On the phase lag of turbulent dissipation in rotating tidal flows
NASA Astrophysics Data System (ADS)
Zhang, Qianjiang; Wu, Jiaxue
2018-03-01
Field observations of rotating tidal flows in a shallow tidally swept sea reveal that a notable phase lag of both shear production and turbulent dissipation increases with height above the seafloor. These vertical delays of turbulent quantities are approximately equivalent in magnitude to that of squared mean shear. The shear production approximately equals turbulent dissipation over the phase-lag column, and thus a main mechanism of phase lag of dissipation is mean shear, rather than vertical diffusion of turbulent kinetic energy. By relating the phase lag of dissipation to that of the mean shear, a simple formulation with constant eddy viscosity is developed to describe the phase lag in rotating tidal flows. An analytical solution indicates that the phase lag increases linearly with height subjected to a combined effect of tidal frequency, Coriolis parameter and eddy viscosity. The vertical diffusion of momentum associated with eddy viscosity produces the phase lag of squared mean shear, and resultant delay of turbulent quantities. Its magnitude is inhibited by Earth's rotation. Furthermore, a theoretical formulation of the phase lag with a parabolic eddy viscosity profile can be constructed. A first-order approximation of this formulation is still a linear function of height, and its magnitude is approximately 0.8 times that with constant viscosity. Finally, the theoretical solutions of phase lag with realistic viscosity can be satisfactorily justified by realistic phase lags of dissipation.
NASA Astrophysics Data System (ADS)
Parfenyev, Vladimir M.; Vergeles, Sergey S.
2018-06-01
Recently the generation of eddy currents by interacting surface waves was observed experimentally. The phenomenon provides the possibility for manipulation of particles which are immersed in the fluid. The analysis shows that the amplitude of the established eddy currents produced by stationary surface waves does not depend on the fluid viscosity in the free surface case. The currents become parametrically larger, being inversely proportional to the square root of the fluid viscosity in the case when the fluid surface is covered by an almost incompressible thin liquid (i.e., shear elasticity is zero) film formed by an insoluble agent with negligible internal viscous losses as compared to the dissipation in the fluid bulk. Here we extend the theory for a thin insoluble film with zero shear elasticity and small shear and dilational viscosities on the case of an arbitrary elastic compression modulus. We find both contributions into the Lagrangian motion of passive tracers, which are the advection by the Eulerian vertical vorticity and the Stokes drift. Whereas the Stokes drift contribution preserves its value for the free surface case outside a thin viscous sublayer, the Eulerian vertical vorticity strongly depends on the fluid viscosity at high values of the film compression modulus. The Stokes drift acquires a strong dependence on the fluid viscosity inside the viscous sublayer; however, the change is compensated by an opposite change in the Eulerian vertical vorticity. As a result, the vertical dependence of the intensity of eddy currents is given by a sum of two decaying exponents with both decrements being of the order of the wave number. The decrements are numerically different, so the Eulerian contribution becomes dominant at some depth for the surface film with any compression modulus.
Vertical structure of mean cross-shore currents across a barred surf zone
Haines, John W.; Sallenger, Asbury H.
1994-01-01
Mean cross-shore currents observed across a barred surf zone are compared to model predictions. The model is based on a simplified momentum balance with a turbulent boundary layer at the bed. Turbulent exchange is parameterized by an eddy viscosity formulation, with the eddy viscosity Aυ independent of time and the vertical coordinate. Mean currents result from gradients due to wave breaking and shoaling, and the presence of a mean setup of the free surface. Descriptions of the wave field are provided by the wave transformation model of Thornton and Guza [1983]. The wave transformation model adequately reproduces the observed wave heights across the surf zone. The mean current model successfully reproduces the observed cross-shore flows. Both observations and predictions show predominantly offshore flow with onshore flow restricted to a relatively thin surface layer. Successful application of the mean flow model requires an eddy viscosity which varies horizontally across the surf zone. Attempts are made to parameterize this variation with some success. The data does not discriminate between alternative parameterizations proposed. The overall variability in eddy viscosity suggested by the model fitting should be resolvable by field measurements of the turbulent stresses. Consistent shortcomings of the parameterizations, and the overall modeling effort, suggest avenues for further development and data collection.
NASA Astrophysics Data System (ADS)
Chen, XinJian
2012-06-01
This paper presents a sensitivity study of simulated availability of low salinity habitats by a hydrodynamic model for the Manatee River estuary located in the southwest portion of the Florida peninsula. The purpose of the modeling study was to establish a regulatory minimum freshwater flow rate required to prevent the estuarine ecosystem from significant harm. The model used in the study was a multi-block model that dynamically couples a three-dimensional (3D) hydrodynamic model with a laterally averaged (2DV) hydrodynamic model. The model was calibrated and verified against measured real-time data of surface elevation and salinity at five stations during March 2005-July 2006. The calibrated model was then used to conduct a series of scenario runs to investigate effects of the flow reduction on salinity distributions in the Manatee River estuary. Based on simulated salinity distribution in the estuary, water volumes, bottom areas and shoreline lengths for salinity less than certain predefined values were calculated and analyzed to help establish the minimum freshwater flow rate for the estuarine system. The sensitivity analysis conducted during the modeling study for the Manatee River estuary examined effects of the bottom roughness, ambient vertical eddy viscosity/diffusivity, horizontal eddy viscosity/diffusivity, and ungauged flow on the model results and identified the relative importance of these model parameters (input data) to the outcome of the availability of low salinity habitats. It is found that the ambient vertical eddy viscosity/diffusivity is the most influential factor controlling the model outcome, while the horizontal eddy viscosity/diffusivity is the least influential one.
A High Resolution Study of Black Sea Circulation and Hypothetical Oil Spills
NASA Astrophysics Data System (ADS)
Dietrich, D. E.; Bowman, M. J.; Korotenko, K. A.
2008-12-01
A 1/24 deg resolution adaptation of the DieCAST ocean model simulates a realistically intense Rim Current and ubiquitous mesoscale coastal anticyclonic eddies that result from anticyclonic vorticity generation by laterally differential bottom drag forces that are amplified near Black Sea coastal headlands. Climatological and synoptic surface forcings are compared. The effects of vertical momentum transfer by known (by Synop region fishermen, as reported by Ballard National Geographic article) big amplitude internal waves are parameterized by big vertical viscosity. Sensitivity to vertical viscosity is shown. Results of simulated hypothetical oil spills are shown. A simple method to nowcast/forecast the Black Sea currents is described and early results are shown.
Simulation of Deep Convective Clouds with the Dynamic Reconstruction Turbulence Closure
NASA Astrophysics Data System (ADS)
Shi, X.; Chow, F. K.; Street, R. L.; Bryan, G. H.
2017-12-01
The terra incognita (TI), or gray zone, in simulations is a range of grid spacing comparable to the most energetic eddy diameter. Spacing in mesoscale and simulations is much larger than the eddies, and turbulence is parameterized with one-dimensional vertical-mixing. Large eddy simulations (LES) have grid spacing much smaller than the energetic eddies, and use three-dimensional models of turbulence. Studies of convective weather use convection-permitting resolutions, which are in the TI. Neither mesoscale-turbulence nor LES models are designed for the TI, so TI turbulence parameterization needs to be discussed. Here, the effects of sub-filter scale (SFS) closure schemes on the simulation of deep tropical convection are evaluated by comparing three closures, i.e. Smagorinsky model, Deardorff-type TKE model and the dynamic reconstruction model (DRM), which partitions SFS turbulence into resolvable sub-filter scales (RSFS) and unresolved sub-grid scales (SGS). The RSFS are reconstructed, and the SGS are modeled with a dynamic eddy viscosity/diffusivity model. The RSFS stresses/fluxes allow backscatter of energy/variance via counter-gradient stresses/fluxes. In high-resolution (100m) simulations of tropical convection use of these turbulence models did not lead to significant differences in cloud water/ice distribution, precipitation flux, or vertical fluxes of momentum and heat. When model resolutions are coarsened, the Smagorinsky and TKE models overestimate cloud ice and produces large-amplitude downward heat flux in the middle troposphere (not found in the high-resolution simulations). This error is a result of unrealistically large eddy diffusivities, i.e., the eddy diffusivity of the DRM is on the order of 1 for the coarse resolution simulations, the eddy diffusivity of the Smagorinsky and TKE model is on the order of 100. Splitting the eddy viscosity/diffusivity scalars into vertical and horizontal components by using different length scales and strain rate components helps to reduce the errors, but does not completely remedy the problem. In contrast, the coarse resolution simulations using the DRM produce results that are more consistent with the high-resolution results, suggesting that the DRM is a more appropriate turbulence model for simulating convection in the TI.
Time evolution of the eddy viscosity in two-dimensional navier-stokes flow
Chaves; Gama
2000-02-01
The time evolution of the eddy viscosity associated with an unforced two-dimensional incompressible Navier-Stokes flow is analyzed by direct numerical simulation. The initial condition is such that the eddy viscosity is isotropic and negative. It is shown by concrete examples that the Navier-Stokes dynamics stabilizes negative eddy viscosity effects. In other words, this dynamics moves monotonically the initial negative eddy viscosity to positive values before relaxation due to viscous term occurs.
NASA Astrophysics Data System (ADS)
Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B.
2004-11-01
Large Eddy Simulations (LES) of atmospheric boundary-layer air movement in urban environments are especially challenging due to complex ground topography. Typically in such applications, fairly coarse grids must be used where the subgrid-scale (SGS) model is expected to play a crucial role. A LES code using pseudo-spectral discretization in horizontal planes and second-order differencing in the vertical is implemented in conjunction with the immersed boundary method to incorporate complex ground topography, with the classic equilibrium log-law boundary condition in the new-wall region, and with several versions of the eddy-viscosity model: (1) the constant-coefficient Smagorinsky model, (2) the dynamic, scale-invariant Lagrangian model, and (3) the dynamic, scale-dependent Lagrangian model. Other planar-averaged type dynamic models are not suitable because spatial averaging is not possible without directions of statistical homogeneity. These SGS models are tested in LES of flow around a square cylinder and of flow over surface-mounted cubes. Effects on the mean flow are documented and found not to be major. Dynamic Lagrangian models give a physically more realistic SGS viscosity field, and in general, the scale-dependent Lagrangian model produces larger Smagorinsky coefficient than the scale-invariant one, leading to reduced distributions of resolved rms velocities especially in the boundary layers near the bluff bodies.
NASA Astrophysics Data System (ADS)
Deng, Fangjing; Jiang, Wensheng; Feng, Shizuo
2017-09-01
The nonlinear effects of the eddy viscosity and the bottom friction on the Lagrangian residual velocity (LRV) are studied numerically in a narrow model bay. Three groups of the experiments with different eddy viscosity and different forms of the bottom friction are designed and are carried out in the three kinds of the topography. When the eddy viscosity is obtained from a two-equation turbulence closure model, the pattern of the LRV is more complex than that of the time invariant eddy viscosity case and the intensity is from more than 1.3 times to one order smaller than that of the linear eddy viscosity condition. The LRV are also acquired when the eddy viscosity varies from the flood-averaged one to the ebb-averaged one. It is found that when the flood-averaged eddy viscosity is bigger than the ebb-averaged eddy viscosity (flood-dominated asymmetry), the direction of the breadth-averaged LRV and the 3D LRV is nearly opposite to that when the eddy viscosity asymmetry is reverse (ebb-dominated asymmetry). However, the intensity of the LRV for the ebb-dominated case decreases toward the flood-dominated case as the ratio of the maximum depth in the deep channel and the minimum depth on the shoal increases. The different forms of the bottom friction also play a role in the LRV. The structures of the 3D LRV and the depth-integrated LRV are simpler, and the intensity of the LRV is two times smaller when the linear bottom friction is used than those when the quadratic bottom friction is used.
Combined Wave and Current Bottom Boundary Layers: A Review
2016-03-01
18 3.2 Wave and currents at arbitrary angles ....................................................................... 19 3.3 Eddy viscosity ...closure ................................................................................................. 22 3.3.1 Eddy viscosity for stratified fluids...23 3.3.2 Time-dependent eddy viscosities
Puleo, J.A.; Mouraenko, O.; Hanes, D.M.
2004-01-01
Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.
Application of a range of turbulence energy models to the determination of M4 tidal current profiles
NASA Astrophysics Data System (ADS)
Xing, Jiuxing; Davies, Alan M.
1996-04-01
A fully nonlinear, three-dimensional hydrodynamic model of the Irish Sea, using a range of turbulence energy sub-models, is used to examine the influence of the turbulence closure method upon the vertical variation of the current profile of the fundamental and higher harmonics of the tide in the region. Computed tidal current profiles are compared with previous calculations using a spectral model with eddy viscosity related to the flow field. The model has a sufficiently fine grid to resolve the advection terms, in particular the advection of turbulence and momentum. Calculations show that the advection of turbulence energy does not have a significant influence upon the current profile of either the fundamental or higher harmonic of the tide, although the advection of momentum is important in the region of headlands. The simplification of the advective terms by only including them in their vertically integrated form does not appear to make a significant difference to current profiles, but does reduce the computational effort by a significant amount. Computed current profiles both for the fundamental and the higher harmonic determined with a prognostic equation for turbulence and an algebraic mixing length formula, are as accurate as those determined with a two prognostic equation model (the so called q2- q2l model), provided the mixing length is specified correctly. A simple, flow-dependent eddy viscosity with a parabolic variation of viscosity also performs equally well.
The tidally averaged momentum balance in a partially and periodically stratified estuary
Stacey, M.T.; Brennan, Matthew L.; Burau, J.R.; Monismith, Stephen G.
2010-01-01
Observations of turbulent stresses and mean velocities over an entire spring-neap cycle are used to evaluate the dynamics of tidally averaged flows in a partially stratified estuarine channel. In a depth-averaged sense, the net flow in this channel is up estuary due to interaction of tidal forcing with the geometry of the larger basin. The depth-variable tidally averaged flow has the form of an estuarine exchange flow (downstream at the surface, upstream at depth) and varies in response to the neap-spring transition. The weakening of the tidally averaged exchange during the spring tides appears to be a result of decreased stratification on the tidal time scale rather than changes in bed stress. The dynamics of the estuarine exchange flow are defined by a balance between the vertical divergence of the tidally averaged turbulent stress and the tidally averaged pressure gradient in the lower water column. In the upper water column, tidal stresses are important contributors, particularly during the neap tides. The usefulness of an effective eddy viscosity in the tidally averaged momentum equation is explored, and it is seen that the effective eddy viscosity on the subtidal time scale would need to be negative to close the momentum balance. This is due to the dominant contribution of tidally varying turbulent momentum fluxes, which have no specific relation to the subtidal circulation. Using a water column model, the validity of an effective eddy viscosity is explored; for periodically stratified water columns, a negative effective viscosity is required. ?? 2010 American Meteorological Society.
Effects of Eddy Viscosity on Time Correlations in Large Eddy Simulation
NASA Technical Reports Server (NTRS)
He, Guowei; Rubinstein, R.; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Subgrid-scale (SGS) models for large. eddy simulation (LES) have generally been evaluated by their ability to predict single-time statistics of turbulent flows such as kinetic energy and Reynolds stresses. Recent application- of large eddy simulation to the evaluation of sound sources in turbulent flows, a problem in which time, correlations determine the frequency distribution of acoustic radiation, suggest that subgrid models should also be evaluated by their ability to predict time correlations in turbulent flows. This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical simulation (DNS) with that evaluated from LES, using a spectral eddy viscosity, for isotropic homogeneous turbulence. It is found that the LES fields are too coherent, in the sense that their time correlations decay more slowly than the corresponding time. correlations in the DNS fields. This observation is confirmed by theoretical estimates of time correlations using the Taylor expansion technique. Tile reason for the slower decay is that the eddy viscosity does not include the random backscatter, which decorrelates fluid motion at large scales. An effective eddy viscosity associated with time correlations is formulated, to which the eddy viscosity associated with energy transfer is a leading order approximation.
Eddy Flow during Magma Emplacement: The Basemelt Sill, Antarctica
NASA Astrophysics Data System (ADS)
Petford, N.; Mirhadizadeh, S.
2014-12-01
The McMurdo Dry Valleys magmatic system, Antarctica, forms part of the Ferrar dolerite Large Igneous Province. Comprising a vertical stack of interconnected sills, the complex provides a world-class example of pervasive lateral magma flow on a continental scale. The lowermost intrusion (Basement Sill) offers detailed sections through the now frozen particle macrostructure of a congested magma slurry1. Image-based numerical modelling where the intrusion geometry defines its own unique finite element mesh allows simulations of the flow regime to be made that incorporate realistic magma particle size and flow geometries obtained directly from field measurements. One testable outcome relates to the origin of rhythmic layering where analytical results imply the sheared suspension intersects the phase space for particle Reynolds and Peclet number flow characteristic of macroscopic structures formation2. Another relates to potentially novel crystal-liquid segregation due to the formation of eddies locally at undulating contacts at the floor and roof of the intrusion. The eddies are transient and mechanical in origin, unrelated to well-known fluid dynamical effects around obstacles where flow is turbulent. Numerical particle tracing reveals that these low Re number eddies can both trap (remove) and eject particles back into the magma at a later time according to their mass density. This trapping mechanism has potential to develop local variations in structure (layering) and magma chemistry that may otherwise not occur where the contact between magma and country rock is linear. Simulations indicate that eddy formation is best developed where magma viscosity is in the range 1-102 Pa s. Higher viscosities (> 103 Pa s) tend to dampen the effect implying eddy development is most likely a transient feature. However, it is nice to think that something as simple as a bumpy contact could impart physical and by implication chemical diversity in igneous rocks. 1Marsh, D.B. (2004), A magmatic mush column Rosetta stone: the McMurdo Dry Valleys of Antarcica. EOS, 85, 497-502. 2Petford, N. (2009), Which Effective Viscosity? Mineralogical Magazine, 73, 167-191. Fig. 1. Numerical simulation in the geometry showing magma flow field and eddy formation where circulating magma is trapped. Streamlines track particle orbits.
Large eddy simulation model for wind-driven sea circulation in coastal areas
NASA Astrophysics Data System (ADS)
Petronio, A.; Roman, F.; Nasello, C.; Armenio, V.
2013-12-01
In the present paper a state-of-the-art large eddy simulation model (LES-COAST), suited for the analysis of water circulation and mixing in closed or semi-closed areas, is presented and applied to the study of the hydrodynamic characteristics of the Muggia bay, the industrial harbor of the city of Trieste, Italy. The model solves the non-hydrostatic, unsteady Navier-Stokes equations, under the Boussinesq approximation for temperature and salinity buoyancy effects, using a novel, two-eddy viscosity Smagorinsky model for the closure of the subgrid-scale momentum fluxes. The model employs: a simple and effective technique to take into account wind-stress inhomogeneity related to the blocking effect of emerged structures, which, in turn, can drive local-scale, short-term pollutant dispersion; a new nesting procedure to reconstruct instantaneous, turbulent velocity components, temperature and salinity at the open boundaries of the domain using data coming from large-scale circulation models (LCM). Validation tests have shown that the model reproduces field measurement satisfactorily. The analysis of water circulation and mixing in the Muggia bay has been carried out under three typical breeze conditions. Water circulation has been shown to behave as in typical semi-closed basins, with an upper layer moving along the wind direction (apart from the anti-cyclonic veering associated with the Coriolis force) and a bottom layer, thicker and slower than the upper one, moving along the opposite direction. The study has shown that water vertical mixing in the bay is inhibited by a large level of stable stratification, mainly associated with vertical variation in salinity and, to a minor extent, with temperature variation along the water column. More intense mixing, quantified by sub-critical values of the gradient Richardson number, is present in near-coastal regions where upwelling/downwelling phenomena occur. The analysis of instantaneous fields has detected the presence of large cross-sectional eddies spanning the whole water column and contributing to vertical mixing, associated with the presence of sub-surface horizontal turbulent structures. Analysis of water renewal within the bay shows that, under the typical breeze regimes considered in the study, the residence time of water in the bay is of the order of a few days. Finally, vertical eddy viscosity has been calculated and shown to vary by a couple of orders of magnitude along the water column, with larger values near the bottom surface where density stratification is smaller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolan, David S.; Almgren, Ann S.; Bell, John B.
Axisymmetric numerical simulations continue to provide insight into how the structure, dynamics, and maximum wind speeds of tornadoes, and other convectively-maintained vortices, are influenced by the surrounding environment. This work is continued with a new numerical model of axisymmetric incompressible flow that incorporates adaptive mesh refinement. The model dynamically increases or decreases the resolution in regions of interest as determined by a specified refinement criterion. Here, the criterion used is based on the cell Reynolds number dx dv / nu, so that the flow is guaranteed to be laminar on the scale of the local grid spacing. The model ismore » used to investigate how the altitude and shape of the convective forcing, the size of the domain, and the effective Reynolds number (based on the choice of the eddy viscosity nu) influence the structure and dynamics of the vortex. Over a wide variety of domain and forcing geometries,the vortex Reynolds number Gamma / nu (the ratio of the far-field circulation to the eddy viscosity) is shown to be the most important parameter for determining vortex structure and behavior. Furthermore,it is found that the vertical scale of the convective forcing only affects the vortex inasmuch as this vertical scale contributes to the total strength of the convective forcing. The horizontal scale of the convective forcing, however, is found to be the fundamental length scale in the problem, in that it can determine both the circulation of the fluid that is drawn into the vortex core, and also influences the depth of the swirling boundary layer. Higher mean wind speeds are sustained as the eddy viscosity is decreased; however, it is observed that the highest wind speeds are found in the high-swirl, two-celled vortex regime rather than in the low-swirl, one-celled regime, which is in contrast with some previous results. The conclusions drawn from these results are applied to dimensional simulations with scales similar to the mesocyclone/thunderstorm environment. Tornado-like vortices are reproduced, using a constant eddy viscosity with such values as 40 m2s-1, which have maximum wind speeds, radii of maximum winds, and boundary layer depths which are quite similar to those recently observed with portable Doppler radar. Based on the results of both nondimensional and tornado-scale simulations, scaling laws are empirically derived for the internal length scales in tornado-like vortices, such as the depth of the boundary layer and the radius of maximum winds.« less
Eddy Viscosity for Variable Density Coflowing Streams,
EDDY CURRENTS, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.
Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model
NASA Astrophysics Data System (ADS)
Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank
2017-07-01
Two parameterizations for horizontal mixing of momentum and tracers by subgrid mesoscale eddies are implemented in a high-resolution global ocean model. These parameterizations follow on the techniques of large eddy simulation (LES). The theory underlying one parameterization (2D Leith due to Leith, 1996) is that of enstrophy cascades in two-dimensional turbulence, while the other (QG Leith) is designed for potential enstrophy cascades in quasi-geostrophic turbulence. Simulations using each of these parameterizations are compared with a control simulation using standard biharmonic horizontal mixing.Simulations using the 2D Leith and QG Leith parameterizations are more realistic than those using biharmonic mixing. In particular, the 2D Leith and QG Leith simulations have more energy in resolved mesoscale eddies, have a spectral slope more consistent with turbulence theory (an inertial enstrophy or potential enstrophy cascade), have bottom drag and vertical viscosity as the primary sinks of energy instead of lateral friction, and have isoneutral parameterized mesoscale tracer transport. The parameterization choice also affects mass transports, but the impact varies regionally in magnitude and sign.
NASA Astrophysics Data System (ADS)
Kelly, R. W.; Chalk, C.; Dorrell, R. M.; Peakall, J.; Burns, A. D.; Keevil, G. M.; Thomas, R. E.; Williams, G.
2016-12-01
In the natural environment, gravity currents transport large volumes of sediment great distances and are often considered one of the most important mechanisms for sediment transport in ocean basins. Deposits from many individual submarine gravity currents, turbidites, ultimately form submarine fan systems. These are the largest sedimentary systems on the planet and contain valuable hydrocarbon reserves. Moreover, the impact of these currents on submarine technologies and seafloor infrastructure can be devastating and therefore they are of significant interest to a wide range of industries. Here we present experimental, numerical and theoretical models of time-averaged turbulent shear stresses, i.e. Reynolds stresses. Reynolds stresses can be conceptually parameterised by an eddy viscosity parameter that relates chaotic fluid motion to diffusive type processes. As such, it is a useful parameter for indicating the extent of internal mixing and is used extensively in both numerical and analytical modelling of both open-channel and gravity driven flows. However, a lack of knowledge of the turbulent structure of gravity currents limits many hydro- and morphodynamic models. High resolution 3-dimensional experimental velocity data, gathered using acoustic Doppler profiling velocimetry, enabled direct calculation of stresses and eddy viscosity. Comparison of experimental data to CFD and analytical models allowed the testing of eddy viscosity-based turbulent mixing models. The calculated eddy viscosity profile is parabolic in nature in both the upper and lower shear layers. However, an apparent breakdown in the Boussinesq hypothesis (used to calculate the eddy viscosity and upon which many numerical models are based) is observed in the region of the current around the velocity maximum. With the use of accompanying density data it is suggested that the effect of stratification on eddy viscosity is significant and alternative formulations may be required.
2015-08-01
published in the NGA’s DNCs, with distinct values assigned to areas of sand, gravel, clay , etc. ERDC/CHL TR-15-14 94 6.5.2 Lateral eddy viscosity As with...6.5.1 Manning’s n bottom friction coefficient ................................................................... 93 6.5.2 Lateral eddy viscosity ...this study include (1) Manning’s n bottom friction coefficient, (2) lateral eddy viscosity , (3) land cover effects on winds (also referred to as
Sediment Suspension by Straining-Induced Convection at the Head of Salinity Intrusion
NASA Astrophysics Data System (ADS)
Zhang, Qianjiang; Wu, Jiaxue
2018-01-01
The tidal straining can generate convective motions and exert a periodic modification of turbulence and sediment transport in estuarine and coastal bottom boundary layers. However, the evidence and physics of convection and sediment suspension induced by tidal straining have not been straightforward. To examine these questions, mooring and transect surveys have been conducted in September 2015 in the region of the Yangtze River plume influence. Field observations and scaling analyses indicate an occurrence of convective motions at the head of saline wedge. Theoretical analyses of stratification evolution in the saline wedge show that unstable stratification and resultant convection are induced by tidal straining. Vertical turbulent velocity and eddy viscosity at the head of saline wedge are both larger than their neutral counterparts in the main body, largely enhancing sediment suspension at the head of saline wedge. Moreover, sediment suspension in both neutral and convection-affected flows is supported by the variance of vertical turbulent velocity, rather than the shearing stress. Finally, the stability correction functions in the Monin-Obukhov similarity theory can be simply derived from the local turbulent kinetic energy balance to successfully describe the effects of tidal straining on turbulent length scale, eddy viscosity, and sediment diffusivity in the convection-affected flow. These recognitions may provide novel understanding of estuarine turbidity maxima, and the dynamical structure and processes for coastal hypoxia.
NASA Technical Reports Server (NTRS)
Winckelmans, G. S.; Lund, T. S.; Carati, D.; Wray, A. A.
1996-01-01
Subgrid-scale models for Large Eddy Simulation (LES) in both the velocity-pressure and the vorticity-velocity formulations were evaluated and compared in a priori tests using spectral Direct Numerical Simulation (DNS) databases of isotropic turbulence: 128(exp 3) DNS of forced turbulence (Re(sub(lambda))=95.8) filtered, using the sharp cutoff filter, to both 32(exp 3) and 16(exp 3) synthetic LES fields; 512(exp 3) DNS of decaying turbulence (Re(sub(Lambda))=63.5) filtered to both 64(exp 3) and 32(exp 3) LES fields. Gaussian and top-hat filters were also used with the 128(exp 3) database. Different LES models were evaluated for each formulation: eddy-viscosity models, hyper eddy-viscosity models, mixed models, and scale-similarity models. Correlations between exact versus modeled subgrid-scale quantities were measured at three levels: tensor (traceless), vector (solenoidal 'force'), and scalar (dissipation) levels, and for both cases of uniform and variable coefficient(s). Different choices for the 1/T scaling appearing in the eddy-viscosity were also evaluated. It was found that the models for the vorticity-velocity formulation produce higher correlations with the filtered DNS data than their counterpart in the velocity-pressure formulation. It was also found that the hyper eddy-viscosity model performs better than the eddy viscosity model, in both formulations.
A kinematic eddy viscosity model including the influence of density variations and preturbulence
NASA Technical Reports Server (NTRS)
Cohen, L. S.
1973-01-01
A model for the kinematic eddy viscosity was developed which accounts for the turbulence produced as a result of jet interactions between adjacent streams as well as the turbulence initially present in the streams. In order to describe the turbulence contribution from jet interaction, the eddy viscosity suggested by Prandtl was adopted, and a modification was introduced to account for the effect of density variation through the mixing layer. The form of the modification was ascertained from a study of the compressible turbulent boundary layer on a flat plate. A kinematic eddy viscosity relation which corresponds to the initial turbulence contribution was derived by employing arguments used by Prandtl in his mixing length hypothesis. The resulting expression for self-preserving flow is similar to that which describes the mixing of a submerged jet. Application of the model has led to analytical predictions which are in good agreement with available turbulent mixing experimental data.
SGS Dynamics and Modeling near a Rough Wall.
NASA Astrophysics Data System (ADS)
Juneja, Anurag; Brasseur, James G.
1998-11-01
Large-eddy simulation (LES) of the atmospheric boundary layer (ABL) using classical subgrid-scale (SGS) models is known to poorly predict mean shear at the first few grid cells near the rough surface, creating error which can propogate vertically to infect the entire ABL. Our goal was to determine the first-order errors in predicted SGS terms that arise as a consequence of necessary under-resolution of integral scales and anisotropy which exist at the first few grid levels in LES of rough wall turbulence. Analyzing the terms predicted from eddy-viscosity and similarity closures with DNS anisotropic datasets of buoyancy- and shear-driven turbulence, we uncover three important issues which should be addressed in the design of SGS closures for rough walls and we provide a priori tests for the SGS model. Firstly, we identify a strong spurious coupling between the anisotropic structure of the resolved velocity field and predicted SGS dynamics which can create a feedback loop to incorrectly enhance certain components of the predicted resolved velocity. Secondly, we find that eddy viscosity and similarity SGS models do not contain enough degrees of freedom to capture, at a sufficient level of accuracy, both RS-SGS energy flux and SGS-RS dynamics. Thirdly, to correctly capture pressure transport near a wall, closures must be made more flexible to accommodate proper partitioning between SGS stress divergence and SGS pressure gradient.
Renormalization-group theory for the eddy viscosity in subgrid modeling
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George; Hossain, Murshed
1988-01-01
Renormalization-group theory is applied to incompressible three-dimensional Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation now includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term. The renormalized eddy viscosity will not exhibit a cusp behavior if it is assumed that a spectral gap exists between the large and small scales.
Solar tachocline dynamics: eddy viscosity, anti-friction, or something in between?
NASA Astrophysics Data System (ADS)
McIntyre, Michael E.
The tachocline has values of the stratification or buoyancy frequency N two or more orders of magnitude greater than the Coriolis frequency. In this and other respects it is very like the Earth's atmosphere, viewed globally, except that the Earth's solid surface is replaced by an abrupt, magnetically-constrained "tachopause" (Gough & McIntyre 1998). The tachocline is helium-poor through fast ventilation from above, down to the tachopause, on timescales of only a few million years. The corresponding sound-speed anomaly fits helioseismic data with a tachocline thickness (0.019±0.001) Rsolar, about 0.13×105km (Elliott & Gough 1999), implying large values of the gradient Richardson number such that stratification dominates vertical shear even more strongly than in the Earth's stratosphere, as earlier postulated by Spiegel & Zahn (1992). Therefore the tachocline ventilation circulation cannot be driven by vertically-transmitted frictional torques, any more than the ozone-transporting circulation and differential rotation of the Earth's stratosphere can thus be driven. Rather, the tachocline circulation must be driven mainly by the Reynolds and Maxwell stresses interior to the convection zone, through a gyroscopic pumping action and the downward-burrowing response to it. If layerwise-two-dimensional turbulence is important, then because of its potential-vorticity-transporting properties the effect will be anti-frictional rather than eddy-viscosity-like. In order to correctly predict the differential rotation of the Sun's convection zone, even qualitatively, a convection-zone model must be fully coupled to a tachocline model.
NASA Astrophysics Data System (ADS)
Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi
2018-04-01
A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.
Transport Coefficients in weakly compressible turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Erlebacher, Gordon
1996-01-01
A theory of transport coefficients in weakly compressible turbulence is derived by applying Yoshizawa's two-scale direct interaction approximation to the compressible equations of motion linearized about a state of incompressible turbulence. The result is a generalization of the eddy viscosity representation of incompressible turbulence. In addition to the usual incompressible eddy viscosity, the calculation generates eddy diffusivities for entropy and pressure, and an effective bulk viscosity acting on the mean flow. The compressible fluctuations also generate an effective turbulent mean pressure and corrections to the speed of sound. Finally, a prediction unique to Yoshizawa's two-scale approximation is that terms containing gradients of incompressible turbulence quantities also appear in the mean flow equations. The form these terms take is described.
On the Asymptotic Regimes and the Strongly Stratified Limit of Rotating Boussinesq Equations
NASA Technical Reports Server (NTRS)
Babin, A.; Mahalov, A.; Nicolaenko, B.; Zhou, Y.
1997-01-01
Asymptotic regimes of geophysical dynamics are described for different Burger number limits. Rotating Boussinesq equations are analyzed in the asymptotic limit, of strong stratification in the Burger number of order one situation as well as in the asymptotic regime of strong stratification and weak rotation. It is shown that in both regimes horizontally averaged buoyancy variable is an adiabatic invariant for the full Boussinesq system. Spectral phase shift corrections to the buoyancy time scale associated with vertical shearing of this invariant are deduced. Statistical dephasing effects induced by turbulent processes on inertial-gravity waves are evidenced. The 'split' of the energy transfer of the vortical and the wave components is established in the Craya-Herring cyclic basis. As the Burger number increases from zero to infinity, we demonstrate gradual unfreezing of energy cascades for ageostrophic dynamics. The energy spectrum and the anisotropic spectral eddy viscosity are deduced with an explicit dependence on the anisotropic rotation/stratification time scale which depends on the vertical aspect ratio parameter. Intermediate asymptotic regime corresponding to strong stratification and weak rotation is analyzed where the effects of weak rotation are accounted for by an asymptotic expansion with full control (saturation) of vertical shearing. The regularizing effect of weak rotation differs from regularizations based on vertical viscosity. Two scalar prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure ) are obtained.
Finite-element numerical modeling of atmospheric turbulent boundary layer
NASA Technical Reports Server (NTRS)
Lee, H. N.; Kao, S. K.
1979-01-01
A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.
On the Subgrid-Scale Modeling of Compressible Turbulence
NASA Technical Reports Server (NTRS)
Squires, Kyle; Zeman, Otto
1990-01-01
A new sub-grid scale model is presented for the large-eddy simulation of compressible turbulence. In the proposed model, compressibility contributions have been incorporated in the sub-grid scale eddy viscosity which, in the incompressible limit, reduce to a form originally proposed by Smagorinsky (1963). The model has been tested against a simple extension of the traditional Smagorinsky eddy viscosity model using simulations of decaying, compressible homogeneous turbulence. Simulation results show that the proposed model provides greater dissipation of the compressive modes of the resolved-scale velocity field than does the Smagorinsky eddy viscosity model. For an initial r.m.s. turbulence Mach number of 1.0, simulations performed using the Smagorinsky model become physically unrealizable (i.e., negative energies) because of the inability of the model to sufficiently dissipate fluctuations due to resolved scale velocity dilations. The proposed model is able to provide the necessary dissipation of this energy and maintain the realizability of the flow. Following Zeman (1990), turbulent shocklets are considered to dissipate energy independent of the Kolmogorov energy cascade. A possible parameterization of dissipation by turbulent shocklets for Large-Eddy Simulation is also presented.
Effect of turbulent eddy viscosity on the unstable surface mode above an acoustic liner
NASA Astrophysics Data System (ADS)
Marx, David; Aurégan, Yves
2013-07-01
Lined ducts are used to reduce noise radiation from ducts in turbofan engines. In certain conditions they may sustain hydrodynamic instabilities. A local linear stability analysis of the flow in a 2D lined channel is performed using a numerical integration of the governing equations. Several model equations are used, one of them taking into account turbulent eddy viscosity, and a realistic turbulent mean flow profile is used that vanishes at the wall. The stability analysis results are compared to published experimental results. Both the model and the experiments show the existence of an unstable mode, and the importance of taking into account eddy viscosity in the model is shown. When this is done, quantities such as the growth rate and the velocity eigenfunctions are shown to agree correctly.
QNSE Theory of Turbulence in Rotating Fluids and the Nastrom & Gage Spectrum
NASA Astrophysics Data System (ADS)
Galperin, B.
2017-12-01
An analytical theory of turbulence, the quasi-normal scale elimination (QNSE), has been developed for neutrally stratified rotating flows. The theory provides near-first principle framework for the representation of flow anisotropization under the action of rotation. The anisotropization reveals itself in the emergence of different eddy viscosities and eddy diffusivities in different directions and directional dependence of the kinetic and potential energies spectra. In addition, there are also phenomena of componentality, eddy viscosities are different for different velocity components, and the onset of the inverse energy cascade. The anisotropization increases with increasing scale. The characteristic scales for the crossover between the turbulence and inertial wave domains is the Woods scale, LΩ = [ɛ/(2Ω)3)]1/2, ɛ being the rate of the viscous dissipation, which is analogous to the Ozmidov scale in flows with stable stratification. Rapid rotation renders the horizontal eddy viscosity negative, and in order to preserve it positive, a weak rotation limit is invoked. Within that limit, an analytical theory of the transition from the Kolmogorov to a rotation-dominated turbulence regime is developed. The dispersion relation of linear inertial waves is unaffected by turbulence while all one-dimensional energy spectra undergo steepening from the Kolmogorov -5/3 to the -3 slope. The longitudinal and transverse spectra are congruent with the famous atmospheric spectra by Nastrom & Gage. Thus, for the first time, these spectra are obtained within an analytical theory. QNSE explains the latitudinal dependence of the spectra and lends itself for practical applications in simulations of atmospheric and oceanic flows as it produces closed expressions for the eddy viscosities and eddy diffusivities. The Nastrom & Gage spectra also apply to the oceanic flows.
Mesospheric heating due to intense tropospheric convection
NASA Technical Reports Server (NTRS)
Taylor, L. L.
1979-01-01
A series of rocket measurements made twice daily at Wallops Island, Va., revealed a rapid heating of the mesosphere on the order of 10 K on days when thunderstorms or squall lines were in the area. This heating is explained as the result of frictional dissipation of vertically propagating internal gravity waves generated by intense tropospheric convection. Ray-tracing theory is used to determine the spectrum of gravity wave groups that actually reach mesospheric heights. This knowledge is used in an equation describing the spectral energy density of a penetrative convective element to calculate the fraction of the total energy initially available to excite those waves that do reach the level of heating. This value, converted into a vertical velocity, is used as the lower boundary condition for a multilayer model used to determine the detailed structure of the vertically propagating waves. The amount of frictional dissipation produced by the waves is calculated from the solutions of the frictionless model by use of a vertically varying eddy viscosity coefficient. The heating produced by the dissipation is then calculated from the thermodynamic equation.
NASA Technical Reports Server (NTRS)
Hickey, M. P.
1988-01-01
The chemical-dynamical model of Walterscheid et al. (1987), which describes wave-driven fluctuations in OH nightglow, was modified to include the effects of both eddy thermal conduction and viscosity, as well as the Coriolis force (with the shallow atmosphere approximation). Using the new model, calculations were performed for the same nominal case as used by Walterscheid et al. but with only wave periods considered. For this case, the Coriolis force was found to be unimportant at any wave period. For wave periods greater than 2 or 3 hours, the inclusion of thermal conduction alone greatly modified the results (in terms of a complex ratio 'eta' which expresses the relationship between the intensity oscillation about the time-averaged intensity and the temperature oscillation about the time-averaged temperature); this effect was reduced with the further inclusion of the eddy viscosity.
Numerical dissipation vs. subgrid-scale modelling for large eddy simulation
NASA Astrophysics Data System (ADS)
Dairay, Thibault; Lamballais, Eric; Laizet, Sylvain; Vassilicos, John Christos
2017-05-01
This study presents an alternative way to perform large eddy simulation based on a targeted numerical dissipation introduced by the discretization of the viscous term. It is shown that this regularisation technique is equivalent to the use of spectral vanishing viscosity. The flexibility of the method ensures high-order accuracy while controlling the level and spectral features of this purely numerical viscosity. A Pao-like spectral closure based on physical arguments is used to scale this numerical viscosity a priori. It is shown that this way of approaching large eddy simulation is more efficient and accurate than the use of the very popular Smagorinsky model in standard as well as in dynamic version. The main strength of being able to correctly calibrate numerical dissipation is the possibility to regularise the solution at the mesh scale. Thanks to this property, it is shown that the solution can be seen as numerically converged. Conversely, the two versions of the Smagorinsky model are found unable to ensure regularisation while showing a strong sensitivity to numerical errors. The originality of the present approach is that it can be viewed as implicit large eddy simulation, in the sense that the numerical error is the source of artificial dissipation, but also as explicit subgrid-scale modelling, because of the equivalence with spectral viscosity prescribed on a physical basis.
Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region
NASA Astrophysics Data System (ADS)
Zhang, Shuwen; Curchitser, Enrique N.; Kang, Dujuan; Stock, Charles A.; Dussin, Raphael
2018-01-01
The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.
Local dynamic subgrid-scale models in channel flow
NASA Technical Reports Server (NTRS)
Cabot, William H.
1994-01-01
The dynamic subgrid-scale (SGS) model has given good results in the large-eddy simulation (LES) of homogeneous isotropic or shear flow, and in the LES of channel flow, using averaging in two or three homogeneous directions (the DA model). In order to simulate flows in general, complex geometries (with few or no homogeneous directions), the dynamic SGS model needs to be applied at a local level in a numerically stable way. Channel flow, which is inhomogeneous and wall-bounded flow in only one direction, provides a good initial test for local SGS models. Tests of the dynamic localization model were performed previously in channel flow using a pseudospectral code and good results were obtained. Numerical instability due to persistently negative eddy viscosity was avoided by either constraining the eddy viscosity to be positive or by limiting the time that eddy viscosities could remain negative by co-evolving the SGS kinetic energy (the DLk model). The DLk model, however, was too expensive to run in the pseudospectral code due to a large near-wall term in the auxiliary SGS kinetic energy (k) equation. One objective was then to implement the DLk model in a second-order central finite difference channel code, in which the auxiliary k equation could be integrated implicitly in time at great reduction in cost, and to assess its performance in comparison with the plane-averaged dynamic model or with no model at all, and with direct numerical simulation (DNS) and/or experimental data. Other local dynamic SGS models have been proposed recently, e.g., constrained dynamic models with random backscatter, and with eddy viscosity terms that are averaged in time over material path lines rather than in space. Another objective was to incorporate and test these models in channel flow.
Prediction of Transonic Vortex Flows Using Linear and Nonlinear Turbulent Eddy Viscosity Models
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Gatski, Thomas B.
2000-01-01
Three-dimensional transonic flow over a delta wing is investigated with a focus on the effect of transition and influence of turbulence stress anisotropies. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition or are fully turbulent are performed. To assess the effect of the turbulent stress anisotropy, comparisons are made between predictions from the algebraic stress model and the linear eddy viscosity models. Both transition location and turbulent stress anisotropy significantly affect the 3D flow field. The most significant effect is found to be the modeling of transition location. At a Mach number of 0.90, the computed solution changes character from steady to unsteady depending on transition onset. Accounting for the anisotropies in the turbulent stresses also considerably impacts the flow, most notably in the outboard region of flow separation.
Convection without eddy viscosity: An attempt to model the interiors of giant planets
NASA Technical Reports Server (NTRS)
Ingersoll, A. P.
1986-01-01
In the theory of hydrostatic quasi-geostrophic flow in the Earth's atmosphere the principal results do not depend on the eddy viscosity. This contrasts with published theories of convection in deep rotating fluid spheres, where the wavelength of the fastest growing disturbance varies as E sup 1/3, where E, the Ekman number, is proportional to the eddy viscosity. A new theory of quasi-columnar motions in stably stratified fluid spheres attempts to capture the luck of the meteorologists. The theory allows one to investigate the stability of barotropic and baroclinic zonal flows that extend into the planetary interior. It is hypothesized that the internal heat Jupiter and Saturn comes out not radially but on sloping surfaces defined by the internal entropy distribution. To test the hypothesis one searches for basic states in which the wavelength of the fastest-growing disturbance remains finite as E tends to zero, and is which the heat flux vector is radially outward and poleward.
NASA Technical Reports Server (NTRS)
Baurle, R. A.
2015-01-01
Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit Reynolds stress model. Fortunately, the numerical error assessment at most of the axial stations used to compare with measurements clearly indicated that the scale-resolving simulations were improving (i.e. approaching the measured values) as the grid was refined. Hence, unlike a Reynolds-averaged simulation, the hybrid approach provides a mechanism to the end-user for reducing model-form errors.
Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence
NASA Astrophysics Data System (ADS)
Mason, Evan; Pascual, Ananda; Gaube, Peter; Ruiz, Simón; Pelegrí, Josep L.; Delepoulle, Antoine
2017-04-01
Horizontal and vertical motions associated with coherent mesoscale structures, including eddies and meanders, are responsible for significant global transports of many properties, including heat and mass. Mesoscale vertical fluxes also influence upper ocean biological productivity by mediating the supply of nutrients into the euphotic layer, with potential impacts on the global carbon cycle. The Brazil-Malvinas Confluence (BMC) is a western boundary current region in the South Atlantic with intense mesoscale activity. This region has an active role in the genesis and transformation of water masses and thus is a critical component of the Atlantic meridional overturning circulation. The collision between the Malvinas and Brazil Currents over the Patagonian shelf/slope creates an energetic front that translates offshore to form a vigorous eddy field. Recent improvements in gridded altimetric sea level anomaly fields allow us to track BMC mesoscale eddies with high spatial and temporal resolutions using an automated eddy tracker. We characterize the eddies across fourteen 5° × 5° subregions. Eddy-centric composites of tracers and geostrophic currents diagnosed from a global reanalysis of surface and in situ data reveal substantial subregional heterogeneity. The in situ data are also used to compute the evolving quasi-geostrophic vertical velocity (QG-ω) associated with each instantaneous eddy instance. The QG-ω eddy composites have the expected dipole patterns of alternating upwelling/downwelling, however, the magnitude and sign of azimuthally averaged vertical velocity varies among subregions. Maximum eddy values are found near fronts and sharp topographic gradients. In comparison with regional eddy composites, subregional composites provide refined information about mesoscale eddy heterogeneity.
Water hammer prediction and control: the Green's function method
NASA Astrophysics Data System (ADS)
Xuan, Li-Jun; Mao, Feng; Wu, Jie-Zhi
2012-04-01
By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy viscosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and minimized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.
NASA Astrophysics Data System (ADS)
Chang, Yu-Lin; Miyazawa, Yasumasa; Oey, Lie-Yauw; Kodaira, Tsubasa; Huang, Shihming
2017-05-01
In this study, we investigate the processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean based on the in situ chlorophyll data obtained from 52 cruises conducted by the Japan Meteorological Agency together with idealized numerical simulations. Both the observation and model results suggest that chlorophyll/phytoplankton concentrations are higher in cold than in warm eddies in near-surface water (z > -70 m). In the idealized simulation, the isopycnal movements associated with upwelling/downwelling transport phytoplankton and nutrients to different vertical depths during eddy formation (stage A). Phytoplankton and nutrients in cold eddies is transported toward shallower waters while those in warm eddies move toward deeper waters. In the period after the eddy has formed (stage B), sunlight and initially upwelled nutrients together promote the growth of phytoplankton in cold eddies. Phytoplankton in warm eddies decays due to insufficient sunlight in deeper waters. In stage B, upwelling and downwelling coexist in both warm and cold eddies, contributing nearly equally to vertical displacement. The upwelling/downwelling-induced nitrate flux accounts for a small percentage (˜3%) of the total nitrate flux in stage B. The vertical velocity caused by propagating eddies, therefore, is not the primary factor causing differences in phytoplankton concentrations between stage-B warm and cold eddies.
Moffatt eddies at an interface
NASA Astrophysics Data System (ADS)
Shtern, Vladimir
2014-12-01
It is shown that an infinite set of eddies can develop near the interface-wall intersection in a two-fluid flow. A striking feature is that the eddy occurrence depends on from what side of the interface the flow is driven. In air-water flows where the viscosity ratio is 0.018, the eddies develop if a driving source is located on (i) the air side for , (ii) any side for , and (iii) the water side for , where is the upper interface-wall angle.
Evaluation of the Momentum Closure Schemes in MPAS-Ocean
NASA Astrophysics Data System (ADS)
Zhao, Shimei; Liu, Yudi; Liu, Wei
2018-04-01
In order to compare and evaluate the performances of the Laplacian viscosity closure, the biharmonic viscosity closure, and the Leith closure momentum schemes in the MPAS-Ocean model, a variety of physical quantities, such as the relative reference potential energy (RPE) change, the RPE time change rate (RPETCR), the grid Reynolds number, the root mean square (RMS) of kinetic energy, and the spectra of kinetic energy and enstrophy, are calculated on the basis of results of a 3D baroclinic periodic channel. Results indicate that: 1) The RPETCR demonstrates a saturation phenomenon in baroclinic eddy tests. The critical grid Reynolds number corresponding to RPETCR saturation differs between the three closures: the largest value is in the biharmonic viscosity closure, followed by that in the Laplacian viscosity closure, and that in the Leith closure is the smallest. 2) All three closures can effectively suppress spurious dianeutral mixing by reducing the grid Reynolds number under sub-saturation conditions of the RPETCR, but they can also damage certain physical processes. Generally, the damage to the rotation process is greater than that to the advection process. 3) The dissipation in the biharmonic viscosity closure is strongly dependent on scales. Most dissipation concentrates on small scales, and the energy of small-scale eddies is often transferred to large-scale kinetic energy. The viscous dissipation in the Laplacian viscosity closure is the strongest on various scales, followed by that in the Leith closure. Note that part of the small-scale kinetic energy is also transferred to large-scale kinetic energy in the Leith closure. 4) The characteristic length scale L and the dimensionless parameter D in the Leith closure are inherently coupled. The RPETCR is inversely proportional to the product of D and L. When the product of D and L is constant, both the simulated RPETCR and the inhibition of spurious dianeutral mixing are the same in all tests using the Leith closure. The dissipative scale in the Leith closure depends on the parameter L, and the dissipative intensity depends on the parameter D. 5) Although optimal results may not be achieved by using the optimal parameters obtained from the 2D barotropic model in the 3D baroclinic simulation, the total energies are dissipative in all three closures. Dissipation is the strongest in the biharmonic viscosity closure, followed by that in the Leith closure, and that in the Laplacian viscosity closure is the weakest. Mesoscale eddies develop the fastest in the biharmonic viscosity closure after the baroclinic adjustment process finishes, and the kinetic energy reaches its maximum, which is attributed to the smallest dissipation of enstrophy in the biharmonic viscosity closure. Mesoscale eddies develop the slowest, and the kinetic energy peak value is the smallest in the Laplacian viscosity closure. Results in the Leith closure are between that in the biharmonic viscosity closure and the Laplacian viscosity closure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhongming; Liu, Heping; Katul, Gabriel G.
It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and non-closure of the surface energy balance remains a subject of inquiry. Here, measured 10 Hz time series of vertical velocity, air temperature, and water vapor density collected in the ASL are analyzed for conditions where entrainment and/or horizontal advection separately predominate. The series are decomposed into small- and large- eddies based on a frequency cutoffmore » and their contributions to turbulent fluxes are analyzed. Phase difference between vertical velocity and water vapor density associated with large eddies reduces latent heat fluxes, especially in conditions where advection prevails. Furthermore, enlarged phase difference of large eddies linked to entrainment or advection occurrence leads to increased residuals of the surface energy balance.« less
Gao, Zhongming; Liu, Heping; Katul, Gabriel G.; ...
2017-03-16
It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and non-closure of the surface energy balance remains a subject of inquiry. Here, measured 10 Hz time series of vertical velocity, air temperature, and water vapor density collected in the ASL are analyzed for conditions where entrainment and/or horizontal advection separately predominate. The series are decomposed into small- and large- eddies based on a frequency cutoffmore » and their contributions to turbulent fluxes are analyzed. Phase difference between vertical velocity and water vapor density associated with large eddies reduces latent heat fluxes, especially in conditions where advection prevails. Furthermore, enlarged phase difference of large eddies linked to entrainment or advection occurrence leads to increased residuals of the surface energy balance.« less
NASA Technical Reports Server (NTRS)
Stone, Peter H.; Yao, Mao-Sung
1990-01-01
A number of perpetual January simulations are carried out with a two-dimensional zonally averaged model employing various parameterizations of the eddy fluxes of heat (potential temperature) and moisture. The parameterizations are evaluated by comparing these results with the eddy fluxes calculated in a parallel simulation using a three-dimensional general circulation model with zonally symmetric forcing. The three-dimensional model's performance in turn is evaluated by comparing its results using realistic (nonsymmetric) boundary conditions with observations. Branscome's parameterization of the meridional eddy flux of heat and Leovy's parameterization of the meridional eddy flux of moisture simulate the seasonal and latitudinal variations of these fluxes reasonably well, while somewhat underestimating their magnitudes. New parameterizations of the vertical eddy fluxes are developed that take into account the enhancement of the eddy mixing slope in a growing baroclinic wave due to condensation, and also the effect of eddy fluctuations in relative humidity. The new parameterizations, when tested in the two-dimensional model, simulate the seasonal, latitudinal, and vertical variations of the vertical eddy fluxes quite well, when compared with the three-dimensional model, and only underestimate the magnitude of the fluxes by 10 to 20 percent.
Katul, Gabriel G; Porporato, Amilcare; Nikora, Vladimir
2012-12-01
The existence of a "-1" power-law scaling at low wavenumbers in the longitudinal velocity spectrum of wall-bounded turbulence was explained by multiple mechanisms; however, experimental support has not been uniform across laboratory studies. This letter shows that Heisenberg's eddy viscosity approach can provide a theoretical framework that bridges these multiple mechanisms and explains the elusiveness of the "-1" power law in some experiments. Novel theoretical outcomes are conjectured about the role of intermittency and very-large scale motions in modifying the k⁻¹ scaling.
A Nonlinear Interactions Approximation Model for Large-Eddy Simulation
NASA Astrophysics Data System (ADS)
Haliloglu, Mehmet U.; Akhavan, Rayhaneh
2003-11-01
A new approach to LES modelling is proposed based on direct approximation of the nonlinear terms \\overlineu_iuj in the filtered Navier-Stokes equations, instead of the subgrid-scale stress, τ_ij. The proposed model, which we call the Nonlinear Interactions Approximation (NIA) model, uses graded filters and deconvolution to parameterize the local interactions across the LES cutoff, and a Smagorinsky eddy viscosity term to parameterize the distant interactions. A dynamic procedure is used to determine the unknown eddy viscosity coefficient, rendering the model free of adjustable parameters. The proposed NIA model has been applied to LES of turbulent channel flows at Re_τ ≈ 210 and Re_τ ≈ 570. The results show good agreement with DNS not only for the mean and resolved second-order turbulence statistics but also for the full (resolved plus subgrid) Reynolds stress and turbulence intensities.
A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection
NASA Astrophysics Data System (ADS)
Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.
2017-10-01
At the crossroad between flow topology analysis and turbulence modeling, a priori studies are a reliable tool to understand the underlying physics of the subgrid-scale (SGS) motions in turbulent flows. In this paper, properties of the SGS features in the framework of a large-eddy simulation are studied for a turbulent Rayleigh-Bénard convection (RBC). To do so, data from direct numerical simulation (DNS) of a turbulent air-filled RBC in a rectangular cavity of aspect ratio unity and π spanwise open-ended distance are used at two Rayleigh numbers R a ∈{1 08,1 010 } [Dabbagh et al., "On the evolution of flow topology in turbulent Rayleigh-Bénard convection," Phys. Fluids 28, 115105 (2016)]. First, DNS at Ra = 108 is used to assess the performance of eddy-viscosity models such as QR, Wall-Adapting Local Eddy-viscosity (WALE), and the recent S3PQR-models proposed by Trias et al. ["Building proper invariants for eddy-viscosity subgrid-scale models," Phys. Fluids 27, 065103 (2015)]. The outcomes imply that the eddy-viscosity modeling smoothes the coarse-grained viscous straining and retrieves fairly well the effect of the kinetic unfiltered scales in order to reproduce the coherent large scales. However, these models fail to approach the exact evolution of the SGS heat flux and are incapable to reproduce well the further dominant rotational enstrophy pertaining to the buoyant production. Afterwards, the key ingredients of eddy-viscosity, νt, and eddy-diffusivity, κt, are calculated a priori and revealed positive prevalent values to maintain a turbulent wind essentially driven by the mean buoyant force at the sidewalls. The topological analysis suggests that the effective turbulent diffusion paradigm and the hypothesis of a constant turbulent Prandtl number are only applicable in the large-scale strain-dominated areas in the bulk. It is shown that the bulk-dominated rotational structures of vortex-stretching (and its synchronous viscous dissipative structures) hold the highest positive values of νt; however, the zones of backscatter energy and counter-gradient heat transport are related to the areas of compressed focal vorticity. More arguments have been attained through a priori investigation of the alignment trends imposed by existing parameterizations for the SGS heat flux, tested here inside RBC. It is shown that the parameterizations based linearly on the resolved thermal gradient are invalid in RBC. Alternatively, the tensor-diffusivity approach becomes a crucial choice of modeling the SGS heat flux, in particular, the tensorial diffusivity that includes the SGS stress tensor. This and other crucial scrutinies on a future modeling to the SGS heat flux in RBC are sought.
Eddy damping, backscatter, and subgrid stresses in subgrid modeling of turbulence
NASA Technical Reports Server (NTRS)
Zhou, YE
1991-01-01
The Brief Report demonstrates the relationship of eddy-viscosity models to subgrid stresses. A formula that determines the relative importance of the cross stress and the Reynolds stress for the net eddy-damping and backscatter contributions is derived. The cross-stress term with sharp-cut filtering is identified as an important quantity to model. These concepts could prove useful as a basis for constructing specific models for the Reynolds and cross stresses.
Callbeck, Cameron M.; Lavik, Gaute; Stramma, Lothar; Kuypers, Marcel M. M.; Bristow, Laura A.
2017-01-01
The eastern tropical South Pacific (ETSP) upwelling region is one of the ocean’s largest sinks of fixed nitrogen, which is lost as N2 via the anaerobic processes of anammox and denitrification. One-third of nitrogen loss occurs in productive shelf waters stimulated by organic matter export as a result of eastern boundary upwelling. Offshore, nitrogen loss rates are lower, but due to its sheer size this area accounts for ~70% of ETSP nitrogen loss. How nitrogen loss and primary production are regulated in the offshore ETSP region where coastal upwelling is less influential remains unclear. Mesoscale eddies, ubiquitous in the ETSP region, have been suggested to enhance vertical nutrient transport and thereby regulate primary productivity and hence organic matter export. Here, we investigated the impact of mesoscale eddies on anammox and denitrification activity using 15N-labelled in situ incubation experiments. Anammox was shown to be the dominant nitrogen loss process, but varied across the eddy, whereas denitrification was below detection at all stations. Anammox rates at the eddy periphery were greater than at the center. Similarly, depth-integrated chlorophyll paralleled anammox activity, increasing at the periphery relative to the eddy center; suggestive of enhanced organic matter export along the periphery supporting nitrogen loss. This can be attributed to enhanced vertical nutrient transport caused by an eddy-driven submesoscale mechanism operating at the eddy periphery. In the ETSP region, the widespread distribution of eddies and the large heterogeneity observed in anammox rates from a compilation of stations suggests that eddy-driven vertical nutrient transport may regulate offshore primary production and thereby nitrogen loss. PMID:28122044
Some effects of swirl on turbulent mixing and combustion
NASA Technical Reports Server (NTRS)
Rubel, A.
1972-01-01
A general formulation of some effects of swirl on turbulent mixing is given. The basis for the analysis is that momentum transport is enhanced by turbulence resulting from rotational instability of the fluid field. An appropriate form for the turbulent eddy viscosity is obtained by mixing length type arguments. The result takes the form of a corrective factor that is a function of the swirl and acts to increase the eddy viscosity. The factor is based upon the initial mixing conditions implying that the rotational turbulence decays in a manner similar to that of free shear turbulence. Existing experimental data for free jet combustion are adequately matched by using the modifying factor to relate the effects of swirl on eddy viscosity. The model is extended and applied to the supersonic combustion of a ring jet of hydrogen injected into a constant area annular air stream. The computations demonstrate that swirling the flow could: (1) reduce the burning length by one half, (2) result in more uniform burning across the annulus width, and (3) open the possibility of optimization of the combustion characteristics by locating the fuel jet between the inner wall and center of the annulus width.
Koelle, A.R.; Landt, J.A.
An instrument is disclosed for mapping vertical conductive fractures in a resistive bedrock, magnetically inducing eddy currents by a pair of vertically oriented, mutually perpendicular, coplanar coils. The eddy currents drive magnetic fields which are picked up by a second, similar pair of coils.
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, nan-Suey
2010-01-01
A brief introduction of the temporal filter based partially resolved numerical simulation/very large eddy simulation approach (PRNS/VLES) and its distinct features are presented. A nonlinear dynamic subscale model and its advantages over the linear subscale eddy viscosity model are described. In addition, a guideline for conducting a PRNS/VLES simulation is provided. Results are presented for three turbulent internal flows. The first one is the turbulent pipe flow at low and high Reynolds numbers to illustrate the basic features of PRNS/VLES; the second one is the swirling turbulent flow in a LM6000 single injector to further demonstrate the differences in the calculated flow fields resulting from the nonlinear model versus the pure eddy viscosity model; the third one is a more complex turbulent flow generated in a single-element lean direct injection (LDI) combustor, the calculated result has demonstrated that the current PRNS/VLES approach is capable of capturing the dynamically important, unsteady turbulent structures while using a relatively coarse grid.
