint between drains. Soil water pressure head was measured at various depths and locations between the midpoint and the drain. Soil surface characteristics (microtopography and degree of structural and sedimentary crust development) were recorded regularly on the experimental site and on other plots of various drainage intensities. The results show that the first surface runoff events were induced by high water table. However, runoff was higher at midpoint between the drains because water table reached the soil surface at that point, thus considerably reducing infiltration capacity compared to that above the drain. Comparing different plots, the area with older drainage installation (1948) yielded the most surface runoff. Wider drain spacing, smaller drain depth and possible plugging may have led to a greater area of saturated soil between drains. During the winter period, the impact of raindrops induced the formation of a structural crust on the soil surface. Furthermore, the development of the sedimentary crust, which was favored by water actually flowing on the soil surface during the high water table periods could be correlated with surface runoff volume. The formation of this crust had a significant impact on runoff occurrence at the end of the winter. Therefore, poorly drained fields presented more favorable conditions for both Horton type runoff and saturation excess runoff. Drainage effectively reduces surface runoff occurrences not only by lowering the water table in winter but also by limiting soil surface sealing.

  19. Experimental utilization of tire shreds to enhance highway drainage.

    DOT National Transportation Integrated Search

    2001-03-01

    This project investigates the practical benefits of using shredded tires as a free draining material : in a subsurface French drain to enhance drainage along a section of highway. French drains are : below-grade structures designed to re-direct groun...

  20. Generation of airborne listeria from floor drain

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes can colonize in floor drains in poultry processing plants and further throughout processing facilities, remaining present even after cleaning and disinfection of the plant. Therefore, during wash down, workers exercise caution to prevent escape and transfer of drain microflor...

  1. Efficacy of tranexamic acid plus drain-clamping to reduce blood loss in total knee arthroplasty: A meta-analysis.

    PubMed

    Zhang, Yan; Zhang, Jun-Wei; Wang, Bao-Hua

    2017-06-01

    Perioperative blood loss is still an unsolved problem in total knee arthroplasty (TKA). The efficacy of the preoperative use of tranexamic acid (TXA) plus drain-clamping to reduce blood loss in TKA has been debated. This meta-analysis aimed to illustrate the efficacy of TXA plus drain-clamping to reduce blood loss in patients who underwent a TKA. In February 2017, a systematic computer-based search was conducted in PubMed, EMBASE, Web of Science, the Cochrane Database of Systematic Reviews, and Google Scholar. Data from patients prepared for TKA in studies that compared TXA plus drain-clamping versus TXA alone, drain-clamping alone, or controls were retrieved. The primary endpoint was the need for transfusion. The secondary outcomes were total blood loss, blood loss in drainage, the decrease in hemoglobin, and the occurrence of deep venous thrombosis. After testing for publication bias and heterogeneity between studies, data were aggregated for random-effects models when necessary. Ultimately, 5 clinical studies with 618 patients (TXA plus drain-clamping group = 249, control group = 130, TXA-alone group = 60, and drain-clamping group = 179) were included. TXA plus drain-clamping could decrease the need for transfusion, total blood loss, blood loss in drainage, and the decrease in hemoglobin than could the control group, the TXA-alone group, and the drain-clamping group (P < .05). There was no significant difference between the occurrence of deep venous thrombosis between the included groups (P > .05). TXA plus drain-clamping can achieve the maximum effects of hemostasis in patients prepared for primary TKA. Because the number and the quality of the included studies were limited, more high-quality randomized controlled trials are needed to identify the optimal dose of TXA and the clamping hours in patients prepared for TKA.

  2. Nitrate and phosphorus transport through subsurface drains under free and controlled drainage.

    PubMed

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-05-28

    Controlled drainage (CD) is a structural conservation practice in which the drainage outlet is managed in order to reduce drain flow volume and nutrient loads to water bodies. The goal of this study was to evaluate the potential of CD to improve water quality for two different seasons and levels of outlet control, using ten years of data collected from an agricultural drained field in eastern Indiana with two sets of paired plots. The Rank Sum test was used to quantify the impact of CD on cumulative annual drain flow and nitrate-N and phosphorus loads. CD plots had a statistically significant (at 5% level) lower annual drain flow (eastern pair: 39%; western pair: 25%) and nitrate load (eastern pair: 43%; western pair: 26%) compared to free draining (FD) plots, while annual soluble reactive phosphorus (SRP) and total phosphorus (TP) loads were not significantly different. An ANCOVA model was used to evaluate the impact of CD on daily drain flow, nitrate-N, SRP and TP concentrations and loads during the two different periods of control. The average percent reduction of daily drain flow was 68% in the eastern pair and 58% in the western pair during controlled drainage at the higher outlet level (winter) and 64% and 58% at the lower outlet level (summer) in the eastern and western pairs, respectively. Nitrate load reduction was similar to drain flow reduction, while the effect of CD on SRP and TP loads was not significant except for the increase in SRP in one pair. These results from a decade-long field monitoring and two different statistical methods enhance our knowledge about water quality impacts of CD system and support this management practice as a reliable system for reducing nitrate loss through subsurface drains, mainly caused by flow reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Efficacy of tranexamic acid plus drain-clamping to reduce blood loss in total knee arthroplasty

    PubMed Central

    Zhang, Yan; Zhang, Jun-Wei; Wang, Bao-Hua

    2017-01-01

    Abstract Background: Perioperative blood loss is still an unsolved problem in total knee arthroplasty (TKA). The efficacy of the preoperative use of tranexamic acid (TXA) plus drain-clamping to reduce blood loss in TKA has been debated. This meta-analysis aimed to illustrate the efficacy of TXA plus drain-clamping to reduce blood loss in patients who underwent a TKA. Methods: In February 2017, a systematic computer-based search was conducted in PubMed, EMBASE, Web of Science, the Cochrane Database of Systematic Reviews, and Google Scholar. Data from patients prepared for TKA in studies that compared TXA plus drain-clamping versus TXA alone, drain-clamping alone, or controls were retrieved. The primary endpoint was the need for transfusion. The secondary outcomes were total blood loss, blood loss in drainage, the decrease in hemoglobin, and the occurrence of deep venous thrombosis. After testing for publication bias and heterogeneity between studies, data were aggregated for random-effects models when necessary. Results: Ultimately, 5 clinical studies with 618 patients (TXA plus drain-clamping group = 249, control group = 130, TXA-alone group = 60, and drain-clamping group = 179) were included. TXA plus drain-clamping could decrease the need for transfusion, total blood loss, blood loss in drainage, and the decrease in hemoglobin than could the control group, the TXA-alone group, and the drain-clamping group (P < .05). There was no significant difference between the occurrence of deep venous thrombosis between the included groups (P > .05). Conclusions: TXA plus drain-clamping can achieve the maximum effects of hemostasis in patients prepared for primary TKA. Because the number and the quality of the included studies were limited, more high-quality randomized controlled trials are needed to identify the optimal dose of TXA and the clamping hours in patients prepared for TKA. PMID:28658157

  4. Drain placement can safely be omitted for open partial nephrectomy: Results from a prospective randomized trial.

    PubMed

    Kriegmair, Maximilian C; Mandel, Philipp; Krombach, Patrick; Dönmez, Hasan; John, Axel; Häcker, Axel; Michel, Maurice S

    2016-05-01

    To examine the benefit of drain placement during open partial nephrectomy. Overall, 106 patients treated with open partial nephrectomy were enrolled in a prospective randomized trial. Based on the randomization, a drain was placed or omitted. Complications were assessed according to the Clavien classification. Pain level and requirement for analgesics was evaluated according to a customized pattern. There was no significant difference in the two groups regarding age, body mass index, American Society of Anesthesiologists score, tumor size and nephrometry (preoperative aspects and dimensions used for an anatomical classification). In terms of overall and drain-related complications, no advantage of placing a drain could be proven (P = 0.249). Patients with a drain suffered from a significantly higher pain level (P = 0.01) and showed prolonged mobilization (P < 0.001). There was no difference in bowel movements and requirement of additional analgesics (P = 0.347 and 0.11). The results of the study suggest that drain placement during open partial nephrectomy can safely be omitted, even in cases with violation of the collecting system. © 2016 The Japanese Urological Association.

  5. Minimally invasive retrieval of a retained Jackson--Pratt drainage tube using the Sachse urethrotome.

    PubMed

    Fariña-Perez, Luis Angel; Pesqueira-Santiago, Daniel

    2012-05-01

    A retained postoperative drain tube, trapped by one or more of the sutures of the abdominal wall closure, is a rare complication of frustrating consequences and potential legal repercussions. There are few reports of techniques for minimally invasive removal of an anchored postoperative drain tube, which not infrequently has been treated by reopening the wound. A 75 years-old man with a left T2-T3N0M0 renal carcinoma was treated with transperitoneal laparoscopic nephrectomy and a Jackson-Pratt drain was left in place. Drain removal the day after revealed impossible, as if being caught with fascial suture. With the patient under sedation, we introduced a Sachse urethrotome parallel to the drain, and the abdominal fascia was identified, then the polyglycolic stitch anchoring it to the wall could be severed, freeing the drain. Percutaneous extraction with the Sachse urethrotome of an anchored postoperative drain, should be the first option, before trying a forced traction or using more complex options. This technique is for the first time published in the Spanish bibliography, and we think this possibility should be disclosed to abdominal surgeons.

  6. A novel gate and drain engineered charge plasma tunnel field-effect transistor for low sub-threshold swing and ambipolar nature

    NASA Astrophysics Data System (ADS)

    Yadav, Dharmendra Singh; Raad, Bhagwan Ram; Sharma, Dheeraj

    2016-12-01

    In this paper, we focus on the improvement of figures of merit for charge plasma based tunnel field-effect transistor (TFET) in terms of ON-state current, threshold voltage, sub-threshold swing, ambipolar nature, and gate to drain capacitance which provides better channel controlling of the device with improved high frequency response at ultra-low supply voltages. Regarding this, we simultaneously employ work function engineering on the drain and gate electrode of the charge plasma TFET. The use of gate work function engineering modulates the barrier on the source/channel interface leads to improvement in the ON-state current, threshold voltage, and sub-threshold swing. Apart from this, for the first time use of work function engineering on the drain electrode increases the tunneling barrier for the flow of holes on the drain/channel interface, it results into suppression of ambipolar behavior. The lowering of gate to drain capacitance therefore enhanced high frequency parameters. Whereas, the presence of dual work functionality at the gate electrode and over the drain region improves the overall performance of the charge plasma based TFET.

  7. 33 CFR 149.145 - What are the requirements for curbs, gutters, drains, and reservoirs?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION..., drains, and reservoirs? Each pumping platform complex must have enough curbs, gutters, drains, and... ocean according to the port's National Pollution Discharge Elimination System permit. ...

  8. 33 CFR 149.145 - What are the requirements for curbs, gutters, drains, and reservoirs?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION..., drains, and reservoirs? Each pumping platform complex must have enough curbs, gutters, drains, and... ocean according to the port's National Pollution Discharge Elimination System permit. ...

  9. Evaluation of trench and slotted drain maintenance and cleaning : Phase 1 : final report.

    DOT National Transportation Integrated Search

    2017-03-01

    Trench and slotted drains are increasingly being used by ODOT to remove storm water from the roadways. These drains have to be properly cleaned and maintained to prevent vehicles from hydroplaning, eliminate flooding and avoid premature roadway failu...

  10. Comparative Evaluation of Immediate Post-Operative Sequelae after Surgical Removal of Impacted Mandibular Third Molar with or without Tube Drain - Split-Mouth Study

    PubMed Central

    Bhate, Kalyani; Dolas, RS; Kumar, SN Santhosh; Waknis, Pushkar

    2016-01-01

    Introduction Third molar surgery is one of the most common surgical procedures performed in general dentistry. Post-operative variables such as pain, swelling and trismus are major concerns after impacted mandibular third molar surgery. Use of passive tube drain is supposed to help reduce these immediate post-operative sequelae. The current study was designed to compare the effect of tube drain on immediate post-operative sequelae following impacted mandibular third molar surgery. Aim To compare the post-operative sequelae after surgical removal of impacted mandibular third molar surgery with or without tube drain. Materials and Methods Thirty patients with bilateral impacted mandibular third molars were divided into two groups: Test (with tube drain) and control (without tube drain) group. In the test group, a tube drain was inserted through the releasing incision, and kept in place for three days. The control group was left without a tube drain. The post-operative variables like, pain, swelling, and trismus were calculated after 24 hours, 72 hours, 7 days, and 15 days in both the groups and analyzed statistically using chi-square and t-test analysis. Results The test group showed lesser swelling as compared to control group, with the swelling variable showing statistically significant difference at post-operative day 3 and 7 (p≤ 0.05) in both groups. There were no statistically significant differences in pain and trismus variables in both the groups. Conclusion The use of tube drain helps to control swelling following impacted mandibular third molar surgery. However, it does not have much effect on pain or trismus. PMID:28209003

  11. Analysis of immune cells draining from the abdominal cavity as a novel tool to study intestinal transplant immunobiology.

    PubMed

    Meier, D; Cagnola, H; Ramisch, D; Rumbo, C; Chirdo, F; Docena, G; Gondolesi, G E; Rumbo, M

    2010-10-01

    During intestinal transplant (ITx) operation, intestinal lymphatics are not reconstituted. Consequently, trafficking immune cells drain freely into the abdominal cavity. Our aim was to evaluate whether leucocytes migrating from a transplanted intestine could be recovered from the abdominal draining fluid collected by a peritoneal drainage system in the early post-ITx period, and to determine potential applications of the assessment of draining cellular populations. The cell composition of the abdominal draining fluid was analysed during the first 11 post-ITx days. Using flow cytometry, immune cells from blood and draining fluid samples obtained the same day showed an almost complete lymphopenia in peripheral blood, whereas CD3(+) CD4(+) CD8(-) , CD3(+) CD4(-) CD8(+) and human leucocyte antigen D-related (HLA-DR)(+) CD19(+) lymphocytes were the main populations in the draining fluid. Non-complicated recipients evolved from a mixed leucocyte pattern including granulocytes, monocytes and lymphocytes to an exclusively lymphocytic pattern along the first post-ITx week. At days 1-2 post-Itx, analysis by short tandem repeats fingerprinting of CD3(+) CD8(+) sorted T cells from draining fluid indicated that 50% of cells were from graft origin, whereas by day 11 post-ITx this proportion decreased to fewer than 1%. Our results show for the first time that the abdominal drainage fluid contains mainly immune cells trafficking from the implanted intestine, providing the opportunity to sample lymphocytes draining from the grafted organ along the post-ITx period. Therefore, this analysis may provide information useful for understanding ITx immunobiology and eventually could also be of interest for clinical management. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

  12. Analysis of immune cells draining from the abdominal cavity as a novel tool to study intestinal transplant immunobiology

    PubMed Central

    Meier, D; Cagnola, H; Ramisch, D; Rumbo, C; Chirdo, F; Docena, G; Gondolesi, G E; Rumbo, M

    2010-01-01

    During intestinal transplant (ITx) operation, intestinal lymphatics are not reconstituted. Consequently, trafficking immune cells drain freely into the abdominal cavity. Our aim was to evaluate whether leucocytes migrating from a transplanted intestine could be recovered from the abdominal draining fluid collected by a peritoneal drainage system in the early post-ITx period, and to determine potential applications of the assessment of draining cellular populations. The cell composition of the abdominal draining fluid was analysed during the first 11 post-ITx days. Using flow cytometry, immune cells from blood and draining fluid samples obtained the same day showed an almost complete lymphopenia in peripheral blood, whereas CD3+CD4+CD8-, CD3+CD4-CD8+ and human leucocyte antigen D-related (HLA-DR)+CD19+ lymphocytes were the main populations in the draining fluid. Non-complicated recipients evolved from a mixed leucocyte pattern including granulocytes, monocytes and lymphocytes to an exclusively lymphocytic pattern along the first post-ITx week. At days 1–2 post-Itx, analysis by short tandem repeats fingerprinting of CD3+CD8+ sorted T cells from draining fluid indicated that 50% of cells were from graft origin, whereas by day 11 post-ITx this proportion decreased to fewer than 1%. Our results show for the first time that the abdominal drainage fluid contains mainly immune cells trafficking from the implanted intestine, providing the opportunity to sample lymphocytes draining from the grafted organ along the post-ITx period. Therefore, this analysis may provide information useful for understanding ITx immunobiology and eventually could also be of interest for clinical management. PMID:20831713

  13. Concentrations and loads of suspended sediment and nutrients in surface water of the Yakima River basin, Washington, 1999-2000 [electronic resource] : with an analysis of trends in concentrations

    USGS Publications Warehouse

    Ebbert, James C.; Embrey, Sandra S.; Kelley, Janet A.

    2003-01-01

    Spatial and temporal variations in concentrations and loads of suspended sediment and nutrients in surface water of the Yakima River Basin were assessed using data collected during 1999?2000 as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Samples were collected at 34 sites located throughout the Basin in August 1999 using a Lagrangian sampling design, and also were collected weekly and monthly from May 1999 through January 2000 at three of the sites. Nutrient and sediment data collected at various time intervals from 1973 through 2001 by the USGS, Bureau of Reclamation, Washington State Department of Ecology, and Roza-Sunnyside Board of Joint Control were used to assess trends in concentrations. During irrigation season (mid-March to mid-October), concentrations of suspended sediment and nutrients in the Yakima River increase as relatively pristine water from the forested headwaters moves downstream and mixes with discharges from streams, agricultural drains, and wastewater treatment plants. Concentrations of nutrients also depend partly on the proportions of mixing between river water and discharges: in years of ample water supply in headwater reservoirs, more water is released during irrigation season and there is more dilution of nutrients discharged to the river downstream. For example, streamflow from river mile (RM) 103.7 to RM 72 in August 1999 exceeded streamflow in July 1988 by a factor of almost 2.5, but loads of total nitrogen and phosphorus discharged to the reach from streams, drains, and wastewater treatment plants were only 1.2 and 1.1 times larger. In years of ample water supply, canal water, which is diverted from either the Yakima or Naches River, makes up more of the flow in drains and streams carrying agricultural return flows. The canal water dilutes nutrients (especially nitrate) transported to the drains and streams in runoff from fields and in discharges from subsurface field drains and the shallow ground-water system. The average concentration of total nitrogen in drains and streams discharging to the Yakima River from RM 103.7 to RM 72 in August 1999 was 2.63 mg/L, and in July 1988 was 3.16 mg/L; average concentrations of total phosphorus were 0.20 and 0.26 mg/L. After irrigation season, streamflow in agricultural drains decreases because irrigation water is no longer diverted from the Yakima and Naches Rivers. As a result, concentrations of total nitrogen in drains increase because nitrate, which constitutes much of total nitrogen, continues to enter the drains from subsurface drains and shallow ground water. Concentrations of total phosphorus and suspended sediment often decrease, because they are transported to the drains in runoff of irrigation water from fields. In Granger Drain, concentrations of total nitrogen ranged from 2-4 mg/L during irrigation season and increased to about 6 mg/L after irrigation season, and concentrations of total phosphorus, as high as 1 mg/L, decreased to about 0.2 mg/L. In calendar year 1999, Moxee Drain transported an average of 28,000 lb/d (pounds per day) of suspended sediment, 380 lb/d of total nitrogen, and 46 lb/d of total phosphorus to the Yakima River. These loads were about half the average loads transported by Granger Drain during the same period. Average streamflows were similar for the two drains, so the difference in loads was due to differences in constituent concentrations: those in Moxee Drain were about 40-60 percent less than those in Granger Drain. Loads of suspended sediment and total phosphorus in Moxee and Granger Drains were nearly four times higher during irrigation season than during the non-irrigation season because with increased flow during irrigation season, concentrations of suspended sediment and total phosphorus are usually higher. Loads of nitrate in the drains were about the same in both seasons because nitrate concentrations are higher during the non-irrigation season.

  14. Towards evidence-based emergency medicine: best BETs from the Manchester Royal Infirmary. BET 4: does size matter? Chest drains in haemothorax following trauma.

    PubMed

    2013-11-01

    A short-cut review was carried out to establish whether the size of chest drain inserted is important in haemothoraces. Forty-nine papers were found of which four presented the best evidence to answer the clinical question. The author, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of these best papers are shown in table 4. The clinical bottom line is that while the available evidence suggests that small bore drains may be as effective as large bore drains in resolving traumatic haemothoraces without additional complications, there is insufficient evidence currently available to recommend a change to standard practice (ie, large bore drains).

  15. Effects of drain bias on the statistical variation of double-gate tunnel field-effect transistors

    NASA Astrophysics Data System (ADS)

    Choi, Woo Young

    2017-04-01

    The effects of drain bias on the statistical variation of double-gate (DG) tunnel field-effect transistors (TFETs) are discussed in comparison with DG metal-oxide-semiconductor FETs (MOSFETs). Statistical variation corresponds to the variation of threshold voltage (V th), subthreshold swing (SS), and drain-induced barrier thinning (DIBT). The unique statistical variation characteristics of DG TFETs and DG MOSFETs with the variation of drain bias are analyzed by using full three-dimensional technology computer-aided design (TCAD) simulation in terms of the three dominant variation sources: line-edge roughness (LER), random dopant fluctuation (RDF) and workfunction variation (WFV). It is observed than DG TFETs suffer from less severe statistical variation as drain voltage increases unlike DG MOSFETs.

  16. 76 FR 76060 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... Port Georgetown. Sheldon Street. At the confluence with +646 Knight Intercounty Drain. Bliss Creek.... Georgetown. At the downstream side of +616 Kenowa Avenue Southwest. Knight Intercounty Drain At the... River/Black Creek of Zeeland Approximately 0.8 mile +584 Charter Township of Drain. upstream of River...

  17. 14 CFR 121.241 - Oil system drains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Oil system drains. 121.241 Section 121.241..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.241 Oil system drains... position, must be provided to allow safe drainage of the entire oil system. ...

  18. 14 CFR 121.241 - Oil system drains.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Oil system drains. 121.241 Section 121.241..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.241 Oil system drains... position, must be provided to allow safe drainage of the entire oil system. ...

  19. 14 CFR 121.241 - Oil system drains.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Oil system drains. 121.241 Section 121.241..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.241 Oil system drains... position, must be provided to allow safe drainage of the entire oil system. ...

  20. Charge-Dissipative Electrical Cables

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R.; Wollack, Edward J.

    2004-01-01

    Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.

  1. Slit-lamp technique of draining interface fluid following Descemet's stripping endothelial keratoplasty.

    PubMed

    Srinivasan, Sathish; Rootman, David S

    2007-09-01

    To describe a new slit-lamp technique for draining interface fluid to manage complete donor disc detachments following Descemet's stripping (automated) endothelial keratoplasty (DSEK/DSAEK). Interventional case series. Five DSEK/DSAEK patients presented on the first postoperative day with complete detachment of the donor lenticule. Slit-lamp biomicroscopy showed interface fluid preventing attachment of the donor disc to the host stromal bed. A new slit-lamp technique is described to drain the interface fluid. This technique involved completely filling the anterior chamber with an air bubble using a 30-gauge needle on a 3 ml syringe. Following this, a 0.12 forceps was used to open the inferior mid-peripheral corneal drainage slit to drain the interface fluid. This technique was successful in draining the interface fluid in all five patients, leading to immediate complete reattachment of the donor disc. Donor disc detachments following DSEK/DSAEK can be successfully managed by this slit-lamp technique of draining the interface fluid.

  2. Pupal productivity & nutrient reserves of Aedes mosquitoes breeding in sewage drains & other habitats of Kolkata, India: Implications for habitat expansion & vector management.

