Sample records for vertical flow path

  1. Flow path oscillations in transient ground-water simulations of large peatland systems

    USGS Publications Warehouse

    Reeve, A.S.; Evensen, R.; Glaser, P.H.; Siegel, D.I.; Rosenberry, D.

    2006-01-01

    Transient numerical simulations of the Glacial Lake Agassiz Peatland near the Red Lakes in Northern Minnesota were constructed to evaluate observed reversals in vertical ground-water flow. Seasonal weather changes were introduced to a ground-water flow model by varying evapotranspiration and recharge over time. Vertical hydraulic reversals, driven by changes in recharge and evapotranspiration were produced in the simulated peat layer. These simulations indicate that the high specific storage associated with the peat is an important control on hydraulic reversals. Seasonally driven vertical flow is on the order of centimeters in the deep peat, suggesting that seasonal vertical advective fluxes are not significant and that ground-water flow into the deep peat likely occurs on decadal or longer time scales. Particles tracked within the ground-water flow model oscillate over time, suggesting that seasonal flow reversals will enhance vertical mixing in the peat column. The amplitude of flow path oscillations increased with increasing peat storativity, with amplitudes of about 5 cm occurring when peat specific storativity was set to about 0.05 m-1. ?? 2005 Elsevier B.V. All rights reserved.

  2. Siphon flows in isolated magnetic flux tubes. III - The equilibrium path of the flux-tube arch

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinos, Benjamin

    1990-01-01

    It is shown how to calculate the equilibrium path of a thin magnetic flux tube in a stratified, nonmagnetic atmosphere when the flux tube contains a steady siphon flow. The equilbrium path of a static thin flux tube in an infinite stratified atmosphere generally takes the form of a symmetric arch of finite width, with the flux tube becoming vertical at either end of the arch. A siphon flow within the flux tube increases the curvature of the arched equilibrium path in order that the net magnetic tension force can balance the inertial force of the flow, which tries to straighten the flux tube. Thus, a siphon flow reduces the width of the arched equilibrium path, with faster flows producing narrower arches. The effect of the siphon flow on the equilibrium path is generally greater for flux tubes of weaker magnetic field strength. Examples of the equilibrium are shown for both isothemal and adiabatic siphon flows in thin flux tubes in an isothermal external atmosphere.

  3. Investigation of recharge dynamics and flow paths in a fractured crystalline aquifer in semi-arid India using borehole logs: implications for managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Alazard, M.; Boisson, A.; Maréchal, J.-C.; Perrin, J.; Dewandel, B.; Schwarz, T.; Pettenati, M.; Picot-Colbeaux, G.; Kloppman, W.; Ahmed, S.

    2016-02-01

    The recharge flow paths in a typical weathered hard-rock aquifer in a semi-arid area of southern India were investigated in relation to structures associated with a managed aquifer recharge (MAR) scheme. Despite the large number of MAR structures, the mechanisms of recharge in their vicinity are still unclear. The study uses a percolation tank as a tool to identify the input signal of the recharge and uses multiple measurements (piezometric time series, electrical conductivity profiles in boreholes) compared against heat-pulse flowmeter measurements and geochemical data (major ions and stable isotopes) to examine recharge flow paths. The recharge process is a combination of diffuse piston flow and preferential flow paths. Direct vertical percolation appears to be very limited, in contradiction to the conceptual model generally admitted where vertical flow through saprolite is considered as the main recharge process. The horizontal component of the flow leads to a strong geochemical stratification of the water column. The complex recharge pattern, presented in a conceptual model, leads to varied impacts on groundwater quality and availability in both time and space, inducing strong implications for water management, water quality evolution, MAR monitoring and longer-term socio-economic costs.

  4. Energy conversion system involving change in the density of an upwardly moving liquid

    DOEpatents

    Petrick, Michael

    1989-01-01

    A system for converting thermal energy into electrical energy includes a fluid reservoir, a relatively high boiling point fluid such as lead or a lead alloy within the reservoir, a downcomer defining a vertical fluid flow path communicating at its upper end with the reservoir and an upcomer defining a further vertical fluid flow path communicating at its upper end with the reservoir. A variable area nozzle of rectangular section may terminate the upper end of the upcomer and the lower end of the of the downcomer communicates with the lower end of the upcomer. A mixing chamber is located at the lower end portion of the upcomer and receives a second relatively low boiling point fluid such as air, the mixing chamber serving to introduce the low boiling point fluid into the upcomer so as to produce bubbles causing the resultant two-phase fluid to move at high velocity up the upcomer. Means are provided for introducing heat into the system preferably between the lower end of the downcomer and the lower end of the upcomer. Power generating means are associated with the one of the vertical fluid flow paths one such power generating means being a magneto hydrodynamic electrical generator.

  5. How Informative are the Vertical Buoyancy and the Prone Gliding Tests to Assess Young Swimmers’ Hydrostatic and Hydrodynamic Profiles?

    PubMed Central

    Barbosa, Tiago M.; Costa, Mário J.; Morais, Jorge E; Moreira, Marc; Silva, António J.; Marinho, Daniel A.

    2012-01-01

    The aim of this research was to develop a path-flow analysis model to highlight the relationships between buoyancy and prone gliding tests and some selected anthropometrical and biomechanical variables. Thirty-eight young male swimmers (12.97 ± 1.05 years old) with several competitive levels were evaluated. It were assessed the body mass, height, fat mass, body surface area, vertical buoyancy, prone gliding after wall push-off, stroke length, stroke frequency and velocity after a maximal 25 [m] swim. The confirmatory model included the body mass, height, fat mass, prone gliding test, stroke length, stroke frequency and velocity. All theoretical paths were verified except for the vertical buoyancy test that did not present any relationship with anthropometrical and biomechanical variables nor with the prone gliding test. The good-of-fit from the confirmatory path-flow model, assessed with the standardized root mean square residuals (SRMR), is considered as being close to the cut-off value, but even so not suitable of the theory (SRMR = 0.11). As a conclusion, vertical buoyancy and prone gliding tests are not the best techniques to assess the swimmer’s hydrostatic and hydrodynamic profile, respectively. PMID:23486528

  6. Redox zonation for different groundwater flow paths during bank filtration: a case study at Liao River, Shenyang, northeastern China

    NASA Astrophysics Data System (ADS)

    Su, Xiaosi; Lu, Shuai; Yuan, Wenzhen; Woo, Nam Chil; Dai, Zhenxue; Dong, Weihong; Du, Shanghai; Zhang, Xinyue

    2018-03-01

    The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.

  7. Lateral, Vertical, and Longitudinal Source Area Connectivity Drive Runoff and Carbon Export Across Watershed Scales

    NASA Astrophysics Data System (ADS)

    Zimmer, Margaret A.; McGlynn, Brian L.

    2018-03-01

    Watersheds are three-dimensional hydrologic systems where the longitudinal expansion/contraction of stream networks, vertical connection/disconnection between shallow and deep groundwater systems, and lateral connectivity of these water sources to streams mediate runoff production and nutrient export. The connectivity of runoff source areas during both baseflow and stormflow conditions and their combined influence on biogeochemical fluxes remain poorly understood. Here we focused on a set of 3.3 and 48.4 ha nested watersheds (North Carolina, USA). These watersheds comprise ephemeral and intermittent runoff-producing headwaters and perennial runoff-producing lowlands. Within these landscape elements, we characterized the timing and magnitude of precipitation, runoff, and runoff-generating flow paths. The active surface drainage network (ASDN) reflected connectivity to, and contributions from, source areas that differed under baseflow and stormflow conditions. The baseflow-associated ASDN expanded and contracted seasonally, driven by the rise and fall of the seasonal water table. Superimposed on this were event-activated source area contributions driven by connectivity to surficial and shallow subsurface flow paths. Frequently activated shallow flow paths also caused increased in-stream dissolved organic carbon (DOC) concentrations with increases in runoff across both watershed scales. The spread and variability within this DOC-runoff relationship was driven by a seasonal depletion of DOC from continual shallow subsurface flow path activation and subsequent replenishment from autumn litterfall. Our findings suggest that hydrobiogeochemical signals at larger watershed outlets can be driven by the expansion, contraction, and connection of lateral, longitudinal, and vertical source areas with distinct runoff generation processes.

  8. Apparatus for controlling nuclear core debris

    DOEpatents

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  9. Vertical mass transfer in open channel flow

    USGS Publications Warehouse

    Jobson, Harvey E.

    1968-01-01

    The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size range. The total sediment transfer coefficient is equal to the sum of the coefficient due to tangential velocity fluctuations and the coefficient due to the curvature of the fluid particle path lines. A numerical solution to the conservation of mass equation is given. The effects of the transfer coefficient, fall velocity and bed conditions on the predicted concentration profiles are illustrated.

  10. Diverter/bop system and method for a bottom supported offshore drilling rig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roche, J.R.; Alexander, G.G.; Carbaugh, W.L.

    1986-07-01

    A system is described adapted for alternative use as a diverter or a blowout preventer for a bottom supported drilling rig and adapted for connection to a permanent housing attached to rig structural members beneath a drilling rig rotary table, the permanent housing having an outlet connectable to a rig fluid system flow line. The system consists of: a fluid flow controller having a controller housing with a lower cylindrical opening and an upper cylindrical opening and a vertical path therebetween and a first outlet passage and a second outlet passage provided in its wall, a packing element disposed withinmore » the controller housing, and annular piston means adapted for moving from a first position to a second position, whereby in the first position the piston means wall prevents interior fluid from communicating with the outlet passages in the controller housing wall and in the second position the piston means wall allows fluid communication of interior fluid with the outlet passages and urges the annular packing element to close about an object extending through the bore of the controller housing or to close the vertical flow path through through the controller housing in the absence of any object in the vertical flow path, means for connecting a vent line to the outlet passage provided in the controller housing wall, a lower telescoping spool having a lower joining means at its lower end for joining alternatively to structural casing or to a mandrel connected to a conductor string cemented within the structural casing and an upper connection means at its upper end for connection to the lower cylindrical opening of the fluid flow controller, and an upper telescoping spool having a lower connection means for connection to the upper cylindrical opening of the fluid flow controller.« less

  11. A static air flow visualization method to obtain a time history of the lift-induced vortex and circulation

    NASA Technical Reports Server (NTRS)

    Patterson, J. C., Jr.; Jordan, F. L., Jr.

    1975-01-01

    A recently proposed method of flow visualization was investigated at the National Aeronautics and Space Administration's Langley Research Center. This method of flow visualization is particularly applicable to the study of lift-induced wing tip vortices through which it is possible to record the entire life span of the vortex. To accomplish this, a vertical screen of smoke was produced perpendicular to the flight path and allowed to become stationary. A model was then driven through the screen of smoke producing the circular vortex motion made visible as the smoke was induced along the path taken by the flow and was recorded by highspeed motion pictures.