NASA Technical Reports Server (NTRS)
Piomelli, Ugo; Zang, Thomas A.; Speziale, Charles G.; Lund, Thomas S.
1990-01-01
An eddy viscosity model based on the renormalization group theory of Yakhot and Orszag (1986) is applied to the large-eddy simulation of transition in a flat-plate boundary layer. The simulation predicts with satisfactory accuracy the mean velocity and Reynolds stress profiles, as well as the development of the important scales of motion. The evolution of the structures characteristic of the nonlinear stages of transition is also predicted reasonably well.
NASA Technical Reports Server (NTRS)
Luneva, M. V.; Clayson, C. A.; Dubovikov, Mikhail
2015-01-01
In eddy resolving simulations, we test a mixed layer mesoscale parametrisation, developed recently by Canuto and Dubovikov [Ocean Model., 2011, 39, 200-207]. With no adjustable parameters, the parametrisation yields the horizontal and vertical mesoscale fluxes in terms of coarse-resolution fields and eddy kinetic energy (EKE). We compare terms of the parametrisation diagnosed from coarse-grained fields with the eddy mesoscale fluxes diagnosed directly from the high resolution model. An expression for the EKE in terms of mean fields has also been found to get a closed parametrisation in terms of the mean fields only. In 40 numerical experiments we simulated two types of flows: idealised flows driven by baroclinic instabilities only, and more realistic flows, driven by wind and surface fluxes as well as by inflow-outflow. The diagnosed quasi-instantaneous horizontal and vertical mesoscale buoyancy fluxes (averaged over 1-2 degrees and 10 days) demonstrate a strong scatter typical for turbulent flows, however, the fluxes are positively correlated with the parametrisation with higher (0.5-0.74) correlations at the experiments with larger baroclinic radius Rossby. After being averaged over 3-4 months, diffusivities diagnosed from the eddy resolving simulations are consistent with the parametrisation for a broad range of parameters. Diagnosed vertical mesoscale fluxes restratify mixed layer and are in a good agreement with the parametrisation unless vertical turbulent mixing in the upper layer becomes strong enough in comparison with mesoscale advection. In the latter case, numerical simulations demonstrate that the deviation of the fluxes from the parametrisation is controlled by dimensionless parameter estimating the ratio of vertical turbulent mixing term to mesoscale advection. An analysis using a modified omega-equation reveals that the effects of the vertical mixing of vorticity is responsible for the two-three fold amplification of vertical mesoscale flux. Possible physical mechanisms, responsible for the amplification of vertical mesoscale flux are discussed.
NASA Astrophysics Data System (ADS)
Bangga, Galih; Kusumadewi, Tri; Hutomo, Go; Sabila, Ahmad; Syawitri, Taurista; Setiadi, Herlambang; Faisal, Muhamad; Wiranegara, Raditya; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus
2018-03-01
Numerical simulations for relatively thick airfoils are carried out in the present studies. An attempt to improve the accuracy of the numerical predictions is done by adjusting the turbulent viscosity of the eddy-viscosity Menter Shear-Stress-Transport (SST) model. The modification involves the addition of a damping factor on the wall-bounded flows incorporating the ratio of the turbulent kinetic energy to its specific dissipation rate for separation detection. The results are compared with available experimental data and CFD simulations using the original Menter SST model. The present model improves the lift polar prediction even though the stall angle is still overestimated. The improvement is caused by the better prediction of separated flow under a strong adverse pressure gradient. The results show that the Reynolds stresses are damped near the wall causing variation of the logarithmic velocity profiles.
Ling, Julia; Templeton, Jeremy Alan
2015-08-04
Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests.more » The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. As a result, feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.« less
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Eddy-induced Sea Surface Salinity changes in the tropical Pacific
NASA Astrophysics Data System (ADS)
Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.
2017-12-01
We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.
A study of overflow simulations using MPAS-Ocean: Vertical grids, resolution, and viscosity
NASA Astrophysics Data System (ADS)
Reckinger, Shanon M.; Petersen, Mark R.; Reckinger, Scott J.
2015-12-01
MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are carried out using three of the vertical coordinate types available in MPAS-Ocean, including z-star with partial bottom cells, z-star with full cells, and sigma coordinates. The results are first benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model, which are used to set the base case used for this work. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Lastly, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates.
Electromagnetic Modeling of the Passive Stabilization Loop at EAST
NASA Astrophysics Data System (ADS)
Ji, Xiang; Song, Yuntao; Wu, Songtao; Wang, Zhibin; Shen, Guang; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Peng, Xuebing; Wang, Chenghao
2012-09-01
A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.
Induction logging device with a pair of mutually perpendicular bucking coils
Koelle, Alfred R.; Landt, Jeremy A.
1981-01-01
An instrument is disclosed for mapping vertical conductive fractures in a resistive bedrock, magnetically inducing eddy currents by a pair of vertically oriented, mutually perpendicular, coplanar coils. The eddy currents drive magnetic fields which are picked up by a second, similar pair of coils.
Atmospheric flow over two-dimensional bluff surface obstructions
NASA Technical Reports Server (NTRS)
Bitte, J.; Frost, W.
1976-01-01
The phenomenon of atmospheric flow over a two-dimensional surface obstruction, such as a building (modeled as a rectangular block, a fence or a forward-facing step), is analyzed by three methods: (1) an inviscid free streamline approach, (2) a turbulent boundary layer approach using an eddy viscosity turbulence model and a horizontal pressure gradient determined by the inviscid model, and (3) an approach using the full Navier-Stokes equations with three turbulence models; i.e., an eddy viscosity model, a turbulence kinetic-energy model and a two-equation model with an additional transport equation for the turbulence length scale. A comparison of the performance of the different turbulence models is given, indicating that only the two-equation model adequately accounts for the convective character of turbulence. Turbulence flow property predictions obtained from the turbulence kinetic-energy model with prescribed length scale are only insignificantly better than those obtained from the eddy viscosity model. A parametric study includes the effects of the variation of the characteristics parameters of the assumed logarithmic approach velocity profile. For the case of the forward-facing step, it is shown that in the downstream flow region an increase of the surface roughness gives rise to higher turbulence levels in the shear layer originating from the step corner.
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Maccormack, R. W.
1976-01-01
Various modifications of the conventional algebraic eddy viscosity turbulence model are investigated for application to separated flows. Friction velocity is defined in a way that avoids singular behavior at separation and reattachment but reverts to the conventional definition for flows with small pressure gradients. This leads to a modified law of the wall for separated flows. The effect on the calculated flow field of changes in the model that affect the eddy viscosity at various distances from the wall are determined by (1) switching from Prandtl's form to an inner layer formula due to Clauser at various distances from the wall, (2) varying the constant in the Van Driest damping factor, (3) using Clauser's inner layer formula all the way to the wall, and (4) applying a relaxation procedure in the evaluation of the constant in Clauser's inner layer formula. Numerical solutions of the compressible Navier-Stokes equations are used to determine the effects of the modifications. Experimental results from shock-induced separated flows at Mach numbers 2.93 and 8.45 are used for comparison. For these cases improved predictions of wall pressure distribution and positions of separation and reattachment are obtained from the relaxation version of the Clauser inner layer eddy viscosity formula.
Crossover between two- and three-dimensional turbulence in spatial mixing layers
NASA Astrophysics Data System (ADS)
Biancofiore, Luca
2016-11-01
We investigate how the domain depth affects the turbulent behaviour in spatially developing mixing layers by means of large-eddy simulations (LES) based on a spectral vanishing viscosity technique. Analyses of spectra of the vertical velocity, of Lumley's diagrams, of the turbulent kinetic energy and of the vortex stretching show that a two-dimensional behaviour of the turbulence is promoted in spatial mixing layers by constricting the fluid motion in one direction. This finding is in agreement with previous works on turbulent systems constrained by a geometric anisotropy, pioneered by Smith, Chasnov & Waleffe. We observe that the growth of the momentum thickness along the streamwise direction is damped in a confined domain. A full two-dimensional turbulent behaviour is observed when the momentum thickness is of the same order of magnitude as the confining scale.
Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; ...
2017-09-07
In this paper, we demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynolds-averaged Navier–Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscositymore » model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models (“curve-fits”). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. Finally, we find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan
In this paper, we demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynolds-averaged Navier–Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscositymore » model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models (“curve-fits”). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. Finally, we find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.« less
Matrix exponential-based closures for the turbulent subgrid-scale stress tensor.
Li, Yi; Chevillard, Laurent; Eyink, Gregory; Meneveau, Charles
2009-01-01
Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy.
NASA Astrophysics Data System (ADS)
Hill, James C.; Liu, Zhenping; Fox, Rodney O.; Passalacqua, Alberto; Olsen, Michael G.
2015-11-01
The multi-inlet vortex reactor (MIVR) has been developed to provide a platform for rapid mixing in the application of flash nanoprecipitation (FNP) for manufacturing functional nanoparticles. Unfortunately, commonly used RANS methods are unable to accurately model this complex swirling flow. Large eddy simulations have also been problematic, as expensive fine grids to accurately model the flow are required. These dilemmas led to the strategy of applying a Delayed Detached Eddy Simulation (DDES) method to the vortex reactor. In the current work, the turbulent swirling flow inside a scaled-up MIVR has been investigated by using a dynamic DDES model. In the DDES model, the eddy viscosity has a form similar to the Smagorinsky sub-grid viscosity in LES and allows the implementation of a dynamic procedure to determine its coefficient. The complex recirculating back flow near the reactor center has been successfully captured by using this dynamic DDES model. Moreover, the simulation results are found to agree with experimental data for mean velocity and Reynolds stresses.
NASA Astrophysics Data System (ADS)
Ixetl Garcia Gomez, Beatriz; Pallas Sanz, Enric; Candela Perez, Julio
2017-04-01
The near-inertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoscale eddies has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic eddies. In this work the spatial structure of the KEi inside the mesoscale eddies is computed using daily satellite altimetry and observations of horizontal velocity from 23 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic eddies than inside the cyclonic ones. The vertical and horizontal cross-sections of the KEi-composites show that the KEi is mainly located near to the surface of the cyclonic eddies (positive vorticity), whereas the KEi in anticyclonic eddies (negative vorticity) is maximum in the eddy's center near to the base of the eddy where the NIOs become more inertial, are trapped, and amplified. The mean vertical profiles show that the cyclonic eddies present a maximum of KEi near to the surface at 50, while the maximum of KEi in the anticyclonic eddies occurs between 900 and 1100 m. Inside anticyclonic eddies another two relative maximums are observed, one in the mixed layer and the second at 300 m. In contrast, the mean profile of KEi outside the mesoscale eddies has the maximum value at the surface ( 50 m), with high values of KEi in the first 200 m and negligible energy beneath that depth. A different mean distribution of the KEi is observed depending on the type of wind generator: tropical storms or unidirectional wind.
NASA Technical Reports Server (NTRS)
Omori, S.
1973-01-01
As described in Vol. 1, the eddy viscosity is calculated through the turbulent kinetic energy, in order to include the history of the flow and the effect of chemical reaction on boundary layer characteristics. Calculations can be performed for two different cooling concepts; that is, transpiration and regeneratively cooled wall cases. For the regenerative cooling option, coolant and gas side wall temperature and coolant bulk temperature in a rocket engine can be computed along the nozzle axis. Thus, this computer program is useful in designing coolant flow rate and cooling tube geometry, including the tube wall thickness as well as in predicting the effects of boundary layers along the gas side wall on thrust performances.
NASA Astrophysics Data System (ADS)
Juneja, Anurag; Brasseur, James G.
1999-10-01
Large-eddy simulation (LES) of the atmospheric boundary layer (ABL) using eddy viscosity subgrid-scale (SGS) models is known to poorly predict mean shear at the first few grid cells near the ground, a rough surface with no viscous sublayer. It has recently been shown that convective motions carry this localized error vertically to infect the entire ABL, and that the error is more a consequence of the SGS model than grid resolution in the near-surface inertial layer. Our goal was to determine what first-order errors in the predicted SGS terms lead to spurious expectation values, and what basic dynamics in the filtered equation for resolved scale (RS) velocity must be captured by SGS models to correct the deficiencies. Our analysis is of general relevance to LES of rough-wall high Reynolds number boundary layers, where the essential difficulty in the closure is the importance of the SGS acceleration terms, a consequence of necessary under-resolution of relevant energy-containing motions at the first few grid levels, leading to potentially strong couplings between the anisotropies in resolved velocity and predicted SGS dynamics. We analyze these two issues (under-resolution and anisotropy) in the absence of a wall using two direct numerical simulation datasets of homogeneous turbulence with very different anisotropic structure characteristic of the near-surface ABL: shear- and buoyancy-generated turbulence. We uncover three important issues which should be addressed in the design of SGS closures near rough walls and we provide a priori tests for the SGS model. First, we identify a strong spurious coupling between the anisotropic structure of the resolved velocity field and predicted SGS dynamics which can create a feedback loop to incorrectly enhance certain components of the predicted velocity field. Second, we find that eddy viscosity and "similarity" SGS models do not contain enough degrees of freedom to capture, at a sufficient level of accuracy, both RS-SGS energy flux and SGS-RS dynamics. Third, to correctly capture pressure transport near a wall, closures must be made more flexible to accommodate proper partitioning between SGS stress divergence and SGS pressure gradient.
NASA Technical Reports Server (NTRS)
Omori, S.
1973-01-01
The turbulent kinetic energy equation is coupled with boundary layer equations to solve the characteristics of compressible turbulent boundary layers with mass injection and combustion. The Reynolds stress is related to the turbulent kinetic energy using the Prandtl-Wieghardt formulation. When a lean mixture of hydrogen and nitrogen is injected through a porous plate into the subsonic turbulent boundary layer of air flow and ignited by external means, the turbulent kinetic energy increases twice as much as that of noncombusting flow with the same mass injection rate of nitrogen. The magnitudes of eddy viscosity between combusting and noncombusting flows with injection, however, are almost the same due to temperature effects, while the distributions are different. The velocity profiles are significantly affected by combustion; that is, combustion alters the velocity profile as if the mass injection rate is increased, reducing the skin-friction as a result of a smaller velocity gradient at the wall. If pure hydrogen as a transpiration coolant is injected into a rocket nozzle boundary layer flow of combustion products, the temperature drops significantly across the boundary layer due to the high heat capacity of hydrogen. At a certain distance from the wall, hydrogen reacts with the combustion products, liberating an extensive amount of heat. The resulting large increase in temperature reduces the eddy viscosity in this region.
Overflow Simulations using MPAS-Ocean in Idealized and Realistic Domains
NASA Astrophysics Data System (ADS)
Reckinger, S.; Petersen, M. R.; Reckinger, S. J.
2016-02-01
MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Also, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates. Additionally, preliminary measurements of overflow diagnostics on global simulations using a realistic oceanic domain are presented.
Prediction of the rate of the rise of an air bubble in nanofluids in a vertical tube.
Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T
2018-04-19
Our recent experiments have demonstrated that when a bubble rises through a nanofluid (a liquid containing dispersed nanoparticles) in a vertical tube, a nanofluidic film with several particle layers is formed between the gas bubble and the glass tube wall, which significantly changes the bubble velocity due to the nanoparticle layering phenomenon in the film. We calculated the structural nanofilm viscosity as a function of the number of particle layers confined in it and found that the film viscosity increases rather steeply when the film contains only one or two particle layers. The nanofilm viscosity was found to be several times higher than the bulk viscosity of the fluid. Consequently, the Bretherton equation cannot accurately predict the rate of the rise of a slow-moving long bubble in a vertical tube in a nanofluid because it is valid only for very thick films and uses the bulk viscosity of the fluid. However, in this brief note, we demonstrate that the Bretherton equation can indeed be used for predicting the rate of the rise of a long single bubble through a vertical tube filled with a nanofluid by simply replacing the bulk viscosity with the proper structural nanofilm viscosity of the fluid. Copyright © 2018. Published by Elsevier Inc.
Inference and Biogeochemical Response of Vertical Velocities inside a Mode Water Eddy
NASA Astrophysics Data System (ADS)
Barceló-Llull, B.; Pallas Sanz, E.; Sangrà, P.
2016-02-01
With the aim to study the modulation of the biogeochemical fluxes by the ageostrophic secondary circulation in anticyclonic mesoscale eddies, a typical eddy of the Canary Eddy Corridor was interdisciplinary surveyed on September 2014 in the framework of the PUMP project. The eddy was elliptical shaped, 4 month old, 110 km diameter and 400 m depth. It was an intrathermocline type often also referred as mode water eddy type. We inferred the mesoscale vertical velocity field resolving a generalized omega equation from the 3D density and ADCP velocity fields of a five-day sampled CTD-SeaSoar regular grid centred on the eddy. The grid transects where 10 nautical miles apart. Although complex, in average, the inferred omega velocity field (hereafter w) shows a dipolar structure with downwelling velocities upstream of the propagation path (west) and upwelling velocities downstream. The w at the eddy center was zero and maximum values were located at the periphery attaining ca. 6 m day-1. Coinciding with the occurrence of the vertical velocities cells a noticeable enhancement of phytoplankton biomass was observed at the eddy periphery respect to the far field. A corresponding upward diapycnal flux of nutrients was also observed at the periphery. As minimum velocities where reached at the eddy center, lineal Ekman pumping mechanism was discarded. Minimum values of phytoplankton biomass where also observed at the eddy center. The possible mechanisms for such dipolar w cell are still being investigated, but an analysis of the generalized omega equation forcing terms suggest that it may be a combination of horizontal deformation and advection of vorticity by the ageostrophic current (related to nonlinear Ekman pumping). As expected for Trades, the wind was rather constant and uniform with a speed of ca. 5 m s-1. Diagnosed nonlinear Ekman pumping leaded also to a dipolar cell that mirrors the omega w dipolar cell.
Study of the far wake vortex field generated by a rectangular airfoil in a water tank
NASA Technical Reports Server (NTRS)
Lezius, D. K.
1973-01-01
Underwater towing experiments were carried out with a rectangular airfoil of aspect ratio 5.3 at 4 and 8 deg angles of attack and at chord-based Reynolds numbers between 2 x 100,000 and 7.5 x 100,000. Quantitative measurements by means of the hydrogen bubble technique indicated lower peak swirl velocities in the range of 100 to 1000 lenghts downstream than have been measured in wind tunnel of flight tests. The maximum circumferential velocity decayed whereas the turbulent eddy viscosity increased. This behavior and other known rates of vortex decay are explained in terms of an analytical solution for the vortex problem with time varying eddy viscosity. It is shown that this case corresponds to nonequilibrium turbulent vortex flow.
An Improved K-Epsilon Model for Near-Wall Turbulence and Comparison with Direct Numerical Simulation
NASA Technical Reports Server (NTRS)
Shih, T. H.
1990-01-01
An improved k-epsilon model for low Reynolds number turbulence near a wall is presented. The near-wall asymptotic behavior of the eddy viscosity and the pressure transport term in the turbulent kinetic energy equation is analyzed. Based on this analysis, a modified eddy viscosity model, having correct near-wall behavior, is suggested, and a model for the pressure transport term in the k-equation is proposed. In addition, a modeled dissipation rate equation is reformulated. Fully developed channel flows were used for model testing. The calculations using various k-epsilon models are compared with direct numerical simulations. The results show that the present k-epsilon model performs well in predicting the behavior of near-wall turbulence. Significant improvement over previous k-epsilon models is obtained.
PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Abhijit S; Jain, Prashant K; Mudrich, Jaime A
2012-01-01
At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM.more » To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.« less
[CO2 turbulent exchange in a broadleaved Korean pine forest in Changbai Mountains].
Wu, Jia-bing; Guan, De-xin; Sun, Xiao-min; Shi, Ting-ting; Han, Shi-jie; Jin, Chang-jie
2007-05-01
The measurement of CO2 turbulent exchange in a broadleaved Korean pine forest in Changbai Mountains by an open-path eddy covariance system showed that with near neutral atmospheric stratification, the CO2 and vertical wind components over canopy in inertial subrange followed the expected -2/3 power law, and the dominant vertical eddy scale was about 40 m. The frequency ranges of eddy contributions to CO2 fluxes were mostly within 0.01-2.0 Hz, and the eddy translated by low frequency over canopy contributed more of CO2 fluxes. The open-path eddy covariance system could satisfy the estimation of turbulent fluxes over canopy, but the CO2 fluxes between forest and atmosphere were generally underestimated at night because the increment of non turbulent processes, suggesting that the CO2 fluxes estimated under weak turbulence needed to revise correspondingly.
NASA Astrophysics Data System (ADS)
Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai
2017-01-01
The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.
USDA-ARS?s Scientific Manuscript database
Evapotranspiration was continuously measured by an array of eddy covariance systems and large weighting lysimeter in a cotton field in Bushland, Texas. The advective divergence from both horizontal and vertical directions were measured through profile measurements above canopy. All storage terms wer...
The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence
NASA Astrophysics Data System (ADS)
Johnsen, Eric; Pan, Shaowu
2016-11-01
The practice of neglecting bulk viscosity in studies of compressible turbulence is widespread. While exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, this assumption is not justifiable for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g., CO2). To understand the mechanisms by which bulk viscosity and the associated phenomena affect compressible turbulence, we conduct DNS of freely decaying compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0-1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; while enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by an order of magnitude within the two eddy turnover time. Via a Helmholtz decomposition of the flow, we determined that bulk viscosity damps the dilatational velocity and reduces dilatational-solenoidal exchanges, as well as pressure-dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal modes.
RAS one-equation turbulence model with non-singular eddy-viscosity coefficient
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Agarwal, R. K.; Siikonen, T.
2016-02-01
A simplified consistency formulation for Pk/ε (production to dissipation ratio) is devised to obtain a non-singular Cμ (coefficient of eddy-viscosity) in the explicit algebraic Reynolds stress model of Gatski and Speziale. The coefficient Cμ depends non-linearly on both rotational/irrotational strains and is used in the framework of an improved RAS (Rahman-Agarwal-Siikonen) one-equation turbulence model to calculate a few well-documented turbulent flows, yielding predictions in good agreement with the direct numerical simulation and experimental data. The strain-dependent Cμ assists the RAS model in constructing the coefficients and functions such as to benefit complex flows with non-equilibrium turbulence. Comparisons with the Spalart-Allmaras one-equation model and the shear stress transport k-ω model demonstrate that Cμ improves the response of RAS model to non-equilibrium effects.
Subduction at upper ocean fronts by baroclinic instability
NASA Astrophysics Data System (ADS)
Verma, Vicky; Pham, Hieu T.; Radhakrishnan, Anand; Sarkar, Sutanu
2017-11-01
Large eddy simulations of upper ocean fronts that are initially in geostrophic balance show that the linear and subsequent nonlinear evolution of baroclinic intability are effective in restratifying the front. During the growth of baroclinic instability, the front develops thin regions with enhanced vertical vorticity, i.e., vorticity filaments. Moreover, the vorticity filaments organize into submesoscale eddies. The subsequent frontal dynamics is dominated by the vorticity filaments and the submesoscale eddies. Diagnosis of the horizontal force balance reveals that the regions occupied by these coherent structures have significantly large imbalance, and are characterized by large vertical velocity. High density fluid from the heavier side of the front is subducted by the vertical velocity to the bottom of the mixed layer. The process of subduction is illustrated by Lagrangian tracking of fluid particles released at a fixed depth.
Observations and analysis of a stratification-destratification event in a tropical estuary
NASA Astrophysics Data System (ADS)
Uncles, R. J.; Ong, J. E.; Gong, W. K.
1990-11-01
A data set comprising 31 continuous tidal cycles was collected in the Sungai Merbok Estuary, Malaysia, in June 1987 as part of an ecological study of nutrient fluxes from a tropical mangrove estuary. Currents, salinity and salinity stratification at a deep-channel (15 m) station near the mouth of the Merbok Estuary showed a pronounced spring-neap variability. The slow currents and weak vertical mixing at neap tides favoured the formation of a stratified water column and generated a neap-spring cycle of water column stabilization and destabilization. A strong stratification event occurred during the period of observations. This was partly driven by a modest freshwater spate which coincided with neap tides. An eddy viscosity-diffusivity model of the stratification, which assumed a constant, longitudinal salinity gradient, demonstrated a pronounced stratification-destratification cycle due to neap-spring variations in vertical mixing. Larger and more realistic stratification was modelled when the estimated, time-varying longitudinal salinity gradient was incorporated. This gradient maximized in response to the peak in freshwater runoff. The measured and modelled density-driven circulations showed qualitative similarities and were of the order of 10 cm s -1 at neap tides. The circulation was weaker during spring tides. The tidally-filtered salt transport due to vertical shear was directed up-estuary and was an order of magnitude smaller during spring tides. The results are discussed in terms of their relevance to mangrove system oceanography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Sal
2017-08-24
The code (aka computer program written as a Matlab script) uses a unique set of n independent equations to solve for n turbulence variables. The code requires the input of a characteristic dimension, a characteristic fluid velocity, the fluid dynamic viscosity, and the fluid density. Most importantly, the code estimates the size of three key turbulent eddies: Kolmogorov, Taylor, and integral. Based on the eddy sizes, dimples dimensions are prescribed such that the key eddies (principally Taylor, and sometimes Kolmogorov), can be generated by the dimple rim and flow unimpeded through the dimple’s concave cavity. It is hypothesized that turbulentmore » eddies are generated by the dimple rim at the dimple-surface interface. The newly-generated eddies in turn entrain the movement of surrounding regions of fluid, creating more mixing. The eddies also generate lift near the wall surrounding the dimple, as they accelerate and reduce pressure in the regions near and at the dimple cavity, thereby minimizing the fluid drag.« less
NASA Astrophysics Data System (ADS)
Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.
2018-02-01
The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.
NASA Astrophysics Data System (ADS)
Chapelier, Jean-Baptiste; Wasistho, Bono; Scalo, Carlo
2017-11-01
A new approach to Large-Eddy Simulation (LES) is introduced, where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated in regions dominated by large-scale vortical motion. The proposed CvP-LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy: σ = ξ ∧ / ξ . Values of σ = 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of any subgrid-scale model. Values of σ < 1 span conditions ranging from incipient spectral broadening σ <= 1 , to equilibrium turbulence σ =σeq < 1 , where σeq is solely as a function of the test-to-grid filter-width ratio Δ ∧ / Δ , derived assuming a Kolmogorov's spectrum. Eddy viscosity is fully restored for σ <=σeq . The proposed approach removes unnecessary SGS dissipation, can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. A CvP-LES of a pair of unstable helical vortices, representative of rotor-blade wake dynamics, show the ability of the method to sort the coherent motion from the small-scale dynamics. This work is funded by subcontract KSC-17-001 between Purdue University and Kord Technologies, Inc (Huntsville), under the US Navy Contract N68335-17-C-0159 STTR-Phase II, Purdue Proposal No. 00065007, Topic N15A-T002.
NASA Astrophysics Data System (ADS)
Meneveau, C. V.; Bai, K.; Katz, J.
2011-12-01
The vegetation canopy has a significant impact on various physical and biological processes such as forest microclimate, rainfall evaporation distribution and climate change. Most scaled laboratory experimental studies have used canopy element models that consist of rigid vertical strips or cylindrical rods that can be typically represented through only one or a few characteristic length scales, for example the diameter and height for cylindrical rods. However, most natural canopies and vegetation are highly multi-scale with branches and sub-branches, covering a wide range of length scales. Fractals provide a convenient idealization of multi-scale objects, since their multi-scale properties can be described in simple ways (Mandelbrot 1982). While fractal aspects of turbulence have been studied in several works in the past decades, research on turbulence generated by fractal objects started more recently. We present an experimental study of boundary layer flow over fractal tree-like objects. Detailed Particle-Image-Velocimetry (PIV) measurements are carried out in the near-wake of a fractal-like tree. The tree is a pre-fractal with five generations, with three branches and a scale reduction factor 1/2 at each generation. Its similarity fractal dimension (Mandelbrot 1982) is D ~ 1.58. Detailed mean velocity and turbulence stress profiles are documented, as well as their downstream development. We then turn attention to the turbulence mixing properties of the flow, specifically to the question whether a mixing length-scale can be identified in this flow, and if so, how it relates to the geometric length-scales in the pre-fractal object. Scatter plots of mean velocity gradient (shear) and Reynolds shear stress exhibit good linear relation at all locations in the flow. Therefore, in the transverse direction of the wake evolution, the Boussinesq eddy viscosity concept is appropriate to describe the mixing. We find that the measured mixing length increases with increasing streamwise locations. Conversely, the measured eddy viscosity and mixing length decrease with increasing elevation, which differs from eddy viscosity and mixing length behaviors of traditional boundary layers or canopies studied before. In order to find an appropriate length for the flow, several models based on the notion of superposition of scales are proposed and examined. One approach is based on spectral distributions. Another more practical approach is based on length-scale distributions evaluated using fractal geometry tools. These proposed models agree well with the measured mixing length. The results indicate that information about multi-scale clustering of branches as it occurs in fractals has to be incorporated into models of the mixing length for flows through canopies with multiple scales. The research is supported by National Science Foundation grant ATM-0621396 and AGS-1047550.
Foam-machining tool with eddy-current transducer
NASA Technical Reports Server (NTRS)
Copper, W. P.
1975-01-01
Three-cutter machining system for foam-covered tanks incorporates eddy-current sensor. Sensor feeds signal to numerical controller which programs rotational and vertical axes of sensor travel, enabling cutterhead to profile around tank protrusions.
Eddy-driven nutrient transport and associated upper-ocean primary production along the Kuroshio
NASA Astrophysics Data System (ADS)
Uchiyama, Yusuke; Suzue, Yota; Yamazaki, Hidekatsu
2017-06-01
The Kuroshio is one of the most energetic western boundary currents accompanied by vigorous eddy activity both on mesoscale and submesoscale, which affects biogeochemical processes in the upper ocean. We examine the primary production around the Kuroshio off Japan using a climatological ocean modeling based on the Regional Oceanic Modeling System (ROMS) coupled with a nitrogen-based nutrient, phytoplankton and zooplankton, and detritus (NPZD) biogeochemical model in a submesoscale eddy-permitting configuration. The model indicates significant differences of the biogeochemical responses to eddy activities in the Kuroshio Region (KR) and Kuroshio Extension Region (KE). In the KR, persisting cyclonic eddies developed between the Kuroshio and coastline are responsible for upwelling-induced eutrophication. However, the eddy-induced vertical nutrient flux counteracts and promotes pronounced southward and downward diapycnal nutrient transport from the mixed-layer down beneath the main body of the Kuroshio, which suppresses the near-surface productivity. In contrast, the KE has a 23.5% higher productivity than the KR, even at comparable eddy intensity. Upward nutrient transport prevails near the surface due to predominant cyclonic eddies, particularly to the north of the KE, where the downward transport barely occurs, except at depths deeper than 400 m and to a much smaller degree than in the KR. The eddy energy conversion analysis reveals that the combination of shear instability around the mainstream of the Kuroshio with prominent baroclinic instability near the Kuroshio front is essential for the generation of eddies in the KR, leading to the increase of the eddy-induced vertical nitrate transport around the Kuroshio.
Tropical waves and the quasi-biennial oscillation in the lower stratosphere
NASA Technical Reports Server (NTRS)
Miller, A. J.; Angell, J. K.; Korshover, J.
1976-01-01
By means of spectrum analysis of 11 years of lower stratospheric daily winds and temperatures at Balboa, Ascension and Canton-Singapore, evidence is presented supporting the existence of two principal wave modes with periods of about 11-17 days (Kelvin waves) and about 4-5 days (mixed Rossby-gravity waves). The structure of the two wave modes, as well as the vertical eddy momentum flux by the waves, is shown to be related to the quasi-biennial cycle, although for the mixed Rossby-gravity waves this is obvious only at Ascension. In addition, the Coriolis term, suggested as a source of vertical easterly momentum flux for the mixed Rossby-gravity waves, is investigated and found to be of the same magnitude as the vertical eddy flux term. Finally, we have examined the mean meridional motion and the meridional eddy momentum flux for its possible association with the quasi- biennial variation.
Polar symmetric flow of a viscous compressible atmosphere; an application to Mars
NASA Technical Reports Server (NTRS)
Pirraglia, J. A.
1974-01-01
The atmosphere is assumed to be driven by a polar symmetric temperature field and the equations of motion in pressure ratio coordinates are linearized by considering the zero order in terms of a thermal Rossby number R delta I/(2a omega) sq where delta T is a measure of the latitudinal temperature gradient. When the eddy viscosity is greater than 1 million sq cm/sec, the boundary layer extends far up into the atmosphere, making the geostrophic approximation invalid for the bulk of the atmosphere. A temperature model for Mars was used which was based on Mariner 9 infrared spectral data with a 30% increase in the depth averaged temperature from the winter pole to the subsolar point. The results obtained for the increase in surface pressure from the subsolar point to the winter pole, as a function of eddy viscosity and with no-slip conditions imposed at the surface, are given.
Reference Solutions for Benchmark Turbulent Flows in Three Dimensions
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Pandya, Mohagna J.; Rumsey, Christopher L.
2016-01-01
A grid convergence study is performed to establish benchmark solutions for turbulent flows in three dimensions (3D) in support of turbulence-model verification campaign at the Turbulence Modeling Resource (TMR) website. The three benchmark cases are subsonic flows around a 3D bump and a hemisphere-cylinder configuration and a supersonic internal flow through a square duct. Reference solutions are computed for Reynolds Averaged Navier Stokes equations with the Spalart-Allmaras turbulence model using a linear eddy-viscosity model for the external flows and a nonlinear eddy-viscosity model based on a quadratic constitutive relation for the internal flow. The study involves three widely-used practical computational fluid dynamics codes developed and supported at NASA Langley Research Center: FUN3D, USM3D, and CFL3D. Reference steady-state solutions computed with these three codes on families of consistently refined grids are presented. Grid-to-grid and code-to-code variations are described in detail.
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy
2016-10-18
There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property.more » Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.« less
Artificial fluid properties for large-eddy simulation of compressible turbulent mixing
NASA Astrophysics Data System (ADS)
Cook, Andrew W.
2007-05-01
An alternative methodology is described for large-eddy simulation (LES) of flows involving shocks, turbulence, and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of a LES fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity, and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a tenth-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in a crisp fashion.
Wave attenuation in the marginal ice zone during LIMEX
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.; Bhogal, A. S.
1992-01-01
The effect of ice cover on ocean-wave attenuation is investigated for waves under flexure in the marginal ice zone (MIZ) with SAR image spectra and the results of models. Directional wavenumber spectra are taken from the SAR image data, and the wave-attenuation rate is evaluated with SAR image spectra and by means of the model by Liu and Mollo-Christensen (1988). Eddy viscosity is described by means of dimensional analysis as a function of ice roughness and wave-induced velocity, and comparisons are made with the remotely sensed data. The model corrects the open-water model by introducing the effects of a continuous ice sheet, and turbulent eddy viscosity is shown to depend on ice thickness, floe sizes, significant wave height, and wave period. SAR and wave-buoy data support the trends described in the model results, and a characteristic rollover is noted in the model and experimental wave-attenuation rates at high wavenumbers.
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy
There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property.more » Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.« less
Computation of turbulent rotating channel flow with an algebraic Reynolds stress model
NASA Technical Reports Server (NTRS)
Warfield, M. J.; Lakshminarayana, B.
1986-01-01
An Algebraic Reynolds Stress Model has been implemented to modify the Kolmogorov-Prandtl eddy viscosity relation to produce an anisotropic turbulence model. The eddy viscosity relation becomes a function of the local turbulent production to dissipation ratio and local turbulence/rotation parameters. The model is used to predict fully-developed rotating channel flow over a diverse range of rotation numbers. In addition, predictions are obtained for a developing channel flow with high rotation. The predictions are compared with the experimental data available. Good predictions are achieved for mean velocity and wall shear stress over most of the rotation speeds tested. There is some prediction breakdown at high rotation (rotation number greater than .10) where the effects of the rotation on turbulence become quite complex. At high rotation and low Reynolds number, the laminarization on the trailing side represents a complex effect of rotation which is difficult to predict with the described models.
Prediction of High-Lift Flows using Turbulent Closure Models
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.; Ying, Susan X.; Bertelrud, Arild
1997-01-01
The flow over two different multi-element airfoil configurations is computed using linear eddy viscosity turbulence models and a nonlinear explicit algebraic stress model. A subset of recently-measured transition locations using hot film on a McDonnell Douglas configuration is presented, and the effect of transition location on the computed solutions is explored. Deficiencies in wake profile computations are found to be attributable in large part to poor boundary layer prediction on the generating element, and not necessarily inadequate turbulence modeling in the wake. Using measured transition locations for the main element improves the prediction of its boundary layer thickness, skin friction, and wake profile shape. However, using measured transition locations on the slat still yields poor slat wake predictions. The computation of the slat flow field represents a key roadblock to successful predictions of multi-element flows. In general, the nonlinear explicit algebraic stress turbulence model gives very similar results to the linear eddy viscosity models.
A simple method for simulating wind profiles in the boundary layer of tropical cyclones
Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; ...
2016-11-01
A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method alsomore » requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Lastly, temporal spectra from LES produce an inertial subrange for frequencies ≳0.1 Hz, but only when the horizontal grid spacing ≲20 m.« less
A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones
NASA Astrophysics Data System (ADS)
Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; Zhang, Jun A.
2017-03-01
A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies ≳ 0.1 Hz, but only when the horizontal grid spacing ≲ 20 m.
Wave energetics of the southern hemisphere of Mars
NASA Astrophysics Data System (ADS)
Battalio, Michael; Szunyogh, Istvan; Lemmon, Mark
2018-07-01
An assessment of the energetics of transient waves in the southern hemisphere of Mars is presented using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation. The dataset is divided into four representative periods covering the summer and winter solstices, a late fall period, and an early spring period for three Mars years. Spring eddies are the most intense, with eddies during the fall being less intense due to a marginally more stable mean-temperature profile and reduced recirculation of ageostrophic geopotential fluxes compared to the spring. Eddy kinetic energy during winter is reduced in intensity as a result of the winter solstitial pause in wave activity, and eddy kinetic energy during the summer is limited. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter as a result of a stabilized vertical temperature profile. Barotropic energy conversion acts as both a source and a sink of eddy kinetic energy, being most positive during the solstitial pause. Eddies take a northwest to southeast track across the southern highlands in the fall but have a more zonal track in the spring due to stronger eddy kinetic energy advection. Wave energetics is less intense in the southern compared to the northern hemisphere as a result of a shallower baroclinically unstable vertical profile.
NASA Astrophysics Data System (ADS)
Gourdeau, L.; Verron, J.; Chaigneau, A.; Cravatte, S.; Kessler, W.
2017-11-01
Mesoscale activity is an important component of the Solomon Sea circulation that interacts with the energetic low-latitude western boundary currents of the South Tropical Pacific Ocean carrying waters of subtropical origin before joining the equatorial Pacific. Mixing associated with mesoscale activity could explain water mass transformation observed in the Solomon Sea that likely impacts El Niño Southern Oscillation dynamics. This study makes synergetic use of glider data, altimetry, and high-resolution model for exploring mesoscale eddies, especially their vertical structures, and their role on the Solomon Sea circulation. The description of individual eddies observed by altimetry and gliders provides the first elements to characterize the 3-D structure of these tropical eddies, and confirms the usefulness of the model to access a more universal view of such eddies. Mesoscale eddies appear to have a vertical extension limited to the Surface Waters (SW) and the Upper Thermocline Water (UTW), i.e., the first 140-150 m depth. Most of the eddies are nonlinear, meaning that eddies can trap and transport water properties. But they weakly interact with the deep New Guinea Coastal Undercurrent that is a key piece of the equatorial circulation. Anticyclonic eddies are particularly efficient to advect salty and warm SW coming from the intrusion of equatorial Pacific waters at Solomon Strait, and to impact the characteristics of the New Guinea Coastal Current. Cyclonic eddies are particularly efficient to transport South Pacific Tropical Water (SPTW) anomalies from the North Vanuatu Jet and to erode by diapycnal mixing the high SPTW salinity.
Contribution of mesoscale eddies to Black Sea ventilation
NASA Astrophysics Data System (ADS)
Capet, Arthur; Mason, Evan; Pascual, Ananda; Grégoire, Marilaure
2017-04-01
The shoaling of the Black Sea oxycline is one of the most urgent environmental issues in the Black Sea. The permanent oxycline derives directly from the Black Sea permanent stratification and has shoaled alarmingly in the last decades, due to a shifting balance between oxygen consumption and ventilation processes (Capet et al. 2016). The understanding of this balance is thus of the utmost importance and requires to quantify 1) the export of nutrients and organic materials from the shelf regions to the open sea and 2) the ventilation processes. These two processes being influenced by mesoscale features, it is critical to understand the role of the semi-permanent mesoscale structures in horizontal (center/periphery) and vertical (diapycnal and isopycnal) exchanges. A useful insight can be obtained by merging observations from satellite altimeter and in situ profilers (ARGO). In such composite analyses, eddies are first automatically identified and tracked from altimeter data (Mason et al. 2014, py-eddy-tracker). Vertical ARGO profiles are then expressed in terms of their position relative to eddy centers and radii. Derived statistics indicate how consistently mesoscale eddies alter the vertical structure, and provide a deeper understanding of the associated horizontal and vertical fluxes. However, this data-based approach is limited in the Black Sea due to the lower quality of gridded altimetric products in the vicinity of the coast, where semi-permanent mesoscale structures prevail. To complement the difficult analysis of this sparse dataset, a compositing methodology. is also applied to model outputs from the 5km GHER-BHAMBI Black Sea implementation (CMEMS BS-MFC). Characteristic biogeochemical anomalies associated with eddies in the model are analyzed per se, and compared to the observation-based analysis. Capet, A., Stanev, E. V., Beckers, J.-M., Murray, J. W., and Grégoire, M.: Decline of the Black Sea oxygen inventory, Biogeosciences, 13, 1287-1297, doi:10.5194/bg-13-1287-2016, 2016. Mason, Evan, Ananda Pascual, and James C. McWilliams. "A new sea surface height-based code for oceanic mesoscale eddy tracking." Journal of Atmospheric and Oceanic Technology 31.5 (2014): 1181-1188.
Benchmarking the mesoscale variability in global ocean eddy-permitting numerical systems
NASA Astrophysics Data System (ADS)
Cipollone, Andrea; Masina, Simona; Storto, Andrea; Iovino, Doroteaciro
2017-10-01
The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ∘ horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This "eddy-permitting" resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.
The Influence of Slope Breaks on Lava Flow Surface Disruption
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert
2014-01-01
Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.
Comparative Study Of Four Models Of Turbulence
NASA Technical Reports Server (NTRS)
Menter, Florian R.
1996-01-01
Report presents comparative study of four popular eddy-viscosity models of turbulence. Computations reported for three different adverse pressure-gradient flowfields. Detailed comparison of numerical results and experimental data given. Following models tested: Baldwin-Lomax, Johnson-King, Baldwin-Barth, and Wilcox.
Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea
NASA Astrophysics Data System (ADS)
Cardona, Yuley; Bracco, Annalisa
The South China Sea is a marginal basin with a complex circulation influenced by the East Asian Monsoon, river discharge and intricate bathymetry. As a result, both the mesoscale eddy field and the near-inertial energy distribution display large spatial variability and they strongly influence the oceanic transport and mixing. With an ensemble of numerical integrations using a regional ocean model, this work investigates how the temporal resolution of the atmospheric forcing fields modifies the horizontal and vertical velocity patterns and impacts the transport properties in the basin. The response of the mesoscale circulation in the South China Sea is investigated under three different forcing conditions: monthly, daily and 6-hourly momentum and heat fluxes. While the horizontal circulation does not display significant differences, the representation of the vertical velocity field displays high sensitivity to the frequency of the wind forcing. If the wind field contains energy at the inertial frequency or higher (daily and 6-hourly cases), then submesoscale fronts, vortex Rossby waves and near inertial waves are excited as ageostrophic expression of the vigorous eddy field. Those quasi- and near-inertial waves dominate the vertical velocity field in the mixed layer (vortex Rossby waves) and below the first hundred meters (near inertial waves) and they are responsible for the differences in the vertical transport properties under the various forcing fields as quantified by frequency spectra, vertical velocity profiles and vertical dispersion of Lagrangian tracers.
NASA Astrophysics Data System (ADS)
Kulkarni, M. N.; Kamra, A. K.
2012-11-01
A theoretical model is developed for calculating the vertical distribution of atmospheric electric potential in exchange layer of maritime clean atmosphere. The transport of space charge in electrode layer acts as a convective generator in this model and plays a major role in determining potential distribution in vertical. Eddy diffusion is the main mechanism responsible for the distribution of space charge in vertical. Our results show that potential at a particular level increases with increase in the strength of eddy diffusion under similar conditions. A method is suggested to estimate columnar resistance, the ionospheric potential and the vertical atmospheric electric potential distribution in exchange layer from measurements of total air-earth current density and surface electric field made over oceans. The results are validated and found to be in very good agreement with the previous aircraft measurements. Different parameters involved in the proposed methodology can be determined either theoretically, as in the present work, or experimentally using the near surface atmospheric electrical measurements or using some other surface-based measurement technique such as LIDAR. A graphical relationship between the atmospheric eddy diffusion coefficient and height of exchange layer obtained from atmospheric electrical approach, is reported.
NASA Astrophysics Data System (ADS)
Lynch, James F.; Irish, James D.; Gross, Thomas F.; Wiberg, Patricia L.; Newhall, Arthur E.; Traykovski, Peter A.; Warren, Joseph D.
1997-08-01
As part of the 1990-1991 Sediment TRansport Events on Shelves and Slopes (STRESS) experiment, a 5 MHz Acoustic BackScatter System (ABSS) was deployed in 90 m of water to measure vertical profiles of near-bottom suspended sediment concentration. By looking at the vertical profile of concentration from 0 to 50 cm above bottom (cmab) with 1 cm vertical resolution, the ABSS was able to examine the detailed structure of the bottom boundary layer created by combined wave and current stresses. The acoustic profiles clearly showed the wave-current boundary layer, which extends to (order) 10 cmab. The profiles also showed evidence of an "intermediate" boundary layer, also influenced by combined wave and current stresses, just above the wave-current boundary layer. This paper examines the boundary-layer structure by comparing acoustic data obtained by the authors to a 1-D eddy viscosity model formulation. Specifically, these data are compared to a simple extension of the Grant-Glenn-Madsen model formulation. Also of interest is the appearance of apparently 3-D "advective plume" structures in these data. This is an interesting feature in a site which was initially chosen to be a good example of (temporally averaged) 1-D bottom boundary-layer dynamics. Computer modeling and sector-scanning sonar images are presented to justify the plausibility of observing 3-D structure at the STRESS site. 1997 Elsevier Science Ltd
NASA Astrophysics Data System (ADS)
Lu, Xian; Chu, Xinzhao; Li, Haoyu; Chen, Cao; Smith, John A.; Vadas, Sharon L.
2017-09-01
We present the first statistical study of gravity waves with periods of 0.3-2.5 h that are persistent and dominant in the vertical winds measured with the University of Colorado STAR Na Doppler lidar in Boulder, CO (40.1°N, 105.2°W). The probability density functions of the wave amplitudes in temperature and vertical wind, ratios of these two amplitudes, phase differences between them, and vertical wavelengths are derived directly from the observations. The intrinsic period and horizontal wavelength of each wave are inferred from its vertical wavelength, amplitude ratio, and a designated eddy viscosity by applying the gravity wave polarization and dispersion relations. The amplitude ratios are positively correlated with the ground-based periods with a coefficient of 0.76. The phase differences between the vertical winds and temperatures (φW -φT) follow a Gaussian distribution with 84.2±26.7°, which has a much larger standard deviation than that predicted for non-dissipative waves ( 3.3°). The deviations of the observed phase differences from their predicted values for non-dissipative waves may indicate wave dissipation. The shorter-vertical-wavelength waves tend to have larger phase difference deviations, implying that the dissipative effects are more significant for shorter waves. The majority of these waves have the vertical wavelengths ranging from 5 to 40 km with a mean and standard deviation of 18.6 and 7.2 km, respectively. For waves with similar periods, multiple peaks in the vertical wavelengths are identified frequently and the ones peaking in the vertical wind are statistically longer than those peaking in the temperature. The horizontal wavelengths range mostly from 50 to 500 km with a mean and median of 180 and 125 km, respectively. Therefore, these waves are mesoscale waves with high-to-medium frequencies. Since they have recently become resolvable in high-resolution general circulation models (GCMs), this statistical study provides an important and timely reference for them.
NASA Technical Reports Server (NTRS)
Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.
2004-01-01
Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.
NASA Astrophysics Data System (ADS)
Minakov, A.; Platonov, D.; Sentyabov, A.; Gavrilov, A.
2017-01-01
We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at three regimes, using two eddy-viscosity- (EVM) and a Reynolds stress (RSM) RANS models (realizable k-ɛ, k-ω SST, LRR) and detached-eddy-simulations (DES), as well as large-eddy simulations (LES). Comparison of calculation results with the experimental data was carried out. Unlike the linear EVMs, the RSM, DES, and LES reproduced well the mean velocity components, and pressure pulsations in the diffusor draft tube. Despite relatively coarse meshes and insufficient resolution of the near-wall region, LES, DES also reproduced well the intrinsic flow unsteadiness and the dominant flow structures and the associated pressure pulsations in the draft tube.
Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Grete, Philipp; Vlaykov, Dimitar G.; Schmidt, Wolfram; Schleicher, Dominik R. G.; Federrath, Christoph
2015-02-01
Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment—magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures—models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The SGS energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pressure ({{β }p}=0.25,1,2.5,5,25) and sonic Mach numbers ({{M}s}=2,2.5,4). Furthermore, we make a comparison to traditional, phenomenological eddy-viscosity and α -β -γ closures. We find only mediocre performance of the kinetic eddy-viscosity and α -β -γ closures, and that the magnetic eddy-viscosity closure is poorly correlated with the simulation data. Moreover, three of five coefficients of the traditional closures exhibit a significant spread in values. In contrast, our new closures demonstrate consistently high correlations and constant coefficient values over time and over the wide range of parameters tested. Important aspects in compressible MHD turbulence such as the bi-directional energy cascade, turbulent magnetic pressure and proper alignment of the EMF are well described by our new closures.
VALIDITY OF A TWO-DIMENSIONAL MODEL FOR VARIABLE-DENSITY HYDRODYNAMIC CIRCULATION
A three-dimensional model of temperatures and currents has been formulated to assist in the analysis and interpretation of the dynamics of stratified lakes. In this model, nonlinear eddy coefficients for viscosity and conductivities are included. A two-dimensional model (one vert...
A novel VLES model accounting for near-wall turbulence: physical rationale and applications
NASA Astrophysics Data System (ADS)
Jakirlic, Suad; Chang, Chi-Yao; Kutej, Lukas; Tropea, Cameron
2014-11-01
A novel VLES (Very Large Eddy Simulation) model whose non-resolved residual turbulence is modelled by using an advanced near-wall eddy-viscosity model accounting for the near-wall Reynolds stress anisotropy influence on the turbulence viscosity by modelling appropriately the velocity scale in the relevant formulation (Hanjalic et al., 2004) is proposed. It represents a variable resolution Hybrid LES/RANS (Reynolds-Averaged Navier-Stokes) computational scheme enabling a seamless transition from RANS to LES depending on the ratio of the turbulent viscosities associated with the unresolved scales corresponding to the LES cut-off and the `unsteady' scales pertinent to the turbulent properties of the VLES residual motion, which varies within the flow domain. The VLES method is validated interactively in the process of the model derivation by computing fully-developed flow in a plane channel (important representative of wall-bounded flows, underlying the log-law for the velocity field, for studying near-wall Reynolds stress anisotropy) and a separating flow over a periodic arrangement of smoothly-contoured 2-D hills. The model performances are also assessed in capturing the natural decay of the homogeneous isotropic turbulence. The model is finally applied to swirling flow in a vortex tube, flow in an IC-engine configuration and flow past a realistic car model.
Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method
NASA Astrophysics Data System (ADS)
DeLeon, Rey; Sandusky, Micah; Senocak, Inanc
2018-02-01
We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.
Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method
NASA Astrophysics Data System (ADS)
DeLeon, Rey; Sandusky, Micah; Senocak, Inanc
2018-06-01
We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.
A new time scale based k-epsilon model for near wall turbulence
NASA Technical Reports Server (NTRS)
Yang, Z.; Shih, T. H.
1992-01-01
A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.
Near-wall k-epsilon turbulence modeling
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Kim, J.; Moin, P.
1987-01-01
The flow fields from a turbulent channel simulation are used to compute the budgets for the turbulent kinetic energy (k) and its dissipation rate (epsilon). Data from boundary layer simulations are used to analyze the dependence of the eddy-viscosity damping-function on the Reynolds number and the distance from the wall. The computed budgets are used to test existing near-wall turbulence models of the k-epsilon type. It was found that the turbulent transport models should be modified in the vicinity of the wall. It was also found that existing models for the different terms in the epsilon-budget are adequate in the region from the wall, but need modification near the wall. The channel flow is computed using a k-epsilon model with an eddy-viscosity damping function from the data and no damping functions in the epsilon-equation. These computations show that the k-profile can be adequately predicted, but to correctly predict the epsilon-profile, damping functions in the epsilon-equation are needed.
New time scale based k-epsilon model for near-wall turbulence
NASA Technical Reports Server (NTRS)
Yang, Z.; Shih, T. H.
1993-01-01
A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.
A defect stream function, law of the wall/wake method for compressible turbulent boundary layers
NASA Technical Reports Server (NTRS)
Barnwell, Richard W.; Dejarnette, Fred R.; Wahls, Richard A.
1989-01-01
The application of the defect stream function to the solution of the two-dimensional, compressible boundary layer is examined. A law of the wall/law of the wake formulation for the inner part of the boundary layer is presented which greatly simplifies the computational task near the wall and eliminates the need for an eddy viscosity model in this region. The eddy viscosity model in the outer region is arbitrary. The modified Crocco temperature-velocity relationship is used as a simplification of the differential energy equation. Formulations for both equilibrium and nonequilibrium boundary layers are presented including a constrained zero-order form which significantly reduces the computational workload while retaining the significant physics of the flow. A formulation for primitive variables is also presented. Results are given for the constrained zero-order and second-order equilibrium formulations and are compared with experimental data. A compressible wake function valid near the wall has been developed from the present results.
A normal stress subgrid-scale eddy viscosity model in large eddy simulation
NASA Technical Reports Server (NTRS)
Horiuti, K.; Mansour, N. N.; Kim, John J.
1993-01-01
The Smagorinsky subgrid-scale eddy viscosity model (SGS-EVM) is commonly used in large eddy simulations (LES) to represent the effects of the unresolved scales on the resolved scales. This model is known to be limited because its constant must be optimized in different flows, and it must be modified with a damping function to account for near-wall effects. The recent dynamic model is designed to overcome these limitations but is compositionally intensive as compared to the traditional SGS-EVM. In a recent study using direct numerical simulation data, Horiuti has shown that these drawbacks are due mainly to the use of an improper velocity scale in the SGS-EVM. He also proposed the use of the subgrid-scale normal stress as a new velocity scale that was inspired by a high-order anisotropic representation model. The testing of Horiuti, however, was conducted using DNS data from a low Reynolds number channel flow simulation. It was felt that further testing at higher Reynolds numbers and also using different flows (other than wall-bounded shear flows) were necessary steps needed to establish the validity of the new model. This is the primary motivation of the present study. The objective is to test the new model using DNS databases of high Reynolds number channel and fully developed turbulent mixing layer flows. The use of both channel (wall-bounded) and mixing layer flows is important for the development of accurate LES models because these two flows encompass many characteristic features of complex turbulent flows.
NASA Technical Reports Server (NTRS)
Deissler, Robert G
1955-01-01
The expression for eddy diffusivity from a previous analysis was modified in order to account for the effect of kinematic viscosity on the turbulence in the region close to a wall. By using the modified expression, good agreement was obtained between predicted and experimental results for heat and mass transfer at Prandtl and Schmidt numbers between 0.5 and 3000. The effects of length-to-diameter ratio and of variable viscosity were also investigated for a wide range of Prandtl numbers.
Nonlinear Eddy-Eddy Interactions in Dry Atmospheres Macroturbulence
NASA Astrophysics Data System (ADS)
Ait Chaalal, F.; Schneider, T.
2012-12-01
The statistical moment equations derived from the atmospheric equation of motions are not closed. However neglecting the large-scale eddy-eddy nonlinear interactions in an idealized dry general circulation model (GCM), which is equivalent to truncating the moment equations at the second order, can reproduce some of the features of the general circulation ([1]), highlighting the significance of eddy-mean flow interactions and the weakness of eddy-eddy interactions in atmospheric macroturbulence ([2]). The goal of the present study is to provide new insight into the rôle of these eddy-eddy interactions and discuss the relevance of a simple stochastic parametrization to represent them. We investigate in detail the general circulation in an idealized dry GCM, comparing full simulations with simulations where the eddy-eddy interactions are removed. The radiative processes are parametrized through Newtonian relaxation toward a radiative-equilibrium state with a prescribed equator to pole temperature contrast. A convection scheme relaxing toward a prescribed convective vertical lapse rate mimics some aspects of moist convection. The study is performed over a wide range of parameters covering the planetary rotation rate, the equator to pole temperature contrast and the vertical lapse rate. Particular attention is given to the wave-mean flow interactions and to the spectral budget. It is found that the no eddy-eddy simulations perform well when the baroclinic activity is weaker, for example for lower equator to pole temperature contrasts or higher rotation rates: the mean meridional circulation is well reproduced, with realistic eddy-driven jets and energy-containing eddy length scales of the order of the Rossby deformation radius. For a stronger baroclinic activity the no eddy-eddy model does not achieve a realistic isotropization of the eddies, the meridional circulation is compressed in the meridional direction and secondary eddy-driven jets emerge. In addition, the baroclinic wave activity does not reach the upper troposphere in association with a very weak or absent Rossby wave absorption in the upper subtropical troposphere. Understanding these deficiencies and the rôle of the eddy-eddy nonlinear interactions in determining the mean meridional circulation paves the way to the development of stochastic third order moments parametrizations, to eventually build GCMs that directly solve for the flow statistics and that could provide a deeper understanding of anthropogenic and natural climate changes. [1] O'Gorman, P. A., & Schneider, T. 2007, Geophysical Research Letters, 34, 22801 [2] Schneider, T., and C. C. Walker, 2006, Journal of the Atmospheric Sciences, 63, 1569-1586.
Characterizing frontal eddies along the East Australian Current from HF radar observations
NASA Astrophysics Data System (ADS)
Schaeffer, Amandine; Gramoulle, A.; Roughan, M.; Mantovanelli, A.
2017-05-01
The East Australian Current (EAC) dominates the ocean circulation along south-eastern Australia, however, little is known about the submesoscale frontal instabilities associated with this western boundary current. One year of surface current measurements from HF radars, in conjunction with mooring and satellite observations, highlight the occurrence and propagation of meanders and frontal eddies along the inshore edge of the EAC. Eddies were systematically identified using the geometry of the high spatial resolution (˜1.5 km) surface currents, and tracked every hour. Cyclonic eddies were observed irregularly, on average every 7 days, with inshore radius ˜10 km. Among various forms of structures, frontal eddies associated with EAC meanders were characterized by poleward advection speeds of ˜0.3-0.4 m/s, migrating as far as 500 km south, based on satellite imagery. Flow field kinematics show that cyclonic eddies have high Rossby numbers (0.6-1.9) and enhance particle dispersion. Patches of intensified surface divergence at the leading edge of the structures are expected to generate vertical uplift. This is confirmed by subsurface measurements showing temperature uplift of up to 55 m over 24 h and rough estimates of vertical velocities of 10s of meters per day. While frontal eddies propagate through the radar domain independently of local wind stress, upfront wind can influence their stalling and growth, and can also generate large cold core eddies through intense shear. Such coherent structures are a major mechanism for the transport and entrainment of nutrient rich coastal or deep waters, influencing physical and biological dynamics, and connectivity over large distances.
A singularity free approach to post glacial rebound calculations
NASA Technical Reports Server (NTRS)
Fang, Ming; Hager, Bradford H.
1994-01-01
Calculating the post glacial response of a viscoelastic Earth model using the exponential decay normal mode technique leads to intrinsic singularities if viscosity varies continuously as a function of radius. We develop a numerical implementation of the Complex Real Fourier transform (CRFT) method as an accurate and stable procedure to avoid these singularities. Using CRFT, we investigate the response of a set of Maxwell Earth models to surface loading. We find that the effect of expanding a layered viscosity structure into a continuously varying structure is to destroy the modes associated with the boundary between layers. Horizontal motion is more sensitive than vertical motion to the viscosity structure just below the lithosphere. Horizontal motion is less sensitive to the viscosity of the lower mantle than the vertical motion is. When the viscosity increases at 670 km depth by a factor of about 60, the response of the lower mantle is close to its elastic limit. Any further increase of the viscosity contrast at 670 km depth or further increase of viscosity as a continuous function of depth starting from 670 km depth is unlikely to be resolved.
Vertically migrating swimmers generate aggregation-scale eddies in a stratified column.
Houghton, Isabel A; Koseff, Jeffrey R; Monismith, Stephen G; Dabiri, John O
2018-04-01
Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing 1-3 . However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres 3,5,6 . This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .
Inexpensive Eddy-Current Standard
NASA Technical Reports Server (NTRS)
Berry, Robert F., Jr.
1985-01-01
Radial crack replicas serve as evaluation standards. Technique entails intimately joining two pieces of appropriate aluminum alloy stock and centering drilled hole through and along interface. Bore surface of hole presents two vertical stock interface lines 180 degrees apart. These lines serve as radial crack defect replicas during eddy-current technique setup and verification.
NASA Astrophysics Data System (ADS)
Swett, M. P.; Amirbahman, A.; Boss, E.