    PubMed

    Banerjee, Soumyajit; Mohan, Sushree; Saha, Nabaneeta; Mohanty, Siba Prasad; Saha, Goutam K; Aditya, Gautam

    2015-12-01

    The quality of breeding sites is reflected through the pupal productivity and the life history traits of Aedes mosquitoes. Using nutrient reserves and pupal productivity of Aedes as indicators, the larval habitats including sewage drains were characterized to highlight the habitat expansion and vector management. The pupae and adults collected from the containers and sewage drains were characterized in terms of biomass and nutrient reserves and the data were subjected to three way factorial ANOVA. Discriminant function analyses were performed to highlight the differences among the habitats for sustenance of Aedes mosquitoes. Survey of larval habitats from the study area revealed significant differences (P<0.05) in the pupal productivity of Aedes among the habitats and months. Despite sewage drains being comparatively less utilized for breeding, the pupae were of higher biomass with corresponding adults having longer wings in contrast to other habitats. The nutrient reserve of the adults emerging from pupae of sewage drains was significantly higher (P<0.05), compared to other habitats, as reflected through the discriminant function analysis. The present results showed that for both Ae. aegypti and Ae. albopictus, sewage drains were equally congenial habitat as were plastic, porcelain and earthen habitats. Availability of Aedes immature in sewage drains poses increased risk of dengue, and thus vector control programme should consider inclusion of sewage drains as breeding habitat of dengue vector mosquitoes.

  3. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, Kenneth R.

    1986-09-02

    A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.

  4. Comparison of natural drainage group and negative drainage groups after total thyroidectomy: prospective randomized controlled study.

    PubMed

    Woo, Seung Hoon; Kim, Jin Pyeong; Park, Jung Je; Shim, Hyun Seok; Lee, Sang Ha; Lee, Ho Joong; Won, Seong Jun; Son, Hee Young; Kim, Rock Bum; Son, Young-Ik

    2013-01-01

    The aim of this study was to compare a negative pressure drain with a natural drain in order to determine whether a negative pressure drainage tube causes an increase in the drainage volume. Sixty-two patients who underwent total thyroidectomy for papillary thyroid carcinoma (PTC) were enrolled in the study between March 2010 and August 2010 at Gyeongsang National University Hospital. The patients were prospectively and randomly assigned to two groups, a negative pressure drainage group (n=32) and natural drainage group (n=30). Every 3 hours, the volume of drainage was checked in the two groups until the tube was removed. The amount of drainage during the first 24 hours postoperatively was 41.68 ± 3.93 mL in the negative drain group and 25.3 ± 2.68 mL in the natural drain group (p<0.001). After 24 additional hours, the negative drain group was 35.19 ± 4.26 mL and natural drain groups 21.53 ± 2.90 mL (p<0.001). However, the drainage at postoperative day 3 was not statistically different between the two groups. In addition, the vocal cord palsy and temporary and permanent hypocalcemia were not different between the two groups. These results indicate that a negative pressure drain may increase the amount of drainage during the first 24-48 hours postoperatively. Therefore, it is not necessary to place a closed suction drain when only a total thyroidectomy is done.

  5. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, Kenneth R.

    1986-01-01

    A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.

  6. Evaluation of the Environmental Fate of Munition Compounds in Soil.

    DTIC Science & Technology

    1979-06-01

    temperature in- duction furnace. Nitrate Water samples were analyzed for nitrate (NO:T) by a Dion -X System Ten ion chromatograph. Nitrite Water samples...moderately well drained Celins , somewhat poorly drained Crosby and Conover, and very poorly drained Kokomo form a drainage sequence with the

  7. The Draining Cylinder

    ERIC Educational Resources Information Center

    James Graham-Eagle

    2009-01-01

    This article explores the time it takes for a liquid to drain from a cylindrical container through a hole in the bottom. Using dimensional analysis and some thought experiments this time is determined and Torricelli's law derived as a consequence. Finally, the effect of pouring liquid into the container as it drains is considered.

  8. Toxic-Waste Disposal by Drain-in-Furnace Technique

    NASA Technical Reports Server (NTRS)

    Compton, L. E.; Stephens, J. B.; Moynihan, P. I.; Houseman, J.; Kalvinskas, J. J.

    1986-01-01

    Compact furnace moved from site to site. Toxic industrial waste destroyed using furnace concept developed for disposal of toxic munitions. Toxic waste drained into furnace where incinerated immediately. In furnace toxic agent rapidly drained and destroyed in small combustion chamber between upper and lower layers of hot ceramic balls

  9. 75 FR 61999 - Airworthiness Directives; The Boeing Company Model 767 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ..., for certain airplanes, reworking the bonding jumper assemblies on the drain tube assemblies of the... inspections of the drain tube assemblies of the slat track housing of the wings to find discrepancies... would also require replacing the drain tube assemblies. For certain airplanes, this proposed AD would...

  10. 14 CFR 27.1021 - Oil system drains.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil system drains. 27.1021 Section 27.1021 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible; and (b...

  11. 14 CFR 27.1021 - Oil system drains.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil system drains. 27.1021 Section 27.1021 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) must be provided to allow safe drainage of the oil system. Each drain must— (a) Be accessible; and (b...

  12. Treatment of phosphorus transported from tile and ditch-drained agricultural fields using sorption materials

    USDA-ARS?s Scientific Manuscript database

    Many flat, poorly drained soils, such as the Delmarva Peninsula, the upper Midwest, and certain areas of Europe such as Denmark and Netherlands, have been extensively drained through the construction of artificial drainage ditches and tiles to allow agriculture and other human activities. In additi...

  13. Theory of Maxwell's fish eye with mutually interacting sources and drains

    NASA Astrophysics Data System (ADS)

    Leonhardt, Ulf; Sahebdivan, Sahar

    2015-11-01

    Maxwell's fish eye is predicted to image with a resolution not limited by the wavelength of light. However, interactions between sources and drains may ruin the subwavelength imaging capabilities of this and similar absolute optical instruments. Nevertheless, as we show in this paper, at resonance frequencies of the device, an array of drains may resolve a single source, or alternatively, a single drain may scan an array of sources, no matter how narrowly spaced they are. It seems that near-field information can be obtained from far-field distances.

  14. High efficiency FET microwave detector design

    NASA Astrophysics Data System (ADS)

    Luglio, Juan; Ishii, Thomas Koryu

    1990-12-01

    The work is based on an assumption that very little microwave power would be consumed at a negatively biased gate of a microwave FET, yet significant detected signals would be obtained at the drain if the bias is given. By analyzing a Taylor-series expansion of the drain-current equation in the vicinity of a fixed gate-bias voltage, the bias voltage is found to maximize the second derivative of the drain current, the gate-bias voltage characteristic curve for the maximum detected drain current under a given fixed drain-bias voltage. Based on these findings, a high-efficiency microwave detector is designed, fabricated, and tested at 8.6 GHz, and it is shown that the audio power over absorbed microwave power ratio of the detector is 135 percent due to the positive gain.

  15. Successful Removal of Malpositioned Chest Drain Within the Liver by Embolization of the Transhepatic Track

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tait, Paul; Waheed, Umeer; Bell, Suzanne, E-mail: drsuzy29@hotmail.co

    2009-07-15

    The insertion of a chest drain catheter for the management of a pneumothorax in an 82-year-old woman resulted in the unusual complication of liver penetration. The position of the drain was assessed by contrast-enhanced computed tomographic scan. Because the patient was hemodynamically stable and no damage to major vessels was seen on computed tomographic scan, the patient was treated in a nonoperative manner. A procedure was performed under controlled conditions using techniques used during transhepatic liver biopsies but with the addition of a balloon catheter. Embolization of the liver track was performed during chest drain removal. The drain was successfullymore » removed without the complication of bleeding in a patient unsuitable for a general anesthetic.« less

  16. How to remove a chest drain.

    PubMed

    Allibone, Elizabeth

    2015-10-07

    RATIONALE AND KEY POINTS: This article aims to help nurses to undertake the removal of a chest drain in a safe, effective and patient-centred manner. This procedure requires two practitioners. The chest drain will have been inserted aseptically to remove air, blood, fluid or pus from the pleural cavity. ▶ Chest drains may be small or wide bore depending on the underlying condition and clinical setting. They may be secured with a mattress suture and/or an anchor suture. ▶ Chest drains are usually removed under medical instructions when the patient's lung has inflated, the underlying condition has resolved, there is no evidence of respiratory compromise or failure, and their anticoagulation status has been assessed as satisfactory. ▶ Chest drains secured with a mattress suture should be removed by two practitioners. One practitioner is required to remove the tube and the other to tie the mattress suture (if present) and secure the site. REFLECTIVE ACTIVITY: Clinical skills articles can help update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. How reading this article will change your practice. 2. How this article could be used to educate patients with chest drains. Subscribers can upload their reflective accounts at: rcni.com/portfolio .

  17. Autotransfusion after total knee arthroplasty. Effects on blood cells, plasma chemistry, and whole blood rheology.

    PubMed

    Dalén, T; Broström, L A; Engström, K G

    1997-08-01

    Postoperative drain blood was collected and reinfused using the ConstaVac system (Stryker, Kalamazoo, MI) in 30 patients after total knee arthroplasty. Of the total 1.1-L volume of postoperative bleeding, 60% was reinfused. No clinical complications were observed. Differences between venous blood and drain blood and between venous blood and drain blood after separate incubation were studied with respect to acidic and inflammatory effects on blood cells, plasma chemistry, and whole blood rheology. In drain blood, leukocyte and platelet counts were reduced (P < .001), probably as a result of consumption in the wound. Acidic incubation occurs in the drain container because of production of lactate from glucose, with a minimum pH at 5 hours of 7.2. The low pH caused slight but significant erythrocyte swelling (P < .01). The complement C3d indicated leukocyte activation, although of modest magnitude. Despite incubation and complement activation, maximum erythrocyte hemolysis after 24 hours of incubation was less than 1%. Drain blood showed a lower resistance against micropore filtration than venous blood (P < .001), mainly because of the reduced number of leukocytes, and remained unchanged with incubation. Although the autotransfusion system can be improved with respect to blood quality, filtered drain blood should be considered acceptable for reinfusion.

  18. Linking selenium sources to ecosystems: San Francisco Bay-Delta Model

    USGS Publications Warehouse

    Presser, Theresa S.; Luoma, Samuel N.

    2004-01-01

    Marine sedimentary rocks of the Coast Ranges contribute selenium to soil, surface water, and ground water in the western San Joaquin Valley, California. Irrigation funnels selenium into a network of subsurface drains and canals. Proposals to build a master drain (i.e., San Luis Drain) to discharge into the San Francisco Bay-Delta Estuary remain as controversial today as they were in the 1950s, when drainage outside the San Joaquin Valley was first considered. An existing 85-mile portion of the San Luis Drain was closed in 1986 after fish mortality and deformities in ducks, grebes and coots were discovered at Kesterson National Wildlife Refuge, the temporary terminus of the drain. A 28-mile portion of the drain now conveys drainage from 100,000 acres into the San Joaquin River and eventually into the Bay-Delta. If the San Luis Drain is extended directly to the Bay-Delta, as is now being proposed as an alternative to sustain agriculture, it could receive drainage from an estimated one-million acres of farmland affected by rising water tables and increasing salinity. In addition to agricultural sources, oil refineries also discharge selenium to the Bay-Delta, although those discharges have declined in recent years. To understand the effects of changing selenium inputs, scientists have developed the Bay-Delta Selenium Model.

  19. Developing an evidence-based nursing protocol on wound drain management for total joint arthroplasty.

    PubMed

    Tsang, Lap Fung

    2015-05-01

    Although various drains have long been used for many years in total joint replacement, there is a paucity of evidence for the benefit of drain applications. Evidence suggests inconsistent practice in the use of drainage systems, whether intermittently applying suction or free of suction in the application of drainage systems, as well as the optimal timing for wound drain removal. It aimed to perform a systematic review to develop an evidence-based nursing protocol to manage wound drainage following total joint arthroplasty. A comprehensive systematic review of available evidence up to 2013. Searches of the EMBASE, Cochrane library, CINAHL, Medline electronic databases and an internet search by Yahoo and Google engine returned 2840 records, of which 11 met the inclusion criteria for this review. A further two papers were obtained through scanning the reference lists of those articles included from the initial literature search. Different clamping times were retrieved from the literature. A protocol was adapted for clinical application according to the summary of the retrieved information. It is suggested that clamping is performed 1 h after the insertion of suction drains post-operatively in the operating theatre. Wound drains should be clamped for 1 h if blood loss is more than 600 ml in 6 h in first 24 h. Wound drains should be clamped for 1 h if blood loss is more than 800 ml in 8 h thereafter. It is suggested that the drainage reservoir bottle should be mark and findings recorded in line with the principle of drain clamping. This means that the amount of drainage is measured and recorded every 6 h in first 24 h and every 8 h thereafter. It is suggested that wound drains should be remove before 48 h after TJR. If blood loss is less than 50 ml in past 6 h or less than 70 ml in past 8 h, the drain should be remove and the wound site should be monitored closely. This paper has guided nurses to develop an evidence-based protocol to improve patient care on wound drain management. Further study is necessary to evaluate the effectiveness of the protocol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effects of Post-fire Succession and Edaphic Conditions on Tree Transpiration in a Boreal Black Spruce Forest

    NASA Astrophysics Data System (ADS)

    Angstmann, J. L.; Ewers, B. E.; Kwon, H.; Bond-Lamberty, B.; Amiro, B.; Gower, S. T.

    2007-12-01

    Boreal forest ecosystems play an integral role in global climate change because of their large land area and ability to store large quantities of carbon. Quantifying and explaining tree water use in both well- and poorly- drained soils and across successional development is critical in understanding the influence of physiological processes on carbon, water, and energy cycling. Four black spruce stands burned in 1850, 1930, 1964, and 1989 were chosen for this research because they had been shown in previous studies to represent critical stages of forest development that capture the successional impacts of both leaf area and species composition change. We hypothesized that tree transpiration will differ between well- and poorly-drained areas and with age due to 1) tree size and age and edaphic-related hydraulic adjustments and 2) tree size will be explained by species specific growth differences from edaphic conditions. Sap flux, leaf water potential (\\PsiL), site specific allometric relationships between sapwood area and leaf area and soil properties such as texture and organic matter depth in each of the four burn ages were utilized to test these hypotheses. Results show that sap flux for Picea mariana at the 1964 burn age differed between well- and poorly-drained soils when scaled per unit xylem area with trees located on poorly-drained soils experiencing higher sap flux rates than trees in well- drained areas (101.79 & 83.02 g cm-2 day-1 respectively). However, when scaled to transpiration on a per tree basis, taking tree size into account, trees on well-drained soils had higher rates than those in poorly- drained locations (366.96 & 216.82 g tree-1 day-1 respectively). The presence of Pinus banksiana and Populus tremuloides in the well-drained areas increased stand transpiration rates for these areas considerably as compared to the poorly-drained areas. Midday \\PsiL for all four burns show no significant difference between well- and poorly-drained (average midday \\PsiL = -1.23 & -1.29 MPa respectively) sites for Picea mariana (t-value = -0.591, df = 6, p-value = 0.576). This indicates that tree size, which is constrained by growth and anaerobic conditions, drives differences in tree transpiration for well- and poorly-drained soils.

  1. Characterizing subsurface water flow to artificial drain lines using fiber-optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Shults, D.; Brooks, E. S.; Heinse, R.; Keller, C. K.

    2017-12-01

    Over the last several years growers have experienced increasingly wet spring conditions in the Palouse Region located in North Idaho, Eastern Washington and Eastern Oregon. As a result more artificial drain lines are being installed so growers can access their fields earlier in the growing season. Additionally there has been increasing adoption of no-tillage practices among growers in order minimize erosion and runoff in the region. There is a growing body of evidence that suggests long-term no-tillage may lead to the establishment of large macropore networks through increased earthworm activity and the preservation of root channels. These macropore networks, in conjunctions with the presence of artificial drains lines, may create connected preferential flow paths from agricultural fields to receiving streams. This connectivity of flow paths from agricultural fields to receiving water bodies may increase the loading of nutrients and agricultural chemicals as some flow paths may largely bypass soil matrix interaction where materials can be sequestered. Our primary objective for this study was to characterize subsurface flow to two artificial drain lines, one under conventional tillage and the other under no-tillage, using distributed temperature sensing (DTS) technology. During the study (November 2016-April 2017) the near surface soil-water temperature was consistently colder than that of deeper depths. Temperature was thus used as a tracer as snow melt and soil-water moved from the near surface to the drain lines during snowmelt and precipitation events. The spatial and temporal variability of the temperature along the artificial drain line under no-tillage practices was found to be greater than that of the conventional tilled field. It is hypothesized that preferential flow paths are responsible for the increased variability of temperature seen in the drain line under long term no-till management. The temperature along the conventional till drain line showed a dampened response to snow melt and precipitation events during the winter indicating matrix flow was the predominate flow mechanism. In addition to temperature traces, water chemistry (electrical conductivity, pH and nitrate) and discharge measurements were collected at the outlet of each drain line as well as at access ports along the drain lines.

  2. Storm drains as larval development and adult resting sites for Aedes aegypti and Aedes albopictus in Salvador, Brazil.

    PubMed

    Paploski, Igor Adolfo Dexheimer; Rodrigues, Moreno S; Mugabe, Vánio André; Kikuti, Mariana; Tavares, Aline S; Reis, Mitermayer Galvão; Kitron, Uriel; Ribeiro, Guilherme Sousa

    2016-07-27

    Dengue (DENV), Chikungunya (CHIKV), Zika (ZIKV), as well as yellow fever (YFV) viruses are transmitted to humans by Aedes spp. females. In Salvador, the largest urban center in north-eastern Brazil, the four DENV types have been circulating, and more recently, CHIKV and ZIKV have also become common. We studied the role of storm drains as Aedes larval development and adult resting sites in four neighbourhoods of Salvador, representing different socioeconomic, infrastructure and topographic conditions. A sample of 122 storm drains in the four study sites were surveyed twice during a 4-month period in 2015; in 49.0 % of the visits, the storm drains contained water. Adults and immatures of Aedes aegypti were captured in two of the four sites, and adults and immatures of Aedes albopictus were captured in one of these two sites. A total of 468 specimens were collected: 148 Ae. aegypti (38 adults and 110 immatures), 79 Ae. albopictus (48 adults and 31 immatures), and 241 non-Aedes (mainly Culex spp.) mosquitoes (42 adults and 199 immatures). The presence of adults or immatures of Ae. aegypti in storm drains was independently associated with the presence of non-Aedes mosquitoes and with rainfall of ≤ 50 mm during the preceding week. We found that in Salvador, one of the epicentres of the 2015 ZIKV outbreak, storm drains often accumulate water and serve as larval development sites and adult resting areas for both Ae. aegypti and Ae. albopictus. Vector control campaigns usually overlook storm drains, as most of the effort to prevent Ae. agypti reproduction is directed towards containers in the domicile environment. While further studies are needed to determine the added contribution of storm drains for the maintenance of Aedes spp. populations, we advocate that vector control programs incorporate actions directed at storm drains, including regular inspections and use of larvicides, and that human and capital resources are mobilized to modify storm drains, so that they do not serves as larval development sites for Aedes (and other) mosquitoes.

  3. Tracking an Unusual Carbapenemase-producing Organism from Drains to Patient Using Whole Genome Sequencing

    PubMed Central

    Ramsburg, Amanda M; Weingarten, Rebecca A; Conlan, Sean P; Dekker, John P; Michelin, Angela V; Odom, Robin T; Bordner, MaryAnn; Zellmer, Caroline J; Henderson, David K; Segre, Julia A; Frank, Karen M; Palmore, Tara N

    2017-01-01

    Abstract Background The NIH Clinical Center conducts patient and environmental surveillance for carbapenemase-producing organisms (CPO). Previous investigation revealed that sink drains can become colonized with CPO. Subsequent surveillance targets included potential aqueous reservoirs, such as floor drains of environmental services (EVS) closets. Methods Premoistened swabs were used to culture sink drains, floor drains, and equipment for CPO. Perirectal swabs were ordered monthly for all patients in non-behavioral health wards. Specimens were plated to CRE- and ESBL-selective media, and colonies identified by MALDI-TOF. The presence of the blaKPC gene was confirmed by PCR. When environmental CPO isolates were detected, EVS procedures and practices were reviewed. Results In June 2016, blaKPC+ Leclercia adecarboxylata was isolated from an EVS closet floor drain, and in August 2016, from drains in four additional closets. In the previous 10 years, Leclercia sp. was isolated just once from a clinical culture. In September 2016, routine surveillance revealed new-onset blaKPC+ L. adecarboxylata colonization in a stem cell transplant recipient. Investigation included 33 cultures collected from sink and floor drains, EVS equipment, and other items. EVS equipment, especially mop buckets, were identified as a likely point source due to their use in patient care areas and closets with contaminated floor drains. Among seven mop buckets sampled, one grew blaKPC+ L. adecarboxylata. Whole genome sequencing demonstrated genetic relatedness of the Leclercia isolates. Floor cleaner was changed to a disinfectant solution. Extensive decontamination of 67 EVS closets and equipment was performed urgently. No further patient or environmental cultures have grown blaKPC+ L. adecarboxylata. Conclusion The recovery of a highly unusual organism, rarely found in clinical specimens, that was also carrying a blaKPC+ plasmid, allowed us to detect environmental spread of this organism in the hospital. The ability to track this organism using genome sequencing provided strong evidence of the mode of spread, leading to effective remediation. No evidence-based methods exist for remediating drain contamination, which can serve as a potential reservoir for transmission. Disclosures All authors: No reported disclosures.

  4. Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field.

    PubMed

    Chrétien, François; Giroux, Isabelle; Thériault, Georges; Gagnon, Patrick; Corriveau, Julie

    2017-05-01

    With their application as seed coatings, the use of neonicotinoid insecticides increased dramatically during the last decade. They are now frequently detected in aquatic ecosystems at concentrations susceptible to harm aquatic invertebrates at individual and population levels. This study intent was to document surface runoff and subsurface tile drain losses of two common neonicotinoids (thiamethoxam and clothianidin) compared to those of companion herbicides (atrazine, glyphosate, S-metolachlor and mesotrione) at the edge of a 22.5-ha field under a corn-soybean rotation. A total of 14 surface runoff and tile drain discharge events were sampled over two years. Events and annual unit mass losses were computed using flow-weighted concentrations and total surface runoff and tile drain flow volumes. Detection frequencies close to 100% in edge-of-field surface runoff and tile drain water samples were observed for thiamethoxam and clothianidin even though only thiamethoxam had been applied in the first year. In 2014, thiamethoxam median concentrations in surface runoff and tile drain samples were respectively 0.46 and 0.16 μg/L, while respective maximum concentrations of 2.20 and 0.44 μg/L were measured in surface runoff and tile drain samples during the first post-seeding storm event. For clothianidin, median concentrations in surface runoff and tile drain samples were 0.02 and 0.01, μg/L, and respective maximum concentrations were 0.07 μg/L and 0.05 μg/L. Surface runoff and tile drain discharge were key transport mechanisms with similar contributions of 53 and 47% of measured mass losses, respectively. Even if thiamethoxam was applied at a relatively low rate and had a low mass exportation value (0.3%), the relative toxicity was one to two orders of magnitude higher than those of the other chemicals applied in 2014 and 2015. Companion herbicides, except glyphosate in tile drains, exceeded their water quality guideline during one sampling campaign after application but rapidly resumed below these limits. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Comparison of Natural Drainage Group and Negative Drainage Groups after Total Thyroidectomy: Prospective Randomized Controlled Study

    PubMed Central

    Woo, Seung Hoon; Kim, Jin Pyeong; Park, Jung Je; Shim, Hyun Seok; Lee, Sang Ha; Lee, Ho Joong; Won, Seong Jun; Son, Hee Young; Kim, Rock Bum

    2013-01-01

    Purpose The aim of this study was to compare a negative pressure drain with a natural drain in order to determine whether a negative pressure drainage tube causes an increase in the drainage volume. Materials and Methods Sixty-two patients who underwent total thyroidectomy for papillary thyroid carcinoma (PTC) were enrolled in the study between March 2010 and August 2010 at Gyeongsang National University Hospital. The patients were prospectively and randomly assigned to two groups, a negative pressure drainage group (n=32) and natural drainage group (n=30). Every 3 hours, the volume of drainage was checked in the two groups until the tube was removed. Results The amount of drainage during the first 24 hours postoperatively was 41.68±3.93 mL in the negative drain group and 25.3±2.68 mL in the natural drain group (p<0.001). After 24 additional hours, the negative drain group was 35.19±4.26 mL and natural drain groups 21.53±2.90 mL (p<0.001). However, the drainage at postoperative day 3 was not statistically different between the two groups. In addition, the vocal cord palsy and temporary and permanent hypocalcemia were not different between the two groups. Conclusion These results indicate that a negative pressure drain may increase the amount of drainage during the first 24-48 hours postoperatively. Therefore, it is not necessary to place a closed suction drain when only a total thyroidectomy is done. PMID:23225820

  6. Use of drains versus no drains after burr-hole evacuation of chronic subdural haematoma: a randomised controlled trial.