  12. The vertical variability of hyporheic fluxes inferred from riverbed temperature data

    NASA Astrophysics Data System (ADS)

    Cranswick, Roger H.; Cook, Peter G.; Shanafield, Margaret; Lamontagne, Sebastien

    2014-05-01

    We present detailed profiles of vertical water flux from the surface to 1.2 m beneath the Haughton River in the tropical northeast of Australia. A 1-D numerical model is used to estimate vertical flux based on raw temperature time series observations from within downwelling, upwelling, neutral, and convergent sections of the hyporheic zone. A Monte Carlo analysis is used to derive error bounds for the fluxes based on temperature measurement error and uncertainty in effective thermal diffusivity. Vertical fluxes ranged from 5.7 m d-1 (downward) to -0.2 m d-1 (upward) with the lowest relative errors for values between 0.3 and 6 m d-1. Our 1-D approach provides a useful alternative to 1-D analytical and other solutions because it does not incorporate errors associated with simplified boundary conditions or assumptions of purely vertical flow, hydraulic parameter values, or hydraulic conditions. To validate the ability of this 1-D approach to represent the vertical fluxes of 2-D flow fields, we compare our model with two simple 2-D flow fields using a commercial numerical model. These comparisons showed that: (1) the 1-D vertical flux was equivalent to the mean vertical component of flux irrespective of a changing horizontal flux; and (2) the subsurface temperature data inherently has a "spatial footprint" when the vertical flux profiles vary spatially. Thus, the mean vertical flux within a 2-D flow field can be estimated accurately without requiring the flow to be purely vertical. The temperature-derived 1-D vertical flux represents the integrated vertical component of flux along the flow path intersecting the observation point. This article was corrected on 6 JUN 2014. See the end of the full text for details.

  13. Hydrogeology and ground-water flow of the drift and Platteville aquifer system, St Louis Park, Minnesota

    USGS Publications Warehouse

    Lindgren, R.J.

    1995-01-01

    Model simulations indicate that vertical ground-water flow from the drift aquifers and from the Platteville aquifer to underlying bedrock aquifers is greatest through bedrock valleys. The convergence of flow paths near bedrock valleys and the greater volume of water moving through the valleys would likely result in both increased concentrations and greater vertical movement of contaminants in areas underlain by bedrock valleys as compared to areas not underlain by bedrock valleys. Model results also indicate that field measurements of hydraulic head might not help locate discontinuities in confining units and additional test drilling to locate discontinuities might be necessary.

  14. The path to COVIS: A review of acoustic imaging of hydrothermal flow regimes

    NASA Astrophysics Data System (ADS)

    Bemis, Karen G.; Silver, Deborah; Xu, Guangyu; Light, Russ; Jackson, Darrell; Jones, Christopher; Ozer, Sedat; Liu, Li

    2015-11-01

    Acoustic imaging of hydrothermal flow regimes started with the incidental recognition of a plume on a routine sonar scan for obstacles in the path of the human-occupied submersible ALVIN. Developments in sonar engineering, acoustic data processing and scientific visualization have been combined to develop technology which can effectively capture the behavior of focused and diffuse hydrothermal discharge. This paper traces the development of these acoustic imaging techniques for hydrothermal flow regimes from their conception through to the development of the Cabled Observatory Vent Imaging Sonar (COVIS). COVIS has monitored such flow eight times a day for several years. Successful acoustic techniques for estimating plume entrainment, bending, vertical rise, volume flux, and heat flux are presented as is the state-of-the-art in diffuse flow detection.

  15. Black Swans and the Effectiveness of Remediating Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Siegel, D. I.; Otz, M. H.; Otz, I.

    2013-12-01

    Black swans, outliers, dominate science far more than do predictable outcomes. Predictable success constitutes the Black Swan in groundwater remediation. Even the National Research Council concluded that remediating groundwater to drinking water standards has failed in typically complex hydrogeologic settings where heterogeneities and preferential flow paths deflect flow paths obliquely to hydraulic gradients. Natural systems, be they biological or physical, build upon a combination of large-scale regularity coupled to chaos at smaller scales. We show through a review of over 25 case studies that groundwater remediation efforts are best served by coupling parsimonious site characterization to natural and induced geochemical tracer tests to at least know where contamination advects with groundwater in the subsurface. In the majority of our case studies, actual flow paths diverge tens of degrees from anticipated flow paths because of unrecognized heterogeneities in the horizontal direction of transport, let alone the vertical direction. Consequently, regulatory agencies would better serve both the public and the environment by recognizing that long-term groundwater cleanup probably is futile in most hydrogeologic settings except to relaxed standards similar to brownfielding. A Black Swan

  16. A methodology for using borehole temperature-depth profiles under ambient, single and cross-borehole pumping conditions to estimate fracture hydraulic properties

    NASA Astrophysics Data System (ADS)

    Klepikova, M.; Le Borgne, T.; Bour, O.; Lavenant, N.

    2011-12-01

    In fractured aquifers flow generally takes place in a few fractured zones. The identification of these main flow paths is critical as it controls the transfer of fluids in the subsurface. For realistic modeling of the flow the knowledge about the spatial variability of hydraulic properties is required. Inverse problems based on hydraulic head data are generally strongly underconstrained. A possible way of reducing the uncertainty is to combine different type of data, such as flow measurements, temperature profiles or tracer test data. Here, we focus on the use of temperature, which can be seen as a natural tracer of ground water flow. Previous studies used temperature anomalies to quantify vertical or horizontal regional groundwater flow velocities. Most of these studies assume that water in the borehole is stagnant, and, thus, the temperature profile in the well is representative of the temperature in the aquifer. In fractured media, differences in hydraulic head between flow paths connected to a borehole generally create ambient vertical flow within the borehole. These differences in hydraulic head are in general due to regional flow conditions. Estimation of borehole vertical flow is of interest as it can be used to derive large scale hydraulic connections. Under a single-borehole configuration, the estimation of vertical flow can be used to estimate the local transimissivities and the hydraulic head differences driving the flow through the borehole. Under a cross-borehole set up, it can be used to characterize hydraulic connections and estimate their hydraulic properties. Using a flow and heat transfer numerical model, we find that the slope of the temperature profile is related directly to vertical borehole flow velocity. Thus, we propose a method to invert temperature measurements to derive borehole flow velocities and subsequently the fracture zone hydraulic and connectivity properties. The advantage of temperature measurements compared to flowmeter measurements is that temperature can be measured easily and very accurately, continuously in space and time. To test the methodology, we have performed a field experiment at a crystalline rocks field site, located in Ploemeur, Brittany (France). The site is composed of three 100 meters deep boreholes, located at 6-10 m distances from each other. The experiment consisted in measuring the borehole temperature profiles under all possible pumping configurations. Hence, the pumping and monitoring wells were successively changed. The thermal response in observation well induced by changes in pumping conditions is related to changes in vertical flow velocities and thus to the inter-borehole fracture connectivity. Based on this dataset, we propose a methodology to include temperature profiles in inverse problem for characterizing the spatial distribution of fracture zone hydraulic properties.

  17. Debris flow runup on vertical barriers and adverse slopes

    USGS Publications Warehouse

    Iverson, Richard M.; George, David L.; Logan, Matthew

    2016-01-01

    Runup of debris flows against obstacles in their paths is a complex process that involves profound flow deceleration and redirection. We investigate the dynamics and predictability of runup by comparing results from large-scale laboratory experiments, four simple analytical models, and a depth-integrated numerical model (D-Claw). The experiments and numerical simulations reveal the important influence of unsteady, multidimensional flow on runup, and the analytical models highlight key aspects of the underlying physics. Runup against a vertical barrier normal to the flow path is dominated by rapid development of a shock, or jump in flow height, associated with abrupt deceleration of the flow front. By contrast, runup on sloping obstacles is initially dominated by a smooth flux of mass and momentum from the flow body to the flow front, which precedes shock development and commonly increases the runup height. D-Claw simulations that account for the emergence of shocks show that predicted runup heights vary systematically with the adverse slope angle and also with the Froude number and degree of liquefaction (or effective basal friction) of incoming flows. They additionally clarify the strengths and limitations of simplified analytical models. Numerical simulations based on a priori knowledge of the evolving dynamics of incoming flows yield quite accurate runup predictions. Less predictive accuracy is attained in ab initio simulations that compute runup based solely on knowledge of static debris properties in a distant debris flow source area. Nevertheless, the paucity of inputs required in ab initio simulations enhances their prospective value in runup forecasting.

  18. Report on Technology Horizons: A Vision for Air Force Science and Technology During 2010-2030. Volume 1

    DTIC Science & Technology

    2010-05-15

    flow and decision processes across the air and space domains. It thus comprises traditional wired and fiber-optic computer networks based on...dual flow path design allow high volumetric efficiency, and high cruise speed provides significantly increased survivability. Vertical takeoff...emerging “third-stream engine architectures” can enable for constant mass flow engines that can provide further reductions in fuel consumption. A wide

  19. Roads at risk - traffic detours from debris flows in southern Norway

    NASA Astrophysics Data System (ADS)

    Meyer, N. K.; Schwanghart, W.; Korup, O.; Nadim, F.

    2014-10-01

    Globalization and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g., road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load expressed as vehicle kilometers because of debris-flow related road closures. We present two scenarios demonstrating the impact of debris flows on the road network, and quantify the associated path failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and northwestern part of the study area are associated with high link failure risk. Yet options for detours on major routes are manifold, and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying of speedy delivery of services and goods.

  20. Roads at risk: traffic detours from debris flows in southern Norway

    NASA Astrophysics Data System (ADS)

    Meyer, N. K.; Schwanghart, W.; Korup, O.; Nadim, F.

    2015-05-01

    Globalisation and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g. road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load, expressed as vehicle kilometres, because of debris-flow-related road closures. We present two scenarios demonstrating the impact of debris flows on the road network and quantify the associated path-failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and north-western part of the study area are associated with high link-failure risk. Yet options for detours on major routes are manifold and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying on speedy delivery of services and goods.

  1. A boussinesq model of natural convection in the human eye and the formation of Krukenberg's spindle.

    PubMed

    Heys, Jeffrey J; Barocas, Victor H

    2002-03-01

    The cornea of the human eye is cooled by the surrounding air and by evaporation of the tear film. The temperature difference between the cornea and the iris (at core body temperature) causes circulation of the aqueous humor in the anterior chamber of the eye. Others have suggested that the circulation pattern governs the shape of the Krukenberg spindle, a distinctive vertical band of pigment on the posterior cornea surface in some pathologies. We modeled aqueous humor flow the human eye, treating the humor as a Boussinesq fluid and setting the corneal temperature based on infrared surface temperature measurements. The model predicts convection currents in the anterior chamber with velocities comparable to those resulting from forced flow through the gap between the iris and lens. When paths of pigment particles are calculated based on the predicted flow field, the particles circulate throughout the anterior chamber but tend to be near the vertical centerline of the eye for a greatest period of time. Further, the particles are usually in close proximity to the cornea only when they are near the vertical centerline. We conclude that the convective flow pattern of aqueous humor is consistent with a vertical pigment spindle.

  2. The use of multiobjective calibration and regional sensitivity analysis in simulating hyporheic exchange

    USGS Publications Warehouse

    Naranjo, Ramon C.; Niswonger, Richard G.; Stone, Mark; Davis, Clinton; McKay, Alan

    2012-01-01

    We describe an approach for calibrating a two-dimensional (2-D) flow model of hyporheic exchange using observations of temperature and pressure to estimate hydraulic and thermal properties. A longitudinal 2-D heat and flow model was constructed for a riffle-pool sequence to simulate flow paths and flux rates for variable discharge conditions. A uniform random sampling approach was used to examine the solution space and identify optimal values at local and regional scales. We used a regional sensitivity analysis to examine the effects of parameter correlation and nonuniqueness commonly encountered in multidimensional modeling. The results from this study demonstrate the ability to estimate hydraulic and thermal parameters using measurements of temperature and pressure to simulate exchange and flow paths. Examination of the local parameter space provides the potential for refinement of zones that are used to represent sediment heterogeneity within the model. The results indicate vertical hydraulic conductivity was not identifiable solely using pressure observations; however, a distinct minimum was identified using temperature observations. The measured temperature and pressure and estimated vertical hydraulic conductivity values indicate the presence of a discontinuous low-permeability deposit that limits the vertical penetration of seepage beneath the riffle, whereas there is a much greater exchange where the low-permeability deposit is absent. Using both temperature and pressure to constrain the parameter estimation process provides the lowest overall root-mean-square error as compared to using solely temperature or pressure observations. This study demonstrates the benefits of combining continuous temperature and pressure for simulating hyporheic exchange and flow in a riffle-pool sequence. Copyright 2012 by the American Geophysical Union.