2009-12-01
Wetland and estuarine sediments release significant amounts of dissolved organic carbon (DOC) due to high levels of microbial activity, particularly sulfate reduction. Changes in climate and hydrologic conditions have a potential to alter DOC release from these systems as well. This is a concern, as high levels of DOC can lead to mobilization of toxic metals and organics in natural waters. In addition, source waters high in DOC produce undesirable disinfection byproducts in water treatment. Various in situ methods, such as peepers and sediment core centrifugation, exist to quantify vertical benthic fluxes of DOC and other dissolved species from the sediment-water interface (SWI). These techniques, however, are intrusive and involve disturbance of the sediment environment. Eddy-correlation allows for real-time, non-intrusive, in situ flux measurement of important analytes, such as O2 and DOC. An Acoustic Doppler Velocimeter (ADV) is used to obtain three-dimensional fluid velocity measurements. The eddy-correlation technique employs the mathematical separation of fluid velocity into mean velocity and fluctuating velocity components, with the latter representing turbulent eddy velocity. DOC concentrations are measured using a colored dissolved organic matter (CDOM) fluorometer, and instantaneous vertical flux is determined from the correlated data. This study assesses DOC flux at three project sites: a beaver pond in the Lower Penobscot Watershed, Maine; a mudflat in Penobscot River, Maine; and a mudflat in Great Bay, New Hampshire. Eddy flux values are compared with results obtained using peepers and centrifugation, as well as vertical profiling.
Energetics of eddy-mean flow interactions in the Brazil current between 20°S and 36°S
NASA Astrophysics Data System (ADS)
Magalhães, F. C.; Azevedo, J. L. L.; Oliveira, L. R.
2017-08-01
The energetics of eddy-mean flow interactions in the Brazil Current (BC) between 20°S and 36°S are investigated in 19 transects perpendicular to the 200 m isobath. Ten years (2000-2009) of output data from the Hybrid Coordinate Ocean Model (HYCOM) NCODA reanalysis, with a spatial resolution of 1/12.5° and 5 day averages, are used. The mean kinetic energy (MKE) and eddy kinetic energy (EKE) fields presented the same subsurface spatial pattern but with reduced values. The EKE increases southward, with high values along the BC path and the offshore portion of the jet. The values of the barotropic conversion term (BTC) are highest in the surface layers and decreased with depth, whereas the values of the baroclinic conversion term (BCC) and the vertical eddy heat flux (VEHF) are highest in the subsurface. Despite the vertical thickening of the BC, the highest energy conversion rates are confined to the upper 700 m of the water column. The energetic analysis showed that the current features mixed instability processes. The vertical weighted mean of the BTC and BCC presented an oscillatory pattern related to the bathymetry. The eddy field accelerates the time-mean flow upstream and downstream of bathymetric features and drains energy from the time-mean flow over the features. The BC is baroclinically unstable south of 28°S, and the highest energy conversion rates occur in Cabo de São Tomé, Cabo Frio, and the Cone do Rio Grande.
Simulation of Atmospheric-Entry Capsules in the Subsonic Regime
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Childs, Robert E.; Garcia, Joseph A.
2015-01-01
The accuracy of Computational Fluid Dynamics predictions of subsonic capsule aerodynamics is examined by comparison against recent NASA wind-tunnel data at high-Reynolds-number flight conditions. Several aspects of numerical and physical modeling are considered, including inviscid numerical scheme, mesh adaptation, rough-wall modeling, rotation and curvature corrections for eddy-viscosity models, and Detached-Eddy Simulations of the unsteady wake. All of these are considered in isolation against relevant data where possible. The results indicate that an improved predictive capability is developed by considering physics-based approaches and validating the results against flight-relevant experimental data.
Subgrid or Reynolds stress-modeling for three-dimensional turbulence computations
NASA Technical Reports Server (NTRS)
Rubesin, M. W.
1975-01-01
A review is given of recent advances in two distinct computational methods for evaluating turbulence fields, namely, statistical Reynolds stress modeling and turbulence simulation, where large eddies are followed in time. It is shown that evaluation of the mean Reynolds stresses, rather than use of a scalar eddy viscosity, permits an explanation of streamline curvature effects found in several experiments. Turbulence simulation, with a new volume averaging technique and third-order accurate finite-difference computing is shown to predict the decay of isotropic turbulence in incompressible flow with rather modest computer storage requirements, even at Reynolds numbers of aerodynamic interest.
Effect of mesoscale oceanic eddies on mid-latitude storm-tracks.
NASA Astrophysics Data System (ADS)
Foussard, Alexis; Lapeyre, Guillaume; Plougonven, Riwal
2017-04-01
Sharp sea surface temperature (SST) gradients associated with oceanic western boundary currents (WBC) exert an influence on the position and intensity of mid-latitude storm-tracks. This occurs through strong surface baroclinicity maintained by cross frontal SST gradient and deep vertical atmospheric motion due to convection on the warm flank of the WBC. However the additional role of mesoscale oceanic structures (30-300km) has not yet been explored although they have a non-negligible influence on surface heat fluxes. Using the Weather Research and Forecasting model, we investigate the potential role of these oceanic eddies in the case of an idealized atmospheric mid-latitude storm track forced by a mesoscale oceanic eddy field superposed with a large-scale SST gradient. Surface latent and sensible fluxes are shown to react with a non-linear response to the SST variations, providing additional heat and moisture supply at large scales. The atmospheric response is not restricted to the boundary layer but reaches the free troposphere, especially through increased water vapor vertical transport and latent heat release. This additional heating in presence of eddies is balanced by a shift of the storm-track and its poleward heat flux toward high latitudes, with amplitude depending on atmospheric configuration and eddies amplitude. We also explore how this displacement of perturbations changes the position and structure of the mid-latitude jet through eddy momentum fluxes.
2013-02-01
Manuscript received 21 December 2011, in final form 23 August 2012) ABSTRACT Motivated by the recent interest in ocean energetics, the widespread use...Inhomogeneous two-dimensional turbu- lence in the atmosphere. Advances in Turbulence, G. Comte - Bellot and J. Mathieu, Eds., Springer-Verlag, 269-278
Numerical simulation of turbulence and sediment transport of medium sand
NASA Astrophysics Data System (ADS)
Schmeeckle, M. W.
2012-12-01
Eleven numerical simulations, ranging from no transport to bedload to vigorous suspension transport, are presented of a combined large eddy simulation (LES) and distinct element model (DEM) of an initially flat bed of medium sand. The fluid and particles are fully coupled in momentum. The friction coefficient, defined here as the squared ratio of the friction velocity to the depth-averaged velocity, is in good agreement with well-known rough bed relations at no transport and increases with the intensity of bedload transport. The friction coefficient nearly doubles in value at the onset of sediment suspension owing to a rapid increase of the depth over which particles and fluid exchange momentum. The friction coefficient decreases with increasing suspension intensity because of increasingly stable stratification. Fluid Reynolds stress and time-averaged velocity profiles in the bedload regime agree well with previous experiments and simulations. Also consistent with previous studies of suspended sediment, there is an increase in slope of the lower portion of the velocity profile that has been modeled in the past using stably stratified eddy viscosity closures or an adjusted von Karman constant. Stokes numbers in the simulations, using an estimated lagrangian integral time scale, are less than unity. As such, particles faithfully follow the fluid, except for particle settling and grain-grain interactions near the bed. Fluid-particle velocity correlation coefficients approach one in portions of the flow where volumetric sediment concentrations are below about ten percent. Bedload entrainment is critically connected to vertical velocity fluctuations. When a fluid packet approaches the bed from the interior of the flow (i.e. a sweep), fluid is forced into the bed, and at the edges of the sweep, fluid is forced out of the bed. Much of the particle entrainment occurs at these sweep edges. Fluid velocity statistics following the particles reveal that moving bedload particles are preferentially concentrated in zones of upward fluid velocity. This may explain previous observations noting a rapid vertical rise at the beginning of saltation trajectories. The simulations described here have no lift forces. Because of the short particle time scales relative to that of the turbulent structures, high transport stage bedload entrainment zones involve mutual interaction between turbulence structures and bed deformation. These deformation structures appear as depressed areas of the bed at the center of the sweep and raised areas of entraining particles at the edges of the sweep penetration. Suspended sediment entrainment structures are similar to these bedload entrainment structures but have much larger scales. Preferential concentration of suspended grains in zones of upward moving fluid dampens turbulence intensities and momentum transport. Much of the suspended transport takes place within this highly concentrated near-bed zone of damped turbulence. Particle-fluid correlation coefficients are relatively low in the lower portion of this highly concentrated suspended sediment zone, owing to particle-particle interactions. As such, Rouse-like profiles utilizing eddy viscosity closures, adjusted according to flux Richardson numbers, do not adequately describe the physics of this zone.
The effect of artificial bulk viscosity in simulations of forced compressible turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, A.; Morgan, B.
The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less
The effect of artificial bulk viscosity in simulations of forced compressible turbulence
Campos, A.; Morgan, B.
2018-05-17
The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less
Scale-Similar Models for Large-Eddy Simulations
NASA Technical Reports Server (NTRS)
Sarghini, F.
1999-01-01
Scale-similar models employ multiple filtering operations to identify the smallest resolved scales, which have been shown to be the most active in the interaction with the unresolved subgrid scales. They do not assume that the principal axes of the strain-rate tensor are aligned with those of the subgrid-scale stress (SGS) tensor, and allow the explicit calculation of the SGS energy. They can provide backscatter in a numerically stable and physically realistic manner, and predict SGS stresses in regions that are well correlated with the locations where large Reynolds stress occurs. In this paper, eddy viscosity and mixed models, which include an eddy-viscosity part as well as a scale-similar contribution, are applied to the simulation of two flows, a high Reynolds number plane channel flow, and a three-dimensional, nonequilibrium flow. The results show that simulations without models or with the Smagorinsky model are unable to predict nonequilibrium effects. Dynamic models provide an improvement of the results: the adjustment of the coefficient results in more accurate prediction of the perturbation from equilibrium. The Lagrangian-ensemble approach [Meneveau et al., J. Fluid Mech. 319, 353 (1996)] is found to be very beneficial. Models that included a scale-similar term and a dissipative one, as well as the Lagrangian ensemble averaging, gave results in the best agreement with the direct simulation and experimental data.
Numerical study of large-eddy breakup and its effect on the drag characteristics of boundary layers
NASA Technical Reports Server (NTRS)
Kinney, R. B.; Taslim, M. E.; Hung, S. C.
1985-01-01
The break-up of a field of eddies by a flat-plate obstacle embedded in a boundary layer is studied using numerical solutions to the two-dimensional Navier-Stokes equations. The flow is taken to be incompressible and unsteady. The flow field is initiated from rest. A train of eddies of predetermined size and strength are swept into the computational domain upstream of the plate. The undisturbed velocity profile is given by the Blasius solution. The disturbance vorticity generated at the plate and wall, plus that introduced with the eddies, mix with the background vorticity and is transported throughout the entire flow. All quantities are scaled by the plate length, the unidsturbed free-stream velocity, and the fluid kinematic viscosity. The Reynolds number is 1000, the Blasius boundary layer thickness is 2.0, and the plate is positioned a distance of 1.0 above the wall. The computational domain is four units high and sixteen units long.
Noncontact Measurement Of Sizes And Eccentricities Of Holes
NASA Technical Reports Server (NTRS)
Chern, Engmin J.
1993-01-01
Semiautomatic eddy-current-probe apparatus makes noncontact measurements of nominally round holes in electrically conductive specimens and processes measurement data into diameters and eccentricities of holes. Includes x-y translation platform, which holds specimen and moves it horizontally. Probe mounted on probe scanner, positioning probe along vertical (z) direction and rotates probe about vertical axis at preset low speed. Eddy-current sensing coil mounted in side of probe near tip. As probe rotates, impedance analyzer measures electrical impedance (Z) of coil as function of instantaneous rotation angle. Translation and rotation mechanisms and impedance analyzer controlled by computer, which also processes impedance-measurement data.
Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow
NASA Astrophysics Data System (ADS)
Huntley, Helga S.; Ryan, Patricia
2018-01-01
A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (<7%) adjustments to horizontal velocity maxima. In low-viscosity regimes, strong winds change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.
NASA Astrophysics Data System (ADS)
Zarokanellos, Nikolaos; Jones, Burton
2017-04-01
The central Red Sea (CRS) has been shown to be characterized by significant eddy activity throughout the year. In winter, weakened stratification may lead to enhanced vertical exchange contributing to physical and biogeochemical processes. In winter 2014-2015 we began an extended glider time series to monitor a region in the northern CRS where eddy activity is significant. Remote sensing and glider observations that include CTD, oxygen, CDOM and chlorophyll fluorescence, and multi-wavelength optical backscatter, have been used to characterize the effects of winter mixing and eddy activity in this region. During winter, deep mixing driven by surface cooling and strong winds combined with eddy features, can supply nutrients into the upper layer dramatically modifies the environment from its typically stratified conditions. These mixing events disperse the phytoplankton from the deep chlorophyll maximum throughout the upper mixed layer, and increase the chlorophyll signature detected by ocean color imagery. In addition to the mixing, cyclonic eddies in the region can enhance the vertical displacement of deeper, nutrient containing water toward the euphotic zone contributing to increased chlorophyll concentration and biological productivity. Remote sensing analyses indicate that these eddies also contribute to significant horizontal dispersion including the exchange between the open sea and coastal coral reef ecosystems. During the winter mixing periods, diel fluctuations in phytoplankton biomass have been observed indicative of solar driven plankton dynamics. The biogeochemical response to the subsurface physical processes provides a sensitive indicator to the processes that result from the mixing and eddy dynamics - processes that are not necessarily detectable via remote sensing. In order to understand the seasonal responses, but also the interannual influences on these processes, sustained in situ autonomous platform measurements are essential.
Impacts of mesoscale eddies in the South China Sea on biogeochemical cycles
NASA Astrophysics Data System (ADS)
Guo, Mingxian; Chai, Fei; Xiu, Peng; Li, Shiyu; Rao, Shivanesh
2015-09-01
Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) were investigated. The study was based on a coupled physical-biogeochemical Pacific Ocean model (Regional Ocean Model System-Carbon, Silicate, and Nitrogen Ecosystem, ROMS-CoSiNE) simulation for the period from 1991 to 2008. A total of 568 mesoscale eddies with lifetime longer than 30 days were used in the analysis. Composite analysis revealed that the cyclonic eddies were associated with abundance of nutrients, phytoplankton, and zooplankton while the anticyclonic eddies depressed biogeochemical cycles, which are generally controlled by the eddy pumping mechanism. In addition, diatoms were dominant in phytoplankton species due to the abundance of silicate. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies were revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures were not linearly coupled at the eddy core where plankton grew, and composition of the community depended not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship.
Seasonal overturning circulation in the Red Sea: 2. Winter circulation
NASA Astrophysics Data System (ADS)
Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Köhl, Armin; Gopalakrishnan, Ganesh; Rivas, David
2014-04-01
The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.
Calculations of High-Temperature Jet Flow Using Hybrid Reynolds-Average Navier-Stokes Formulations
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Elmiligui, Alaa; Giriamaji, Sharath S.
2008-01-01
Two multiscale-type turbulence models are implemented in the PAB3D solver. The models are based on modifying the Reynolds-averaged Navier Stokes equations. The first scheme is a hybrid Reynolds-averaged- Navier Stokes/large-eddy-simulation model using the two-equation k(epsilon) model with a Reynolds-averaged-Navier Stokes/large-eddy-simulation transition function dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier Stokes model in which the unresolved kinetic energy parameter f(sub k) is allowed to vary as a function of grid spacing and the turbulence length scale. This parameter is estimated based on a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for partially averaged Navier Stokes. It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The parameter f(sub k) varies between zero and one and is equal to one in the viscous sublayer and when the Reynolds-averaged Navier Stokes turbulent viscosity becomes smaller than the large-eddy-simulation viscosity. The formulation, usage methodology, and validation examples are presented to demonstrate the enhancement of PAB3D's time-accurate turbulence modeling capabilities. The accurate simulations of flow and turbulent quantities will provide a valuable tool for accurate jet noise predictions. Solutions from these models are compared with Reynolds-averaged Navier Stokes results and experimental data for high-temperature jet flows. The current results show promise for the capability of hybrid Reynolds-averaged Navier Stokes and large eddy simulation and partially averaged Navier Stokes in simulating such flow phenomena.
A Coherent vorticity preserving eddy-viscosity correction for Large-Eddy Simulation
NASA Astrophysics Data System (ADS)
Chapelier, J.-B.; Wasistho, B.; Scalo, C.
2018-04-01
This paper introduces a new approach to Large-Eddy Simulation (LES) where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated or deactivated in regions dominated by large-scale and/or laminar vortical motion. The proposed coherent-vorticity preserving (CvP) LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy, σ. Values of σ close to 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of the SGS dissipation. The intensity of the SGS dissipation is progressively increased for σ < 1 which corresponds to a small-scale spectral broadening. The SGS dissipation is then fully activated in developed turbulence characterized by σ ≤σeq, where the value σeq is derived assuming a Kolmogorov spectrum. The proposed approach can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. LES of Taylor-Green vortex breakdown demonstrates that the CvP methodology improves the performance of traditional, non-dynamic dissipative SGS models, capturing the peak of total turbulent kinetic energy dissipation during transition. Similar accuracy is obtained by adopting Germano's dynamic procedure albeit at more than twice the computational overhead. A CvP-LES of a pair of unstable periodic helical vortices is shown to predict accurately the experimentally observed growth rate using coarse resolutions. The ability of the CvP methodology to dynamically sort the coherent, large-scale motion from the smaller, broadband scales during transition is demonstrated via flow visualizations. LES of compressible channel are carried out and show a good match with a reference DNS.
NASA Astrophysics Data System (ADS)
Stevens, Bjorn; Moeng, Chin-Hoh; Sullivan, Peter P.
1999-12-01
Large-eddy simulations of a smoke cloud are examined with respect to their sensitivity to small scales as manifest in either the grid spacing or the subgrid-scale (SGS) model. Calculations based on a Smagorinsky SGS model are found to be more sensitive to the effective resolution of the simulation than are calculations based on the prognostic turbulent kinetic energy (TKE) SGS model. The difference between calculations based on the two SGS models is attributed to the advective transport, diffusive transport, and/or time-rate-of-change terms in the TKE equation. These terms are found to be leading order in the entrainment zone and allow the SGS TKE to behave in a way that tends to compensate for changes that result in larger or smaller resolved scale entrainment fluxes. This compensating behavior of the SGS TKE model is attributed to the fact that changes that reduce the resolved entrainment flux (viz., values of the eddy viscosity in the upper part of the PBL) simultaneously tend to increase the buoyant production of SGS TKE in the radiatively destabilized portion of the smoke cloud. Increased production of SGS TKE in this region then leads to increased amounts of transported, or fossil, SGS TKE in the entrainment zone itself, which in turn leads to compensating increases in the SGS entrainment fluxes. In the Smagorinsky model, the absence of a direct connection between SGS TKE in the entrainment and radiatively destabilized zones prevents this compensating mechanism from being active, and thus leads to calculations whose entrainment rate sensitivities as a whole reflect the sensitivities of the resolved-scale fluxes to values of upper PBL eddy viscosities.
Eddy Correlation Flux Measurement System (ECOR) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, DR
2011-01-31
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George
1993-01-01
The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.
A Multi-wavenumber Theory for Eddy Diffusivities: Applications to the DIMES Region
NASA Astrophysics Data System (ADS)
Chen, R.; Gille, S. T.; McClean, J.; Flierl, G.; Griesel, A.
2014-12-01
Climate models are sensitive to the representation of ocean mixing processes. This has motivated recent efforts to collect observations aimed at improving mixing estimates and parameterizations. The US/UK field program Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), begun in 2009, is providing such estimates upstream of and within the Drake Passage. This region is characterized by topography, and strong zonal jets. In previous studies, mixing length theories, based on the assumption that eddies are dominated by a single wavenumber and phase speed, were formulated to represent the estimated mixing patterns in jets. However, in spite of the success of the single wavenumber theory in some other scenarios, it does not effectively predict the vertical structures of observed eddy diffusivities in the DIMES area. Considering that eddy motions encompass a wide range of wavenumbers, which all contribute to mixing, in this study we formulated a multi-wavenumber theory to predict eddy mixing rates. We test our theory for a domain encompassing the entire Southern Ocean. We estimated eddy diffusivities and mixing lengths from one million numerical floats in a global eddying model. These float-based mixing estimates were compared with the predictions from both the single-wavenumber and the multi-wavenumber theories. Our preliminary results in the DIMES area indicate that, compared to the single-wavenumber theory, the multi-wavenumber theory better predicts the vertical mixing structures in the vast areas where the mean flow is weak; however in the intense jet region, both theories have similar predictive skill.
NASA Astrophysics Data System (ADS)
Fisher, A. W.; Sanford, L. P.; Scully, M. E.
2016-12-01
Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer transitions to a turbulent log layer. The influences of fetch-limited wind waves, density stratification, and surface buoyancy fluxes will also be discussed.
NASA Astrophysics Data System (ADS)
Rykova, Tatiana; Oke, Peter R.; Griffin, David A.
2017-06-01
Using output from a near-global eddy-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic eddies in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model eddies by comparing to satellite and in situ observations, and show that most aspects of the model's representation of eddies are realistic. We find that the mean eddies differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas eddies is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) eddies are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio eddies are the most stratified, resulting in small isopycnal displacement, even for strong eddies; and Gulf Stream eddies carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic eddies are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC eddy-field; and cyclonic eddies are a mix of WBC water and water that originates poleward of the WBC eddy-field.
Observed and modeled mesoscale variability near the Gulf Stream and Kuroshio Extension
NASA Astrophysics Data System (ADS)
Schmitz, William J.; Holland, William R.
1986-08-01
Our earliest intercomparisons between western North Atlantic data and eddy-resolving two-layer quasi-geostrophic symmetric-double-gyre steady wind-forced numerical model results focused on the amplitudes and largest horizontal scales in patterns of eddy kinetic energy, primarily abyssal. Here, intercomparisons are extended to recent eight-layer model runs and new data which allow expansion of the investigation to the Kuroshio Extension and throughout much of the water column. Two numerical experiments are shown to have realistic zonal, vertical, and temporal eddy scales in the vicinity of the Kuroshio Extension in one case and the Gulf Stream in the other. Model zonal mean speeds are larger than observed, but vertical shears are in general agreement with the data. A longitudinal displacement between the maximum intensity in surface and abyssal eddy fields as observed for the North Atlantic is not found in the model results. The numerical simulations examined are highly idealized, notably with respect to basin shape, topography, wind-forcing, and of course dissipation. Therefore the zero-order agreement between modeled and observed basic characteristics of mid-latitude jets and their associated eddy fields suggests that such properties are predominantly determined by the physical mechanisms which dominate the models, where the fluctuations are the result of instability processes. The comparatively high vertical resolution of the model is needed to compare with new higher-resolution data as well as for dynamical reasons, although the precise number of layers required either kinematically or dynamically (or numerically) has not been determined; we estimate four to six when no attempt is made to account for bottom- or near-surface-intensified phenomena.
NASA Astrophysics Data System (ADS)
Zhang, L.; Hu, W.; Chen, M.; Zeng, L.; Xiang, R.; Zhou, W.
2013-12-01
The composition and spatial (horizontal and vertical) distribution of living radiolarians in spring was firstly studied in the section (18°N and 113°E) South China Sea. Vertical plankton tows were collected at depth-intervals from 0 to 300 m in spring using a closing-type net with 62 um mesh size. And we distinguished the living specimens by staining with Rose Bengal. It dominated by tropical-subtropical warm species in spring from the studied areas. The abundance of nassellarians was the almost same as that of spumellarians in the upper-surface waters (0-25m). In the below-surface waters (25-50m), nassellarian abundance was the almost twice that of spumellarians. And the abundances generally decreased with depth (more than 50m), but nasselarian abundance reduced more quickly. The results showed that the horizontal and vertical distribution patterns of living radiolarians were closely related to the mesoscale eddies. The horizontal distributions of radiolarian abundance were uneven and pachy, which may be related to the complicated mecoscale eddies during the sampling period. That is, there were comparatively high abundances in the upper-surface waters where had the cold eddies development. But in the cold eddies of Meigong River mouth, radiolarian abundance was low due to the large input of fresh water, suggesting that low salinity had more important influence than the nutrient on the radiolarian development and reproduction. Vertically, the highest abundances occurred at the mixed layer in the cold eddies, and gradually decreased with depth. However, in the warm eddies, the maximum abundances were in the thermocline layers, where had an abundant supply of nutrients for radiolarians. This study showed that Didymocyrtis tetrathalamus tetrathalamus mostly occurred at the mixed layer, which should be closely related to the cold eddies and rich nutrition and be limited by the fresh water. Based on the distribution of Didymocyrtis tetrathalamus tetrathalamus, we concluded that the influence of west Pacific waters was obviously weak on the northwestern Luzon Island during the sampling period. As a tropical surface warm species, Tetrapyle octacantha was also found to be indicator of tropical upwelling eutrophication water. Acanthodesmia vinculata was mainly living in the mixed layer, and had a good response to the cold eddies far away the continental shelf. Besides, we also concluded that Siphonosphaera polysiphonia should be tropical surface warm species, having a gregarious life, which had a closely related to the warm eddies. Interestingly, the typical deep-dwellers (Cornutella profunda and Cyrtopera laguncula) occurred in the different depth intervals, even in the upper-surface waters, which suggested that the temperature might not be the mostly one of factors to control their living-depth. This study was funded by the following research programs: the National Natural Science Foundation of China (Nos. 41276051, 91228207, 40906030).
NASA Astrophysics Data System (ADS)
Cotroneo, Yuri; Aulicino, Giuseppe; Ruiz, Simón; Pascual, Ananda; Budillon, Giorgio; Fusco, Giannetta; Tintoré, Joaquin
2016-04-01
Despite of the extensive bibliography about the circulation of the Mediterranean Sea and its sub-basins, the debate on mesoscale dynamics and its impacts on biochemical processes is still open because of their intrinsic time scales and of the difficulties in sampling. In order to clarify some of these processes, the "Algerian BAsin Circulation Unmanned Survey - ABACUS" project was proposed and realized through access to JERICO Trans National Access (TNA) infrastructures between September and December 2014. In this framework, a deep glider cruise was carried out in the area between Balearic Islands and Algerian coasts to establish an endurance line for monitoring the basin circulation. During the mission, a mesoscale eddy, identified on satellite altimetry maps, was sampled at high-spatial horizontal resolution (4 km) along its main axes and from surface to 1000 m depth. Data were collected by a Slocum glider equipped with a pumped CTD and biochemical sensors that collected about 100 complete casts inside the eddy. In order to describe the structure of the eddy, in situ data were merged with new generation remotely sensed data as daily synoptic sea surface temperature (SST) and chlorophyll concentration (Chl-a) images from MODIS satellites as well as sea surface height and geostrophic velocities from AVISO. From its origin along the Algerian coast in the eastern part of the basin, the eddy propagated to north-west at a mean speed of about 4 km/day with a mean diameter of 112/130 km, a mean elevation of 15.7 cm and clearly distinguished by the surrounding waters thanks to its higher SST and Chl-a values. Temperature and salinity values along the water column confirm the origin of the eddy from the AC showing the presence of recent Atlantic water in the surface layer and Levantine Intermediate Water (LIW) in the deeper layer. Eddy footprint is clearly evident in the multiparametric vertical sections conducted along its main axes. Deepening of temperature, salinity and density isolines at the center of the eddy is associated with variations in the Chl-a, oxygen concentration and turbidity pattern. In particular at 50 m depth, along the eddy borders, Chl-a values are higher (1.1-5.2 μg/l) than in correspondence of the eddy center (0.5-0.7 μg/l) with maxima values registered in the southeastern sector of the eddy. Calculation of geostrophic velocities along transects and vertical quasi geostrophic velocities (QG-w) over a regular 5 km grid from glider data, helped in describing the mechanism and functioning of the eddy. QG-w presents an asymmetric pattern, with associated relatively strong downwelling in the western part of the eddy and upwelling in the southeastern part of it. This asymmetry in the vertical velocity pattern, bringing LIW in the euphotic layer, as well as eventual advection from the northeastern sector of the eddy may justify the observed increase in Chl-a values.
A Particle Representation Model for the Deformation of Homogeneous Turbulence
NASA Technical Reports Server (NTRS)
Kassinos, S. C.; Reynolds, W. C.
1996-01-01
In simple flows, where the mean deformation rates are mild and the turbulence has time to come to equilibrium with the mean flow, the Reynolds stresses are determined by the applied strain rate. Hence in these flows, it is often adequate to use an eddy-viscosity representation. The modern family of kappa-epsilon models has been very useful in predicting near equilibrium turbulent flows, where the rms deformation rate S is small compared to the reciprocal time scale of the turbulence (epsilon/kappa). In modern engineering applications, turbulence models are quite often required to predict flows with very rapid deformations (large S kappa/epsilon). In these flows, the structure takes some time to respond and eddy viscosity models are inadequate. The response of turbulence to rapid deformations is given by rapid distortion theory (RDT). Under RDT the nonlinear effects due to turbulence-turbulence interactions are neglected in the governing equations, but even when linearized in this fashion, the governing equations are unclosed at the one-point level due to the non-locality of the pressure fluctuations.
Relaxation of an unsteady turbulent boundary layer on a flat plate in an expansion tube
NASA Technical Reports Server (NTRS)
Gurta, R. N.; Trimpi, R. L.
1974-01-01
An analysis is presented for the relaxation of a turbulent boundary layer on a semi-infinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion-tube flows. The flow-governing equations have been transformed into the Crocco variables, and a time-similar solution is presented in terms of the dimensionless distance-time variable alpha and the dimensionless velocity variable beta. An eddy-viscosity model, similar to that of time-steady boundary layers, is applied to the inner and outer regions of the boundary layer. A turbulent Prandtl number equal to the molecular Prandtl number is used to relate the turbulent heat flux to the eddy viscosity. The numerical results, obtained by using the Gauss-Seidel line-relaxation method, indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin friction than a laminar boundary layer. The results also give a fairly good estimate of the local skin friction and heat transfer for near steady-flow conditions.
Computation of turbulent boundary layer flows with an algebraic stress turbulence model
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Chen, Yen-Sen
1986-01-01
An algebraic stress turbulence model is presented, characterized by the following: (1) the eddy viscosity expression is derived from the Reynolds stress turbulence model; (2) the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale; and (3) the diffusion coefficients for turbulence equations are adjusted so that the kinetic energy profile extends further into the free stream region found in most experimental data. The turbulent flow equations were solved using a finite element method. Examples include: fully developed channel flow, fully developed pipe flow, flat plate boundary layer flow, plane jet exhausting into a moving stream, circular jet exhausting into a moving stream, and wall jet flow. Computational results compare favorably with experimental data for most of the examples considered. Significantly improved results were obtained for the plane jet flow, the circular jet flow, and the wall jet flow; whereas the remainder are comparable to those obtained by finite difference methods using the standard kappa-epsilon turbulence model. The latter seems to be promising with further improvement of the expression for the eddy viscosity coefficient.
An experimental investigation of turbulent boundary layers along curved surfaces
NASA Technical Reports Server (NTRS)
So, R. M. C.; Mellor, G. L.
1972-01-01
A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.
A low dimensional dynamical system for the wall layer
NASA Technical Reports Server (NTRS)
Aubry, N.; Keefe, L. R.
1987-01-01
Low dimensional dynamical systems which model a fully developed turbulent wall layer were derived.The model is based on the optimally fast convergent proper orthogonal decomposition, or Karhunen-Loeve expansion. This decomposition provides a set of eigenfunctions which are derived from the autocorrelation tensor at zero time lag. Via Galerkin projection, low dimensional sets of ordinary differential equations in time, for the coefficients of the expansion, were derived from the Navier-Stokes equations. The energy loss to the unresolved modes was modeled by an eddy viscosity representation, analogous to Heisenberg's spectral model. A set of eigenfunctions and eigenvalues were obtained from direct numerical simulation of a plane channel at a Reynolds number of 6600, based on the mean centerline velocity and the channel width flow and compared with previous work done by Herzog. Using the new eigenvalues and eigenfunctions, a new ten dimensional set of ordinary differential equations were derived using five non-zero cross-stream Fourier modes with a periodic length of 377 wall units. The dynamical system was integrated for a range of the eddy viscosity prameter alpha. This work is encouraging.
Mesoscale Eddies Are Oases for Higher Trophic Marine Life
Godø, Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjøllo, Solfrid Sætre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.
2012-01-01
Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. PMID:22272294
Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows
NASA Astrophysics Data System (ADS)
Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel
2017-11-01
We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.
NASA Astrophysics Data System (ADS)
Basnet, K.; Constantinescu, G.
2017-11-01
High-resolution, 3-D large eddy simulations are conducted to study the physics of flow past 2-D solid and porous vertical plates of height H mounted on a horizontal surface (no bottom gap) with a fully developed, turbulent incoming flow. The porous plate consists of an array of spanwise-oriented, identical solid cylinders of rectangular cross section. The height of the solid cylinders and the spacing between the solid cylinders, corresponding to the plate's "holes," are kept constant for any given configuration, as the present study considers only plates of uniform porosity. The paper discusses how the mean flow and turbulence structure around the vertical plate, the unsteady forces acting on the plate, the dynamics of the large-scale turbulent eddies, the spectral content of the wake, and the distribution of the bed friction velocity on the horizontal channel bed vary as a function of the plate porosity (0% < P < 36%), the relative spacing between the solid elements of the porous plate (d/H), and the roughness of the channel bed surface. Simulation results are used to explain how the bleeding flow affects the dynamics on the larger billow eddies advected in the separated shear layer (SSL) forming at the top of the plate and the wake structure. It is found that the main recirculation eddy in the wake remains attached to the plate for P < 30%. For larger porosities, the main recirculation eddy forms away from the porous plate. The energy of the billows advected in the SSL decays monotonically with increasing plate porosity. For cases when the recirculation eddy remains attached to the plate, the larger billows advected in the downstream part of the SSL are partially reinjected inside the main recirculation eddy as a result of their interaction with the channel bed. This creates a feedback mechanism that induces large-scale disturbances of the spanwise-oriented vortex tubes advected inside the upstream part of the SSL. Results also show that the mean drag coefficient and the root-mean-square of the drag coefficient fluctuations increase mildly with increasing d/H. Meanwhile, varying d/H has a negligible effect on the position and size of the main recirculation eddy. The presence of large-scale roughness elements (2-D ribs) at the bed results in the decrease of the mean drag coefficient of the plate and, in the case of a solid plate, in a large decrease of the frequency of the large-scale eddies advected in the SSL.
Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces
NASA Technical Reports Server (NTRS)
Wang, Chi R.
2005-01-01
This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one-equation turbulence model is an effective approach for turbulence modeling in the near solid wall surface region of flow over a concave wall.
NASA Astrophysics Data System (ADS)
Holmberg, Andreas; Kierkegaard, Axel; Weng, Chenyang
2015-06-01
In this paper, a method for including damping of acoustic energy in regions of strong turbulence is derived for a linearized Navier-Stokes method in the frequency domain. The proposed method is validated and analyzed in 2D only, although the formulation is fully presented in 3D. The result is applied in a study of the linear interaction between the acoustic and the hydrodynamic field in a 2D T-junction, subject to grazing flow at Mach 0.1. Part of the acoustic energy at the upstream edge of the junction is shed as harmonically oscillating disturbances, which are conveyed across the shear layer over the junction, where they interact with the acoustic field. As the acoustic waves travel in regions of strong shear, there is a need to include the interaction between the background turbulence and the acoustic field. For this purpose, the oscillation of the background turbulence Reynold's stress, due to the acoustic field, is modeled using an eddy Newtonian model assumption. The time averaged flow is first solved for using RANS along with a k-ε turbulence model. The spatially varying turbulent eddy viscosity is then added to the spatially invariant kinematic viscosity in the acoustic set of equations. The response of the 2D T-junction to an incident acoustic field is analyzed via a plane wave scattering matrix model, and the result is compared to experimental data for a T-junction of rectangular ducts. A strong improvement in the agreement between calculation and experimental data is found when the modification proposed in this paper is implemented. Discrepancies remaining are likely due to inaccuracies in the selected turbulence model, which is known to produce large errors e.g. for flows with significant rotation, which the grazing flow across the T-junction certainly is. A natural next step is therefore to test the proposed methodology together with more sophisticated turbulence models.
A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Shamsoddin, Sina; Porté-Agel, Fernando
2016-04-01
Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.
The Energetics of Transient Eddies in the Martian Northern Hemisphere
NASA Astrophysics Data System (ADS)
Battalio, Joseph Michael; Szunyogh, Istvan; Lemmon, Mark T.
2016-10-01
The energetics of northern hemisphere transient waves in the Mars Analysis Correction Data Assimilation is analyzed. Three periods between the fall and spring equinoxes (Ls=200°-230°, 255°-285°, and 330°-360°) during three Mars Years are selected to exemplify the fall, winter, and spring wave activity. Fall and spring eddy energetics is similar with some inter-annual and inter-seasonal variability, but winter eddy kinetic energy and its transport are strongly reduced in intensity as a result of the solsticial pause in eddy activity. Barotropic energy conversion acts as a sink of eddy kinetic energy throughout the northern hemisphere eddy period with little reduction in amplitude during the solsticial pause. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter period as a result of the stabilized vertical shear profile of the westerly jet around winter solstice.
Role of eddy pumping in enhancing primary production in the ocean
NASA Technical Reports Server (NTRS)
Falkowski, Paul G.; Kolber, Zbigniew; Ziemann, David; Bienfang, Paul K.
1991-01-01
Eddy pumping is considered to explain the disparity between geochemical estimates and biological measurements of exported production. Episodic nutrient injections from the ocean into the photic zone can be generated by eddy pumping, which biological measurements cannot sample accurately. The enhancement of production is studied with respect to a cyclonic eddy in the subtropical Pacific. A pump-and-probe fluorimeter generates continuous vertical profiles of primary productivity from which the contributions of photochemical and nonphotochemical processes to fluorescence are derived. A significant correlation is observed between the fluorescence measurements and radiocarbon measurements. The results indicate that eddy pumping has an important effect on phytoplankton production and that this production is near the maximum relative specific growth rates. Based on the production enhancement observed in this case, eddy pumping increases total primary production by only 20 percent and does not account for all enhancement.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Simpson, J.; Sui, C.-H.; Ferrier, B.; Lang, S.; Scala, J.; Chou, M.-D.; Pickering, K.
1993-01-01
A 2D time-dependent and nonhydrostatic numerical cloud model is presently used to estimate the heating, moisture, and water budgets in the convective and stratiform regions for both a tropical and a midlatitude squall line. The model encompasses a parameterized, three-class ice phase microphysical scheme and longwave radiative transfer process. It is noted that the convective region plays an important role in the generation of stratiform rainfall for both cases. While a midlevel minimum in the moisture profile for the tropical case is due to vertical eddy transport in the convective region, the contribution to the heating budget by the cloud-scale fluxes is minor; by contrast, the vertical eddy heat-flux is relatively important for the midlatitude case due to the stronger vertical velocities present in the convective cells.
Counter-rotating accretion discs
NASA Astrophysics Data System (ADS)
Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.
2015-01-01
Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.
Turbulent fluxes by "Conditional Eddy Sampling"
NASA Astrophysics Data System (ADS)
Siebicke, Lukas
2015-04-01
Turbulent flux measurements are key to understanding ecosystem scale energy and matter exchange, including atmospheric trace gases. While the eddy covariance approach has evolved as an invaluable tool to quantify fluxes of e.g. CO2 and H2O continuously, it is limited to very few atmospheric constituents for which sufficiently fast analyzers exist. High instrument cost, lack of field-readiness or high power consumption (e.g. many recent laser-based systems requiring strong vacuum) further impair application to other tracers. Alternative micrometeorological approaches such as conditional sampling might overcome major limitations. Although the idea of eddy accumulation has already been proposed by Desjardin in 1972 (Desjardin, 1977), at the time it could not be realized for trace gases. Major simplifications by Businger and Oncley (1990) lead to it's widespread application as 'Relaxed Eddy Accumulation' (REA). However, those simplifications (flux gradient similarity with constant flow rate sampling irrespective of vertical wind velocity and introduction of a deadband around zero vertical wind velocity) have degraded eddy accumulation to an indirect method, introducing issues of scalar similarity and often lack of suitable scalar flux proxies. Here we present a real implementation of a true eddy accumulation system according to the original concept. Key to our approach, which we call 'Conditional Eddy Sampling' (CES), is the mathematical formulation of conditional sampling in it's true form of a direct eddy flux measurement paired with a performant real implementation. Dedicated hardware controlled by near-real-time software allows full signal recovery at 10 or 20 Hz, very fast valve switching, instant vertical wind velocity proportional flow rate control, virtually no deadband and adaptive power management. Demonstrated system performance often exceeds requirements for flux measurements by orders of magnitude. The system's exceptionally low power consumption is ideal for the field (one to two orders of magnitude lower compared to current closed-path laser based eddy covariance systems). Potential applications include fluxes of CO2, CH4, N2O, VOCs and other tracers. Finally we assess the flux accuracy of the Conditional Eddy Sampling (CES) approach as in our real implementation relative to alternative techniques including eddy covariance (EC) and relaxed eddy accumulation (REA). We further quantify various sources of instrument and method specific measurement errors. This comparison uses real measurements of 20 Hz turbulent time series of 3D wind velocity, sonic temperature and CO2 mixing ratio over a mixed decidious forest at the 'ICOS' flux tower site 'Hainich', Germany. Results from a simulation using real wind and CO2 timeseries from the Hainich site from 30 April to 3 November 2014 and real instrument performance suggest that the maximum flux estimates error (50% and 75% error quantiles) from Conditional Eddy Sampling (CES) relative to the true flux is 1.3% and 10%, respectively for monthly net fluxes, 1.6% and 7%, respectively for daily net fluxes and 8% and 35%, respectively for 30-minute CO2 flux estimates. Those results from CES are promising and outperform our REA estimates by about a factor of 50 assuming REA with constant b value. Results include flux time series from the EC, CES and REA approaches from 30-min to annual resolution.
Large eddy simulation of incompressible turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Reynolds, W. C.; Ferziger, J. H.
1978-01-01
The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.
A two-equation model for heat transport in wall turbulent shear flows
NASA Astrophysics Data System (ADS)
Nagano, Y.; Kim, C.
1988-08-01
A new proposal for closing the energy equation is presented at the two-equation level of turbulence modeling. The eddy diffusivity concept is used in modeling. However, just as the eddy viscosity is determined from solutions of the k and epsilon equations, so the eddy diffusivity for heat is given as functions of temperature variance, and the dissipation rate of temperature fluctuations, together with k and epsilon. Thus, the proposed model does not require any questionable assumptions for the 'turbulent Prandtl number'. Modeled forms of the equations are developed to account for the physical effects of molecular Prandtl number and near-wall turbulence. The model is tested by application to a flat-plate boundary layer, the thermal entrance region of a pipe, and the turbulent heat transfer in fluids over a wide range of the Prandtl number. Agreement with the experiment is generally very satisfactory.
LES FOR SIMULATING THE GAS EXCHANGE PROCESS IN A SPARK IGNITION ENGINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameen, Muhsin M; yang, xiaofeng; kuo, tang-wei
2015-01-01
The gas exchange process is known to be a significant source of cyclic variability in Internal Combustion Engines (ICE). Traditionally, Large Eddy Simulations (LES) are expected to capture these cycle-to-cycle variations. This paper reports a numerical effort to establish best practices for capturing cyclic variability with LES tools in a Transparent Combustion Chamber (TCC) spark ignition engine. The main intention is to examine the sensitivity of cycle averaged mean and Root Mean Square (RMS) flow fields and Proper Orthogonal Decomposition (POD) modes to different computational hardware, adaptive mesh refinement (AMR) and LES sub-grid scale (SGS) models, since these aspects havemore » received little attention in the past couple of decades. This study also examines the effect of near-wall resolution on the predicted wall shear stresses. LES is pursued with commercially available CONVERGE code. Two different SGS models are tested, a one-equation eddy viscosity model and dynamic structure model. The results seem to indicate that both mean and RMS fields without any SGS model are not much different than those with LES models, either one-equation eddy viscosity or dynamic structure model. Computational hardware results in subtle quantitative differences, especially in RMS distributions. The influence of AMR on both mean and RMS fields is negligible. The predicted shear stresses near the liner walls is also found to be relatively insensitive to near-wall resolution except in the valve curtain region.« less
Quantifying mesoscale eddies in the Lofoten Basin
NASA Astrophysics Data System (ADS)
Raj, R. P.; Johannessen, J. A.; Eldevik, T.; Nilsen, J. E. Ø.; Halo, I.
2016-07-01
The Lofoten Basin is the most eddy rich region in the Norwegian Sea. In this paper, the characteristics of these eddies are investigated from a comprehensive database of nearly two decades of satellite altimeter data (1995-2013) together with Argo profiling floats and surface drifter data. An automated method identified 1695/1666 individual anticyclonic/cyclonic eddies in the Lofoten Basin from more than 10,000 altimeter-based eddy observations. The eddies are found to be predominantly generated and residing locally. The spatial distributions of lifetime, occurrence, generation sites, size, intensity, and drift of the eddies are studied in detail. The anticyclonic eddies in the Lofoten Basin are the most long-lived eddies (>60 days), especially in the western part of the basin. We reveal two hotspots of eddy occurrence on either side of the Lofoten Basin. Furthermore, we infer a cyclonic drift of eddies in the western Lofoten Basin. Barotropic energy conversion rates reveals energy transfer from the slope current to the eddies during winter. An automated colocation of surface drifters trapped inside the altimeter-based eddies are used to corroborate the orbital speed of the anticyclonic and cyclonic eddies. Moreover, the vertical structure of the altimeter-based eddies is examined using colocated Argo profiling float profiles. Combination of altimetry, Argo floats, and surface drifter data is therefore considered to be a promising observation-based approach for further studies of the role of eddies in transport of heat and biomass from the slope current to the Lofoten Basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, May Wai San; Ovchinnikov, Mikhail; Wang, Minghuai
Potential ways of parameterizing vertical turbulent fluxes of hydrometeors are examined using a high-resolution cloud-resolving model. The cloud-resolving model uses the Morrison microphysics scheme, which contains prognostic variables for rain, graupel, ice, and snow. A benchmark simulation with a horizontal grid spacing of 250 m of a deep convection case carried out to evaluate three different ways of parameterizing the turbulent vertical fluxes of hydrometeors: an eddy-diffusion approximation, a quadrant-based decomposition, and a scaling method that accounts for within-quadrant (subplume) correlations. Results show that the down-gradient nature of the eddy-diffusion approximation tends to transport mass away from concentrated regions, whereasmore » the benchmark simulation indicates that the vertical transport tends to transport mass from below the level of maximum to aloft. Unlike the eddy-diffusion approach, the quadri-modal decomposition is able to capture the signs of the flux gradient but underestimates the magnitudes. The scaling approach is shown to perform the best by accounting for within-quadrant correlations, and improves the results for all hydrometeors except for snow. A sensitivity study is performed to examine how vertical transport may affect the microphysics of the hydrometeors. The vertical transport of each hydrometeor type is artificially suppressed in each test. Results from the sensitivity tests show that cloud-droplet-related processes are most sensitive to suppressed rain or graupel transport. In particular, suppressing rain or graupel transport has a strong impact on the production of snow and ice aloft. Lastly, a viable subgrid-scale hydrometeor transport scheme in an assumed probability density function parameterization is discussed.« less
A second-generation relaxed eddy accumulation system was built and tested with the capability to measure vertical biogenic volatile organic compound (VOC) fluxes at levels as low as 10 µg C m−2 hr−1. The system features a continuous, integrated gas-phase ozo...
Southern Ocean eddy compensation in a forced eddy-resolving GCM
NASA Astrophysics Data System (ADS)
Bruun Poulsen, Mads; Jochum, Markus; Eden, Carsten; Nuterman, Roman
2017-04-01
Contemporary eddy-resolving model studies have demonstrated that the common parameterisation of isopycnal mixing in the ocean is subject to limitations in the Southern Ocean where the mesoscale eddies are of leading order importance to the dynamics. We here present forced simulations from the Community Earth System Model on a global {1/10}° and 1° horizontal grid, the latter employing an eddy parameterisation, where the strength of the zonal wind stress south of 25°S has been varied. With a 50% zonally symmetric increase of the wind stress, we show that the two models arrive at two radically different solutions in terms of the large-scale circulation, with an increase of the deep inflow of water to the Southern Ocean at 40°S by 50% in the high resolution model against 20% at coarse resolution. Together with a weaker vertical displacement of the pycnocline in the 1° model, these results suggest that the parameterised eddies have an overly strong compensating effect on the water mass transformation compared to the explicit eddies. Implications for eddy mixing parameterisations will be discussed.
Numerical solutions of the complete Navier-Strokes equations. no. 27
NASA Technical Reports Server (NTRS)
Hassan, H. A.
1996-01-01
This report describes the development of an enstrophy model capable of predicting turbulence separation and its application to two airfoils at various angles of attack and Mach numbers. In addition, a two equation kappa-xi model with a tensor eddy viscosity was developed. Plans call for this model to be used in calculating three dimensional turbulent flows.
NASA Astrophysics Data System (ADS)
Wu, Peili; Haines, Keith
1996-03-01
This paper demonstrates the importance of Levantine Intermediate Water (LIW) in the deep water formation process in the Mediterranean using the modular ocean general circulation model at 0.25° resolution, 19 vertical levels, over the entire Mediterranean with an open Gibraltar strait. LIW formation is strongly prescribed in the Rhodes Gyre region by Haney [1971] relaxation, while in other regions, surface salinity relaxation is much reduced by applying the `mixed' thermohaline surface boundary conditions. Isopycnal diagnostics are used to trace water mass movements, and volume fluxes are monitored at straits. Low viscosity and diffusion are used to permit baroclinic eddies to play a role in water mass dispersal. The overall water budget is measured by an average flux at Gibraltar of 0.8 Sv, of which 0.7 Sv is exchanged with the eastern basin at Sicily. LIW (density around 28.95) spreads rapidly after formation throughout the entire Levantine due to baroclinic eddies. Toward the west, LIW accumulates in the northern and central Ionian, with some entering the Adriatic through Otranto and some mixing southward in eddies and exiting to the western Mediterranean through Sicily. LIW is converted to deep water in the south Adriatic at an average rate of 0.4 Sv. Water exchange through the Otranto strait appears to be buoyancy driven, with a strong bias to the end of winter (March-April), while at Sicily the exchange has a strong symmetric seasonal cycle, with maximum transport of 1.1 Sv in December indicating the effects of wind driving. LIW pathways in the west are complex and variable. In the Tyrrhenian, intermediate water becomes uniform on isopycnal surfaces due to eddy stirring. West of Sardinia, two LIW boundary currents are formed in the Balearic basin; one flows northward up the west coast of Sardinia and Corsica, and one westward along the northern African coast. The northward current is consistent with observations, while the westward current is intermittent for the first 10 years, often breaking up into eddies which enter the basin interior. Some observations of high-salinity waters near the African coast may support this interpretation. LIW retains a subsurface salinity maximum of 38.4-38.5 practical salinity units (psu) when reaching the northwestern Mediterranean, contrasting with surface waters fresher than 38.0 psu. West Mediterranean deep water is formed below 1500 m depth with climatological characteristics, when it is mixed and cooled during winter convection in Lions Gyre.
The Drainage of Thin, Vertical, Model Polyurethane Liquid Films
NASA Astrophysics Data System (ADS)
Snow, Steven; Pernisz, Udo; Braun, Richard; Naire, Shailesh
1999-11-01
We have successfully measured the drainage rate of thin, vertically-aligned, liquid films prepared from model polyurethane foam formulations. The pattern of interference fringes in these films was consistent with a wedge-shaped film profile. The time evolution of this wedge shape (the ``collapsing wedge") obeyed a power law relationship between fringe density s and time t of s = k t^m. Experimentally, m ranged from -0.47 to -0.92. The lower bound for m represented a case where the surface viscosity of the film was very high (a ``rigid" surface). Theoretical modeling of this case yielded m = -0.5, in excellent agreement with experiment. Instantaneous film drainage rate (dV/dt) could be extracted from the ``Collapsing Wedge" model. As expected, dV/dt scaled inversely with bulk viscosity. As surfactant concentration was varied at constant bulk viscosity, dV/dt passed through a maximum value, consistent with a model where the rigidity of the surface was a function of both the intensity of surface tension gradients and the surface viscosity of the film. The influence of surface viscosity on dV/dt was also modeled theoretically.
NASA Astrophysics Data System (ADS)
Ferrer, Esteban
2017-11-01
We present an implicit Large Eddy Simulation (iLES) h / p high order (≥2) unstructured Discontinuous Galerkin-Fourier solver with sliding meshes. The solver extends the laminar version of Ferrer and Willden, 2012 [34], to enable the simulation of turbulent flows at moderately high Reynolds numbers in the incompressible regime. This solver allows accurate flow solutions of the laminar and turbulent 3D incompressible Navier-Stokes equations on moving and static regions coupled through a high order sliding interface. The spatial discretisation is provided by the Symmetric Interior Penalty Discontinuous Galerkin (IP-DG) method in the x-y plane coupled with a purely spectral method that uses Fourier series and allows efficient computation of spanwise periodic three-dimensional flows. Since high order methods (e.g. discontinuous Galerkin and Fourier) are unable to provide enough numerical dissipation to enable under-resolved high Reynolds computations (i.e. as necessary in the iLES approach), we adapt the laminar version of the solver to increase (controllably) the dissipation and enhance the stability in under-resolved simulations. The novel stabilisation relies on increasing the penalty parameter included in the DG interior penalty (IP) formulation. The latter penalty term is included when discretising the linear viscous terms in the incompressible Navier-Stokes equations. These viscous penalty fluxes substitute the stabilising effect of non-linear fluxes, which has been the main trend in implicit LES discontinuous Galerkin approaches. The IP-DG penalty term provides energy dissipation, which is controlled by the numerical jumps at element interfaces (e.g. large in under-resolved regions) such as to stabilise under-resolved high Reynolds number flows. This dissipative term has minimal impact in well resolved regions and its implicit treatment does not restrict the use of large time steps, thus providing an efficient stabilization mechanism for iLES. The IP-DG stabilisation is complemented with a Spectral Vanishing Viscosity (SVV) method, in the z-direction, to enhance stability in the continuous Fourier space. The coupling between the numerical viscosity in the DG plane and the SVV damping, provides an efficient approach to stabilise high order methods at moderately high Reynolds numbers. We validate the formulation for three turbulent flow cases: a circular cylinder at Re = 3900, a static and pitch oscillating NACA 0012 airfoil at Re = 10000 and finally a rotating vertical-axis turbine at Re = 40000, with Reynolds based on the circular diameter, airfoil chord and turbine diameter, respectively. All our results compare favourably with published direct numerical simulations, large eddy simulations or experimental data. We conclude that the DG-Fourier high order solver, with IP-SVV stabilisation, proves to be a valuable tool to predict turbulent flows and associated statistics for both static and rotating machinery.
On the role of the transient eddies in maintaining the seasonal mean circulation
NASA Technical Reports Server (NTRS)
White, G. H.; Hoskins, B. J.
1984-01-01
The role of transient eddies in maintaining the observed local seasonal mean atmospheric circulation was investigated by examining the time-averaged momentum balances and omega equation, using seasonal statistics calculated from daily operational analyses by the European Centre for Medium Range Weather Forecasts. While both the Northern and Southern Hemispheres and several seasons were studied, emphasis was placed upon the Northern Hemisphere during December 1981-February 1982. The results showed that transient eddies played a secondary role in the seasonal mean zonal momentum budget and in the forcing of seasonal mean vertical and a geostrophic motion.
Effect of Turbulence Modeling on Hovering Rotor Flows
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Chaderjian, Neal M.; Pulliam, Thomas H.; Holst, Terry L.
2015-01-01
The effect of turbulence models in the off-body grids on the accuracy of solutions for rotor flows in hover has been investigated. Results from the Reynolds-Averaged Navier-Stokes and Laminar Off-Body models are compared. Advection of turbulent eddy viscosity has been studied to find the mechanism leading to inaccurate solutions. A coaxial rotor result is also included.
A computer program for the calculation of laminar and turbulent boundary layer flows
NASA Technical Reports Server (NTRS)
Dwyer, H. A.; Doss, E. D.; Goldman, A. L.
1972-01-01
The results are presented of a study to produce a computer program to calculate laminar and turbulent boundary layer flows. The program is capable of calculating the following types of flow: (1) incompressible or compressible, (2) two dimensional or axisymmetric, and (3) flows with significant transverse curvature. Also, the program can handle a large variety of boundary conditions, such as blowing or suction, arbitrary temperature distributions and arbitrary wall heat fluxes. The program has been specialized to the calculation of equilibrium air flows and all of the thermodynamic and transport properties used are for air. For the turbulent transport properties, the eddy viscosity approach has been used. Although the eddy viscosity models are semi-empirical, the model employed in the program has corrections for pressure gradients, suction and blowing and compressibility. The basic method of approach is to put the equations of motion into a finite difference form and then solve them by use of a digital computer. The program is written in FORTRAN 4 and requires small amounts of computer time on most scientific machines. For example, most laminar flows can be calculated in less than one minute of machine time, while turbulent flows usually require three or four minutes.
A Galilean and tensorial invariant k-epsilon model for near wall turbulence
NASA Technical Reports Server (NTRS)
Yang, Z.; Shih, T. H.
1993-01-01
A k-epsilon model is proposed for wall bounded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation rate equation is reformulated using this time scale and no singularity exists at the wall. A new parameter R = k/S(nu) is introduced to characterize the damping function in the eddy viscosity. This parameter is determined by local properties of both the mean and the turbulent flow fields and is free from any geometry parameter. The proposed model is then Galilean and tensorial invariant. The model constants used are the same as in the high Reynolds number Standard k-epsilon Model. Thus, the proposed model will also be suitable for flows far from the wall. Turbulent channel flows and turbulent boundary layer flows with and without pressure gradients are calculated. Comparisons with the data from direct numerical simulations and experiments show that the model predictions are excellent for turbulent channel flows and turbulent boundary layers with favorable pressure gradients, good for turbulent boundary layers with zero pressure gradients, and fair for turbulent boundary layer with adverse pressure gradients.
NASA Astrophysics Data System (ADS)
Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team
2014-11-01
The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.
Impacts of mesoscale eddies on biogeochemical cycles in the South China Sea
NASA Astrophysics Data System (ADS)
Xiu, P.; Chai, F.; Guo, M.
2016-02-01
Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) are investigated by using satellite surface chlorophyll concentration, altimeter data, satellite sea surface temperature, and a coupled physical-biogeochemical Pacific Ocean model (ROMS-CoSiNE) simulation for the period from 1991 to 2007. Considering the annual mean, composite analysis reveals that cyclonic eddies are associated with higher concentrations of nutrients, phytoplankton and zooplankton while the anticyclonic eddies are with lower concentrations compared with surrounding waters, which is generally controlled by the eddy pumping mechanism. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies are also revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures are not linearly coupled at the eddy core where plankton grow and composition of the community depend not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship. Considering the seasonal variability, we find eddy pumping mechanisms are generally dominant in winter and eddy advection effects are dominant in summer. Over the space, variability of chlorophyll to the west of Luzon Strait and off northwest of Luzon Island are mainly controlled by eddy pumping mechanism. In regions off the Vietnam coast, chlorophyll distributions are generally associated with horizontal eddy advection. This research highlights different mesoscale mechanisms affecting biological structures that can potentially disturb ocean biogeochemical cycling processes in the South China Sea.
South-Eastern Bay of Biscay eddy-induced anomalies and their effect on chlorophyll distribution
NASA Astrophysics Data System (ADS)
Caballero, Ainhoa; Rubio, Anna; Ruiz, Simón; Le Cann, Bernard; Testor, Pierre; Mader, Julien; Hernández, Carlos
2016-10-01
The analysis of deep-water glider hydrographic and fluorescence data, together with satellite measurements provides a new insight into eddy-induced anomalies within the South-Eastern Bay of Biscay, during summer. Two cyclonic eddies and a SWODDY have been observed in different glider transects and by means of different sources of satellite data. Vertical profiles reveal complex structures (characteristic of the second baroclinic mode): upward/downward displacement of the seasonal/permanent thermocline in the case of X13 and the opposite thermocline displacements in the case of the cyclones. This is a typical behaviour of mode-water and "cyclonic thinny" eddies. A qualitative analysis of the vertical velocities in the anticyclone indicates that though geostrophy dominates the main water column, depressing the isopycnals, near the sea-surface the eddy-wind interaction affects the vertical currents, favouring Ekman pumping and upwelling. The analysis of the Θ-S properties corroborates that inside cyclones and between the 26 and 27 isopycnals, net downwelling occurs. These two types of intra-thermocline lenses appear to deeply impact the Chl-a fluorescence profiles, since the maximum Chl-a fluorescence is located just below the seasonal thermocline. The mean Chl-a fluorescence was higher in the anticyclone than within the cyclones and the mean for the entire study period; the highest values were observed in the centre of the anticyclone. These results are in agreement with previous findings concerning the SWODDY F90 and surrounding cyclones, located in the South-Western Bay of Biscay. Significant differences in the Θ-S properties of the two cyclonic mesoscale structures have been observed: higher temperatures and lower salinity in the easternmost cyclone. Finally, time variation of the salinity content of the shallowest water masses of the anticyclone (salinity decreasing over time), probably indicates advective mixing processes occurred during the mission.
Measurement of eddy-current distribution in the vacuum vessel of the Sino-UNIted Spherical Tokamak.