    PubMed

    Santarius, Thomas; Kirkpatrick, Peter J; Ganesan, Dharmendra; Chia, Hui Ling; Jalloh, Ibrahim; Smielewski, Peter; Richards, Hugh K; Marcus, Hani; Parker, Richard A; Price, Stephen J; Kirollos, Ramez W; Pickard, John D; Hutchinson, Peter J

    2009-09-26

    Chronic subdural haematoma causes serious morbidity and mortality. It recurs after surgical evacuation in 5-30% of patients. Drains might reduce recurrence but are not used routinely. Our aim was to investigate the effect of drains on recurrence rates and clinical outcomes. We did a randomised controlled trial at one UK centre between November, 2004, and November, 2007. 269 patients aged 18 years and older with a chronic subdural haematoma for burr-hole drainage were assessed for eligibility. 108 were randomly assigned by block randomisation to receive a drain inserted into the subdural space and 107 to no drain after evacuation. The primary endpoint was recurrence needing redrainage. The trial was stopped early because of a significant benefit in reduction of recurrence. Analyses were done on an intention-to-treat basis. This study is registered with the International Standard Randomised Controlled Trial Register (ISRCTN 97314294). Recurrence occurred in ten of 108 (9.3%) people with a drain, and 26 of 107 (24%) without (p=0.003; 95% CI 0.14-0.70). At 6 months mortality was nine of 105 (8.6%) and 19 of 105 (18.1%), respectively (p=0.042; 95% CI 0.1-0.99). Medical and surgical complications were much the same between the study groups. Use of a drain after burr-hole drainage of chronic subdural haematoma is safe and associated with reduced recurrence and mortality at 6 months. Academy of Medical Sciences, Health Foundation, and NIHR Biomedical Research Centre (Neurosciences Theme).

  7. Pancreatic resection without routine intraperitoneal drainage

    PubMed Central

    Fisher, William E; Hodges, Sally E; Silberfein, Eric J; Artinyan, Avo; Ahern, Charlotte H; Jo, Eunji; Brunicardi, F Charles

    2011-01-01

    Background Most surgeons routinely place intraperitoneal drains at the time of pancreatic resection but this practice has recently been challenged. Objective Evaluate the outcome when pancreatic resection is performed without operatively placed intraperitoneal drains. Methods In all, 226 consecutive patients underwent pancreatic resection. In 179 patients drains were routinely placed at the time of surgery and in 47 no drains were placed. Outcomes for these two cohorts were recorded in a prospective database and compared using the χ2- /Fisher's exact test for categorical variables, and Wilcoxon's test for continuous variables. Results Demographic, surgical and pathological details were similar between the two cohorts. Elimination of routine intraperitoneal drainage did not increase the frequency or severity of serious complications. However, when all grades of complications were considered, the number of patients that experienced any complication (65% vs. 47%, P = 0.020) and the median complication severity grade (1 vs. 0, P = 0.027) were increased in the group that had drains placed at the time of surgery. Eliminating intra-operative drains was associated with decreased delayed gastric emptying (24% vs. 9%, P = 0.020) and a trend towards decreased wound infection (12% vs. 2%, P = 0.054). The readmission rate (9% vs. 17% P = 0.007) and number of patients requiring post-operative percutaneous drains (2% vs. 11%, P = 0.001) was higher in patients who did not have operatively placed drains but there was no difference in the re-operation rate (4% vs. 0%, P = 0.210). Conclusion Abandoning the practice of routine intraperitoneal drainage after pancreatic resection may not increase the incidence or severity of severe post-operative complications. PMID:21689234

  8. Numerical simulation of ground-water flow in the central part of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Belitz, Kenneth; Phillips, Steven P.; Gronberg, Jo Ann M.

    1993-01-01

    The occurrence of selenium in agricultural drain water in the central part of the western San Joaquin Valley, California, has focused concern on strategies for managing shallow, saline ground water. To assess alternatives to agricultural drains, a three-dimensional, finite-difference numerical model of the regional groundwater flow system was developed. This report documents the mathematical approach used to model the flow system, the data base on which the model is based, and the methods used to calibrate the model. The 550-square-mile study area includes parts of the Panoche Creek alluvial fan and parts of the Little Panoche Creek and Cantua Creek alluvial fans. The model simulates transient flow in the semiconfined and confined zones above and below the Corcoran Clay Member of the Tulare Formation of Pleistocene age. The model incorporates areally distributed ground-water recharge, areally and vertically distributed pumping, regional-collector drains in the Wesdands Water District (operative from 1980 to 1985), on-farm drains in parts of the Panoche, Broadview, and Firebaugh Water Districts, and bare-soil evaporation (which occurs if the water table is within 7 feet of land surface). The model also incorporates texture-based estimates of hydraulic conductivity, where texture is defined as the fraction of coarse-grained deposits present in a given subsurface interval. The numerical model was developed using hydrologic data from 1972 to 1988. Most of the parameters incorporated into the model were evaluated independently of the model, including system geometry, the distribution of texture, the altitudes of the water table and potentiometric surface of the confined zone in 1972 (initial condition), the hydraulic conductivity of coarse-grained deposits derived from the Coast Ranges, the hydraulic conductivity of coarse-grained deposits derived from the Sierra Nevada, specific storage, recharge, pumping, and parameters needed to incorporate drains and bare-soil evaporation. Four parameters were calibration variables: the hydraulic conductivity of fine-grained deposits in the semiconfined zone, the hydraulic conductivity of the Corcoran Clay Member, specific yield, and the transmissivity of the confined zone. The model was calibrated in two phases. In the first phase, a steady-state model of the ground-water flow system in 1984 was used to constrain the relation between the hydraulic conductivity of fine-grained deposits in the semiconfined zone and the hydraulic conductivity of the Corcoran Clay Member, thus reducing the number of independent variables from four to three. In the second phase of calibration, the change in altitude of the water table from 1972 to 1984, the change in altitude of the potentiometric surface of the confined zone from 1972 to 1984, and the number of model cells subject to bare-soil evaporation from 1972 to 1988 were used to evaluate the remaining three variables. The calibrated model reproduces the average change in water-table altitude (1972-84) to within 0.4 foot (average measured change 11.5 feet) and the average change in confined zone head (1972- 84) to within 19 feet (average measured change 120 feet). The simulated time-series record of the total number of model cells subject to bare-soil evaporation (each cell is 1 mile square) is within the range of the measured data. The measured values are at a minimum in October and a maximum in July. The October values ranged from 103 in 1972 to 132 in 1984 (the drains were closed in 1985) to 151 in 1988. The July values ranged from 144 in 1973 to 198 in 1984, to 204 in 1988. The simulated values ranged from 103 in 1972 to 161 in 1984, to 208 in 1988.

  9. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  10. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  11. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  12. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  13. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The vehicle shall be moved to the test area and the following operations performed: (1) The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the specified test fuel, § 86.513, to...

  14. Dissolved organic carbon loading from the field to watershed scale in tile-drained landscapes

    USDA-ARS?s Scientific Manuscript database

    Dissolved organic carbon (DOC) is an integral part to the functioning of aquatic ecosystems; yet, there is a paucity of data on DOC delivery and management in tile-drained agricultural headwater watersheds. The objective of this study was to quantify the contribution of subsurface tile drains to wat...

  15. Surface Water and Groundwater Nitrogen Dynamics in a Well Drained Riparian Forest within a Poorly Drained Agricultural Landscape

    EPA Science Inventory

    The effectiveness of riparian zones in mitigating nutrients in ground and surface water depends on the climate, management and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well-drained, mixed-deciduous riparian forest to buffer a ri...

  16. 24 CFR 3280.611 - Vents and venting.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... drain piping for each toilet shall be vented by a 11/2 inch minimum diameter vent or rectangular vent of..., connected to the toilet drain by one of the following methods: (i) A 11/2 inch diameter (min.) individual vent pipe or equivalent directly connected to the toilet drain within the distance allowed in § 3280...

  17. Leaf litter decomposition and macroinvertebrate communities in headwater streams draining pine and hardwood catchments

    Treesearch

    Matt R. Whiles; J. Bruce Wallace

    1997-01-01

    Benthic invertebrates, litter decomposition, and litterbag invertebrates were examined in streams draining pine monoculture and undisturbed hardwood catchments at the Coweeta Hydrologic Laboratory in the southern Appalachian Mountains, USA. Bimonthly benthic samples were collected from a stream draining a pine catchment at Coweeta during 1992, and compared to...

  18. Rethinking "Brain Drain" in the Era of Globalisation

    ERIC Educational Resources Information Center

    Rizvi, Fazal

    2005-01-01

    This paper discusses a range of issues concerning the idea of "brain drain" within the context of recent thinking on transnational mobility. It argues that the traditional analyses of brain drain are not sufficient, and that we can usefully approach the topic from a postcolonial perspective concerned with issues of identity, national…

  19. Greenhouse gas fluxes of drained organic and flooded mineral agricultural soils in the United States

    USDA-ARS?s Scientific Manuscript database

    Drained organic soils for agriculture represent less than 1% of the area used for crops in the United States (US). However, emission of carbon dioxide (CO2) from microbial oxidation of drained organic soils offsets almost half of the contributions that carbon sequestration of other cropping systems ...

  20. Effects of land use and surficial geology on flow and water quality of streams in the coal-mining region of southwestern Indiana, October 1979 through September 1980

    USGS Publications Warehouse

    Wilber, William G.; Renn, Danny E.; Crawford, Charles G.

    1985-01-01

    The effect of surficial geology on stream quality was evident for several dissolved constituents in forested and agricultural watersheds. In general, pH and concentrations of alkalinity and calcium were significantly higher in streams draining the Wisconsin glacial province than in streams draining the Illinoian glacial province and unglaciated regions. The higher pH and concentrations of these constituents suggests that there is greater dissolution of carbonate minerals in the Wisconsin glacial province than the other regions. Median concentrations of arsenic, lead, and manganese for streams draining the Wisconsin glacial province were significantly lower than for those constituents in streams draining the Illinoian province and unglaciated region. The median cadmium concentration for streams draining the Wisconsin glacial province was lower than for streams draining the unglaciated region. These differences may have been due to lower solubilities of metal and trace elements at higher pH values in the Wisconsin glacial province than in the Illinoian glacial province and the unglaciated region.

  1. Water movement and isoproturon behaviour in a drained heavy clay soil: 1. Preferential flow processes

    NASA Astrophysics Data System (ADS)

    Haria, A. H.; Johnson, A. C.; Bell, J. P.; Batchelor, C. H.

    1994-12-01

    The processes and mechanisms that control pesticide transport from drained heavy clay catchments are being studied at Wytham Farm (Oxford University) in southern England. In the first field season field-drain water contained high concentrations of pesticide. Soil studies demonstrated that the main mechanism for pesticide translocation was by preferential flow processes, both over the soil surface and through the soil profile via a macropore system that effectively by-passed the soil matrix. This macropore system included worm holes, shrinkage cracks and cracks resulting from ploughing. Rainfall events in early winter rapidly created a layer of saturation in the A horizon perched above a B horizon of very low hydraulic conductivity. Drain flow was initiated when the saturated layer in the A horizon extended into the upper 0.06m of the soil profile; thereafter water moved down slope via horizontal macropores possibly through a band of incorporated straw residues. These horizontal pathways for water movement connected with the fracture system of the mole drains, thus feeding the drains. Overland flow occurred infrequently during the season.

  2. A comparative study of surgical drain placement and the use of kinesiologic tape to reduce postoperative morbidity after third molar surgery.

    PubMed

    Genc, Aysenur; Cakarer, Sirmahan; Yalcin, Basak Keskin; Kilic, Beril Berivan; Isler, Sabri Cemil; Keskin, Cengizhan

    2018-04-19

    Our aim was to compare the effects of the surgical drain and kinesiotape applications on postoperative morbidity after mandibular third molar surgery in a split-mouth study design. A single-centre, split-mouth study was performed in 23 patients who needed surgical removal of bilateral mandibular third molars. Each patient was treated with a drain tube on one side of the mandible and Kinesio tape (KT) on the contralateral side. Swelling was significantly greater in the KT group than in the drain group throughout the study period. The groups did not differ significantly in the amount of trismus at any time point. The Visual Analogue Scale (VAS)-measured pain intensity was significantly lower in the drainage group. Patients with KT had greater postoperative discomfort than those with a drain tube. All patients were generally satisfied with their treatments. Although both treatments were useful, a surgical drain was significantly more effective at reducing swelling and pain intensity than Kinesio tape. The effects of both on trismus were similar.

  3. Two dimensional hydrological simulation in elastic swelling/shrinking peat soils

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Ferraris, S.; Paniconi, C.; Putti, M.; Salandin, P.; Teatini, P.

    2005-12-01

    Peatlands respond to natural hydrologic cycles of precipitation and evapotranspiration with reversible deformations due to variations of water content in both the unsaturated and saturated zone. This phenomenon results in short-term vertical displacements of the soil surface that superimpose to the irreversible long-term subsidence naturally occurring in drained cropped peatlands because of bio-oxidation of the organic matter. The yearly sinking rates due to the irreversible process are usually comparable with the short-term deformation (swelling/shrinkage) and the latter must be evaluated to achieve a thorough understanding of the whole phenomenon. A mathematical model describing swelling/shrinkage dynamics in peat soils under unsaturated conditions has been derived from simple physical considerations, and validated by comparison with laboratory shrinkage data. The two-parameter model relates together the void and moisture ratios of the soil. This approach is implemented in a subsurface flow model describing variably saturated porous media flow (Richards' equation), by means of an appropriate modification of the general storage term. The contribution of the saturated zone to total deformation is considered by using information from the elastic storage coefficient. Simulations have been carried out for a drained cropped peatland south of the Venice Lagoon (Italy), for which a large data set of hydrological and deformation measurements has been collected since the end of 2001. The considered domain is representative of a field section bounded by ditches, subject to rainfall and evapotranspiration. The comparison between simulated and measured quantities demonstrates the capability of the model to accurately reproduce both the hydrological and deformation dynamics of peat, with values of the relevant parameters that are in good agreement with the literature.

  4. Erosion Processes of Streambed in the Channelized River Draining Into the Kushiro Mire, Hokkaido, Northern Japan

    NASA Astrophysics Data System (ADS)

    Mizugaki, S.; Yoshida, K.; Kojima, Y.; Araya, T.

    2004-12-01

    In Japan, the wetlands have shrunk markedly since 1950s due to land-use development from wetland to urban and agricultural land. Rapid sedimentation in the Kushiro Mire, Hokkaido, northern Japan, was caused by extensive land-use development and stream channel rationalization during the 1960s and 1970s. In the Kuchoro River catchment, draining into the Kushiro Mire, the meandering stream was channelized in the mid- and downstream associated with land-use development between 1966 and 1980. Prominent degradation of a streambed due to channelization has occurred over 2 km in the midstream since channelization was finished. Bare slope has occurred due to streambed degradation, and produced fine sediment through the freeze-thaw process in late fall season. Following snowmelt and/or typhoon flood events in spring and summer season could transport fine sediment on the bare slope into the wetland. During a flood event, stream flow eroded the streambed laterally and vertically, resulting in the overhang of riverbank and the dropping down the clods into the stream. These erosion processes has occurred and produced the sediment of 7500 m3/year in average between 2000 and 2003. The upstream portion of a channelized reach is often degraded because of high flow velocities associated with a steeper streambed. On the other hand, the annual sediment production on the streamside bare slopes in the mountain area was measured by erosion pins and estimated as 4500 m3/year. Thus, the reach of streambed degradation is considered a major point-source of suspended sediment in the Kuchoro River catchment for the past 20 years, leading to the recent rapid sedimentation in the marginal area of the wetland.

  5. Characterizing a Brazilian sanitary landfill using geophysical seismic techniques.

    PubMed

    Abreu, A E S; Gandolfo, O C B; Vilar, O M

    2016-07-01

    Two different geophysical techniques, namely crosshole and multichannel analysis of surface waves - MASW, were applied to investigate the mechanical response of Municipal Solid Waste buried under humid, subtropical climate. Direct investigations revealed that the buried waste was composed mainly of soil-like material (51%) and plastics (31%) with moisture content average values of 43% near the surface and 53% after around 11m depth. Unit weight varied between 9kN/m(3) and 15kN/m(3). Seismic investigation of the landfill yielded shear wave velocities (VS) estimated from the crosshole tests ranging from 92 to 214m/s, while compression wave velocities (VP) ranged from 197 to 451m/s. Both velocities were influenced by vertical confining stress and thus tended to increase with depth. VS calculated from MASW tests were lower than the ones calculated from the crosshole tests, probably due to the different frequencies used in the tests. The results of both methods tended to configure a lower bound to the values reported in the technical literature in general, as expected for low compaction waste with small amounts of cover soil. Although VS did not show abrupt changes with depth, VP profile distribution combined with direct investigations results, such as temperature, in-place unit weight and moisture content, suggest that the waste body could be divided into two strata. The lower one is poorly drained and shows higher moisture content, as a consequence of the operational techniques used in the first years, while the upper stratum is probably related to a better drained waste stratum, resulting from the improvement of operational standards and increase in drainage facilities throughout the years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Repeated sedimentation and exposure of glacial Lake Missoula sediments: A lake-level history at Garden Gulch, Montana, USA

    NASA Astrophysics Data System (ADS)

    Smith, Larry N.

    2017-01-01

    Glaciolacustrine sediments record lake transgression, regression, and subaerial modification of the silty lake-bottom of glacial Lake Missoula in the Clark Fork River valley. The sequence preserved at Garden Gulch, MT documents lake-level fluctuations at >65% of its full-pool volume. Twelve sedimentary cycles fine upwards from (1) very fine-grained sandy silt to (2) silt with climbing ripples to (3) rhythmically laminated silt and some clay. The cycles are fine-grained turbidites capped locally by thin layers of angular gravel derived from local bedrock outcrops. The gravels appear to be the toes of mass wasting lobes carried onto the exposed lakebed surface during repeated lake-level lowerings. Periglacial wedges, small rotational faults, involutions, and clastic dikes deform the tops of eleven cycles. The wedges are 10-30 cm wide, penetrate 30-70 cm deep, are spaced <1 m apart, and contain vertically oriented gravel and massive to laminated sediment. Wedges split and taper in plan view. A few thin silt-filled dikes, which branch and taper downwards from wedges, are interpreted as filled frost cracks. One 10-20 cm-wide sand-filled dike protrudes upward from a sand bed; it is interpreted as a liquefaction feature consistent with a filling and draining lake. The deformed cycle tops preserve evidence of periglacial cold, subaerial exposure, seasonal frost heave, and the incipient formation of sorted polygons. The lowest five cycles are thicker and display more periglacial modification at their tops than the upper seven cycles. The Garden Gulch section may represent as few as seven and as many as twelve substantial fillings and partial to complete drainings of glacial Lake Missoula.

  7. A two dimensional analytical modeling of surface potential in triple metal gate (TMG) fully-depleted Recessed-Source/Drain (Re-S/D) SOI MOSFET

    NASA Astrophysics Data System (ADS)

    Priya, Anjali; Mishra, Ram Awadh

    2016-04-01

    In this paper, analytical modeling of surface potential is proposed for new Triple Metal Gate (TMG) fully depleted Recessed-Source/Dain Silicon On Insulator (SOI) Metal Oxide Semiconductor Field Effect Transistor (MOSFET). The metal with the highest work function is arranged near the source region and the lowest one near the drain. Since Recessed-Source/Drain SOI MOSFET has higher drain current as compared to conventional SOI MOSFET due to large source and drain region. The surface potential model developed by 2D Poisson's equation is verified by comparison to the simulation result of 2-dimensional ATLAS simulator. The model is compared with DMG and SMG devices and analysed for different device parameters. The ratio of metal gate length is varied to optimize the result.

  8. The contribution of rice agriculture to methylmercury in surface waters: A review of data from the Sacramento Valley, California

    USGS Publications Warehouse

    Tanner, K. Christy; Windham-Myers, Lisamarie; Fleck, Jacob; Tate, Kenneth W.; McCord, Stephen A.; Linquist, Bruce A.

    2017-01-01

    Methylmercury (MeHg) is a bioaccumulative pollutant produced in and exported from flooded soils, including those used for rice (Oriza sativa L.) production. Using unfiltered aqueous MeHg data from MeHg monitoring programs in the Sacramento River watershed from 1996 to 2007, we assessed the MeHg contribution from rice systems to the Sacramento River. Using a mixed-effects regression analysis, we compared MeHg concentrations in agricultural drainage water from rice-dominated regions (AgDrain) to MeHg concentrations in the Sacramento and Feather Rivers, both upstream and downstream of AgDrain inputs. We also calculated MeHg loads from AgDrains and the Sacramento and Feather Rivers. Seasonally, MeHg concentrations were higher during November through May than during June through October, but the differences varied by location. Relative to upstream, November through May AgDrain least-squares mean MeHg concentration (0.18 ng L−1, range 0.15–0.23 ng L−1) was 2.3-fold higher, while June through October AgDrain mean concentration (0.097 ng L−1, range 0.6–1.6 ng L−1) was not significantly different from upstream. June through October AgDrain MeHg loads contributed 10.7 to 14.8% of the total Sacramento River MeHg load. Missing flow data prevented calculation of the percent contribution of AgDrains in November through May. At sites where calculation was possible, November through May loads made up 70 to 90% of the total annual load. Elevated flow and MeHg concentration in November through May both contribute to the majority of the AgDrain MeHg load occurring during this period. Methylmercury reduction efforts should target elevated November through May MeHg concentrations in AgDrains. However, our findings suggest that the contribution and environmental impact of rice is an order of magnitude lower than previous studies in the California Yolo Bypass.

  9. Small-bore wire-guided chest drains: safety, tolerability, and effectiveness in pneumothorax, malignant effusions, and pleural empyema.