  3. Internal electrolyte supply system for reliable transport throughout fuel cell stacks

    DOEpatents

    Wright, Maynard K.; Downs, Robert E.; King, Robert B.

    1988-01-01

    An improved internal electrolyte supply system in a fuel cell stack employs a variety of arrangements of grooves and passages in bipolar plates of the multiplicity of repeating fuel cells to route gravity-assisted flowing electrolyte throughout the stack. The grooves route electrolyte flow along series of first paths which extend horizontally through the cells between the plates thereof. The passages route electrolyte flow along series of second paths which extend vertically through the stack so as to supply electrolyte to the first paths in order to expose the electrolyte to the matrices of the cells. Five different embodiments of the supply system are disclosed. Some embodiments employ wicks in the grooves for facilitating transfer of the electrolyte to the matrices as well as providing support for the matrices. Additionally, the passages of some embodiments by-pass certain of the grooves and supply electrolyte directly to other of the grooves. Some embodiments employ single grooves and others have dual grooves. Finally, in some embodiments the passages are connected to the grooves by a step which produces a cascading electrolyte flow.

  4. Nuclear reactor pressure vessel support system

    DOEpatents

    Sepelak, George R.

    1978-01-01

    A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.

  5. LONG-TERM GEOCHEMICAL BEHAVIOR OF A ZEROVALENT IRON PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM IN GROUNDWATER

    EPA Science Inventory

    Passive, in-situ reactive barriers have proven to be viable, cost-effective systems for the remediation of Cr-contaminated groundwater at some sites. Permeable reactive barriers (PRBs) are installed in the flow-path of groundwater, most typically as vertical treatment walls. Re...

  6. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, Patrick F.; Herceg, Joseph E.; Klocksieben, Robert H.

    1986-01-01

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  7. Augmenting two-dimensional hydrodynamic simulations with measured velocity data to identify flow paths as a function of depth on Upper St. Clair River in the Great Lakes basin

    USGS Publications Warehouse

    Holtschlag, D.J.; Koschik, J.A.

    2005-01-01

    Upper St. Clair River, which receives outflow from Lake Huron, is characterized by flow velocities that exceed 7 feet per second and significant channel curvature that creates complex flow patterns downstream from the Blue Water Bridge in the Port Huron, Michigan, and Sarnia, Ontario, area. Discrepancies were detected between depth-averaged velocities previously simulated by a two-dimensional (2D) hydrodynamic model and surface velocities determined from drifting buoy deployments. A detailed ADCP (acoustic Doppler current profiler) survey was done on Upper St. Clair River during July 1–3, 2003, to help resolve these discrepancies. As part of this study, a refined finite-element mesh of the hydrodynamic model used to identify source areas to public water intakes was developed for Upper St. Clair River. In addition, a numerical procedure was used to account for radial accelerations, which cause secondary flow patterns near channel bends. The refined model was recalibrated to better reproduce local velocities measured in the ADCP survey. ADCP data also were used to help resolve the remaining discrepancies between simulated and measured velocities and to describe variations in velocity with depth. Velocity data from ADCP surveys have significant local variability, and statistical processing is needed to compute reliable point estimates. In this study, velocity innovations were computed for seven depth layers posited within the river as the differences between measured and simulated velocities. For each layer, the spatial correlation of velocity innovations was characterized by use of variogram analysis. Results were used with kriging to compute expected innovations within each layer at applicable model nodes. Expected innovations were added to simulated velocities to form integrated velocities, which were used with reverse particle tracking to identify the expected flow path near a sewage outfall as a function of flow depth. Expected particle paths generated by use of the integrated velocities showed that surface velocities in the upper layers tended to originate nearer the Canadian shoreline than velocities near the channel bottom in the lower layers. Therefore, flow paths to U.S. public water intakes located on the river bottom are more likely to be in the United States than withdrawals near the water surface. Integrated velocities in the upper layers are generally consistent with the surface velocities indicated by drifting-buoy deployments. Information in the 2D hydrodynamic model and the ADCP measurements was insufficient to describe the vertical flow component. This limitation resulted in the inability to account for vertical movements on expected flow paths through Upper St. Clair River. A three dimensional hydrodynamic model would be needed to account for these effects.

  8. Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor

    1996-01-01

    The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a parallel single-phase flow path. Several design modifications have been identified which will improve the system performance for generating reduced gravity data. The modified test loop can provide two-phase flow data for a range of operating conditions and can serve as a test bed for component evaluation.

  9. Characterization of Preferential Flow Path in Fractured Rock Using Heat-pulse Flowmeter

    NASA Astrophysics Data System (ADS)

    Lee, Tsai-Ping; Lin, Ming-Hsuan; Chuang, Po-Yu; Chia, Yeeping

    2015-04-01

    Rigorous thinking on how to dispose radioactive wastes safely is essential to mankind and living environment. The concepts of multiple barriers and deep geologic disposal remain the preferred option to retard the radionuclide migration in most countries. However, the investigation of preferential groundwater flow path in a fractured rock is a challenge to the characterization of potential disposal site. Heat-pulse flowmeter is a developing logging tool for measuring the vertical flow velocity in a borehole under a constant pumping or injection rate and provides a promising direct measurement method for determining the vertical distribution of hydraulic conductivity of formation. As heat-pulse flowmeter is a potential technique to measure low-velocity borehole flow, we adopted it to test the feasibility of detecting permeable fractures. Besides, a new magnetic tracer made by nano-iron particles is developed to identify the possible flow path precisely and to verify the permeable section detected by the heat-pulse flowmeter. The magnetic tracer was received by a magnet array and can also be detected by a sensor of electric conductivity. The test site is located in the Heshe of Taiwan. Eight wells were established in a fractured sandy siltstone for characterizing the fracture network. The test wells are 25 to 45 m depth and opened ranging from 15 to 45 m. Prior to the heat-pulse flowmeter measurement, we also performed surface geological investigation, pumping test, geophysical logging, and salt tracer test. Field measurements using heat-pulse flowmeter were then conducted at a constant pumping rate. The measurement interval is 50 to 100 cm in depth but improved to 25 cm near the relatively permeable zone. Based on the results of heat-pulse flowmeter, several permeable sections were identified. The magnetic tracer tests were then conducted to verify the potential preferential flow pathway between adjacent wells. Test results indicated that water flow in borehole is produced primarily from a few fractures. However, the large aperture and high density of fractures did not certainly correlate well to the permeable section. Integration of heat-pulse flowmeter measurement with other in-situ tests, it is possible to identify the exact location of the highly permeable fractures.

  10. Modeling of ground-water flow in subsurface Austin Chalk and Taylor marl in Ellis County, Texas, near the superconducting super collider site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, R.E.

    1993-02-01

    Numerical models are useful tools for developing an understanding of ground-water flow in sparsely characterized low-permeability aquifers. Finite-difference, cross-sectional models of Cretaceous chalk and marl formations near the Superconducting Super Collider (SSC) were constructed using MODFLOW to evaluate ground-water circulation paths and travel times. Weathered and fractured zones with enhanced permeability were included to assess the effect these features had on flow paths and times. Pump tests, slug tests, packer tests, core tests, and estimates were used to define hydraulic properties for model input. The model was calibrated with water-level data from monitor wells and from wire-line piezometers near amore » test shaft excavated by the SSC project. A ratio of vertical-to-horizontal permeability of 0.0085 was estimated through model calibration. A chalk-to-marl permeability ratio of 18 was needed to reproduce artesian head in a well completed in chalk beneath marl. Hydraulic head distributions and ground-water flow paths reflected local, intermediate, and regional flow systems with recharge beneath upland surface-water divides and discharge in valleys. Most of the flow (99%) occurred in the weathered zone, with average residence times of 5 to 10 years. Residence time in unweathered chalk bedrock was substantially longer, at an average of 1.7 Ma. As expected, the model demonstrated that deep and rapid ground-water circulation might occur in fracture zones. Particle paths calculated using MODPATH showed that ground-water travel times from recharge areas to the SSC subsurface facilities might be 20 to 60 years where flow is through fracture zones.« less

  11. Earthworms and tree roots: A model study of the effect of preferential flow paths on runoff generation and groundwater recharge in steep, saprolitic, tropical lowland catchments

    NASA Astrophysics Data System (ADS)

    Cheng, Yanyan; Ogden, Fred L.; Zhu, Jianting

    2017-07-01

    Preferential flow paths (PFPs) affect the hydrological response of humid tropical catchments but have not received sufficient attention. We consider PFPs created by tree roots and earthworms in a near-surface soil layer in steep, humid, tropical lowland catchments and hypothesize that observed hydrological behaviors can be better captured by reasonably considering PFPs in this layer. We test this hypothesis by evaluating the performance of four different physically based distributed model structures without and with PFPs in different configurations. Model structures are tested both quantitatively and qualitatively using hydrological, geophysical, and geochemical data both from the Smithsonian Tropical Research Institute Agua Salud Project experimental catchment(s) in Central Panama and other sources in the literature. The performance of different model structures is evaluated using runoff Volume Error and three Nash-Sutcliffe efficiency measures against observed total runoff, stormflows, and base flows along with visual comparison of simulated and observed hydrographs. Two of the four proposed model structures which include both lateral and vertical PFPs are plausible, but the one with explicit simulation of PFPs performs the best. A small number of vertical PFPs that fully extend below the root zone allow the model to reasonably simulate deep groundwater recharge, which plays a crucial role in base flow generation. Results also show that the shallow lateral PFPs are the main contributor to the observed high flow characteristics. Their number and size distribution are found to be more important than the depth distribution. Our model results are corroborated by geochemical and geophysical observations.

  12. Primary weathering rates, water transit times, and concentration-discharge relations: A theoretical analysis for the critical zone

    NASA Astrophysics Data System (ADS)

    Ameli, Ali A.; Beven, Keith; Erlandsson, Martin; Creed, Irena F.; McDonnell, Jeffrey J.; Bishop, Kevin

    2017-01-01

    The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flow path dynamics drive the spatiotemporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flow paths are complex and difficult to map quantitatively. Here we couple a new integrated flow and particle tracking transport model with a general reversible Transition State Theory style dissolution rate law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration (Ceq) to intrinsic weathering rate (Rmax), vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As CeqRmax decreases, the spatial distribution of concentration in the critical zone becomes more uniform for a wide range of flow rates, and stream C-Q relation approaches chemostatic behavior, regardless of the degree of vertical heterogeneity in Ks. These findings suggest that the transport-controlled mechanisms in the hillslope can lead to chemostatic C-Q relations in the stream while the hillslope surface reaction-controlled mechanisms are associated with an inverse stream C-Q relation. In addition, as CeqRmax decreases, the concentration in the critical zone and stream become less dependent on groundwater age (or transit time).

  13. Observations on preferential flow and horizontal transport of nitrogen fertilizer in the unsaturated zone

    USGS Publications Warehouse

    Wilkison, D.H.; Blevins, D.W.