Li, G; Tan, Y; Liu, Y Q
2015-08-01
Eddy currents have an important effect on tokamak plasma equilibrium and control of magneto hydrodynamic activity. The vacuum vessel of the Sino-UNIted Spherical Tokamak is separated into two hemispherical sections by a toroidal insulating barrier. Consequently, the characteristics of eddy currents are more complex than those found in a standard tokamak. Thus, it is necessary to measure and analyze the eddy-current distribution. In this study, we propose an experimental method for measuring the eddy-current distribution in a vacuum vessel. By placing a flexible printed circuit board with magnetic probes onto the external surface of the vacuum vessel to measure the magnetic field parallel to the surface and then subtracting the magnetic field generated by the vertical-field coils, the magnetic field due to the eddy current can be obtained, and its distribution can be determined. We successfully applied this method to the Sino-UNIted Spherical Tokamak, and thus, we obtained the eddy-current distribution despite the presence of the magnetic field generated by the external coils.
Global Ocean Vertical Velocity From a Dynamically Consistent Ocean State Estimate
NASA Astrophysics Data System (ADS)
Liang, Xinfeng; Spall, Michael; Wunsch, Carl
2017-10-01
Estimates of the global ocean vertical velocities (Eulerian, eddy-induced, and residual) from a dynamically consistent and data-constrained ocean state estimate are presented and analyzed. Conventional patterns of vertical velocity, Ekman pumping, appear in the upper ocean, with topographic dominance at depth. Intense and vertically coherent upwelling and downwelling occur in the Southern Ocean, which are likely due to the interaction of the Antarctic Circumpolar Current and large-scale topographic features and are generally canceled out in the conventional zonally averaged results. These "elevators" at high latitudes connect the upper to the deep and abyssal oceans and working together with isopycnal mixing are likely a mechanism, in addition to the formation of deep and abyssal waters, for fast responses of the deep and abyssal oceans to the changing climate. Also, Eulerian and parameterized eddy-induced components are of opposite signs in numerous regions around the global ocean, particularly in the ocean interior away from surface and bottom. Nevertheless, residual vertical velocity is primarily determined by the Eulerian component, and related to winds and large-scale topographic features. The current estimates of vertical velocities can serve as a useful reference for investigating the vertical exchange of ocean properties and tracers, and its complex spatial structure ultimately permits regional tests of basic oceanographic concepts such as Sverdrup balance and coastal upwelling/downwelling.
NASA Technical Reports Server (NTRS)
Harris, J. E.; Blanchard, D. K.
1982-01-01
A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulence-closure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software.
A Physical Mechanism for the Asymmetry in Top-Down and Bottom-Up Diffusion.
NASA Astrophysics Data System (ADS)
Wyngaard, J. C.
1987-04-01
Recent large-eddy simulations of the vertical diffusion of a passive, conservative scalar through the convective boundary layer (CBL) show strikingly different eddy diffusivity profiles in the `top-down' and `bottom-up' cases. These results indicate that for a given turbulent velocity field and associated scalar flux, the mean change in scalar mixing ratio across the CBL is several times larger if the flux originates at the top of the boundary layer (i.e., in top-down diffusion) rather than at the bottom. The large-eddy simulation (LES) data show that this asymmetry is due to a breakdown of the eddy-diffusion concept.A simple updraft-downdraft model of the CBL reveals a physical mechanism that could cause this unexpected behavior. The large, positive skewness of the convectively driven vertical velocity gives an appreciably higher probability of downdrafts than updrafts; this excess probability of downdrafts, interacting with the time changes of the mean mixing ratio caused by the nonstationarity of the bottom-up and top-down diffusion processes, decreases the equilibrium value of mean mixing-ratio jump across the mixed layer in the bottom-up case and increases it in the top-down case. The resulting diffusion asymmetry agrees qualitatively with that found through LES.
Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms.
Mahadevan, Amala; D'Asaro, Eric; Lee, Craig; Perry, Mary Jane
2012-07-06
Springtime phytoplankton blooms photosynthetically fix carbon and export it from the surface ocean at globally important rates. These blooms are triggered by increased light exposure of the phytoplankton due to both seasonal light increase and the development of a near-surface vertical density gradient (stratification) that inhibits vertical mixing of the phytoplankton. Classically and in current climate models, that stratification is ascribed to a springtime warming of the sea surface. Here, using observations from the subpolar North Atlantic and a three-dimensional biophysical model, we show that the initial stratification and resulting bloom are instead caused by eddy-driven slumping of the basin-scale north-south density gradient, resulting in a patchy bloom beginning 20 to 30 days earlier than would occur by warming.
NASA Astrophysics Data System (ADS)
Marras, Simone; Suckale, Jenny; Giraldo, Francis X.; Constantinescu, Emil
2016-04-01
We present the solution of the viscous shallow water equations where viscosity is built as a residual-based subgrid scale model originally designed for large eddy simulation of compressible [1] and stratified flows [2]. The necessity of viscosity for a shallow water model not only finds motivation from mathematical analysis [3], but is supported by physical reasoning as can be seen by an analysis of the energetics of the solution. We simulated the flow of an idealized wave as it hits a set of obstacles. The kinetic energy spectrum of this flow shows that, although the inviscid Galerkin solutions -by spectral elements and discontinuous Galerkin [4]- preserve numerical stability in spite of the spurious oscillations in the proximity of the wave fronts, the slope of the energy cascade deviates from the theoretically expected values. We show that only a sufficiently small amount of dynamically adaptive viscosity removes the unwanted high-frequency modes while preserving the overall sharpness of the solution. In addition, it yields a physically plausible energy decay. This work is motivated by a larger interest in the application of a shallow water model to the solution of tsunami triggered coastal flows. In particular, coastal flows in regions around the world where coastal parks made of mitigation hills of different sizes and configurations are considered as a means to deviate the power of the incoming wave. References [1] M. Nazarov and J. Hoffman (2013) "Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods" Int. J. Numer. Methods Fluids, 71:339-357 [2] S. Marras, M. Nazarov, F. X. Giraldo (2015) "Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES" J. Comput. Phys. 301:77-101 [3] J. F. Gerbeau and B. Perthame (2001) "Derivation of the viscous Saint-Venant system for laminar shallow water; numerical validation" Discrete Contin. Dyn. Syst. Ser. B, 1:89?102 [4] F. X. Giraldo and M. Restelli (2010) "High-order semi-implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Methods Fluids, 63:1077-1102
Sondak, D.; Shadid, J. N.; Oberai, A. A.; ...
2015-04-29
New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and highmore » Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. Thus a numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.« less
Large-Eddy Simulation of Internal Flow through Human Vocal Folds
NASA Astrophysics Data System (ADS)
Lasota, Martin; Šidlof, Petr
2018-06-01
The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on humanlike computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.
A family of dynamic models for large-eddy simulation
NASA Technical Reports Server (NTRS)
Carati, D.; Jansen, K.; Lund, T.
1995-01-01
Since its first application, the dynamic procedure has been recognized as an effective means to compute rather than prescribe the unknown coefficients that appear in a subgrid-scale model for Large-Eddy Simulation (LES). The dynamic procedure is usually used to determine the nondimensional coefficient in the Smagorinsky (1963) model. In reality the procedure is quite general and it is not limited to the Smagorinsky model by any theoretical or practical constraints. The purpose of this note is to consider a generalized family of dynamic eddy viscosity models that do not necessarily rely on the local equilibrium assumption built into the Smagorinsky model. By invoking an inertial range assumption, it will be shown that the coefficients in the new models need not be nondimensional. This additional degree of freedom allows the use of models that are scaled on traditionally unknown quantities such as the dissipation rate. In certain cases, the dynamic models with dimensional coefficients are simpler to implement, and allow for a 30% reduction in the number of required filtering operations.
Estimation of strait transport in the East China Sea
NASA Astrophysics Data System (ADS)
Moon, J.; Hirose, N.; Usui, N.; Tsujino, H.
2010-12-01
Volume transport through the major channels is still diverse in realistic eddy-resolving models. For instance, time-mean transport through the Tokara Strait is predicted as 16.9Sv by Maltrud and McClean (2005) or 36-72Sv by Hurlburt et al. (1996). However the difference may be decreased by constraining measurement data, i.e., data assimilation. The assimilated estimates from two different systems of Meteorological Research Institute and Kyushu University (MOVE-WNP and DREAMS_B) show realistic averages of 22-23Sv through the Tokara Strait. Inverse estimation of adjustable parameters implies that reduction of wind stress and strong vertical viscosity are crucial to prevent excessive transport and associated instabilities in a forward model. It is noted that both of the assimilated results show a deep northward flow of 3-4Sv through the Kerama Gap in Ryukyu Islands. The core depth (~500m) of this subsurface current is similar to Ryukyu Current. Further analysis shows coherent changes of Soya and Tsushima Warm Currents, which is consistent to the Okhotsk wind theory of Tsujino et al. (2008). On the other hand, the changes of Tsushima Strait transport are nearly independent from the Kuroshio or the Taiwan Warm Current.
Turbulent Mixing in Gravity Currents with Transverse Shear
NASA Astrophysics Data System (ADS)
White, Brian; Helfrich, Karl; Scotti, Alberto
2010-11-01
A parallel flow with horizontal shear and horizontal density gradient undergoes an intensification of the shear by gravitational tilting and stretching, rapidly breaking down into turbulence. Such flows have the potential for substantial mixing in estuaries and the coastal ocean. We present high-resolution numerical results for the mixing efficiency of these flows, which can be viewed as gravity currents with transverse shear, and contrast them with the well-studied case of stably stratified, homogeneous turbulence (uniform vertical density and velocity gradients). For a sheared gravity current, the buoyancy flux, turbulent Reynolds stress, and dissipation are well out of equilibrium. The total kinetic energy first increases as potential energy is transferred to the gravity current, but rapidly decays once turbulence sets in. Despite the non-equilibrium character, mixing efficiencies are slightly higher but qualitatively similar to homogeneous stratified turbulence. Efficiency decreases in the highly energetic regime where the dissipation rate is large compared with viscosity and stratification, ɛ/(νN^2)>100, further declining as turbulence decays and kinetic energy dissipation dominates the buoyancy flux. In general, the mixing rate, parameterized by a turbulent eddy diffusivity, increases with the strength of the transverse shear.
The Vertical Transport in the Ocean: a Pump Driven by Meso and Submesoscale Structures
NASA Astrophysics Data System (ADS)
Rosso, I.; Hogg, A. M.; Strutton, P. G.; Kiss, A. E.
2012-04-01
The upper ocean can be considered as a vehicle for the exchange of gases between air and the deep ocean. Furthermore, the transport of nutrients through the mixed layer occurs via a combination of biogeochemical and physical pumps; both of these mechanisms play a fundamental role in the carbon cycle. In the surface layer phytoplankton convert carbon dioxide into organic compounds using nutrients and light. Nutrients, which are depleted at the surface, can be transported into the mixed layer by vertical motion; recently, it has been discovered that this vertical transport is more often associated with submesoscale fronts of O(10) km (rather than inside mesoscale structures, of O(100) km, like eddies). At the submesoscale fronts, rates of O(100) m day-1 can emerge, particularly high compared to values of 10 m/day found at the mesoscales [M. Lèvy, et al. J. Mar. Res., 2001]. At this fine scale, the vertical transport of nutrients is highly effective, upwelling waters from the depth rich of nutrients and downwelling depleted waters from the surface. The fine-scale vertical transport mechanism has recently become of great interest, though is not completely understood. We investigate the dynamics and the transport of tracers at the meso and sub-mesoscales by running numerical simulations with a domain of 1024 km x 512 km x 1600 m, at 3 different resolutions: 8 km, 4km and 1km. We use the MIT general circulation model with free surface, linear bottom drag and free slip condition at the north and south walls. Non-linear 3rd order advection scheme and biharmonic viscosity are applied. Furthermore, the fluid is forced by a constant zonal wind stress. The flow is zonally periodic and presents an idealized topography. We started from an initial vertical stratification and run the model to reach an equilibrium flow state. A passive tracer is released after the equilibrium is reached. We investigate how the fine scales are affecting the rate of vertical transport and the distribution of the tracer. We show that also the presence of the topography has an impact in driving this transport. Furthermore, the model can run in a non-hydrostatic configuration, allowing us to investigate the effect of this parameterization on the transport.
Lévêque, E; Koudella, C R
2001-04-30
An eddy-viscous term is added to Navier-Stokes dynamics at wave numbers k greater than the inflection point kc of the energy flux F(log(k)). The eddy viscosity is fixed so that the energy spectrum satisfies E(k) = E(kc) (k/kc)(-3) for k>kc. This resulting forcing induces a rapid depletion of the energy cascade at k>kc. It is observed numerically that the model reproduces turbulence energetics at k< or =kc and statistics of two-point velocity correlations at scales r>lambda (Taylor microscale). Compared to a direct numerical simulation of R(lambda) = 130 an equivalent run with the present model results in a gain of a factor 20 in CPU time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ye; Thornber, Ben
2016-04-12
Here, the implicit large-eddy simulation (ILES) has been utilized as an effective approach for calculating many complex flows at high Reynolds number flows. Richtmyer–Meshkov instability (RMI) induced flow can be viewed as a homogeneous decaying turbulence (HDT) after the passage of the shock. In this article, a critical evaluation of three methods for estimating the effective Reynolds number and the effective kinematic viscosity is undertaken utilizing high-resolution ILES data. Effective Reynolds numbers based on the vorticity and dissipation rate, or the integral and inner-viscous length scales, are found to be the most self-consistent when compared to the expected phenomenology andmore » wind tunnel experiments.« less
Image-based modelling of lateral magma flow: the Basement Sill, Antarctica
Mirhadizadeh, Seyed
2017-01-01
The McMurdo Dry Valleys magmatic system, Antarctica, provides a world-class example of pervasive lateral magma flow on a continental scale. The lowermost intrusion (Basement Sill) offers detailed sections through the now frozen particle microstructure of a congested magma slurry. We simulated the flow regime in two and three dimensions using numerical models built on a finite-element mesh derived from field data. The model captures the flow behaviour of the Basement Sill magma over a viscosity range of 1–104 Pa s where the higher end (greater than or equal to 102 Pa s) corresponds to a magmatic slurry with crystal fractions varying between 30 and 70%. A novel feature of the model is the discovery of transient, low viscosity (less than or equal to 50 Pa s) high Reynolds number eddies formed along undulating contacts at the floor and roof of the intrusion. Numerical tracing of particle orbits implies crystals trapped in eddies segregate according to their mass density. Recovered shear strain rates (10−3–10−5 s−1) at viscosities equating to high particle concentrations (around more than 40%) in the Sill interior point to shear-thinning as an explanation for some types of magmatic layering there. Model transport rates for the Sill magmas imply a maximum emplacement time of ca 105 years, consistent with geochemical evidence for long-range lateral flow. It is a theoretically possibility that fast-flowing magma on a continental scale will be susceptible to planetary-scale rotational forces. PMID:28573002
Image-based modelling of lateral magma flow: the Basement Sill, Antarctica.
Petford, Nick; Mirhadizadeh, Seyed
2017-05-01
The McMurdo Dry Valleys magmatic system, Antarctica, provides a world-class example of pervasive lateral magma flow on a continental scale. The lowermost intrusion (Basement Sill) offers detailed sections through the now frozen particle microstructure of a congested magma slurry. We simulated the flow regime in two and three dimensions using numerical models built on a finite-element mesh derived from field data. The model captures the flow behaviour of the Basement Sill magma over a viscosity range of 1-10 4 Pa s where the higher end (greater than or equal to 10 2 Pa s) corresponds to a magmatic slurry with crystal fractions varying between 30 and 70%. A novel feature of the model is the discovery of transient, low viscosity (less than or equal to 50 Pa s) high Reynolds number eddies formed along undulating contacts at the floor and roof of the intrusion. Numerical tracing of particle orbits implies crystals trapped in eddies segregate according to their mass density. Recovered shear strain rates (10 -3 -10 -5 s -1 ) at viscosities equating to high particle concentrations (around more than 40%) in the Sill interior point to shear-thinning as an explanation for some types of magmatic layering there. Model transport rates for the Sill magmas imply a maximum emplacement time of ca 10 5 years, consistent with geochemical evidence for long-range lateral flow. It is a theoretically possibility that fast-flowing magma on a continental scale will be susceptible to planetary-scale rotational forces.
Open ocean dead zones in the tropical North Atlantic Ocean
NASA Astrophysics Data System (ADS)
Karstensen, J.; Fiedler, B.; Schütte, F.; Brandt, P.; Körtzinger, A.; Fischer, G.; Zantopp, R.; Hahn, J.; Visbeck, M.; Wallace, D.
2015-04-01
Here we present first observations, from instrumentation installed on moorings and a float, of unexpectedly low (<2 μmol kg-1) oxygen environments in the open waters of the tropical North Atlantic, a region where oxygen concentration does normally not fall much below 40 μmol kg-1. The low-oxygen zones are created at shallow depth, just below the mixed layer, in the euphotic zone of cyclonic eddies and anticyclonic-modewater eddies. Both types of eddies are prone to high surface productivity. Net respiration rates for the eddies are found to be 3 to 5 times higher when compared with surrounding waters. Oxygen is lowest in the centre of the eddies, in a depth range where the swirl velocity, defining the transition between eddy and surroundings, has its maximum. It is assumed that the strong velocity at the outer rim of the eddies hampers the transport of properties across the eddies boundary and as such isolates their cores. This is supported by a remarkably stable hydrographic structure of the eddies core over periods of several months. The eddies propagate westward, at about 4 to 5 km day-1, from their generation region off the West African coast into the open ocean. High productivity and accompanying respiration, paired with sluggish exchange across the eddy boundary, create the "dead zone" inside the eddies, so far only reported for coastal areas or lakes. We observe a direct impact of the open ocean dead zones on the marine ecosystem as such that the diurnal vertical migration of zooplankton is suppressed inside the eddies.
Classical closure theory and Lam's interpretation of epsilon-RNG
NASA Technical Reports Server (NTRS)
Zhou, YE
1995-01-01
Lam's phenomenological epsilon-renormalization group (RNG) model is quite different from the other members of that group. It does not make use of the correspondence principle and the epsilon-expansion procedure. We demonstrate that Lam's epsilon-RNG model is essentially the physical space version of the classical closure theory in spectral space and consider the corresponding treatment of the eddy viscosity and energy backscatter.
An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skyllingstad, E.D.; Denbo, D.W.
Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less
NASA Astrophysics Data System (ADS)
Mettot, Clément; Sipp, Denis; Bézard, Hervé
2014-04-01
This article presents a quasi-laminar stability approach to identify in high-Reynolds number flows the dominant low-frequencies and to design passive control means to shift these frequencies. The approach is based on a global linear stability analysis of mean-flows, which correspond to the time-average of the unsteady flows. Contrary to the previous work by Meliga et al. ["Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability," Phys. Fluids 24, 061701 (2012)], we use the linearized Navier-Stokes equations based solely on the molecular viscosity (leaving aside any turbulence model and any eddy viscosity) to extract the least stable direct and adjoint global modes of the flow. Then, we compute the frequency sensitivity maps of these modes, so as to predict before hand where a small control cylinder optimally shifts the frequency of the flow. In the case of the D-shaped cylinder studied by Parezanović and Cadot [J. Fluid Mech. 693, 115 (2012)], we show that the present approach well captures the frequency of the flow and recovers accurately the frequency control maps obtained experimentally. The results are close to those already obtained by Meliga et al., who used a more complex approach in which turbulence models played a central role. The present approach is simpler and may be applied to a broader range of flows since it is tractable as soon as mean-flows — which can be obtained either numerically from simulations (Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), unsteady Reynolds-Averaged-Navier-Stokes (RANS), steady RANS) or from experimental measurements (Particle Image Velocimetry - PIV) — are available. We also discuss how the influence of the control cylinder on the mean-flow may be more accurately predicted by determining an eddy-viscosity from numerical simulations or experimental measurements. From a technical point of view, we finally show how an existing compressible numerical simulation code may be used in a black-box manner to extract the global modes and sensitivity maps.
Water Vapor Feedbacks to Climate Change
NASA Technical Reports Server (NTRS)
Rind, David
1999-01-01
The response of water vapor to climate change is investigated through a series of model studies with varying latitudinal temperature gradients, mean temperatures, and ultimately, actual climate change configurations. Questions to be addressed include: what role does varying convection have in water vapor feedback; do Hadley Circulation differences result in differences in water vapor in the upper troposphere; and, does increased eddy energy result in greater eddy vertical transport of water vapor in varying climate regimes?
VERTICAL DIFFUSION IN SMALL STRATIFIED LAKES: DATA AND ERROR ANALYSIS
Water temperature profiles were measured at 2-min intervals in a stratified temperate lake with a surface area of 0.06 km2 and a aximum depth of 10 m from May 7 to August 9, 1989. he data were used to calculate the vertical eddy diffusion coefficient K2 in the hypolimnion. he dep...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara
This study investigates the resolution dependency of precipitation extremes in an aqua-planet framework. Strong resolution dependency of precipitation extremes is seen over both tropics and extra-tropics, and the magnitude of this dependency also varies with dynamical cores. Moisture budget analyses based on aqua-planet simulations with the Community Atmosphere Model (CAM) using the Model for Prediction Across Scales (MPAS) and High Order Method Modeling Environment (HOMME) dynamical cores but the same physics parameterizations suggest that during precipitation extremes moisture supply for surface precipitation is mainly derived from advective moisture convergence. The resolution dependency of precipitation extremes mainly originates from advective moisturemore » transport in the vertical direction. At most vertical levels over the tropics and in the lower atmosphere over the subtropics, the vertical eddy transport of mean moisture field dominates the contribution to precipitation extremes and its resolution dependency. Over the subtropics, the source of moisture, its associated energy, and the resolution dependency during extremes are dominated by eddy transport of eddies moisture at the mid- and upper-troposphere. With both MPAS and HOMME dynamical cores, the resolution dependency of the vertical advective moisture convergence is mainly explained by dynamical changes (related to vertical velocity or omega), although the vertical gradients of moisture act like averaging kernels to determine the sensitivity of the overall resolution dependency to the changes in omega at different vertical levels. The natural reduction of variability with coarser resolution, represented by areal data averaging (aggregation) effect, largely explains the resolution dependency in omega. The thermodynamic changes, which likely result from non-linear feedback in response to the large dynamical changes, are small compared to the overall changes in dynamics (omega). However, after excluding the data aggregation effect in omega, thermodynamic changes become relatively significant in offsetting the effect of dynamics leading to reduce differences between the simulated and aggregated results. Compared to MPAS, the simulated stronger vertical motion with HOMME also results in larger resolution dependency. Compared to the simulation at fine resolution, the vertical motion during extremes is insufficiently resolved/parameterized at the coarser resolution even after accounting for the natural reduction in variability with coarser resolution, and this is more distinct in the simulation with HOMME. To reduce uncertainties in simulated precipitation extremes, future development in cloud parameterizations must address their sensitivity to spatial resolution as well as dynamical cores.« less
Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids
Wang, Shiyan; Ardekani, Arezoo M.
2015-01-01
We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called “squirmer”. The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and viscous forces. Our study shows that the mixing efficiency and the diapycnal eddy diffusivity, a measure of vertical mass flux, within a suspension of squirmers increases with Reynolds number. The mixing efficiency is in the range of O(0.0001–0.04) when the swimming Reynolds number is in the range of O(0.1–100). The values of diapycnal eddy diffusivity and Cox number are two orders of magnitude larger for vertically swimming cells compared to horizontally swimming cells. For a suspension of squirmers in a decaying isotropic turbulence, we find that the diapycnal eddy diffusivity enhances due to the strong viscous dissipation generated by squirmers as well as the interaction of squirmers with the background turbulence. PMID:26628288
Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids.
Wang, Shiyan; Ardekani, Arezoo M
2015-12-02
We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called "squirmer". The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and viscous forces. Our study shows that the mixing efficiency and the diapycnal eddy diffusivity, a measure of vertical mass flux, within a suspension of squirmers increases with Reynolds number. The mixing efficiency is in the range of O(0.0001-0.04) when the swimming Reynolds number is in the range of O(0.1-100). The values of diapycnal eddy diffusivity and Cox number are two orders of magnitude larger for vertically swimming cells compared to horizontally swimming cells. For a suspension of squirmers in a decaying isotropic turbulence, we find that the diapycnal eddy diffusivity enhances due to the strong viscous dissipation generated by squirmers as well as the interaction of squirmers with the background turbulence.
Interface instabilities during displacements of two miscible fluids in a vertical pipe
NASA Astrophysics Data System (ADS)
Scoffoni, J.; Lajeunesse, E.; Homsy, G. M.
2001-03-01
We study experimentally the downward vertical displacement of one miscible fluid by another in a vertical pipe at sufficiently high velocities for diffusive effects to be negligible. For certain viscosity ratios and flow rates, the interface between the two fluids can destabilize. We determine the dimensionless flow rate Uc above which the instability is triggered and its dependence on the viscous ratio M, resulting in a stability map Uc=Uc(M). Two different instability modes have been observed: an asymmetric "corkscrew" mode and an axisymmetric one. We remark that the latter is always eventually disturbed by "corkscrew" type instabilities. We speculate that these instabilities are driven by the viscosity stratification and are analogous to those already observed in core annular flows of immiscible fluids.
Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.
Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin
2017-09-19
In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and eddy-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to warm mesoscale ocean eddies with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime warm eddies heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of eddies. The warm-eddy-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that warm eddies affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of warm eddy-atmosphere interaction is necessary to improve in weather and climate projections.
NASA Astrophysics Data System (ADS)
Everett, J. D.; Baird, M. E.; Suthers, I. M.
2011-12-01
Swarms of the salp Thalia democratica periodically occur off southeast Australia following the austral spring bloom of phytoplankton. In October 2008 a filament of upwelled water was advected south by the adjacent East Australian Current and formed a 30 km diameter cold-core eddy (CCE). The three-dimensional structure of a subsurface swarm of T. democratica within the eddy was examined using both oblique and vertical hauls and an optical plankton counter (OPC) deployed on a towed body. The CCE displayed distinct uplift of the nutricline and elevated fluorescence. Net samples show the zooplankton community was dominated by T. democratica, comprising 73%-88% of zooplankton abundance. The size distribution of T. democratica measured from net samples was 0.5-5 mm and was used to interpret the OPC transects, which showed the swarm formed a 15 km diameter disc located 20-40 m deep in the center of the eddy. The maximum salp abundance was in the pycnocline and coincided with the subsurface fluorescence maximum. The mean abundance of T. democratica size particles within the disc was 5003 individuals m-3 (ind. m-3), contrasted with only 604 ind. m-3 at the outer edge of the eddy. The vertically concentrated and horizontally constrained disc-shaped salp swarm occurred at the interface of salp-bearing inner shelf water and nutrient-rich upwelled water in a CCE. The physical processes that formed the CCE on the inshore edge of the western boundary current led to the largest density of salps recorded.
Simulation study of disruption characteristics in KSTAR
NASA Astrophysics Data System (ADS)
Lee, Jongkyu; Kim, J. Y.; Kessel, C. E.; Poli, F.
2012-10-01
A detailed simulation study of disruption in KSTAR had been performed using the Tokamak Simulation Code(TSC) [1] during the initial design phase of KSTAR [2]. Recently, however, a partial modification in the structure of passive plate was made in relation to reduce eddy current and increase the efficiency of control of vertical position. A substantial change can then occur in disruption characteristics and plasma behavior during disruption due to changes in passive plate structure. Because of this, growth rate of vertical instability is expected to be increased and eddy current and its associated electomagnetic force are expected to be reduced. To check this in more detail, a new simulation study is here given with modified passive plate structure of KSTAR. In particular, modeling of vertical disruption that is vertical displacement event (VDE) was carried out. We calculated vertical growth rate for a drift phase of plasma and electromagnetic force acting on PFC structures and compared the results between in a new model and an old model. [4pt] [1] S.C. Jardin, N. Pomphrey and J. Delucia, J. Comp. Phys. 66, 481 (1986).[0pt] [2] J.Y. Kim, S.Y. Cho and KSTAR Team, Disruption load analysis on KSTAR PFC structures, J. Accel. Plasma Res. 5, 149 (2000).
NASA Astrophysics Data System (ADS)
MacDonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.
2013-01-01
Comparison of Forecast and Observed Energetics
NASA Technical Reports Server (NTRS)
Baker, W. E.; Brin, Y.
1985-01-01
An energetics analysis scheme was developed to compare the observed kinetic energy balance over North America with that derived from forecast cyclone case. It is found that: (1) the observed and predicted kinetic energy and eddy conversion are in good qualitative agreement, although the model eddy conversion tends to be 2 to 3 times stronger than the observed values. The eddy conversion which is stronger in the 12 h forecast than in observations and may be due to several factors is studied; (2) vertical profiles of kinetic energy generation and dissipation exhibit lower and upper tropospheric maxima in both the forecast and observations; and (3) a lag in the observational analysis with the maximum in the observed kinetic energy occurring at 0000 GMT 14 January over the same region as the maximum Eddy conversion 12 h earlier is noted.
NASA Astrophysics Data System (ADS)
Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; de Ruijter, Will P. M.; Maas, Leo R. M.
2016-04-01
The South East Madagascar Current (SEMC) flows poleward along the eastern coast of Madagascar as a western boundary current which further south provides some of the source waters of the Agulhas Current, either directly or in the form of eddies. We investigate the region of dipole formation south of Madagascar combining vertical T/S profiles from Argo floats, altimetry measurements and an existing eddy detection algorithm. Results from our analysis show that the dipole consists of an anticyclonic intrathermocline eddy (ITE) formed on its southern flank and a cyclonic ITE formed on its northern flank. Both lobes of the dipole exhibit similar T/S properties throughout the water column, although vertically shifted within the thermocline depending on its nature: upward in a cyclonic ITE and downward in an anticyclonic ITE. A subsurface salinity maximum of about 35.5 psu characterizes the upper layers with Subtropical Surface Water (STSW). At intermediate levels, a well defined path of South Indian Central Water (SICW) extends throughout the water column up to reach a minimum in salinity of 34.5 psu, corresponding to Antarctic Intermediate Water (AAIW). Below, at deep layers, the North Atlantic Deep Water (NADW) is found. The intrathermocline nature of the Madagascar dipoles has not been previously reported and represents an important feature to be considered when assessing the heat and salt fluxes driven by eddy movement and contributing to the Agulhas Current. Unlike surface eddies, intrathermocline eddies strongly influence the intermediate/deeper layers in the oceans and, hence, may have a larger contribution in the spreading rates and pathways of water masses. Because the intrathermocline nature of eddies is invisible to altimetry measurements, these results stress the importance of combining altimetry with historical records of Argo profiles which uncover eddy dynamics below the sea surface. Lastly, we further investigate from altimetry the area of dipole formation. The main axis of the SEMC appears flanked on its northern and southern borders by a semi-isolated semicircular region where kinetic energy of the mean flow is being transfered to the eddy kinetic energy field, in this case to the dipole formation, through barotropic instabilities without the need of an evident SEMC retroflection. In this regard, future work will be addressed to account for the mechanism by which Madagascar dipoles thus generated present an intrathermocline structure.
Hadley cell dynamics of a cold and virtually dry Snowball Earth atmosphere
NASA Astrophysics Data System (ADS)
Voigt, Aiko; Held, Isaac; Marotzke, Jochem
2010-05-01
We use the full-physics atmospheric general circulation model ECHAM5 to investigate a cold and virtually dry Snowball Earth atmosphere that results from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2. The aim of this study is the investigation of the zonal-mean circulation of a Snowball Earth atmosphere, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. To ease comparison with theories, incoming solar insolation follows permanent equinox conditions with disabled diurnal cycle. The meridional circulation consists of a thermally direct cell extending from the equator to 45 N/S with ascent in the equatorial region, and a weak thermally indirect cell with descent between 45 and 65 N/S and ascent in the polar region. The former cell corresponds to the present-day Earth's Hadley cell, while the latter can be viewed as an eddy-driven Ferrell cell; the present-day Earth's direct polar cell is missing. The Hadley cell itself is subdivided into a vigorous cell confined to the troposphere and a weak deep cell reaching well into the stratosphere. The dynamics of the vigorous Snowball Earth Hadley cell differ substantially from the dynamics of the present-day Hadley cell. The zonal momentum balance shows that in the poleward branch of the vigorous Hadley cell, mean flow meridional advection of absolute vorticity is not only balanced by eddy momentum flux convergence but also by vertical diffusion. Inside the poleward branch, eddies are more important in the upper part and vertical diffusion is more important in the lower part. Vertical diffusion also contributes to the meridional momentum balance as it decelerates the vigorous Hadley cell by downgradient momentum mixing between its poleward and equatorward branch. Zonal winds, therefore, are not in thermal wind balance in the vigorous Hadley cell. Suppressing vertical momentum diffusion above 870 hPa results in a doubling of the vigorous Hadley cell strength. Simulations where we only suppress either vertical diffusion of zonal or meridional momentum show that this doubling can be understood from the decelerating effect of vertical diffusion in the meridional momentum balance. Comparing our simulations with theories, we conclude that neither the axisymmetric Hadley cell model of Held & Hou (1980) nor the eddy-permitting model of T. Schneider et al. (2005, 2006, 2008) are applicable to a Snowball Earth atmosphere since both assume an inviscid upper Hadley cell branch.
NASA Astrophysics Data System (ADS)
Huang, W.; Chu, X.; Gardner, C. S.; Barry, I. F.; Smith, J. A.; Fong, W.; Yu, Z.; Chen, C.
2014-12-01
The vertical transport of heat and constituent by gravity waves and tides plays a fundamental role in establishing the thermal and constituent structures of the mesosphere and lower thermosphere (MLT), but has not been thoroughly investigated by observations. In particular, direct measurements of vertical heat flux and metal constituent flux caused by dissipating waves are extremely rare, which demand precise measurements with high spatial and temporal resolutions over a long period. Such requirements are necessary to overcome various uncertainties to reveal the small quantities of the heat and constituent fluxes induced by dissipating waves. So far such direct observations have only been reported for vertical heat and Na fluxes using a Na Doppler lidar at Starfire Optical Range (SOR) in Albuquerque, New Mexico. Furthermore, estimate of eddy heat and constituent fluxes from the turbulent mixing generated by breaking waves is even more challenging due to the even smaller temporal and spatial scales of the eddy. Consequently, the associated coefficients of thermal (kH) and constituent (kzz) diffusion have not been well characterized and remain as large uncertainties in models. We attempt to address these issues with direct measurements by a Na Doppler lidar with exceptional high-resolution measurement capabilities. Since summer 2010, we have been operating a Na Doppler lidar at Boulder, Colorado. The efficiency of the lidar has been greatly improved in summer of 2011 and achieved generally over 1000 counts of Na signal per lidar pulse in winter. In 2013, we made extensive Na lidar observations in 98 nights. These data covering each month of a full year will be used to characterize the seasonal variations of heat and Na fluxes and to be compared with the pioneering observations at SOR. In November 2013, we further upgraded the lidar with two new frequency shifters and a new data acquisition scheme, which are optimized for estimating eddy fluxes and reducing the measurement bias. Since then, we have been making observations in order to directly measure the eddy heat and Na fluxes for the first time. Such lidar observations at Boulder will certainly help advance the understanding on the vertical transport in the MLT region and provide crucial observational references to the models.
Exchanges between the shelf and the deep Black Sea: an integrated analysis of physical mechanisms
NASA Astrophysics Data System (ADS)
Shapiro, Georgy; Wobus, Fred; Zatsepin, Andrei; Akivis, Tatiana; Zhou, Feng
2017-04-01
This study provides an integrated analysis of exchanges of water, salt and heat between the north-western Black Sea shelf and the deep basin. Three contributing physical mechanisms are quantified, namely: Ekman drift, transport by mesoscale eddies at the edge of the NW Black Sea shelf and non-local cascading assisted by the rim current and mesoscale eddies. The semi-enclosed nature of the Black Sea together with its unique combination of an extensive shelf area in the North West and the deep central part make it sensitive to natural variations of fluxes, including the fluxes between the biologically productive shelf and predominantly anoxic deep sea. Exchanges between the shelf and deep sea play an important role in forming the balance of waters, nutrients and pollution within the coastal areas, and hence the level of human-induced eutrophication of coastal waters (MSFD Descriptor 5). In this study we analyse physical mechanisms and quantify shelf-deep sea exchange processes in the Black Sea sector using the NEMO ocean circulation model. The model is configured and optimized taking into account specific features of the Black Sea, and validated against in-situ and satellite observations. The study uses NEMO-BLS24 numerical model which is based on the NEMO codebase v3.2.1 with amendments introduced by the UK Met Office. The model has a horizontal resolution of 1/24×1/24° and a hybrid s-on-top-of-z vertical coordinate system with a total of 33 layers. The horizontal viscosity/diffusivity operator is rotated to reduce the contamination of vertical diffusion/viscosity by large values of their horizontal counterparts. The bathymetry is processed from ETOPO5 and capped to 1550m. Atmospheric forcing for the period 1989-2012 is given by the Drakkar Forcing Set v5.2. For comparison, the NCEP atmospheric forcing also used for 2005. The climatological runoff from 8 major rivers is included. We run the model individually for 24 calendar years without data assimilation. For the analysis of propagation of cold waters formed on the NW Black Sea shelf we use a passive tracer method. The tracer is treated as an artificial dye that "stains" a water parcel within the defined area as soon as it cooled below a 7°C temperature. To quantify the shelf-deep sea exchange, the transport of water, salt and heat between the NW shelf and deep-sea regions is calculated across an enclosed boundary (a "fence") approximating the 200 m isobath on the NW shelf plus two short segments connected to the coast. Partial transports are also calculated for the surface layer (top 20 m) and the under-surface layer (from 20 m to the bottom). The 20 m level is approximately equal to the Ekman depth in summer. It is also close to the depth of the biologically active euphotic layer. For validation of the NEMO-BLS24 configuration we present comparisons of the model with satellite-derived sea surface temperature measurements and with ship-derived cross-sections that show the vertical structure. We also compare the model to observations carried out during Black Sea cruises in 2004, 2007 and 2008. The model represents well the sea surface temperature, the depth of the upper mixed layer and the depth of the CIL, while overestimating the temperature in the core of the CIL by approx. 0.5 °C. Mechanism 1: exchanges due to a frontal eddy. Numerical simulations for the year 2005 (for which comprehensive remote sensed data is available) shows that a significant cross-shelf transport was generated by a long-lived anticyclonic eddy impinging on the shelf, sometimes assisted by a cyclonic meander of the Rim Current. Over 69 days between April 23 and June 30, 2005, a volume of 2.84×10^12 m3 of water (102% of the entire volume of the shelf waters) was transported out of the shelf and a similar amount onto the shelf (see details in Zhou et al. 2014). Mechanism 2: exchanges due to Ekman drift. During the short but intensive wind events of April 15 - 22 and July 1 - 4, 2005, 23% and 16% of shelf waters, were moved into the deep-sea region, respectively. Due to the high intensity of cross-shelf exchanges, the average renewal time for the NW shelf in the Black Sea was only 28 days in the summer of 2005 (Zhou et al. 2014). Mechanism 3: exchanges due to assisted cascading. Using the model run for 2003 as an example, we examine the fate of the tracer after 5.5 months of model integration. At 100m depth we identify four anti-cyclonic eddies: two eddies west of the Crimea peninsula, one north of Sinop and one west of Batumi. These eddies can be seen to assist cascading into the basin interior of cold waters formed on a shallow NW shelf to a depth greater than at which they were originally formed. The important result is that for many of the 24 studied years a significant proportion of dense shelf water does not cascade locally off the NW shelf, but is transported by the Rim Current over hundreds of kilometres before cascading into the deep basin in the southern and southeastern Black Sea. This work has been supported by EU FP7 PERSEUS, EU H2020 Sea Basin checkpoints Lot4 - Black Sea and a number of Chinese and Russian national projects. References Zhou, F., G. I. Shapiro, and F. Wobus, 2014: Cross-shelf exchange in the northwestern Black Sea. Journal of Geophysical Research: Oceans, 119, 2143-2164.
NASA Astrophysics Data System (ADS)
Wray, Timothy J.
Computational fluid dynamics (CFD) is routinely used in performance prediction and design of aircraft, turbomachinery, automobiles, and in many other industrial applications. Despite its wide range of use, deficiencies in its prediction accuracy still exist. One critical weakness is the accurate simulation of complex turbulent flows using the Reynolds-Averaged Navier-Stokes equations in conjunction with a turbulence model. The goal of this research has been to develop an eddy viscosity type turbulence model to increase the accuracy of flow simulations for mildly separated flows, flows with rotation and curvature effects, and flows with surface roughness. It is accomplished by developing a new zonal one-equation turbulence model which relies heavily on the flow physics; it is now known in the literature as the Wray-Agarwal one-equation turbulence model. The effectiveness of the new model is demonstrated by comparing its results with those obtained by the industry standard one-equation Spalart-Allmaras model and two-equation Shear-Stress-Transport k - o model and experimental data. Results for subsonic, transonic, and supersonic flows in and about complex geometries are presented. It is demonstrated that the Wray-Agarwal model can provide the industry and CFD researchers an accurate, efficient, and reliable turbulence model for the computation of a large class of complex turbulent flows.
An analytical model of capped turbulent oscillatory bottom boundary layers
NASA Astrophysics Data System (ADS)
Shimizu, Kenji
2010-03-01
An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.
An improved k-epsilon model for near wall turbulence
NASA Technical Reports Server (NTRS)
Shih, T. H.; Hsu, Andrew T.
1991-01-01
An improved k-epsilon model for low Reynolds number turbulence near a wall is presented. In the first part of this work, the near-wall asymptotic behavior of the eddy viscosity and the pressure transport term in the turbulent kinetic energy equation are analyzed. Based on these analyses, a modified eddy viscosity model with the correct near-wall behavior is suggested, and a model for the pressure transport term in the k-equation is proposed. In addition, a modeled dissipation rate equation is reformulated, and a boundary condition for the dissipation rate is suggested. In the second part of the work, one of the deficiencies of the existing k-epsilon models, namely, the wall distance dependency of the equations and the damping functions, is examined. An improved model that does not depend on any wall distance is introduced. Fully developed turbulent channel flows and turbulent boundary layers over a flat plate are studied as validations for the proposed new models. Numerical results obtained from the present and other previous k-epsilon models are compared with data from direct numerical simulation. The results show that the present k-epsilon model, with added robustness, performs as well as or better than other existing models in predicting the behavior of near-wall turbulence.
NASA Astrophysics Data System (ADS)
Chéry, J.; Genti, M.; Vernant, P.
2016-04-01
More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western Alps. By contrast, no significant horizontal motion has been detected. Two uplift mechanisms have been proposed: (1) the isostatic response to denudation responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting which predicts a broader uplifting region than the one evidenced by geodetic observations. Using a numerical model to fit the geodetic data, we show that a crustal viscosity contrast between the foreland and the central part of the Alps, the latter being weaker with a viscosity of 1021 Pa s, is needed. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the Alps, therefore allowing a weak vertical rheological anomaly over the entire lithosphere.
John M. Frank; William J. Massman; Brent E. Ewers
2013-01-01
Sonic thermometry and anemometry are fundamental to all eddy-covariance studies of surface energy balance. Recent studies have suggested that sonic anemometers with non-orthogonal transducers can underestimate vertical wind velocity (w) and sensible heat flux (H) when compared to orthogonal designs. In this study we tested whether a non-orthogonal sonic anemometer (...
The vertical distribution of tropospheric ammonia
NASA Technical Reports Server (NTRS)
Levine, J. S.; Hoell, J. M.; Augustsson, T. R.
1980-01-01
A one-dimensional tropospheric photochemical model is used to simulate measured profiles of NH3 obtained with the Infrared Heterodyne Radiometer. The relative roles of homogeneous loss, heterogeneous loss, and vertical eddy transport are discussed in terms of selecting parameters which best fit the measurements. The best fit was obtained for a vertical eddy diffusion coefficient of 200,000/sq cm per sec or greater (corresponding to a characteristic vertical transport time in excess of about 35 days), and a characteristic heterogeneous loss time in excess of 10 days. The characteristic homogeneous chemical loss time was found to be about 40 days at the surface and decreased to about 180 days at 10 km, and not very sensitive to model chemical perturbations. Increased ground-level concentrations of NH3 to about 10 ppb, compared to background surface concentrations of about 1 ppb, were measured several weeks after application of ammonium nitrate fertilizer. This suggests that the volatilization of ammonium nitrate fertilizer is rapid, and an important source of NH3. Because of the characteristic times for the loss mechanisms, synoptic time-scale phenomena may play an important role in determining the tropospheric distribution of NH3 concentrations.
Liquid Viscosity and Density Measurement with Flexural-Plate-Wave Sensors
1996-04-01
capillary-viscometer-measured viscosity in Fig. 4. "The data from solutions of poly(ethylene glycol), having average molecular weights 3350 and 15,000...have seen similar results for the FPW-measured viscosity of salmon-sperm DNA solutions. 25 glycerol WA " PEG 3,350 H-4 . e! 2 PEG 15,000 IK- ,,,," HEC...number of aqueous solutions of the polymers poly(ethylene glycol) ( PEG ) and hydroxyethyl cellulose (HEC). The response of the FPW sensor (vertical axis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doubrawa Moreira, Paula; Annoni, Jennifer; Jonkman, Jason
FAST.Farm is a medium-delity wind farm modeling tool that can be used to assess power and loads contributions of wind turbines in a wind farm. The objective of this paper is to undertake a calibration procedure to set the user parameters of FAST.Farm to accurately represent results from large-eddy simulations. The results provide an in- depth analysis of the comparison of FAST.Farm and large-eddy simulations before and after calibration. The comparison of FAST.Farm and large-eddy simulation results are presented with respect to streamwise and radial velocity components as well as wake-meandering statistics (mean and standard deviation) in the lateral andmore » vertical directions under different atmospheric and turbine operating conditions.« less
NASA Astrophysics Data System (ADS)
Lu, J.
2016-02-01
The Kuroshio eddy shedding in Luzon Strait has been intensively studied, due to its important role in the energy budgets of the special gap-passing western boundary current and its potential influence to South China Sea. In this study, the eddy-mean flow interaction is first diagnosed with two classical "stationary" methods. Both show that, in a "time-averaged" sense, baroclinic instability and energy transfer provides the energy source for Kuroshio anticyclonic eddy shedding and the accompanied cyclonic eddy growth in Luzon Strait (this eddy pair will be called AC/C-Es for short). To take into account the "nonstationary and intermittent" nature, the temporal evolutions of energy transfer during a typical Kuroshio eddy shedding process are investigated using the localized multi-scale-window energy and vorticity analysis, or MS-EVA for short. Two stages are roughly distinguished according to the evolutionary nature of this process: the growing stage and the shedding stage. In the growing stage, the energy source straddles both the AC/C-Es, indicating mean flow supplies potential energy to both AC/C-Es for growth; the energy transfer hot spot persistently strengthens and expands horizontally as well as vertically from 200-300m to 100-400m depth range, culminating in a maximum of approximately 1.5×10-7 m2s-3. In the shedding stage, the energy source moves onto the accompanied cyclonic eddy, i.e., the mean flow now supplies energy mainly to the cyclonic eddy, making it strong enough to cut off the anticyclonic eddy from Kuroshio, leading to the Kuroshio eddy shedding.
NASA Technical Reports Server (NTRS)
Zeman, Otto
1994-01-01
This work investigates the turbulent constitutive relation when turbulence is subjected to solid body rotation. Laws regarding spectra and asymptotic decay of rotating homogeneous turbulence were confirmed through large-eddy simulation (LES) computations. Rotating turbulent flows exist in many industrial, geophysical, and astrophysical applications. From Lagrangian analysis a relation between turbulent stress and strain in rotating homogeneous turbulence was inferred. This relation was used to derive the spectral energy flux and, ultimately, the energy spectrum form. If the rotation wavenumber k(sub Omega) lies in the inertial subrange, then for wavenumbers less than k(sub Omega) the turbulence motions are affected by rotation and the energy spectrum slope is modified. Energy decay laws inferred in other reports and the present results suggest a modification of the epsilon model equation and eddy viscosity in k-epsilon models.
Eddy-Covariance Observations and Large-Eddy-Simulations of Near-Shore Fluxes from Water Bodies
NASA Astrophysics Data System (ADS)
Bohrer, G.; Rey Sanchez, C.; Kenny, W.; Morin, T. H.
2017-12-01
Eddy covariance (EC) measurement techniques are increasingly used in the study of lakes and coastal ecosystems. The sharp water-shore transitions in energy forcing and surface roughness are challenging the validity of the EC approach at these sites. We discuss the results of two seasonal campaigns to measure CO2 and water-vapor fluxes in coastal environments - a small lake in Michigan, and the water over a coral reef in the Red, Sea, Israel. We show that in both environments, horizontal advection of CO2 and water vapor is responsible to a non-negligible component of the total flux to/from the water. We used a two-tower approach to measure fluxes from the water and from the shore and calculate the advection and flux divergence between the two. An empirical footprint model was used to filter the observations and keep only the times when interference from the shore-line transition is minimal. Observations of both vertical turbulent fluxes and advection were gapfilled with a neural-network model, based on their observed relationships with environmental forcing. Gap-filled observations were used to determine the seasonal net fluxes for the tow ecosystems. We used Large-Eddy Simulations (LES) to conduct a case study of airflow patterns associated with a small inland lake surrounded by forest (i.e. radius of lake only ten times the height of the forest). We combined LES outputs with scalar dispersion simulations to model potential biases in EC flux measurements due to the heterogeneity of surface fluxes and vertical advection. Our simulations show that the lake-to-forest transition can induce a non-zero vertical wind component, which will strongly affect the interpretation of wind and flux measurements. Furthermore, significant horizontal gradients of CO2 are generated by the forest carbon sink and lake carbon source, which are further transported by local roughness-induced circulation. We simulated six hypothetical flux tower locations along a downwind gradient at various heights and calculated the effects of both average vertical advection and average turbulent flux divergence of CO2 at each.
Shock wave-droplet interaction
NASA Astrophysics Data System (ADS)
Habibi Khoshmehr, Hamed; Krechetnikov, Rouslan
2016-11-01
Disintegration of a liquid droplet under the action of a shock wave is experimentally investigated. The shock wave-pulse is electromagnetically generated by discharging a high voltage capacitor into a flat spiral coil, above which an isolated circular metal membrane is placed in a close proximity. The Lorentz force arising due to the eddy current induced in the membrane abruptly accelerates it away from the spiral coil thus generating a shock wave. The liquid droplet placed at the center of the membrane, where the maximum deflection occurs, is disintegrated in the process of interaction with the shock wave. The effects of droplet viscosity and surface tension on the droplet destruction are studied with high-speed photography. Water-glycerol solution at different concentrations is used for investigating the effect of viscosity and various concentrations of water-sugar and water-ethanol solution are used for studying the effect of surface tension. Here we report on how the metamorphoses, which a liquid drop undergoes in the process of interaction with a shock wave, are affected by varied viscosity and surface tension.
Retrieval of Urban Boundary Layer Structures from Doppler Lidar Data. Part I: Accuracy Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Quanxin; Lin, Ching Long; Calhoun, Ron
2008-01-01
Two coherent Doppler lidars from the US Army Research Laboratory (ARL) and Arizona State University (ASU) were deployed in the Joint Urban 2003 atmospheric dispersion field experiment (JU2003) held in Oklahoma City. The dual lidar data are used to evaluate the accuracy of the four-dimensional variational data assimilation (4DVAR) method and identify the coherent flow structures in the urban boundary layer. The objectives of the study are three-fold. The first objective is to examine the effect of eddy viscosity models on the quality of retrieved velocity data. The second objective is to determine the fidelity of single-lidar 4DVAR and evaluatemore » the difference between single- and dual-lidar retrievals. The third objective is to correlate the retrieved flow structures with the ground building data. It is found that the approach of treating eddy viscosity as part of control variables yields better results than the approach of prescribing viscosity. The ARL single-lidar 4DVAR is able to retrieve radial velocity fields with an accuracy of 98% in the along-beam direction and 80-90% in the cross-beam direction. For the dual-lidar 4DVAR, the accuracy of retrieved radial velocity in the ARL cross-beam direction improves to 90-94%. By using the dual-lidar retrieved data as a reference, the single-lidar 4DVAR is able to recover fluctuating velocity fields with 70-80% accuracy in the along-beam direction and 60-70% accuracy in the cross-beam direction. Large-scale convective roll structures are found in the vicinity of downtown airpark and parks. Vortical structures are identified near the business district. Strong updrafts and downdrafts are also found above a cluster of restaurants.« less
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
NASA Technical Reports Server (NTRS)
Spalart, Philippe R.; Rumsey, Christopher L.
2007-01-01
The selection of inflow values at boundaries far upstream of an aircraft is considered, for one- and two-equation turbulence models. Inflow values are distinguished from the ambient values near the aircraft, which may be much smaller. Ambient values should be selected first, and inflow values that will lead to them after the decay second; this is not always possible, especially for the time scale. The two-equation decay during the approach to the aircraft is shown; often, the time scale has been set too short for this decay to be calculated accurately on typical grids. A simple remedy for both issues is to impose floor values for the turbulence variables, outside the viscous sublayer, and it is argued that overriding the equations in this manner is physically justified. Selecting laminar ambient values is easy, if the boundary layers are to be tripped, but a more common practice is to seek ambient values that will cause immediate transition in boundary layers. This opens up a wide range of values, and selection criteria are discussed. The turbulent Reynolds number, or ratio of eddy viscosity to laminar viscosity has a huge dynamic range that makes it unwieldy; it has been widely mis-used, particularly by codes that set upper limits on it. The value of turbulent kinetic energy in a wind tunnel or the atmosphere is also of dubious value as an input to the model. Concretely, the ambient eddy viscosity must be small enough to preserve potential cores in small geometry features, such as flap gaps. The ambient frequency scale should also be small enough, compared with shear rates in the boundary layer. Specific values are recommended and demonstrated for airfoil flows
Accretion of Jupiter-mass planets in the limit of vanishing viscosity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szulágyi, J.; Morbidelli, A.; Crida, A.
In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate.more » Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼10{sup 4} yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.« less
The role of latent heat in kinetic energy conversions of South Pacific cyclones
NASA Technical Reports Server (NTRS)
Kann, Deirdre M.; Vincent, Dayton G.
1986-01-01
The four-dimensional behavior of cyclone systems in the South Pacific Convergence Zone (SPCZ) is analyzed. Three cyclone systems, which occurred during the period from January 10-16, 1979, are examined using the data collected during the first special observing period of the FGGE. The effects of latent heating on the life cycles of the cyclones are investigated. Particular attention is given to the conversions of eddy available potential energy to eddy kinetic energy and of mean kinetic energy to eddy kinetic energy. The net radiation profile, sensible heat flux, total field of vertical motion, and latent heat component were computed. The life cycles of the cyclones are described. It is observed that the latent heating component accounts for nearly all the conversion in the three cyclones, and latent heating within the SPCZ is the major source of eddy kinetic energy for the cyclones.
NASA Astrophysics Data System (ADS)
Medel, Carolina; Parada, Carolina; Morales, Carmen E.; Pizarro, Oscar; Ernst, Billy; Conejero, Carlos
2018-03-01
The Juan Fernández Ridge (JFR) is a chain of topographical elevations in the eastern South Pacific (∼33-35°S, 76-81.5°W). Rich in endemic marine species, this ridge is frequently affected by the arrival of mesoscale eddies originating in the coastal upwelling zone off central-southern Chile. The impacts of these interactions on the structure and dynamics of the JFR pelagic system have, however, not been addressed yet. The present model-based study is focused on the coupled influence of mesoscale-submesoscale processes and biological behavior (i.e., diel vertical migration) on the horizontal distribution of planktonic larvae of the spiny lobster (Jasus frontalis) around the JFR waters. Two case studies were selected from a hydrodynamic Regional Ocean Modeling System to characterize mesoscale and submesoscale structures and an Individual-based model (IBM) to simulate diel vertical migration (DVM) and its impact on the horizontal distribution and the patchiness level. DVM behavior of these larvae has not been clearly characterized, therefore, three types of vertical mechanisms were assessed on the IBM: (1) no migration (LG), (2) a short migration (0-50 m depth, DVM1), and (3) a long migration (10-200 m depth, DVM2). The influence of physical properties (eddy kinetic energy, stretching deformation and divergence) on larval aggregation within meso and submesoscale features was quantified. The patchiness index assessed for mesoscale and submesoscale structures showed higher values in the mesoscale than in the submesoscale. However, submesoscale structures revealed a higher accumulation of particles by unit of area. Both vertical migration mechanisms produced larger patchiness indices compared to the no migration experiment. DVM2 was the one that showed by far the largest aggregation of almost all the aggregation zones. Larval concentrations were highest in the submesoscale structures; these zones were characterized by low eddy kinetic energy, negative stretching deformation, and slight convergence. Stretching deformation flow appeared to be triggered by the eddy-eddy interactions and the Robinson Island barrier effect, and it likely promotes the aggregation of the spiny lobster larvae in the Juan Fernández system. These results highlighted the importance of the coupled effect of physical (mesoscale and submesoscale oceanographic features) and biological processes (DVM) in the generation of larval patchiness and concentration of spiny lobster larvae around the JFR, which could be key for their survival and retention in those waters.
Film cooling from inclined cylindrical holes using large eddy simulations
NASA Astrophysics Data System (ADS)
Peet, Yulia V.
2006-12-01
The goal of the present study is to investigate numerically the physics of the flow, which occurs during the film cooling from inclined cylindrical holes, Film cooling is a technique used in gas turbine industry to reduce heat fluxes to the turbine blade surface. Large Eddy Simulation (LES) is performed modeling a realistic film cooling configuration, which consists of a large stagnation-type reservoir, feeding an array of discrete cooling holes (film holes) flowing into a flat plate turbulent boundary layer. Special computational methodology is developed for this problem, involving coupled simulations using multiple computational codes. A fully compressible LES code is used in the area above the flat plate, while a low Mach number LES code is employed in the plenum and film holes. The motivation for using different codes comes from the essential difference in the nature of the flow in these different regions. Flowfield is analyzed inside the plenum, film hole and a crossflow region. Flow inside the plenum is stagnating, except for the region close to the exit, where it accelerates rapidly to turn into the hole. The sharp radius of turning at the trailing edge of the plenum pipe connection causes the flow to separate from the downstream wall of the film hole. After coolant injection occurs, a complex flowfield is formed consisting of coherent vortical structures responsible for bringing hot crossflow fluid in contact with the walls of either the film hole or the blade, thus reducing cooling protection. Mean velocity and turbulent statistics are compared to experimental measurements, yielding good agreement for the mean flowfield and satisfactory agreement for the turbulence quantities. LES results are used to assess the applicability of basic assumptions of conventional eddy viscosity turbulence models used with Reynolds-averaged (RANS) approach, namely the isotropy of an eddy viscosity and thermal diffusivity. It is shown here that these assumptions do not hold for the film cooling flows. Comparison of film cooling effectiveness with experiments shows fair agreement for the centerline and laterally-averaged effectiveness. Lateral growth of the jet as judged from the lateral distribution of effectiveness is predicted correctly.
NASA Technical Reports Server (NTRS)
Haroutunian, Vahe
1995-01-01
This viewgraph presentation provides a brief review of two-equation eddy-viscosity models (TEM's) from the perspective of applied CFD. It provides objective assessment of both well-known and newer models, compares model predictions from various TEM's with experiments, identifies sources of modeling error and gives historical perspective of their effects on model performance and assessment, and recommends directions for future research on TEM's.
Calculation of Suspended Sediment Transport by Combined Wave-Current Flows.
1994-11-01
Anderson, and Silberg (1985) presented a model that had an eddy viscosity and boundary layer thickness that varied in time. The reference concentration was...sediment model. This model, along with that of Fredsoe, Anderson, and Silberg (1985), are the only two models that account for both the sediment and the...ignores any correlation between the periodic components of the velocity and the concentration. Even in the model of Fredsoe, Anderson, and Silberg (1985
Application of a new K-tau model to near wall turbulent flows
NASA Technical Reports Server (NTRS)
Thangam, S.; Abid, R.; Speziale, Charles G.
1991-01-01
A recently developed K-tau model for near wall turbulent flows is applied to two severe test cases. The turbulent flows considered include the incompressible flat plate boundary layer with the adverse pressure gradients and incompressible flow past a backward facing step. Calculations are performed for this two-equation model using an anisotropic as well as isotropic eddy-viscosity. The model predictions are shown to compare quite favorably with experimental data.
Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures
NASA Astrophysics Data System (ADS)
Emory, Michael; Larsson, Johan; Iaccarino, Gianluca
2013-11-01
Estimation of the uncertainty in numerical predictions by Reynolds-averaged Navier-Stokes closures is a vital step in building confidence in such predictions. An approach to model-form uncertainty quantification that does not assume the eddy-viscosity hypothesis to be exact is proposed. The methodology for estimation of uncertainty is demonstrated for plane channel flow, for a duct with secondary flows, and for the shock/boundary-layer interaction over a transonic bump.
Hybrid LES of Detonations in Reacting Multi-Phase Mixtures
2009-02-28
Distortion Theories and Linear Interaction Analyses in order to gain insight in the fundamental processes of compressible turbulence. This analytical...equilibrium. More insight into the development of supersonic mixing layers has been gained later from analytical results, Rapid Distortion Theory ...given by esgs s!t = 0.931i—=•—. Spectral closure theories (Kraichnan [1976]) can be used to evaluate the eddy viscosity formulation as ut = 0.441a -3/2
NASA Astrophysics Data System (ADS)
Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey
2017-11-01
In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.
Subgrid-scale models for large-eddy simulation of rotating turbulent flows
NASA Astrophysics Data System (ADS)
Silvis, Maurits; Trias, Xavier; Abkar, Mahdi; Bae, Hyunji Jane; Lozano-Duran, Adrian; Verstappen, Roel
2016-11-01
This paper discusses subgrid models for large-eddy simulation of anisotropic flows using anisotropic grids. In particular, we are looking into ways to model not only the subgrid dissipation, but also transport processes, since these are expected to play an important role in rotating turbulent flows. We therefore consider subgrid-scale models of the form τ = - 2νt S +μt (SΩ - ΩS) , where the eddy-viscosity νt is given by the minimum-dissipation model, μt represents a transport coefficient; S is the symmetric part of the velocity gradient and Ω the skew-symmetric part. To incorporate the effect of mesh anisotropy the filter length is taken in such a way that it minimizes the difference between the turbulent stress in physical and computational space, where the physical space is covered by an anisotropic mesh and the computational space is isotropic. The resulting model is successfully tested for rotating homogeneous isotropic turbulence and rotating plane-channel flows. The research was largely carried out during the CTR SP 2016. M.S, and R.V. acknowledge the financial support to attend this Summer Program.
Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, H.; Lin, P.
2017-12-01
The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.
A Baroclinic Eddy Mixer: Supercritical Transformation of Compensated Eddies
NASA Astrophysics Data System (ADS)
Sutyrin, G.
2016-02-01
In contrast to many real-ocean rings and eddies, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean eddies revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic eddies become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic eddies tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.
Modeling the Wake of the Marquesas Archipelago
NASA Astrophysics Data System (ADS)
Raapoto, H.; Martinez, E.; Petrenko, A.; Doglioli, A. M.; Maes, C.
2018-02-01
In this study, a high-resolution (˜2.5 km) numerical model was set up to investigate the fine-scale activity within the region of the Marquesas archipelago. This has never been performed before. The robustness of the model results is assessed by comparison with remote sensing and in situ observations. Our results highlight regions of warm waters leeward of the different islands with high eddy kinetic energy (EKE) on their sides. The analysis of energy conversion terms reveals contributions to EKE variability by wind, baroclinic, and barotropic instabilities. The use of a geometry-based eddy detection algorithm reveals the generation of cyclonic and anticyclonic eddies in the wake of the largest islands, with both an inshore and offshore effect. Maximum eddy activity occurs in austral winter following the seasonality of both wind stress and EKE intensity. Most eddies have a radius between 20 and 30 km and are generally cyclonic rather than anticyclonic. Significant vertical velocities are observed in the proximity of the islands, associated with topographically induced flow separation. Eddy trapping inshore waters are advected offshore in the wake of the islands. The overall influence of these fine-scale dynamics could explain the strong biological enhancement of the archipelago.
Modelling the Wake of the Marquesas Archipelago
NASA Astrophysics Data System (ADS)
Raapoto, H.; Martinez, E. C.; Petrenko, A. A.; Doglioli, A. M.; Maes, C.
2017-12-01
In this study, a high-resolution ( 2.5 km) numerical model was set up to investigate the fine-scale activity within the region of the Marquesas archipelago where a strong biological enhancement occurs. This has never been performed before. The robustness of the model results is assessed by comparison with remote sensing and in situ observations. Our results highlight regions of warm waters leeward of the different islands with high eddy kinetic energy (EKE) on their sides. The analysis of energy conversion terms reveals contributions to EKE variability by wind, baroclinic and barotropic instabilities. The use of a geometry-based eddy detection algorithm reveals eddy generation in the wake of the largest islands, with both an inshore and offshore effect. Maximum eddy activity occurs in austral winter following the seasonality of both wind stress and EKE intensity. Most eddies have a radius between 20 and 30 km and are generally cyclonic rather than anticyclonic. Significant vertical velocities are observed in the proximity of the islands, associated with topography induced flow separation. Eddy trapping inshore waters are advected offshore in the wake of the islands. The overall influence of these fine-scale dynamics could explain the strong biological enhancement of the archipelago.
NASA Astrophysics Data System (ADS)
Gibson, Angus H.; Hogg, Andrew McC.; Kiss, Andrew E.; Shakespeare, Callum J.; Adcroft, Alistair
2017-11-01
We examine the separate contributions to spurious mixing from horizontal and vertical processes in an ALE ocean model, MOM6, using reference potential energy (RPE). The RPE is a global diagnostic which changes only due to mixing between density classes. We extend this diagnostic to a sub-timestep timescale in order to individually separate contributions to spurious mixing through horizontal (tracer advection) and vertical (regridding/remapping) processes within the model. We both evaluate the overall spurious mixing in MOM6 against previously published output from other models (MOM5, MITGCM and MPAS-O), and investigate impacts on the components of spurious mixing in MOM6 across a suite of test cases: a lock exchange, internal wave propagation, and a baroclinically-unstable eddying channel. The split RPE diagnostic demonstrates that the spurious mixing in a lock exchange test case is dominated by horizontal tracer advection, due to the spatial variability in the velocity field. In contrast, the vertical component of spurious mixing dominates in an internal waves test case. MOM6 performs well in this test case owing to its quasi-Lagrangian implementation of ALE. Finally, the effects of model resolution are examined in a baroclinic eddies test case. In particular, the vertical component of spurious mixing dominates as horizontal resolution increases, an important consideration as global models evolve towards higher horizontal resolutions.
NASA Astrophysics Data System (ADS)
Vaillancourt, Robert D.; Marra, John; Seki, Michael P.; Parsons, Michael L.; Bidigare, Robert R.
2003-07-01
A synoptic spatial examination of the eddy Haulani (17-20 November 2000) revealed a structure typical of Hawaiian cyclonic eddies with divergent surface flow forcing the upward displacement of deep waters. Hydrographic surveys revealed that surface water in the eddy center was ca. 3.5°C cooler, 0.5 saltier, and 1.4 kg m -3 denser than surface waters outside the eddy. Vertically integrated concentrations of nitrate+nitrite, phosphate and silicate were enhanced over out-eddy values by about 2-fold, and nitrate+nitrite concentrations were ca. 8× greater within the euphotic zone inside the eddy than outside. Si:N ratios were lower within the upper mixed layer of the eddy, indicating an enhanced Si uptake relative to nitrate+nitrite. Chlorophyll a concentrations were higher within the eddy compared to control stations outside, when integrated over the upper 150 m, but were not significantly different when integrated over the depth of the euphotic zone. Photosynthetic competency, assessed using fast repetition-rate fluorometry, varied with the doming of the isopycnals and the supply of macro-nutrients to the euphotic zone. The physical and chemical environment of the eddy selected for the accumulation of larger phytoplankton species. Photosynthetic bacteria ( Prochlorococcus and Synechococcus) and small (<3 μm diameter) photosynthetic eukaryotes were 3.6-fold more numerically abundant outside the eddy as compared to inside. Large photosynthetic eukaryotes (>3 μm diameter) were more abundant inside the eddy than outside. Diatoms of the genera Rhizosolenia and Hemiaulus outside the eddy contained diazotrophic endosymbiontic cyanobacteria, but these endosymbionts were absent from the cells of these species inside the eddy. The increase in cell numbers of large photosynthetic eukaryotes with hard silica or calcite cell walls is likely to have a profound impact on the proportion of the organic carbon production that is exported to deep water by sinking of senescent cells and cells grazed by herbivorous zooplankton and repackaged as large fecal pellets.
Paoli, Roberto; Thouron, Odile; Cariolle, Daniel; ...
2017-12-08
Here, this article presents the results from numerical experiments of the early phase of contrail-cirrus formation using a limited set of fully three-dimensional, high-resolution large-eddy-simulations. The focus is laid on the interplay between atmospheric turbulence and the radiative transfer (and to a limited extent the ambient ice relative humidity), and how this interaction affects the contrail evolution and the characteristics of the resulting contrail-cirrus one hour after emission. Turbulence is sustained via a large-scale stochastic forcing that creates a non-uniform shear in addition to pure turbulent fluctuations. This effect manifests in the formation of vertically sheared structures of ice crystals.more » When radiative transfer is activated, ice tends to redistribute more uniformly along the vertical direction forming spotty vertical structures. For the conditions analyzed in this study, atmospheric turbulence, inclusive of non-uniform turbulent shear and turbulent fluctuations, affects primarily the contrail width whereas the microphysical properties such ice water path and ice mass are controlled by radiative transfer and relative humidity.« less
Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence
NASA Astrophysics Data System (ADS)
Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire
2017-11-01
The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.
Lu, Chunsong; Liu, Yangang; Zhang, Guang J.; ...
2016-02-01
This work examines the relationships of entrainment rate to vertical velocity, buoyancy, and turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine AAF [Atmospheric Radiation Measurement (ARM) Aerial Facility] Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large eddy simulation (LES) model are also examined with the same approach. The analysis shows that a combination of multiple variables can better represent entrainment ratemore » in both the observations and LES than any single-variable fitting. Three commonly used parameterizations are also tested on the individual cloud scale. A new parameterization is therefore presented that relates entrainment rate to vertical velocity, buoyancy and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy and dissipation rate are also explored.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paoli, Roberto; Thouron, Odile; Cariolle, Daniel
Here, this article presents the results from numerical experiments of the early phase of contrail-cirrus formation using a limited set of fully three-dimensional, high-resolution large-eddy-simulations. The focus is laid on the interplay between atmospheric turbulence and the radiative transfer (and to a limited extent the ambient ice relative humidity), and how this interaction affects the contrail evolution and the characteristics of the resulting contrail-cirrus one hour after emission. Turbulence is sustained via a large-scale stochastic forcing that creates a non-uniform shear in addition to pure turbulent fluctuations. This effect manifests in the formation of vertically sheared structures of ice crystals.more » When radiative transfer is activated, ice tends to redistribute more uniformly along the vertical direction forming spotty vertical structures. For the conditions analyzed in this study, atmospheric turbulence, inclusive of non-uniform turbulent shear and turbulent fluctuations, affects primarily the contrail width whereas the microphysical properties such ice water path and ice mass are controlled by radiative transfer and relative humidity.« less
Optimization-Based Calibration of FAST.Farm Parameters Against SOWFA: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, Paula D; Annoni, Jennifer; Jonkman, Jason
2018-01-04
FAST.Farm is a medium-delity wind farm modeling tool that can be used to assess power and loads contributions of wind turbines in a wind farm. The objective of this paper is to undertake a calibration procedure to set the user parameters of FAST.Farm to accurately represent results from large-eddy simulations. The results provide an in- depth analysis of the comparison of FAST.Farm and large-eddy simulations before and after calibration. The comparison of FAST.Farm and large-eddy simulation results are presented with respect to streamwise and radial velocity components as well as wake-meandering statistics (mean and standard deviation) in the lateral andmore » vertical directions under different atmospheric and turbine operating conditions.« less
Estimation of Eddy Dissipation Rates from Mesoscale Model Simulations
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Proctor, Fred H.
2012-01-01
The Eddy Dissipation Rate is an important metric for representing the intensity of atmospheric turbulence and is used as an input parameter for predicting the decay of aircraft wake vortices. In this study, the forecasts of eddy dissipation rates obtained from the current state-of-the-art mesoscale model are evaluated for terminal area applications. The Weather Research and Forecast mesoscale model is used to simulate the planetary boundary layer at high horizontal and vertical mesh resolutions. The Bougeault-Lacarrer and the Mellor-Yamada-Janji schemes implemented in the Weather Research and Forecast model are evaluated against data collected during the National Aeronautics and Space Administration s Memphis Wake Vortex Field Experiment. Comparisons with other observations are included as well.
Turbulent mixing within the Kuroshio in the Tokara Strait
NASA Astrophysics Data System (ADS)
Tsutsumi, Eisuke; Matsuno, Takeshi; Lien, Ren-Chieh; Nakamura, Hirohiko; Senjyu, Tomoharu; Guo, Xinyu
2017-09-01
Turbulent mixing and background current were observed using a microstructure profiler and acoustic Doppler current profilers in the Tokara Strait, where many seamounts and small islands exist within the route of the Kuroshio in the East China Sea. Vertical structure and water properties of the Kuroshio were greatly modified downstream from shallow seamounts. In the lee of a seamount crest at 200 m depth, the modification made the flow tend to shear instability, and the vertical eddy diffusivity is enhanced by nearly 100 times that of the upstream site, to Kρ ˜ O(10-3)-O(10-2) m2 s-1. A one-dimensional diffusion model using the observed eddy diffusivity reproduced the observed downstream evolution of the temperature-salinity profile. However, the estimated diffusion time-scale is at least 10 times longer than the observed advection time-scale. This suggests that the eddy diffusivity reaches to O(10-1) m2 s-1 in the vicinity of the seamount. At a site away from the abrupt topography, eddy diffusivity was also elevated to O(10-3) m2 s-1, and was associated with shear instability presumably induced by the Kuroshio shear and near-inertial internal-wave shear. Our study suggests that a better prediction of current, water-mass properties, and nutrients within the Kuroshio requires accurate understanding and parameterization of flow-topography interaction such as internal hydraulics, the associated internal-wave processes, and turbulent mixing processes.
Copepod behavior response to Burgers' vortex treatments mimicking turbulent eddies
NASA Astrophysics Data System (ADS)
Elmi, D.; Webster, D. R.; Fields, D. M.
2017-11-01
Copepods detect hydrodynamic cues in the water by their mechanosensory setae. We expect that copepods sense the flow structure of turbulent eddies in order to evoke behavioral responses that lead to population-scale distribution patterns. In this study, the copepods' response to the Burgers' vortex is examined. The Burgers' vortex is a steady-state solution of three-dimensional Navier-Stokes equations that allows us to mimic turbulent vortices at the appropriate scale and eliminate the stochastic nature of turbulence. We generate vortices in the laboratory oriented in the horizontal and vertical directions each with four intensity levels. The objective of including vortex orientation as a parameter in the study is to quantify directional responses that lead to vertical population distribution patterns. The four intensity levels correspond to target vortex characteristics of eddies corresponding to the typical dissipative vortices in isotropic turbulence with mean turbulent dissipation rates in the range of 0.002 to 0.25 cm2/s3. These vortices mimic the characteristics of eddies that copepods most likely encounter in coastal zones. We hypothesize that the response of copepods to hydrodynamic features depends on their sensory architecture and relative orientation with respect to gravity. Tomo-PIV is used to quantify the vortex circulation and axial strain rate for each vortex treatment. Three-dimensional trajectories of the copepod species Calanus finmarchicus are analyzed to examine their swimming kinematics in and around the vortex to quantify the hydrodynamic cues that trigger their behavior.
Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder
NASA Technical Reports Server (NTRS)
Baurle, R. A.
2016-01-01
Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.
The Weddell-Scotia Confluence in midwinter
NASA Astrophysics Data System (ADS)
Muench, Robin D.; Gunn, John T.; Husby, David M.
1990-10-01
The southern central Scotia Sea, site of the Weddell-Scotia Confluence where outflowing Weddell Sea waters converge with the eastward flowing waters of the Scotia Sea, was sampled during June-August (austral winter) 1988 with respect to temperature and salinity. Both drogued and ice-mounted drifters, tracked by Argos, were deployed in the region and yielded Lagrangian drift tracks of ice and water motion. The data substantiate past accounts of the region, based upon summer field research, as dominated by eastward flow upon which a complex array of mesoscale features is superimposed. Weddell-Scotia Confluence Water, documented by past summer work in the region and characterized by decreased static stability, was not detected, and the Scotia Front was not well defined. The region was one of intense mixing activity and primarily anticyclonic mesoscale features. Two such features, one an eddy and the other either an eddy or a meander in the Scotia Front, dominated the mesoscale field. With warm cores and containing Polar Front Water, they may have been advected eastward from Drake Passage or may have formed as detached eddies from a sharp northward bend in the Polar Front which typically lies just west of the study region. Several smaller eddies, primarily anticyclonic and some having warm cores, were also detected. There was no evidence of the deep convective mixing which has been hypothesized, on the basis of past summer data, to occur in winter, and vigorous vertical mixing was limited to a 100-m-thick upper mixed layer. Vertical stability in the upper layers was enhanced by low-salinity water derived from melting ice. Temperature-salinity analyses show that winter water in the study region can be derived through isopycnal mixing between waters from the Scotia Sea and waters from the northwestern Weddell Sea. This is in apparent contrast with summer conditions, wherein conditioning of water either through vertical mixing or via lateral mixing on continental margins has been invoked to arrive at the water mass characteristics which typify the Weddell-Scotia Confluence.
Assessing the role of slab rheology in coupled plate-mantle convection models
NASA Astrophysics Data System (ADS)
Bello, Léa; Coltice, Nicolas; Tackley, Paul J.; Dietmar Müller, R.; Cannon, John
2015-11-01
Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 yr. Although numerical models and computational capabilities have substantially progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of lithosphere deformation. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) and the importance of pseudo-plasticity on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. Pseudo-plasticity, which produces plate-like behavior in convection models, allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity alone. Using test case models, we show that increasing temperature dependence of viscosity enhances vertical and lateral coherence of slabs, but leads to unrealistic slab morphologies for large viscosity contrasts. Introducing pseudo-plasticity partially solves this issue, producing thin laterally and vertically more continuous slabs, and flat subduction where trench retreat is fast. We evaluate the differences between convection reconstructions employing different viscosity laws to be very large, and similar to the differences between two models with the same rheology but using two different plate histories or initial conditions.
NASA Astrophysics Data System (ADS)
Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li
2017-09-01
Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.
Anatomy of a subtropical intrathermocline eddy
NASA Astrophysics Data System (ADS)
Barceló-Llull, Bàrbara; Sangrà, Pablo; Pallàs-Sanz, Enric; Barton, Eric D.; Estrada-Allis, Sheila N.; Martínez-Marrero, Antonio; Aguiar-González, Borja; Grisolía, Diana; Gordo, Carmen; Rodríguez-Santana, Ángel; Marrero-Díaz, Ángeles; Arístegui, Javier
2017-06-01
An interdisciplinary survey of a subtropical intrathermocline eddy was conducted within the Canary Eddy Corridor in September 2014. The anatomy of the eddy is investigated using near submesoscale fine resolution two-dimensional data and coarser resolution three-dimensional data. The eddy was four months old, with a vertical extension of 500 m and 46 km radius. It may be viewed as a propagating negative anomaly of potential vorticity (PV), 95% below ambient PV. We observed two cores of low PV, one in the upper layers centered at 85 m, and another broader anomaly located between 175 m and the maximum sampled depth in the three-dimensional dataset (325 m). The upper core was where the maximum absolute values of normalized relative vorticity (or Rossby number), |Ro| =0.6, and azimuthal velocity, U=0.5 m s-1, were reached and was defined as the eddy dynamical core. The typical biconvex isopleth shape for intrathermocline eddies induces a decrease of static stability, which causes the low PV of the upper core. The deeper low PV core was related to the occurrence of a pycnostad layer of subtropical mode water that was embedded within the eddy. The eddy core, of 30 km radius, was in near solid body rotation with period of 4 days. It was encircled by a thin outer ring that was rotating more slowly. The kinetic energy (KE) content exceeded that of available potential energy (APE), KE/APE=1.58; this was associated with a low aspect ratio and a relatively intense rate of spin as indicated by the relatively high value of Ro. Inferred available heat and salt content anomalies were AHA=2.9×1018 J and ASA=14.3×1010 kg, respectively. The eddy AHA and ASA contents per unit volume largely exceed those corresponding to Pacific Ocean intrathermocline eddies. This suggests that intrathermocline eddies may play a significant role in the zonal conduit of heat and salt along the Canary Eddy Corridor.
Remedying excessive numerical diapycnal mixing in a global 0.25° NEMO configuration
NASA Astrophysics Data System (ADS)
Megann, Alex; Nurser, George; Storkey, Dave
2016-04-01
If numerical ocean models are to simulate faithfully the upwelling branches of the global overturning circulation, they need to have a good representation of the diapycnal mixing processes which contribute to conversion of the bottom and deep waters produced in high latitudes into less dense watermasses. It is known that the default class of depth-coordinate ocean models such as NEMO and MOM5, as used in many state-of-the art coupled climate models and Earth System Models, have excessive numerical diapycnal mixing, resulting from irreversible advection across coordinate surfaces. The GO5.0 configuration of the NEMO ocean model, on an "eddy-permitting" 0.25° global grid, is used in the current UK GC1 and GC2 coupled models. Megann and Nurser (2016) have shown, using the isopycnal watermass analysis of Lee et al (2002), that spurious numerical mixing is substantially larger than the explicit mixing prescribed by the mixing scheme used by the model. It will be shown that increasing the biharmonic viscosity by a factor of three tends to suppress small-scale noise in the vertical velocity in the model. This significantly reduces the numerical mixing in GO5.0, and we shall show that it also leads to large-scale improvements in model biases.
Global ocean tide mapping using TOPEX/Poseidon altimetry
NASA Technical Reports Server (NTRS)
Sanchez, Braulio V.; Cartwright, D. E.; Estes, R. H.; Williamson, R. G.; Colombo, O. L.
1991-01-01
The investigation's main goals are to produce accurate tidal maps of the main diurnal, semidiurnal, and long-period tidal components in the world's deep oceans. This will be done by the application of statistical estimation techniques to long time series of altimeter data provided by the TOPEX/POSEIDON mission, with additional information provided by satellite tracking data. In the prelaunch phase, we will use in our simulations and preliminary work data supplied by previous oceanographic missions, such as Seasat and Geosat. These results will be of scientific interest in themselves. The investigation will also be concerned with the estimation of new values, and their uncertainties, for tidal currents and for the physical parameters appearing in the Laplace tidal equations, such as bottom friction coefficients and eddy viscosity coefficients. This will be done by incorporating the altimetry-derived charts of vertical tides as boundary conditions in the integration of those equations. The methodology of the tidal representation will include the use of appropriate series expansions such as ocean-basin normal modes and spherical harmonics. The results of the investigation will be space-determined tidal models of coverage and accuracy superior to that of the present numerical models of the ocean tides, with the concomitant benefits to oceanography and associated disciplinary fields.
NASA Astrophysics Data System (ADS)
Dandapat, S.; Chakraborty, A.
2016-12-01
A comprehensive study on the statistics and variability of mesoscale eddies in the North Indian Ocean (NIO) are investigated using satellite altimetry data for the period of 1993-2014. A hybrid algorithm based on the physical and geometrical properties of mesoscale eddies is applied to detect the eddies and track their propagation. The potential eddies with radius larger than 50 km and lifespan longer than 30 days are considered for the analysis. The NIO consists of two unique tropical basins with the high number of eddy generations and activity: the Arabian Sea (AS) and the Bay of Bengal (BOB). It is noticed that the occurrence of cyclonic eddies (CEs) are found to be significant in AS, while the anticyclonic eddies (ACEs) dominate the BOB. In both the oceans eddies mostly propagate westward. The AS eddies showed the higher mean values, propagation speed, mean radius, mean lifetime than BOB eddies. In the AS, it is found that eddies formed on the western side of the basin persist longer and move towards north where as the number of eddies in the eastern coast of the basin is fewer and short lived. In the BOB, two highly eddy productive zones are identified: offshore of Visakhapatnam and the northern part of western BOB. The occurrence of ACEs dominate the offshore of Visakhapatnam, whereas the CEs in the northern part of western BOB. The ACEs are larger but the CEs have longer lifetime and are more energetic in the BOB. Along with the statistical properties, we also examined the eddy temporal variability in seasonal scale and their structural properties from ARGO data in the NIO. The seasonal variations are found to be significant in AS and BOB and in both the oceans significant correlation has been found between the eddy genesis and local wind stress curl. The strong positive wind stress curl during summer favors the formation of more CEs. In general, both ACEs and CEs in the NIO have single-core vertical structure with the core at a depth of about 100-200 dbar.
A LES-Langevin model for turbulence
NASA Astrophysics Data System (ADS)
Dolganov, Rostislav; Dubrulle, Bérengère; Laval, Jean-Philippe
2006-11-01
The rationale for Large Eddy Simulation is rooted in our inability to handle all degrees of freedom (N˜10^16 for Re˜10^7). ``Deterministic'' models based on eddy-viscosity seek to reproduce the intensification of the energy transport. However, they fail to reproduce backward energy transfer (backscatter) from small to large scale, which is an essentiel feature of the turbulence near wall or in boundary layer. To capture this backscatter, ``stochastic'' strategies have been developed. In the present talk, we shall discuss such a strategy, based on a Rapid Distorsion Theory (RDT). Specifically, we first divide the small scale contribution to the Reynolds Stress Tensor in two parts: a turbulent viscosity and the pseudo-Lamb vector, representing the nonlinear cross terms of resolved and sub-grid scales. We then estimate the dynamics of small-scale motion by the RDT applied to Navier-Stockes equation. We use this to model the cross term evolution by a Langevin equation, in which the random force is provided by sub-grid pressure terms. Our LES model is thus made of a truncated Navier-Stockes equation including the turbulent force and a generalized Langevin equation for the latter, integrated on a twice-finer grid. The backscatter is automatically included in our stochastic model of the pseudo-Lamb vector. We apply this model to the case of homogeneous isotropic turbulence and turbulent channel flow.
A Realizable Reynolds Stress Algebraic Equation Model
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.
1993-01-01
The invariance theory in continuum mechanics is applied to analyze Reynolds stresses in high Reynolds number turbulent flows. The analysis leads to a turbulent constitutive relation that relates the Reynolds stresses to the mean velocity gradients in a more general form in which the classical isotropic eddy viscosity model is just the linear approximation of the general form. On the basis of realizability analysis, a set of model coefficients are obtained which are functions of the time scale ratios of the turbulence to the mean strain rate and the mean rotation rate. The coefficients will ensure the positivity of each component of the mean rotation rate. These coefficients will ensure the positivity of each component of the turbulent kinetic energy - realizability that most existing turbulence models fail to satisfy. Separated flows over backward-facing step configurations are taken as applications. The calculations are performed with a conservative finite-volume method. Grid-independent and numerical diffusion-free solutions are obtained by using differencing schemes of second-order accuracy on sufficiently fine grids. The calculated results are compared in detail with the experimental data for both mean and turbulent quantities. The comparison shows that the present proposal significantly improves the predictive capability of K-epsilon based two equation models. In addition, the proposed model is able to simulate rotational homogeneous shear flows with large rotation rates which all conventional eddy viscosity models fail to simulate.
The Lofoten Basin eddy: Three years of evolution as observed by Seagliders
NASA Astrophysics Data System (ADS)
Yu, Lu-Sha; Bosse, Anthony; Fer, Ilker; Orvik, Kjell A.; Bruvik, Erik M.; Hessevik, Idar; Kvalsund, Karsten
2017-08-01
The Lofoten Basin in the Norwegian Sea is an area where the warm Atlantic Water is subject to the greatest heat losses anywhere in the Nordic Seas. A long-lived, deep, anticyclonic eddy is located in the central part of the basin (the Lofoten Basin Eddy, LBE). Here we use observations from Seagliders, collected between July 2012 and July 2015, to describe LBE in unprecedented detail. The missions were designed to sample LBE repeatedly, allowing for multiple realizations of radial sections across the eddy. LBE has a mean radius of 18 ± 4 km and propagates cyclonically with a mean speed of approximately 3-4 cm s-1. The anticyclonic azimuthal peak velocity varies between 0.5 and 0.7 m s-1, located between 700 and 900 m depth. The average contribution of geostrophy in the cyclogeostrophic balance is 44%. The relative vorticity of the core is close to the local Coriolis parameter. The evolution of core water properties shows substantial interannual variability, influenced by surface buoyancy flux and advection of anomalous low-salinity near-surface waters that may affect the vertical extent of winter convection. A comparison of the eddy properties to those inferred from automated tracking of satellite altimeter observations shows that the location of eddy center is successfully detected to within one half eddy radius, but vorticity is underestimated and the radius overestimated, each approximately by a factor of 2, because of excessive smoothing relative to the small eddy radius.
NASA Astrophysics Data System (ADS)
Li, Yizhen; McGillicuddy, Dennis J.; Dinniman, Michael S.; Klinck, John M.
2017-02-01
Both remotely sensed and in situ observations in austral summer of early 2012 in the Ross Sea suggest the presence of cold, low-salinity, and high-biomass eddies along the edge of the Ross Ice Shelf (RIS). Satellite measurements include sea surface temperature and ocean color, and shipboard data sets include hydrographic profiles, towed instrumentation, and underway acoustic Doppler current profilers. Idealized model simulations are utilized to examine the processes responsible for ice shelf eddy formation. 3-D model simulations produce similar cold and fresh eddies, although the simulated vertical lenses are quantitatively thinner than observed. Model sensitivity tests show that both basal melting underneath the ice shelf and irregularity of the ice shelf edge facilitate generation of cold and fresh eddies. 2-D model simulations further suggest that both basal melting and downwelling-favorable winds play crucial roles in forming a thick layer of low-salinity water observed along the edge of the RIS. These properties may have been entrained into the observed eddies, whereas that entrainment process was not captured in the specific eddy formation events studied in our 3-D model-which may explain the discrepancy between the simulated and observed eddies, at least in part. Additional sensitivity experiments imply that uncertainties associated with background stratification and wind stress may also explain why the model underestimates the thickness of the low-salinity lens in the eddy interiors. Our study highlights the importance of incorporating accurate wind forcing, basal melting, and ice shelf irregularity for simulating eddy formation near the RIS edge. The processes responsible for generating the high phytoplankton biomass inside these eddies remain to be elucidated. Appendix B. Details for the basal melting and mechanical forcing by the ice shelf edge.
Planetesimal Formation in the Protoplanetary Nebula
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.; Mrad, Susan (Technical Monitor)
1998-01-01
In this talk we will address two distinct phases of planetesimal formation, each of which is fundamentally dependent upon the coupled interactions of particles and turbulent nebula gas. It has been shown both numerically and experimentally that 3-D (three dimensional) turbulence concentrates aerodynamically size-selected particles by orders of magnitude. In a previous review chapter we illustrated the initial predictions of Turbulent Concentration (TC) as applied to the solar nebula. We predicted the particle size which will be most effectively concentrated by turbulence; it is the particle which has a gas drag stopping time equal to the overturn time of the smallest (Kolmogorov scale) eddy. The primary uncertainty is the level of nebula turbulence, or Reynolds number Re, which can be expressed in terms of the standard nebula eddy viscosity parameter alpha = Rev(sub m)/cH, where v(sub m) is molecular viscosity, c is sound speed, and H is vertical scale height. Several studies, and observed lifetimes of circumstellar disks, have suggested that the level of nebula turbulence can be described by alpha = 10(exp -2) - 10(exp -4). There is some recent concern about how energy is provided to maintain this turbulence, but the issue remains open. We adopt a canonical minimum mass nebula with a range of alpha is greater than 0. We originally showed that chondrule-sized particles are selected for concentration in the terrestrial planet region if alpha = 10(exp -3) - 10(exp -4). In addition, Paque and Cuzzi found that the size distribution of chondrules is an excellent match for theoretical predictions. One then asks by what concentration factor C these particles can be concentrated; our early numerical results indicated an increase of C with alpha, and were supported by simple scaling arguments, but the extrapolation range was quite large and the predictions (C is approximately equal to 10(exp 5) - 10(exp 6) not unlikely) uncertain. The work presented here, which makes use of our recent demonstration that the particle density field is a multifractal with flow-independent properties provides a far more secure ground for such predictions. We also indicate how fine-grained dust rims on chondrules might enter into constraining the situation. Once large particles (meter-size mass equivalent) reach the midplane, perhaps in the form of dense aggregates of the sort formed in 3D turbulence, they remain stable against gravitational instability but might grow rapidly by accretion of their drifting neighbors, depending on the level of global turbulence.
NASA Astrophysics Data System (ADS)
Baya Toda, Hubert; Cabrit, Olivier; Truffin, Karine; Bruneaux, Gilles; Nicoud, Franck
2014-07-01
Large-Eddy Simulation (LES) in complex geometries and industrial applications like piston engines, gas turbines, or aircraft engines requires the use of advanced subgrid-scale (SGS) models able to take into account the main flow features and the turbulence anisotropy. Keeping this goal in mind, this paper reports a LES-dedicated experiment of a pulsatile hot-jet impinging a flat-plate in the presence of a cold turbulent cross-flow. Unlike commonly used academic test cases, this configuration involves different flow features encountered in complex configurations: shear/rotating regions, stagnation point, wall-turbulence, and the propagation of a vortex ring along the wall. This experiment was also designed with the aim to use quantitative and nonintrusive optical diagnostics such as Particle Image Velocimetry, and to easily perform a LES involving a relatively simple geometry and well-controlled boundary conditions. Hence, two eddy-viscosity-based SGS models are investigated: the dynamic Smagorinsky model [M. Germano, U. Piomelli, P. Moin, and W. Cabot, "A dynamic subgrid-scale eddy viscosity model," Phys. Fluids A 3(7), 1760-1765 (1991)] and the σ-model [F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, "Using singular values to build a subgrid-scale model for large eddy simulations," Phys. Fluids 23(8), 085106 (2011)]. Both models give similar results during the first phase of the experiment. However, it was found that the dynamic Smagorinsky model could not accurately predict the vortex-ring propagation, while the σ-model provides a better agreement with the experimental measurements. Setting aside the implementation of the dynamic procedure (implemented here in its simplest form, i.e., without averaging over homogeneous directions and with clipping of negative values to ensure numerical stability), it is suggested that the mitigated predictions of the dynamic Smagorinsky model are due to the dynamic constant, which strongly depends on the mesh resolution. Indeed, the shear-stress near the wall increases during the vortex-ring impingement leading to a less refined mesh in terms of wall units, y+. This loss of resolution induces a poor damping of the dynamic constant, which is no longer able to adjust itself to ensure the expected y3-behavior near the wall. It is shown that the dynamic constant is never small enough to properly balance the large values of the squared magnitude of the strain-rate tensor, 2SijSij. The experimental database is made available to the community upon request to the authors.
The Sensitivity of Numerical Simulations of Cloud-Topped Boundary Layers to Cross-Grid Flow
NASA Astrophysics Data System (ADS)
Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.
2018-02-01
In mesoscale and global atmospheric simulations with large horizontal domains, strong horizontal flow across the grid is often unavoidable, but its effects on cloud-topped boundary layers have received comparatively little study. Here the effects of cross-grid flow on large-eddy simulations of stratocumulus and trade-cumulus marine boundary layers are studied across a range of grid resolutions (horizontal × vertical) between 500 m × 20 m and 35 m × 5 m. Three cases are simulated: DYCOMS nocturnal stratocumulus, BOMEX trade cumulus, and a GCSS stratocumulus-to-trade cumulus case. Simulations are performed with a stationary grid (with 4-8 m s-1 horizontal winds blowing through the cyclic domain) and a moving grid (equivalent to subtracting off a fixed vertically uniform horizontal wind) approximately matching the mean boundary-layer wind speed. For stratocumulus clouds, cross-grid flow produces two primary effects on stratocumulus clouds: a filtering of fine-scale resolved turbulent eddies, which reduces stratocumulus cloud-top entrainment, and a vertical broadening of the stratocumulus-top inversion which enhances cloud-top entrainment. With a coarse (20 m) vertical grid, the former effect dominates and leads to strong increases in cloud cover and LWP, especially as horizontal resolution is coarsened. With a finer (5 m) vertical grid, the latter effect is stronger and leads to small reductions in cloud cover and LWP. For the BOMEX trade cumulus case, cross-grid flow tends to produce fewer and larger clouds with higher LWP, especially for coarser vertical grid spacing. The results presented are robust to choice of scalar advection scheme and Courant number.
Linearized simulation of flow over wind farms and complex terrains.
Segalini, Antonio
2017-04-13
The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
Linearized simulation of flow over wind farms and complex terrains
NASA Astrophysics Data System (ADS)
Segalini, Antonio
2017-03-01
The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results. This article is part of the themed issue 'Wind energy in complex terrains'.
NASA Astrophysics Data System (ADS)
Goodman, J. C.
2012-12-01
The Coriolis force provides dominant control over the motion of atmospheres and oceans, both on Earth and on many other worlds. At any point on a planet's surface, the planetary rotation vector has both a vertical component and a horizontal (north-south) component. We typically ignore the horizontal component, which is justified if vertical motions are hydrostatic and the fluid is relatively shallow. Neither of these conditions is true for hydrothermal convection within the thick ocean layers of Europa and other icy worlds. Using the MITGCM ocean model, we explore the behavior of buoyant hydrothermal plumes in a deep unstratified ocean, including both components of the planetary rotation vector. We find that warm water does not rise vertically: instead, it spirals along the axis of planetary rotation. Eddies form which are tilted with respect to the local vertical, but parallel to the rotation axis: turbulent exchange of heat between these canted eddies carries the warm water toward the surface. This is not an entirely new idea: however, the implications for icy worlds have not been previously discussed. We observe that when these tilted plumes heat the ice layer above the ocean, the heating "footprint" of these tilted plumes will be more circular near the pole, more ellipsoidal in the tropics. If surface features of the ice crust were created by plume heating, their shapes ought to show consistent latitude trends. Also, we observe that if warm fluid were totally constrained to move along the planetary rotation axis, geothermal heat generated in the icy world's interior could never reach the ice crust near the equator. (For Europa, the "forbidden zone" could extend as far as +/- 20-25° latitude.) In practice, we find that turbulent eddies do allow heat to move perpendicular to the rotation vector, so the "forbidden zone" is not a tight constraint; still, it may affect the overall heating pattern of icy world crusts. Snapshot of ascent of buoyant hydrothermal plume in Europa's ocean (Seafloor heat source = 4 GW; ocean depth = 100 km; rotation period = 3.55 days; latitude = 30° N). Left: elevation section through plume. Right: 3-d isosurface of constant temperature (1 microkelvin above ambient). Note alignment of geostrophic eddies along angular rotation axis.
NASA Astrophysics Data System (ADS)
Battalio, Michael; Szunyogh, Istvan; Lemmon, Mark
2016-09-01
The energetics of the atmosphere of the northern hemisphere of Mars during the pre-winter solstice period are explored using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation, with the quasi-geostrophic omega equation providing vertical velocities. Traveling waves are typically triggered by geopotential flux convergence. The effect of dust on baroclinic instability is examined by comparing a year with a global-scale dust storm (GDS) to two years without a global-scale dust storm. During the non-GDS years, results agree with that of a previous study using a general circulation model simulation. In the GDS year, waves develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Though the total amount of eddy kinetic energy generated by baroclinic energy conversion is lower during the GDS year, the maximum eddy intensity is not diminished. Instead, the number of intense eddies is reduced by about 50%.
A study of reacting free and ducted hydrogen/air jets
NASA Technical Reports Server (NTRS)
Beach, H. L., Jr.
1975-01-01
The mixing and reaction of a supersonic jet of hydrogen in coaxial free and ducted high temperature test gases were investigated. The importance of chemical kinetics on computed results, and the utilization of free-jet theoretical approaches to compute enclosed flow fields were studied. Measured pitot pressure profiles were correlated by use of a parabolic mixing analysis employing an eddy viscosity model. All computations, including free, ducted, reacting, and nonreacting cases, use the same value of the empirical constant in the viscosity model. Equilibrium and finite rate chemistry models were utilized. The finite rate assumption allowed prediction of observed ignition delay, but the equilibrium model gave the best correlations downstream from the ignition location. Ducted calculations were made with finite rate chemistry; correlations were, in general, as good as the free-jet results until problems with the boundary conditions were encountered.
Quantifying spatial distribution of spurious mixing in ocean models.
Ilıcak, Mehmet
2016-12-01
Numerical mixing is inevitable for ocean models due to tracer advection schemes. Until now, there is no robust way to identify the regions of spurious mixing in ocean models. We propose a new method to compute the spatial distribution of the spurious diapycnic mixing in an ocean model. This new method is an extension of available potential energy density method proposed by Winters and Barkan (2013). We test the new method in lock-exchange and baroclinic eddies test cases. We can quantify the amount and the location of numerical mixing. We find high-shear areas are the main regions which are susceptible to numerical truncation errors. We also test the new method to quantify the numerical mixing in different horizontal momentum closures. We conclude that Smagorinsky viscosity has less numerical mixing than the Leith viscosity using the same non-dimensional constant.
NASA Astrophysics Data System (ADS)
Pouquet, A.; Marino, R.; Rosenberg, D. L.; Herbert, C.
2017-12-01
We present a simple model for the scaling properties of the flux Richardson number R_f (the ratio of buoyancy flux B to total momentum flux B/[B+ɛ_V]) in weakly rotating unforced stratified flows characterized by their Rossby, Froude and Reynolds numbers Ro, Fr and Re. The model is based on: (i) quasi-equipartition between kinetic and potential modes, because of gravity waves and statistical equilibria; (ii) sub-dominant vertical velocity compared to the rms value of the velocity, U, due to the dominance of two-dimensional modes and the incompressibility condition; and (iii) slowing-down and weakening of the energy transfer to small scales due to eddy-wave interactions in a weak-turbulence temporal framework where the transfer time τ_{transf} is lengthened by the inverse Froude number, namely τ_{transf}=τ_{NL}^2/τ_{w}, τ_{NL}=L/U and τ_{w}=1/N being respectively the eddy turn-over time and the wave (Brunt Vaissala) period, with L a charaacteristic scale. Three regimes in Fr, as for stratified flows, are observed using a large data base: dominant waves, eddy-wave interactions and strong turbulence. In terms of the turbulence intensity (or buoyancy Reynolds number) R_I=ɛ_V/[νN^2], with ν the viscosity and ɛ_V the kinetic energy dissipation rate, these regimes are delimited by R_I˜0.1 and R_I˜280. In the intermediate regime, the phenomenology predicts and the numerical data confirms that a linear growth in Fr is obtained for the effective kinetic energy transfer when compared to its dimensional evaluation U^3/L. Defining the mixing efficiency as Γ_f=R_f/[1-R_f], the model allows for the prediction of the scaling Γ_f˜R_I^{-1/2}, observed previously at high Froude number, but which we also find for the intermediate regime. Thus, Γ_f is not constant, contrary to the classical Osborn model, as also found in several studies without rotation. As turbulence strengthens, smaller buoyancy fluxes point to a decoupling of the velocity and temperature fluctuations, the latter becoming passive and independent of U, and one can recover the same R_I^{-1/2} scaling in the strong turbulence regime as well.
A Microscale View of Mixing and Overturning Across the Antarctic Circumpolar Current
NASA Astrophysics Data System (ADS)
Naveira Garabato, A.; Polzin, K. L.; Ferrari, R. M.; Zika, J. D.; Forryan, A.
2014-12-01
The meridional overturning circulation and stratication of the global ocean are shaped critically by processes in the Southern Ocean. The zonally unblocked nature of the Antarctic Circumpolar Current (ACC) confers the region with a set of special dynamics that ultimately results in the focussing therein of large vertical exchanges between layers spanning the global ocean pycnocline. These vertical exchanges are thought to be mediated by oceanic turbulent motions (associated with mesoscale eddies and small-scale turbulence), yet the vastness of the Southern Ocean and the sparse and intermittent nature of turbulent processes make their relative roles and large-scale impacts extremely difficult to assess.Here, we address the problem from a new angle, and use measurements of the centimetre-scale signatures of mesoscale eddies and small-scale turbulence obtained during the DIMES experiment to determine the contributions of those processes to sustaining large-scale meridional overturning across the ACC. We find that mesoscale eddies and small-scale turbulence play complementary roles in forcing a meridional circulation of O(1 mm / s) across the Southern Ocean, and that their roles are underpinned by distinct and abrupt variations in the rates at which they mix water parcels. The implications for our understanding of the Southern Ocean circulation's sensitivity to climatic change will be discussed.
Magnetorotational Dynamo Action in the Shearing Box
NASA Astrophysics Data System (ADS)
Walker, Justin; Boldyrev, Stanislav
2017-10-01
Magnetic dynamo action caused by the magnetorotational instability is studied in the shearing-box approximation with no imposed net magnetic flux. Consistent with recent studies, the dynamo action is found to be sensitive to the aspect ratio of the box: it is much easier to obtain in tall boxes (stretched in the direction normal to the disk plane) than in long boxes (stretched in the radial direction). Our direct numerical simulations indicate that the dynamo is possible in both cases, given a large enough magnetic Reynolds number. To explain the relatively larger effort required to obtain the dynamo action in a long box, we propose that the turbulent eddies caused by the instability most efficiently fold and mix the magnetic field lines in the radial direction. As a result, in the long box the scale of the generated strong azimuthal (stream-wise directed) magnetic field is always comparable to the scale of the turbulent eddies. In contrast, in the tall box the azimuthal magnetic flux spreads in the vertical direction over a distance exceeding the scale of the turbulent eddies. As a result, different vertical sections of the tall box are permeated by large-scale nonzero azimuthal magnetic fluxes, facilitating the instability. NSF AGS-1261659, Vilas Associates Award, NSF-Teragrid Project TG-PHY110016.
NASA Astrophysics Data System (ADS)
Zhang, J. A.; Marks, F. D.; Montgomery, M.; Lorsolo, S.
2010-12-01
Turbulent transport processes in the atmospheric boundary layer play an important role in the intensification and maintenance of a hurricane vortex. However, direct measurement of turbulence in the hurricane boundary layer has been scarce. This study analyzes the flight-level data collected by research aircraft that penetrated the eyewalls of Category 5 Hurricane Hugo (1989) and Category 4 Hurricane Allen (1980) between 1 km and the sea surface. Momentum flux, turbulent kinetic energy (TKE) and vertical eddy diffusivity are estimated before and during the eyewall penetrations. Spatial scales of turbulent eddies are determined through spectral analysis. The turbulence parameters estimated for the eyewall penetration leg are found to be nearly an order of magnitude larger than those for the leg outside the eyewall at similar altitudes. In the low-level intense eyewall region, the horizontal length scale of dominant turbulent eddies is found to be between 500 - 3000 m and the corresponding vertical length scale is approximately 100 - 200 m. The results suggest also that it is unwise to include the eyewall vorticity maximum (EVM) in the turbulence parameter estimation, since the EVMs are likely to be quasi two-dimensional vortex structures that are embedded within the three dimensional turbulence on the inside edge of the eyewall.
Lumley's energy cascade dissipation rate model for boundary-free turbulent shear flows
NASA Technical Reports Server (NTRS)
Duncan, B. S.
1992-01-01
True dissipation occurs mainly at the highest wavenumbers where the eddy sizes are comparatively small. These high wavenumbers receive their energy through the spectral cascade of energy starting with the largest eddies spilling energy into the smaller eddies, passing through each wavenumber until it is dissipated at the microscopic scale. However, a small percentage of the energy does not spill continuously through the cascade but is instantly passed to the higher wavenumbers. Consequently, the smallest eddies receive a certain amount of energy almost immediately. As the spectral energy cascade continues, the highest wavenumber needs a certain time to receive all the energy which has been transferred from the largest eddies. As such, there is a time delay, of the order of tau, between the generation of energy by the largest eddies and the eventual dissipation of this energy. For equilibrium turbulence at high Reynolds numbers, there is a wide range where energy is neither produced by the large eddies nor dissipated by viscosity, but is conserved and passed from wavenumber to higher wavenumbers. The rate at which energy cascades from one wavenumber to another is proportional to the energy contained within that wavenumber. This rate is constant and has been used in the past as a dissipation rate of turbulent kinetic energy. However, this is true only in steady, equilibrium turbulence. Most dissipation models contend that the production of dissipation is proportional to the production of energy and that the destruction of dissipation is proportional to the destruction of energy. In essence, these models state that the change in the dissipation rate is proportional to the change in the kinetic energy. This assumption is obviously incorrect for the case where there is no production of turbulent energy, yet energy continues to cascade from large to small eddies. If the time lag between the onset on the energy cascade to the destruction of energy at the microscale can be modeled, then there will be a better representation of the dissipation process. Development of an energy cascade time scale equation is discussed.
1990-01-01
S. Orszag, Chairman 1. P. Moin Some Issues in Computation of Turbulent Flows. 2. M. Lesieur, P. Comte, X. Normand, 0. Metais and A. Silveira Spectral...Richtmeyer’s computational experience with one-dimensional shock waves (1950) indicated the value of a non-linear artificial viscosity. Charney and... computer architecture and the advantages of semi-Lagrangian advective schemes may lure large-scale atmospheric modelers back to finite-difference
1994-01-01
length scales mensional hydrofoil and tip vortex flow around a F circulation three dimensional hydrofoil. The simulated mean v molecular viscosity flow...Unstructured Grid for Free Surface Flow Simulations , by T. Hino, L. Martinelli, and A. Jameson 173 "A Semi-Implicit Semi-Lagrangian Finite Element Model...Haussling Solid-Fluid Juncture Boundary Layer and Wake with Waves, by J.E. Choi and F. Stern 215 Direct Numerical and Large-Eddy Simulations of Turbulent
1992-01-01
2-layer algebraic eddy Lawrence flow, 150corner implicit (lacCormack, viscosity (Baldwin and et al. at M = 14.1 1982) Lomax, 1978) (1987) 5) NASA...for Turbulence Research NASA Ames/Stanford Summer Programme," Journal of Fluid Mechanics, Vol. 190, pp. 375-392. Hussain, A.KM.F., (1986): "Coherent...the development of a Reynolds- stress turbulence closure," Journal of Fluid Mechanics, Vol. 68, pp. 537-566. Lawrence , S. L., and A. Balakrishnan (1988
Calculation of transonic aileron buzz
NASA Technical Reports Server (NTRS)
Steger, J. L.; Bailey, H. E.
1979-01-01
An implicit finite-difference computer code that uses a two-layer algebraic eddy viscosity model and exact geometric specification of the airfoil has been used to simulate transonic aileron buzz. The calculated results, which were performed on both the Illiac IV parallel computer processor and the Control Data 7600 computer, are in essential agreement with the original expository wind-tunnel data taken in the Ames 16-Foot Wind Tunnel just after World War II. These results and a description of the pertinent numerical techniques are included.
NASA Astrophysics Data System (ADS)
Hasel, M.; Kottmeier, Ch.; Corsmeier, U.; Wieser, A.
2005-03-01
Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NO x transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O 3 at the surface. The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NO x loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.
NASA Astrophysics Data System (ADS)
DiMarco, S. F.; Knap, A. H.; Wang, Z.; Walpert, J.; Dreger, K.
2016-02-01
The northwestern Gulf of Mexico is host to a myriad of physical and biochemical processes, which govern the exchange and transport of material and volume between the coastal and offshore environments. We report on five G2 Slocum glider deployments in the northwestern Gulf during the spring and summer of 2015. The gliders were deployed in shallow (20 m) and deep (greater than 1000 m) water for a total of about 200 days. During this time, the gliders encountered a variety of environmental conditions that impact the circulation, biology, chemistry of the shelf and slope. The shallow gliders encountered coastal waters influenced by extensive flooding in terrestrial Texas that vertically stratified the water-column and was coincident with sub-pycnocline low dissolved oxygen concentration, at times below the hypoxic threshold of 2 mg/L, and elevated CDOM concentrations. These gliders also reveal high spatial variability with bottom boundary oxygen and biomass scales on the order of a few kilometers. The deep gliders were tasked to investigate shelf/slope exchange at two locations 94W and 91W. The western glider encountered a mature mesoscale circulation eddy that was actively weakening. The eastern glider simultaneously encountered a freshly separated Loop Current eddy. The vertical structure of hydrographic and dissolved oxygen parameters shows significant and distinguishable variability in each feature. The vertical structure of both features show significant departures from that which is expected based on sea surface height determined from satellite altimetry. Additionally, glider observations are compared to operational high-resolution regional numerical model output. These observations emphasize the importance of direct observations over satellite-derived products for applications that include upper ocean heat content for hurricane intensification and vertical mixing and ventilation of the oceanic interior.
Impact of subgrid fluid turbulence on inertial particles subject to gravity
NASA Astrophysics Data System (ADS)
Rosa, Bogdan; Pozorski, Jacek
2017-07-01
Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.
Polymer dynamics in turbulent flow
NASA Astrophysics Data System (ADS)
Muthukumar, Murugappan
2014-03-01
Presence of dilute amounts of high-molecular weight polymers in liquids undergoing turbulent wall-bounded shear flows leads to significant drag reduction. There are two major proposed mechanisms of drag reduction in the literature. One is based on enhanced viscosity due to chain extension; the other is based on the assumption that elastic energy stored in polymer conformations is comparable to the kinetic energy in some eddies. Using the Navier-Stokes equation for the fluid and the Kirkwood-Riseman-Zimm equation for polymer chains, we have addressed the coupling between the near-wall turbulence dynamics and polymer dynamics. Our theoretical results show that the torque associated with polymer conformations contributes more significantly than the chain stretching and that the characteristic dimensions of polymer coils are much smaller than eddy sizes required for possible exchange of energy. We thus emphasize an additional mechanism to the existing two schools of thought in the search of an understanding of drag reduction.
Numerical simulation of turbulence in the presence of shear
NASA Technical Reports Server (NTRS)
Shaanan, S.; Ferziger, J. H.; Reynolds, W. C.
1975-01-01
The numerical calculations are presented of the large eddy structure of turbulent flows, by use of the averaged Navier-Stokes equations, where averages are taken over spatial regions small compared to the size of the computational grid. The subgrid components of motion are modeled by a local eddy-viscosity model. A new finite-difference scheme is proposed to represent the nonlinear average advective term which has fourth-order accuracy. This scheme exhibits several advantages over existing schemes with regard to the following: (1) the scheme is compact as it extends only one point away in each direction from the point to which it is applied; (2) it gives better resolution for high wave-number waves in the solution of Poisson equation, and (3) it reduces programming complexity and computation time. Examples worked out in detail are the decay of isotropic turbulence, homogeneous turbulent shear flow, and homogeneous turbulent shear flow with system rotation.
Towards the computation of time-periodic inertial range dynamics
NASA Astrophysics Data System (ADS)
van Veen, L.; Vela-Martín, A.; Kawahara, G.
2018-04-01
We explore the possibility of computing simple invariant solutions, like travelling waves or periodic orbits, in Large Eddy Simulation (LES) on a periodic domain with constant external forcing. The absence of material boundaries and the simple forcing mechanism make this system a comparatively simple target for the study of turbulent dynamics through invariant solutions. We show, that in spite of the application of eddy viscosity the computations are still rather challenging and must be performed on GPU cards rather than conventional coupled CPUs. We investigate the onset of turbulence in this system by means of bifurcation analysis, and present a long-period, large-amplitude unstable periodic orbit that is filtered from a turbulent time series. Although this orbit is computed on a coarse grid, with only a small separation between the integral scale and the LES filter length, the periodic dynamics seem to capture a regeneration process of the large-scale vortices.
Excitation of turbulence by density waves
NASA Technical Reports Server (NTRS)
Tichen, C. M.
1985-01-01
A nonlinear system describes the microdynamical state of turbulence that is excited by density waves. It consists of an equation of propagation and a master equation. A group-scaling generates the scaled equations of many interacting groups of distribution functions. The two leading groups govern the transport processes of evolution and eddy diffusivity. The remaining sub-groups represent the relaxation for the approach of diffusivity to equilibrium. In strong turbulence, the sub-groups disperse themselves and the ensemble acts like a medium that offers an effective damping to close the hierarchy. The kinetic equation of turbulence is derived. It calculates the eddy viscosity and identifies the effective damping of the assumed medium self-consistently. It formulates the coupling mechanism for the intensification of the turbulent energy at the expense of the wave energy, and the transfer mechanism for the cascade. The spectra of velocity and density fluctuations find the power law k sup-2 and k sup-4, respectively.
Characteristics of the Martian atmosphere surface layer
NASA Technical Reports Server (NTRS)
Clow, G. D.; Haberle, R. M.
1990-01-01
Elements of various terrestrial boundary layer models are extended to Mars in order to estimate sensible heat, latent heat, and momentum fluxes within the Martian atmospheric surface ('constant flux') layer. The atmospheric surface layer consists of an interfacial sublayer immediately adjacent to the ground and an overlying fully turbulent surface sublayer where wind-shear production of turbulence dominates buoyancy production. Within the interfacial sublayer, sensible and latent heat are transported by non-steady molecular diffusion into small-scale eddies which intermittently burst through this zone. Both the thickness of the interfacial sublayer and the characteristics of the turbulent eddies penetrating through it depend on whether airflow is aerodynamically smooth or aerodynamically rough, as determined by the Roughness Reynold's number. Within the overlying surface sublayer, similarity theory can be used to express the mean vertical windspeed, temperature, and water vapor profiles in terms of a single parameter, the Monin-Obukhov stability parameter. To estimate the molecular viscosity and thermal conductivity of a CO2-H2O gas mixture under Martian conditions, parameterizations were developed using data from the TPRC Data Series and the first-order Chapman-Cowling expressions; the required collision integrals were approximated using the Lenard-Jones potential. Parameterizations for specific heat and binary diffusivity were also determined. The Brutsart model for sensible and latent heat transport within the interfacial sublayer for both aerodynamically smooth and rough airflow was experimentally tested under similar conditions, validating its application to Martian conditions. For the surface sublayer, the definition of the Monin-Obukhov length was modified to properly account for the buoyancy forces arising from water vapor gradients in the Martian atmospheric boundary layer. It was found that under most Martian conditions, the interfacial and surface sublayers offer roughly comparable resistance to sensible heat and water vapor transport and are thus both important in determining the associated fluxes.
A Large Eddy Simulation Study of Heat Entrainment under Sea Ice in the Canadian Arctic Basin
NASA Astrophysics Data System (ADS)
Ramudu, E.; Yang, D.; Gelderloos, R.; Meneveau, C. V.; Gnanadesikan, A.
2016-12-01
Sea ice cover in the Arctic has declined rapidly in recent decades. The much faster than projected retreat suggests that climate models may be missing some key processes, or that these processes are not accurately represented. The entrainment of heat from the mixed layer by small-scale turbulence is one such process. In the Canadian Basin of the Arctic Ocean, relatively warm Pacific Summer Water (PSW) resides at the base of the mixed layer. With an increasing influx of PSW, the upper ocean in the Canadian Basin has been getting warmer and fresher since the early 2000s. While studies show a correlation between sea ice reduction and an increase in PSW temperature, others argue that PSW intrusions in the Canadian Basin cannot affect sea ice thickness because the strongly-stratified halocline prevents heat from the PSW layer from being entrained into the mixed layer and up to the basal ice surface. In this study, we try to resolve this conundrum by simulating the turbulent entrainment of heat from the PSW layer to a moving basal ice surface using large eddy simulation (LES). The LES model is based on a high-fidelity spectral approach on horizontal planes, and includes a Lagrangian dynamic subgrid model that reduces the need for empirical inputs for subgrid-scale viscosities and diffusivities. This LES tool allows us to investigate physical processes in the mixed layer at a very fine scale. We focus our study on summer conditions, when ice is melting, and show for a range of ice-drift velocities, halocline temperatures, and halocline salinity gradients characteristic of the Canadian Basin how much heat can be entrained from the PSW layer to the sea ice. Our results can be used to improve parameterizations of vertical heat flux under sea ice in coarse-grid ocean and climate models.
NASA Astrophysics Data System (ADS)
Bischoff, S. H.; Flesch, L. M.
2016-12-01
Differential flow in the lower crust of Tibet has been invoked to explain features in the region, including uniform plateau elevation, crustal thickness/topographic gradients, and uplift without observed shortening. Here, we use 3-D finite element modeling to test impacts of assumed lower crustal viscosities on deformation patterns in the India-Eurasia collision zone. We simulate instantaneous lithospheric deformation with Stokes flow using COMSOL Multiphysics (www.comsol.com). Our model geometry ranges eastward from the Pamir to Sichuan, northward from the southern tip of India to the Tien Shan, and vertically downward from the Earth's surface to 100 km below sea level. We divide model geometry into four domains: Indian lithosphere, Eurasian upper crust, lower crust, and upper mantle. Seismic and magnetotelluric study results guide inclusion of subducted Indian and Burma slabs along with our targeted weak lower crust. Within the larger Eurasian lower crust domain, weak lower crust is restricted to a zone bounded clockwise by the Himalayan Frontal Thrust, Karakorum, Altyn-Tagh, Kunlun, Longmen Shan, and onset of lower elevations along the plateau's southeastern margin. From top to bottom, vertical bounds of the zone are constrained by a constant 20 km below sea level and the shallower of either the top of the Indian slab or Moho. Strength is approximated via 3-D maps of effective viscosity constrained by the vertically-averaged lithospheric estimates of Flesch et al. [2001]. We forward model lower crust effective viscosities on the order of 1018 to 1022 Pa•s and inspect resulting horizontal and vertical deformation patterns. Results suggest that effective viscosities of less than 1020 Pa•s are required for both appreciable differential mass flux through lower crustal flow as well as decoupled lower crustal flow from the upper crust or mantle. Movement of the lower crust is partitioned within weaker fault zones. Effective viscosities of 1020 Pa•s or less produce pronounced patterns of surface subsidence in Qiangtang and uplift in eastern Lhasa and Longmen Shan inconsistent with observations. Solutions show lower crust strength impacts surface stress style with weaker strengths leading to regions of dominant extension separated by compression in the east central Tibetan Plateau.
Eddy current sensor concepts for the Bridgman growth of semiconductors
NASA Astrophysics Data System (ADS)
Dharmasena, Kumar P.; Wadley, Haydn N. G.
1997-03-01
Electromagnetic finite element methods have been used to identify eddy current sensor designs for monitoring CdTe vertical Bridgman crystal growth. A model system consisting of pairs of silicon cylinders with electrical conductivities similar to those of solid and liquid CdTe has been used to evaluate the multifrequency response of several sensors designed for locating and characterizing the curvature of liquid-solid interfaces during vertical Bridgman growth. At intermediate frequencies (100-800 kHz), the sensor's imaginary impedance monotonically increases as interfacial curvature changes from concave to convex or the interface location moves upwards through the sensor. The experimental data are in excellent agreement with theoretical predictions. At higher test frequencies (˜ 5 MHz), the test circuit's parasitics contribute to the sensor's response. Even so, the predicted trends with interface location/curvature were found to be still preserved, and the experiments confirm that the sensor's high frequency response depends more on interface location and has only a small sensitivity to curvature. Multifrequency data obtained from these types of sensors have the potential to separately discriminate the location and the shape of liquid-solid interfaces during the vertical Bridgman growth of CdTe and other semiconductor materials of higher electrical conductivity.