    PubMed

    Cafarotti, Stefano; Dall'Armi, Valentina; Cusumano, Giacomo; Margaritora, Stefano; Meacci, Elisa; Lococo, F; Vita, M L; Porziella, V; Bonassi, S; Cesario, Alfredo; Granone, Pierluigi

    2011-03-01

    The use of small-bore wire-guided chest drains for pleural effusions and pneumothorax has become popular; however, limited data are available on its efficacy and morbidity. The aim of this retrospective study is to measure, via the analysis of the so far largest reported cohort, the efficacy, safety, and tolerability of this approach in different clinical conditions. In the period from January 2002 to December 2008, 1092 patients have undergone the positioning of a small-bore wire-guided chest drain (12F) for the evidence of pneumothorax or pleural effusion and have been monitored over time for morbidity, pain at the time of insertion (measured via the visual analogue scale), and drain failure for misplacement or blockage. Patients with trauma were excluded from this study. Male/female ratio and mean age were respectively 418:674 and 55.85 ± 18.6. Three-hundred ninety-nine (36.5%) drains were inserted for pneumothorax, 324 (29.7%) for malignant effusion, 97 (8.9%) for empyema, and 272 (24.9%) for nonmalignant effusion. The pain experience was on average "very mild" (mean visual analogue scale = 4.6 mm). The overall drain failure rate was 12.9%. The percentage of successful cases was 93.8% in malignant effusion, 93% in pneumothorax, and 92.3% in nonmalignant effusion; in the cases of pathologically diagnosed empyema, drains were more likely to get blocked (74.2%). We recorded 1 serious complication within the malignant effusion group. Wire-guided 12F Seldinger-type drains are a well-tolerated and effective method of treating pneumothorax and uncomplicated pleural effusions (malignant and nonmalignant) with acceptable morbidity. The use of 12F small-bore chest drain is not indicated for the treatment of empyema. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  10. Determining optimal fluid and air leak cut off values for chest drain management in general thoracic surgery

    PubMed Central

    Mesa-Guzman, Miguel; Periklis, Perikleous; Niwaz, Zakiyah; Socci, Laura; Raubenheimer, Hilgardt; Adams, Ben; Gurung, Lokesh; Uzzaman, Mohsin

    2015-01-01

    Background Chest drain duration is one of the most important influencing aspects of hospital stay but the management is perhaps one of the most variable aspects of thoracic surgical care. The aim of our study is to report outcomes associated with increasing fluid and air leak criteria of protocol based management. Methods A 6-year retrospective analysis of protocolised chest drain management starting in 2007 with a fluid criteria of 3 mL/kg increasing to 7 mL/kg in 2011 to no fluid criteria in 2012, and an air leak criteria of 24 hours without leak till 2012 when digital air leak monitoring was introduced with a criteria of <20 mL/min of air leak for more than 6 hours. Patient data were obtained from electronic hospital records and digital chest films were reviewed to determine the duration of chest tube drainage and post-drain removal complications. Results From 2009 to 2012, 626 consecutive patients underwent thoracic surgery procedures under a single consultant. A total of 160 did not require a chest drain and data was missing in 22, leaving 444 for analysis. The mean age [standard deviation (SD)] was 57±19 years and 272 (61%) were men. There were no differences in the incidence of pneumothoraces (P=0.191), effusion (P=0.344) or re-interventions (P=0.431) for drain re-insertions as progressively permissive criteria were applied. The median drain duration dropped from 1-3 days (P<0.001) and accordingly hospital stay reduced from 4-6 days (P<0.001). Conclusions Our results show that chest drains can be safely removed without fluid criteria and air leak of less than 20 mL/min with median drain duration of 1 day, associated with a reduced length of hospital stay. PMID:26716045

  11. Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution.

    PubMed

    Garimella, Martand Mayukh; Koppu, Sudheer; Kadlaskar, Shantanu Shrikant; Pillutla, Venkata; Abhijeet; Choi, Wonjae

    2017-11-01

    This paper reports the condensation and subsequent motion of water droplets on bi-philic surfaces, surfaces that are patterned with regions of different wettability. Bi-philic surfaces can enhance the water collection efficiency: droplets condensing on hydrophobic regions wick into hydrophilic drain channels when droplets grow to a certain size, renewing the condensation on the dry hydrophobic region. The onset of drain phenomenon can be triggered by multiple events with distinct nature ranging from gravity, direct contact between a droplet and a drain channel, to a mutual coalescence between droplets. This paper focuses on the effect of the length scale of hydrophobic regions on the dynamics of mutual coalescence between droplets and subsequent drainage. The main hypothesis was that, when the drop size is sufficient, the kinetic energy associated with a coalescence of droplets may cause dynamic advancing of a newly formed drop, leading to further coalescence with nearby droplets and ultimately to a chain reaction. We fabricate bi-philic surfaces with hydrophilic and hydrophobic stripes, and the result confirms that coalescing droplets, when the length scale of droplets increases beyond 0.2mm, indeed display dynamic expansion and chain reaction. Multiple droplets can thus migrate to hydrophilic drain simultaneously even when the initial motion of the droplets was not triggered by the direct contact between the droplet and the hydrophilic drain. Efficiency of drain due to mutual coalescence of droplets varies depending on the length scale of bi-philic patterns, and the drain phenomenon reaches its peak when the width of hydrophobic stripes is between 800μm and 1mm. The Ohnesorge number of droplets draining on noted surfaces is between 0.0042 and 0.0037 respectively. The observed length scale of bi-philic patterns matches that on the Stenocara beetle's fog harvesting back surface. This match between length scales suggests that the surface of the insect is optimized for the drain of harvested water. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Ecotoxicologic impacts of agricultural drain water in the Salinas River, California, USA.

    PubMed

    Anderson, Brian S; Hunt, John W; Phillips, Bryn M; Nicely, Patricia A; Gilbert, Kristine D; de Vlaming, Victor; Connor, Valerie; Richard, Nancy; Tjeerdema, Ronald S

    2003-10-01

    The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California (USA). Large areas of this watershed are cultivated year-round in row crops, and previous laboratory studies have demonstrated that acute toxicity of agricultural drain water to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. We investigated chemical contamination and toxicity in waters and sediments in the river downstream of an agricultural drain water input. Ecological impacts of drain water were investigated by using bioassessments of macroinvertebrate community structure. Toxicity identification evaluations were used to characterize chemicals responsible for toxicity. Salinas River water downstream of the agricultural drain was acutely toxic to the cladoceran Ceriodaphnia dubia, and toxicity to C. dubia was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. Toxicity identification evaluations (TIEs) conducted on sediment pore water suggested that toxicity to amphipods was due in part to OP pesticides; concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d mean lethal concentration (LC50) for H. azteca. Potentiation of toxicity with addition of the metabolic inhibitor piperonyl butoxide suggested that sediment toxicity also was due to other non-metabolically activated compounds. Macroinvertebrate community structure was highly impacted downstream of the agricultural drain input, and a number of macroinvertebrate community metrics were negatively correlated with combined TUs of chlorpyrifos and diazinon, as well as turbidity associated with the drain water. Some macroinvertebrate metrics were also correlated with bank vegetation cover. This study suggests that pesticide pollution is the likely cause of ecological damage in the Salinas River, and this factor may interact with other stressors associated with agricultural drain water to impact the macroinvertebrate community in the system.

  13. 37. DETAIL OF CYANIDE LEACHING TANK DRAIN DOOR AND PIPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. DETAIL OF CYANIDE LEACHING TANK DRAIN DOOR AND PIPING SYSTEM. NOTE SPIGOT UNDER BOARD AT UPPER LEFT INSERTS INTO HOLE IN PIPE AT BOTTOM OF FRAME. CYANIDE SOLUTION WAS PUMPED INTO THE TANKS AND THE PREGNANT SOLUTION DRAINED OUT OF THE TANKS THROUGH THIS PIPE, AND BACK INTO A SEPARATE HOLDING TANK ON THE EAST SIDE OF THE MILL. TAILINGS WERE REMOVED FROM THE TANKS THROUGH THE ROUND DRAIN DOOR IN THE BOTTOM OF THE TANK (MISSING) SEEN AT TOP CENTER. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  14. Draining characteristics of hemispherically bottomed cylinders in a low-gravity environment

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1978-01-01

    An experimental investigation was conducted to study the phenomenon of vapor ingestion during the draining of a scale model, hemispherically bottomed cylindrical tank in a low-gravity environment. Where possible, experimental results are compared with previously obtained numerical predictions. It was observed that certain combinations of Weber and Bond number resulted in draining-induced axisymmetric slosh motion. The periods of the slosh waves were correlated with the square root of the draining parameter, the ratio (Weber number)/(Bond number plus one), as was the quantity of liquid remaining in the tank when vapor was ingested into the outlet line.

  15. Advances in chest drain management in thoracic disease

    PubMed Central

    George, Robert S.

    2016-01-01

    An adequate chest drainage system aims to drain fluid and air and restore the negative pleural pressure facilitating lung expansion. In thoracic surgery the post-operative use of the conventional underwater seal chest drainage system fulfills these requirements, however they allow great variability amongst practices. In addition they do not offer accurate data and they are often inconvenient to both patients and hospital staff. This article aims to simplify the myths surrounding the management of chest drains following chest surgery, review current experience and explore the advantages of modern digital chest drain systems and address their disease-specific use. PMID:26941971

  16. N Channel JFET Based Digital Logic Gate Structure

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J (Inventor)

    2013-01-01

    An apparatus is provided that includes a first field effect transistor with a source tied to zero volts and a drain tied to voltage drain drain (Vdd) through a first resistor. The apparatus also includes a first node configured to tie a second resistor to a third resistor and connect to an input of a gate of the first field effect transistor in order for the first field effect transistor to receive a signal. The apparatus also includes a second field effect transistor configured as a unity gain buffer having a drain tied to Vdd and an uncommitted source.

  17. Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: Implications for slope stability, Edmonds, Washington, USA

    USGS Publications Warehouse

    Biavati, G.; Godt, J.W.; McKenna, J.P.

    2006-01-01

    Shallow landslides on steep (>25??) hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope-parallel flow conditions, pressure head is significantly reduced near the drain; however, for transient, vertical infiltration in a partially saturated soil, conditions consistent with those observed during monitoring at the Edmonds site, the drain decreases the thickness of a perched water table by a small amount.

  18. Numerical modeling of perched water under Yucca Mountain, Nevada

    USGS Publications Warehouse

    Hinds, J.J.; Ge, S.; Fridrich, C.J.

    1999-01-01

    The presence of perched water near the potential high-level nuclear waste repository area at Yucca Mountain, Nevada, has important implications for waste isolation. Perched water occurs because of sharp contrasts in rock properties, in particular between the strongly fractured repository host rock (the Topopah Spring welded tuff) and the immediately underlying vitrophyric (glassy) subunit, in which fractures are sealed by clays that were formed by alteration of the volcanic glass. The vitrophyre acts as a vertical barrier to unsaturated flow throughout much of the potential repository area. Geochemical analyses (Yang et al. 1996) indicate that perched water is relatively young, perhaps younger than 10,000 years. Given the low permeability of the rock matrix, fractures and perhaps fault zones must play a crucial role in unsaturated flow. The geologic setting of the major perched water bodies under Yucca Mountain suggests that faults commonly form barriers to lateral flow at the level of the repository horizon, but may also form important pathways for vertical infiltration from the repository horizon down to the water table. Using the numerical code UNSAT2, two factors believed to influence the perched water system at Yucca Mountain, climate and fault-zone permeability, are explored. The two-dimensional model predicts that the volume of water held within the perched water system may greatly increase under wetter climatic conditions, and that perched water bodies may drain to the water table along fault zones. Modeling results also show fault flow to be significantly attenuated in the Paintbrush Tuff non-welded hydrogeologic unit.

  19. CFD modeling of hydro-biochemical behavior of MSW subjected to leachate recirculation.

    PubMed

    Feng, Shi-Jin; Cao, Ben-Yi; Li, An-Zheng; Chen, Hong-Xin; Zheng, Qi-Teng

    2018-02-01

    The most commonly used method of operating landfills more sustainably is to promote rapid biodegradation and stabilization of municipal solid waste (MSW) by leachate recirculation. The present study is an application of computational fluid dynamics (CFD) to the 3D modeling of leachate recirculation in bioreactor landfills using vertical wells. The objective is to model and investigate the hydrodynamic and biochemical behavior of MSW subject to leachate recirculation. The results indicate that the maximum recirculated leachate volume can be reached when vertical wells are set at the upper middle part of a landfill (H W /H T  = 0.4), and increasing the screen length can be more helpful in enlarging the influence radius than increasing the well length (an increase in H S /H W from 0.4 to 0.6 results in an increase in influence radius from 6.5 to 7.7 m). The time to reach steady state of leachate recirculation decreases with the increase in pressure head; however, the time for leachate to drain away increases with the increase in pressure head. It also showed that methanogenic biomass inoculum of 1.0 kg/m 3 can accelerate the volatile fatty acid depletion and increase the peak depletion rate to 2.7 × 10 -6  kg/m 3 /s. The degradation-induced void change parameter exerts an influence on the processes of MSW biodegradation because a smaller parameter value results in a greater increase in void space.

  20. Metal-Halide Perovskites for Gate Dielectrics in Field-Effect Transistors and Photodetectors Enabled by PMMA Lift-Off Process.

    PubMed

    Daus, Alwin; Roldán-Carmona, Cristina; Domanski, Konrad; Knobelspies, Stefan; Cantarella, Giuseppe; Vogt, Christian; Grätzel, Michael; Nazeeruddin, Mohammad Khaja; Tröster, Gerhard

    2018-06-01

    Metal-halide perovskites have emerged as promising materials for optoelectronics applications, such as photovoltaics, light-emitting diodes, and photodetectors due to their excellent photoconversion efficiencies. However, their instability in aqueous solutions and most organic solvents has complicated their micropatterning procedures, which are needed for dense device integration, for example, in displays or cameras. In this work, a lift-off process based on poly(methyl methacrylate) and deep ultraviolet lithography on flexible plastic foils is presented. This technique comprises simultaneous patterning of the metal-halide perovskite with a top electrode, which results in microscale vertical device architectures with high spatial resolution and alignment properties. Hence, thin-film transistors (TFTs) with methyl-ammonium lead iodide (MAPbI 3 ) gate dielectrics are demonstrated for the first time. The giant dielectric constant of MAPbI 3 (>1000) leads to excellent low-voltage TFT switching capabilities with subthreshold swings ≈80 mV decade -1 over ≈5 orders of drain current magnitude. Furthermore, vertically stacked low-power Au-MAPbI 3 -Au photodetectors with close-to-ideal linear response (R 2 = 0.9997) are created. The mechanical stability down to a tensile radius of 6 mm is demonstrated for the TFTs and photodetectors, simultaneously realized on the same flexible plastic substrate. These results open the way for flexible low-power integrated (opto-)electronic systems based on metal-halide perovskites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The effects of vault drainage on postoperative morbidity after vaginal hysterectomy for benign gynaecological disease: a randomised controlled trial.

    PubMed

    Dua, A; Galimberti, A; Subramaniam, M; Popli, G; Radley, S

    2012-02-01

    To evaluate the efficacy of vault drainage in reducing the immediate postoperative morbidity associated with vaginal hysterectomy carried out for benign gynaecological conditions. Randomised controlled trial. A tertiary referral gynaecology centre in UK. A total of 272 women who underwent vaginal hysterectomy for benign conditions between March 2005 and June 2010. The 272 women were randomised to have a drain inserted or not inserted, 'drain' or 'no drain', respectively, before vault closure during vaginal hysterectomy, using a sealed envelope technique. The surgical procedures were performed using the surgeons' standard technique and postoperative care was delivered according to the unit's protocol. The primary outcome measure was reduction in postoperative febrile morbidity. Secondary outcome measures were hospital readmission rate, blood transfusion, change in postoperative haemoglobin and length of stay. In all, 135 women were randomised to have a drain and 137 to 'no drain'. There were no differences in the incidence of febrile morbidity, length of stay, change in haemoglobin or need for postoperative blood transfusion between the two groups. The routine use of vault drain at vaginal hysterectomy for benign disorders has no significant effect on postoperative morbidity. The use of vault drain in this context is not recommended. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.

  2. Meta-Analysis of Drainage Versus No Drainage After Laparoscopic Cholecystectomy

    PubMed Central

    Lucarelli, Pierino; Di Filippo, Annalisa; De Angelis, Francesco; Stipa, Francesco; Spaziani, Erasmo

    2014-01-01

    Background and Objectives: Routine drainage after laparoscopic cholecystectomy is still controversial. This meta-analysis was performed to assess the role of drains in reducing complications in laparoscopic cholecystectomy. Methods: An electronic search of Medline, Science Citation Index Expanded, Scopus, and the Cochrane Library database from January 1990 to June 2013 was performed to identify randomized clinical trials that compare prophylactic drainage with no drainage in laparoscopic cholecystectomy. The odds ratio for qualitative variables and standardized mean difference for continuous variables were calculated. Results: Twelve randomized controlled trials were included in the meta-analysis, involving 1939 patients randomized to a drain (960) versus no drain (979). The morbidity rate was lower in the no drain group (odds ratio, 1.97; 95% confidence interval, 1.26 to 3.10; P = .003). The wound infection rate was lower in the no drain group (odds ratio, 2.35; 95% confidence interval, 1.22 to 4.51; P = .01). Abdominal pain 24 hours after surgery was less severe in the no drain group (standardized mean difference, 2.30; 95% confidence interval, 1.27 to 3.34; P < .0001). No significant difference was present with respect to the presence and quantity of subhepatic fluid collection, shoulder tip pain, parenteral ketorolac consumption, nausea, vomiting, and hospital stay. Conclusion: This study was unable to prove that drains were useful in reducing complications in laparoscopic cholecystectomy. PMID:25516708

  3. Non-equilibrium Green's functions study of discrete dopants variability on an ultra-scaled FinFET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valin, R., E-mail: r.valinferreiro@swansea.ac.uk; Martinez, A., E-mail: a.e.Martinez@swansea.ac.uk; Barker, J. R., E-mail: john.barker@glasgow.ac.uk

    In this paper, we study the effect of random discrete dopants on the performance of a 6.6 nm channel length silicon FinFET. The discrete dopants have been distributed randomly in the source/drain region of the device. Due to the small dimensions of the FinFET, a quantum transport formalism based on the non-equilibrium Green's functions has been deployed. The transfer characteristics for several devices that differ in location and number of dopants have been calculated. Our results demonstrate that discrete dopants modify the effective channel length and the height of the source/drain barrier, consequently changing the channel control of the charge. Thismore » effect becomes more significant at high drain bias. As a consequence, there is a strong effect on the variability of the on-current, off-current, sub-threshold slope, and threshold voltage. Finally, we have also calculated the mean and standard deviation of these parameters to quantify their variability. The obtained results show that the variability at high drain bias is 1.75 larger than at low drain bias. However, the variability of the on-current, off-current, and sub-threshold slope remains independent of the drain bias. In addition, we have found that a large source to drain current by tunnelling current occurs at low gate bias.« less

  4. Optimization of limestone drains for long- term treatment of acidic mine drainage, Swatara Creek Basin, Schuylkill County, PA

    USGS Publications Warehouse

    Cravotta, Charles A.; Ward, S.J.; Koury, Daniel J.; Koch, R.D.

    2004-01-01

    Limestone drains were constructed in 1995, 1997, and 2000 to treat acidic mine drainage (AMD) from the Orchard, Buck Mtn., and Hegins discharges, respectively, in the Swatara Creek Basin, Southern Anthracite Coalfield, east-central Pennsylvania. This report summarizes the construction characteristics and performance of each of the limestone drains on the basis of influent and effluent quality and laboratory tests of variables affecting limestone dissolution rates. Data for influent and effluent indicate substantial alkalinity production by the Orchard and Buck Mtn. limestone drains and only marginal benefits from the Hegins drain. Nevertheless, the annual alkalinity loading rates have progressively declined with age of all three systems. Collapsible-container (cubitainer) testing was conducted to evaluate current scenarios and possible options for reconstruction and maintenance of the limestone drains to optimize their long-term performance. The cubitainer tests indicated dissolution rates for the current configurations that were in agreement with field flux data (net loading) for alkalinity and dissolved calcium. The dissolution rates in cubitainers were larger for closed conditions than open conditions, but the rates were comparable for coated and uncoated limestone for a given condition. Models developed on the basis of the cubitainer testing indicate (1) exponential declines in limestone mass and corresponding alkalinity loading rates with increased age of limestone drains and (2) potential for improved performance with enlargement, complete burial, and/or regular flushing of the systems.

  5. Method of making self-aligned lightly-doped-drain structure for MOS transistors

    DOEpatents

    Weiner, Kurt H.; Carey, Paul G.

    2001-01-01

    A process for fabricating lightly-doped-drains (LDD) for short-channel metal oxide semiconductor (MOS) transistors. The process utilizes a pulsed laser process to incorporate the dopants, thus eliminating the prior oxide deposition and etching steps. During the process, the silicon in the source/drain region is melted by the laser energy. Impurities from the gas phase diffuse into the molten silicon to appropriately dope the source/drain regions. By controlling the energy of the laser, a lightly-doped-drain can be formed in one processing step. This is accomplished by first using a single high energy laser pulse to melt the silicon to a significant depth and thus the amount of dopants incorporated into the silicon is small. Furthermore, the dopants incorporated during this step diffuse to the edge of the MOS transistor gate structure. Next, many low energy laser pulses are used to heavily dope the source/drain silicon only in a very shallow region. Because of two-dimensional heat transfer at the MOS transistor gate edge, the low energy pulses are inset from the region initially doped by the high energy pulse. By computer control of the laser energy, the single high energy laser pulse and the subsequent low energy laser pulses are carried out in a single operational step to produce a self-aligned lightly-doped-drain-structure.

  6. Effect of defect creation and migration on hump characteristics of a-InGaZnO thin film transistors under long-term drain bias stress with light illumination

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Jung; Kim, Woo-Sic; Lee, Yeol-Hyeong; Park, Jeong Ki; Kim, Geon Tae; Kim, Ohyun

    2018-06-01

    We investigated the mechanism of formation of the hump that occurs in the current-voltage I-V characteristics of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) that are exposed to long-term drain bias stress under illumination. Transfer characteristics showed two-stage degradation under the stress. At the beginning of the stress, the I-V characteristics shifted in the negative direction with a degradation of subthreshold slope, but the hump phenomenon developed over time in the I-V characteristics. The development of the hump was related to creation of defects, especially ionized oxygen vacancies which act as shallow donor-like states near the conduction-band minimum in a-IGZO. To further investigate the hump phenomenon we measured a capacitance-voltage C-V curve and performed two-dimensional device simulation. Stretched-out C-V for the gate-to-drain capacitance and simulated electric field distribution which exhibited large electric field near the drain side of TFT indicated that VO2+ were generated near the drain side of TFT, but the hump was not induced when VO2+ only existed near the drain side. Therefore, the degradation behavior under DBITS occurred because VO2+ were created near the drain side, then were migrated to the source side of the TFT.

  7. Baseline channel morphology and bank erosion inventory of South Fork Campbell Creek at Campbell Tract, Anchorage, Alaska, 1999 and 2000

    USGS Publications Warehouse

    Curran, Janet H.