    1999-01-01

    A study site underlain by a claypan soil was instrumented to examine the transport of fertilizer nitrogen (N) under corn (Zea mays L.) cultivation. The study was designed to examine N transport within the unsaturated zone and in interflow (the saturated flow of water on top of the claypan). A 15N- labeled fertilizer (labeled N), bromide (Br), and chloride (Cl) were used as field tracers. Rapid or prolonged infiltration events allowed water and dissolved solutes to perch on the claypan for brief periods. However, a well- developed network of preferential flow paths quickly diverted water and solutes through the claypan and into the underlying glacial till aquifer. Excess fertilizer N in the unsaturated zone supplied a continuous, but declining input of N to ground water for a period of 15 mo after a single fertilizer application. Calculated solute velocities through the claypan matrix (6.4 x 10-6 cm s-1) were similar to horizontal transport rates along the claypan (3.5 to 7.3 x 10-6 cm s-1) but much slower than infiltration rates determined for preferential flow paths (1.67 x 10-3 cm s-1). These flow paths accounted for 35% of the transport. A seasonally variable, dual mode of transport (matrix and preferential flow) prevented the claypan from being an effective barrier to vertical transport. Simulations of selected field observations, conducted using the variably saturated two- dimensional flow and transport model, VS2DT, confirmed the presence of a dual flow regime in the claypan.

  14. Roads at risk - the impact of debris flows on road network reliability and vulnerability in southern Norway

    NASA Astrophysics Data System (ADS)

    Meyer, Nele Kristin; Schwanghart, Wolfgang; Korup, Oliver

    2014-05-01

    Norwegian's road network is frequently affected by debris flows. Both damage repair and traffic interruption generate high economic losses and necessitate a rigorous assessment of where losses are expected to be high and where preventive measures should be focused on. In recent studies, we have developed susceptibility and trigger probability maps that serve as input into a hazard calculation at the scale of first-order watersheds. Here we combine these results with graph theory to assess the impact of debris flows on the road network of southern Norway. Susceptibility and trigger probability are aggregated for individual road sections to form a reliability index that relates to the failure probability of a link that connects two network vertices, e.g., road junctions. We define link vulnerability as a function of traffic volume and additional link failure distance. Additional link failure distance is the extra length of the alternative path connecting the two associated link vertices in case the network link fails and is calculated by a shortest-path algorithm. The product of network reliability and vulnerability indices represent the risk index. High risk indices identify critical links for the Norwegian road network and are investigated in more detail. Scenarios demonstrating the impact of single or multiple debris flow events are run for the most important routes between seven large cities in southern Norway. First results show that the reliability of the road network is lowest in the central and north-western part of the study area. Road network vulnerability is highest in the mountainous regions in central southern Norway where the road density is low and in the vicinity of cities where the traffic volume is large. The scenarios indicate that city connections that have their shortest path via routes crossing the central part of the study area have the highest risk of route failure.

  15. Field tracer investigation of unsaturated zone flow paths and mechanisms in agricultural soils of northwestern Mississippi, USA

    USGS Publications Warehouse

    Perkins, K.S.; Nimmo, J.R.; Rose, C.E.; Coupe, R.H.

    2011-01-01

    In many farmed areas, intensive application of agricultural chemicals and withdrawal of groundwater for irrigation have led to water quality and supply issues. Unsaturated-zone processes, including preferential flow, play a major role in these effects but are not well understood. In the Bogue Phalia basin, an intensely agricultural area in the Delta region of northwestern Mississippi, the fine-textured soils often exhibit surface ponding and runoff after irrigation and rainfall as well as extensive surface cracking during prolonged dry periods. Fields are typically land-formed to promote surface flow into drainage ditches and streams that feed into larger river ecosystems. Downward flow of water below the root zone is considered minimal; regional groundwater models predict only 5% or less of precipitation recharges the heavily used alluvial aquifer. In this study transport mechanisms within and below the root zone of a fallow soybean field were assessed by performing a 2-m ring infiltration test with tracers and subsurface monitoring instruments. Seven months after tracer application, 48 continuous cores were collected for tracer extraction to define the extent of water movement and quantify preferential flow using a mass-balance approach. Vertical water movement was rapid below the pond indicating the importance of vertical preferential flow paths in the shallow unsaturated zone, especially to depths where agricultural disturbance occurs. Lateral flow of water at shallow depths was extensive and spatially non-uniform, reaching up to 10. m from the pond within 2. months. Within 1. month, the wetting front reached a textural boundary at 4-5. m between the fine-textured soil and sandy alluvium, now a potential capillary barrier which, prior to extensive irrigation withdrawals, was below the water table. Within 10. weeks, tracer was detectable at the water table which is presently about 12. m below land surface. Results indicate that 43% of percolation may be through preferential flow paths and that any water breaking through the capillary barrier (as potential recharge) likely does so in fingers which are difficult to detect with coring methods. In other areas where water levels have declined and soils have similar properties, the potential for transport of agricultural chemicals to the aquifer may be greater than previously assumed. ?? 2010 .

  16. Inverse modeling of flow tomography experiments in fractured media

    NASA Astrophysics Data System (ADS)

    Klepikova, Maria; Le Borgne, Tanguy; Bour, Olivier; de Dreuzy, Jean-Raynald

    2014-05-01

    Inverse modeling of fracture hydraulic properties and connectivity is a very challenging objective due to the strong heterogeneity of the medium at multiple scales and the scarcity of data. Cross-borehole flowmeter tests, which consist of measuring changes in vertical borehole flows when pumping a neighboring borehole, were shown to be an efficient technique to provide information on the properties of the flow zones that connect borehole pairs (Paillet, 1998, Le Borgne et al., 2007). The interpretation of such experiments may, however, be quite uncertain when multiple connections exist. We propose the flow tomography approach (i.e., sequential cross-borehole flowmeter tests) to characterize the connectivity and transmissivity of preferential permeable flow paths in fractured aquifers (Klepikova et al., 2013). An inverse model approach is developed to estimate log-transformed transmissivity values of hydraulically active fractures between the pumping and observation wells by inverting cross-borehole flow and water level data. Here a simplified discrete fracture network approach that highlights main connectivity structures is used. This conceptual model attempts to reproduce fracture network connectivity without taking fracture geometry (length, orientation, dip) into account. We demonstrate that successively exchanging the roles of pumping and observation boreholes improves the quality of available information and reduces the under-determination of the problem. The inverse method is validated for several synthetic flow scenarios. It is shown to provide a good estimation of connectivity patterns and transmissivities of main flow paths. It also allows the estimation of the transmissivity of fractures that connect the flow paths but do not cross the boreholes, although the associated uncertainty may be high for some geometries. The results of this investigation encourage the application of flow tomography to natural fractured aquifers.

  17. Preferential flow paths in fractured rock detected by cross-borehole nano-iron tracer test

    NASA Astrophysics Data System (ADS)

    Chia, Yeeping; Chuang, Po-Yu

    2017-04-01

    Characterization of the preferential flow paths and their hydraulic properties is desirable for developing a hydrogeological conceptual model in fractured rock. However, the heterogeneity and anisotropy of the hydraulic property often make it difficult to understand groundwater flow paths through fractures. In this study, we adopted nanoscale zero-valent iron (nZVI) as a tracer to characterize fracture connectivity and hydraulic properties. A magnet array was placed in an observation well to attract arriving nZVI particles for identifying the location of incoming tracer. This novel approach was developed for the investigation of fracture flow at a hydrogeological research station in central Taiwan. A heat-pulse flowmeter test was performed to delineate the vertical distribution of permeable fractures in two boreholes, making it possible to design a field tracer test. The nZVI slurry was released in the sealed injection well. The arrival of the slurry in the observation well was evidenced by a breakthrough curve recorded by the fluid conductivity sensor as well as the nZVI particles attracted to the magnets. The iron nanoparticles attracted to the magnets provide the quantitative criteria for locating the position of tracer inlet in the observation well. The position of the magnet attracting the maximum weight of iron nanoparticles agrees well with the depth of a permeable fracture zone delineated by the flowmeter. Besides, a conventional saline tracer test was conducted in the field, producing a similar outcome as the nZVI tracer test. Our study results indicate that the nano-iron tracer test could be a promising method for the characterization of the preferential flow paths in fractured rock.

  18. Simulation of advective flow under steady-state and transient recharge conditions, Camp Edwards, Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Masterson, John P.

    2003-01-01

    The U.S. Geological Survey has developed several ground-water models in support of an investigation of ground-water contamination being conducted by the Army National Guard Bureau at Camp Edwards, Massachusetts Military Reservation on western Cape Cod, Massachusetts. Regional and subregional steady-state models and regional transient models were used to (1) improve understanding of the hydrologic system, (2) simulate advective transport of contaminants, (3) delineate recharge areas to municipal wells, and (4) evaluate how model discretization and time-varying recharge affect simulation results. A water-table mound dominates ground-water-flow patterns. Near the top of the mound, which is within Camp Edwards, hydraulic gradients are nearly vertically downward and horizontal gradients are small. In downgradient areas that are further from the top of the water-table mound, the ratio of horizontal to vertical gradients is larger and horizontal flow predominates. The steady-state regional model adequately simulates advective transport in some areas of the aquifer; however, simulation of ground-water flow in areas with local hydrologic boundaries, such as ponds, requires more finely discretized subregional models. Subregional models also are needed to delineate recharge areas to municipal wells that are inadequately represented in the regional model or are near other pumped wells. Long-term changes in recharge rates affect hydraulic heads in the aquifer and shift the position of the top of the water-table mound. Hydraulic-gradient directions do not change over time in downgradient areas, whereas they do change substantially with temporal changes in recharge near the top of the water-table mound. The assumption of steady-state hydraulic conditions is valid in downgradient area, where advective transport paths change little over time. In areas closer to the top of the water-table mound, advective transport paths change as a function of time, transient and steady-state paths do not coincide, and the assumption of steady-state conditions is not valid. The simulation results indicate that several modeling tools are needed to adequately simulate ground-water flow at the site and that the utility of a model varies according to hydrologic conditions in the specific areas of interest.

  19. Scaling Hydrologic Exchange Flows and Biogeochemical Reactions from Bedforms to Basins

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2015-12-01

    River water moves in and out of the main channel along pathways that are perpendicular to the channel's main axis that flow across or beneath the ground surface. These hydrologic exchange flows (HEFs) are difficult to measure, yet no less important than a river's downstream flow, or exchanges with the atmosphere and deeper groundwater (Harvey and Gooseff, 2015, WRR). There are very few comprehensive investigations of exchange fluxes to understand patterns with river size and relative importance of specific types of exchanges. We used the physically based model NEXSS to simulate multiple scales of hyporheic flow and their cumulative effects on solute reaction in large basins (on the order of Chesapeake Bay basin or larger). Our goal was to explain where and when particular types of hyporheic flow are important in enhancing key biogeochemical reactions, such as organic carbon respiration and denitrification. Results demonstrate that hyporheic flux (expressed per unit area of streambed) varies surprisingly little across the continuum of first-order streams to eighth-order rivers, and vertical exchange beneath small bedforms dominates in comparison with lateral flow beneath gravel bars and meanders. Also, the river's entire volume is exchanged many times with hyporheic flow within a basin, and the turnover length (after one entire river volume is exchanged) is strongly influenced by hydrogeomorphic differences between physiographic regions as well as by river size. The cumulative effects on biogeochemical reactions were assessed using a the reaction significance factor, RSF, which computes the cumulative potential for hyporheic reactions using a dimensionless index that balances reaction progress in a single hyporheic flow path against overall processing efficiency of river turnover through hyporheic flow paths of that type. Reaction significance appears to be strongly dominated by hydrologic factors rather than biogeochemical factors, and seems to be dominated by vertical exchange beneath small bedforms throughout river networks. Future implementations of NEXSS will expand the model to consider flow variation and to consider HEFs beyond hyporheic flow to include exchange with marginal surface waters such as riparian wetlands, floodplains, and ponded water.