Novel residual-based large eddy simulation turbulence models for incompressible magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Sondak, David
The goal of this work was to develop, introduce, and test a promising computational paradigm for the development of turbulence models for incompressible magnetohydrodynamics (MHD). MHD governs the behavior of an electrically conducting fluid in the presence of an external electromagnetic (EM) field. The incompressible MHD model is used in many engineering and scientific disciplines from the development of nuclear fusion as a sustainable energy source to the study of space weather and solar physics. Many interesting MHD systems exhibit the phenomenon of turbulence which remains an elusive problem from all scientific perspectives. This work focuses on the computational perspective and proposes techniques that enable the study of systems involving MHD turbulence. Direct numerical simulation (DNS) is not a feasible approach for studying MHD turbulence. In this work, turbulence models for incompressible MHD were developed from the variational multiscale (VMS) formulation wherein the solution fields were decomposed into resolved and unresolved components. The unresolved components were modeled with a term that is proportional to the residual of the resolved scales. Two additional MHD models were developed based off of the VMS formulation: a residual-based eddy viscosity (RBEV) model and a mixed model that partners the VMS formulation with the RBEV model. These models are endowed with several special numerical and physics features. Included in the numerical features is the internal numerical consistency of each of the models. Physically, the new models are able to capture desirable MHD physics such as the inverse cascade of magnetic energy and the subgrid dynamo effect. The models were tested with a Fourier-spectral numerical method and the finite element method (FEM). The primary test problem was the Taylor-Green vortex. Results comparing the performance of the new models to DNS were obtained. The performance of the new models was compared to classic and cutting-edge dynamic Smagorinsky eddy viscosity (DSEV) models. The new models typically outperform the classical models.
Seasonal Variation of Submesoscale Flow Features in a Mesoscale Eddy-dominant Region in the East Sea
NASA Astrophysics Data System (ADS)
Chang, Yeon S.; Choi, Byoung-Ju; Park, Young-Gyu
2018-03-01
Seasonal changes in the distribution of submesoscale (SM) flow features were examined using a fine-resolution numerical simulation. The SM flows are expected to be strong where mesoscale (MS) eddies actively develop and also when the mixed layer depth (MLD) is deep due to enhanced baroclinic instability. In the East Sea (ES), MS eddies more actively develop in summer while the MLD is deeper in winter, which provided the motivation to conduct this study to test the effects of MLD and MS eddies on the SM activity in this region. Finite-scale Liapunov exponents and the vertical velocity components were employed to analyze the SM activities. It was found that the SM intensity was marked by seasonality: it is stronger in winter when the mixed layer is deep but weaker in summer - despite the greater eddy kinetic energy. This is because in summer the mixed layer is so thin that there is not enough available potential energy. When the SM activity was quantified based on parameterization, (MLD × density gradient), it was determined that the seasonal variation of MLD plays a more important role than the lateral density gradient variation on SM flow motion in the ES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saenz, Juan A.; Chen, Qingshan; Ringler, Todd
Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less
The influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions
NASA Astrophysics Data System (ADS)
Levy, M.; Martin, A. P.
2013-12-01
The oceanic circulation in the meso to submesoscale regime generates heterogeneity in the concentrations of biogeochemical components over these scales, horizontally between 1 and 100 km. Due to nonlinearities in the biogeochemical reactions, such as phytoplankton primary production and zooplankton grazing, this small-scale heterogeneity can lead to departure from the mean field approximation, whereby plankton reactions are evaluated from mean distributions at coarser scale. Here we explore the magnitude of these eddy reactions and compare their strength to those of the more widely studied eddy transports. We use the term eddy to denote effects arising from scales smaller than ˜ 100 km. This is done using a submesoscale permitting biogeochemical model, representative of the seasonally varying subtropical and subpolar gyres. We found that the eddy reactions associated with primary production and grazing account for ±5-30% of productivity and grazing, respectively, depending on location and time of year, and are scale dependent: two thirds are due to heterogeneities at scales 30-100 km and one third to those at scales below 30 km. Moreover, eddy productivities are systematically negative, implying that production tends to be reduced by nonlinear interactions at the mesoscale and smaller. The opposite result is found for eddy grazing, which is generally positive. The contrasting effects result from vertical advection, which negatively correlates phytoplankton and nutrients and positively correlates phytoplankton and zooplankton in the meso to submesoscale range. Moreover, our results highlight the central role played by eddy reactions for ecological aspects and the distribution of organisms and by eddy transport for biogeochemical aspects and nutrient budgets.
Atmospheric chemistry and transport modeling in the outer solar system
NASA Astrophysics Data System (ADS)
Lee, Yuan-Tai (Anthony)
2001-11-01
This thesis consists of 1-D and 2-D photochemical- dynamical modeling in the upper atmospheres of outer planets. For 1-D modeling, a unified hydrocarbon photochemical model has been studied in Jupiter, Saturn, Uranus, Neptune, and Titan, by comparing with the Voyager observations, and the recent measurements of methyl radicals by ISO in Saturn and Neptune. The CH3 observation implies a kinetically sensitive test to the measured and estimated hydrocarbon rate constants at low temperatures. We identify the key reactions that control the concentrations of CH3 in the model, such as the three-body recombination reaction, CH3 + CH3 + M --> C 2H6 + M, and the recycling reaction H + CH3 + M --> CH4 + M. The results show reasonable agreement with ISO values. In Chapter 4, the detection of PH3 in the lower stratosphere and upper troposphere of Jupiter has provided a photochemical- dynamical coupling model to derive the eddy diffusion coefficient in the upper troposphere of Jupiter. Using a two-layers photochemical model with updated photodissociation cross-sections and chemical rate constants for NH3 and PH 3, we find that the upper tropospheric eddy diffusion coefficient <10 5 cm2 sec-1, and the deeper tropospheric value >106 cm2 sec-1, are required to match the derived PH3 vertical profile by the observation. The best-fit functional form derivation of eddy diffusion coefficient in the upper troposphere of Jupiter above 400 mbar is K = 2.0 × 104 (n/2.2 × 1019)-0.5 cm 2 sec-1. On the other hand, Chapter 5 demonstrates a dynamical-only 2-D model of C2H6 providing a complete test for the current 2-D transport models in Jovian lower stratosphere and upper troposphere (270 to 0.1 mbar pressure levels). Different combinations of residual advection, horizontal eddy dispersion, and vertical eddy mixing are examined at different latitudes.
The ichthyoplankton assemblage of the Canaries-African Coastal Transition Zone: A review
NASA Astrophysics Data System (ADS)
Rodriguez, J. M.; Moyano, M.; Hernandez-Leon, S.
2009-12-01
In this paper we review information on the ichthyoplankton assemblage of the Canaries-African Coastal Transition Zone (C-ACTZ). This CTZ shows the singularity that the Canary Archipelago interrupts the main flow of the Canary Current and Trade Winds, introducing large mesoscale variability, in the form of island warm wakes and cyclonic and anticyclonic eddies downstream of the islands. Besides, upwelling filaments stretch towards the archipelago from the African coastal upwelling, transporting phytoplankton, zooplankton and fish larvae. They also interact with eddies shed from the islands to exchange water properties and biogenic material. All these mesoscale features influence the composition, structure, abundance and distribution of the larval fish community (LFC) of the region. The Canary Current (CC) and eddies shed from the islands drag larvae of island neritic fish species into the oceanic region and contribute, along warm wakes, to the horizontal distribution of fish larvae. Upwelling and upwelling filaments transport larvae of African neritic species into the oceanic region. These larvae dominate the LFC and account for the relatively high average larval fish abundance found in the C-ACTZ during the summer upwelling season. Filaments originated in the region of Cape Juby-Cape Bojador are entrained around a quasi-permanent cyclonic eddy, trapped between Gran Canaria Island and the African coast, forming a system through which most of the African neritic larvae may return to the African shelf. However, some larvae reach the eastern islands of the Canary archipelago and they may be spread all over the neritic region of the archipelago by eddies shed from the islands. Also in summer, the distribution of the LFC of the C-ACTZ is vertically stratified and fish larvae seem to carry out little or not diel vertical migration. Overall, this study highlights the strong relationship between mesoscale oceanographic processes and the LFC in the C-ACTZ.
Estimates of Oceanic Eddy Heat and Salt Transports from Satellite Altimetry and Argo Profile Data.
NASA Astrophysics Data System (ADS)
Amores Maimo, A. M.; Melnichenko, O.; Maximenko, N. A.
2016-12-01
Horizontal heat and salt fluxes by mesoscale eddies are estimated in the near-global ocean (10°-60° N and 10°-60° S) by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The eddy fluxes are expectedly strong in the western boundary currents and in the Southern Ocean along the Antarctic Circumpolar Current (ACC). The fluxes are generally weak, but not negligible in gyre interiors. In the vertical, the eddy heat and salt fluxes are surface-intensified and confined mainly to the upper 600m layer, but their distribution with depth is not homogeneous throughout the ocean. In the Kuroshio Extension (KE) region, for example, the heat flux is poleward everywhere in the surface layer above the thermocline, but oppositely signed relative to the jet's axis in a deeper layer between approximately 300-800 m, where the flux is poleward on the northern side of the jet and equatorward on its southern side. Relatively strong fluxes at depth are also observed in the ACC, particularly in the Indian sector, and in the subtropical North Atlantic at the level of the Mediterranean Water (MW) at around 1000 m depth. The latter exemplifies the role of eddies in MW spreading. These and other features of the longitude-latitude-depth distributions of the eddy heat and salt fluxes, constructed for the first time from observational data, are presented and discussed.
A diagnostic study of the forcing of the Ferrel cell by eddies, with latent heat effects included
NASA Technical Reports Server (NTRS)
Salustri, G.; Stone, P. H.
1983-01-01
A diagnostic study of the forcing of the Ferrel cell by eddy fluxes in the Northern Hemisphere is carried out. The quasi-geostrophic omega equation, and Oort and Rasmusson's (1971) data set, are used. The effects of condensation associated with the large scale motions are introduced to the omega equation by using the quasi-geostrophic moisture conservation equation. Thus, the dry static stability is replaced by a moist static stability, and the forcing of the Ferrel cell by eddy latent heat fluxes as well as sensible heat and momentum fluxes is included. Both effects tend to enhance the forcing of the Ferrel cell. The numerical analysis indicates that the effects are small in January, but in July the maximum vertical velocities are enhanced by about 30 percent.
Mesoscale eddies and T richodesmium spp. distributions in the southwestern North Atlantic
McGillicuddy, Dennis J.; Flierl, Glenn R.; Davis, Cabell S.; Dyhrman, Sonya T.; Waterbury, John B.
2015-01-01
Abstract Correlations of Trichodesmium colony abundance with the eddy field emerged in two segments of Video Plankton Recorder observations made in the southwestern North Atlantic during fall 2010 and spring 2011. In fall 2010, local maxima in abundance were observed in cyclones. We hypothesized surface Ekman transport convergence as a mechanism for trapping buoyant colonies in cyclones. Idealized models supported the potential of this process to influence the distribution of buoyant colonies over time scales of several months. In spring 2011, the highest vertically integrated colony abundances were observed in anticyclones. These peaks in abundance correlated with anomalously fresh water, suggesting riverine input as a driver of the relationship. These contrasting results in cyclones and anticyclones highlight distinct mechanisms by which mesoscale eddies can influence the abundance and distribution of Trichodesmium populations of the southwestern North Atlantic. PMID:26937328
Preliminary results on passive eddy current damper technology for SSME turbomachinery
NASA Technical Reports Server (NTRS)
Cunningham, R. E.
1985-01-01
Some preliminary results have been obtained for the dynamic response of a rotor operating over a speed range of 800 to 10,000 rpm. Amplitude frequency plots show the lateral vibratory response of an unbalanced rotor with and without external damping. The mode of damping is by means of eddy currents generated with 4 c shaped permanent magnets installed at the lower bearing of a vertically oriented rotor. The lower ball bearing and its damper assembly are totally immersed in liquid nitrogen at a temperature of -197 deg C (-320 deg F). These preliminary results for a referenced or base line passive eddy current damper assembly show that the amplitude of synchronous vibration is reduced at the resonant frequency. Measured damping coefficients were calculated to phi = .086; this compares with a theoretically calculated value of phi = .079.
Passive eddy-current damping as a means of vibration control in cryogenic turbomachinery
NASA Technical Reports Server (NTRS)
Cunningham, R. E.
1986-01-01
Lateral shaft vibrations produced by a rotating unbalance weight were damped by means of eddy currents generated in copper conductors that were precessing cyclicly in the gap formed by the pole faces of C-shaped, permanent magnets. The damper assembly, which was located at the lower bearing support of a vertically oriented rotor was completely immersed in liquid nitrogen during the test run. The test rotor was operated over a speed range from 800 to 10,000 rpm. Three magnet/conductor designs were evaluated. Experimental damping coefficients varied from 180 to 530 N sec/m. Reasonable agreement was noted for theoretical values of damping for these same assemblies. Values of damping coefficients varied from 150 to 780 N sec/m. The results demonstrate that passive eddy-current damping is a viable candidate for vibration control in cryogenic turbomachinery.
NASA Astrophysics Data System (ADS)
Yamaguchi, R.; Suga, T.
2016-12-01
Recent observational studies show that, during the warming season, a large amount of heat flux is penetrated through the base of thin mixed layer by vertical eddy diffusion, in addition to penetration of solar radiation [1]. In order to understand this heat penetration process due to vertical eddy diffusivity and its contribution to seasonal variation of sea surface temperature, we investigated the evolution of thermal stratification below the summertime thin mixed layer (i.e. evolution of seasonal thermocline) and its vertical structure in the North Pacific using high vertical resolution temperature profile observed by Argo floats. We quantified the vertical structure of seasonal thermocline as deviations from the linear structure where the vertical gradient of temperature is constant, that is, "shape anomaly". The shape anomaly is variable representing the extent of the bend of temperature profiles. We found that there are larger values of shape anomaly in the region where the seasonal sea surface temperature warming is relatively faster. To understand the regional difference of shape anomalies, we investigated the relationship between time changes in shape anomalies and net surface heat flux and surface kinetic energy flux. From May to July, the analysis indicated that, in a large part of North Pacific, there's a tendency for shape anomalies to develop strongly (weakly) under the conditions of large (small) downward net surface heat flux and small (large) downward surface kinetic energy flux. Since weak (strong) development of shape anomalies means efficient (inefficient) downward heat transport from the surface, these results suggest that the regional difference of the downward heat penetration below mixed layer is explained reasonably well by differences in surface heat forcing and surface wind forcing in a vertical one dimensional framework. [1] Hosoda et al. (2015), J. Oceanogr., 71, 541-556.
Evaluation of anti-freeze viscosity modifier for potential external tank applications
NASA Technical Reports Server (NTRS)
Lynn, R. O. L.
1981-01-01
Viscosity modifiers and gelling agents were evaluated in combination with ethylene glycol and dimethyl sulfoxide water eutectics. Pectin and agarose are found to gel these eutectics effectively in low concentration, but the anti-freeze protection afforded by these compositions is found to be marginal in simulations of the intended applications. Oxygen vent shutters and vertical metallic surfaces were simulated, with water supplied as a spray, dropwise, and by condensation from the air.
Miller, Daniel J; Zhang, Zhibo; Ackerman, Andrew S; Platnick, Steven; Baum, Bryan A
2016-04-27
Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness ( τ ) and effective radius ( r e ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m 2 . In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic r e profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.
Miller, Daniel J.; Zhang, Zhibo; Ackerman, Andrew S.; Platnick, Steven; Baum, Bryan A.
2018-01-01
Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5–10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques. PMID:29637042
NASA Astrophysics Data System (ADS)
Delon, C.; Druilhet, A.; Delmas, R.; Greenberg, J.
2000-08-01
The Relaxed Eddy Accumulation (REA) technique, implemented aboard aircraft, may be used to measure a wide variety of trace gas fluxes at a regional scale. Its principle is rather simple: air is sampled at a constant rate and the flux is calculated by multiplying a constant β (0.58 in field experiment and 0.62 in simulations) by the standard deviation of the vertical velocity and by the difference between the average concentrations of the scalar (trace gas) for updrafts and downdrafts. The storage of the chemical compound in reservoirs allows for trace gas analysis in laboratory, when in situ measurement with fast response and high sensitivity sensors are not available. The REA method was implemented on the Avion de Recherche Atmosphérique et de Télédétection aircraft during the Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO) campaign. The main requirement for accurate flux determination is the measurement of the vertical component of wind velocity in real time. A simulation technique was developed to evaluate the performance of an aircraft REA. The influence of the time lag between the vertical velocity (W) measurement and REA control was tested, as well as the offset of W, the threshold, and the filtering imposed on W. Correction factors, used in a deployment of aircraft REA, were deduced from this study. An additional simulation was performed to evaluate the influence of spatial or temporal drifts on the scalar. The simulation showed that the REA method is not more disturbed than the Eddy Correlation method by low frequencies of physical origin, such as topography. The REA method was used during EXPRESSO for the measurement of isoprene fluxes over the wet savanna and the evergreen rain forest.
The role of large-scale eddies in the climate equilibrium. Part 2: Variable static stability
NASA Technical Reports Server (NTRS)
Zhou, Shuntai; Stone, Peter H.
1993-01-01
Lorenz's two-level model on a sphere is used to investigate how the results of Part 1 are modified when the interaction of the vertical eddy heat flux and static stability is included. In general, the climate state does not depend very much on whether or not this interaction is included, because the poleward eddy heat transport dominates the eddy forcing of mean temperature and wind fields. However, the climatic sensitivity is significantly affected. Compared to two-level model results with fixed static stability, the poleward eddy heat flux is less sensitive to the meridional temperature gradient and the gradient is more sensitive to the forcing. For example, the logarithmic derivative of the eddy flux with respect to the gradient has a slope that is reduced from approximately 15 on a beta-plane with fixed static stability and approximately 6 on a sphere with fixed static stability, to approximately 3 to 4 in the present model. This last result is more in line with analyses from observations. The present model also has a stronger baroclinic adjustment than that in Part 1, more like that in two-level beta-plane models with fixed static stability, that is, the midlatitude isentropic slope is very insensitive to the forcing, the diabatic heating, and the friction, unless the forcing is very weak.
Stochastic Reconnection for Large Magnetic Prandtl Numbers
NASA Astrophysics Data System (ADS)
Jafari, Amir; Vishniac, Ethan T.; Kowal, Grzegorz; Lazarian, Alex
2018-06-01
We consider stochastic magnetic reconnection in high-β plasmas with large magnetic Prandtl numbers, Pr m > 1. For large Pr m , field line stochasticity is suppressed at very small scales, impeding diffusion. In addition, viscosity suppresses very small-scale differential motions and therefore also the local reconnection. Here we consider the effect of high magnetic Prandtl numbers on the global reconnection rate in a turbulent medium and provide a diffusion equation for the magnetic field lines considering both resistive and viscous dissipation. We find that the width of the outflow region is unaffected unless Pr m is exponentially larger than the Reynolds number Re. The ejection velocity of matter from the reconnection region is also unaffected by viscosity unless Re ∼ 1. By these criteria the reconnection rate in typical astrophysical systems is almost independent of viscosity. This remains true for reconnection in quiet environments where current sheet instabilities drive reconnection. However, if Pr m > 1, viscosity can suppress small-scale reconnection events near and below the Kolmogorov or viscous damping scale. This will produce a threshold for the suppression of large-scale reconnection by viscosity when {\\Pr }m> \\sqrt{Re}}. In any case, for Pr m > 1 this leads to a flattening of the magnetic fluctuation power spectrum, so that its spectral index is ∼‑4/3 for length scales between the viscous dissipation scale and eddies larger by roughly {{\\Pr }}m3/2. Current numerical simulations are insensitive to this effect. We suggest that the dependence of reconnection on viscosity in these simulations may be due to insufficient resolution for the turbulent inertial range rather than a guide to the large Re limit.
Numerical Studies into Flow Profiles in Confined Lubricant
NASA Astrophysics Data System (ADS)
di Mare, Luca; Ponjavic, Aleks; Wong, Janet
2013-03-01
This paper documents a computational study of flow profiles in confined fluids. The study is motivated by experimental evidence for deviation from Couette flow found by one of the authors (JSW). The computational study examines several possible stress-strain relations. Since a linear profile is the only possible solution for a constant stress layer even in presence of a power law, the study introduces a functional dependence of the fluid viscosity on the distance from the wall. Based on this dependence, a family of scaling laws for the velocity profile near the wall is derived which matches the measured profiles. The existence of this scaling law requires the viscosity of the fluid to increase at least linearly away from the wall. This behaviour is explained at a microscopic level by considerations on the mobility of long molecules near a wall. This behaviour is reminiscent of the variation of eddy length scales in near-wall turbulence.
Can CO2 Turbulent Flux Be Measured by Lidar? A Preliminary Study
NASA Technical Reports Server (NTRS)
Gilbert, Fabien; Koch, Grady; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Flamant, Pierre H.; Singh, Upendra N.
2011-01-01
The vertical profiling ofCO2 turbulent fluxes in the atmospheric boundary layer (ABL) is investigated using a coherent differential absorption lidar (CDIAL) operated nearby a tall tower in Wisconsin during June 2007. A CDIAL can perform simultaneous range-resolved CO2 DIAL and velocity measurements. The lidar eddy covariance technique is presented. The aims of the study are (i) an assessment of performance and current limitation of available CDIAL for CO2 turbulent fluxes and (ii) the derivation of instrument specifications to build a future CDIAL to perform accurate range-resolved CO2 fluxes. Experimental lidar CO2 mixing ratio and vertical velocity profiles are successfully compared with in situ sensors measurements. Time and space integral scales of turbulence in the ABL are addressed that result in limitation for time averaging and range accumulation. A first attempt to infer CO2 fluxes using an eddy covariance technique with currently available 2-mm CDIAL dataset is reported.
NASA Astrophysics Data System (ADS)
Chatelain, Philippe; Duponcheel, Matthieu; Caprace, Denis-Gabriel; Marichal, Yves; Winckelmans, Gregoire
2017-11-01
A vortex particle-mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES) of vertical axis wind turbine (VAWT) flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied with respect to the VAWT geometry and its operating point. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.
Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation
NASA Astrophysics Data System (ADS)
Li, Xian-Xiang; Britter, Rex; Norford, Leslie K.
2016-11-01
This study employs a validated large-eddy simulation (LES) code with high tempo-spatial resolution to investigate the effect of a stably stratified roughness sublayer (RSL) on scalar transport within an urban street canyon. The major effect of stable stratification on the flow and turbulence inside the street canyon is that the flow slows down in both streamwise and vertical directions, a stagnant area near the street level emerges, and the vertical transport of momentum is weakened. Consequently, the transfer of heat between the street canyon and overlying atmosphere also gets weaker. The pollutant emitted from the street level 'pools' within the lower street canyon, and more pollutant accumulates within the street canyon with increasing stability. Under stable stratification, the dominant mechanism for pollutant transport within the street canyon has changed from ejections (flow carries high-concentration pollutant upward) to unorganized motions (flow carries high-concentration pollutant downward), which is responsible for the much lower dispersion efficiency under stable stratifications.
The altitude distribution of the Venus ultraviolet nightglow and implications on vertical transport
NASA Technical Reports Server (NTRS)
Gerard, J. C.; Stewart, A. I. F.; Bougher, S. W.
1981-01-01
The altitude distribution of the nitric oxide nightglow was measured with an ultraviolet spectrometer on board Pioneer Venus, in order to study the effects of the distribution on the Venus nightside lower thermosphere transport properties. Limb profiles were obtained with an 8 ms integration period on several orbits near periapsis. The observations were made between P minus 2 min and P plus 4 min, where altitude ranges between 150 and 350 km, and latitude varies from 24 degrees N to 9 degrees S. A method independent of the spacecraft attitude data was used to fit the observed limb profiles, and to find the altitude of the maximum of the layer (115 plus or minus 2 km), and the topside scale height (about 3 km). It is shown that downward transport by diffusion alone is not sufficient, and if vertical motion is parameterized by eddy diffusion, an eddy diffusion coefficient is deduced from the altitude of the layer.
A novel ozone sensor for various environmental applications
NASA Technical Reports Server (NTRS)
Guesten, H.; Heinrich, G.; Schmidt, R. W. H.; Schurath, U.
1994-01-01
A small, lightweight, and fast-response ozone sensor for various environmental applications is described. At a flow rate of 100 l/min(-1) the ozone sensor has a response time of significantly better than 0.1 s with a detection limit lower than 100 pptv. The ozone sensor was successfully tested in various environmental applications, i.e. in measuring directly the vertical ozone flux onto agricultural land utilizing the eddy correlation or covariance technique and in monitoring horizontal and vertical ozone profiles in the troposphere and stratosphere.
Measuring large-scale vertical motion in the atmosphere with dropsondes
NASA Astrophysics Data System (ADS)
Bony, Sandrine; Stevens, Bjorn
2017-04-01
Large-scale vertical velocity modulates important processes in the atmosphere, including the formation of clouds, and constitutes a key component of the large-scale forcing of Single-Column Model simulations and Large-Eddy Simulations. Its measurement has also been a long-standing challenge for observationalists. We will show that it is possible to measure the vertical profile of large-scale wind divergence and vertical velocity from aircraft by using dropsondes. This methodology was tested in August 2016 during the NARVAL2 campaign in the lower Atlantic trades. Results will be shown for several research flights, the robustness and the uncertainty of measurements will be assessed, ands observational estimates will be compared with data from high-resolution numerical forecasts.
A heat budget for the Stratus mooring in the southeast Pacific
NASA Astrophysics Data System (ADS)
Holte, J.; Straneo, F.; Weller, R. A.; Farrar, J. T.
2012-12-01
The surface layer of the southeast Pacific Ocean (SEP) requires an input of fresh, cold water to balance evaporation and heat gain from incoming solar radiation. Numerous processes contribute to closing the SEP's upper-ocean heat budget, including gyre circulation, Ekman transport and pumping, vertical mixing, and horizontal eddy heat flux divergence. However, there is little consensus on which processes are most important, as many modeling and observational studies have reported conflicting results. To examine how the SEP maintains relatively cool surface temperatures despite such strong surface forcing, we calculate a heat budget for the upper 250 m of the Stratus mooring. The Stratus mooring, deployed at 85(^o)W 20(^o)S since 2000, is in the center of the stratus cloud region. The surface buoy measures meteorological conditions and air-sea fluxes; the mooring line is heavily instrumented, measuring temperature, salinity, and velocity at approximately 15 to 20 depth levels. Our heat budget covers 2004 - 2010. The net air-sea heat flux over this period is 32 W m(^{-2}), approximately 2/3 of the flux over earlier periods. We use Argo profiles, relatively abundant in the region since 2004, to calculate horizontal temperature gradients. These gradients, coupled with the mooring velocity record, are used to estimate the advective heat flux. We find that the cool advective heat flux largely compensates the air-sea heat flux at the mooring; in our calculation this term includes the mean gyre circulation, horizontal Ekman transport, and some contribution from eddies. The passage of numerous eddies is evident in the mooring velocity record, but with the available data we cannot separate the eddy heat flux divergence from the mean heat advection. Vertical mixing and Ekman pumping across the base of the layer are both small.
Single-particle dispersion in stably stratified turbulence
NASA Astrophysics Data System (ADS)
Sujovolsky, N. E.; Mininni, P. D.; Rast, M. P.
2018-03-01
We present models for single-particle dispersion in vertical and horizontal directions of stably stratified flows. The model in the vertical direction is based on the observed Lagrangian spectrum of the vertical velocity, while the model in the horizontal direction is a combination of a continuous-time eddy-constrained random walk process with a contribution to transport from horizontal winds. Transport at times larger than the Lagrangian turnover time is not universal and dependent on these winds. The models yield results in good agreement with direct numerical simulations of stratified turbulence, for which single-particle dispersion differs from the well-studied case of homogeneous and isotropic turbulence.
NASA Astrophysics Data System (ADS)
Ma, Xinfang; Zhou, Tong; Zou, Yushi
2017-05-01
Strike-slip fault geostress and dipping laminated structures in Lujiaping shale formation typically result in difficultly predicting hydraulic fracture (HF) geometries. In this study, a novel 3D fracture propagation model based on discrete element method (DEM) is established. A series of simulations is performed to illustrate the influence of vertical stress difference (△σv = σv-σh), fluid viscosity, and injection rate, on HF growth geometry in the dipping layered formation. Results reveal that the fracturing fluid can easily infiltrate the dipping bedding plane (BP) interfaces with low net pressure for △σv = 1 MPa. HF height growth is also restricted. With increased △σv, fracture propagation in the vertical direction is enhanced, and a fracture network is formed by VF and partially opened dipping BPs. However, it is likely to create simple VF for △σv = 20 MPa. Appropriately increasing fracturing fluid viscosity and injection rate is conductive to weakening the containment effect of BPs on HF growth by increasing the fluid net pressure. However, no indication is found on whether a higher fracturing fluid viscosity is better. Higher viscosity can reduce the activation of BPs, so a stimulated reservoir volume is not necessarily increased. All these results can serve as theoretical guidance for the optimization of fracturing treatments in Lujiaping shale formation.
Variations of Luzon Undercurrent from observations and numerical model simulations
NASA Astrophysics Data System (ADS)
Wang, Qingye; Zhai, Fangguo; Hu, Dunxin
2014-06-01
Significant intraseasonal variability (ISV) of about 45-80 days and seasonal variation of the Luzon Undercurrent (LUC) at 18°N are studied using direct current measurements and a high-resolution global Hybrid Coordinate Ocean Model. The variations of the LUC are vertically coherent with those of Kuroshio Current both on intraseasonal and seasonal time scales. The ISV of the LUC is dominated by eddies with diameters of about 200-300 km and extending from sea surface to intermediate layer east of Luzon Island. The LUC becomes strong (weak) when cyclonic (anticyclonic) eddies occur. The eddies east of Luzon Island mainly originate from the bifurcation point (˜13°N) of the North Equatorial Current. These eddies propagate northwestward at a typical propagation speed of about 0.16 m s-1 along the east coast of Philippines, gradually strengthen and pass the Luzon coast, and continue northward to Luzon strait. On seasonal time scale, the LUC is strong (weak) in boreal winter (summer), and this variation is related to the seasonal evolution of large-scale ocean circulation east of Philippines mainly controlled by local wind forcing.
Magnetorotational dynamo action in the shearing box
NASA Astrophysics Data System (ADS)
Walker, Justin; Boldyrev, Stanislav
2017-09-01
Magnetic dynamo action caused by the magnetorotational instability is studied in the shearing-box approximation with no imposed net magnetic flux. Consistent with recent studies, the dynamo action is found to be sensitive to the aspect ratio of the box: it is much easier to obtain in tall boxes (stretched in the direction normal to the disc plane) than in long boxes (stretched in the radial direction). Our direct numerical simulations indicate that the dynamo is possible in both cases, given a large enough magnetic Reynolds number. To explain the relatively larger effort required to obtain the dynamo action in a long box, we propose that the turbulent eddies caused by the instability most efficiently fold and mix the magnetic field lines in the radial direction. As a result, in the long box the scale of the generated strong azimuthal (stream-wise directed) magnetic field is always comparable to the scale of the turbulent eddies. In contrast, in the tall box the azimuthal magnetic flux spreads in the vertical direction over a distance exceeding the scale of the turbulent eddies. As a result, different vertical sections of the tall box are permeated by large-scale non-zero azimuthal magnetic fluxes, facilitating the instability. In agreement with this picture, the cases when the dynamo is efficient are characterized by a strong intermittency of the local azimuthal magnetic fluxes.
Eddy correlation measurements of submarine groundwater discharge
Crusius, John; Berg, P.; Koopmans, D.J.; Erban, L.
2008-01-01
This paper presents a new, non-invasive means of quantifying groundwater discharge into marine waters using an eddy correlation approach. The method takes advantage of the fact that, in virtually all aquatic environments, the dominant mode of vertical transport near the sediment–water interface is turbulent mixing. The technique thus relies on measuring simultaneously the fluctuating vertical velocity using an acoustic Doppler velocimeter and the fluctuating salinity and/or temperature using rapid-response conductivity and/or temperature sensors. The measurements are typically done at a height of 5–15 cm above the sediment surface, at a frequency of 16 to 64 Hz, and for a period of 15 to 60 min. If the groundwater salinity and/or temperature differ from that of the water column, the groundwater specific discharge (cm d− 1) can be quantified from either a heat or salt balance. Groundwater discharge was estimated with this new approach in Salt Pond, a small estuary on Cape Cod (MA, USA). Estimates agreed well with previous estimates of discharge measured using seepage meters and 222Rn as a tracer. The eddy correlation technique has several desirable characteristics: 1) discharge is quantified under in-situ hydrodynamic conditions; 2) salinity and temperature can serve as two semi-independent tracers of discharge; 3) discharge can be quantified at high temporal resolution, and 4) long-term records of discharge may be possible, due to the low power requirements of the instrumentation.
NASA Astrophysics Data System (ADS)
Bouruet-Aubertot, Pascale; Cuypers, Yannis; Ferron, Bruno; Dausse, Denis; Ménage, Olivier; Atmadipoera, Agus; Jaya, Indra
2018-05-01
Microstructure measurements were performed along two sections through the Halmahera Sea and the Ombai Strait and at a station in the deep Banda Sea. Contrasting dissipation rates (𝜖) and vertical eddy diffusivities (K z ) were obtained with depth-averaged ranges of ˜ [9 × 10^{-10}-10^{-5}] W kg- 1 and of ˜ [1 × 10^{-5}-2 × 10^{-3}] m2 s- 1, respectively. Similarly, turbulence intensity, I={ɛ }/(ν N2) with ν the kinematic viscosity and N the buoyancy frequency, was found to vary seven orders of magnitude with values up to 107. These large ranges of variations were correlated with the internal tide energy level, which highlights the contrast between regions close and far from internal tide generations. Finescale parameterizations of 𝜖 induced by the breaking of weakly nonlinear internal waves were only relevant in regions located far from any generation area ("far field"), at the deep Banda Sea station. Closer to generation areas, at the "intermediate field" station of the Halmahera Sea, a modified formulation of MacKinnon and Gregg (2005) was validated for moderately turbulent regimes with 100 < I < 1000. Near generation areas marked by strong turbulent regimes such as "near field" stations within strait and passages, 𝜖 is most adequately inferred from horizontal velocities provided that part of the inertial subrange is resolved, according to Kolmogorov scaling.
Critical Latitude in Tidal Dynamics Using the Kara Sea as an Example
NASA Astrophysics Data System (ADS)
Kagan, B. A.; Sofina, E. V.; Timofeev, A. A.
2018-03-01
It is well known that, within the linear nonviscous equations of tidal dynamics, the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components unlimitedly increase when approaching the critical latitude. It is also known that the linear equations of tidal dynamics with a constant and specified vertical eddy viscosity indicate the occurrence of significant tidal velocity shears in the near-bottom layer, which are responsible for increasing the baroclinic tidal energy dissipation, the turbulent kinetic energy, and the thickness of the bottom boundary layer. The first circumstance—the growth of the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components—is due to the elimination in the original equations of small terms, which are small everywhere except for the critical latitude zone. The second circumstance—the occurrence of significant tidal velocity shears—is due to the fact that internal tidal waves, which induce the dissipation of the baroclinic tidal energy and the diapycnal diffusion, are either not taken into account or described inadequately. It is suggested that diapycnal diffusion can lead to the degeneration (complete or partial) of tidal velocity shears, with all the ensuing consequences. The aforesaid is confirmed by simulation results obtained using the QUODDY-4 high-resolution three-dimensional finite-element hydrostatic model along the 66.25° E section, which passes in the Kara Sea across the critical latitude.
Effect of vegetative canopy architecture on vertical transport of massless particles
USDA-ARS?s Scientific Manuscript database
A series of large-eddy simulations were performed to examine the effect of canopy architecture on particle dispersion. A heterogeneous canopy geometry was simulated that consists of a set of infinitely repeating vegetation rows. Simulations in which row structure was approximately resolved were comp...
NASA Astrophysics Data System (ADS)
Smith-Konter, B. R.; Gonzalez-Ortega, J. A.; Merrifield, M. A.; Tong, X.; Sandwell, D. T.; Hardy, S.; Howell, S. M.
2016-12-01
On April 4, 2010, the El Mayor-Cucapah earthquake (Mw 7.2) ruptured a 120 km long set of faults of the southernmost San Andreas Fault System in northeastern Baja California, Mexico. Near-field coseismic GPS observations revealed up to 1.1 m of horizontal surface slip and 0.6 m of vertical subsidence at near-field stations. Early near-field InSAR and GPS time series postseismic observations also suggested several tens of centimeters of afterslip occurred within the first two years, however postseismic transients due to viscoelastic or poroelastic relaxation have also been offered as candidate models. Here we investigate the role of viscoelastic transients from six years of regional far-field ( 200 km from rupture) tide gauge and vertical GPS time series observations to further constrain postseismic deformation mechanisms. Vertical viscoelastic postseismic models of the El Mayor-Cucapah earthquake suggest alternating quadrants of uplift and subsidence straddling the rupture, with uplift to the north near the Salton Trough and subsidence to the west spanning the San Diego and Ensenada regions. These decaying transient motions are confirmed by both vertical postseismic GPS and tide gauge-altimetry observations, in both the near- and far fields. For example, tide gauge data in San Diego, which typically record vertical land motions on the order of a few millimeters per year, recorded nearly 30 mm of transient land subsidence over the first 3 years. We find that the magnitude and decay of far-field postseismic subsidence can be attributed to viscoelastic relaxation of the mantle assuming a temporally varying rheology; viscosities as low as 1017 Pa-s for at least the first 6-12 months, followed by an increasing viscosity on the order of 1018 Pa-s in the years following, best fit the data. While transient viscosity anomalies have been previously suggested from GPS data spanning the first 1.5 years following the earthquake [Pollitz et al., 2012], the combined results from transient far-field sea level rise spanning an additional 5 years help to place additional constraints on the variability of crust-mantle rheology of the southern San Andreas Fault System.
NASA Astrophysics Data System (ADS)
Landahl, M. T.
1984-08-01
The fundamental ideas behind Prandtl's famous mixing length theory are discussed in the light of newer findings from experimental and theoretical research on coherent turbulence structures in the region near solid walls. A simple theoretical model for 'flat' structures is used to examine the fundamental assumptions behind Prandtl's theory. The model is validated by comparisons with conditionally sampled velocity data obtained in recent channel flow experiments. Particular attention is given to the role of pressure fluctuations on the evolution of flat eddies. The validity of Prandtl's assumption that an element of fluid retains its streamwise momentum as it is moved around by turbulence is confirmed for flat eddies. It is demonstrated that spanwise pressure gradients give rise to a contribution to the vertical displacement of a fluid element which is proportional to the distance from the wall. This contribution is particularly important for eddies that are highly elongated in the streamwise direction.
Comparison of Forecast and Observed Energetics
NASA Technical Reports Server (NTRS)
Baker, W. E.; Brin, Y.
1984-01-01
An energetics analysis scheme was developed to compare the observed kinetic energy balance over North America with that derived from forecast fields of the GLAS fourth order model for the 13 to 15 January 1979 cyclone case. It is found that: (1) the observed and predicted kinetic energy and eddy conversion are in good qualitative agreement, although the model eddy conversion tends to be 2 to 3 times stronger than the observed values. The eddy conversion which is stronger in the 12 h forecast than in observations and may be due to several factors is studied; (2) vertical profiles of kinetic energy generation and dissipation exhibit lower and upper tropospheric maxima in both the forecast and observations; (3) a lag in the observational analysis with the maximum in the observed kinetic energy occurring at 0000 GMT 14 January over the same region as the maximum ddy conversion 12 h earlier is noted.
A comparison of observed and forecast energetics over North America
NASA Technical Reports Server (NTRS)
Baker, W. E.; Brin, Y.
1985-01-01
The observed kinetic energy balance is calculated over North America and compared with that computed from forecast fields for the 13-15 January 1979 cyclone. The FGGE upper-air rawinsonde network serves as the observational database while the forecast energetics are derived from a numerical integration with the GLAS fourth-order general circulation model initialized at 00 GMT 13 January. Maps of the observed and predicted kinetic energy and eddy conversion are in good qualitative agreement, although the model eddy conversion tends to be 2 to 3 times stronger than the observed values. Both the forecast and observations exhibit the lower and upper tropospheric maxima in vertical profiles of kinetic energy generation and dissipation typically found in cyclonic disturbances. An interesting time lag is noted in the observational analysis with the maximum observed kinetic energy occurring 12 h later than the maximum eddy conversion over the same region.
Yahya, S M; Anwer, S F; Sanghi, S
2013-10-01
In this work, Thermal Large Eddy Simulation (TLES) is performed to study the behavior of weakly compressible Newtonian fluids with anisotropic temperature-dependent viscosity in forced convection turbulent flow. A systematic analysis of variable-viscosity effects, isolated from gravity, with relevance to industrial cooling/heating applications is being carried out. A LES of a planar channel flow with significant heat transfer at a low Mach number was performed to study effects of fluid property variation on the near-wall turbulence structure. In this flow configuration the top wall is maintained at a higher temperature (T hot ) than the bottom wall (T cold ). The temperature ratio (R θ = T hot /T cold ) is fixed at 1.01, 2 and 3 to study the effects of property variations at low Mach number. Results indicate that average and turbulent fields undergo significant changes. Compared with isothermal flow with constant viscosity, we observe that turbulence is enhanced in the cold side of the channel, characterized by locally lower viscosity whereas a decrease of turbulent kinetic energy is found at the hot wall. The turbulent structures near the cold wall are very short and densely populated vortices but near the hot wall there seems to be a long streaky structure or large elongated vortices. Spectral study reveals that turbulence is completely suppressed at the hot side of the channel at a large temperature ratio because no inertial zone is obtained (i.e. index of Kolmogorov scaling law is zero) from the spectra in these region.
Saenz, Juan A.; Chen, Qingshan; Ringler, Todd
2015-05-19
Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less
Inviscid to turbulent transition of trailing vortices
NASA Technical Reports Server (NTRS)
Iversen, J. D.
1974-01-01
The characteristics of the plateau region in the vortex system which trails from a lifting wing are discussed. The decay of the vortex due to viscous or turbulent shear is very slow in the plateau so that the maximum tangential speed in the vortices remains nearly constant for some distance downstream of roll-up and then begins to decrease, becoming inversely proportional to the square root of the distance downstream. Mathematical models are developed to analyze the structure of the plateau area. Solutions are obtained for both constant and variable eddy viscosity models.
On the Connection Between One-and Two-Equation Models of Turbulence
NASA Technical Reports Server (NTRS)
Menter, F. R.; Rai, Man Mohan (Technical Monitor)
1994-01-01
A formalism will be presented that allows the transformation of two-equation eddy viscosity turbulence models into one-equation models. The transformation is based on an assumption that is widely accepted over a large range of boundary layer flows and that has been shown to actually improve predictions when incorporated into two-equation models of turbulence. Based on that assumption, a new one-equation turbulence model will be derived. The new model will be tested in great detail against a previously introduced one-equation model and against its parent two-equation model.
1984-08-01
found in References 1-3. 2. Modeling of Roughness Effects on Turbulent Flow In turbulent flow analysis , use of time-averaged equations leads to the...eddy viscosity and the mixing length which are important parameters used in current algebraic modeling of the turbulence shear term. Two different ...surfaces with three-dimensional (distributed) roughness elements. Calculations using the present model have been compared with experimental data from
NASA Technical Reports Server (NTRS)
Gupta, R. N.; Trimpi, R. L.
1974-01-01
An analysis is presented for the relaxation of a turbulent boundary layer on a semiinfinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion tube flows. The flow-governing equations have been transformed into the Lamcrocco variables. The numerical results indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin-friction than a fully laminar boundary layer.
Atmospheric tides on Venus. IV - Topographic winds and sediment transport
NASA Astrophysics Data System (ADS)
Dobrovolskis, A. R.
1993-06-01
A novel theory is presented for the Venus boundary layer which encompasses the effects of topography and uses the mixing-length hypothesis to preclude the unknown eddy viscosity. The maps of mass-flux and erosion/deposition rate presented are based on Pioneer Venus orbiter relief measurements. The typically 19 cm/sec friction speeds associated with the present theory are several times greater than those estimated on the basis of Venera 9 and 10 anemometry, and mean aeolian transport is generally away from the equator, contrary to Magellan orbiter windstreak directions.
On turbulent flows dominated by curvature effects
NASA Technical Reports Server (NTRS)
Cheng, G. C.; Farokhi, S.
1992-01-01
A technique for improving the numerical predictions of turbulent flows with the effect of streamline curvature is developed. Separated flows and the flow in a curved duct are examples of flowfields where streamline curvature plays a dominant role. New algebraic formulations for the eddy viscosity incorporating the k-epsilon turbulence model are proposed to account for various effects of streamline curvature. The loci of flow reversal of the separated flows over various backward-facing steps are employed to test the capability of the proposed turbulence model in capturing the effect of local curvature.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2001-01-01
Three-dimensional transonic flow over a delta wing is investigated using several turbulence models. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition aft of the leading edge or are fully turbulent are performed. These computations show that grid resolution, transition location and turbulence model significantly affect the 3D flowfield.
Adaptive finite element method for turbulent flow near a propeller
NASA Astrophysics Data System (ADS)
Pelletier, Dominique; Ilinca, Florin; Hetu, Jean-Francois
1994-11-01
This paper presents an adaptive finite element method based on remeshing to solve incompressible turbulent free shear flow near a propeller. Solutions are obtained in primitive variables using a highly accurate finite element approximation on unstructured grids. Turbulence is modeled by a mixing length formulation. Two general purpose error estimators, which take into account swirl and the variation of the eddy viscosity, are presented and applied to the turbulent wake of a propeller. Predictions compare well with experimental measurements. The proposed adaptive scheme is robust, reliable and cost effective.
Wave-induced drift of large floating sheets
NASA Astrophysics Data System (ADS)
Christensen, K. H.; Weber, J. E.
In this article we study the wave-induced drift of large, flexible shallow floating objects, referred to as sheets. When surface waves propagate through a sheet, they provide a mean stress on the sheet, resulting in a mean drift. In response, the sheet generates an Ekman current. The drift velocity of the sheet is determined by (i) the wave-induced stress, (ii) the viscous stress due to the Ekman current, and (iii) the Coriolis force. The sheet velocity and the current beneath the sheet are determined for constant and depth-varying eddy viscosities.
NASA Astrophysics Data System (ADS)
Sullivan, Peter P.; McWilliams, James C.; Melville, W. Kendall
2004-05-01
We devise a stochastic model for the effects of breaking waves and fit its distribution functions to laboratory and field data. This is used to represent the space time structure of momentum and energy forcing of the oceanic boundary layer in turbulence-resolving simulations. The aptness of this breaker model is evaluated in a direct numerical simulation (DNS) of an otherwise quiescent fluid driven by an isolated breaking wave, and the results are in good agreement with laboratory measurements. The breaker model faithfully reproduces the bulk features of a breaking event: the mean kinetic energy decays at a rate approaching t(-1) , and a long-lived vortex (eddy) is generated close to the water surface. The long lifetime of this vortex (more than 50 wave periods) makes it effective in energizing the surface region of oceanic boundary layers. Next, a comparison of several different DNS of idealized oceanic boundary layers driven by different surface forcing (i.e. constant current (as in Couette flow), constant stress, or a mixture of constant stress plus stochastic breakers) elucidates the importance of intermittent stress transmission to the underlying currents. A small amount of active breaking, about 1.6% of the total water surface area at any instant in time, significantly alters the instantaneous flow patterns as well as the ensemble statistics. Near the water surface a vigorous downwelling upwelling pattern develops at the head and tail of each three-dimensional breaker. This enhances the vertical velocity variance and generates both negative- and positive-signed vertical momentum flux. Analysis of the mean velocity and scalar profiles shows that breaking effectively increases the surface roughness z_o by more than a factor of 30; for our simulations z_o/lambda {≈} 0.04 to 0.06, where lambda is the wavelength of the breaking wave. Compared to a flow driven by a constant current, the extra mixing from breakers increases the mean eddy viscosity by more than a factor of 10 near the water surface. Breaking waves alter the usual balance of production and dissipation in the turbulent kinetic energy (TKE) budget; turbulent and pressure transports and breaker work are important sources and sinks in the budget. We also show that turbulent boundary layers driven by constant current and constant stress (i.e. with no breaking) differ in fundamental ways. The additional freedom provided by a constant-stress boundary condition permits finite velocity variances at the water surface, so that flows driven by constant stress mimic flows with weakly and statistically homogeneous breaking waves.
Turbulent CO2 Flux Measurements by Lidar: Length Scales, Results and Comparison with In-Situ Sensors
NASA Technical Reports Server (NTRS)
Gilbert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.
2009-01-01
The vertical CO2 flux in the atmospheric boundary layer (ABL) is investigated with a Doppler differential absorption lidar (DIAL). The instrument was operated next to the WLEF instrumented tall tower in Park Falls, Wisconsin during three days and nights in June 2007. Profiles of turbulent CO2 mixing ratio and vertical velocity fluctuations are measured by in-situ sensors and Doppler DIAL. Time and space scales of turbulence are precisely defined in the ABL. The eddy-covariance method is applied to calculate turbulent CO2 flux both by lidar and in-situ sensors. We show preliminary mean lidar CO2 flux measurements in the ABL with a time and space resolution of 6 h and 1500 m respectively. The flux instrumental errors decrease linearly with the standard deviation of the CO2 data, as expected. Although turbulent fluctuations of CO2 are negligible with respect to the mean (0.1 %), we show that the eddy-covariance method can provide 2-h, 150-m range resolved CO2 flux estimates as long as the CO2 mixing ratio instrumental error is no greater than 10 ppm and the vertical velocity error is lower than the natural fluctuations over a time resolution of 10 s.
Dynamically consistent hydrography and absolute velocity in the eastern North Atlantic Ocean
NASA Technical Reports Server (NTRS)
Wunsch, Carl
1994-01-01
The problem of mapping a dynamically consistent hydrographic field and associated absolute geostrophic flow in the eastern North Atlantic between 24 deg and 36 deg N is related directly to the solution of the so-called thermocline equations. A nonlinear optimization problem involving Needler's P equation is solved to find the hydrography and resulting flow that minimizes the vertical mixing above about 1500 m in the ocean and is simultaneously consistent with the observations. A sharp minimum (at least in some dimensions) is found, apparently corresponding to a solution nearly conserving potential vorticity and with vertical eddy coefficient less than about 10(exp -5) sq m/s. Estimates of `residual' quantities such as eddy coefficients are extremely sensitive to slight modifications to the observed fields. Boundary conditions, vertical velocities, etc., are a product of the optimization and produce estimates differing quantitatively from prior ones relying directly upon observed hydrography. The results are generally insensitive to particular elements of the solution methodology, but many questions remain concerning the extent to which different synoptic sections can be asserted to represent the same ocean. The method can be regarded as a practical generalization of the beta spiral and geostrophic balance inverses for the estimate of absolute geostrophic flows. Numerous improvements to the methodology used in this preliminary attempt are possible.
Integrated and spectral energy flows of the GLAS GCM
NASA Technical Reports Server (NTRS)
Tennebaum, J.
1981-01-01
Methods to analyze the generation, transport, and dissipation of energy to study geophysical fluid flows are discussed. Energetics analyses are pursued in several directions: (1) the longitudinal and time dependence on the energy flow to the stratosphere was examined as a function of geographical sector; (2) strong and weak energy flows were correlated by medium range forecasts; (3) the one dimensional spectral results (Fourier services around latitude circles) were extended to spherical harmonics over a global domain; (4) the validity of vertical velocities derived from mass convergence was examined for their effect on the conversion of eddy available potential energy to eddy kinetic energy.
NASA Astrophysics Data System (ADS)
Nadai, A.
2016-02-01
The HF ocean surface radar (HFOSR) is one of the powerful tools to measure the ocean current parameters like surface currents. Three observations of the Kuroshio current in the Tokara straight using HFOSR had done by the National Institute of Information and Comunications Technology (NICT: the former name is the Communications Research Laboratory). The first-order echoes on Doppler spectra of HFOSR shows broaden and splitting shape in the region of the border between the Kuroshio currents and coastal waters. The surface velocity maps show the existence of eddy on the border. The investigation of the mechanism of broadening first order-echoes by Nadai (2006) revealed that the modulation of wave fields from surface currents like eddy is the cause of broadening and the measured current fields also influenced the modulated wave fields. Moreover, Nadai (2006) also suggested that the influence is able to reduce using the average of two radial velocities extracted by the first-order echoes. In this paper, the results of current field observation around the border between the Kuroshio current and coastal waters are presented. Many small scale eddies are observed at the border of the Kuroshio current and coastal waters. The typical radius of the eddies is about 10km. Usury the observation of such a small scale eddy is difficult, but the eddies with same scale are observed by airborne synthetic aperture radar in the same area at different time. The eddies shows strong rotation as the typical tangential speed is about 1m/s. While the typical speed of the Kuroshio current is about 1.5m/s, the typical speed of the eddy movements is about 0.7m/s. No eddies generated in the radar coverage, but one or two eddies entered in the radar coverage a day. Therefore the origin of these eddies will exist in the upstream area of the radar coverage. Using the compensation method for the influence of the modulated wave field suggested by Nadai (2006), the eddies shows weak divergence. It is important to consider the mixing between the water of Kuroshio region and East China Sea. However the vertical structure is needed for more precise discussion.
Large eddy simulation of turbine wakes using higher-order methods
NASA Astrophysics Data System (ADS)
Deskos, Georgios; Laizet, Sylvain; Piggott, Matthew D.; Sherwin, Spencer
2017-11-01
Large eddy simulations (LES) of a horizontal-axis turbine wake are presented using the well-known actuator line (AL) model. The fluid flow is resolved by employing higher-order numerical schemes on a 3D Cartesian mesh combined with a 2D Domain Decomposition strategy for an efficient use of supercomputers. In order to simulate flows at relatively high Reynolds numbers for a reasonable computational cost, a novel strategy is used to introduce controlled numerical dissipation to a selected range of small scales. The idea is to mimic the contribution of the unresolved small-scales by imposing a targeted numerical dissipation at small scales when evaluating the viscous term of the Navier-Stokes equations. The numerical technique is shown to behave similarly to the traditional eddy viscosity sub-filter scale models such as the classic or the dynamic Smagorinsky models. The results from the simulations are compared to experimental data for a Reynolds number scaled by the diameter equal to ReD =1,000,000 and both the time-averaged stream wise velocity and turbulent kinetic energy (TKE) are showing a good overall agreement. At the end, suggestions for the amount of numerical dissipation required by our approach are made for the particular case of horizontal-axis turbine wakes.
MEASUREMENT OF BI-DIRECTIONAL AMMONIA FLUXES OVER SOYBEAN USING MODIFIED BOWEN-RATIO TECHNIQUE
Measurements of bi-directional ammonia exchange over a fertilized soybean canopy are presented for an 8-week period during the summer of 2002. The modified Bowne-ratio approach was used to determine fluxes from vertical NH3 and temperature gradients in combination with eddy covar...
Oceanic lithosphere and asthenosphere - Thermal and mechanical structure
NASA Technical Reports Server (NTRS)
Schubert, G.; Yuen, D. A.; Froidevaux, C.
1976-01-01
A coupled thermomechanical subsolidus model of the oceanic lithosphere and asthenosphere is developed which includes vertical heat conduction, a temperature-dependent thermal conductivity, heat advection by a horizontal and vertical mass flow that depends on depth and age, contributions of viscous dissipation or shear heating, a linear or nonlinear deformation law relating shear stress and strain rate, as well as a temperature- and pressure-dependent viscosity. The model requires a constant horizontal velocity and temperature at the surface, but zero horizontal velocity and constant temperature at great depths. The depth- and age-dependent temperature, horizontal and vertical velocities, and viscosity structure of the lithosphere and asthenosphere are determined along with the age-dependent shear stress in those two zones. The ocean-floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of ocean-floor age; seismic velocity profiles which exhibit a marked low-velocity zone are constructed from the age-dependent geotherms and assumed values of the elastic parameters. It is found that simple boundary-layer cooling determines the thermal structure at young ages, while effects of viscous dissipation become more important at older ages.
Unsteady Convection Flow and Heat Transfer over a Vertical Stretching Surface
Cai, Wenli; Su, Ning; Liu, Xiangdong
2014-01-01
This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient. PMID:25264737
Unsteady convection flow and heat transfer over a vertical stretching surface.
Cai, Wenli; Su, Ning; Liu, Xiangdong
2014-01-01
This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.
Vertical Eddy Diffusivity as a Control Parameter in the Tropical Pacific Ocean
NASA Astrophysics Data System (ADS)
Martinez Avellaneda, N.; Cornuelle, B.; Mazloff, M. R.; Stammer, D.
2012-12-01
Ocean models suffer from errors in the treatment of turbulent sub-grid scale motions causing mixing and energy dissipation. Unrealistic small-scale features in models can have large-scale consequences, such as biases in the upper ocean temperature, a symptom of poorly-simulated upwelling, currents and air-sea interactions. This is of special importance in the tropical Pacific Ocean, which is home to energetic air-sea interactions that affect global climate. It has been shown in a number of studies that the simulated ENSO variability is highly dependent on the state of the ocean (e.g.: background mixing). Moreover, the magnitude of the vertical numerical diffusion is of primary importance in properly reproducing the Pacific equatorial thermocline. Yet, it is a common practice to use spatially uniform mixing parameters in ocean simulations. This work is part of a NASA-funded project to estimate the space-varying ocean mixing coefficients in an eddy-permitting model of the tropical Pacific. The usefulness of assimilation techniques in estimating mixing parameters has been previously explored (e.g.: Stammer, 2005, Ferreira et al., 2005). The authors also demonstrated that the spatial structure of the Equatorial Undercurrent (EUC) could be improved by adjusting wind-stress and surface buoyancy flux within their error bounds. In our work, we address the important question of whether adjusting mixing parameterizations can bring about similar improvements. To that end, an eddy-permitting state estimate for the tropical Pacific is developed using the MIT general circulation model and its adjoint where the vertical diffusivity is set as a control parameter. Complementary adjoint-based sensitivity results show strong sensitivities of the Tropical Pacific thermocline (thickness and location) and the EUC transport to the vertical diffusivity in the tropics. Argo, CTD, XBT and mooring in-situ data, as well as TMI SST and altimetry observations are assimilated in order to reduce the misfit between the model simulations and the ocean observations. Model domain topography of 1/3dgr of spatial resolution interpolated from ETOPO 2. The first and the last color levels represent regions shallower than 100m and deeper than 5000m, respectively
Validating Variance Similarity Functions in the Entrainment Zone
NASA Astrophysics Data System (ADS)
Osman, M.; Turner, D. D.; Heus, T.; Newsom, R. K.
2017-12-01
In previous work, the water vapor variance in the entrainment zone was proposed to be proportional to the convective velocity scale, gradient water vapor mixing ratio and the Brunt-Vaisala frequency in the interfacial layer, while the variance of the vertical wind at in the entrainment zone was defined in terms of the convective velocity scale. The variances in the entrainment zone have been hypothesized to depend on two distinct functions, which also depend on the Richardson number. To the best of our knowledge, these hypotheses have never been tested observationally. Simultaneous measurements of the Eddy correlation surface flux, wind shear profiles from wind profilers, and variance profile measurements of vertical motions and water vapor by Doppler and Raman lidars, respectively, provide a unique opportunity to thoroughly examine the functions used in defining the variances and validate them. These observations were made over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site. We have identified about 30 cases from 2016 during which the convective boundary layer (CBL) is quasi-stationary and well mixed for at least 2 hours. The vertical profiles of turbulent fluctuations of the vertical wind and water vapor have been derived using an auto covariance technique to separate out the instrument random error to a set of 2-h period time series. The error analysis of the lidars observations demonstrates that the lidars are capable of resolving the vertical structure of turbulence around the entrainment zone. Therefore, utilizing this unique combination of observations, this study focuses on extensively testing the hypotheses that the second-order moments are indeed proportional to the functions which also depend on Richardson number. The coefficients that are used in defining the functions will also be determined observationally and compared against with the values suggested by Large eddy simulation (LES) studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keska, Jerry K.; Hincapie, Juan; Jones, Richard
In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena intomore » multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)« less
LES versus DNS: A comparative study
NASA Technical Reports Server (NTRS)
Shtilman, L.; Chasnov, J. R.
1992-01-01
We have performed Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) of forced isotropic turbulence at moderate Reynolds numbers. The subgrid scale model used in the LES is based on an eddy viscosity which adjusts instantaneously the energy spectrum of the LES to that of the DNS. The statistics of the large scales of the DNS (filtered DNS field or fDNS) are compared to that of the LES. We present results for the transfer spectra, the skewness and flatness factors of the velocity components, the PDF's of the angle between the vorticity and the eigenvectors of the rate of strain, and that between the vorticity and the vorticity stretching tensor. The above LES statistics are found to be in good agreement with those measured in the fDNS field. We further observe that in all the numerical measurements, the trend was for the LES field to be more gaussian than the fDNS field. Future research on this point is planned.
A simulation of the global ocean circulation with resolved eddies
NASA Astrophysics Data System (ADS)
Semtner, Albert J.; Chervin, Robert M.