    2001-01-01

    South Fork Campbell Creek drains largely undeveloped land in Anchorage, Alaska, but supports heavy use near the Bureau of Land Management (BLM) Campbell Tract facility for recreation and environmental education. To help assess the impacts of human activities in the basin on biological communities, particularly aquatic and terrestrial biota, morphological changes to the channel bed and banks were monitored for 2 years. Erosion conditions and rates of change were measured and 11 transects were surveyed in three reaches of Campbell Creek near the BLM Campbell Creek Science Center in 1999. Repeat measurements at these 33 transects in 2000 documented noticeable differences between horizontal or vertical channel position at eight transects. Repeat measurements of 51 erosion pins at the survey transects provided details of bank erosion between the 2 years. Annual erosion rates at the erosion pins ranged from 0.81 foot per year of erosion to 0.16 foot per year of deposition.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regenhardt, C.; Dean, J.; Hancock, J.

    The purpose of this study was to determine the feasibility of the multi-drain well method in tight, lenticular formations. Although directional drilling is more costly than conventional vertical drilling, this practice could triple well production. The proposed drilling plan may be more cost efficient than drilling three separate wells with less than 320-acre spacing because it would save the costs of site surveys, rig setup, purchase of the surface lease area, and gas pipeline hookups for two additional well sites. This feasibility study was conducted on the Piceance Basin area, mainly because of the availability of geological information. The resultsmore » of this study will generally apply to other regions with tight, lenticular sand, depending upon the similarity in the total percentage of sand lenses in the area and the lens dimensions and orientations. Appendix A discusses the geology of the eastern Uinta Basin in eastern Utah, and the applicability of this study to the area. Appendix B provides calculation of expected production increase due to angle of drilling. 18 refs., 30 figs., 14 tabs.« less

  9. I-V curve hysteresis induced by gate-free charging of GaAs nanowires' surface oxide

    NASA Astrophysics Data System (ADS)

    Alekseev, P. A.; Geydt, P.; Dunaevskiy, M. S.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2017-09-01

    The control of nanowire-based device performance requires knowledge about the transport of charge carriers and its limiting factors. We present the experimental and modeled results of a study of electrical properties of GaAs nanowires (NWs), considering their native oxide cover. Measurements of individual vertical NWs were performed by conductive atomic force microscopy (C-AFM). Experimental C-AFM observations with numerical simulations revealed the complex resistive behavior of NWs. A hysteresis of current-voltage characteristics of the p-doped NWs as-grown on substrates with different types of doping was registered. The emergence of hysteresis was explained by the trapping of majority carriers in the surface oxide layer near the reverse-biased barriers under the source-drain current. It was found that the accumulation of charge increases the current for highly doped p+-NWs on n+-substrates, while for moderately doped p-NWs on p+-substrates, charge accumulation decreases the current due to blocking of the conductive channel of NWs.

  10. Simscape Modeling of a Custom Closed-Volume Tank

    NASA Technical Reports Server (NTRS)

    Fischer, Nathaniel P.

    2015-01-01

    The library for Mathworks Simscape does not currently contain a model for a closed volume fluid tank where the ullage pressure is variable. In order to model a closed-volume variable ullage pressure tank, it was necessary to consider at least two separate cases: a vertical cylinder, and a sphere. Using library components, it was possible to construct a rough model for the cylindrical tank. It was not possible to construct a model for a spherical tank, using library components, due to the variable area. It was decided that, for these cases, it would be preferable to create a custom library component to represent each case, using the Simscape language. Once completed, the components were added to models, where filling and draining the tanks could be simulated. When the models were performing as expected, it was necessary to generate code from the models and run them in Trick (a real-time simulation program). The data output from Trick was then compared to the output from Simscape and found to be within acceptable limits.

  11. Geohydrologic evaluation of a landfill in a coastal area, St Petersburg, Florida

    USGS Publications Warehouse

    Hutchinson, C.B.; Stewart, Joseph W.

    1978-01-01

    The 250-acre Toytown landfill site is in a poorly-drained area in coastal Pinellas County, Florida. Average altitude of land surface at the landfill is less than 10 feet. About 1000 tons of solid waste and about 200,000 gallons of digested sewage sludge are disposed of daily at the landfill. The velocity of ground-water flow through the 23-foot thick surficial aquifer northeast from the landfill toward Old Tampa Bay probably ranges from 1 to 10 feet per year, and downward velocity through the confining bed is about 0.00074 foot per day. The horizontal and vertical flow velocities indicate that leachate moves slowly downgradient, and that leachate has not yet seeped through the confining bed after 12 years of landfill operation. Untreated surface run-off from the site averages about 15 inches per year, and ground-water outflow averages about 3.3 inches per year. The Floridan aquifer is used as a limited source of water for domestic supply in this area. (Woodard-USGS)

  12. Establishing geochemical background levels of selected trace elements in areas having geochemical anomalies: The case study of the Orbetello lagoon (Tuscany, Italy).

    PubMed

    Romano, Elena; Bergamin, Luisa; Croudace, Ian W; Ausili, Antonella; Maggi, Chiara; Gabellini, Massimo

    2015-07-01

    The determination of background concentration values (BGVs) in areas, characterised by the presence of natural geochemical anomalies and anthropogenic impact, appears essential for a correct pollution assessment. For this purpose, it is necessary to establish a reliable method for determination of local BGVs. The case of the Orbetello lagoon, a geologically complex area characterized by Tertiary volcanism, is illustrated. The vertical concentration profiles of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were studied in four sediment cores. Local BGVs were determined considering exclusively samples not affected by anthropogenic influence, recognized by means of multivariate statistics and radiochronological dating ((137)Cs and (210)Pb). Results showed BGVs well-comparable with mean crustal or shale values for most of the considered elements except for Hg (0.87 mg/kg d.w.) and As (16.87 mg/kg d.w.), due to mineralization present in the catchment basin draining into the lagoon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Performance analysis of junctionless double gate VeSFET considering the effects of thermal variation - An explicit 2D analytical model

    NASA Astrophysics Data System (ADS)

    Chaudhary, Tarun; Khanna, Gargi

    2017-03-01

    The purpose of this paper is to explore junctionless double gate vertical slit field effect transistor (JLDG VeSFET) with reduced short channel effects and to develop an analytical threshold voltage model for the device considering the impact of thermal variations for the very first time. The model has been derived by solving 2D Poisson's equation and the effects of variation in temperature on various electrical parameters of the device such as Rout, drain current, mobility, subthreshold slope and DIBL has been studied and described in the paper. The model provides a deep physical insight of the device behavior and is also very helpful in contributing to the design space exploration for JLDG VeSFET. The proposed model is verified with simulative analysis at different radii of the device and it has been observed that there is a good agreement between the analytical model and simulation results.

  14. Controlling attachment and growth of Listeria monocytogenes in PVC model floor drains using a peroxide chemical, chitosan/arginine or heat

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes enters a poultry further processing plant with raw product and colonizes the plant as a resident in floor drains. We have shown that L. monocytogenes can escape floor drains, becoming airborne during wash down, creating potential for contamination of fully cooked product. Li...

  15. Controlling attachment and growth of listeria monocytogenes in polyvinyl chloride model floor drains using a peroxide chemical, chitosan-arginine, or heat

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes can colonize a poultry processing or further processing plant as a resident in floor drains. Limiting growth and attachment to drain surfaces may help lessen the potential for cross contamination of product. The objective of this study was to compare a synthetic hydrogen per...

  16. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  17. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  18. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  19. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  20. 19 CFR 159.22 - Net weights and tares.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... tins imported from Spain: The following schedule drained weight shall be used as the Customs dutiable... in tins and such drained weight being the allowance made in liquidation for tare for water: Size can Drained weight 3 kilo 13.6 kilograms-case of 6 tins. 794 grams 16.7 kilograms-case of 24 tins. 425 grams 8...

  1. 19 CFR 159.22 - Net weights and tares.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... tins imported from Spain: The following schedule drained weight shall be used as the Customs dutiable... in tins and such drained weight being the allowance made in liquidation for tare for water: Size can Drained weight 3 kilo 13.6 kilograms-case of 6 tins. 794 grams 16.7 kilograms-case of 24 tins. 425 grams 8...

  2. 19 CFR 159.22 - Net weights and tares.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... tins imported from Spain: The following schedule drained weight shall be used as the Customs dutiable... in tins and such drained weight being the allowance made in liquidation for tare for water: Size can Drained weight 3 kilo 13.6 kilograms-case of 6 tins. 794 grams 16.7 kilograms-case of 24 tins. 425 grams 8...

  3. 19 CFR 159.22 - Net weights and tares.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... tins imported from Spain: The following schedule drained weight shall be used as the Customs dutiable... in tins and such drained weight being the allowance made in liquidation for tare for water: Size can Drained weight 3 kilo 13.6 kilograms-case of 6 tins. 794 grams 16.7 kilograms-case of 24 tins. 425 grams 8...

  4. 19 CFR 159.22 - Net weights and tares.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... tins imported from Spain: The following schedule drained weight shall be used as the Customs dutiable... in tins and such drained weight being the allowance made in liquidation for tare for water: Size can Drained weight 3 kilo 13.6 kilograms-case of 6 tins. 794 grams 16.7 kilograms-case of 24 tins. 425 grams 8...

  5. An Exact Solution to the Draining Reservoir Problem of the Incompressible and Non-Viscous Liquid

    ERIC Educational Resources Information Center

    Hong, Seok-In

    2009-01-01

    The exact expressions for the drain time and the height, velocity and acceleration of the free surface are found for the draining reservoir problem of the incompressible and non-viscous liquid. Contrary to the conventional approximate results, they correctly describe the initial time dependence of the liquid velocity and acceleration. Torricelli's…

  6. Development of Thermal Bridging Factors for Use in Energy Models

    DTIC Science & Technology

    2015-06-20

    assemblies. 5.2.2 Drainage : Drained systems Drained (Figure 5-6) and screened enclosures assume some rainwater will penetrate the outer surface...38 5.2.2 Drainage : Drained systems ...layer (e.g., drainage plane and gap or waterproofing) 2. Airflow control layer (e.g., an air barrier system ) 3. Thermal control layer (e.g., insulation

  7. Novel pod for chlorine dioxide generation and delivery to control aerobic bacteria on the inner surface of floor drains

    USDA-ARS?s Scientific Manuscript database

    Floor drains in poultry processing and further processing plants are a harborage site for bacteria both free swimming and in biofilms. This population can include Listeria monocytogenes which has been shown to have potential for airborne spreading from mishandled open drains. Chlorine dioxide (ClO...

  8. 75 FR 29520 - Agency Information Collection Activities; Submission for Office of Management and Budget Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... section 1404(b) of the Act (``Drain Cover Standard''). In addition to the anti-entrapment devices or... system; gravity drainage system; automatic pump shut-off system or drain disablement. The Pool and Spa... the drain covers, anti-entrapment device/systems, sump or equalizer lines at the site; and report on...

  9. Influence of thinning operations on the hydrology of a drained coastal plantation watershed

    Treesearch

    Johnny M. Grace; R.W. Skaggs; H.R. Malcom; G.M. Chescheir; D.K. Cassel

    2003-01-01

    Forest management activities such as harvesting, thinning, and site preparation can affect the hydrologic behavior of watersheds on poorly drained soils. The effects of thinning on hydrology are presented for an artificially drained pine plantation paired watershed in eastern North Carolina. Outflow and water table depths were monitored over a 3-year study period...

  10. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall be...

  11. Disinfection of drain water of tomato by means of UV radiation and slow sand filtration in real greenhouse circumstances.

    PubMed

    De Rocker, E; Goen, K; Van Poucke, K

    2006-01-01

    The efficiency of the disinfection of drain water was tested at 11 greenhouses with tomato cultivation on rockwool substrate in Flanders (Belgium) by means of mycological analysis. In addition the presence of phytopathogenic fungi in the drain water was analysed at 2 supplementary greenhouses with recirculation without disinfection.

  12. 77 FR 70357 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... replacing the drain tube assemblies and support clamps on the aft fairing of the engine struts. This new AD requires replacing the drain tube assembly of the left and right engine strut aft fairings with a new one... require replacing the drain tube assembly of the left and right engine strut aft fairings with a new one...

  13. Volatilization of low vapor pressure--volatile organic compounds (LVP-VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation.

    PubMed

    Shin, Hyeong-Moo; McKone, Thomas E; Bennett, Deborah H

    2016-06-01

    There have been many studies to reduce ozone formation mostly from volatile organic compound (VOC) sources. However, the role of low vapor pressure (LVP)-VOCs from consumer products remains mostly unexplored and unaddressed. This study explores the impact of high production volume LVP-VOCs on ozone formation from three cleaning products-associated activities (dishwashing, clothes washing, and surface cleaning). We develop a model framework to account for the portion available for ozone formation during the use phase and from the down-the-drain disposal. We apply experimental studies that measured emission rates or models that were developed for estimating emission rates of organic compounds during the use phase. Then, the fraction volatilized (fvolatilized) and the fraction disposed down the drain (fdown-the-drain) are multiplied by the portion available for ozone formation for releases to the outdoor air (fO3|volatilized) and down-the-drain (fO3|down-the-drain), respectively. Overall, for chemicals used in three specific cleaning-product uses, fvolatilized is less than 0.6% for all studied LVP-VOCs. Because greater than 99.4% of compounds are disposed of down the drain during the use phase, when combined with fO3|volatilized and fO3|down-the-drain, the portion available for ozone formation from the direct releases to outdoor air and the down-the-drain disposal is less than 0.4% and 0.2%, respectively. The results from this study indicate that the impact of the studied LVP-VOCs on ozone formation is very sensitive to what occurs during the use phase and suggest the need for future research on experimental work at the point of use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Postoperative drainage in head and neck surgery.

    PubMed

    Amir, Ida; Morar, Pradeep; Belloso, Antonio

    2010-11-01

    A major factor affecting patients' length of hospitalisation following head and neck surgery remains the use of surgical drains. The optimal time to remove these drains has not been well defined. A routine practice is to measure the drainage every 24 h and remove the drain when daily drainage falls below 25 ml. This study aims to determine whether drainage measurement at shorter intervals decreases the time to drain removal and hence the length of in-patient stays. A 6-month prospective observational study was performed. The inclusion criteria were patients who underwent head and neck surgery without neck dissection and had a closed suction drain inserted. Drainage rates were measured at 8-hourly intervals. Drains were removed when drainage-rate was ≤ 1 ml/h over an 8-h period. A total of 43 patients were evaluated. The highest drainage rate occurred in the first 8 postoperative hours and decreased significantly in the subsequent hours. The median drainage rates at 8, 16, 24, 32 and 40 postoperative hours were 3.375, 1, 0, 0 and 0 ml/h, respectively. Applying our new removal criteria of ≤ 1 ml/h drainage rate, the drains were removed in 22 (51%) patients at the 16th postoperative hour; 37 (86%) were removed by 24 h after operation. In comparison, only nine (20.9%) patients could potentially be discharged the day after surgery if previous criteria of ≤ 25 ml/24-h were used to decide on drain removal. Our 8-hourly drainage-rate monitoring has facilitated safe earlier discharge of an additional 28 (65%) patients on the day after surgery. This has led to improvement in patient care, better optimisation of hospital resources and resulted in positive economic implications to the department.

  15. Occurrence and seasonal variations of per- and polyfluoroalkyl substances (PFASs) including fluorinated alternatives in rivers, drain outlets and the receiving Bohai Sea of China.

    PubMed

    Chen, Hong; Han, Jianbo; Zhang, Can; Cheng, Jiayi; Sun, Ruijun; Wang, Xiaomeng; Han, Gengchen; Yang, Wenchao; He, Xin

    2017-12-01

    A simultaneous sampling campaign was undertaken to study the pollution by 21 per- and polyfluoroalkyl substances (PFASs) in rivers, drain outlets and their receiving Bohai Sea of China. Chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) are being used as fluorinated alternatives and they were included in this study. In comparison with other regions and countries, high concentrations of ∑ 21 PFASs in seawater samples from the Bohai Sea, ranging from 5.03 to 41 700 ng/L (median: 64.8 ng/L), were observed. The spatial distribution of PFAS levels in this sea area was in the ranking of Laizhou Bay > Liaodong Bay > Bohai Bay > other sea areas. By comparing the levels and composition profiles of PFASs in the seawater and their sources (rivers and drain outlets), it was concluded that rivers and drain outlets are the primary sources of PFAS contamination to the Bohai Sea. These PFAS levels varied seasonally among the rivers and drain outlets, but statistically significant changes were not observed. Levels of 6:2 and 8:2 Cl-PFESAs in rivers, drain outlets and receiving sea were firstly reported in the present study. Relatively high concentrations of 6:2 Cl-PFESA were found in drain outlets, ranging from below method limits of quantification (MLQ) to 7600 ng/L, but 8:2 Cl-PFAES detection was infrequent and all median concentration below MLQ. Mass discharges to the sea of 6:2 Cl-PFESA from rivers and drain outlets to the sea were estimated to be 37 and 17 kg/y, respectively. Copyright © 2017. Published by Elsevier Ltd.

  16. Runoff losses of sediment and phosphorus from no-till and cultivated soils receiving dairy manure.

    PubMed

    Verbree, David A; Duiker, Sjoerd W; Kleinman, Peter J A

    2010-01-01

    Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses.

  17. Source-drain burnout mechanism of GaAs power MESFETS: Three terminal effects

    NASA Astrophysics Data System (ADS)

    Takamiya, Saburo; Sonoda, Takuji; Yamanouchi, Masahide; Fujioka, Takashi; Kohno, Masaki

    1997-03-01

    Theoretical expressions for thermal and electrical feedback effects are derived. These limit the power capability of a power FET and lead a device to catastrophic breakdown (source-drain burnout) when the loop gain of the former reaches unity. Field emission of thermally excited electrons at the Schottky gate plays the key role in thermal feedback, while holes being impact ionized by the drain current play a similar role in the electrical feedback. Thermal feedback is dominant in a high temperature and low drain voltage area. Electrical feedback is dominant in a high drain voltage and low temperature area. In the first area, a high junction temperature is the main factor causing the thermal runaway of the device. In the second area, the electrcal feedback increases the drain current and the temperature and gives a trigger to the thermal feedback so that it reaches unity more easily. Both effects become significant in proportion to transconductance and gate bias resistance, and cause simultaneous runaway of the gate and drain currents. The expressions of the loop gains clearly indicate the safe operating conditions for a power FET. C-band 4 W (1 chip) and 16 W (4 chip) GaAs MESFETs were used as the experimental samples. With these devices the simultaneous runaway of the gate and the drain currents, apparent dependence of the three teminal breakdown voltage on the gate bias resistance in the region dominated by electrical feedback, the rapid increase of the field emitted current at the critical temperature and clear coincidence between the measured and calculated three terminal gate currents both in the thermal feedback dominant region, etc. are demonstrated. The theory explains the experimental results well.

  18. Gauze Impregnated With Quaternary Ammonium Salt Reduces Bacterial Colonization of Surgical Drains After Breast Reconstruction.

    PubMed

    Strong, Amy L; Wolfe, Emily T; Shank, Nina; Chaffin, Abigail E; Jansen, David A

    2018-06-01

    Surgical site infection after breast reconstruction is associated with increased length of hospital stay, readmission rates, cost, morbidity, and mortality. Identifying methods to reduce surgical site infection without the use of antibiotics may be beneficial at reducing antimicrobial resistance, reserving the use of antibiotics for more severe cases. Quaternary ammonium salts have previously been shown to be a safe and effective antimicrobial agent in the setting of in vitro and in vivo animal experiments. A retrospective study was conducted to investigate the antimicrobial properties of a quaternary ammonium salt, 3-trimethoxysilyl propyldimethyloctadecyl ammonium chloride (QAS-3PAC; Bio-spear), at reducing surgical drain site colonization and infection after breast reconstruction (deep inferior epigastric perforator flap reconstruction or tissue expander placement). Twenty patients were enrolled, with 14 surgical drains covered with nonimpregnated gauze and 17 surgical drains covered with QAS-3PAC impregnated gauze, for the purposes of investigating bacterial colonization. Antibiotic sensitivity analysis was also conducted when bacterial cultures were positive. The overall incidence of bacterial colonization of surgical drains was lower in the treatment group compared with the control group (17.6% vs 64.3%, respectively; P = 0.008). QAS-3PAC impregnated gauze reduced the incidence of bacterial colonization of surgical drains during the first (0.0% vs 33.3%) and second (33.3% vs 87.5%; P = 0.04) postoperative week. Furthermore, no enhanced antibiotic resistance was noted on drains treated with QAS-3PAC impregnated gauze. The results of this study suggest that QAS-3PAC impregnated gauze applied over surgical drains may be an effective method for reducing the incidence of bacterial colonization.

  19. Anatomical variations in the pattern of the right hepatic veins draining the posterior segment of the right lobe of the liver.

    PubMed

    Shilal, Poonam; Tuli, Anita

    2015-03-01

    The pattern of drainage in the right posterior lobe of liver varies considerably. The knowledge of this variation is very important while performing various surgeries on the right posterior lobe. A study was conducted to see the variations in the pattern of drainage of posterior segment of the right lobe of liver. The aim was to see the variations of right hepatic vein and small accessory hepatic veins draining the posterior segment, the presence of which led to modifications in drainage of posterior segment. Sixty formalin fixed adult human liver specimens were dissected manually. According to the pattern of drainage of tributaries of right hepatic vein, the right hepatic vein was classified into type I, type II, type III and type IV. According to presence of inferior right hepatic vein, three types of drainage of posterior lobe were seen: Type I, (76.36%) right hepatic vein was large, draining wide area of posterior segment. A small inferior right hepatic vein drained the small area of posterior segment. In Type II, (19.92%) both right hepatic and inferior right hepatic veins were medium sized draining the posteroinferior segment of the right lobe concomitantly. In Type III, (32%) accessory veins, the middle right hepatic vein drained the posterosuperior (VII) as well as the posteroinferior (VI) segment. In one specimen, there were numerous middle right hepatic veins draining the right posterior segment. The knowledge of anatomic relationship of veins draining right lobe, is important in performing right posterior segmentectomy. For safe resection of the liver, the complex anatomy of the distribution of the tributaries of the right hepatic vein and the accessory veins have to be studied prior to any surgery done on liver.

  20. Investigation of the novel attributes in double recessed gate SiC MESFETs at drain side

    NASA Astrophysics Data System (ADS)

    Orouji, Ali A.; Razavi, S. M.; Ebrahim Hosseini, Seyed; Amini Moghadam, Hamid

    2011-11-01

    In this paper, the potential impact of drain side-double recessed gate (DS-DRG) on silicon carbide (SiC)-based metal semiconductor field effect transistors (MESFETs) is studied. We investigate the device performance focusing on breakdown voltage, threshold voltage, drain current and dc output conductance with two-dimensional and two-carrier device simulation. Our simulation results demonstrate that the channel thickness under the gate in the drain side is an important factor in the breakdown voltage. Also, the positive shift in the threshold voltage for the DS-DRG structure is larger in comparison with that for the source side-double recessed gate (SS-DRG) SiC MESFET. The saturated drain current for the DS-DRG structure is larger compared to that for the SS-DRG structure. The maximum dc output conductance in the DS-DRG structure is smaller than that in the SS-DRG structure.

  1. Hydraulic characteristics of an underdrained irrigation circle, Muskegon County wastewater disposal system, Michigan

    USGS Publications Warehouse

    McDonald, M.G.