  20. A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model

    DOE PAGES

    Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.; ...

    2016-09-16

    Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less

  1. A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.

    Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less

  2. MPI CyberMotion Simulator: implementation of a novel motion simulator to investigate multisensory path integration in three dimensions.

    PubMed

    Barnett-Cowan, Michael; Meilinger, Tobias; Vidal, Manuel; Teufel, Harald; Bülthoff, Heinrich H

    2012-05-10

    Path integration is a process in which self-motion is integrated over time to obtain an estimate of one's current position relative to a starting point (1). Humans can do path integration based exclusively on visual (2-3), auditory (4), or inertial cues (5). However, with multiple cues present, inertial cues - particularly kinaesthetic - seem to dominate (6-7). In the absence of vision, humans tend to overestimate short distances (<5 m) and turning angles (<30°), but underestimate longer ones (5). Movement through physical space therefore does not seem to be accurately represented by the brain. Extensive work has been done on evaluating path integration in the horizontal plane, but little is known about vertical movement (see (3) for virtual movement from vision alone). One reason for this is that traditional motion simulators have a small range of motion restricted mainly to the horizontal plane. Here we take advantage of a motion simulator (8-9) with a large range of motion to assess whether path integration is similar between horizontal and vertical planes. The relative contributions of inertial and visual cues for path navigation were also assessed. 16 observers sat upright in a seat mounted to the flange of a modified KUKA anthropomorphic robot arm. Sensory information was manipulated by providing visual (optic flow, limited lifetime star field), vestibular-kinaesthetic (passive self motion with eyes closed), or visual and vestibular-kinaesthetic motion cues. Movement trajectories in the horizontal, sagittal and frontal planes consisted of two segment lengths (1st: 0.4 m, 2nd: 1 m; ±0.24 m/s(2) peak acceleration). The angle of the two segments was either 45° or 90°. Observers pointed back to their origin by moving an arrow that was superimposed on an avatar presented on the screen. Observers were more likely to underestimate angle size for movement in the horizontal plane compared to the vertical planes. In the frontal plane observers were more likely to overestimate angle size while there was no such bias in the sagittal plane. Finally, observers responded slower when answering based on vestibular-kinaesthetic information alone. Human path integration based on vestibular-kinaesthetic information alone thus takes longer than when visual information is present. That pointing is consistent with underestimating and overestimating the angle one has moved through in the horizontal and vertical planes respectively, suggests that the neural representation of self-motion through space is non-symmetrical which may relate to the fact that humans experience movement mostly within the horizontal plane.

  3. Effects of flow-path variations on internal reversing flow in a tailpipe offtake configuration for ASTOVL aircraft

    NASA Technical Reports Server (NTRS)

    Mcardle, Jack G.; Esker, Barbara S.

    1993-01-01

    A one-third-scale model of a generic tailpipe offtake system for an advanced short takeoff, vertical landing (ASTOVL) aircraft was tested at the NASA Lewis Research Center Powered Lift Facility. The basic model consisted of a tailpipe with a center body to form an annulus simulating turbine outflow with no swirl; twin offtake ducts with elbows at the ends to turn the flow to a downward direction; flow control nozzles at the ends of the elbows; and a blind flange at the end of the tailpipe to simulate a closed cruise nozzle. The offtake duct-to-tailpipe diameter ratio was 0.74. Modifications of a generic nature were then made to this basic configuration to measure the effects of flow-path changes on the flow and pressure-loss characteristics. The modifications included adding rounded entrances at the forward edges of the offtake openings, blocking the tailpipe just aft the openings instead of at the cruise nozzle, changing the location of the openings along the tailpipe, removing the center body, and varying the Mach number (flow rate) over a wide range in the tailpipe ahead of the openings by changing the size of the flow control nozzles. The tests were made with unheated air at tailpipe-to-ambient pressure ratios from 1.4 to 5. Results are presented and compared with performance graphs, total-pressure contour plots, paint streak flow visualization photographs, and a flow-angle probe traverse at the offtake entrance.

  4. Solute transport with time-variable flow paths during upward and downward flux in a heterogeneous unsaturated porous medium

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan

    2014-05-01

    To acquire knowledge of solute transport through the unsaturated zone in the shallow subsurface is decisive to assess groundwater quality, nutrient cycling or to plan remediation strategies. The shallow subsurface is characterized by structural heterogeneity and strongly influenced by atmospheric conditions. This leads to changing flow directions, strong temporal changes in saturation and heterogeneous water fluxes during infiltration and evaporation events. Recent studies (e.g. Lehmann and Or, 2009; Bechtold et al.,2011) demonstrated the importance of lateral flow and solute transport during evaporation conditions (upward flux). The heterogeneous structure in these studies was constructed using two types of sand with strong material contrasts and arranged in parallel with a vertical orientation. Lateral transport and redistribution of solute from coarse to fine media was observed deeper in the soil column and from fine to coarse close to the soil surface. However, if boundary conditions are reversed due to precipitation, the flow field is not necessarily reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport under those conditions. In this contribution we analyze transport of a solute in the shallow subsurface to assess effects resulting from the temporal change of heterogeneous soil structures due to dynamic flow conditions. Two-dimensional numerical simulations of unsaturated flow and transport are conducted using a coupled finite volume and random walk particle tracking algorithm to quantify solute transport and leaching rates. Following previous studies (Lehmann and Or, 2009; Bechtold et al., 2011), the chosen domain is composed of two materials, coarse and fine sand, arranged in parallel with a vertical orientation. Hence, one sharp interface of strong material heterogeneity is induced. During evaporation both sands are assumed to stay under liquid-flow dominated evaporation conditions ("stage 1"). Simulations considering dynamic (infiltration-evaporation) and steady (solely infiltration) boundary conditions are carried out. The influence of dynamic boundary conditions (intensity and duration of precipitation and evaporation events) is examined in a multitude of simulations. If flow rates smaller than the saturated hydraulic conductivity of both materials are chosen to be applied as boundary condition, simulation results indicate that the flow field within the domain is exactly reversed. However, if applied flow rates exceed the saturated hydraulic conductivity of one material, the flow field is not just reversed, but different flow paths during downward and upward flow are observed. Results show the tendency of faster solute leaching under dynamic boundary conditions compared to steady infiltration conditions with the same net-infiltration rate. We use a double domain transport method as an upscaled model to reproduce vertically averaged concentration profiles with net flux only and compare the model parameters for information about flow dynamics and soil heterogeneity.

  5. The role of land use/land cover dependent preferential flow paths in hydrologic response of steep and seasonal tropical catchments

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Ogden, F. L.; Zhu, J.

    2017-12-01

    The hydrologic behavior of steep catchments with saprolitic soils in the humid seasonal tropics varies with land use and cover, even when they have identical topographic index and slope distributions, underlying geology and soils textures. Forested catchments can produce more baseflow during the dry season compared to catchments containing substantial amount of pasture, the so-called "sponge effect". During rainfall events, forested catchments can also exhibit lower peak runoff rates and runoff efficiencies compared to pasture catchments. We hypothesize that hydrologic effects of land use arise from differences in preferential flow paths (PFPs) formed by biotic and abiotic factors in the upper one to two meters of soil and that land use effects on hydrological response are described by the relative amounts of forest and pasture within a catchment. Furthermore, we hypothesize that infiltration measurements at different scales allow estimation of PFP-related parameters. These hypotheses are tested by a model that explicitly simulates PFPs using distinct input parameter sets for forest and pasture. Runoff observations from three catchments with pasture, forest, and a mosaic of subsistence agricultural land covers allow model evaluation. Multiple objective criteria indicate that field measurements of infiltration enable PFP-relevant parameter identification and that pasture and forest end member parameter sets describe much of the observed difference. Analysis of water balance components and comparison between average transient water table depth and vertical PFP flow capacity demonstrate that the interplay of lateral and vertical PFPs contribute to the sponge-effect and can explain differences in peak runoff and runoff efficiency.

  6. Mapping of the Marangoni effect in soap films using Young's double-slit experiment

    NASA Astrophysics Data System (ADS)

    Emile, Janine; Emile, Olivier

    2013-10-01

    We report on the thickness variation measurement of a soap film due to a local perturbation, using Young's double-slit experiment configuration. We map a laser-heated deformation of a vertical free-standing draining thin soap film using the differential change of optical path in the interferometer. The experiment has a resolution of about 0.1 nm and enables to follow the liquid flow dynamics. We evidence a bottleneck formation in the heated region of the film that perturbs the usual flow. Such an experimental set-up could then be adapted to measure other tiny variations in fluctuating hydrodynamics such as capillary waves for example.

  7. Modeling solute transport in a heterogeneous unsaturated porous medium under dynamic boundary conditions on different spatial scales

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel

    2013-04-01

    Understanding transport of solutes/contaminants through unsaturated soil in the shallow subsurface is vital to assess groundwater quality, nutrient cycling or to plan remediation projects. Alternating precipitation and evaporation conditions causing upward and downward flux with differing flow paths, changes in saturation and related structural heterogeneity make the description of transport in the unsaturated zone near the soil-surface a complex problem. Preferential flow paths strongly depend, among other things, on the saturation of a medium. Recent studies (e.g. Bechtold et al., 2011) showed lateral flow and solute transport during evaporation conditions (upward flux) in vertically layered sand columns. Results revealed that during evaporation water and solute are redistributed laterally from coarse to fine media deeper in the soil, and towards zones of lowest hydraulic head near to the soil surface. These zones at the surface can be coarse or fine grained depending on saturation status and evaporation flux. However, if boundary conditions are reversed and precipitation is applied, the flow field is not reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport in the shallow unsaturated zone. In this contribution, we analyze transport of a solute in the shallow subsurface to assess effects resulting from the superposition of heterogeneous soil structures and dynamic flow conditions on various spatial scales. Two-dimensional numerical simulations of unsaturated flow and transport in heterogeneous porous media under changing boundary conditions are carried out using a finite-volume code coupled to a particle tracking algorithm to quantify solute transport and leaching rates. In order to validate numerical simulations, results are qualitatively compared to those of a physical experiment (Bechtold et al., 2011). Numerical simulations differ in lateral scale reaching from 0.2 m to 1.5 m, while the height of the domain is kept constant to 1.5m. Strong material heterogeneity is realized through vertical layers of coarse and fine sand. Both materials remain permanently under liquid-flow-dominated ('stage1') evaporation conditions. Spatial moments as well as the dilution index (Kitanidis, 1994) are used for quantification of transport behaviour. Results show that, while all simulations led to anomalous transport, infiltration-evaporation cycles lead to faster solute leaching rates than solely infiltration at the same net-infiltration rate in both homogeneous and heterogeneous media. Flow and transport-paths significantly differed between infiltration and evaporation, resulting in lateral water fluxes and hence lateral solute transport. Variation of the width of the model domain shows faster leaching rates for domains with small horizontal extent.

  8. Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling

    DOE PAGES

    Sjöberg, Ylva; Coon, Ethan; K. Sannel, A. Britta; ...