1988-12-01
A multilevel primitive-equation model has been constructed for the purpose of simulating ocean circulation on modern supercomputing architectures. The model is designed to take advantage of faster clock speeds, increased numbers of processors, and enlarged memories of machines expected to be available over the next decade. The model allows global eddy-resolving simulations to be conducted in support of the World Ocean Circulation Experiment. Furthermore, global ocean modeling is essential for proper representation of the full range of oceanic and climatic phenomena. The first such global eddy-resolving ocean calculation is reported here. A 20-year integration of a global ocean model with ½° grid spacing and 20 vertical levels has been carried out with realistic geometry and annual mean wind forcing. The temperature and salinity are constrained to Levitus gridded data above 25-m depth and below 710-m depth (on time scales of 1 month and 3 years, respectively), but the values in the main thermocline are unconstrained for the last decade of the calculation. The final years of the simulation allow the spontaneous formation of waves and eddies through the use of scale-selective viscosity and diffusion. A quasi-equilibrium state shows many realistic features of ocean circulation, including unstable separating western boundary currents, the known anomalous northward heat transport in the South Atlantic, and a global compensation for the abyssal spread of North Atlantic Deep Water via a long chain of thermocline mass transport from the tropical Pacific, through the Indonesian archipelago, across the Indian Ocean, and around the southern tip of Africa. This chain of thermocline transport is perhaps the most striking result from the model, and eddies and waves are evident along the entire 20,000-km path of the flow. The modeled Gulf Stream separates somewhat north of Cape Hatteras, produces warm- and cold-core rings, and maintains its integrity as a meadering thermal front as far east as the Mid-Atlantic Ridge. The Florida Current near the Yucatan peninsula sheds warm-core rings into the Gulf of Mexico. The East Australia Current produces warm rings which travel southward where the main current turns eastward. The Kuroshio and Oyashio currents are modeled as separate and distinct, each capable of producing warm and cold rings, but neither of them being distinguishable more than 1500 km offshore. A number of frontal regions in the Antarctic Circumpolar Current also exhibit spontaneous variability. Some specific areas of vigorous eddy activity have been identified in the South Atlantic by examining regional enlargements of the southwest Atlantic and of the southeast Atlantic over a simulated span of 225 days, using color raster animations of the volume transport stream function and of the temperature at 160-m depth. The Agulhas Current spawns mainly warm-core rings which enter the large-scale gyre circulation of the South Atlantic after rounding the tip of Africa and moving to the northwest. The Drake Passage has two thermal fronts, the northern of which is strongly unstable and generates ring pairs at about a 140-day period, whose net effect is to transport heat poleward. The confluence of the Brazil Current and the Malvinas (Falkland) Current forces each to turn abruptly eastward and exhibit ring formation near the continental shelf break, with unstable meandering farther downstream. It appears that each separated jet has a distinct core for generating unstable waves with periods of roughly 60 days. More quantitative results on global dynamics will be forthcoming as seasonally forced simulations, including ones with ⅓° × ⅖° grid spacing, are obtained and as the simulated variability and eddy transports are analyzed in a systematic fashion.
Estimates of advection and diffusion in the Potomac estuary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, A.J.
1976-01-01
A two-layered dispersion model, suitable for application to partially-mixed estuaries, has been developed to provide hydrological interpretation of the results of biological sampling. The model includes horizontal and vertical advection plus both horizontal and vertical diffusion. A pseudo-geostrophic method, which includes a damping factor to account for internal eddy friction, is used to estimate the horizontal advective fluxes and the results are compared with field observations. A salt balance model is then used to estimate the effective diffusivities in the Potomac estuary during the Spring of 1974.
Horizontal and Vertical Structure of Velocity, Potential Vorticity and Energy in the Gulf Stream.
1985-02-01
before. Finally, the equation for heat conservation, using standard . - notation, is: T u + w 3 RHS (2-15) at ax ay + where the RHS may include source and...may be rewritten: a o f 0 2 ah 30i .. .iaT + -R2 -+ w2! = RHS . at goz az Under an assumption of negligible mixing (i.e., RHS is small), vertical...Hk( + v.) Kk - 2i + 2 2 --k (k + N - P available potential energy EKE eddy kinetic energy MKE - mean kinetic energy RHS - right hand side LHS -left
The structure and dynamics of tornado-like vortices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolan, D.S.; Farrell, B.F.
The structure and dynamics of axisymmetric tornado-like vortices are explored with a numerical model of axisymmetric incompressible flow based on recently developed numerical methods. The model is first shown to compare favorably with previous results and is then used to study the effects of varying the major parameters controlling the vortex: the strength of the convective forcing, the strength of the rotational forcing, and the magnitude of the model eddy viscosity. Dimensional analysis of the model problem indicates that the results must depend on only two dimensionless parameters. The natural choices for these two parameters are a convective Reynolds numbermore » (based on the velocity scale associated with the convective forcing) and a parameter analogous to the swirl ratio in laboratory models. However, by examining sets of simulations with different model parameters it is found that a dimensionless parameter known as the vortex Reynolds number, which is the ratio of the far-field circulation to the eddy viscosity, is more effective than the convention swirl ratio for predicting the structure of the vortex. The parameter space defined by the choices for model parameters is further explored with large sets of numerical simulations. For much of this parameter space it is confirmed that the vortex structure and time-dependent behavior depend strongly on the vortex Reynolds number and only weakly on the convective Reynolds number. The authors also find that for higher convective Reynolds numbers, the maximum possible wind speed increases, and the rotational forcing necessary to achieve that wind speed decreases. Physical reasoning is used to explain this behavior, and implications for tornado dynamics are discussed.« less
NASA Astrophysics Data System (ADS)
Donis, D.; Janssen, F.; Böttcher, M.; McGinnis, D.; Holtappels, M.; Wenzhöfer, F.
2012-04-01
Measurements of solute exchange across the sediment-water interface are crucial for marine environment monitoring. This interface has fundamental filter functions for the mass exchange between the seafloor and the water column. Being a non-invasive technique, the eddy correlation method, is probably the most accurate measurement for benthic fluxes. It does not interfere with local hydrodynamics and integrates over large areas, showing considerable advantages compared to traditional methods, i.e., microprofiles and benthic chambers. One of the most important exchange processes across the sediment-water interface is flux of oxygen, which is a predominant control factor for the biogeochemical activity in the sediment, carbon processing and the composition of benthic communities. The eddy correlation method performs simultaneous recordings of vertical velocities and oxygen concentrations at a specific distance to the seafloor and is becoming a standard method for resolving dissolved oxygen fluxes in aquatic systems. However, data treatment and interpretation, especially in shallow environments, is still challenging. One major concern in eddy correlation studies of coastal environments is how to consider surface wave motions that can dominate the turbulence range and that may bias flux calculations. A critical part of the data treatment thus is the removal of wave biases from the vertical velocity component, by separating the wave frequency oscillations (due to a tilted or miss-aligned sensor) from those containing meaningful flux contributions. Here we present in situ benthic oxygen exchange rates as determined by an eddy correlation system (ECS) and simultaneously deployed stirred benthic chambers. The study was carried out in a coastal ecosystem of the southern Baltic Sea that was impacted by low salinity groundwater discharge (Hel peninsula, Poland). Oxygen fluxes determined with ECS compared well with results from benthic chambers. Flux data and seepage rates are discussed in the context of groundwater and their importance for benthic biogeochemical processes in shallow sandy sediments. This work was supported by 7th framework EU ITN-project SENSEnet and BONUS+ project AMBER.
NASA Astrophysics Data System (ADS)
Ting, F. C. K.; LeClaire, P.
2016-02-01
Understanding the mechanisms of sediment pickup and distribution in breaking waves is important for modeling sediment transport in the surf zone. Previous studies were mostly concerned with bulk sediment transport under specific wave conditions. The distribution of suspended sediments in breaking waves had not been measured together with coherent flow structures. In this study, two-phase flow measurements were obtained under a train of plunging regular waves on a plane slope using the volumetric three-component velocimetry (V3V) technique. The measurements captured the motions of sediment particles simultaneously with the three-component, three-dimensional (3C3D) velocity fields of turbulent coherent structures (large eddies) induced by breaking waves. Sediment particles (solid glass spheres diameter 0.125 to 0.15 mm, specific gravity 2.5) were separated from fluid tracers (mean diameter 13 µm, specific gravity 1.3) based on a combination of particle spot size and brightness in the two-phase images. The interactions between the large eddies and glass spheres were investigated for plunger vortices generated at incipient breaking and for splash-up vortices generated at the second plunge point. The measured data show that large eddies impinging on the bottom was the primary mechanism which lift sediment particles into suspension and momentarily increased near-bed suspended sediment concentration. Although eddy impingement events were sporadic in space and time, the distributions of suspended sediments in the large eddies were not uniform. High suspended sediment concentration and vertical sediment flux were found in the wall-jet region where the impinging flow was deflected outward and upward. Sediment particles were also trapped and carried around by counter-rotating vortices (Figure 1). Suspended sediment concentration was significantly lower in the impingement region where the fluid velocity was downward, even though turbulent kinetic energy in the down flow was very high. These results suggest that vertical velocity or turbulent shear stress may be a better parameter for predicting sediment pick-up rate than turbulent kinetic energy. It was also found that splash-up vortices enhanced onshore transport relative to the condition when no vortex impinged on the bottom.
NASA Astrophysics Data System (ADS)
Zarokanellos, N.; Jones, B. H.
2016-02-01
Red Sea is one of the saltiest and warmer seas in the world and acts as inverted estuary. Until recently, the Red Sea has been relatively underexplored. The limited observations that exist and results from various modeling exercises for the Red Sea have indicated that the sea has a complex mesoscale circulation often dominated by eddies. These mesoscale eddies are often visible in satellite imagery of sea surface height, temperature or chlorophyll, but only the surface expression of them. Because of previously limited in situ observations, the processes that drive the physical dynamics and the coupled biological responses have been poorly understood. To resolve and understand the role of these eddies in the dynamics of the north-central Red Sea during the wintertime, we used a combination of approaches that include remote sensing and autonomous underwater gliders equipped with physical, chemical, and bio-optical sensors. Remote sensing analyses of these eddies has shown that these eddies not only affect the physical circulation, but modify and disperse the phytoplankton populations and enhance exchange between the open sea and coastal coral reef ecosystems. During winter 2015, we observed deeper mixing driven by surface cooling and strong winds. As of result of the deeper mixing, phytoplankton populations became well mixed such that the ocean color imagery now reflected the integrated vertical processes. Localized diel fluctuations in phytoplankton are clearly evident during these well mixed periods. The mixing likely contributes to enhanced nutrient fluxes as well. Through sustained AUV observations, we have better understand the development, evolution, and dissipation of eddies. We also now have a better understanding of the mixing of source water from both the northern and southern Red Sea in this region of the north central Red Sea.
The solsticial pause on Mars: 2 modelling and investigation of causes
NASA Astrophysics Data System (ADS)
Mulholland, David P.; Lewis, Stephen R.; Read, Peter L.; Madeleine, Jean-Baptiste; Forget, Francois
2016-01-01
The martian solsticial pause, presented in a companion paper (Lewis et al., 2016), was investigated further through a series of model runs using the UK version of the LMD/UK Mars Global Climate Model. It was found that the pause could not be adequately reproduced if radiatively active water ice clouds were omitted from the model. When clouds were used, along with a realistic time-dependent dust opacity distribution, a substantial minimum in near-surface transient eddy activity formed around solstice in both hemispheres. The net effect of the clouds in the model is, by altering the thermal structure of the atmosphere, to decrease the vertical shear of the westerly jet near the surface around solstice, and thus reduce baroclinic growth rates. A similar effect was seen under conditions of large dust loading, implying that northern midlatitude eddy activity will tend to become suppressed after a period of intense flushing storm formation around the northern cap edge. Suppression of baroclinic eddy generation by the barotropic component of the flow and via diabatic eddy dissipation were also investigated as possible mechanisms leading to the formation of the solsticial pause but were found not to make major contributions. Zonal variations in topography were found to be important, as their presence results in weakened transient eddies around winter solstice in both hemispheres, through modification of the near-surface flow. The zonal topographic asymmetry appears to be the primary reason for the weakness of eddy activity in the southern hemisphere relative to the northern hemisphere, and the ultimate cause of the solsticial pause in both hemispheres. The meridional topographic gradient was found to exert a much weaker influence on near-surface transient eddies.
Wave Energetics of the Atmosphere of Mars
NASA Astrophysics Data System (ADS)
Battalio, Joseph Michael
A comprehensive assessment of the energetics of transient waves is presented for the atmosphere of Mars using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation. Each hemisphere is divided into four representative periods covering the summer and winter solstices, a late fall period, and an early spring period for each of the three Mars years available. Northern hemisphere fall and spring eddy energetics is similar with some inter-annual and inter-seasonal variability, but winter eddy kinetic energy and its transport are strongly reduced in intensity as a result of the winter solstitial pause in wave activity. Barotropic energy conversion acts as a sink of eddy kinetic energy throughout each year with little reduction in amplitude during the solstitial pause. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter period as a result of the stabilized vertical temperature profile around winter solstice. Traveling waves are typically triggered by geopotential flux convergence. Individual waves decay through a combination of barotropic conversion of the kinetic energy from the waves to the mean flow, geopotential flux divergence, and dissipation. The southern hemisphere energetics is similar to the northern hemisphere in timing, but wave energetics is much weaker as a result of the high and zonally asymmetric topography. The effect of dust on baroclinic instability is examined by comparing a year with a global-scale dust storm (GDS) to two years without a GDS. In the GDS year, waves develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Though the total amount of eddy kinetic energy generated by baroclinic energy conversion is lower during the GDS year, the maximum eddy intensity is not diminished. Instead, the number of intense eddies is reduced by about 50%.
Bending the law: tidal bending and its effects on ice viscosity and flow
NASA Astrophysics Data System (ADS)
Rosier, S.; Gudmundsson, G. H.
2017-12-01
Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.
Comparative evaluation of aqueous humor viscosity.
Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric
2015-01-01
To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P < 0.0001). The aqueous humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.
A NEW COMBINED LOCAL AND NON-LOCAL PBL MODEL FOR METEOROLOGY AND AIR QUALITY MODELING
A new version of the Asymmetric Convective Model (ACM) has been developed to describe sub-grid vertical turbulent transport in both meteorology models and air quality models. The new version (ACM2) combines the non-local convective mixing of the original ACM with local eddy diff...
Large Eddy Simulations of a Bottom Boundary Layer Under a Shallow Geostrophic Front
NASA Astrophysics Data System (ADS)
Bateman, S. P.; Simeonov, J.; Calantoni, J.
2017-12-01
The unstratified surf zone and the stratified shelf waters are often separated by dynamic fronts that can strongly impact the character of the Ekman bottom boundary layer. Here, we use large eddy simulations to study the turbulent bottom boundary layer associated with a geostrophic current on a stratified shelf of uniform depth. The simulations are initialized with a spatially uniform vertical shear that is in geostrophic balance with a pressure gradient due to a linear horizontal temperature variation. Superposed on the temperature front is a stable vertical temperature gradient. As turbulence develops near the bottom, the turbulence-induced mixing gradually erodes the initial uniform temperature stratification and a well-mixed layer grows in height until the turbulence becomes fully developed. The simulations provide the spatial distribution of the turbulent dissipation and the Reynolds stresses in the fully developed boundary layer. We vary the initial linear stratification and investigate its effect on the height of the bottom boundary layer and the turbulence statistics. The results are compared to previous models and simulations of stratified bottom Ekman layers.
Global atmospheric circulation statistics: Four year averages
NASA Technical Reports Server (NTRS)
Wu, M. F.; Geller, M. A.; Nash, E. R.; Gelman, M. E.
1987-01-01
Four year averages of the monthly mean global structure of the general circulation of the atmosphere are presented in the form of latitude-altitude, time-altitude, and time-latitude cross sections. The numerical values are given in tables. Basic parameters utilized include daily global maps of temperature and geopotential height for 18 pressure levels between 1000 and 0.4 mb for the period December 1, 1978 through November 30, 1982 supplied by NOAA/NMC. Geopotential heights and geostrophic winds are constructed using hydrostatic and geostrophic formulae. Meridional and vertical velocities are calculated using thermodynamic and continuity equations. Fields presented in this report are zonally averaged temperature, zonal, meridional, and vertical winds, and amplitude of the planetary waves in geopotential height with zonal wave numbers 1-3. The northward fluxes of sensible heat and eastward momentum by the standing and transient eddies along with their wavenumber decomposition and Eliassen-Palm flux propagation vectors and divergences by the standing and transient eddies along with their wavenumber decomposition are also given. Large interhemispheric differences and year-to-year variations are found to originate in the changes in the planetary wave activity.
Vertical eddy diffusion coefficient from the LANDSAT imagery
NASA Technical Reports Server (NTRS)
Viswanadham, Y. (Principal Investigator); Torsani, J. A.
1982-01-01
Analysis of five stable cases of the smoke plumes that originated in eastern Cabo Frio (22 deg 59'S; 42 deg 02'W), Brazil using LANDSAT imagery is presented for different months and years. From these images the lateral standard deviation (sigma sub y) and the lateral eddy diffusion coefficient (K sub y) are obtained from the formula based on Taylor's theory of diffusion by continuous moment. The rate of kinetic energy dissipation (e) is evaluated from the diffusion parameters sigma sub y and K sub y. Then, the vertical diffusion coefficient (K sub z) is estimated using Weinstock's formulation. These results agree well with the previous experimental values obtained over water surfaces by various workers. Values of e and K sub z show the weaker mixing processes in the marine stable boundary layer. The data sample is apparently to small to include representative active turbulent regions because such regions are so intermittent in time and in space. These results form a data base for use in the development and validation of mesoscale atmospheric diffusion models.
NASA Astrophysics Data System (ADS)
Allard, Richard; Metzger, E. Joseph; Broome, Robert; Franklin, Deborah; Smedstad, Ole Martin; Wallcraft, Alan
2013-04-01
Multiple international agencies have performed atmospheric reanalyses using static dynamical models and assimilation schemes while ingesting all available quality controlled observational data. Some are clearly aimed at climate time scales while others focus on the more recent time period in which assimilated satellite data are used to constrain the system. Typically these are performed at horizontal and vertical resolutions that are coarser than the existing operational atmospheric prediction system. Multiple agencies have also performed ocean reanalyses using some of the atmospheric forcing products described above. However, only a few are eddy-permitting and none are capable of resolving oceanic mesoscale features (eddies and current meanders) across the entire globe. To fill this void, the Naval Research Laboratory is performing an eddy-resolving 1993-2010 ocean reanalysis using the 1/12° global HYbrid Coordinate Ocean Model (HYCOM) that employs the Navy Coupled Ocean Data Assimilation (NCODA) scheme. A 1/12° global HYCOM/NCODA prediction system has been running in real-time at the Naval Oceanographic Office (NAVOCEANO) since 22 December 2006. It has undergone operational testing and will become an operational product by early 2013. It is capable of nowcasting and forecasting the oceanic "weather" which includes the 3D ocean temperature, salinity and current structure, the surface mixed layer, and the location of mesoscale features such as eddies, meandering currents and fronts. The system has a mid-latitude resolution of ~7 km and employs 32 hybrid vertical coordinate surfaces. Compared to traditional isopycnal coordinate models, the hybrid vertical coordinate extends the geographic range of applicability toward shallow coastal seas and the unstratified parts of the world ocean. HYCOM contains a built-in thermodynamic ice model, where ice grows and melts due to heat flux and sea surface temperature (SST) changes, but it does not contain advanced rheological physics. The ice edge is constrained by satellite ice concentration. Once per day, NCODA performs a 3D ocean analysis using all available observational data and the 1-day HYCOM forecast as the first guess in a sequential incremental update cycle. Observational data include surface observations from satellites, including sea surface height (SSH) anomalies, SST, and sea ice concentrations, plus in-situ SST observations from ships and buoys as well as temperature and salinity profiles from XBTs, CTDs and Argo profiling floats. Surface information is projected downward using synthetic profiles from the Modular Ocean Data Assimilation System (MODAS) at those locations with a predefined SSH anomaly. Unlike previous reanalyses, this ocean reanalysis will be integrated at the same horizontal and vertical resolution as the operational system running at NAVOCEANO. The system is forced with atmospheric output from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) and the observations listed above. The reanalysis began in 1993 because of the advent of satellite altimeter data that will constrain the oceanic mesoscale. Significant effort has been put into obtaining and quality controlling all input observational data, with special emphasis on the profile data. The computational resources are obtained through the High Performance Computing Modernization Office.
NASA Astrophysics Data System (ADS)
Graf, A.; Ney, P.
2017-12-01
A continuously moving elevator-based system is described to measure vertical profiles of wind speed, temperature, CO2 and H2O within and above short plant canopies with a vertical resolution in the centimeter range. On sample days in 2015 to 2017, we measured profiles from the soil surface to 2 m a.g.l. in a crop rotation including wheat, barley, bare soil, winter catch crops and sugarbeet, with canopy heights of up to 1 m. Profiles over bare soil or very short canopies could be described well by fitting Monin-Obukhov-like profiles, and the derived fluxes of momentum and all three scalars matched well those of a nearby eddy-covariance station. In green canopies during the day, CO2 profiles clearly indicated the plant sink and soil source by a local minimum in the canopy and a maximum at the soil surface. H2O profiles, indicating sources both in the canopy and at the soil surface, did or did not show a local minimum between both, depending on canopy structure and turbulence. Temperature profiles showed various shapes including solar incident angle effects, and often the expected opposing signs of thermal stability between the subcanopy and the roughness sublayer. Finally, we test different existing parametrizations to estimate the vertical source / sink distribution from the measured profiles, compare the resulting vertically integrated fluxes to eddy-covariance based net fluxes, and discuss limitations and needed improvements to quantify subcanopy soil respiration and evaporation from such approaches.
Plumes in the mantle. [free air and isostatic gravity anomalies for geophysical interpretation
NASA Technical Reports Server (NTRS)
Khan, M. A.
1973-01-01
Free air and isostatic gravity anomalies for the purposes of geophysical interpretation are presented. Evidence for the existance of hotspots in the mantle is reviewed. The prosposed locations of these hotspots are not always associated with positive gravity anomalies. Theoretical analysis based on simplified flow models for the plumes indicates that unless the frictional viscosities are several orders of magnitude smaller than the present estimates of mantle viscosity or alternately, the vertical flows are reduced by about two orders of magnitude, the plume flow will generate implausibly high temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyas, Josef; Cooley, Scott K.; Sundaram, S. K.
Slags of low viscosity readily penetrate the refractory lining in slagging gasifiers, causing rapid and severe corrosion called spalling. In addition, a low-viscosity slag that flows down the gasifier wall forms a relatively thin layer of slag on the refractory surface, allowing the corrosive gases in the gasifier to participate in the chemical reactions between the refractory and the slag. In contrast, a slag viscosity of <25 Pa•s at 1400°C is necessary to minimize the possibility of plugging the slag tap. There is a need to predict and optimize slag viscosity so slagging gasifiers can operate continuously at temperatures rangingmore » from 1300 to 1650°C. The approach adopted in this work was to statistically design and prepare simulated slags, measure the viscosity as a function of temperature, and develop a model to predict slag viscosity based on slag composition and temperature. Statistical design software was used to select compositions from a candidate set of all possible vertices that will optimally represent the composition space for 10 main components. A total of 21 slag compositions were generated, including 5 actual coal slag compositions. The Arrhenius equation was applied to measured viscosity versus temperature data of tested slags, and the Arrhenius coefficients (A and B in ln(vis) = A + B/T) were expressed as linear functions of the slag composition. The viscosity model was validated using 1) data splitting approach, and 2) viscosity/temperature data of selected slag compositions from the literature that were formulated and melted at Pacific Northwest National Laboratory. The capability of the model to predict the viscosity of coal slags was compared with the model developed by Browning et al. because this model can predict the viscosity of slags from coal ash better than the most commonly used empirical models found in the literature.« less
NASA Astrophysics Data System (ADS)
Hauss, Helena; Christiansen, Svenja; Schütte, Florian; Kiko, Rainer; Edvam Lima, Miryam; Rodrigues, Elizandro; Karstensen, Johannes; Löscher, Carolin R.; Körtzinger, Arne; Fiedler, Björn
2016-04-01
The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300-600 m depth. Here, oxygen concentrations rarely fall below 40 µmol O2 kg-1, but are expected to decline under future projections of global warming. The recent discovery of mesoscale eddies that harbour a shallow suboxic (< 5 µmol O2 kg-1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by ongoing ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. At nighttime, when a large proportion of acoustic scatterers is ascending into the upper 150 m, a drastic reduction in mean volume backscattering (Sv) at 75 kHz (shipboard acoustic Doppler current profiler, ADCP) within the shallow OMZ of the eddy was evident compared to the nighttime distribution outside the eddy. Acoustic scatterers avoided the depth range between approximately 85 to 120 m, where oxygen concentrations were lower than approximately 20 µmol O2 kg-1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time series observations of a moored ADCP (upward looking, 300 kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies followed by zooplankton in response to in response to the eddy OMZ have been identified: (i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids); (ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods); (iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes); and (iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy (i), (ii) and (iv), compression of the habitable volume in the surface may increase prey-predator encounter rates, rendering zooplankton and micronekton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 µmol O2 kg-1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton and micronekton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.
Kinetic model of turbulence in an incompressible fluid
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1978-01-01
A statistical description of turbulence in an incompressible fluid obeying the Navier-Stokes equations is proposed, where pressure is regarded as a potential for the interaction between fluid elements. A scaling procedure divides a fluctuation into three ranks representing the three transport processes of macroscopic evolution, transport property, and relaxation. Closure is obtained by relaxation, and a kinetic equation is obtained for the fluctuation of the macroscopic rank of the distribution function. The solution gives the transfer function and eddy viscosity. When applied to the inertia subrange of the energy spectrum the analysis recovers the Kolmogorov law and its numerical coefficient.
NASA Technical Reports Server (NTRS)
Ahn, Kyung H.
1994-01-01
The RNG-based algebraic turbulence model, with a new method of solving the cubic equation and applying new length scales, is introduced. An analysis is made of the RNG length scale which was previously reported and the resulting eddy viscosity is compared with those from other algebraic turbulence models. Subsequently, a new length scale is introduced which actually uses the two previous RNG length scales in a systematic way to improve the model performance. The performance of the present RNG model is demonstrated by simulating the boundary layer flow over a flat plate and the flow over an airfoil.
Evaluation of a research circulation control airfoil using Navier-Stokes methods
NASA Technical Reports Server (NTRS)
Shrewsbury, George D.
1987-01-01
The compressible Reynolds time averaged Navier-Stokes equations were used to obtain solutions for flows about a two dimensional circulation control airfoil. The governing equations were written in conservation form for a body-fitted coordinate system and solved using an Alternating Direction Implicit (ADI) procedure. A modified algebraic eddy viscosity model was used to define the turbulent characteristics of the flow, including the wall jet flow over the Coanda surface at the trailing edge. Numerical results are compared to experimental data obtained for a research circulation control airfoil geometry. Excellent agreement with the experimental results was obtained.
NASA Technical Reports Server (NTRS)
Towne, C. E.; Hoffman, J. D.
1982-01-01
A new streamwise marching procedure was developed and coded for compressible viscous subsonic flow in planar or axisymmetric ducts with or without centerbodies. The continuity, streamwise momentum, cross-flow momentum, and energy equations are written in generalized orthogonal curvilinear coordinates. To allow the use of a marching procedure, second derivatives in the streamwise momentum equation are written as the sum of a known two dimensional imposed pressure field and an unknown one dimensional viscous correction. For turbulent flow, the Reynolds stress and heat flux terms are modeled using two-layer eddy viscosity turbulence models.
Statistical turbulence theory and turbulence phenomenology
NASA Technical Reports Server (NTRS)
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
Large eddy simulations of compressible magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Grete, Philipp
2017-02-01
Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the subsonic (sonic Mach number M s ≈ 0.2) to the highly supersonic (M s ≈ 20) regime, and against other SGS closures. The latter include established closures of eddy-viscosity and scale-similarity type. In all tests and over the entire parameter space, we find that the proposed closures are (significantly) closer to the reference data than the other closures. In the a posteriori tests, we perform large eddy simulations of decaying, supersonic MHD turbulence with initial M s ≈ 3. We implemented closures of all types, i.e. of eddy-viscosity, scale-similarity and nonlinear type, as an SGS model and evaluated their performance in comparison to simulations without a model (and at higher resolution). We find that the models need to be calculated on a scale larger than the grid scale, e.g. by an explicit filter, to have an influence on the dynamics at all. Furthermore, we show that only the proposed nonlinear closure improves higher-order statistics.
Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 1: Analysis description
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Bui, Trong T.
1993-01-01
A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. The governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models are described in detail.
Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Bui, Trong T.
1993-01-01
A computer code called Proteus 3D has been developed to solve the three dimensional, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized. The governing equations are solved in generalized non-orthogonal body-fitted coordinates by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. It describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.
Thermal Structure of Titan's Troposphere and Middle Atmosphere
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Achterberg, R. K.; Schinder, P. J.
2011-01-01
The thermal structure of Titan's atmosphere is reviewed, with particular emphasis on recent Cassini-Huygens results. Titan's has a similar troposphere-stratosphere-mesosphere pattern like Earth, but with a much more extended atmosphere, because of the weaker gravity, and also much lower temperatures, because of its greater distance from the sun. Titan's atmosphere exhibits an unusually large range in radiative relaxation times. In the troposphere, these are long compared to seasonal time scales, but in the stratosphere they are much shorter than a season. An exception is near the winter pole, where the stratospheric relaxation times at 100-170 km become comparable to the seasonal time scale; at the warm stratopause, they are comparable to a Titan day. Hence, seasonal behavior in the troposphere should be muted, but significant in the stratosphere. This is reflected in the small meridional contrast observed in temperatures in the troposphere and the large stratospheric contrasts noted above. A surprising feature of the vertical profiles of temperature is the abrupt transition between these regimes in at high northern latitudes in winter, where the temperatures in the lower stratosphere exhibit a sudden drop with increasing altitude. This could be a radiative effect, not associated with spatial variations in gaseous opacity, but rather from an optically thick condensate at thermal-infrared wavelengths. A curious aspect of Titan's middle atmosphere is that the axis of symmetry of the temperature field is tilted by several degrees relative to the rotational axis of the moon itself. Whether this is driven by solar heating or gravitational perturbations is not known. Titan's surface exhibits weak contrasts in temperature, approximately 3 K in the winter hemisphere. At low latitudes, there is evidence of a weak nocturnal boundary layer on the morning terminator, which is not radiatively controlled, but can be explained in terms of vertical mixing with a small eddy viscosity.
NASA Astrophysics Data System (ADS)
Potier, Michel; Bach, Pascal; Ménard, Frédéric; Marsac, Francis
2014-02-01
We investigated the diversity and distribution of two communities, micronekton organisms and large predatory fishes, sampled in mesoscale features of the Mozambique Channel from 2003 to 2009, by combining mid-water trawls, stomach contents of fish predators and instrumented longline fishing surveys. The highest species richness for assemblages was found in divergences and fronts rather than in the core of eddies. Despite an unbalanced scheme, diversity indices did not differ significantly between cyclonic and anticyclonic eddies, divergences and fronts. We found that eddies and associated physical cues did not substantially affect the distribution of micronektonic species which are mainly driven by the diel vertical migration pattern. Top predators exhibited a more complex response. Swordfish (Xiphias gladius) associated better with mesoscale features than tunas, with a clear preference for divergences which is consistent with the diel vertical migrations and occurrence of its main prey, the flying squids Sthenoteuthis oualaniensis (Ommastrephidae). On the other hand, the probability of presence of yellowfin tuna was not tied to any specific eddy structure. However, the highest values of positive yellowfin CPUEs were associated with low horizontal gradients of sea-level anomalies. We also showed a non-linear response of positive yellowfin CPUEs with respect to the depth of the minimal oxygen content. The larger the distance between the hooks and the minimal oxygen layer, towards the surface or at greater depths, the higher the CPUE, highlighting that yellowfin congregated in well-oxygenated waters. Micronekton sampled by mid-water trawls and stomach contents exhibited different species composition. The highly mobile organisms were not caught by trawling whereas they remain accessible to predators. The combination of stomach contents and mid-water trawls undoubtedly improved our understanding of the micronekton assemblage distribution. Our results provide some evidence that mesoscale features in the Mozambique Channel do not strongly affect the distribution of the mid-trophic level organisms such as micronekton and most of the large predatory fishes, and hypotheses are proposed to support this result.
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.; Hartlep, Thomas; Weston, B.; Estremera, Shariff Kareem
2014-01-01
The initial accretion of primitive bodies (asteroids and TNOs) from freely-floating nebula particles remains problematic. Here we focus on the asteroids where constituent particle (read "chondrule") sizes are observationally known; similar arguments will hold for TNOs, but the constituent particles in those regions will be smaller, or will be fluffy aggregates, and are unobserved. Traditional growth-bysticking models encounter a formidable "meter-size barrier" [1] (or even a mm-cm-size barrier [2]) in turbulent nebulae, while nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids [3]. Even if growth by sticking could somehow breach the meter size barrier, other obstacles are encountered through the 1-10km size range [4]. Another clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids [5]; scenarios leading directly from independent nebula particulates to this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios [6-8]. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. The typical sizes of planetesimals and the rate of their formation [7,8] are determined by a statistical model with properties inferred from large numerical simulations of turbulence [9]. Nebula turbulence can be described by its Reynolds number Re = L/eta sup(4/3), where L = ETA alpha sup (1/2) the largest eddy scale, H is the nebula gas vertical scale height, and a the nebula turbulent viscosity parameter, and ? is the Kolmogorov or smallest scale in turbulence (typically about 1km), with eddy turnover time t?. In the nebula, Re is far larger than any numerical simulation can handle, so some physical model is needed to extend the results of numerical simulations to nebula conditions.
NASA Astrophysics Data System (ADS)
Pradhan, Aniruddhe; Akhavan, Rayhaneh
2017-11-01
Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ <= 4 in the near-wall region, which is comparable to Δ+ <= 2 required in DNS. At larger grid resolutions SRT becomes unstable, while MRT remains stable but gives unacceptably large errors. LES with no model gave errors comparable to the Dynamic Smagorinsky Model (DSM) and the Wall Adapting Local Eddy-viscosity (WALE) model. The resulting errors in the prediction of the friction coefficient in turbulent channel flow at a bulk Reynolds Number of 7860 (Reτ 442) with Δ+ = 4 and no-model, DSM and WALE were 1.7%, 2.6%, 3.1% with SRT, and 8.3% 7.5% 8.7% with MRT, respectively. These results suggest that LES of wall-bounded turbulent flows with LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.
A dynamic wall model for Large-Eddy simulations of wind turbine dedicated airfoils
NASA Astrophysics Data System (ADS)
J, Calafell; O, Lehmkuhl; A, Carmona; D, Pérez-Segarra C.; A, Oliva
2014-06-01
This work aims at modelling the flow behavior past a wind turbine dedicated airfoil at high Reynolds number and large angle of attack (AoA). The DU-93-W-210 airfoil has been selected. To do this, Large Eddy Simulations (LES) have been performed. Momentum equations have been solved with a parallel unstructured symmetry preserving formulation while the wall-adapting local-eddy viscosity model within a variational multi-scale framework (VMS- WALE) is used as the subgrid-scales model. Since LES calculations are still very expensive at high Reynolds Number, specially at the near-wall region, a dynamic wall model has been implemented in order to overcome this limitation. The model has been validated with a very unresolved Channel Flow case at Reτ = 2000. Afterwards, the model is also tested with the Ahmed Car case, that from the flow physics point of view is more similar to an stalled airfoil than the Channel Flow is, including flow features as boundary layer detachment and recirculations. This case has been selected because experimental results of mean velocity profiles are available. Finally, a flow around a DU-93-W-210 airfoil is computed at Re = 3 x 106 and with an AoA of 15°. Numerical results are presented in comparison with Direct Numerical Simulation (DNS) or experimental data for all cases.
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Tripathi, Dharmendra; Khan, Zafar Hayat; Bég, O. Anwar
2016-09-01
In this paper, a mathematical study is conducted of steady incompressible flow of a temperature-dependent viscous nanofluid from a vertical stretching sheet under applied external magnetic field and gravitational body force effects. The Reynolds exponential viscosity model is deployed. Electrically-conducting nanofluids are considered which comprise a suspension of uniform dimension nanoparticles suspended in viscous base fluid. The nanofluid sheet is extended with a linear velocity in the axial direction. The Buonjiornio model is utilized which features Brownian motion and thermophoresis effects. The partial differential equations for mass, momentum, energy and species (nano-particle concentration) are formulated with magnetic body force term. Viscous and Joule dissipation effects are neglected. The emerging nonlinear, coupled, boundary value problem is solved numerically using the Runge-Kutta fourth order method along with a shooting technique. Graphical solutions for velocity, temperature, concentration field, skin friction and Nusselt number are presented. Furthermore stream function plots are also included. Validation with Nakamura's finite difference algorithm is included. Increasing nanofluid viscosity is observed to enhance temperatures and concentrations but to reduce velocity magnitudes. Nusselt number is enhanced with both thermal and species Grashof numbers whereas it is reduced with increasing thermophoresis parameter and Schmidt number. The model is applicable in nano-material manufacturing processes involving extruding sheets.
Measurements of bi-directional ammonia exchange over a fertilized soybean canopy are presented for an 8 week period during the summer of 2002. This modified Bowen-ratio approach was used to determine fluxes from vertical NH3 and temperature gradients in combination with eddy cova...
Carbon dioxide fluxes in a central hardwoods oak-hickory forest ecosystem
Stephen G. Pallardy; Lianhong Gu; Paul J. Hanson; Tilden Myers; Stan D. Wullschleger; Bai Yang; Jeffery S. Riggs; Kevin P. Hosman; Mark Heuer
2007-01-01
A long-term experiment to measure carbon and water fluxes was initiated in 2004 as part of the Ameriflux network in a second-growth oak-hickory forest in central Missouri. Ecosystem-scale (~ 1 km2) canopy gas exchange (measured by eddy-covariance methods), vertical CO2 profile sampling and soil respiration along with...
NASA Astrophysics Data System (ADS)
Liu, J.; Allen, S. E.; Soontiens, N. K.
2016-02-01
Fraser River is the largest river on the west coast of Canada. It empties into the Strait of Georgia, which is a large, semi-enclosed body of water between Vancouver Island and the mainland of British Columbia. We have developed a three-dimensional model of the Strait of Georgia, including the Fraser River plume, using the NEMO model in its regional configuration. This operational model produces daily nowcasts and forecasts for salinity, temperature, currents and sea surface heights. Observational data available for evaluation of the model includes daily British Columbia ferry salinity data, profile data and surface drifter data. The salinity of the modelled Fraser River plume agrees well with ferry based measurements of salinity. However, large discrepencies exist between the modelled and observed position of the plume. Modelled surface currents compared to drifter observations show that the model has too strong along-strait velocities and too weak cross-strait velocities. We investigated the impact of river geometry. A sensitivity experiment was performed comparing the original, short, shallow river channel to an extended and deepened river channel. With the latter bathymetry, tidal amplitudes within Fraser River correspond well with observations. Comparisons to drifter tracks show that the surface currents have been improved with the new bathymetry. However, substantial discrepencies remain. We will discuss how reducing vertical eddy viscosity and other changes further improve the modelled position of the plume.
Mesosphere Dynamics with Gravity Wave Forcing. 1; Diurnal and Semi-Diurnal Tides
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)
2000-01-01
We present results from a nonlinear, 3D, time dependent numerical spectral model (NSM), which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere that is dominated by wave interactions. We discuss diurnal and semi-diurnal tides ill the present paper (Part 1) and planetary waves in the companion paper (Part 2). To provide an understanding of the seasonal variations of tides, in particular with regard to gravity wave processes, numerical experiments are performed that lead to the following conclusions: 1. The large semiannual variations in tile diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. 2. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength. 3.Variations in eddy viscosity associated with GW interactions tend to peak in late spring and early fall and call also influence the DT. 4. The semidiurnal semidiurnal tide (SDT), and its phase in particular, is strongly influenced by the mean zonal circulation. 5. The SDT, individually, is amplified by GW's. But the DT filters out GW's such that the wave interaction effectively reduces the amplitude of the SDT, effectively producing a strong nonlinear interaction between the DT and SDT. 6.) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT.
Experimental Study on the Viscosity and Adhesive Performance of Exogenous Liquid Fibrin Glue
HAYASHI, Takuro; HASEGAWA, Mitsuhiro; INAMASU, Joji; ADACHI, Kazuhide; NAGAHISA, Shinya; HIROSE, Yuichi
2014-01-01
Exogenous fibrin glue (FG) is highly suitable for neurosurgical procedures, because of its viscosity and adhesive properties. Several FGs are commercially available, but only few reports detail their differences. In the present study, we investigated the viscosity and adhesive performance of two types of FG: one is derived from blood donated in Europe and the United States (CSL Behring's Beriplast®, BP) and the other is derived from blood donated in Japan (the Chemo-Sero-Therapeutic Research Institute's Bolheal®, BH). The viscosity test that measured fibrinogen viscosity revealed that BP had significantly higher viscosity than BH. Similarly, the dripping test showed that BP traveled a significantly shorter drip distance in the vertical direction than BH, although the transverse diameter of the coagulated FG did not differ statistically significantly. In the tensile strength test, BP showed superior adhesion performance over BH. The histological study of the hematoxylin-eosin-stained specimens in both groups showed favorable adhesion. Although further studies are required on its manufacturing and usage methods, FG shows differences in viscosity and adhesive performance according to the blood from which it is derived. We conclude that it is desirable to select the type and usage method of FG according to the characteristics of the surgical operation in question. Our findings suggest that FG produced from the blood donated in Europe and the United States might be more suitable for use in surgical procedures that demand an especially high degree of viscosity and rapid adhesive performance. PMID:25367586
Experimental study on the viscosity and adhesive performance of exogenous liquid fibrin glue.
Hayashi, Takuro; Hasegawa, Mitsuhiro; Inamasu, Joji; Adachi, Kazuhide; Nagahisa, Shinya; Hirose, Yuichi
2014-01-01
Exogenous fibrin glue (FG) is highly suitable for neurosurgical procedures, because of its viscosity and adhesive properties. Several FGs are commercially available, but only few reports detail their differences. In the present study, we investigated the viscosity and adhesive performance of two types of FG: one is derived from blood donated in Europe and the United States (CSL Behring's Beriplast(®), BP) and the other is derived from blood donated in Japan (the Chemo-Sero-Therapeutic Research Institute's Bolheal(®), BH). The viscosity test that measured fibrinogen viscosity revealed that BP had significantly higher viscosity than BH. Similarly, the dripping test showed that BP traveled a significantly shorter drip distance in the vertical direction than BH, although the transverse diameter of the coagulated FG did not differ statistically significantly. In the tensile strength test, BP showed superior adhesion performance over BH. The histological study of the hematoxylin-eosin-stained specimens in both groups showed favorable adhesion. Although further studies are required on its manufacturing and usage methods, FG shows differences in viscosity and adhesive performance according to the blood from which it is derived. We conclude that it is desirable to select the type and usage method of FG according to the characteristics of the surgical operation in question. Our findings suggest that FG produced from the blood donated in Europe and the United States might be more suitable for use in surgical procedures that demand an especially high degree of viscosity and rapid adhesive performance.
Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A; Frankel, Steven H
2014-07-01
In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, "Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow," J. Fluid Mech., 582, pp. 253-280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, "Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method," J. Comput. Phys., 227(13), pp. 6660-6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, "General Circulation Experiments With the Primitive Equations," Mon. Weather Rev., 91(10), pp. 99-164), recently developed Vreman model (Vreman, 2004, "An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications," Phys. Fluids, 16(10), pp. 3670-3681), and the Sigma model (Nicoud et al., 2011, "Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations," Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) ("OpenFOAM," http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.
NASA Astrophysics Data System (ADS)
Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel
2017-01-01
We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.
NASA Astrophysics Data System (ADS)
Vogl, Teresa; Hrdina, Amy; Thomas, Christoph
2016-04-01
The traditional eddy covariance (EC) technique requires the use of fast responding sensors (≥ 10 Hz) that do not exist for many chemical species found in the atmosphere. In this case, the Relaxed Eddy Accumulation (REA) method offers a means to calculate fluxes of trace gases and other scalar quantities (Businger and Oncley, 1990) and was originally derived from the eddy accumulation method (EA) first proposed by Desjardins (1972). While REA lessens the requirements for sensors and sampling and thus offers practical appeal, it introduces a dependence of the computed flux from a proportionality factor β. The accuracy of the REA fluxes hinges upon the correct determination of β, which was found to vary between 0.40 and 0.63 (Milne et al., 1999, Ammann and Meixner, 2002, Ruppert et al., 2006). However, formulating a universally valid parameterization for β instead of empirical evaluation has remained a conundrum and has been a main limitation for REA. In this study we take a fresh look at the dependencies and mathematical models of β by analyzing eddy covariance (EC) data and REA simulations for two field experiments in drastically contrasting environments: an exclusively physically driven environment in the Dry Valleys of Antarctica, and a biologically active system in a grassland in Germany. The main objective is to work toward a model parameterization for β that can be applied over wide range of surface conditions and forcings without the need for empirical evaluation, which is not possible for most REA applications. Our study discusses two different models to define β: (i) based upon scalar-scalar similarity, in which a different scalar is measured with fast-response sensors as a proxy for the scalar of interest, here referred to as β0; and (ii) computed solely from the vertical wind statistics, assuming a linear relationship between the scalar of interest and the vertical wind speed, referred to as βw. Results are presented for the carbon-dioxide, latent and sensible heat fluxes across the contrasting environments. First, the choice of an appropriate scalar to calculate β0 is discussed considering the sources and sinks of each scalar with an emphasis on the carbon dioxide flux, which shows strongly dissimilar dynamics between the Antarctic ecosystem and the grassland. Secondly, the impact of atmospheric stability on both β models is investigated. In a next step, we attempt to find a physically meaningful explanation for the overestimation of the REA scalar fluxes compared to those from EC for using βw. We do so by analyzing the probability density function (pdf) and its statistical moments for the vertical wind speed. We found its pdf to be non-Gaussian for the majority of cases, and detected a close to linear relationship of its kurtosis with βw. Finally, in an attempt to provide practical guidance for field measurements, we integrate our findings and propose an enhanced model parameterization, and evaluate the differences between our new model and a constant β. Ammann, C. and Meixner, F.X. (2002) Stability dependence of the relaxed eddy accumulation coefficient for various scalar quantities. J. Geophys. Res. 107. ACL7.1-ACL7.9 doi:10.1029/2001JD000649 Businger, J.A., Oncley, S.P. (1990) Flux measurement with conditional sampling. J. Atmos. Ocean. Tech. 7:349-352. Desjardins, R. L. (1972) A study of carbon-dioxide and sensible heat fluxes using the eddy correlation technique, Ph.D. dissertation, Cornell University, 189 pp. Desjardins, R.L. (1977) Description and evaluation of sensible heat flux detector. Boundary-Layer Meteorol. 11:147-154. Katul, G., Finkelstein, P. L., Clarke, J. F., and Ellestad, T. G. (1996) An Investigation of the Conditional Sampling Methods Used to Estimate Fluxes of Active, Reactive and Passive Scalars. J. Appl. Meteorol. 35: 1835-1845. Milne, R., Beverland, I. J., Hargreaves, K., and Moncrieff, J. B. (1999) Variation of the beta coefficient in the relaxed eddy accumulation method. Boundary-Layer Meteorol. 93: 211-225. Ruppert, J. ATEM software for atmospheric turbulent exchange measurements using eddy covariance and relaxed eddy accumulation systems: Bayreuth whole-air REA system setup, Universität Bayreuth, Abt. Mikrometeorologie, Print, ISSN 1614-8916, Arbeitsergebnisse 28, 29 S, 2005 Ruppert, J., Thomas, C., and Foken, T. (2006) scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol. 120: 39-63.
Turbulent Flow Structure Inside a Canopy with Complex Multi-Scale Elements
NASA Astrophysics Data System (ADS)
Bai, Kunlun; Katz, Joseph; Meneveau, Charles
2015-06-01
Particle image velocimetry laboratory measurements are carried out to study mean flow distributions and turbulent statistics inside a canopy with complex geometry and multiple scales consisting of fractal, tree-like objects. Matching the optical refractive indices of the tree elements with those of the working fluid provides unobstructed optical paths for both illuminations and image acquisition. As a result, the flow fields between tree branches can be resolved in great detail, without optical interference. Statistical distributions of mean velocity, turbulence stresses, and components of dispersive fluxes are documented and discussed. The results show that the trees leave their signatures in the flow by imprinting wake structures with shapes similar to the trees. The velocities in both wake and non-wake regions significantly deviate from the spatially-averaged values. These local deviations result in strong dispersive fluxes, which are important to account for in canopy-flow modelling. In fact, we find that the streamwise normal dispersive flux inside the canopy has a larger magnitude (by up to four times) than the corresponding Reynolds normal stress. Turbulent transport in horizontal planes is studied in the framework of the eddy viscosity model. Scatter plots comparing the Reynolds shear stress and mean velocity gradient are indicative of a linear trend, from which one can calculate the eddy viscosity and mixing length. Similar to earlier results from the wake of a single tree, here we find that inside the canopy the mean mixing length decreases with increasing elevation. This trend cannot be scaled based on a single length scale, but can be described well by a model, which considers the coexistence of multi-scale branches. This agreement indicates that the multi-scale information and the clustering properties of the fractal objects should be taken into consideration in flows inside multi-scale canopies.
NASA Astrophysics Data System (ADS)
Javernick, Luke; Redolfi, Marco; Bertoldi, Walter
2018-05-01
New data collection techniques offer numerical modelers the ability to gather and utilize high quality data sets with high spatial and temporal resolution. Such data sets are currently needed for calibration, verification, and to fuel future model development, particularly morphological simulations. This study explores the use of high quality spatial and temporal data sets of observed bed load transport in braided river flume experiments to evaluate the ability of a two-dimensional model, Delft3D, to predict bed load transport. This study uses a fixed bed model configuration and examines the model's shear stress calculations, which are the foundation to predict the sediment fluxes necessary for morphological simulations. The evaluation is conducted for three flow rates, and model setup used highly accurate Structure-from-Motion (SfM) topography and discharge boundary conditions. The model was hydraulically calibrated using bed roughness, and performance was evaluated based on depth and inundation agreement. Model bed load performance was evaluated in terms of critical shear stress exceedance area compared to maps of observed bed mobility in a flume. Following the standard hydraulic calibration, bed load performance was tested for sensitivity to horizontal eddy viscosity parameterization and bed morphology updating. Simulations produced depth errors equal to the SfM inherent errors, inundation agreement of 77-85%, and critical shear stress exceedance in agreement with 49-68% of the observed active area. This study provides insight into the ability of physically based, two-dimensional simulations to accurately predict bed load as well as the effects of horizontal eddy viscosity and bed updating. Further, this study highlights how using high spatial and temporal data to capture the physical processes at work during flume experiments can help to improve morphological modeling.
NASA Astrophysics Data System (ADS)
Buongiorno Nardelli, B.; Iudicone, D.; Cotroneo, Y.; Zambianchi, E.; Rio, M. H.
2016-02-01
In the framework of the Italian National Program on Antarctic Research (PNRA), an analysis of the mesoscale dynamics along the Antarctic Circumpolar Current has been carried out starting from a combination of satellite and in situ observations. More specifically, state-of-the-art statistical techniques have been used to combine remotely-sensed sea surface temperature, salinity and absolute dynamical topography with in situ Argo data, providing mesoscale-resolving 3D tracers and geostrophic velocity fields. The 3D reconstruction has been validated with independent data collected during PNRA surveys. These data are then used to diagnose the vertical exchanges in the Southern Ocean through a generalized version of the Omega equation. Intense vertical motion (O(100 m/day)) is found along the ACC, upstream/downstream of its meanders, and within mesoscale eddies, where multipolar vertical velocity patterns are generally observed.
Alvarez, Laura V.; Schmeeckle, Mark W.; Grams, Paul E.
2017-01-01
Lateral flow separation occurs in rivers where banks exhibit strong curvature. In canyon-boundrivers, lateral recirculation zones are the principal storage of fine-sediment deposits. A parallelized,three-dimensional, turbulence-resolving model was developed to study the flow structures along lateralseparation zones located in two pools along the Colorado River in Marble Canyon. The model employs thedetached eddy simulation (DES) technique, which resolves turbulence structures larger than the grid spacingin the interior of the flow. The DES-3D model is validated using Acoustic Doppler Current Profiler flowmeasurements taken during the 2008 controlled flood release from Glen Canyon Dam. A point-to-pointvalidation using a number of skill metrics, often employed in hydrological research, is proposed here forfluvial modeling. The validation results show predictive capabilities of the DES model. The model reproducesthe pattern and magnitude of the velocity in the lateral recirculation zone, including the size and position ofthe primary and secondary eddy cells, and return current. The lateral recirculation zone is open, havingcontinuous import of fluid upstream of the point of reattachment and export by the recirculation returncurrent downstream of the point of separation. Differences in magnitude and direction of near-bed andnear-surface velocity vectors are found, resulting in an inward vertical spiral. Interaction between therecirculation return current and the main flow is dynamic, with large temporal changes in flow direction andmagnitude. Turbulence structures with a predominately vertical axis of vorticity are observed in the shearlayer becoming three-dimensional without preferred orientation downstream.
NASA Astrophysics Data System (ADS)
Alvarez, Laura V.; Schmeeckle, Mark W.; Grams, Paul E.
2017-01-01
Lateral flow separation occurs in rivers where banks exhibit strong curvature. In canyon-bound rivers, lateral recirculation zones are the principal storage of fine-sediment deposits. A parallelized, three-dimensional, turbulence-resolving model was developed to study the flow structures along lateral separation zones located in two pools along the Colorado River in Marble Canyon. The model employs the detached eddy simulation (DES) technique, which resolves turbulence structures larger than the grid spacing in the interior of the flow. The DES-3D model is validated using Acoustic Doppler Current Profiler flow measurements taken during the 2008 controlled flood release from Glen Canyon Dam. A point-to-point validation using a number of skill metrics, often employed in hydrological research, is proposed here for fluvial modeling. The validation results show predictive capabilities of the DES model. The model reproduces the pattern and magnitude of the velocity in the lateral recirculation zone, including the size and position of the primary and secondary eddy cells, and return current. The lateral recirculation zone is open, having continuous import of fluid upstream of the point of reattachment and export by the recirculation return current downstream of the point of separation. Differences in magnitude and direction of near-bed and near-surface velocity vectors are found, resulting in an inward vertical spiral. Interaction between the recirculation return current and the main flow is dynamic, with large temporal changes in flow direction and magnitude. Turbulence structures with a predominately vertical axis of vorticity are observed in the shear layer becoming three-dimensional without preferred orientation downstream.
Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones
NASA Astrophysics Data System (ADS)
Manucharyan, Georgy E.; Thompson, Andrew F.
2017-12-01
Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent.
NASA Astrophysics Data System (ADS)
Tanis, Fred J.; Manley, Thomas O.; Mitchell, Brian G.
1990-09-01
Eddies along the Polar Front/Marginal Ice Zone (MIZ) in Fram Strait are thought to make important contributions to nutrient flux and stimulation of primary productivity. During the Coordinated Eastern Arctic Regional Experiment (CEAREX) helicopter-based measurements of upwelling radiance were made in four visible spectral bands and in the thermal IR across mesoscale features associated with the MIZ. These structures were mapped by flying a grid pattern over the ocean surface to define eddy boundaries. Subsequently, the area was also sampled vertically with CTD and spectral radiometer profilers. Data obtained from a single structure were integrated to construct a three dimensional picture of physical and optical properties. Volume modeling of temperature, salinity, and density fields obtained from CTD survey define the subsurface eddy structure and are in good agreement with infrared derived characteristics. Maximum temperature in the core was found to be four degrees higher than the surrounding water. Volume modeling further indicates that a subsurface layer of Arctic Intermediate Water is intrinsically associated with the surface expression of the eddy. The ratio of upwelling radiances, L(44l)/L(565), was found to be correlated to surface chlorophyll, particulate absorption coefficient, and in water determinations of L using the optical profiling system. The remote sensing reflectance ratio along with the IR sea surface temperature were found to be useful to detect the surface expression of the eddy and to indicate near surface biological and physical processes.
NASA Astrophysics Data System (ADS)
Inatsu, Masaru; Mukougawa, Hitoshi; Xie, Shang-Ping
2003-10-01
Midwinter storm track response to zonal variations in midlatitude sea surface temperatures (SSTs) has been investigated using an atmospheric general circulation model under aquaplanet and perpetual-January conditions. Zonal wavenumber-1 SST variations with a meridionally confined structure are placed at various latitudes. Having these SST variations centered at 30°N leads to a zonally localized storm track, while the storm track becomes nearly zonally uniform when the same SST forcing is moved farther north at 40° and 50°N. Large (small) baroclinic energy conversion north of the warm (cold) SST anomaly near the axis of the storm track (near 40°N) is responsible for the large (small) storm growth. The equatorward transfer of eddy kinetic energy by the ageostrophic motion and the mechanical damping are important to diminish the storm track activity in the zonal direction.Significant stationary eddies form in the upper troposphere, with a ridge (trough) northeast of the warm (cold) SST anomaly at 30°N. Heat and vorticity budget analyses indicate that zonally localized condensational heating in the storm track is the major cause for these stationary eddies, which in turn exert a positive feedback to maintain the localized storm track by strengthening the vertical shear near the surface. These results indicate an active role of synoptic eddies in inducing deep, tropospheric-scale response to midlatitude SST variations. Finally, the application of the model results to the real atmosphere is discussed.
NASA Astrophysics Data System (ADS)
Ruvalcaba-Aroche, Erick D.; Sánchez-Velasco, Laura; Beier, Emilio; Godínez, Victor M.; Barton, Eric D.; Pacheco, Ma. Rocío
2018-01-01
Vertical distribution of the cephalopod paralarvae was investigated in relation to a system of two cyclonic and three anticyclonic eddies in the southern Gulf of California and a front in the adjacent Pacific Ocean. Results showed that the preferential habitat for the Sthenoteuthis oualaniensis - Dosidicus gigas "SD-complex" in both regions was the oxygenated surface mixed layer and the thermocline. The highest abundances occurred in of one of the anticyclonic eddies and a frontal zone, which are convergent structures. Enoploteuthid and Pyroteuthid paralarvae both displayed their highest abundances in the thermocline. Pyroteuthids dominated in the cyclonic eddy whereas Enoploteuthidae were less evident in the eddy system. Pyroteuthids were observed on the western (California Current) side of the frontal zone, and Enoploteuthids on its eastern (Gulf of California) side. The octopods and the complex of Ommastrephes-Eucleoteuthis-Hyaloteuthis paralarvae were present below the thermocline. Both groups had a scarce presence in the eddy system and high abundance near the frontal zone. The octopods abounded on the eastern side in association with the low dissolved oxygen concentrations (< 44 μmol kg-1) of Subtropical-Subsurface Water; the complex on the western front side was immersed in California Current Water. It may be concluded that the spawning and early stages of development of these cephalopod groups are associated with particular mesoscale structures of the water masses. For example, the "SD complex" inhabits the surface water masses, preferentially in convergence zones generated by mesoscale activity.
Using the Cross-Correlation Function to Evaluate the Quality of Eddy-Covariance Data
NASA Astrophysics Data System (ADS)
Qi, Yongfeng; Shang, Xiaodong; Chen, Guiying; Gao, Zhiqiu; Bi, Xueyan
2015-11-01
A cross-correlation test is proposed for evaluating the quality of 30-min eddy-covariance data. Cross-correlation as a function of time lag is computed for vertical velocity paired with temperature, humidity, and carbon dioxide concentration. High quality data have a dominant peak at zero time lag and approach zero within a time lag of 20 s. Poor quality data have erratic cross-correlation functions, which indicates that the eddy flux may no longer represent the energy and mass exchange between the atmospheric surface layer and the canopy, and such data should be rejected in post-data analyses. Eddy-covariance data over grassland in July 2004 are used to evaluate the proposed test. The results show that 17, 29, and 36 % of the available data should be rejected because of poor quality measurements of sensible heat, latent heat, and CO2 fluxes, respectively. The rejected data mainly occurred on calm nights and day/night transitions when the atmospheric surface layer became stable or neutrally stratified. We found no friction velocity (u_*) threshold below which all data should be rejected, a test that many other studies have implemented for rejecting questionable data. We instead found that some data with low u_* were reliable, whereas other data with higher u_* were not. The poor quality measurements collected under less than ideal conditions were replaced by using the mean diurnal variation gap-filling method. The correction for poor quality data shifted the daily average CO2 flux by +0.34 g C m^{-2} day^{-1}. After applying the quality-control test, the eddy CO2 fluxes did not display a clear dependence on u_*. The results suggest that the cross-correlation test is a potentially valuable step in evaluating the quality of eddy-covariance data.
NASA Astrophysics Data System (ADS)
Thomas, Leif N.
2008-08-01
A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by "down-front" winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE's velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE's PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.
Vertical eddy diffusivity as a control parameter in the tropical Pacific
NASA Astrophysics Data System (ADS)
Martinez Avellaneda, N.; Cornuelle, B.
2011-12-01
Ocean models suffer from errors in the treatment of turbulent sub-grid-scale motions responsible for mixing and energy dissipation. Unrealistic small-scale physics in models can have large-scale consequences, such as biases in the upper ocean temperature, a symptom of poorly-simulated upwelling, currents and air-sea interactions. This is of special importance in the tropical Pacific Ocean (TP), which is home to energetic air-sea interactions that affect global climate. It has been shown in a number of studies that the simulated ENSO variability is highly dependent on the state of the ocean (e.g.: background mixing). Moreover, the magnitude of the vertical numerical diffusion is of primary importance in properly reproducing the Pacific equatorial thermocline. This work is part of a NASA-funded project to estimate the space- and time-varying ocean mixing coefficients in an eddy-permitting (1/3dgr) model of the TP to obtain an improved estimate of its time-varying circulation and its underlying dynamics. While an estimation procedure for the TP (26dgr S - 30dgr N) in underway using the MIT general circulation model, complementary adjoint-based sensitivity studies have been carried out for the starting ocean state from Forget (2010). This analysis aids the interpretation of the estimated mixing coefficients and possible error compensation. The focus of the sensitivity tests is the Equatorial Undercurrent and sub-thermocline jets (i.e., Tsuchiya Jets), which have been thought to have strong dependence on vertical diffusivity and should provide checks on the estimated mixing parameters. In order to build intuition for the vertical diffusivity adjoint results in the TP, adjoint and forward perturbed simulations were carried out for an idealized sharp thermocline in a rectangular domain.