    1980-01-01

    Muskegon County, Michigan, disposes of wastewater by spray irrigating farmland on its waste-disposal site. Buried drains in the highly permeable unconfined aquifer at the site control the level of the water table. Hydraulic conductivity of the aquifer and drain-leakance, the reciprocal of resistance to flow into the drains, was determined at a representative irrigation circle while calibrating a model of the groundwater flow system. Hydraulic conductivity is 0.00055 m/sec, in the north zone of the circle, and 0.00039 m/sec in the south zone. Drain leakance -6 -6 is low in both zones: 2.9 x 10m/sec in the north and 9.5 x 10 m/sec in the south. Low drain leakance is responsible for waterlogging when irrigation rates are maintained at design levels. The capacity of the study circle to accept wastewater is 35 percent less than design capacity.

  2. Accounting for the risks of phosphorus losses through tile drains in a phosphorus index.

    PubMed

    Reid, D Keith; Ball, Bonnie; Zhang, T Q

    2012-01-01

    Tile drainage systems have been identified as a significant conduit for phosphorus (P) losses to surface water, but P indices do not currently account for this transport pathway in a meaningful way. Several P indices mention tile drains, but most account for either the reduction in surface runoff or the enhanced transport through tiles rather than both simultaneously. A summary of the current state of how tile drains are accounted for within P indices is provided, and the challenges in predicting the risk of P losses through tile drains that are relative to actual losses are discussed. A framework for a component P Index is described, along with a proposal to incorporate predictions of losses through tile drains as a component within this framework. Options for calibrating and testing this component are discussed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Linking carbon and hydrologic fluxes in the critical zone: Observations from high-frequency monitoring of a weathered bedrock vadose zone

    NASA Astrophysics Data System (ADS)

    Tune, A. K.; Druhan, J. L.; Wang, J.; Cargill, S.; Murphy, C.; Rempe, D. M.

    2017-12-01

    A principle challenge in quantifying feedbacks between continental weathering and atmospheric CO2 is to improve understanding of how biogeochemical processes in the critical zone influence the distribution and mobility of organic and inorganic carbon. In particular, in landscapes characterized by thin soils and heterogeneous weathered and fractured bedrock, little data exist to inform and constrain predictive models for carbon dynamics. Here, we present the results of an intensive water and gas sampling campaign across an 18 m thick, variably saturated argillite weathering profile in the Eel River CZO. We monitor water content in situ and regularly collect samples of freely-draining water, tightly-held water, and gas through wet and dry seasons using a novel Vadose-zone Monitoring System (VMS) consisting of sensors and samplers distributed across a 20 m long inclined borehole. This novel approach facilitates the interception of gas and water during transport across the entire variably saturated weathering profile. The data demonstrate that seasonal changes in saturation control the vertical distribution and mobility of carbon in the fractured critical zone. Concentrations of gaseous CO2, O2, and dissolved organic and inorganic carbon fluctuate significantly and repeatably with seasonal additions of water infiltrating the weathered bedrock. A persistent vertical structure in the concentrations of dissolved phases and gas concentrations broadly corresponds to depths associated with unsaturated, seasonally saturated, and chronically saturated zones. Associated variations in the vertical structure of mineralogy and elemental composition, including solid phase organic carbon content, are observed in core obtained during drilling. Together, our observations indicate significant respiration of organic carbon at depths greater than the base of the soil, and thus motivate further investigation of the role of heterogeneous weathered, bedrock environments, which are needed to improve quantitative models for feedbacks between terrestrial and atmospheric CO2.

  4. Modeling the long-term effect of winter cover crops on nitrate transport in artificially drained fields across the Midwest U.S.

    USDA-ARS?s Scientific Manuscript database

    A fall-planted cover crop is a management practice with multiple benefits including reducing nitrate losses from artificially drained fields. We used the Root Zone Water Quality Model (RZWQM) to simulate the impact of a cereal rye cover crop on reducing nitrate losses from drained fields across five...

  5. Teacher Drain from China's Higher Education Institutions and Some Consequences of This Drain

    ERIC Educational Resources Information Center

    Shufeng, Xu; Shihua, Cui; Zhaoping, Sun; Xianlei, Zhang

    2005-01-01

    Teachers are where the major strength of organizational control lies in the educational process; it is mainly they who restrict the quality of education and teaching and who are the irreplaceable factor in determining how well a school is run and its overall image. Therefore, once a teacher drain from higher education institutions begins, it is…

  6. 24 CFR 3280.611 - Vents and venting.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Size of vent piping—(1) Main vent. The drain piping for each toilet shall be vented by a 11/2 inch... venting cross section of a 11/2 inch diameter vent, connected to the toilet drain by one of the following... toilet drain within the distance allowed in § 3280.611(c)(5), for 3-inch trap arms undiminished in size...

  7. 24 CFR 3280.611 - Vents and venting.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Size of vent piping—(1) Main vent. The drain piping for each toilet shall be vented by a 11/2 inch... venting cross section of a 11/2 inch diameter vent, connected to the toilet drain by one of the following... toilet drain within the distance allowed in § 3280.611(c)(5), for 3-inch trap arms undiminished in size...

  8. 76 FR 62605 - Virginia Graeme Baker Pool and Spa Safety Act; Interpretation of Unblockable Drain

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... the VGB Act defines an ``unblockable drain'' as ``a drain of any size and shape that a human body...'' as follows: A suction outlet defined as all components, including the sump and/or body, cover/grate...'' Body Blocking Element of ASME/ANSI A112.19.8-2007 and that the rated flow through the remaining open...

  9. The Brain Rotation and Brain Diffusion Strategies of Small Islanders: Considering "Movement" in Lieu of "Place"

    ERIC Educational Resources Information Center

    Baldacchino, Godfrey

    2006-01-01

    The "brain drain" phenomenon is typically seen as a zero-sum game, where one party's gain is presumed to be another's drain. This corresponds to deep-seated assumptions about what is "home" and what is "away". This article challenges the view, driven by much "brain drain" literature, that the dynamic is an…

  10. 241-AY-102 Leak Detection Pit Drain Line Inspection Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boomer, Kayle D.; Engeman, Jason K.; Gunter, Jason R.

    2014-01-20

    This document provides a description of the design components, operational approach, and results from the Tank AY-102 leak detection pit drain piping visual inspection. To perform this inspection a custom robotic crawler with a deployment device was designed, built, and operated by IHI Southwest Technologies, Inc. for WRPS to inspect the 6-inch leak detection pit drain line.

  11. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOEpatents

    Jones, Brian C.

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  12. Capacitorless one-transistor dynamic random-access memory based on asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor with n-doped boosting layer and drain-underlap structure

    NASA Astrophysics Data System (ADS)

    Yoon, Young Jun; Seo, Jae Hwa; Kang, In Man

    2018-04-01

    In this work, we present a capacitorless one-transistor dynamic random-access memory (1T-DRAM) based on an asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor (TFET) for DRAM applications. The n-doped boosting layer and gate2 drain-underlap structure is employed in the device to obtain an excellent 1T-DRAM performance. The n-doped layer inserted between the source and channel regions improves the sensing margin because of a high rate of increase in the band-to-band tunneling (BTBT) probability. Furthermore, because the gate2 drain-underlap structure reduces the recombination rate that occurs between the gate2 and drain regions, a device with a gate2 drain-underlap length (L G2_D-underlap) of 10 nm exhibited a longer retention performance. As a result, by applying the n-doped layer and gate2 drain-underlap structure, the proposed device exhibited not only a high sensing margin of 1.11 µA/µm but also a long retention time of greater than 100 ms at a temperature of 358 K (85 °C).

  13. Improvement in the performance of graphene nanoribbon p-i-n tunneling field effect transistors by applying lightly doped profile on drain region

    NASA Astrophysics Data System (ADS)

    Naderi, Ali

    2017-12-01

    In this paper, an efficient structure with lightly doped drain region is proposed for p-i-n graphene nanoribbon field effect transistors (LD-PIN-GNRFET). Self-consistent solution of Poisson and Schrödinger equation within Nonequilibrium Green’s function (NEGF) formalism has been employed to simulate the quantum transport of the devices. In proposed structure, source region is doped by constant doping density, channel is an intrinsic GNR, and drain region contains two parts with lightly and heavily doped doping distributions. The important challenge in tunneling devices is obtaining higher current ratio. Our simulations demonstrate that LD-PIN-GNRFET is a steep slope device which not only reduces the leakage current and current ratio but also enhances delay, power delay product, and cutoff frequency in comparison with conventional PIN GNRFETs with uniform distribution of impurity and with linear doping profile in drain region. Also, the device is able to operate in higher drain-source voltages due to the effectively reduced electric field at drain side. Briefly, the proposed structure can be considered as a more reliable device for low standby-power logic applications operating at higher voltages and upper cutoff frequencies.

  14. Translating evidence-based protocol of wound drain management for total joint arthroplasty into practice: A quasi-experimental study.

    PubMed

    Tsang, Lap Fung; Cheng, Hang Cheong; Ho, Hon Shuen; Hsu, Yung Chak; Chow, Chiu Man; Law, Heung Wah; Fong, Lup Chau; Leung, Lok Ming; Kong, Ivy Ching Yan; Chan, Chi Wai; Sham, Alice So Yuen

    2016-05-01

    Although various drains have long been used in total joint replacement, evidence suggests inconsistent practice exists in the use of drainage systems including intermittently applying suction or free of drainage suction, and variations in the optimal timing for wound drain removal. A comprehensive systematic review of available evidence up to 2013 was conducted in a previous study and a protocol was adapted for clinical application according to the summary of the retrieved information (Tsang, 2015). To determine if the protocol could reduce blood loss and blood transfusion after operation and to develop a record form so as to enhance communication of drainage record amongst surgeons and nurses. A quasi-experimental time-series design was undertaken. In the conventional group, surgeons ordered free drainage if the drain output was more than 300 ml. The time of removal of the drain was based on their professional judgement. In the protocol group the method of drainage was dependant of the drainage output as was the timing of the removal of the drain. A standardized record form was developed to guide operating room and orthopaedic ward nurses to manage the drainage system. The drain was removed significantly earlier in the protocol group. Blood loss rate at the first hour of post-operation was extremely low in the protocol group due to clamping effect. Blood loss in volume during the first three hours in the protocol group was significantly lower than that in the conventional group. Only in 11.1% and 4% of cases was it necessary to clamp at the three and four hour post-operative hours. No clamping was required at the two and eight hour postoperative period. There was no significant difference in blood loss during the removal of the drain and during blood transfusion, which was required for patients upon removal of the drain in the two groups. This is the first clinical study to develop an evidence-based protocol to manage wound drain effectively in Hong Kong. Total blood loss and blood transfusions were not significantly different between the conventional and protocol groups. A standard documentation document is beneficial to enhance communication between doctors and nurses as well as to monitor and observe drainage effectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Potential depletion of surface water in the Colorado River and agricultural drains by groundwater pumping in the Parker-Palo Verde-Cibola area, Arizona and California

    USGS Publications Warehouse

    Leake, Stanley A.; Owen-Joyce, Sandra J.; Heilman, Julian A.

    2013-01-01

    Water use along the lower Colorado River is allocated as “consumptive use,” which is defined to be the amount of water diverted from the river minus the amount that returns to the river. Diversions of water from the river include surface water in canals and water removed from the river by pumping wells in the aquifer connected to the river. A complication in accounting for water pumped by wells occurs if the pumping depletes water in drains and reduces measured return flow in those drains. In that case, consumptive use of water pumped by the wells is accounted for in the reduction of measured return flow. A method is needed to understand where groundwater pumping will deplete water in the river and where it will deplete water in drains. To provide a basis for future accounting for pumped groundwater in the Parker-Palo Verde-Cibola area, a superposition model was constructed. The model consists of three layers of finite-difference cells that cover most of the aquifer in the study area. The model was run repeatedly with each run having a pumping well in a different model cell. The source of pumped water that is depletion of the river, expressed as a fraction of the pumping rate, was computed for all active cells in model layer 1, and maps were constructed to understand where groundwater pumping depletes the river and where it depletes drains. The model results indicate that if one or more drains exist between a pumping well location and the river, nearly all of the depletion will be from drains, and little or no depletion will come from the Colorado River. Results also show that if a well pumps on a side of the river with no drains in the immediate area, depletion will come from the Colorado River. Finally, if a well pumps between the river and drains that parallel the river, a fraction of the pumping will come from the river and the rest will come from the drains. Model results presented in this report may be considered in development or refinement of strategies for accounting for groundwater pumping in the river aquifer connected to the Colorado River in the study area.

  16. Groundwater hydrology and estimation of horizontal groundwater flux from the Rio Grande at selected locations in Albuquerque, New Mexico, 2009–10

    USGS Publications Warehouse

    Rankin, Dale R.; Oelsner, Gretchen P.; McCoy, Kurt J.; Goeff J.M. Moret,; Jeffery A. Worthington,; Kimberly M. Bandy-Baldwin,

    2016-03-17

    The Albuquerque area of New Mexico has two principal sources of water: (1) groundwater from the Santa Fe Group aquifer system, and (2) surface water from the Rio Grande. From 1960 to 2002, pumping from the Santa Fe Group aquifer system caused groundwater levels to decline more than 120 feet while water-level declines along the Rio Grande in Albuquerque were generally less than 40 feet. These differences in water-level declines in the Albuquerque area have resulted in a great deal of interest in quantifying the river-aquifer interaction associated with the Rio Grande.In 2003, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, acting as fiscal agent for the Middle Rio Grande Endangered Species Collaborative Program, and the U.S. Army Corps of Engineers, began a study to characterize the hydrogeology of the Rio Grande inner valley alluvial aquifer in the Albuquerque area of New Mexico. The study provides hydrologic data in order to enhance the understanding of rates of water leakage from the Rio Grande to the alluvial aquifer, groundwater flow through the aquifer, and discharge of water from the aquifer to riverside drains. The study area extends about 20 miles along the Rio Grande in the Albuquerque area. Piezometers and surface-water gages were installed in paired transects at eight locations. Nested piezometers, completed at various depths in the alluvial aquifer, and surface-water gages, installed in the Rio Grande and riverside drains, were instrumented with pressure transducers. Water-level and water-temperature data were collected from 2009 to 2010.Water levels from the piezometers indicated that groundwater movement was usually away from the river towards the riverside drains. Annual mean horizontal groundwater gradients in the inner valley alluvial aquifer ranged from 0.0024 (I-25 East) to 0.0144 (Pajarito East). The median hydraulic conductivity values of the inner valley alluvial aquifer, determined from slug tests, ranged from 30 feet per day (ft/d) (Montaño) to 120 ft/d (Central) for paired transects, with a median hydraulic conductivity for all transects of 50 ft/d. Daily mean groundwater fluxes from the river through the inner valley alluvial aquifer computed using Darcy’s Law and the slug test results ranged from about 0.01 ft/d (Montaño West) to between 1.0 and 2.0 ft/d (Central East). Median annual groundwater fluxes from the river through the inner valley alluvial aquifer determined using the Suzuki-Stallman method was greatest at Alameda East (0.50 ft/d) and lowest at Alameda West (0.25 ft/d). The results from both methods agreed reasonably well.Seepage investigations conducted by measuring discharge in the east and west riverside drains provided information for computing changes in flow within the drains and for evaluating results from Darcy’s Law and Suzuki-Stallman method flux calculations. Discharge measured in the east riverside drain between the Barelas Bridge and the I-25 bridge indicated that the flow in the east riverside drain increased by an average of 56.5 cubic feet per day per linear foot (ft3/d/ft) of drain. Discharge measured in the west riverside drain between the Central bridge and the I-25 bridge indicated that flow increased between west drain miles 0 and 4, an average of 53.8 ft3/d/ft of drain, and that flow increased between west drain miles 7 and 10, an average of 44.9 ft3/d/ft of drain. In comparison to the seepage measurement results, the groundwater fluxes from the river through the inner valley alluvial aquifer calculated from Darcy’s Law (qslug) and by the Suzuki-Stallman method (qheat) would account for 20–36 percent or 53–95 percent, respectively, of the total flow in the east riverside drain and 22–31 percent or 19–26 percent, respectively, of the total flow in the west drain. These results indicate that the drains likely also receive water from outside the inner valley.The spatial variability of horizontal hydraulic gradients and groundwater fluxes can be primarily attributed to variability in the distances between the river and riverside drains throughout the study area and geologic heterogeneities in the alluvial aquifer. Temporal variability in the water levels, which control the horizontal hydraulic gradients and fluxes between the Rio Grande and the riverside drains, can be primarily attributed to seasonal fluctuations in river stage and irrigation practices.

  17. Wound drains following thyroid surgery.

    PubMed

    Samraj, K; Gurusamy, K S

    2007-10-17

    The nature and indications for thyroid surgery vary and a perceived risk of haemorrhage post-surgery is one reason why wound drains are frequently inserted. However when a significant bleed occurs, wound drains may become blocked and the drain does not obviate the need for surgery or meticulous haemostasis. The evidence in support of the use of drains post-thyroid surgery is unclear therefore and a systematic review of the best available evidence was undertaken. To determine the effects of inserting a wound drain during thyroid surgery, on wound complications, respiratory complications and mortality. We searched the following databases: Cochrane Wounds Group Specialised Register and the Cochrane Central Register of Controlled Trials (CENTRAL) (issue 1, 2007); MEDLINE (2005 to February 2007); EMBASE (2005 to February 2007); CINAHL (2005 to February 2007) using relevant search strategies. Only randomised controlled trials were eligible for inclusion. Quasi randomised studies were excluded. Studies with participants undergoing any form of thyroid surgery, irrespective of indications, were eligible for inclusion in this review. Studies involving people undergoing parathyroid surgery and lateral neck dissections were excluded. At least 80% follow up (till discharge) was considered essential. Studies were assessed for eligibility and data were extracted by two authors independently, differences were resolved by discussion. Studies were assessed for validity including criteria on whether they used a robust method of random sequence generation and allocation concealment. Missing and unclear data were resolved by contacting the study authors. 13 eligible studies were identified (1646 participants). 11 studies compared drainage with no drainage and found no significant difference in re-operation rates; incidence of respiratory distress and wound infections. Post-operative wound collections needing aspiration or drainage were significantly reduced by drains (RR 0.51, 95% CI 0.27 to 0.97), but a further analysis of the 4 high quality studies showed no significant difference (RR 1.82, 95% CI 0.51 to 6.46). Hospital stay was significantly prolonged in the drain group (WMD 1.18 days, 95% CI 0.73 to 1.63).Eleven studies compared suction drain with no drainage and found no significant difference in re-operation rates; incidence of respiratory distress and wound infection rates. The incidence of collections that required aspiration or drainage without formal re-operation was significantly less in the drained group (RR 0.48, 95% CI 0.25 to 0.92). However, further analysis of only high quality studies showed no significant difference (RR 1.78, 95% CI 0.44 to 7.17). Hospital stay was significantly prolonged in the drain group (WMD 1.20 days, 95% CI 0.77 to 1.63). One study compared open drain with no drain. No participant in either group required re-operation. No data were available regarding the incidence of respiratory distress, wound infection and pain. The incidence of collections needing aspiration or drainage without re-operation was not significantly different between the groups and there was no significant difference in length of hospital stay. One study compared suction drainage with passive closed drainage. None of the participants in the study needed re-operation and data regarding other outcomes were not available. Two studies (180 participants) compared open drainage with suction drainage. One study reported wound infections and minor wound collections, both were not significantly different. The other study reported wound collections requiring intervention and hospital stay; both were not significantly different. None of the participants in either study required re-operation. Data regarding other outcomes were not available. There is no clear evidence that using drains in patients undergoing thyroid operations significantly improves patient outcomes and drains may be associated with an increased length of hospital stay. The existing evidence is from trials involving patients having goitres without mediastinal extension, normal coagulation indices and the operation not involving any lateral neck dissection for lymphadenectomy.

  18. Enhancement of AlGaN/GaN high-electron mobility transistor off-state drain breakdown voltage via backside proton irradiation

    NASA Astrophysics Data System (ADS)

    Ren, F.; Hwang, Y.-H.; Pearton, S. J.; Patrick, Erin; Law, Mark E.

    2015-03-01

    Proton irradiation from the backside of the samples were employed to enhance off-state drain breakdown voltage of AlGaN/GaN high electron mobility transistors (HEMTs) grown on Si substrates. Via holes were fabricated directly under the active area of the HEMTs by etching through the Si substrate for subsequent backside proton irradiation. By taking the advantage of the steep drop at the end of proton energy loss profile, the defects created by the proton irradiation from the backside of the sample could be precisely placed at specific locations inside the AlGaN/GaN HEMT structure. There were no degradation of drain current nor enhancement of off-state drain voltage breakdown voltage observed for the irradiated AlGaN/GaN HEMTs with the proton energy of 225 or 275 keV, for which the defects created by the proton irradiations were intentionally placed in the GaN buffer. HEMTs with defects placed in the 2 dimensional electron gas (2DEG) channel region and AlGaN barrier using 330 or 340 keV protons not only showed degradation of drain current, but also exhibited improvement of the off-state drain breakdown voltage. FLOODS TCAD finite-element simulations were performed to confirm the hypothesis of a virtual gate formed around the 2DEG region to reduce the peak electric field around the gate edges and increase the off-state drain breakdown voltage.

  19. Intracerebral hemorrhage after external ventricular drain placement: an evaluation of risk factors for post-procedural hemorrhagic complications.

    PubMed

    Rowe, A Shaun; Rinehart, Derrick R; Lezatte, Stephanie; Langdon, J Russell

    2018-03-07

    The objective of this study was to evaluate and identify the risk factors for developing a new or enlarged intracranial hemorrhage (ICH) after the placement of an external ventricular drain. A single center, nested case-control study of individuals who received an external ventricular drain from June 1, 2011 to June 30, 2014 was conducted at a large academic medical center. A bivariate analysis was conducted to compare those individuals who experienced a post-procedural intracranial hemorrhage to those who did not experience a new bleed. The variables identified as having a p-value less than 0.15 in the bivariate analysis were then evaluated using a multivariate logistic regression model. Twenty-seven of the eighty-one study participants experienced a new or enlarged intracranial hemorrhage after the placement of an external ventricular drain. Of these twenty-seven patients, 6 individuals received an antiplatelet within ninety-six hours of external ventricular drain placement (p = 0.024). The multivariate logistic regression model identified antiplatelet use within 96 h of external ventricular drain insertion as an independent risk factor for post-EVD ICH (OR 13.1; 95% CI 1.95-88.6; p = 0.008). Compared to those study participants who did not receive an antiplatelet within 96 h of external ventricular drain placement, those participants who did receive an antiplatelet were 13.1 times more likely to exhibit a new or enlarged intracranial hemorrhage.

  20. The Nelaton Catheter Guard for Safe and Effective Placement of Subdural Drain for Two-Burr-Hole Trephination in Chronic Subdural Hematoma: A Technical Note.

    PubMed

    Fichtner, Jens; Beck, Jürgen; Raabe, A; Stieglitz, Lennart Henning

    2015-09-01

    For chronic subdural hematoma, placement of a Blake drain with a two-burr-hole craniotomy is often preferred. However, the placement of such drains carries the risk of penetrating the brain surface or damaging superficial venous structures. To describe the use of a Nelaton catheter for the placement of a subdural drain in two-burr-hole trephination for chronic subdural hematoma. A Nelaton catheter was used to guide placement of a Blake drain into the subdural hematoma cavity and provide irrigation of the hematoma cavity. With the two-burr-hole method, the Nelaton catheter could be removed easily via the frontal burr hole after the Blake drain was in place. We used the Nelaton catheters in many surgical procedures and found it a safe and easy technique. This method allows the surgeon to safely direct the catheter into the correct position in the subdural space. This tool has two advantages. First, the use of a small and flexible Nelaton catheter is a safe method for irrigation of a chronic subdural hematoma cavity. Second, in comparison with insertion of subdural drainage alone through a burr hole, the placement of the Nelaton catheter in subdural space is easier and the risk of damaging relevant structures such as cortical tissue or bridging veins is lower. Thus this technique may help to avoid complications when placing a subdural drain. Georg Thieme Verlag KG Stuttgart · New York.