    2016-02-04

    Modeling and observation of ground temperature dynamics are the main tools for understanding current permafrost thermal regimes and projecting future thaw. Until recently, most studies on permafrost have focused on vertical ground heat fluxes. Groundwater can transport heat in both lateral and vertical directions but its influence on ground temperatures at local scales in permafrost environments is not well understood. In this paper, we combine field observations from a subarctic fen in the sporadic permafrost zone with numerical simulations of coupled water and thermal fluxes. At the Tavvavuoma study site in northern Sweden, ground temperature profiles and groundwater levels weremore » observed in boreholes. These observations were used to set up one- and two-dimensional simulations down to 2 m depth across a gradient of permafrost conditions within and surrounding the fen. Two-dimensional scenarios representing the fen under various hydraulic gradients were developed to quantify the influence of groundwater flow on ground temperature. Our observations suggest that lateral groundwater flow significantly affects ground temperatures. This is corroborated by modeling results that show seasonal ground ice melts 1 month earlier when a lateral groundwater flux is present. Further, although the thermal regime may be dominated by vertically conducted heat fluxes during most of the year, isolated high groundwater flow rate events such as the spring freshet are potentially important for ground temperatures. Finally, as sporadic permafrost environments often contain substantial portions of unfrozen ground with active groundwater flow paths, knowledge of this heat transport mechanism is important for understanding permafrost dynamics in these environments.« less

  9. How important is exact knowledge of preferential flowpath locations and orientations for understanding spatiotemporally integrated spring hydrologic and transport response?

    NASA Astrophysics Data System (ADS)

    Henson, W.; De Rooij, R.; Graham, W. D.

    2016-12-01

    The Upper Floridian Aquifer is hydrogeologically complex; limestone dissolution has led to vertical and horizontal preferential flow paths. Locations of karst conduits are unknown and conduit properties are poorly constrained. Uncertainty in effects of conduit location, size, and density, network geometry and connectivity on hydrologic and transport responses is not well quantified, leading to limited use of discrete-continuum models that incorporate conduit networks for regional-scale hydrologic regulatory models. However, conduit networks typically dominate flow and contaminant transport in karst aquifers. We evaluated sensitivity of simulated water and nitrate fluxes and flow paths to karst conduit geometry in a springshed representative of Silver Springs, Florida, using a novel calcite dissolution conduit-generation algorithm coupled with a discrete-continuum flow and transport model (DisCo). Monte Carlo simulations of conduit generation, groundwater flow, and conservative solute transport indicate that, if a first magnitude spring system conduit network developed (i.e., spring flow >2.8 m3/s), the uncertainty in hydraulic and solute pulse response metrics at the spring vent was minimally related to locational uncertainty of network elements. Across the ensemble of realizations for various distributions of conduits, first magnitude spring hydraulic pulse metrics (e.g., steady-flow, peak flow, and recession coefficients) had < 0.01 coefficient of variation (CV). Similarly, spring solute breakthrough curve moments had low CV (<0.08); peak arrival had CV=0.06, mean travel time had CV=0.05, and travel time standard deviation had CV=0.08. Nevertheless, hydraulic and solute pulse response metrics were significantly different than those predicted by an equivalent porous-media model. These findings indicate that regional-scale decision models that incorporate karst preferential flow paths within an uncertainty framework can be used to better constrain aquifer-vulnerability estimates, despite lacking information about actual conduit locations.

  10. Aerosol and trace gas flux measurements from a mobile car platform on the highway

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Miller, S. J.; Staebler, R. M.; Taylor, P.

    2016-12-01

    Mobile flux measurements of aerosols and trace gases at the surface can provide valuable information about the vertical transport of these compounds from near-surface sources. These measurements can be complimentary to stationary tower measurements or elevated mobile measurements from aircraft and unmanned aerial systems (UAS). In July, 2016 a mobile platform (Toyota Highlander), outfitted with a sonic anemometer (ATI), an open path CO2/H2O analyzer (Licor), and an ultrafine particle sizer (DMT), was driven on highways as part of a chasing study to investigate vehicle-induced turbulence and mixing. The open path analyzer and particle sizer inlet were co-located with the anemometer in order to investigate the feasibility of making flux measurements of heat, momentum, water vapour, CO2, and sub-micron aerosols on the highway. These highway flux measurements are compared to stationary platform measurements made upwind and downwind of the highway. Statistical and spectral analyses are used to demonstrate the validity of the mobile measurements. Uncertainties due to flow distortion around the vehicle, under-sampling, and heterogeneity of the vertical temperature and concentrations are investigated and discussed.

  11. Transmissivity interpolation using Fluid Flow Log data at different depth level in Liwa Aquifer, UAE.

    NASA Astrophysics Data System (ADS)

    Gülşen, Esra; Kurtulus, Bedri; Necati Yaylim, Tolga; Avsar, Ozgur

    2017-04-01

    In groundwater studies, quantification and detection of fluid flows in borehole is an important part of assessment aquifer characteristic at different depths. Monitoring wells disturbs the natural flow field and this disturbance creates different flow paths to an aquifer. Vertical flow fluid analyses are one of the important techniques to deal with the detection and quantification of these vertical flows in borehole/monitoring wells. Liwa region is located about 146 km to the south west of Abu Dhabi city and about 36 km southwest of Madinat Zayed. SWSR (Strategic Water Storage & Recovery Project) comprises three Schemes (A, B and C) and each scheme contains an infiltration basin in the center, 105 recovery wells, 10 clusters and each cluster comprises 3 monitoring wells with different depths; shallow ( 50 m), intermediate ( 75 m) and deep ( 100 m). The scope of this study is to calculate the transmissivity values at different depth and evaluate the Fluid Flow Log (FFL) data for Scheme A (105 recovery wells) in order to understand the aquifer characteristic at different depths. The transmissivity values at different depth levels are calculated using Razack and Huntley (1991) equation for vertical flow rates of 30 m3 /h, 60 m3 /h, 90 m3 /h, 120 m3 /h and then Empirical Bayesian Kriging is used for interpolation in Scheme A using ArcGIS 10.2 software. FFL are drawn by GeODin software. Derivative analysis of fluid flow data are done by Microsoft Office: Excel software. All statistical analyses are calculated by IBMSPSS software. The interpolation results show that the transmissivity values are higher at the top of the aquifer. In other word, the aquifer is found more productive at the upper part of the Liwa aquifer. We are very grateful for financial support and providing us the data to ZETAS Dubai Inc.

  12. Homogenous stretching or detachment faulting? Which process is primarily extending the Aegean crust

    NASA Astrophysics Data System (ADS)

    Kumerics, C.; Ring, U.

    2003-04-01

    In extending orogens like the Aegean Sea of Greece and the Basin-and-Range province of the western United States, knowledge of rates of tectonic processes are important for understanding which process is primarily extending the crust. Platt et al. (1998) proposed that homogeneous stretching of the lithosphere (i.e. vertical ductile thinning associated with a subhorizontal foliation) at rates of 4-5 km Myr-1 is the dominant process that formed the Alboran Sea in the western Mediterranean. The Aegean Sea in the eastern Mediterranean is well-known for its low-angle normal faults (detachments) (Lister et al., 1984; Lister &Forster, 1996) suggesting that detachment faulting may have been the primary agent achieving ~>250 km (McKenzie, 1978) of extension since the Miocene. Ring et al. (2003) provided evidence for a very fast-slipping detachment on the islands of Syros and Tinos in the western Cyclades, which suggests that normal faulting was the dominant tectonic process that formed the Aegean Sea. However, most extensional detachments in the Aegean do not allow to quantify the amount of vertical ductile thinning associated with extension and therefore a full evaluation of the significance of vertical ductile thinning is not possible. On the Island of Ikaria in the eastern Aegean Sea, a subhorizontal extensional ductile shear zone is well exposed. We studied this shear zone in detail to quantify the amount of vertical ductile thinning associated with extension. Numerous studies have shown that natural shear zones usually deviate significantly from progressive simple shear and are characterized by pronounced shortening perpendicular to the shear zone. Numerous deformed pegmatitic veins in this shear zone on Ikaria allow the reconstruction of deformation and flow parameters (Passchier, 1990), which are necessary for quantifying the amount of vertical ductile thinning in the shear zone. Furthermore, a flow-path and finite-strain study in a syn-tectonic granite, which intruded into the shear zone, was carried out. Consistent results show that the mean kinematic vorticity number in the shear zone was close to 1, indicating that the bulk deformation path was close to simple shear. This in turn indicates that vertical ductile thinning was not important during extensional faulting. We conclude that detachment faulting was the primary agent that extended the Aegean crust.

  13. Geochemical and statistical evidence of recharge, mixing, and controls on spring discharge in an eogenetic karst aquifer

    NASA Astrophysics Data System (ADS)

    Moore, Paul J.; Martin, Jonathan B.; Screaton, Elizabeth J.

    2009-10-01

    SummaryInformation about sources of recharge, distributions of flow paths, and the extent of water-rock reactions in karst aquifers commonly result from monitoring spring chemistry and discharge. To investigate the relationship between spring characteristics and the complexities of karst aquifers, we couple variations in surface- and groundwater chemistry to physical conditions including river stage, precipitation, and evapotranspiration (ET) within a sink-rise system through a 6-km portion of the Upper Floridan aquifer (UFA) in north-central Florida. Principal component analysis (PCA) of time series major-element compositions suggests that at least three sources of water affect spring discharge, including allogenic recharge into a swallet, diffuse recharge through a thin vadose zone, and water upwelling from deep within the aquifer. The deep-water source exerts the strongest influence on water chemistry by providing a majority of Na +, Mg 2+, K +, Cl -, and SO42- to the system. Anomalously high temperature at one of several monitoring wells reflects vertical flow of about 1 m/year. Mass-balance calculations suggest diffuse recharge and deep-water upwelling can provide up to 50% of the spring discharge; however, their contributions depend on head gradients between the conduit and surrounding aquifer matrix, which are influenced by variations in precipitation, ET, and river stage. Our results indicate that upwelling from deep flow paths may provide significant contributions of water to spring discharge, and that monitoring only springs limits interpretations of karst systems by masking critical components of the aquifer, such as water sources and flow paths. These results also suggest the matrix in eogenetic aquifers is a major pathway for flow even in a system dominated by conduits.

  14. TopoDrive and ParticleFlow--Two Computer Models for Simulation and Visualization of Ground-Water Flow and Transport of Fluid Particles in Two Dimensions

    USGS Publications Warehouse

    Hsieh, Paul A.

    2001-01-01

    This report serves as a user?s guide for two computer models: TopoDrive and ParticleFlow. These two-dimensional models are designed to simulate two ground-water processes: topography-driven flow and advective transport of fluid particles. To simulate topography-driven flow, the user may specify the shape of the water table, which bounds the top of the vertical flow section. To simulate transport of fluid particles, the model domain is a rectangle with overall flow from left to right. In both cases, the flow is under steady state, and the distribution of hydraulic conductivity may be specified by the user. The models compute hydraulic head, ground-water flow paths, and the movement of fluid particles. An interactive visual interface enables the user to easily and quickly explore model behavior, and thereby better understand ground-water flow processes. In this regard, TopoDrive and ParticleFlow are not intended to be comprehensive modeling tools, but are designed for modeling at the exploratory or conceptual level, for visual demonstration, and for educational purposes.