Large Eddy Simulation of Entropy Generation in a Turbulent Mixing Layer
NASA Astrophysics Data System (ADS)
Sheikhi, Reza H.; Safari, Mehdi; Hadi, Fatemeh
2013-11-01
Entropy transport equation is considered in large eddy simulation (LES) of turbulent flows. The irreversible entropy generation in this equation provides a more general description of subgrid scale (SGS) dissipation due to heat conduction, mass diffusion and viscosity effects. A new methodology is developed, termed the entropy filtered density function (En-FDF), to account for all individual entropy generation effects in turbulent flows. The En-FDF represents the joint probability density function of entropy, frequency, velocity and scalar fields within the SGS. An exact transport equation is developed for the En-FDF, which is modeled by a system of stochastic differential equations, incorporating the second law of thermodynamics. The modeled En-FDF transport equation is solved by a Lagrangian Monte Carlo method. The methodology is employed to simulate a turbulent mixing layer involving transport of passive scalars and entropy. Various modes of entropy generation are obtained from the En-FDF and analyzed. Predictions are assessed against data generated by direct numerical simulation (DNS). The En-FDF predictions are in good agreements with the DNS data.
Turbulence as a contributor to intermediate energy storage during solar flares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornmann, P.L.
Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady state, homogeneous, fluid turbulence is a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-Ray Polychromator (XRP) instrument on the SMM during the November 5,more » 1980 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energies and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may be too rapid to account for the entire time delay between the impulsive and gradual phases. 19 references.« less
Turbulence as a contributor to intermediate energy storage during solar flares
NASA Technical Reports Server (NTRS)
Bornmann, P. L.
1987-01-01
Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady state, homogeneous, fluid turbulence is a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-Ray Polychromator (XRP) instrument on the SMM during the November 5, 1980 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energies and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may be too rapid to account for the entire time delay between the impulsive and gradual phases.
Turbulence as a contributor to intermediate energy storage during solar flares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornmann, P.L.
Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller-scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady-state, homogeneous, fluid turbulence in a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-ray Polychromator (XRP) instrument on Solar Maximum Mission (SMM) during the 1980 Novembermore » 5 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energetics and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may too rapid to account for the entire time delay between the impulsive and gradual phases.« less
Turbulence as a contributor to intermediate energy storage during solar flares
NASA Astrophysics Data System (ADS)
Bornmann, P. L.
1987-02-01
Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady state, homogeneous, fluid turbulence is a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-Ray Polychromator (XRP) instrument on the SMM during the November 5, 1980 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energies and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may be too rapid to account for the entire time delay between the impulsive and gradual phases.
NASA Astrophysics Data System (ADS)
Boxi, Lin; Chao, Yan; Shusheng, Chen
2017-10-01
This work focuses on the numerical dissipation features of high-order flux reconstruction (FR) method combined with different numerical fluxes in turbulence flows. The famous Roe and AUSM+ numerical fluxes together with their corresponding low-dissipation enhanced versions (LMRoe, SLAU2) and higher resolution variants (HR-LMRoe, HR-SLAU2) are incorporated into FR framework, and the dissipation interplay of these combinations is investigated in implicit large eddy simulation. The numerical dissipation stemming from these convective numerical fluxes is quantified by simulating the inviscid Gresho vortex, the transitional Taylor-Green vortex and the homogenous decaying isotropic turbulence. The results suggest that low-dissipation enhanced versions are preferential both in high-order and low-order cases to their original forms, while the use of HR-SLAU2 has marginal improvements and the HR-LMRoe leads to degenerated solution with high-order. In high-order the effects of numerical fluxes are reduced, and their viscosity may not be dissipative enough to provide physically consistent turbulence when under-resolved.
NASA Astrophysics Data System (ADS)
Karstensen, Johannes; Schütte, Florian; Pietri, Alice; Krahmann, Gerd; Fiedler, Björn; Grundle, Damian; Hauss, Helena; Körtzinger, Arne; Löscher, Carolin R.; Testor, Pierre; Vieira, Nuno; Visbeck, Martin
2017-04-01
The temporal evolution of the physical and biogeochemical structure of an oxygen-depleted anticyclonic modewater eddy is investigated over a 2-month period using high-resolution glider and ship data. A weakly stratified eddy core (squared buoyancy frequency N2 ˜ 0.1 × 10-4 s-2) at shallow depth is identified with a horizontal extent of about 70 km and bounded by maxima in N2. The upper N2 maximum (3-5 × 10-4 s-2) coincides with the mixed layer base and the lower N2 maximum (0.4 × 10-4 s-2) is found at about 200 m depth in the eddy centre. The eddy core shows a constant slope in temperature/salinity (T/S) characteristic over the 2 months, but an erosion of the core progressively narrows down the T/S range. The eddy minimal oxygen concentrations decreased by about 5 µmol kg-1 in 2 months, confirming earlier estimates of oxygen consumption rates in these eddies. Separating the mesoscale and perturbation flow components reveals oscillating velocity finestructure ( ˜ 0.1 m s-1) underneath the eddy and at its flanks. The velocity finestructure is organized in layers that align with layers in properties (salinity, temperature) but mostly cross through surfaces of constant density. The largest magnitude in velocity finestructure is seen between the surface and 140 m just outside the maximum mesoscale flow but also in a layer underneath the eddy centre, between 250 and 450 m. For both regions a cyclonic rotation of the velocity finestructure with depth suggests the vertical propagation of near-inertial wave (NIW) energy. Modification of the planetary vorticity by anticyclonic (eddy core) and cyclonic (eddy periphery) relative vorticity is most likely impacting the NIW energy propagation. Below the low oxygen core salt-finger type double diffusive layers are found that align with the velocity finestructure. Apparent oxygen utilization (AOU) versus dissolved inorganic nitrate (NO3-) ratios are about twice as high (16) in the eddy core compared to surrounding waters (8.1). A large NO3- deficit of 4 to 6 µmol kg-1 is determined, rendering denitrification an unlikely explanation. Here it is hypothesized that the differences in local recycling of nitrogen and oxygen, as a result of the eddy dynamics, cause the shift in the AOU : NO3- ratio. High NO3- and low oxygen waters are eroded by mixing from the eddy core and entrain into the mixed layer. The nitrogen is reintroduced into the core by gravitational settling of particulate matter out of the euphotic zone. The low oxygen water equilibrates in the mixed layer by air-sea gas exchange and does not participate in the gravitational sinking. Finally we propose a mesoscale-submesoscale interaction concept where wind energy, mediated via NIWs, drives nutrient supply to the euphotic zone and drives extraordinary blooms in anticyclonic mode-water eddies.
Le Merrer, Marie; Clanet, Christophe; Quéré, David; Raphaël, Élie; Chevy, Frédéric
2011-01-01
We measure the deceleration of liquid nitrogen drops floating at the surface of a liquid bath. On water, the friction force is found to be about 10 to 100 times larger than on a solid substrate, which is shown to arise from wave resistance. We investigate the influence of the bath viscosity and show that the dissipation decreases as the viscosity is increased, owing to wave damping. The measured resistance is well predicted by a model imposing a vertical force (i.e., the drop weight) on a finite area, as long as the wake can be considered stationary. PMID:21876186
NASA Astrophysics Data System (ADS)
Peña, C.; Heidbach, O.; Moreno, M.; Li, S.; Bedford, J. R.; Oncken, O.
2017-12-01
The surface deformation associated with the 2010 Mw 8.8 Maule earthquake, Chile was recorded in great detail before, during and after the event. The quality of the post-seismic continuous GPS time series has facilitated a number of studies that have modelled the horizontal signal with a combination of after-slip and viscoelastic relaxation using linear Newtonian rheology. Li et al. (2017, GRL), one of the first studies that also looked into the details of the vertical post-seismic signal, showed that a homogeneous viscosity structure cannot well explain the vertical signal, but that with a heterogeneous viscosity distribution producing a better fit. It is, however, difficult to argue why viscous rock properties should change significantly with distance to the trench. Thus, here we investigate if a non-linear, strain-rate dependent power-law can fit the post-seismic signal in all three components - in particular the vertical one. We use the first 6 years of post-seismic cGPS data and investigate with a 2D geomechanical-numerical model along a profile at 36°S if non-linear creep can explain the deformation signal as well using reasonable rock properties and a temperature field derived for this region from Springer (1999). The 2D model geometry considers the slab as well as the Moho geometry. Our results show that with our model the post-seismic surface deformation signal can be reproduced as well as in the study of Li et al. (2017). These findings suggest that the largest deformations are produced by dislocation creep. Such a process would take place below the Andes ( 40 km depth) at the interface between the deeper, colder crust and the olivine-rich upper mantle, where the lowest effective viscosity results from the relaxation of tensional stresses imposed by the co-seismic displacement. Additionally, we present preliminary results from a 3D geomechanical-numerical model with the same rheology that provides more details of the post-seismic deformation especially along strike the subduction zone.
Flowers, Tracey C.; Hunt, James R.
2010-01-01
The transport of fluids miscible with water arises in groundwater contamination and during remediation of the subsurface environment. For concentrated salt solutions, i.e., brines, the increased density and viscosity determine mixing processes between these fluids and ambient groundwater. Under downward flow conditions, gravitational and viscous forces work against each other to determine the interfacial mixing processes. Historically, mixing has been modeled as a dispersive process, as viscous fingering, and as a combination of both using approaches that were both analytical and numerical. A compilation of previously reported experimental data on vertical miscible displacements by fluids with significant density and viscosity contrasts reveals some agreement with a stability analysis presented by Hill (1952). Additional experimental data on one-dimensional dispersion during downward displacement of concentrated salt solutions by freshwater and freshwater displacement by brines support the stability analysis and provides an empirical representation for dispersion coefficients as functions of a gravity number and a mobility ratio. PMID:20300476
The report describes a test in which aluminum cans recovered from municipal waste, together with known amounts of contaminant, were processed by a 'zig-zag' vertical air classifier to remove aerodynamically light contaminant. Twelve test runs were conducted; the proportions of co...
John M. Frank; William J. Massman; Edward Swiatek; Herb A. Zimmerman; Brent E. Ewers
2016-01-01
Sonic anemometry is fundamental to all eddy-covariance studies of surface energy and ecosystem carbon and water balance. Recent studies have shown that some nonorthogonal anemometers underestimate vertical wind. Here it is hypothesized that this is due to a lack of transducer and structural shadowing correction. This is tested with a replicated intercomparison...
NASA Astrophysics Data System (ADS)
Adkins, Kevin; Elfajri, Oumnia; Sescu, Adrian
2016-11-01
Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Results are also compared to numerical experiments conducted using large eddy simulation (LES). Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.
Eddy-correlation measurements of fluxes of CO 2 and H 2O above a spruce stand
NASA Astrophysics Data System (ADS)
Ibrom, A.; Schütz, C.; Tworek, T.; Morgenstern, K.; Oltchev, A.; Falk, M.; Constantin, J.; Gravenhorst, G.
1996-12-01
Atmospheric fluxes of CO 2 and H 2O above a mature spruce stand ( Picea abies (L.) Karst.) have been investigated using the eddy- correlation technique. A closed path sensor adapted to the special requirements of long-term studies has been developed and tested. Field measurements have been performed since April 1995. Estimates of fetch showed a very narrow source area dimension under instable stratification (≤ 200 m). Fetch requirements at night are not met in some directions. Energy balance closure was influenced systematically by the wind direction indicating a substantial attenuation of the vertical wind motion by the tower (up to 40 %). Even for optimal flow directions, energy balance closure was about 88%. Intercomparison of the used ultra sonic anemometer (USAT-3) with a GILL - anemometer showed systematically lower values of vertical wind speed fluctuations (13 %). Average CO 2-fluxes ranged between -13 at noon to 3 μ mol m-2, s-1 at night in summer. In November and December the stand released CO 2 on a daily basis. A preliminary estimate of the cumulative net carbon balance over the observed period of 9 months is 4-5 t, Cha-1.
Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.
Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called “ultraparameterization” (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (~14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers.more » Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.« less
Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence
Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.; ...
2017-06-19
Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called “ultraparameterization” (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (~14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers.more » Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.« less
Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence
NASA Astrophysics Data System (ADS)
Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.; Wyant, Matthew C.; Khairoutdinov, Marat
2017-07-01
Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called "ultraparameterization" (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (˜14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers. Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.
NASA Astrophysics Data System (ADS)
Chamecki, M.; Pan, Y.; Nepf, H. M.; Follett, E.
2014-12-01
Flexible plants bend in response to fluid motion and this reconfiguration mechanism allows plants to minimize the increase of drag force with increasing velocity, ensuring survival in flow-dominated habitats. The effect of reconfiguration on the flow field can be modeled by introducing a drag coefficient that decreases with increasing velocity. Typically, a power-law decrease of the drag coefficient with increasing velocity is used, and the negative exponent is known as the Vogel number. In practice, the Vogel number is a function of canopy rigidity and flow conditions. In this work we show that accounting for the effect of reconfiguration is required for large-eddy simulation (LES) models to reproduce the skewness of the streamwise and vertical velocity components and the distribution of sweeps and ejections observed in a large cornfield. Additional LES runs are conducted to investigate the structure of turbulence in different reconfiguration regimes, with mean vertical momentum flux constrained by measurements. The change of the Vogel number has negligible effects on LES predictions of the total vertical momentum flux and the components of turbulent kinetic energy, but produces profound changes in the mechanisms of momentum transport. This work demonstrates the necessity to model the effect of reconfiguration in LES studies of canopy flows. It also highlights the impacts of reconfiguration on the structure of turbulence and the dynamics of momentum fluxes, as well as any other process that depends on velocity fluctuations above and within the canopy region.
Three-dimensional time dependent computation of turbulent flow
NASA Technical Reports Server (NTRS)
Kwak, D.; Reynolds, W. C.; Ferziger, J. H.
1975-01-01
The three-dimensional, primitive equations of motion are solved numerically for the case of isotropic box turbulence and the distortion of homogeneous turbulence by irrotational plane strain at large Reynolds numbers. A Gaussian filter is applied to governing equations to define the large scale field. This gives rise to additional second order computed scale stresses (Leonard stresses). The residual stresses are simulated through an eddy viscosity. Uniform grids are used, with a fourth order differencing scheme in space and a second order Adams-Bashforth predictor for explicit time stepping. The results are compared to the experiments and statistical information extracted from the computer generated data.
A multiple-scale turbulence model for incompressible flow
NASA Technical Reports Server (NTRS)
Duncan, B. S.; Liou, W. W.; Shih, T. H.
1993-01-01
A multiple-scale eddy viscosity model is described. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model was calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet.
Renormalization group analysis of turbulence
NASA Technical Reports Server (NTRS)
Smith, Leslie M.
1989-01-01
The objective is to understand and extend a recent theory of turbulence based on dynamic renormalization group (RNG) techniques. The application of RNG methods to hydrodynamic turbulence was explored most extensively by Yakhot and Orszag (1986). An eddy viscosity was calculated which was consistent with the Kolmogorov inertial range by systematic elimination of the small scales in the flow. Further, assumed smallness of the nonlinear terms in the redefined equations for the large scales results in predictions for important flow constants such as the Kolmogorov constant. It is emphasized that no adjustable parameters are needed. The parameterization of the small scales in a self-consistent manner has important implications for sub-grid modeling.
Effect of mean velocity shear on the dissipation rate of turbulent kinetic energy
NASA Technical Reports Server (NTRS)
Yoshizawa, Akira; Liou, Meng-Sing
1992-01-01
The dissipation rate of turbulent kinetic energy in incompressible turbulence is investigated using a two-scale DIA. The dissipation rate is shown to consist of two parts; one corresponds to the dissipation rate used in the current turbulence models of eddy-viscosity type, and another comes from the viscous effect that is closely connected with mean velocity shear. This result can elucidate the physical meaning of the dissipation rate used in the current turbulence models and explain part of the discrepancy in the near-wall dissipation rates between the current turbulence models and direct numerical simulation of the Navier-Stokes equation.
An inviscid-viscous interaction approach to the calculation of dynamic stall initiation on airfoils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebeci, T.; Platzer, M.F.; Jang, H.M.
An interactive boundary-layer method is described for computing unsteady incompressible flow over airfoils, including the initiation of dynamic stall. The inviscid unsteady panel method developed by Platzer and Teng is extended to include viscous effects. The solutions of the boundary-layer equations are obtained with an inverse finite-difference method employing an interaction law based on the Hilbert integral, and the algebraic eddy-viscosity formulation of Cebeci and Smith. The method is applied to airfoils subject to periodic and ramp-type motions and its abilities are examined for a range of angles of attack, reduced frequency, and pitch rate.
One-equation near-wall turbulence modeling with the aid of direct simulation data
NASA Technical Reports Server (NTRS)
Rodi, W.; Mansour, N. N.; Michelassi, V.
1993-01-01
The length scales appearing in the relations for the eddy viscosity and dissipation rate in one-equation models were evaluated from direct numerical (DNS) simulation data for developed channel and boundary-layer flow at two Reynolds numbers each. To prepare the ground for the evaluation, the distribution of the most relevant mean-flow and turbulence quantities is presented and discussed, also with respect to Reynolds-number influence and to differences between channel and boundary-layer flow. An alternative model is tested as near wall component of a two-layer model by application to developed-channel, boundary-layer and backward-facing-step flows.
Aeroelastic Analysis of Aircraft: Wing and Wing/Fuselage Configurations
NASA Technical Reports Server (NTRS)
Chen, H. H.; Chang, K. C.; Tzong, T.; Cebeci, T.
1997-01-01
A previously developed interface method for coupling aerodynamics and structures is used to evaluate the aeroelastic effects for an advanced transport wing at cruise and under-cruise conditions. The calculated results are compared with wind tunnel test data. The capability of the interface method is also investigated for an MD-90 wing/fuselage configuration. In addition, an aircraft trim analysis is described and applied to wing configurations. The accuracy of turbulence models based on the algebraic eddy viscosity formulation of Cebeci and Smith is studied for airfoil flows at low Mach numbers by using methods based on the solutions of the boundary-layer and Navier-Stokes equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, R.F. de; Yang, D.-Ke; Lenzi, E.K.
2014-07-15
An analytical expression for the relaxation time of a nematic liquid crystal is obtained for the first time by considering the influence of surface viscosity, anchoring energy strength and cell gap, validated numerically by using the so-called relaxation method. This general equation for the molecular response time (τ{sub 0}) was derived for a vertical aligned cell and by solving an eigenvalue equation coming from the usual balance of torque equation in the Derzhanskii and Petrov formulation, recovering the usual equations in the appropriate limit. The results show that τ∼d{sup b}, where b=2 is observed only for strongly anchored cells, whilemore » for moderate to weak anchored cells, the exponent lies between 1 and 2, depending on both, surface viscosity and anchoring strength. We found that the surface viscosity is important when calculating the response time, specially for thin cells, critical for liquid crystal devices. The surface viscosity’s effect on the optical response time with pretilt is also explored. Our results bring new insights about the role of surface viscosity and its effects in applied physics. - Highlights: • The relaxation of nematic liquid crystals is calculated by taking the surface viscosity into account. • An analytical expression for the relaxation time depending on surface viscosity, anchoring strength and cell gap is obtained. • The results are numerically verified. • Surface viscosity is crucial for thin and weak anchored cells. • The effect on optical time and pretilt angle is also studied.« less
Helicity, geostrophic balance and mixing in rotating stratified turbulence: a multi-scale problem
NASA Astrophysics Data System (ADS)
Pouquet, A.; Marino, R.; Mininni, P.; Rorai, C.; Rosenberg, D. L.
2012-12-01
Helicity, geostrophic balance and mixing in rotating stratified turbulence: a multi-scale problem A. Pouquet, R. Marino, P. D. Mininni, C. Rorai & D. Rosenberg, NCAR Interactions between winds and waves have important roles in planetary and oceanic boundary layers, affecting momentum, heat and CO2 transport. Within the Abyssal Southern Ocean at Mid latitude, this may result in a mixed layer which is too shallow in climate models thereby affecting the overall evolution because of poor handling of wave breaking as in Kelvin-Helmoltz instabilities: gravity waves couple nonlinearly on slow time scales and undergo steepening through resonant interactions, or due to the presence of shear. In the oceans, sub-mesoscale frontogenesis and significant departure from quasi-geostrophy can be seen as turbulence intensifies. The ensuing anomalous vertical dispersion may not be simply modeled by a random walk, due to intermittent structures, wave propagation and to their interactions. Conversely, the energy and seeds required for such intermittent events to occur, say in the stable planetary boundary layer, may come from the wave field that is perturbed, or from winds and the effect of topography. Under the assumption of stationarity, weak nonlinearities, dissipation and forcing, one obtains large-scale geostrophic balance linking pressure gradient, gravity and Coriolis force. The role of helicity (velocity-vorticity correlations) has not received as much attention, outside the realm of astrophysics when considering the growth of large-scale magnetic fields. However, it is measured routinely in the atmosphere in order to gauge the likelihood of supercell convective storms to strengthen, and it may be a factor to consider in the formation of hurricanes. In this context, we examine the transition from a wave-dominated regime to an isotropic small-scale turbulent one in rotating flows with helical forcing. Using a direct numerical simulation (DNS) on a 3072^3 grid with Rossby and Reynolds numbers of 0.07 and 27000, one can resolve both the Zeman scale at which the inertial and eddy turn-over times equalize, and the dissipation scale. We show that fully helical vertical columns dominate at intermediate scales, presumably self-similar and shrouded by a sea of small-scale vortex filaments as in Kolmogorov turbulence. Helicity has a profound effect on the structures of the flow, and a previously developed model that includes a helical component in its eddy viscosity and eddy noise shows a measurable improvement. Indeed, if dimensionless parameters for inertial and gravity waves are reachable numerically, the Reynolds number is too low in DNS for geophysics unless one uses parametrizations of small scale interactions. For spin-down stably-stratified flows, energy and helicity undergo a substantially slower decay than in the unstratified case, and a type of large-scale cyclostrophic balance is invoked to explain this behavior. The decay rate is similar to that occurring in the unstratified rotating case, as modeled by taking into account the quasi-conservation of helicity. We finally mention helicity production when rotation and stratification are both combined. In conclusion, much remains to be done, e.g. examining transport properties of rotating stratified turbulence, such as the effect of helicity on mixing in geophysical flows that can be studied with high-performance computing allowing multi-scale interactions and intermittency to develop.
Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.
1999-01-01
Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s. Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(exp 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely sensed estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient-replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24 +/- 0.1 mol N/sq m (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and biological transport fluxes, as well as geochemical inferences of new production, still need to be reconciled and many outstanding questions remain.
Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.
1999-01-01
Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s . Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(sup 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient- replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24+/-0.1 mol N/sq m/yr (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and biological transport fluxes, as well as geochemical inferences of new production, still need to be reconciled and many outstanding questions remain.
NASA Astrophysics Data System (ADS)
Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.
2018-01-01
Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor. Supplementary Fig. 2 Relation between the total site and high-elevation discharge-volume relation slope for all sites where both relations are available (n = 33). Supplementary Fig. 3 Change in sandbar volume since 1990 for Marble versus Grand Canyon sites. Solid vertical gray lines indicate controlled floods, and dashed vertical gray lines indicate other high test flows in 1997 and 2000 as discussed in the text. Photographs by U.S. Geological Survey, 2008-2015.
Mesoscale Simulation Data for Initializing Fast-Time Wake Transport and Decay Models
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Proctor, Fred H.; Vanvalkenburg, Randal L.; Pruis, Mathew J.; LimonDuparcmeur, Fanny M.
2012-01-01
The fast-time wake transport and decay models require vertical profiles of crosswinds, potential temperature and the eddy dissipation rate as initial conditions. These inputs are normally obtained from various field sensors. In case of data-denied scenarios or operational use, these initial conditions can be provided by mesoscale model simulations. In this study, the vertical profiles of potential temperature from a mesoscale model were used as initial conditions for the fast-time wake models. The mesoscale model simulations were compared against available observations and the wake model predictions were compared with the Lidar measurements from three wake vortex field experiments.
New numerical solutions of three-dimensional compressible hydrodynamic convection. [in stars
NASA Technical Reports Server (NTRS)
Hossain, Murshed; Mullan, D. J.
1990-01-01
Numerical solutions of three-dimensional compressible hydrodynamics (including sound waves) in a stratified medium with open boundaries are presented. Convergent/divergent points play a controlling role in the flows, which are dominated by a single frequency related to the mean sound crossing time. Superposed on these rapid compressive flows, slower eddy-like flows eventually create convective transport. The solutions contain small structures stacked on top of larger ones, with vertical scales equal to the local pressure scale heights, H sub p. Although convective transport starts later in the evolution, vertical scales of H sub p are apparently selected at much earlier times by nonlinear compressive effects.
Mihailovic, Dragutin T; Alapaty, Kiran; Podrascanin, Zorica
2009-03-01
Improving the parameterization of processes in the atmospheric boundary layer (ABL) and surface layer, in air quality and chemical transport models. To do so, an asymmetrical, convective, non-local scheme, with varying upward mixing rates is combined with the non-local, turbulent, kinetic energy scheme for vertical diffusion (COM). For designing it, a function depending on the dimensionless height to the power four in the ABL is suggested, which is empirically derived. Also, we suggested a new method for calculating the in-canopy resistance for dry deposition over a vegetated surface. The upward mixing rate forming the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. The vertical eddy diffusivity is parameterized using the mean turbulent velocity scale that is obtained by the vertical integration within the ABL. In-canopy resistance is calculated by integration of inverse turbulent transfer coefficient inside the canopy from the effective ground roughness length to the canopy source height and, further, from its the canopy height. This combination of schemes provides a less rapid mass transport out of surface layer into other layers, during convective and non-convective periods, than other local and non-local schemes parameterizing mixing processes in the ABL. The suggested method for calculating the in-canopy resistance for calculating the dry deposition over a vegetated surface differs remarkably from the commonly used one, particularly over forest vegetation. In this paper, we studied the performance of a non-local, turbulent, kinetic energy scheme for vertical diffusion combined with a non-local, convective mixing scheme with varying upward mixing in the atmospheric boundary layer (COM) and its impact on the concentration of pollutants calculated with chemical and air-quality models. In addition, this scheme was also compared with a commonly used, local, eddy-diffusivity scheme. Simulated concentrations of NO2 by the COM scheme and new parameterization of the in-canopy resistance are closer to the observations when compared to those obtained from using the local eddy-diffusivity scheme. Concentrations calculated with the COM scheme and new parameterization of in-canopy resistance, are in general higher and closer to the observations than those obtained by the local, eddy-diffusivity scheme (on the order of 15-22%). To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO2) were compared for the years 1999 and 2002. The comparison was made for the entire domain used in simulations performed by the chemical European Monitoring and Evaluation Program Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.
Ice cap melting and low viscosity crustal root explain narrow geodetic uplift of the Western Alps
NASA Astrophysics Data System (ADS)
Chery, Jean; Genti, Manon; Vernant, Philippe
2016-04-01
More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western Alps. By contrast, no significant horizontal motion has been detected. Three uplift mechanisms have been proposed so far: (1) the isostatic response to denudation. However this process is responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting. This process leads to a broader uplifting region than the one evidenced by geodetic observations. (3) a deep source motion associated with slab motion or some deep isostatic unbalance. Using a numerical model accounting for crustal and mantle rheology of the Alps and its foreland, we model the response to Wurmian ice cap melting. We show that a crustal viscosity contrast between the foreland and the central part of the Alps, the later being weaker with a viscosity of 1021 Pa.s, is needed to produce a narrow uplift. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the Alps, therefore allowing a weak vertical rheological anomaly thanks to the continuity between the low viscosity parts of the crust and mantle. References: Champagnac, J.-D., F. Schlunegger, K. Norton, F. von Blanckenburg, L. M. Abbühl, and M. Schwab (2009), Erosion-driven uplift of the modern Central Alps, Tectonophysics, 474(1-2), 236-249. Vernant, P., F. Hivert, J. Chéry, P. Steer, R. Cattin, and A. Rigo (2013), Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges, geology, 41(4), 467-470.
James, M.R.; Lane, S.J.; Chouet, B.A.
2006-01-01
Seismic signals generated during the flow and degassing of low-viscosity magmas include long-period (LP) and very-long-period (VLP) events, whose sources are often attributed to dynamic fluid processes within the conduit. We present the results of laboratory experiments designed to investigate whether the passage of a gas slug through regions of changing conduit diameter could act as a suitable source mechanism. A vertical, liquid-filled glass tube featuring a concentric diameter change was used to provide canonical insights into potentially deep or shallow seismic sources. As gas slugs ascend the tube, we observe systematic pressure changes varying with slug size, liquid depth, tube diameter, and liquid viscosity. Gas slugs undergoing an abrupt flow pattern change upon entering a section of significantly increased tube diameter induce a transient pressure decrease in and above the flare and an associated pressure increase below it, which stimulates acoustic and inertial resonant oscillations. When the liquid flow is not dominantly controlled by viscosity, net vertical forces on the apparatus are also detected. The net force is a function of the magnitude of the pressure transients generated and the tube geometry, which dictates where, and hence when, the traveling pressure pulses can couple into the tube. In contrast to interpretations of related volcano-seismic data, where a single downward force is assumed to result from an upward acceleration of the center of mass in the conduit, our experiments suggest that significant downward forces can result from the rapid deceleration of relatively small volumes of downward-moving liquid. Copyright 2006 by the American Geophysical Union.
Numerical Simulations Of The Impact Of Comet Shoemaker-Levy 9: Plume Development
NASA Astrophysics Data System (ADS)
Palotai, Csaba J.; Korycansky, D.; Deming, D.; Harrington, J.; Reese, C.
2007-10-01
We present results of our three-dimensional, hydrodynamic simulations of the impact of comet Shoemaker-Levy 9 (SL9) into the atmosphere of Jupiter. In the current phase of the research we focus on the plume blowout and splashback phases of the SL9 event. We have modified the Zeus-MP/2 model (Hayes et al. 2006) to be suitable for our investigation, adding a Jovian atmospheric profile, Tillotson equation of state for the impactor, and the Coriolis terms. As an initial condition of our high-resolution simulations we use the energy deposition profile taken from the SL9 impact modeling of Korycansky et al. (2006). The effects of the Coriolis force during the shockwave propagation are tested through sensitivity tests. The viscosity in the splash model is adjusted until the outer part of the plume re-entry shock matches the expanding infrared rings (McGregor et al. 1996). The molecular viscosity being well-known, this will place a strong constraint on the Jovian eddy viscosity. We add radiative terms from previous 2D splash calculation of Deming and Harrington (2001) to allow us to calculate realistic wavelength-dependent lightcurves and low-resolution spectra for direct comparison to data. This work is supported by National Science Foundation Grant No. 0307638 and National Aeronautics and Space Administration Grant No. NNG 04GQ35G.
Influence of Mesoscale Eddies on New Production in the Sargasso Sea
NASA Technical Reports Server (NTRS)
McGillicuddy, D. J., Jr.; Robinson, A. R.; Siegel, D. A.; Jannasch, H. W.; Johnson, R.; Dickey, T. D.; McNeil, J.; Michaels, A. F.; Knap, A. H.
1998-01-01
It is problematic that geochemical estimates of new production, that fraction of total primary production in surface waters fueled by externally supplied nutrients, in oligotrophic waters of the open ocean surpass that which can be sustained by the traditionally accepted mechanisms of nutrient supply. In the cam of the Sargasso Sea, for example, these mechanisms account for less than half of the annual nutrient requirement indicated by new production estimates based on three independent transient-tracer techniques. Specifically, approximately one-quarter to one-third of the annual nutrient requirement can be supplied by entrainment into the mixed layer during wintertime convection, with minor contributions from mixing in the thermocline and wind-driven transport (the potentially important role of nitrogen fixation- for which estimates vary by an order of magnitude in this region- is excluded from this budget). Here we present four lines of evidence-eddy-resolving model simulations, high-resolution observations from moored instrumentation, shipboard surveys and satellite data-which suggest that the vertical flux of nutrients induced by the dynamics of mesoscale eddies is sufficient to balance the nutrient budget in the Sargasso Sea.
NASA Astrophysics Data System (ADS)
Kopeć, J. M.; Kwiatkowski, K.; de Haan, S.; Malinowski, S. P.
2015-11-01
Navigational information broadcast by commercial aircraft in the form of Mode-S and ADS-B messages can be considered a new and valid source of upper air turbulence measurements. A set of three processing methods is proposed and analysed using a quality record of turbulence encounters made by a research aircraft. The proposed methods are based on processing the vertical acceleration or the background wind into the eddy dissipation rate. All the necessary parameters are conveyed in the Mode-S/ADS-B messages. The comparison of the results of application of the processing against a reference eddy dissipation rate obtained using on-board accelerometer indicate a significant potential of those methods. The advantages and limitation of the presented approaches are discussed.
NASA Astrophysics Data System (ADS)
Chitta, Varun
Modeling of complex flows involving the combined effects of flow transition and streamline curvature using two advanced turbulence models, one in the Reynolds-averaged Navier-Stokes (RANS) category and the other in the hybrid RANS-Large eddy simulation (LES) category is considered in this research effort. In the first part of the research, a new scalar eddy-viscosity model (EVM) is proposed, designed to exhibit physically correct responses to flow transition, streamline curvature, and system rotation effects. The four equation model developed herein is a curvature-sensitized version of a commercially available three-equation transition-sensitive model. The physical effects of rotation and curvature (RC) enter the model through the added transport equation, analogous to a transverse turbulent velocity scale. The eddy-viscosity has been redefined such that the proposed model is constrained to reduce to the original transition-sensitive model definition in nonrotating flows or in regions with negligible RC effects. In the second part of the research, the developed four-equation model is combined with a LES technique using a new hybrid modeling framework, dynamic hybrid RANS-LES. The new framework is highly generalized, allowing coupling of any desired LES model with any given RANS model and addresses several deficiencies inherent in most current hybrid models. In the present research effort, the DHRL model comprises of the proposed four-equation model for RANS component and the MILES scheme for LES component. Both the models were implemented into a commercial computational fluid dynamics (CFD) solver and tested on a number of engineering and generic flow problems. Results from both the RANS and hybrid models show successful resolution of the combined effects of transition and curvature with reasonable engineering accuracy, and for only a small increase in computational cost. In addition, results from the hybrid model indicate significant levels of turbulent fluctuations in the flowfield, improved accuracy compared to RANS models predictions, and are obtained at a significant reduction of computational cost compared to full LES models. The results suggest that the advanced turbulence modeling techniques presented in this research effort have potential as practical tools for solving low/high Re flows over blunt/curved bodies for the prediction of transition and RC effects.
Can weak crust explain the correlation of geoid and topography on Venus?
NASA Technical Reports Server (NTRS)
Buck, W. Roger
1993-01-01
The effect on geoid and topography of low viscosity crust overlying a steady-state convecting mantle is estimated under the assumption that the shear between crust and mantle does not alter the mantle flow. The weak crustal layer can change the sign of the geoid to topography ratio (admittance). The positive long wavelength admittance for Venus is consistent with a weak crust overlying a mantle with a viscosity that increases strongly with depth. The accepted interpretation of the strong positive correlation of geoid and topography on Venus, is that the convecting mantle of Venus has a constant viscosity with depth. Topography results from vertical normal stresses caused by mantle convection and highlands occur where mantle upwells. For topography to be supported by normal stress, the time scale for crustal flow must be long compared to the time scale for changes in the pattern of mantle flow. Because the high surface temperature of Venus may cause the crust to have a low viscosity, this assumption may be false. Topography should then be dominated by shear coupling between the crust and mantle. In the absence of a crustal layer, convection in a constant viscosity layer gives rise to a geoid anomaly that correlates positively with surface topography. When the viscosity in the layer increases with depth by several orders of magnitude, the surface topography and geoid anomaly become anti-correlated.
Submesoscale sea ice-ocean interactions in marginal ice zones
NASA Astrophysics Data System (ADS)
Thompson, A. F.; Manucharyan, G.
2017-12-01
Signatures of ocean eddies, fronts and filaments are commonly observed within the marginal ice zones (MIZ) from satellite images of sea ice concentration, in situ observations via ice-tethered profilers or under-ice gliders. Localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence via a suite of numerical simulations. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with sizes O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order of 10 m day-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can potentially contribute to the seasonal evolution of MIZs. With continuing global warming and sea ice thickness reduction in the Arctic Ocean, as well as the large expanse of thin sea ice in the Southern Ocean, submesoscale sea ice-ocean processes are expected to play a significant role in the climate system.
The effect of SST emissions on the earth's ozone layer
NASA Technical Reports Server (NTRS)
Whitten, R. C.; Turco, R. P.
1974-01-01
The work presented here is directed toward assessment of environmental effects of the supersonic transport (SST). The model used for the purpose includes vertical eddy transport and the photochemistry of the O-H-N system. It is found that the flight altitude has a pronounced effect on ozone depletion. The largest ozone reduction occurs for NO deposition above an altitude of 20 km.
NASA Astrophysics Data System (ADS)
Hauss, H.; Christiansen, S.; Schütte, F.; Kiko, R.; Edvam Lima, M.; Rodrigues, E.; Karstensen, J.; Löscher, C. R.; Körtzinger, A.; Fiedler, B.
2015-11-01
The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300-600 m depth. Here, oxygen concentrations rarely fall below 40 μmol O2 kg-1, but are thought to decline in the course of climate change. The recent discovery of mesoscale eddies that harbour a shallow suboxic (< 5 μmol O2 kg-1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by on-going ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. A marked reduction in acoustic target strength (derived from shipboard ADCP, 75kHz) within the shallow OMZ at nighttime was evident. Acoustic scatterers were avoiding the depth range between about 85 to 120 m, where oxygen concentrations were lower than approximately 20 μmol O2 kg-1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time-series observations of a moored ADCP (upward looking, 300 kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies have been identified followed by zooplankton in response to the eddy OMZ: (i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids), (ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods), (iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes), and iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy (i), (ii) and (iv), compression of the habitable volume in the surface may increase prey-predator encounter rates, rendering zooplankton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect zooplankton avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 μmol O2 kg-1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.
The 2008 North Atlantic Spring Bloom Experiment II: Autonomous Platforms and Mixed Layer Evolution
NASA Astrophysics Data System (ADS)
Lee, C. M.; D'Asaro, E. A.; Perry, M.; Fennel, K.; Gray, A.; Rehm, E.; Briggs, N.; Sackmann, B. S.; Gudmundsson, K.
2008-12-01
The 2008 North Atlantic Spring Bloom Experiment (NAB08) employed a system of drifting floats, mobile gliders and ship-based measurements to resolve patch-scale physical and biological variability over the 3- month course of an entire bloom. Although both autonomous and ship-based elements were essential to achieving NAB08 goals, the autonomous system provided a novel perspective by employing long-range gliders to repeatedly survey the volume surrounding a drifting Lagrangian float, thus characterizing patch- scale bloom evolution. Integration of physical and biogeochemical sensors (temperature, conductivity, dissolved oxygen, chlorophyll and CDOM fluorescence, light transmission, optical backscatter, spectral light, and nitrate) and development of in situ calibration techniques were required to support this new autonomous approach. Energetic, small-scale eddy activity at the experiment site (southeast of Iceland, near the Joint Global Ocean Flux Study and Marine Light Mixed Layer sites) produced a swift, heterogeneous velocity field that challenged the gliders" operational abilities and drove refinements to the piloting techniques used to maintain float-following surveys. Although intentionally deployed outside of energetic eddies, floats and gliders were rapidly entrained into these features. Floats circulated within eddies near the start and end of the experiment, drifting generally northwest, across the basin, in-between. An eddy sampled late in the deployment provided particularly interesting signatures, with elevated biological signals manifest consistently in one quadrant. As measurements were collected in a parcel-following Lagrangian frame, this suggests energetic small-scale exchange process (such as vertical or lateral mixing) paired with fast-acting biological processes capable of modifying the newly entrained water as it navigates its path around the eddy. Despite this energetic kilometer-scale heterogeneity, broadly distributed platforms appeared to experience similar broad, long-timescale trends. Initial mixed layer depths exceeded 200 m, with gradual shoaling punctuated by periods of rapid, storm-driven deepening. In mid-April, a period of calm weather, rapid restratification and exponentially growing chlorophyll fluorescence marks the bloom's start. Although one-dimensional processes (e.g. diapycnal mixing and solar warming) clearly play important roles in producing the spring bloom, the rate and vertical extent of upper ocean restratification indicate that lateral mixing, perhaps wind- or eddy-driven exchange or the slumping of lateral density contrasts, play a more important role in restratifying the upper ocean. These important trigger events present a severe observational challenge as they take place at small (kilometers) spatial scales, are fully three-dimensional and episodic in time. The NAB08 efforts demonstrate how mobile, autonomous platforms can be exploited to resolve these events and their impact over the course of an entire bloom cycle.
Renormalizing a viscous fluid model for large scale structure formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Führer, Florian; Rigopoulos, Gerasimos, E-mail: fuhrer@thphys.uni-heidelberg.de, E-mail: gerasimos.rigopoulos@ncl.ac.uk
2016-02-01
Using the Stochastic Adhesion Model (SAM) as a simple toy model for cosmic structure formation, we study renormalization and the removal of the cutoff dependence from loop integrals in perturbative calculations. SAM shares the same symmetry with the full system of continuity+Euler equations and includes a viscosity term and a stochastic noise term, similar to the effective theories recently put forward to model CDM clustering. We show in this context that if the viscosity and noise terms are treated as perturbative corrections to the standard eulerian perturbation theory, they are necessarily non-local in time. To ensure Galilean Invariance higher ordermore » vertices related to the viscosity and the noise must then be added and we explicitly show at one-loop that these terms act as counter terms for vertex diagrams. The Ward Identities ensure that the non-local-in-time theory can be renormalized consistently. Another possibility is to include the viscosity in the linear propagator, resulting in exponential damping at high wavenumber. The resulting local-in-time theory is then renormalizable to one loop, requiring less free parameters for its renormalization.« less
Estimation of structural film viscosity based on the bubble rise method in a nanofluid.
Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T
2018-04-15
When a single bubble moves at a very low capillary number (10 -7 ) through a liquid with dispersed nanoparticles (nanofluid) inside a vertical tube/capillary, a film is formed between the bubble surface and the tube wall and the nanoparticles self-layer inside the confined film. We measured the film thickness using reflected light interferometry. We calculated the film structural energy isotherm vs. the film thickness from the film-meniscus contact angle measurements using the reflected light interferometric method. Based on the experimental measurement of the film thickness and the calculated values of the film structural energy barrier, we estimated the structural film viscosity vs. the film thickness using the Frenkel approach. Because of the nanoparticle film self-layering phenomenon, we observed a gradual increase in the film viscosity with the decreasing film thickness. However, we observed a significant increase in the film viscosity accompanied by a step-wise decrease in the bubble velocity when the film thickness decreased from 3 to 2 particle layers due to the structural transition in the film. Copyright © 2018 Elsevier Inc. All rights reserved.
Elasticity modulated Electrowetting of a sessile liquid droplet
NASA Astrophysics Data System (ADS)
Kumar, Sumit; Subramanian, Sri Ganesh; Dasgupta, Sunando; Chakraborty, Suman
2017-11-01
The sessile liquid droplets on the elastic and soft deformable surface produce strong deformation near the three-phase contact line (TPCL). The capillary and elastic forces play an important role during this deformation, and deteriorate the wetting behaviour of a sessile drop. The present work combines the effects of liquid viscosity and substrate elasticity on the dynamics of EWOD. The influence of decreasing film elasticity and viscosity on the electrowetting response of a sessile drop is experimentally investigated by delineating the changes in equilibrium apparent contact angles on substrates with varying Young's modulus of elasticity. The increase in viscosity of the liquid leads to greater electrowetting for non-deformable substrates whereas; the dynamics are not greatly affected in case of soft substrates. Although the viscosity appears to be an influential factor, the dynamics are more skewed towards the substrate rigidity. The vertical component of Young's force creates a wetting ridge at the three-phase contact line, the height of which is a direct function of the substrate rigidity. The produced ridges reduce the overall wettability of the droplet.
NASA Technical Reports Server (NTRS)
Singhal, R. P.; Whitten, R. C.
1991-01-01
The conservation equations of plasma dynamics in the upper ionosphere of Venus have been solved by using a spectral method in the horizontal and finite differencing in the vertical direction. The effect of varying the ionopause height on the computed nightside ion densities is investigated. These ion densities show a sharp decrease as the ionopause altitude is reduced to 300 km. The effect of viscous forces on the horizontal plasma flow is investigated for a wide range of values of the coefficient of viscosity. The Reynolds numbers characteristics of the flow are calculated and the conditions for the onset of turbulence discussed. It is found that the Reynolds number can be large (greater than 1000) in the subsolar region for a coefficient of viscosity of up to 1.6 x 10 to the -10th g/cm s. The influence of magnetic fields on viscosity is also discussed.
Fourier-Legendre spectral methods for incompressible channel flow
NASA Technical Reports Server (NTRS)
Zang, T. A.; Hussaini, M. Y.
1984-01-01
An iterative collocation technique is described for modeling implicit viscosity in three-dimensional incompressible wall bounded shear flow. The viscosity can vary temporally and in the vertical direction. Channel flow is modeled with a Fourier-Legendre approximation and the mean streamwise advection is treated implicitly. Explicit terms are handled with an Adams-Bashforth method to increase the allowable time-step for calculation of the implicit terms. The algorithm is applied to low amplitude unstable waves in a plane Poiseuille flow at an Re of 7500. Comparisons are made between results using the Legendre method and with Chebyshev polynomials. Comparable accuracy is obtained for the perturbation kinetic energy predicted using both discretizations.
Testing Munk's hypothesis for submesoscale eddy generation using observations in the North Atlantic
NASA Astrophysics Data System (ADS)
Buckingham, Christian E.; Khaleel, Zammath; Lazar, Ayah; Martin, Adrian P.; Allen, John T.; Naveira Garabato, Alberto C.; Thompson, Andrew F.; Vic, Clément
2017-08-01
A high-resolution satellite image that reveals a train of coherent, submesoscale (6 km) vortices along the edge of an ocean front is examined in concert with hydrographic measurements in an effort to understand formation mechanisms of the submesoscale eddies. The infrared satellite image consists of ocean surface temperatures at ˜390 m resolution over the midlatitude North Atlantic (48.69°N, 16.19°W). Concomitant altimetric observations coupled with regular spacing of the eddies suggest the eddies result from mesoscale stirring, filamentation, and subsequent frontal instability. While horizontal shear or barotropic instability (BTI) is one mechanism for generating such eddies (Munk's hypothesis), we conclude from linear theory coupled with the in situ data that mixed layer or submesoscale baroclinic instability (BCI) is a more plausible explanation for the observed submesoscale vortices. Here we assume that the frontal disturbance remains in its linear growth stage and is accurately described by linear dynamics. This result likely has greater applicability to the open ocean, i.e., regions where the gradient Rossby number is reduced relative to its value along coasts and within strong current systems. Given that such waters comprise an appreciable percentage of the ocean surface and that energy and buoyancy fluxes differ under BTI and BCI, this result has wider implications for open-ocean energy/buoyancy budgets and parameterizations within ocean general circulation models. In summary, this work provides rare observational evidence of submesoscale eddy generation by BCI in the open ocean.
Southern elephant seal trajectories, fronts and eddies in the Brazil/Malvinas Confluence
NASA Astrophysics Data System (ADS)
Campagna, Claudio; Piola, Alberto R.; Rosa Marin, Maria; Lewis, Mirtha; Fernández, Teresita
2006-12-01
This study describes the association between transient, mesoscale hydrographic features along the axis of the Brazil-Malvinas Confluence, in the SW Atlantic, and the foraging behavior of 2-3-year-old (focal) juvenile southern elephant seals, Mirounga leonina, from Península Valdés, Argentina. Departing from the dominant pattern of foraging on predictable bathymetric fronts on the Patagonian shelf and slope, three females out of 12 satellite-tracked juveniles remained at the edge of young warm-core eddies and near the outer core of cold-core eddies, coinciding with the most productive areas of these temperature fronts. Seal trajectories along high-temperature gradients were always consistent with the speed and direction of surface currents inferred from the temperature distribution and confirmed by surface drifters. Movements of foraging seals were compared with those of surface drifters, coinciding in time and space and yielding independent and consistent data on regional water circulation parameters. The diving pattern recorded for one focal seal yielded shallower dives and a loose diel pattern in the eddy, and a marked diurnal cycle compatible with foraging on vertically migrating prey in the cold waters of the Malvinas Current. Pre-reproductive females that use the mesoscale fronts of the Argentine Basin as an alternative foraging area would benefit from lower competition with more experienced seals and with other top predators that reproduce along the coast of Patagonia.
On the impact of forced roll convection on vertical turbulent transport in cold air outbreaks
NASA Astrophysics Data System (ADS)
Gryschka, Micha; Fricke, Jens; Raasch, Siegfried
2014-11-01
We investigated the impact of roll convection on the convective boundary layer and vertical transports in different cold air outbreak (CAO) scenarios using large eddy simulations (LES). The organization of convection into rolls was triggered by upstream heterogeneities in the surface temperature, representing ice and water. By changing the sea ice distribution in our LES, we were able to simulate a roll and a nonroll case for each scenario. Furthermore, the roll wavelength was varied by changing the scale of the heterogeneity. The characteristics of the simulated rolls and cloud streets, such as aspect ratios, orientation of the roll axes, and downstream extensions of single rolls agreed closely with observations in CAO situations. The vertical turbulent fluxes, calculated for each simulation, were decomposed into contributions from rolls and from unorganized turbulence. Even though our results confirmed that rolls triggered by upstream heterogeneities can substantially contribute to vertical turbulent fluxes, the total fluxes were not affected by the rolls.
Experimental study of stratified jet by simultaneous measurements of velocity and density fields
NASA Astrophysics Data System (ADS)
Xu, Duo; Chen, Jun
2012-07-01
Stratified flows with small density difference commonly exist in geophysical and engineering applications, which often involve interaction of turbulence and buoyancy effect. A combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) system is developed to measure the velocity and density fields in a dense jet discharged horizontally into a tank filled with light fluid. The illumination of PIV particles and excitation of PLIF dye are achieved by a dual-head pulsed Nd:YAG laser and two CCD cameras with a set of optical filters. The procedure for matching refractive indexes of two fluids and calibration of the combined system are presented, as well as a quantitative analysis of the measurement uncertainties. The flow structures and mixing dynamics within the central vertical plane are studied by examining the averaged parameters, turbulent kinetic energy budget, and modeling of momentum flux and buoyancy flux. At downstream, profiles of velocity and density display strong asymmetry with respect to its center. This is attributed to the fact that stable stratification reduces mixing and unstable stratification enhances mixing. In stable stratification region, most of turbulence production is consumed by mean-flow convection, whereas in unstable stratification region, turbulence production is nearly balanced by viscous dissipation. Experimental data also indicate that at downstream locations, mixing length model performs better in mixing zone of stable stratification regions, whereas in other regions, eddy viscosity/diffusivity models with static model coefficients represent effectively momentum and buoyancy flux terms. The measured turbulent Prandtl number displays strong spatial variation in the stratified jet.
Computational analysis of forebody tangential slot blowing on the high alpha research vehicle
NASA Technical Reports Server (NTRS)
Gee, Ken
1995-01-01
A numerical analysis of forebody tangential slot blowing as a means of generating side force and yawing moment is conducted using an aircraft geometry. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved using a partially flux-split, approximately-factored algorithm. An algebraic turbulence model is used to determine the turbulent eddy viscosity values. Solutions are obtained using both patched and overset grid systems. In the patched grid model, and actuator plane is used to introduce jet variables into the flow field. The overset grid model is used to model the physical slot geometry and facilitate modeling of the full aircraft configuration. A slot optimization study indicates that a short slot located close to the nose of the aircraft provided the most side force and yawing moment per unit blowing coefficient. Comparison of computed surface pressure with that obtained in full-scale wind tunnel tests produce good agreement, indicating the numerical method and grid system used in the study are valid. Full aircraft computations resolve the changes in vortex burst point due to blowing. A time-accurate full-aircraft solution shows the effect of blowing on the changes in the frequency of the aerodynamic loads over the vertical tails. A study of the effects of freestream Mach number and various jet parameters indicates blowing remains effective through the transonic Mach range. An investigation of the force onset time lag associated with forebody blowing shows the lag to be minimal. The knowledge obtained in this study may be applied to the design of a forebody tangential slot blowing system for use on flight aircraft.
Sedimentation Efficiency of Condensation Clouds in Substellar Atmospheres
NASA Astrophysics Data System (ADS)
Gao, Peter; Marley, Mark S.; Ackerman, Andrew S.
2018-03-01
Condensation clouds in substellar atmospheres have been widely inferred from spectra and photometric variability. Up until now, their horizontally averaged vertical distribution and mean particle size have been largely characterized using models, one of which is the eddy diffusion–sedimentation model from Ackerman and Marley that relies on a sedimentation efficiency parameter, f sed, to determine the vertical extent of clouds in the atmosphere. However, the physical processes controlling the vertical structure of clouds in substellar atmospheres are not well understood. In this work, we derive trends in f sed across a large range of eddy diffusivities (K zz ), gravities, material properties, and cloud formation pathways by fitting cloud distributions calculated by a more detailed cloud microphysics model. We find that f sed is dependent on K zz , but not gravity, when K zz is held constant. f sed is most sensitive to the nucleation rate of cloud particles, as determined by material properties like surface energy and molecular weight. High surface energy materials form fewer, larger cloud particles, leading to large f sed (>1), and vice versa for materials with low surface energy. For cloud formation via heterogeneous nucleation, f sed is sensitive to the condensation nuclei flux and radius, connecting cloud formation in substellar atmospheres to the objects’ formation environments and other atmospheric aerosols. These insights could lead to improved cloud models that help us better understand substellar atmospheres. For example, we demonstrate that f sed could increase with increasing cloud base depth in an atmosphere, shedding light on the nature of the brown dwarf L/T transition.
Observed near-inertial kinetic energy in the northwestern South China Sea
NASA Astrophysics Data System (ADS)
Chen, Gengxin; Xue, Huijie; Wang, Dongxiao; Xie, Qiang
2013-10-01
Based on more than 3 years of moored current-meter records, this study examined seasonal variability of near-inertial kinetic energy (NIKE) as well as all large (greater than one standard deviation from the mean) NIKE events related to storms and eddies in the northwestern South China Sea. The NIKE in the subsurface layer (30-450 m) exhibited obvious seasonal variability with larger values in autumn (herein defined as August, September, and October). All large NIKE events during the observation period were generated by passing storms. Most of the NIKE events had an e-folding timescale longer than 7 d. The phase velocity, vertical wavelength, and frequency shift of these events were examined. The maximum NIKE, induced by typhoon "Neoguri," was observed in April 2008. Normal mode analysis suggested that the combined effects of the first four modes determined the vertical distribution of NIKE with higher NIKE below 70 m but lower NIKE from 30 to 70 m. Another near-inertial oscillation event observed in August 2007 had the longest e-folding timescale of 13.5 d. Moreover, the NIKE propagated both upward and downward during this event. A ray-tracing model indicated that the smaller Brunt-Väisälä frequency and the stronger vertical shear of horizontal currents in an anticyclonic eddy and the near-inertial wave with larger horizontal scale facilitated the unusual propagation of the NIKE and the long decay timescale. Although the NIKE originated from wind, the water column structure affected by diverse oceanographic processes contributed substantially to its complex propagation and distribution.
Characteristics of dilute gas-solids suspensions in drag reducing flow
NASA Technical Reports Server (NTRS)
Kane, R. S.; Pfeffer, R.
1973-01-01
Measurements were performed on dilute flowing gas-solids suspensions and included data, with particles present, on gas friction factors, velocity profiles, turbulence intensity profiles, turbulent spectra, and particle velocity profiles. Glass beads of 10 to 60 micron diameter were suspended in air at Reynolds numbers of 10,000 to 25,000 and solids loading ratios from 0 to 4. Drag reduction was achieved for all particle sizes in vertical flow and for the smaller particle sizes in horizontal flow. The profile measurements in the vertical tube indicated that the presence of particles thickened the viscous sublayer. A quantitative theory based on particle-eddy interaction and viscous sublayer thickening has been proposed.
Composition and structure of the martian upper atmosphere: analysis of results from viking.
McElroy, M B; Kong, T Y; Yung, Y L; Nier, A O
1976-12-11
Densities for carbon dioxide measured by the upper atmospheric mass spectrometers on Viking 1 and Viking 2 are analyzed to yield height profiles for the temperature of the martian atmosphere between 120 and 200 kilometers. Densities for nitrogen and argon are used to derive vertical profiles for the eddy diffusion coefficient over the same height range. The upper atmosphere of Mars is surprisingly cold with average temperatures for both Viking 1 and Viking 2 of less than 200 degrees K, and there is significant vertical structure. Model calculations are presented and shown to be in good agreement with measured concentrations of carbon monoxide, oxygen, and nitric oxide.
Kodama, Nao; Setoi, Ayana; Kose, Katsumi
2018-01-01
Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans. PMID:28367906
Kodama, Nao; Setoi, Ayana; Kose, Katsumi
2018-04-10
Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans.
How well can we measure the vertical wind speed? Implications for fluxes of energy and mass
John Kochendorfer; Tilden P. Meyers; John Frank; William J. Massman; Mark W. Heuer
2012-01-01
Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10Â50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a nonorthogonal transducer...
Large-Eddy Simulation in Planetary Boundary-Layer Research
NASA Technical Reports Server (NTRS)
Wyngaard, J. C.
1985-01-01
The structure and dynamics of the convective boundary layer are discussed. The vertical transport of a conservative, passive scalar was simulated. Also studied were the statistics by top-down and bottom-up scalar fields. Substantial differences were found between them due, presumably, to the asymmetry in the convective boundary layer. A generalization of mixed-layer scaling was developed which allows one to include the effects of top-down diffusion.
Earth Noise in the 20- to 100-Second Period Range
1975-09-09
instruments were incapable of following fluctuations of shorter periods.) Gretener (1967) obtained similar results. Both of these workers...found indica- tions that the convection eddies believed to exist were comparable to the hole diameter in vertical extent. Both Gretener (1967...Heat flow in Western Canada: geoph. J., v. 6, p. 245-261. Gretener , P. E., 1967, On the thermal instability of large diameter wells: geophysics, J32
[Simulation of CO2 exchange between forest canopy and atmosphere].
Diao, Yiwei; Wang, Anzhi; Jin, Changjie; Guan, Dexin; Pei, Tiefan
2006-12-01
Estimating the scalar source/sink distribution of CO2 and its vertical fluxes within and above forest canopy continues to be a critical research problem in biosphere-atmosphere exchange processes and plant ecology. With broad-leaved Korean pine forest in Changbai Mountains as test object, and based on Raupach's localized near field theory, the source/sink and vertical flux distribution of CO2 within and above forest canopy were modeled through an inverse Lagrangian dispersion analysis. This model correctly predicted a strong positive CO2 source strength in the deeper layers of the canopy due to soil-plant respiration, and a strong CO2 sink in the upper layers of the canopy due to the assimilation by sunlit foliage. The foliage in the top layer of canopy changed from a CO2 source in the morning to a CO2 sink in the afternoon, while the soil constituted a strong CO2 source all the day. The simulation results accorded well with the eddy covariance CO2 flux measurements within and above the canopy, and the average precision was 89%. The CO2 exchange predicted by the analysis was averagely 15% higher than that of the eddy correlation, but exhibited identical temporal trend. Atmospheric stability remarkably affected the CO2 exchange between forest canopy and atmosphere.
Multigrid calculation of three-dimensional viscous cascade flows
NASA Technical Reports Server (NTRS)
Arnone, A.; Liou, M.-S.; Povinelli, L. A.
1991-01-01
A 3-D code for viscous cascade flow prediction was developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full multigrid method. The Baldwin-Lomax eddy viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.
Turbulence modeling for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, J. G.; Coakley, T. J.
1989-01-01
Turbulence modeling for high speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary layer flows, shock wave boundary layer interactions and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed.
A multiple-scale turbulence model for incompressible flow
NASA Technical Reports Server (NTRS)
Duncan, B. S.; Liou, W. W.; Shih, T. H.
1993-01-01
A multiple-scale eddy viscosity model is described in this paper. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model has been calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet.
NASA Technical Reports Server (NTRS)
Eisfeld, Bernhard; Rumsey, Chris; Togiti, Vamshi
2015-01-01
The implementation of the SSG/LRR-omega differential Reynolds stress model into the NASA flow solvers CFL3D and FUN3D and the DLR flow solver TAU is verified by studying the grid convergence of the solution of three different test cases from the Turbulence Modeling Resource Website. The model's predictive capabilities are assessed based on four basic and four extended validation cases also provided on this website, involving attached and separated boundary layer flows, effects of streamline curvature and secondary flow. Simulation results are compared against experimental data and predictions by the eddy-viscosity models of Spalart-Allmaras (SA) and Menter's Shear Stress Transport (SST).
NASA Technical Reports Server (NTRS)
Cebeci, T.; Kaups, K.; Ramsey, J.; Moser, A.
1975-01-01
A very general method for calculating compressible three-dimensional laminar and turbulent boundary layers on arbitrary wings is described. The method utilizes a nonorthogonal coordinate system for the boundary-layer calculations and includes a geometry package that represents the wing analytically. In the calculations all the geometric parameters of the coordinate system are accounted for. The Reynolds shear-stress terms are modeled by an eddy-viscosity formulation developed by Cebeci. The governing equations are solved by a very efficient two-point finite-difference method used earlier by Keller and Cebeci for two-dimensional flows and later by Cebeci for three-dimensional flows.
Application of the algebraic RNG model for transition simulation. [renormalization group theory
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1990-01-01
The algebraic form of the RNG model of Yakhot and Orszag (1986) is investigated as a transition model for the Reynolds averaged boundary layer equations. It is found that the cubic equation for the eddy viscosity contains both a jump discontinuity and one spurious root. A yet unpublished transformation to a quartic equation is shown to remove the numerical difficulties associated with the discontinuity, but only at the expense of merging both the physical and spurious root of the cubic. Jumps between the branches of the resulting multiple-valued solution are found to lead to oscillations in flat plate transition calculations. Aside from the oscillations, the transition behavior is qualitatively correct.