  1. Acetic acid as a decontamination method for sink drains in a nosocomial outbreak of metallo-β-lactamase-producing Pseudomonas aeruginosa.

    PubMed

    Stjärne Aspelund, A; Sjöström, K; Olsson Liljequist, B; Mörgelin, M; Melander, E; Påhlman, L I

    2016-09-01

    Pseudomonas aeruginosa may colonize water systems via biofilm formation. In hospital environments, contaminated sinks have been associated with nosocomial transmission. Here we describe a prolonged outbreak of a metallo-β-lactamase-producing P. aeruginosa (Pae-MBL) associated with sink drains, and propose a previously unreported decontamination method with acetic acid. To describe a nosocomial outbreak of Pae-MBL associated with hospital sink drains and to evaluate acetic acid as a decontamination method. The outbreak was investigated by searching the microbiology database, microbiological sampling and strain typing. Antibacterial and antibiofilm properties of acetic acid were evaluated in vitro. Pae-MBL-positive sinks were treated with 24% acetic acid once weekly and monitored with repeated cultures. Fourteen patients with positive cultures for Pae-MBL were identified from 2008 to 2014. The patients had been admitted to three wards, where screening discovered Pae-MBL in 12 sink drains located in the patient bathrooms. Typing of clinical and sink drain isolates revealed identical or closely related strains. Pae-MBL biofilm was highly sensitive to acetic acid with a minimum biofilm eradication concentration of 0.75% (range: 0.19-1.5). Weekly treatment of colonized sink drains with acetic acid resulted in negative cultures and terminated transmission. Acetic acid is highly effective against Pae-MBL biofilms, and may be used as a simple method to decontaminate sink drains and to prevent nosocomial transmission. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Transport of agrichemicals to ground and surface water in a small central Indiana watershed

    USGS Publications Warehouse

    Fenelon, J.M.; Moore, R.C.

    1998-01-01

    The occurrence, distribution, concentrations, and pathways of agrichemicals in water were investigated in the Sugar Creek watershed, a poorly drained agricultural watershed typical of many watersheds in the midwestern USA. Water samples from Sugar Creek, two tile drains, and 11 wells along a groundwater flowpath to Sugar Creek were collected between May 1992 and August 1996 and analyzed for N and pesticide compounds. Nitrate was the principal N species and pesticides were common in alluvial water-bearing units in the Sugar Creek floodplain. In the confined stratified drift aquifers, ammonia was the principal N species and pesticides were rare. Tile drains directly affected the water quality in Sugar Creek by transporting Soil pore water and shallow groundwater containing high concentrations of nitrate (NO3) and pesticides to the creek. When tile drains were flowing (typically December through July), elevated NO3 concentrations (2-10 mg/L NO3N) in the creek correlated with high NO3 concentrations (2-23 mg/L NO3N) in tile drains discharging to the creek. Likewise, with concentrations of atrazine and atrazine metabolites, seasonal trends in the tile-drain effluent were similar to seasonal trends in Sugar Creek. When tile drains went dry, NO3 concentrations in the creek were low, indicating most groundwater discharge to the creek consisted of old or denitrified water. Trace levels of pesticides in the creek at low flow probably were the result of seepage from alluvial water-bearing units.

  3. Conservation of peat soils in agricultural use by infiltration of ditch water via submerged drains: results of a case study in the western peat soil area of The Netherlands

    NASA Astrophysics Data System (ADS)

    van den Akker, Jan J. H.; Hendriks, Rob F. A.

    2017-04-01

    About 8% of all soils in The Netherlands are peat soils which almost all drained with ditches and mainly in agricultural use as permanent pasture for dairy farming. The largest part of the peat meadow area is situated in the densely populated western provinces South- and North-Holland and Utrecht and is called the Green Heart and is valued as a historic open landscape. Conservation of these peats soil by raising water levels and converting the peat meadow areas mainly in very extensive grasslands or wet nature proved to be a very costly and slow process due to the strong opposition of farmers and many others who value the open cultural historic landscape and meadow birds. The use of submerged drains seems to be a promising solution acceptable for dairy farmers and effective in diminishing peat oxidation and so the associated subsidence and CO2 emissions. Oxidation of peat soils strongly depends on the depth of groundwater levels in dry periods. In dry periods the groundwater level can be 30 to 50 cm lower than the ditchwater level, which is 30 - 60 cm below soil surface. Infiltration of ditchwater via submerged drain can raise the groundwater level up to the ditchwater level and diminish the oxidation and associated subsidence and CO2 emissions with at least 50%. Since 2003 several pilots with submerged drains are started to check this theoretical reduction and to answer questions raised about water usage and water quality and grass yields and trafficability etcetera. In our presentation we focus on the results of a pilot in South-Holland concerning the hydrological aspects, however, include results from the other pilots to consider the long term aspects such as the reduction of subsidence. The use of submerged drains proves to be promising to reduce peat oxidation and so subsidence and CO2 emissions with at least 50%. Grass yields are more or less equal in parcels with versus parcels without submerged drains. Trafficability in wet periods is better and trampling less by the draining effect of submerged drains. This reduces losses of grass yield by trampling and increases the length of the grazing season. The use of submerged drains causes a higher water usage, however, raising ditchwater levels to derive the same peat soil conservation would require a higher amount of inlet water. The impact on ditchwater quality is in most cases positive, however, sometimes slightly negative. For the dairy farmer submerged drains are economically in the short term not effective, however in the longer term increasingly positive. For the society as a whole the use of submerged drains is a very cost effective way to reduce CO2 emissions and subsidence of peat soils in agricultural use.

  4. Effects of Orifice-Weir Outlet on Hydrology and Water Quality of a Drained Forested Watershed

    Treesearch

    Devendra M. Amatya; R. Wayne Skaggs; J.W. Gilliam; J.H. Hughes

    2003-01-01

    Orifice-weir structures at ditch outlets are proposed to reduce peak drainage rates during high flows and to store water during the growing season in poorly drained managed pine plantations. Two coastal watersheds, one conventionally drained (D1) and another with an orifice-weir outlet (D3), were monitored to examine the effects of this orifice treatment on drainage...

  5. Foliar nutrient concentrations in balsam fir as affected by soil drainage and methods of slash disposal

    Treesearch

    Miroslaw M. Czapowskyj

    1979-01-01

    Foliar nutrient concentrations in young balsam fir growing on strip clearcuts were assessed in relation to soil drainage and three methods of slash disposal. Concentrations of N, K, and Mn were higher for trees growing on well-drained soils than for trees growing on poorly drained soils. Mo concentrations were higher on poorly drained soils and all other measured...

  6. Land-Based Dlischarge Environmental Assessment at Beale Air Force Base, California

    DTIC Science & Technology

    2009-09-01

    Attainment Designations ................. 3-3 3-3 Federally Listed Species Evaluated...drain pit includes special design features to ensure that drained effluent does not enter Hutchinson Creek. The drain pit would consist of a pipe with...The cattle fence would consist of metal T- posts , five-strand cattle wire, and a standard cattle gate with wooden posts . The wooden posts would be

  7. Ionic composition and nitrate in drainage water from fields fertilized with different nitrogen sources, middle swamp watershed, North Carolina, August 2000-August 2001

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2004-01-01

    A study was conducted from August 2000 to August 2001 to characterize the influence of fertilizer use from different nitrogen sources on the quality of drainage water from 11 subsurface tile drains and 7 surface field ditches in a North Carolina Coastal Plain watershed. Agricultural fields receiving commercial fertilizer (conventional sites), swine lagoon effluent (spray sites), and wastewater-treatment plant sludge (sludge site) in the Middle Swamp watershed were investigated. The ionic composition of drainage water in tile drains and ditches varied depending on fertilizer source type. The dominant ions identified in water samples from tile drains and ditches include calcium, magnesium, sodium, chloride, nitrate, and sulfate, with tile drains generally having lower pH, low or no bicarbonates, and higher nitrate and chloride concentrations. Based on fertilizer source type, median nitrate-nitrogen concentrations were significantly higher at spray sites (32.0 milligrams per liter for tiles and 8.2 milligrams per liter for ditches) relative to conventional sites (6.8 milligrams per liter for tiles and 2.7 milligrams per liter for ditches). The median instantaneous nitrate-nitrogen yields also were significantly higher at spray sites (420 grams of nitrogen per hectare per day for tile drains and 15.6 grams of nitrogen per hectare per day for ditches) relative to conventional sites (25 grams of nitrogen per hectare per day for tile drains and 8.1 grams of nitrogen per hectare per day for ditches). The tile drain site where sludge is applied had a median nitrate-nitrogen concentration of 10.5 milligrams per liter and a median instantaneous nitrate-nitrogen yield of 93 grams of nitrogen per hectare per day, which were intermediate to those of the conventional and spray tile drain sites. Results from this study indicate that nitrogen loadings and subsequent edge-of-field nitrate-nitrogen yields through tile drains and ditches were significantly higher at sites receiving applications of swine lagoon effluent compared to sites receiving commercial fertilizer.

  8. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2012-08-15

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevadamore » National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO« less

  9. Novel technique of source and drain engineering for dual-material double-gate (DMDG) SOI MOSFETS

    NASA Astrophysics Data System (ADS)

    Yadav, Himanshu; Malviya, Abhishek Kumar; Chauhan, R. K.

    2018-04-01

    The dual-metal dual-gate (DMDG) SOI has been used with Dual Sided Source and Drain Engineered 50nm SOI MOSFET with various high-k gate oxide. It has been scrutinized in this work to enhance its electrical performance. The proposed structure is designed by creating Dual Sided Source and Drain Modification and its characteristics are evaluated on ATLAS device simulator. The consequence of this dual sided assorted doping on source and drain side of the DMDG transistor has better leakage current immunity and heightened ION current with higher ION to IOFF Ratio. Which thereby vesting the proposed device appropriate for low power digital applications.

  10. Frequency dependence and passive drains in fish-eye lenses

    NASA Astrophysics Data System (ADS)

    Quevedo-Teruel, O.; Mitchell-Thomas, R. C.; Hao, Y.

    2012-11-01

    The Maxwell fish eye lens has previously been reported as being capable of the much sought after phenomenon of subwavelength imaging. The inclusion of a drain in this system is considered crucial to the imaging ability, although its role is the topic of much debate. This paper provides a numerical investigation into a practical implementation of a drain in such systems, and analyzes the strong frequency dependence of both the Maxwell fish eye lens and an alternative, the Miñano lens. The imaging capability of these types of lens is questioned, and it is supported by simulations involving various configurations of drain arrays. Finally, a discussion of the near-field and evanescent wave contribution is given.

  11. The application of remote sensing technology to the solution of problems in the management of resources in Indiana

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A. (Principal Investigator); Mroczynski, R. P.

    1977-01-01

    The author has identified the following significant results. The Lydich quadrangle area was successfully classified into seven cover types: (1) trees, (2) poorly drained soil and water, (3) pasture land, (4) well drained brown soil, (5) moderately well drained dark brown soil, (6) moderately drained soil, and (7) medium to poorly drained soil. Measurements of the percent of mapping unit represented by a named soil series range from 44 to 55 percent. If the class identified as vegetation is combined with the named unit, the range increases from 54 to 64 percent. The Xenia mapping unit was the only unit represented by less than 50 percent of the named unit. Results from the intensive tent moth study in Owensburg and Williams were interpreted from 70 mm color infrared and visually transferred to maps. A correction factor was necessary, because the date the sample photography was taken was a month later than the intensive site data (CF x acres defoliated in each level = expanded defoliated acres).

  12. Hydraulic characteristics of an underdrained irrigation circle, Muskegon County, wastewater disposal system, Michigan

    USGS Publications Warehouse

    McDonald, M.G.

    1981-01-01

    Muskegon County, Michigan, disposes of waste water by spray irrigating farmland on its waste-disposal site. Buried drains in the highly permeable unconfined aquifer at the site control the level of the water table. Hydraulic conductivity of the aquifer and drain-leakance, the reciprocal of resistance to flow into the drains, was determined at a representative irrigation circle while calibrating a model of the ground-water flow system. Hydraulic conductivity is 0.00055 meter per second in the north zone of the circle and 0.00039 meter per second in the south zone. Drain leakance is low in both zones: 2.9 x 10-6 meters per second in the north and 9.5 x 10-6 meters per second in the south. Low drain leakance is responsible for waterlogging when irrigation rates are maintained at design levels. The capacity of the study circle to accept waste water is 35 percent less than design capacity.

  13. Establishment and application of the estimation model for pollutant concentrfation in agriculture drain

    NASA Astrophysics Data System (ADS)

    Li, Qiangkun; Hu, Yawei; Jia, Qian; Song, Changji

    2018-02-01

    It is the key point of quantitative research on agricultural non-point source pollution load, the estimation of pollutant concentration in agricultural drain. In the guidance of uncertainty theory, the synthesis of fertilization and irrigation is used as an impulse input to the farmland, meanwhile, the pollutant concentration in agricultural drain is looked as the response process corresponding to the impulse input. The migration and transformation of pollutant in soil is expressed by Inverse Gaussian Probability Density Function. The law of pollutants migration and transformation in soil at crop different growth periods is reflected by adjusting parameters of Inverse Gaussian Distribution. Based on above, the estimation model for pollutant concentration in agricultural drain at field scale was constructed. Taking the of Qing Tong Xia Irrigation District in Ningxia as an example, the concentration of nitrate nitrogen and total phosphorus in agricultural drain was simulated by this model. The results show that the simulated results accorded with measured data approximately and Nash-Sutcliffe coefficients were 0.972 and 0.964, respectively.

  14. Organic Field Effect Transistors for Large Format Electronics

    DTIC Science & Technology

    2003-06-19

    calculated output characteristics for a p-channel substrate insulator Organic layer Source Drain Gate 6 pentacene OFET with 2µm source to drain spacing...conventional transistors. Figure 3. Calculated output characteristics of a pentacene OFET with image charge induced contact barrier...Cross section view of a part of an OFET in the vicinity of a source or drain contact. local ordering due to surface energy effects. The development of

  15. Influence of eastern hemlock (Tsuga canadensis) forests on aquatic invertebrate assemblages in headwater streams

    USGS Publications Warehouse

    Snyder, C.D.; Young, J.A.; Lemarie, D.P.; Smith, D.R.

    2002-01-01

    We conducted a comparative study in the Delaware Water Gap National Recreation Area to determine the potential long-term impacts of hemlock forest decline on stream benthic macroinvertebrate assemblages. Hemlock forests throughout eastern North America have been declining because of the hemlock woolly adelgid, an exotic insect pest. We found aquatic invertebrate community structure to be strongly correlated with forest composition. Streams draining hemlock forests supported significantly more total taxa than streams draining mixed hardwood forests, and over 8% of the taxa were strongly associated with hemlock. In addition, invertebrate taxa were more evenly distributed (i.e., higher Simpson's evenness values) in hemlock-drained streams. In contrast, the number of rare species and total densities were significantly lower in streams draining hemlock, suggesting that diversity differences observed between forest types were not related to stochastic factors associated with sampling and that streams draining mixed hardwood forests may be more productive. Analysis of stream habitat data indicated that streams draining hemlock forests had more stable thermal and hydrologic regimes. Our findings suggest that hemlock decline may result in long-term changes in headwater ecosystems leading to reductions in both within-stream (i.e., alpha) and park-wide (i.e., gamma) benthic community diversity.

  16. Is a drain tube necessary for minimally invasive lumbar spine fusion surgery?

    PubMed

    Hung, Pei-I; Chang, Ming-Chau; Chou, Po-Hsin; Lin, Hsi-Hsien; Wang, Shih-Tien; Liu, Chien-Lin

    2017-03-01

    This study aimed to evaluate if closed suction wound drainage is necessary in minimally invasive surgery of transforaminal lumbar interbody fusion (MIS TLIF). This is a prospective randomized clinical study. Fifty-six patients who underwent MIS TLIF were randomly divided into groups A (with a closed suction wound drainage) and B (without tube drainage). Surgical duration, intraoperative blood loss, timing of ambulation, length of hospital stay and complications were recorded. Patients were followed up for an average of 25.3 months. Clinical outcome was assessed using the Oswestry disability index and visual analogue scale (VAS). Fusion rate was classified with the Bridwell grading system, based on plain radiograph. Both groups had similar patient demographics. The use of drains had no significant influence on perioperative parameters including operative time, estimated blood loss, length of stay and complications. Patients in group B started ambulation 1 day earlier than patients in group A (p < 0.001). Clinical outcomes were comparable between group A and group B. A drain tube can lead to pain, anxiety and discomfort during the postoperative period. We conclude that drain tubes are not necessary for MIS TLIF. Patients without drains had the benefit of earlier ambulation than those with drains.

  17. Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils.

    PubMed

    Espenberg, Mikk; Truu, Marika; Mander, Ülo; Kasak, Kuno; Nõlvak, Hiie; Ligi, Teele; Oopkaup, Kristjan; Maddison, Martin; Truu, Jaak

    2018-03-16

    Tropical peatlands, which play a crucial role in the maintenance of different ecosystem services, are increasingly drained for agriculture, forestry, peat extraction and human settlement purposes. The present study investigated the differences between natural and drained sites of a tropical peatland in the community structure of soil bacteria and archaea and their potential to perform nitrogen transformation processes. The results indicate significant dissimilarities in the structure of soil bacterial and archaeal communities as well as nirK, nirS, nosZ, nifH and archaeal amoA gene-possessing microbial communities. The reduced denitrification and N 2 -fixing potential was detected in the drained tropical peatland soil. In undisturbed peatland soil, the N 2 O emission was primarily related to nirS-type denitrifiers and dissimilatory nitrate reduction to ammonium, while the conversion of N 2 O to N 2 was controlled by microbes possessing nosZ clade I genes. The denitrifying microbial community of the drained site differed significantly from the natural site community. The main reducers of N 2 O were microbes harbouring nosZ clade II genes in the drained site. Additionally, the importance of DNRA process as one of the controlling mechanisms of N 2 O fluxes in the natural peatlands of the tropics revealed from the results of the study.

  18. Analytical solutions for flow fields near drain-and-gate reactive barriers.

    PubMed

    Klammler, Harald; Hatfield, Kirk; Kacimov, Anvar

    2010-01-01

    Permeable reactive barriers (PRBs) are a popular technology for passive contaminant remediation in aquifers through installation of reactive materials in the pathway of a plume. Of fundamental importance are the degree of remediation inside the reactor (residence time) and the portion of groundwater intercepted by a PRB (capture width). Based on a two-dimensional conformal mapping approach (previously used in related work), the latter is studied in the present work for drain-and-gate (DG) PRBs, which may possess a collector and a distributor drain ("full" configuration) or a collector drain only ("simple" configuration). Inherent assumptions are a homogeneous unbounded aquifer with a uniform far field, in which highly permeable drains establish constant head boundaries. Solutions for aquifer flow fields in terms of the complex potential are derived, illustrated, and analyzed for doubly symmetric DG configurations and arbitrary reactor hydraulic resistance as well as ambient groundwater flow direction. A series of practitioner-friendly charts for capture width is given to assist in PRB design and optimization without requiring complex mathematics. DG PRBs are identified as more susceptible to flow divergence around the reactor than configurations using impermeable side structures (e.g., funnel-and-gate), and deployment of impermeable walls on drains is seen to mitigate this problem under certain circumstances.

  19. Leaching of dissolved phosphorus from tile-drained agricultural areas.

    PubMed

    Andersen, H E; Windolf, J; Kronvang, B

    2016-01-01

    We investigated leaching of dissolved phosphorus (P) from 45 tile-drains representing animal husbandry farms in all regions of Denmark. Leaching of P via tile-drains exhibits a high degree of spatial heterogeneity with a low concentration in the majority of tile-drains and few tile-drains (15% in our investigation) having high to very high concentration of dissolved P. The share of dissolved organic P (DOP) was high (up to 96%). Leaching of DOP has hitherto been a somewhat overlooked P loss pathway in Danish soils and the mechanisms of mobilization and transport of DOP needs more investigation. We found a high correlation between Olsen-P and water extractable P. Water extractable P is regarded as an indicator of risk of loss of dissolved P. Our findings indicate that Olsen-P, which is measured routinely in Danish agricultural soils, may be a useful proxy for the P leaching potential of soils. However, we found no straight-forward correlation between leaching potential of the top soil layer (expressed as either degree of P saturation, Olsen-P or water extractable P) and the measured concentration of dissolved P in the tile-drain. This underlines that not only the source of P but also the P loss pathway must be taken into account when evaluating the risk of P loss.

  20. Does pilonidal abscess heal quicker with off-midline incision and drainage?

    PubMed

    Webb, P M; Wysocki, A P

    2011-06-01

    No clinical trials have been done to guide the surgeon in the optimal technique of draining a pilonidal abscess. The aim of our study was to investigate whether the location of the incision influences wound healing. Electronic records from the surgical database at our 200-bed district general hospital were reviewed for operative technique (midline vs. lateral) for patients who underwent incision and drainage for acute pilonidal abscess between January 2003 and February 2010. These patients were admitted from the Emergency Department with a pilonidal abscess, underwent operative drainage, and returned for follow-up. The main outcome measure was wound healing time. Two hundred and forty-three pilonidal abscesses were drained, 134 with a lateral and 74 with a midline incision. All patients underwent simple longitudinal incision. No patient underwent de-roofing, marsupialisation, or closure. Forty-eight patients with midline drainage who returned for follow-up were matched for gender, age, and microbiology culture results with patients who underwent lateral drainage. Almost all were drained under general anesthesia with a median postoperative stay of 1 day. The overall length of follow-up was the same in both groups (P = 0.13). Abscesses that did not heal were followed-up for the same period of time irrespective of incision type (P = 0.48). Abscesses that healed after midline incision took approximately 3 weeks longer than those drained via a lateral incision (P = 0.02). Our study has limitations since it was a retrospective study that did not capture patients whose abscess drained spontaneously or were drained in the emergency department. Pilonidal abscess should be drained away from the midline.

  1. A novel explicit approach to model bromide and pesticide transport in connected soil structures

    NASA Astrophysics Data System (ADS)

    Klaus, J.; Zehe, E.

    2011-07-01

    The present study tests whether an explicit treatment of worm burrows and tile drains as connected structures is feasible for simulating water flow, bromide and pesticide transport in structured heterogeneous soils at hillslope scale. The essence is to represent worm burrows as morphologically connected paths of low flow resistance in a hillslope model. A recent Monte Carlo study (Klaus and Zehe, 2010, Hydrological Processes, 24, p. 1595-1609) revealed that this approach allowed successful reproduction of tile drain event discharge recorded during an irrigation experiment at a tile drained field site. However, several "hillslope architectures" that were all consistent with the available extensive data base allowed a good reproduction of tile drain flow response. Our second objective was thus to find out whether this "equifinality" in spatial model setups may be reduced when including bromide tracer data in the model falsification process. We thus simulated transport of bromide for the 13 spatial model setups that performed best with respect to reproduce tile drain event discharge, without any further calibration. All model setups allowed a very good prediction of the temporal dynamics of cumulated bromide leaching into the tile drain, while only four of them matched the accumulated water balance and accumulated bromide loss into the tile drain. The number of behavioural model architectures could thus be reduced to four. One of those setups was used for simulating transport of Isoproturon, using different parameter combinations to characterise adsorption according to the Footprint data base. Simulations could, however, only reproduce the observed leaching behaviour, when we allowed for retardation coefficients that were very close to one.