  15. Mixing effects on nitrogen and oxygen concentrations and the relationship to mean residence time in a hyporheic zone of a riffle-pool sequence

    USGS Publications Warehouse

    Naranjo, Ramon C.; Niswonger, Richard G.; Clinton Davis,

    2015-01-01

    Flow paths and residence times in the hyporheic zone are known to influence biogeochemical processes such as nitrification and denitrification. The exchange across the sediment-water interface may involve mixing of surface water and groundwater through complex hyporheic flow paths that contribute to highly variable biogeochemically active zones. Despite the recognition of these patterns in the literature, conceptualization and analysis of flow paths and nitrogen transformations beneath riffle-pool sequences often neglect to consider bed form driven exchange along the entire reach. In this study, the spatial and temporal distribution of dissolved oxygen (DO), nitrate (NO3-) and ammonium (NH4+) were monitored in the hyporheic zone beneath a riffle-pool sequence on a losing section of the Truckee River, NV. Spatially-varying hyporheic exchange and the occurrence of multi-scale hyporheic mixing cells are shown to influence concentrations of DO and NO3- and the mean residence time (MRT) of riffle and pool areas. Distinct patterns observed in piezometers are shown to be influenced by the first large flow event following a steady 8 month period of low flow conditions. Increases in surface water discharge resulted in reversed hydraulic gradients and production of nitrate through nitrification at small vertical spatial scales (0.10 to 0.25 m) beneath the sediment-water interface. In areas with high downward flow rates and low MRT, denitrification may be limited. The use of a longitudinal two-dimensional flow model helped identify important mechanisms such as multi-scale hyporheic mixing cells and spatially varying MRT, an important driver for nitrogen transformation in the riverbed. Our observations of DO and NO3- concentrations and model simulations highlight the role of multi-scale hyporheic mixing cells on MRT and nitrogen transformations in the hyporheic zone of riffle-pool sequences. This article is protected by copyright. All rights reserved.

  16. Acoustic concentration of particles in fluid flow

    DOEpatents

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  17. Aircraft landing control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor); Hansen, Rolf (Inventor)

    1982-01-01

    Upon aircraft landing approach, flare path command signals of altitude, vertical velocity and vertical acceleration are generated as functions of aircraft position and velocity with respect to the ground. The command signals are compared with corresponding actual values to generate error signals which are used to control the flight path.

  18. Energetics of eddy-mean flow interactions in the Brazil current between 20°S and 36°S

    NASA Astrophysics Data System (ADS)

    Magalhães, F. C.; Azevedo, J. L. L.; Oliveira, L. R.

    2017-08-01

    The energetics of eddy-mean flow interactions in the Brazil Current (BC) between 20°S and 36°S are investigated in 19 transects perpendicular to the 200 m isobath. Ten years (2000-2009) of output data from the Hybrid Coordinate Ocean Model (HYCOM) NCODA reanalysis, with a spatial resolution of 1/12.5° and 5 day averages, are used. The mean kinetic energy (MKE) and eddy kinetic energy (EKE) fields presented the same subsurface spatial pattern but with reduced values. The EKE increases southward, with high values along the BC path and the offshore portion of the jet. The values of the barotropic conversion term (BTC) are highest in the surface layers and decreased with depth, whereas the values of the baroclinic conversion term (BCC) and the vertical eddy heat flux (VEHF) are highest in the subsurface. Despite the vertical thickening of the BC, the highest energy conversion rates are confined to the upper 700 m of the water column. The energetic analysis showed that the current features mixed instability processes. The vertical weighted mean of the BTC and BCC presented an oscillatory pattern related to the bathymetry. The eddy field accelerates the time-mean flow upstream and downstream of bathymetric features and drains energy from the time-mean flow over the features. The BC is baroclinically unstable south of 28°S, and the highest energy conversion rates occur in Cabo de São Tomé, Cabo Frio, and the Cone do Rio Grande.

  19. Dyke-path formation in relation to the eruptions of Eyjafjallajökull 2010 and Bardarbunga-Holuhraun 2014

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust

    2015-04-01

    Dykes are extension fractures and form when the magmatic overpressure is high enough to rupture (break) the host rock. Their formation is entirely analogous to that of many joints and human-made hydraulic fractures, such as are used to increase permeability in reservoirs. When generating their paths, dykes use existing weaknesses (e.g., cooling joints) in the host rock. The maximum depth of large tension fractures below the surface of a rift zone, however, is mostly less than a few hundred metres. If the fractures extend to greater depths, they must change into closed normal faults which are generally not used as magma paths. There are thus no large tension fractures or wide-open faults at great depths ready to be filled with magma to form a dyke. While magma flow in dykes, as in other fluid-driven fractures, is at any point in various directions dyke segmentation may indicate the overall large-scale flow direction. Thus, dykes composed of large-spaced disconnected segments in lateral sections are primarily formed in vertical magma flow at segmentation depth whereas those composed of large-spaced disconnected segments in vertical sections are primarily formed in lateral magma flow. The far-field displacement and stress fields of segmented dykes are similar to those generated by single, continuous dykes of similar dimensions, particularly when the distances between the nearby tips of the segments become small in comparison with segment lengths. Most dykes become arrested and never supply magma to eruptions. Feeder-dykes normally reach the surface only along parts of their lengths (strike-dimensions). The volumetric flow or effusion rate of magma through a feeder-dyke or volcanic fissure depends on the aperture (opening) of the dyke or fissure in the 3rd power. All these theoretical and observational results are here applied to the dyke emplacements associated with the eruptions of Eyjafjallajökull 2010 and Bardarbunga-Holuhraun 2014. The results make it possible to (1) explain, broadly, the propagation-paths of the associated dykes, (2) the arrest and deflection (into sills) of many dyke segments, (3) the dimensions of the dykes, in particular (4) the dyke thicknesses, (5) the volumetric flow or effusion rates of the volcanic fissures, and (6) the location of the magma sources of the dykes. Galindo, I., Gudmundsson, A., 2012. Basaltic feeder dykes in rift zones: geometry, emplacement, and effusion rates. Nat. Hazards Earth Syst. Sci., 12, 3683-3700. Becerril, L., Galindo, I., Gudmundsson, A., Morales, J.M., 2013. Depth of origin of magma in eruptions. Sci. Reports (Nature Publishing), 3, 2762, doi: 10.1038/srep02762. Gudmundsson, A., Lecoeur, N., Mohajeri, N., Thordarson, T., 2014. Dike emplacement at Bardarbunga, Iceland, induces unusual stress changes, caldera deformation, and earthquakes. Bull. Volcanol., 76, 869, doi: 10.1007/s00445-014-0869-8.

  20. Agitation, Mixing, and Transfers Induced by Bubbles

    NASA Astrophysics Data System (ADS)

    Risso, Frédéric

    2018-01-01

    Bubbly flows involve bubbles randomly distributed within a liquid. At large Reynolds number, they experience an agitation that can combine shear-induced turbulence (SIT), large-scale buoyancy-driven flows, and bubble-induced agitation (BIA). The properties of BIA strongly differ from those of SIT. They have been determined from studies of homogeneous swarms of rising bubbles. Regarding the bubbles, agitation is mainly caused by the wake-induced path instability. Regarding the liquid, two contributions must be distinguished. The first one corresponds to the anisotropic flow disturbances generated near the bubbles, principally in the vertical direction. The second one is the almost isotropic turbulence induced by the flow instability through a population of bubbles, which turns out to be the main cause of horizontal fluctuations. Both contributions generate a k-3 spectral subrange and exponential probability density functions. The subsequent issue will be to understand how BIA interacts with SIT.

  1. Mapping fracture flow paths with a nanoscale zero-valent iron tracer test and a flowmeter test

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Teng, Mao-Hua; Liou, Sofia Ya Hsuan

    2018-02-01

    The detection of preferential flow paths and the characterization of their hydraulic properties are important for the development of hydrogeological conceptual models in fractured-rock aquifers. In this study, nanoscale zero-valent iron (nZVI) particles were used as tracers to characterize fracture connectivity between two boreholes in fractured rock. A magnet array was installed vertically in the observation well to attract arriving nZVI particles and identify the location of the incoming tracer. Heat-pulse flowmeter tests were conducted to delineate the permeable fractures in the two wells for the design of the tracer test. The nZVI slurry was released in the screened injection well. The arrival of the slurry in the observation well was detected by an increase in electrical conductivity, while the depth of the connected fracture was identified by the distribution of nZVI particles attracted to the magnet array. The position where the maximum weight of attracted nZVI particles was observed coincides with the depth of a permeable fracture zone delineated by the heat-pulse flowmeter. In addition, a saline tracer test produced comparable results with the nZVI tracer test. Numerical simulation was performed using MODFLOW with MT3DMS to estimate the hydraulic properties of the connected fracture zones between the two wells. The study results indicate that the nZVI particle could be a promising tracer for the characterization of flow paths in fractured rock.

  2. Improved radial segregation via the destabilizing vertical Bridgman configuration

    NASA Astrophysics Data System (ADS)

    Sonda, Paul; Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.

    2004-01-01

    We employ a computational model to revisit the classic crystal growth experiments conducted by Kim et al. (J. Electrochem. Soc. 119 (1972) 1218) and Müller et al. (J. Crystal Growth 70 (1984) 78), which were among the first to clearly document the effects of flow transitions on segregation. Analysis of the growth of tellerium-doped indium antimonide within a destabilizing vertical Bridgman configuration reveals the existence of multiple states, each of which can be reached by feasible paths of process operation. Transient growth simulations conducted on the different solution branches reveal striking differences in hydrodynamic and segregation behavior. We show that crystals grown in the destabilizing configuration exhibit considerably better radial segregation than those grown in the stabilizing configuration, a result which challenges conventional wisdom and practice.

  3. Acoustic concentration of particles in fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Michael W.; Kaduchak, Gregory

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluidmore » flow path to the at least one pressure minima.« less

  4. Effect of micro-scale wind on the measurement of airborne pollen concentrations using volumetric methods on a building rooftop

    NASA Astrophysics Data System (ADS)

    Miki, Kenji; Kawashima, Shigeto; Fujita, Toshio; Nakamura, Kimihito; Clot, Bernard

    2017-06-01

    Evaluating airborne pollen concentrations is important for the understanding of the spatiotemporal dispersion of pollen grains. Using two identical pollen monitors in parallel, we performed two experiments in order to study the influences of a) the physical characteristics (orientation) of the air inlet and b) the presence of obstacles in proximity to the monitors on airborne pollen concentration data. The first experiment consisted of an evaluation of airborne pollen concentrations using two different types of orifices; 1) a vertically oriented inlet and 2) a wind vane intake, both attached to the same type of automatic pollen sampler. The second experiment investigated the relationship between vertical wind speed and horizontal wind direction around an obstacle with the goal of studying the impact of micro-scale wind on pollen sampling efficiency. The results of the two experiments suggest that the wind path near an obstacle might be redirected in a vertical direction before or after the wind flows over the obstacle, which causes measurement errors of airborne pollen concentrations that are proportional to the vertical wind speed, especially when a vertically oriented inlet is used.

  5. 14 CFR 171.253 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... height of 200 feet or less above the horizontal plane containing the threshold. Glide path means that locus of points in the vertical plane containing the runway center line at which the DDM is zero, which... sector (full) means the sector in the vertical plane containing the ISMLS glide path and limited by the...

  6. Application of ERT, Saline Tracer and Numerical Studies to Delineate Preferential Paths in Fractured Granites.

    PubMed

    Sreeparvathy, Vijay; Kambhammettu, B V N P; Peddinti, Srinivasa Rao; Sarada, P S L

    2018-03-22

    Accurate quantification of in situ heterogeneity and flow processes through fractured geologic media remains elusive for hydrogeologists due to the complexity in fracture characterization and its multiscale behavior. In this research, we demonstrated the efficacy of tracer-electrical resistivity tomography (ERT) experiments combined with numerical simulations to characterize heterogeneity and delineate preferential flow paths in a fractured granite aquifer. A series of natural gradient saline tracer experiments were conducted from a depth window of 18 to 22 m in an injection well (IW) located inside the Indian Institute of Technology Hyderabad campus. Tracer migration was monitored in a time-lapse mode using two cross-sectional surface ERT profiles placed in the direction of flow gradient. ERT data quality was improved by considering stacking, reciprocal measurements, resolution indicators, and geophysical logs. Dynamic changes in subsurface electrical properties inferred via resistivity anomalies were used to highlight preferential flow paths of the study area. Temporal changes in electrical resistivity and tracer concentration were monitored along the vertical in an observation well located at 48 m to the east of the IW. ERT-derived tracer breakthrough curves were in agreement with geochemical sample measurements. Fracture geometry and hydraulic properties derived from ERT and pumping tests were further used to evaluate two mathematical conceptualizations that are relevant to fractured aquifers. Results of numerical analysis conclude that dual continuum model that combines matrix and fracture systems through a flow exchange term has outperformed equivalent continuum model in reproducing tracer concentrations at the monitoring wells (evident by a decrease in RMSE from 199 to 65 mg/L). A sensitivity analysis on model simulations conclude that spatial variability in hydraulic conductivity, local-scale dispersion, and flow exchange at fracture-matrix interface have a profound effect on model simulations. © 2018, National Ground Water Association.