  2. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska

    USGS Publications Warehouse

    Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey Walter

    2012-01-01

    Thermokarst lakes and peat-accumulating drained lake basins cover a substantial portion of Arctic lowland landscapes, yet the role of thermokarst lake drainage and ensuing peat formation in landscape-scale carbon (C) budgets remains understudied. Here we use measurements of terrestrial peat thickness, bulk density, organic matter content, and basal radiocarbon age from permafrost cores, soil pits, and exposures in vegetated, drained lake basins to characterize regional lake drainage chronology, C accumulation rates, and the role of thermokarst-lake cycling in carbon dynamics throughout the Holocene on the northern Seward Peninsula, Alaska. Most detectable lake drainage events occurred within the last 4,000 years with the highest drainage frequency during the medieval climate anomaly. Peat accumulation rates were highest in young (50–500 years) drained lake basins (35.2 g C m−2 yr−1) and decreased exponentially with time since drainage to 9 g C m−2 yr−1 in the oldest basins. Spatial analyses of terrestrial peat depth, basal peat radiocarbon ages, basin geomorphology, and satellite-derived land surface properties (Normalized Difference Vegetation Index (NDVI); Minimum Noise Fraction (MNF)) from Landsat satellite data revealed significant relationships between peat thickness and mean basin NDVI or MNF. By upscaling observed relationships, we infer that drained thermokarst lake basins, covering 391 km2 (76%) of the 515 km2 study region, store 6.4–6.6 Tg organic C in drained lake basin terrestrial peat. Peat accumulation in drained lake basins likely serves to offset greenhouse gas release from thermokarst-impacted landscapes and should be incorporated in landscape-scale C budgets.

  3. Multiyear nutrient removal performance of three constructed wetlands intercepting tile drain flows from grazed pastures.

    PubMed

    Tanner, Chris C; Sukias, James P S

    2011-01-01

    Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.

  4. The optimal protocol to reduce blood loss and blood transfusion after unilateral total knee replacement: Low-dose IA-TXA plus 30-min drain clamping versus drainage clamping for the first 3 h without IA-TXA.

    PubMed

    Park, Joo Hyun; Choi, Sung Wook; Shin, Eun Ho; Park, Myung Hoon; Kim, Myung Ku

    2017-01-01

    Although intraarticular tranexamic acid (IA-TXA) administration or drainage clamping are popular methods used to reduce blood loss after total knee replacement (TKR), the protocol remains controversial. We aimed (1) to establish new protocols through investigating whether two methods, that is, low-dose (500 mg) IA-TXA plus 30-min drain clamping and drainage clamping for the first 3 h without IA-TXA, can reduce blood loss and blood transfusion after unilateral TKR and (2) to make recommendations related to clinical application. This study, conducted from September 2014 to June 2016 related to enrolled 95 patients with primary osteoarthritis who were to have a unilateral cemented TKR, was nonrandomized and retrospective. In group A, the drain was released following tourniquet deflation. In group B, 500-mg TXA was injected into the knee joint via a drain tube after fascia closure and the drain was clamped for the first 30 min to prevent leakage. In group C, the drain was clamped for the first 3-h postoperation. Demographic characteristics and clinical data were collected, including the levels of hematocrit (Hct), the total blood loss (TBL), drained blood volume (BV), the amount of blood transfused, and any complications that developed. We found a significantly lower postoperative TBL, drained BV, decreasing Hct level, and less transfused BV in the IA-TXA injection group (group B) and the 3-h drainage clamping group (group C) compared to the conventional negative drainage group (group A; p < 0.001). There was no significant difference between groups B and C ( p = 0.99). The drainage clamping method can be safer than IA-TXA administration in patients with risk factor of venous thromboembolic complication. Furthermore, the IA-TXA administration can be more optimal than drainage clamping in patients with high bleeding tendency or lateral retinacular release during TKR, who would be concerned about postoperative wound complication.

  5. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozemeijer, J. C.; Visser, A.; Borren, W.

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.« less

  6. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    DOE PAGES

    Rozemeijer, J. C.; Visser, A.; Borren, W.; ...

    2016-01-19

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.« less

  7. Design and performance of limestone drains to increase pH and remove metals from acidic mine drainage, Chapter 2

    USGS Publications Warehouse

    Cravotta,, Charles A.; Watzlaf, George R.

    2002-01-01

    Data on the construction characteristics and the composition of influent and effluent at 13 underground, limestone-filled drains in Pennsylvania and Maryland are reported to evaluate the design and performance of limestone drains for the attenuation of acidity and dissolved metals in acidic mine drainage. On the basis of the initial mass of limestone, dimensions of the drains, and average flow rates, the initial porosity and average detention time for each drain were computed. Calculated porosity ranged from 0.12 to 0.50 with corresponding detention times at average flow from 1.3 to 33 h. The effectiveness of treatment was dependent on influent chemistry, detention time, and limestone purity. At two sites where influent contained elevated dissolved Al (>5 mg/liter), drain performance declined rapidly; elsewhere the drains consistently produced near-neutral effluent, even when influent contained small concentrations of dissolved Fe^+ (<5 mg/liter). Rates of limestone dissolution computed on the basis of average long-term Ca ion flux normalized by initial mass and purity of limestone at each of the drains ranged from 0.008 to 0.079 year-1. Data for alkalinity concentration and flux during 11-day closed-container tests using an initial mass of 4kg crushed limestone and a solution volume of 2.3 liter yielded dissolution rate constants that were comparable to these long-term field rates. An analytical method is proposed using closed-container test data to evaluate long-term performance (longevity) or to estimate the mass of limestone needed for a limestone treatment. This method condisers flow rate, influent alkalinity, steady-state alkalinity of effluent, and desired effluent alkalinity or detention time at a future time(s) and aplies first-order rate laws for limestone dissolution (continuous) and production of alkalinity (bounded).

  8. Characterizing the Frequency and Elevation of Rapid Drainage Events in West Greenland

    NASA Astrophysics Data System (ADS)

    Cooley, S.; Christoffersen, P.

    2016-12-01

    Rapid drainage of supraglacial lakes on the Greenland Ice Sheet is critical for the establishment of surface-to-bed hydrologic connections and the subsequent transfer of water from surface to bed. Yet, estimates of the number and spatial distribution of rapidly draining lakes vary widely due to limitations in the temporal frequency of image collection and obscureness by cloud. So far, no study has assessed the impact of these observation biases. In this study, we examine the frequency and elevation of rapidly draining lakes in central West Greenland, from 68°N to 72.6°N, and we make a robust statistical analysis to estimate more accurately the likelihood of lakes draining rapidly. Using MODIS imagery and a fully automated lake detection method, we map more than 500 supraglacial lakes per year over a 63000 km2 study area from 2000-2015. Through testing four different definitions of rapidly draining lakes from previously published studies, we find that the number of rapidly draining lakes varies from 3% to 38%. Logistic regression between rapid drainage events and image sampling frequency demonstrates that the number of rapid drainage events is strongly dependent on cloud-free observation percentage. We then develop three new drainage criteria and apply an observation bias correction that suggests a true rapid drainage probability between 36% and 45%, considerably higher than previous studies without bias assessment have reported. We find rapid-draining lakes are on average larger and disappear earlier than slow-draining lakes, and we also observe no elevation differences for the lakes detected as rapidly draining. We conclude a) that methodological problems in rapid drainage research caused by observation bias and varying detection methods have obscured large-scale rapid drainage characteristics and b) that the lack of evidence for an elevation limit on rapid drainage suggests surface-to-bed hydrologic connections may continue to propagate inland as climate warms.

  9. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J. C.; Visser, A.; Borren, W.; Winegram, M.; van der Velde, Y.; Klein, J.; Broers, H. P.

    2016-01-01

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates and the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007-2008) and after (2009-2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. However, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.

  10. Year 3 Summary Report: Baseline Selenium Monitoring of Agricultural Drains Operated by the Imperial Irrigation District in the Salton Sea Basin

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2008-01-01

    This report summarizes findings from the third year of a 4-year-long field investigation to document selected baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water quality and fish species were measured at roughly quarterly intervals from April 2007 to January 2008. The water quality measurements included total suspended solids and total (particulate plus dissolved) selenium. In addition, during April and October 2007, water samples were collected from seven intensively monitored drains for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices (particulate organic detritus, filamentous algae, net plankton, and midge [chironomid] larvae), and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for desert pupfish (Cyprinodon macularius), an endangered species that we were not permitted to take for selenium determinations. Water quality values were typical of surface waters in a hot desert climate. A few drains exhibited brackish, near anoxic conditions especially during the summer and fall when water temperatures occasionally exceeded 30 degrees C. In general, total selenium concentrations in water varied directly with conductivity and inversely with pH. Although desert pupfish were found in several drains, sometimes in relatively high numbers, the fish faunas of most drains and ponds were dominated by nonnative species, especially red shiner (Cyprinella lutrensis), mosquitofish, and mollies. Dissolved selenium in water samples from the seven intensively monitored drains ranged from 0.700 to 24.1 ug/L, with selenate as the major constituent in all samples. Selenium concentrations in other matrices varied widely among drains and ponds, with at least one drain (for example, Trifolium 18) exhibiting especially high concentrations in food chain organisms (in detritus, 13.3-28.9 ug Se/g; in net plankton, 11.9-19.3 ug Se/g; in midge larvae, 12.7-15.4 ug Se/g) and fish (in mollies, 12.8-25.1 ug Se/g; in mosquitofish, 13.2-20.2 ug Se/g; all concentrations are dry weights). These elevated concentrations approached or exceeded average concentrations reported from flowing waters in seleniferous wetlands in the San Joaquin Valley.

  11. Final Report: Baseline Selenium Monitoring of Agricultural Drains Operated by the Imperial Irrigation District in the Salton Sea Basin, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2010-01-01

    This report summarizes comprehensive findings from a 4-year-long field investigation to document baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water-quality collections and fish community assessments were conducted on as many as 16 sampling dates at roughly quarterly intervals from July 2005 to April 2009. The water-quality measurements included total suspended solids and total (particulate plus dissolved) selenium. With one exception, fish were surveyed with baited minnow traps at quarterly intervals during the same time period. However, in July 2007, fish surveys were not conducted because we lacked permission from the California Department of Fish and Game for incidental take of desert pupfish (Cyprinodon macularius), an endangered species. During April and October 2006-08, water samples also were collected from seven intensively monitored drains (which were selected from the 29 total drains) for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices [particulate organic detritus, filamentous algae, net plankton, and midge (chironomid) larvae], and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for pupfish, which we were not permitted to sacrifice for selenium determinations. Water quality (temperature, dissolved oxygen, pH, specific conductance, and turbidity) values were typical of surface waters in a hot, arid climate. A few drains exhibited brackish, near-anoxic conditions, especially during summer and fall when water temperatures occasionally exceeded 30 degrees Celsius. Total selenium concentrations in water were directly correlated with salinity and inversely correlated with total suspended-solids concentrations. Although pupfish were found in several drains, sometimes in relatively high numbers, the fish faunas of most drains and ponds were dominated by nonnative species, especially mosquitofish, mollies, and red shiner (Cyprinella lutrensis). Dissolved selenium in water samples from the seven intensively monitored drains ranged from 0.700 to 32.8 micrograms per liter (?g/L), with selenate as the major constituent. Selenium concentrations in other matrices varied widely among drains and ponds, with one drain (Trifolium 18) exhibiting especially high concentrations in food chain matrices [particulate organic detritus, 5.98-58.0 micrograms of selenium per gram (?g Se/g); midge larvae, 12.7-50.6 ?g Se/g] and in fish (mosquitofish, 13.2-20.2 ?g Se/g; sailfin mollies, 12.8-30.4 ?g Se/g; all concentrations are based on dry weights). Although selenium was accumulated by all trophic levels, biomagnification (defined as a progressive increase in selenium concentration from one trophic level to the next higher level) in midge larvae and fish occurred only at lower exposure concentrations. Judging mostly from circumstantial evidence, the health and wellbeing of poeciliids and pupfish are not believed to be threatened by ambient exposure to selenium in the drains and ponds.

  12. Development of a 30mm Frangible Projectile Crimper

    DTIC Science & Technology

    1977-02-01

    located at end of tank. Open drain valve to drain condensation Tht outomatic lank drain equipped compressor makes this unnecessary. PRESSURE SWITCH : The... pressure switch is automatic and will start compressor at the low pressure and stop when the maximum pressure is leached. It is adjusted to start...of the check valve, located between the compressor and the tank, together with the relief valve on pressure switch relief valve units, and the cen

  13. Simulation study of short-channel effects of tunnel field-effect transistors

    NASA Astrophysics Data System (ADS)

    Fukuda, Koichi; Asai, Hidehiro; Hattori, Junichi; Mori, Takahiro; Morita, Yukinori; Mizubayashi, Wataru; Masahara, Meishoku; Migita, Shinji; Ota, Hiroyuki; Endo, Kazuhiro; Matsukawa, Takashi

    2018-04-01

    Short-channel effects of tunnel field-effect transistors (FETs) are investigated in detail using simulations of a nonlocal band-to-band tunneling model. Discussion is limited to silicon. Several simulation scenarios were considered to address different effects, such as source overlap and drain offset effects. Adopting the drain offset to suppress the drain leakage current suppressed the short channel effects. The physical mechanism underlying the short-channel behavior of the tunnel FETs (TFETs) was very different from that of metal-oxide-semiconductor FETs (MOSFETs). The minimal gate lengths that do not lose on-state current by one order are shown to be 3 nm for single-gate structures and 2 nm for double gate structures, as determined from the drain offset structure.

  14. Ultrasound guided transrectal catheter drainage of pelvic collections.

    PubMed

    Thakral, Anuj; Sundareyan, Ramaniwas; Kumar, Sheo; Arora, Divya

    2015-01-01

    The transrectal approach to draining deep-seated pelvic collections may be used to drain The transrectal approach to draining deep-seated pelvic collections may be used to drain intra-abdominal collections not reached by the transabdominal approach. We discuss 6 patients with such pelvic collections treated with transrectal drainage using catheter placement via Seldinger technique. Transrectal drainage helped achieve clinical and radiological resolution of pelvic collections in 6 and 5 of 6 cases, respectively. It simultaneously helped avoid injury to intervening bowel loops and neurovascular structures using real-time visualization of armamentarium used for drainage. Radiation exposure from fluoroscopic/CT guidance was avoided. Morbidity and costs incurred in surgical exploration were reduced using this much less invasive ultrasound guided transrectal catheter drainage of deep-seated pelvic collections.

  15. Top-Contact Pentacene-Based Organic Thin Film Transistor (OTFT) with N, N'-Bis(3-Methyl Phenyl)- N, N'-Diphenyl Benzidine (TPD)/Au Bilayer Source-Drain Electrode

    NASA Astrophysics Data System (ADS)

    Borthakur, Tribeni; Sarma, Ranjit

    2018-01-01

    A top-contact Pentacene-based organic thin film transistor (OTFT) with N, N'-Bis (3-methyl phenyl)- N, N'-diphenyl benzidine (TPD)/Au bilayer source-drain electrode is reported. The devices with TPD/Au bilayer source-drain (S-D) electrodes show better performance than the single layer S-D electrode OTFT devices. The field-effect mobility of 4.13 cm2 v-1 s-1, the on-off ratio of 1.86 × 107, the threshold voltage of -4 v and the subthreshold slope of .27 v/decade, respectively, are obtained from the device with a TPD/Au bilayer source-drain electrode.

  16. Sediment transport by irrigation return flows on the Yakima Indian Reservation, Washington 1975 and 1976 irrigation seasons

    USGS Publications Warehouse

    Nelson, Leonard M.

    1978-01-01

    As determined from data collected at 10 sites on the Yakima Indian Reservation, Wash., during the 1975 and 1976 irrigation seasons (April-September), seasonal sediment discharges in irrigation return flows ranged from 11,000 tons from Marion Drain and Satus Drain 302 to 400 tons from Coulee Drain. There was little variation between the sediment discharges of the 1975 and 1976 irrigation seasons except those from Satus Drain 302. Due to the lack of natural runoff during those seasons, no distinction could be made between sediment discharges from irrigated and nonirrigated areas. No significant or usable relationships were found between suspend-sediment concentration and concurrent water turbidity or discharges. (Woodard-USGS)

  17. Automated detection of Schlemm's canal in spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tom, Manu; Ramakrishnan, Vignesh; van Oterendorp, Christian; Deserno, Thomas M.

    2015-03-01

    Recent advances in optical coherence tomography (OCT) technology allow in vivo imaging of the complex network of intra-scleral aqueous veins in the anterior segment of the eye. Pathological changes in this network, draining the aqueous humor from the eye, are considered to play a role in intraocular pressure elevation, which can lead to glaucoma, one of the major causes of blindness in the world. Through acquisition of OCT volume scans of the anterior eye segment, we aim at reconstructing the three dimensional network of aqueous veins in healthy and glaucomatous subjects. A novel algorithm for segmentation of the three-dimensional (3D) vessel system in human Schlemms canal is presented analyzing frames of spectral domain OCT (SD-OCT) of the eyes surface in either horizontal or vertical orientation. Distortions such as vertical stripes are caused by the superficial blood vessels in the conjunctiva and the episclera. They are removed in the discrete Fourier domain (DFT) masking particular frequencies. Feature-based rigid registration of these noise-filtered images is then performed using the scale invariant feature transform (SIFT). Segmentation of the vessels deep in the sclera originating at or in the vicinity of or having indirect connection to the Schlemm's canal is then performed with 3D region growing technique. The segmented vessels are visualized in 3D providing diagnostically relevant information to the physicians. A proof-of-concept study was performed on a healthy volunteer before and after a pharmaceutical narrowing of Schlemm's canal. A relative decreases 17% was measured based on manual ground truth and the image processing method.

  18. Modeling the effects of throughfall reduction on soil water content in a Brazilian Oxisol under a moist tropical forest

    NASA Astrophysics Data System (ADS)

    Belk, Elizabeth L.; Markewitz, Daniel; Rasmussen, Todd C.; Carvalho, Eduardo J. Maklouf; Nepstad, Daniel C.; Davidson, Eric A.

    2007-08-01

    Access to water reserves in deep soil during drought periods determines whether or not the tropical moist forests of Amazonia will be buffered from the deleterious effects of water deficits. Changing climatic conditions are predicted to increase periods of drought in Amazonian forests and may lead to increased tree mortality, changes in forest composition, or greater susceptibility to fire. A throughfall reduction experiment has been established in the Tapajós National Forest of east-central Amazonia (Brazil) to test the potential effects of severe water stress during prolonged droughts. Using time domain reflectometry observations of water contents from this experiment, we have developed a dynamic, one-dimensional, vertical flow model to enhance our understanding of hydrologic processes within these tall-stature forests on well-drained, upland, deep Oxisols and to simulate changes in the distribution of soil water. Simulations using 960 days of data accurately captured mild soil water depletion near the surface after the first treatment year and decreasing soil moisture at depth during the second treatment year. The model is sensitive to the water retention and unsaturated flow equation parameters, specifically the van Genuchten parameters θs, θr, and n, but less sensitive to Ks and α. The low root-mean-square error between observed and predicted volumetric soil water content suggests that this vertical flow model captures the most important hydrologic processes in the upper landscape position of this study site. The model indicates that present rates of evapotranspiration within the exclusion plot have been sustained at the expense of soil water storage.

  19. The Hydromagnetic Interior of a Solar Quiescent Prominence. I. Coupling between Force Balance and Steady Energy Transport

    NASA Astrophysics Data System (ADS)

    Low, B. C.; Berger, T.; Casini, R.; Liu, W.

    2012-08-01

    This series of papers investigates the dynamic interiors of quiescent prominences revealed by recent Hinode and SDO/AIA high-resolution observations. This first paper is a study of the static equilibrium of the Kippenhahn-Schlüter diffuse plasma slab, suspended vertically in a bowed magnetic field, under the frozen-in condition and subject to a theoretical thermal balance among an optically thin radiation, heating, and field-aligned thermal conduction. The everywhere-analytical solutions to this nonlinear problem are an extremely restricted subset of the physically admissible states of the system. For most values of the total mass frozen into a given bowed field, force balance and steady energy transport cannot both be met without a finite fraction of the total mass having collapsed into a cold sheet of zero thickness, within which the frozen-in condition must break down. An exact, resistive hydromagnetic extension of the Kippenhahn-Schlüter slab is also presented, resolving the mass-sheet singularity into a finite-thickness layer of steadily falling dense fluid. Our hydromagnetic result suggests that the narrow, vertical prominence Hα threads may be falling across magnetic fields, with optically thick cores much denser and ionized to much lower degrees than conventionally considered. This implication is discussed in relation to (1) the recent SDO/AIA observations of quiescent prominences that are massive and yet draining mass everywhere in their interiors, (2) the canonical range of 5-60 G determined from spectral polarimetric observations of prominence magnetic fields over the years, and (3) the need for a more realistic multi-fluid treatment.

  20. Diagnostic value of drain amylase for detecting intrathoracic leakage after esophagectomy

    PubMed Central

    Berkelmans, Gijs HK; Kouwenhoven, Ewout A; Smeets, Boudewijn JJ; Weijs, Teus J; Silva Corten, Luis C; van Det, Marc J; Nieuwenhuijzen, Grard AP; Luyer, Misha DP

    2015-01-01

    AIM: To investigate the value of elevated drain amylase concentrations for detecting anastomotic leakage (AL) after minimally invasive Ivor-Lewis esophagectomy (MI-ILE). METHODS: This was a retrospective analysis of prospectively collected data in two hospitals in the Netherlands. Consecutive patients undergoing MI-ILE were included. A Jackson-Pratt drain next to the dorsal side of the anastomosis and bilateral chest drains were placed at the end of the thoracoscopic procedure. Amylase levels in drain fluid were determined in all patients during at least the first four postoperative days. Contrast computed tomography scans and/or endoscopic imaging were performed in cases of a clinically suspected AL. Anastomotic leakage was defined as any sign of leakage of the esophago-gastric anastomosis on endoscopy, re-operation, radiographic investigations, post mortal examination or when gastro-intestinal contents were found in drain fluid. Receiver operator characteristic curves were used to determine the cut-off values. Sensitivity, specificity, positive predictive value, negative predictive value, risk ratio and overall test accuracy were calculated for elevated drain amylase concentrations. RESULTS: A total of 89 patients were included between March 2013 and August 2014. No differences in group characteristics were observed between patients with and without AL, except for age. Patients with AL were older than were patients without AL (P = 0.01). One patient (1.1%) without AL died within 30 d after surgery due to pneumonia and acute respiratory distress syndrome. Anastomotic leakage that required any intervention occurred in 15 patients (16.9%). Patients with proven anastomotic leakage had higher drain amylase levels than patients without anastomotic leakage [median 384 IU/L (IQR 34-6263) vs median 37 IU/L (IQR 26-66), P = 0.003]. Optimal cut-off values on postoperative days 1, 2, and 3 were 350 IU/L, 200 IU/L and 160 IU/L, respectively. An elevated amylase level was found in 9 of the 15 patients with AL. Five of these 9 patients had early elevations of their amylase levels, with a median of 2 d (IQR 2-5) before signs and symptoms occurred. CONCLUSION: Measurement of drain amylase levels is an inexpensive and easy tool that may be used to screen for anastomotic leakage soon after MI-ILE. However, clinical validation of this marker is necessary. PMID:26290638

Top