  7. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange beneath meandering river banks mainly has importance only in large rivers. For solutes entering networks in proportion to water inputs it is the lower order streams that tend to dominate cumulative reaction progress.

  8. Flow paths in the Edwards aquifer, northern Medina and northeastern Uvalde counties, Texas, based on hydrologic identification and geochemical characterization and simulation

    USGS Publications Warehouse

    Clark, Allan K.; Journey, Celeste A.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, conducted a 4-year study during 2001– 04 to identify major ground-water flow paths in the Edwards aquifer in northern Medina and northeastern Uvalde Counties, Texas. The study involved use of geologic structure, surfacewater and ground-water data, and geochemistry to identify ground-water flow paths. Relay ramps and associated faulting in northern Medina County appear to channel ground-water flow along four distinct flow paths that move water toward the southwest. The northwestern Medina flow path is bounded on the north by the Woodard Cave fault and on the south by the Parkers Creek fault. Water moves downdip toward the southwest until the flow encounters a cross fault along Seco Creek. This barrier to flow might force part or most of the flow to the south. Departure hydrographs for two wells and discharge departure for a streamflow-gaging station provide evidence for flow in the northwestern Medina flow path. The north-central Medina flow path (northern part) is bounded by the Parkers Creek fault on the north and the Medina Lake fault on the south. The adjacent north-central Medina flow path (southern part) is bounded on the north by the Medina Lake fault and on the south by the Diversion Lake fault. The north-central Medina flow path is separated into a northern and southern part because of water-level differences. Ground water in both parts of the northcentral Medina flow path moves downgradient (and down relay ramp) from eastern Medina County toward the southwest. The north-central Medina flow path is hypothesized to turn south in the vicinity of Seco Creek as it begins to be influenced by structural features. Departure hydrographs for four wells and Medina Lake and discharge departure for a streamflow-gaging station provide evidence for flow in the north-central Medina flow path. The south-central Medina flow path is bounded on the north by the Seco Creek and Diversion Lake faults and on the south by the Haby Crossing fault. Because of bounding faults oriented northeast-southwest and adjacent flow paths directed south by other geologic structures, the south-central Medina flow path follows the configuration of the adjacent flow paths—oriented initially southwest and then south. Immediately after turning south, the south-central Medina flow path turns sharply east. Departure hydrographs for four wells and discharge departure for a streamflow-gaging station provide evidence for flow in the south-central Medina flow path. Statistical correlations between water-level departures for 11 continuously monitored wells provide additional evidence for the hypothesized flow paths. Of the 55 combinations of departure dataset pairs, the stronger correlations (those greater than .6) are all among wells in the same flow path, with one exception. Simulations of compositional differences in water chemistry along a hypothesized flow path in the Edwards aquifer and between ground-water and surface-water systems near Medina Lake were developed using the geochemical model PHREEQC. Ground-water chemistry for samples from five wells in the Edwards aquifer in the northwestern Medina flow path were used to evaluate the evolution of ground-water chemistry in the northwestern Medina flow path. Seven simulations were done for samples from pairs of these wells collected during 2001–03; three of the seven yielded plausible models. Ground-water samples from 13 wells were used to evaluate the evolution of ground-water chemistry in the north-central Medina flow path (northern and southern parts). Five of the wells in the most upgradient part of the flow path were completed in the Trinity aquifer; the remaining eight were completed in the Edwards aquifer. Nineteen simulations were done for samples from well pairs collected during 1995–2003; eight of the 19 yielded plausible models. Ground-water samples from seven wells were used to evaluate the evolution of ground-water chemistry in the south-central Medina flow path. One well was the Trinity aquifer end-member well upgradient from all flow paths, and another was a Trinity aquifer well in the most upgradient part of the flow path; all other wells were completed in the Edwards aquifer. Nine simulations were done for samples from well pairs collected during 1996–2003; seven of the nine yielded plausible models. The plausible models demonstrate that the four hypothesized flow paths can be partially supported geochemically. 

  9. Liquid waveguide spectrophotometric measurement of nanomolar ammonium in seawater based on the indophenol reaction with o-phenylphenol (OPP).

    PubMed

    Hashihama, Fuminori; Kanda, Jota; Tauchi, Ami; Kodama, Taketoshi; Saito, Hiroaki; Furuya, Ken

    2015-10-01

    We describe a highly sensitive colorimetric method for the determination of nanomolar concentrations of ammonium in seawater based on the indophenol reaction with o-phenylphenol [(1,1'-biphenyl)-2-ol, abbreviated as OPP]. OPP is available as non-toxic, stable flaky crystals with no caustic odor and has some advantages over phenol in practical use. The method was established by using a gas-segmented continuous flow analyzer equipped with two types of long path liquid waveguide capillary cell, LWCCs (100 cm and 200 cm) and an UltraPath (200 cm), which have inner diameters of 0.55 mm and 2 mm, respectively. The reagent concentrations, flow rates of the pumping tubes, and reaction path and temperature were determined on the basis of a manual indophenol blue method with OPP (Kanda, Water Res. 29 (1995) 2746-2750). The sample mixed with reagents that form indophenol blue dye was measured at 670 nm. Aged subtropical surface water was used as a blank, a matrix of standards, and the carrier. The detection limits of the analytical systems with a 100 cm LWCC, a 200 cm LWCC, and a 200 cm UltraPath were 6, 4, and 4 nM, respectively. These systems had high precision (<4% at 100 nM) and a linear dynamic range up to 200 nM. Non-linear baseline drift did not occur when using the UltraPath system. This is due to the elimination of cell clogging because of the larger inner diameter of the UltraPath compared to the LWCCs. The UltraPath system is thus more suitable for long-term measurements compared with the LWCC systems. The results of the proposed sensitive colorimetry and a conventional colorimetry for the determination of seawater samples showed no significant difference. The proposed analytical systems were applied to underway surface monitoring and vertical observation in the oligotrophic South Pacific. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Using heat as a tracer to estimate spatially distributed mean residence times in the hyporheic zone of a riffle-pool sequence

    USGS Publications Warehouse

    Naranjo, Ramon C.

    2013-01-01

    Biochemical reactions that occur in the hyporheic zone are highly dependent on the time solutes that are in contact with sediments of the riverbed. In this investigation, we developed a 2-D longitudinal flow and solute-transport model to estimate the spatial distribution of mean residence time in the hyporheic zone. The flow model was calibrated using observations of temperature and pressure, and the mean residence times were simulated using the age-mass approach for steady-state flow conditions. The approach used in this investigation includes the mixing of different ages and flow paths of water through advection and dispersion. Uncertainty of flow and transport parameters was evaluated using standard Monte Carlo and the generalized likelihood uncertainty estimation method. Results of parameter estimation support the presence of a low-permeable zone in the riffle area that induced horizontal flow at a shallow depth within the riffle area. This establishes shallow and localized flow paths and limits deep vertical exchange. For the optimal model, mean residence times were found to be relatively long (9–40.0 days). The uncertainty of hydraulic conductivity resulted in a mean interquartile range (IQR) of 13 days across all piezometers and was reduced by 24% with the inclusion of temperature and pressure observations. To a lesser extent, uncertainty in streambed porosity and dispersivity resulted in a mean IQR of 2.2 and 4.7 days, respectively. Alternative conceptual models demonstrate the importance of accounting for the spatial distribution of hydraulic conductivity in simulating mean residence times in a riffle-pool sequence.

  11. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  12. An isotopic and modelling study of flow paths and storage in Quaternary calcarenite, SW Australia: implications for speleothem paleoclimate records

    NASA Astrophysics Data System (ADS)

    Treble, Pauline C.; Bradley, Chris; Wood, Anne; Baker, Andy; Jex, Catherine N.; Fairchild, Ian J.; Gagan, Michael K.; Cowley, Joan; Azcurra, Cecilia

    2013-03-01

    We investigated the distinctive shallow sub-surface hydrology of the southwest Western Australia (SWWA) dune calcarenite using observed rainfall and rainfall δ18O; soil moisture, cave drip rate and dripwater δ18O over a six-year period: August 2005-March 2012. A lumped parameter hydrological model is developed to describe water fluxes and drip δ18O. Comparison of observed data and model output allow us to assess the critical non-climatic karst hydrological processes that modify the precipitation δ18O signal and discuss the implications for speleothem paleoclimate records from this cave and those with a similar karst setting. Our findings include evidence of multiple reservoirs, characterised by distinct δ18O values and recharge responses ('low' and 'high' flow sites). Dripwaters exhibit δ18O variations in wet versus dry years at low-flow sites receiving diffuse seepage from the epikarst with an attenuated isotopic composition that approximates mean rainfall. Recharge from high-magnitude rain events is stored in a secondary reservoir which is associated with high-flow dripwater that is 1‰ lower than our monitored low-flow sites (δ18O). One drip site is characterised by mixed-flow behaviour and exhibits a non-linear threshold response after the cessation of drainage from a secondary reservoir following a record dry year (2006). Additionally, our results yield a better understanding of the vadose zone hydrology and dripwater characteristics in Quaternary age dune limestones. We show that flow to our monitored sites is dominated by diffuse flow with inferred transit times of less than one year. Diffuse flow appears to follow vertical preferential paths through the limestone reflecting differences in permeability and deep recharge into the host rock.

  13. Identification of runoff formation with two dyes in a mid-latitude mountain headwater

    NASA Astrophysics Data System (ADS)

    Vlček, Lukáš; Falátková, Kristýna; Schneider, Philipp

    2017-06-01

    Subsurface flow in peat bog areas and its role in the hydrologic cycle has garnered increased attention as water scarcity and floods have increased due to a changing climate. In order to further probe the mechanisms in peat bog areas and contextualize them at the catchment scale, this experimental study identifies runoff formation at two opposite hillslopes in a peaty mountain headwater; a slope with organic peat soils and a shallow phreatic zone (0.5 m below surface), and a slope with mineral Podzol soils and no detectable groundwater (> 2 m below surface). Similarities and differences in infiltration, percolation and preferential flow paths between both hillslopes could be identified by sprinkling experiments with Brilliant Blue and Fluorescein sodium. To our knowledge, this is the first time these two dyes have been compared in their ability to stain preferential flow paths in soils. Dye-stained soil profiles within and downstream of the sprinkling areas were excavated parallel (lateral profiles) and perpendicular (frontal profiles) to the slopes' gradients. That way preferential flow patterns in the soil could be clearly identified. The results show that biomat flow, shallow subsurface flow in the organic topsoil layer, occurred at both hillslopes; however, at the peat bog hillslope it was significantly more prominent. The dye solutions infiltrated into the soil and continued either as lateral subsurface pipe flow in the case of the peat bog, or percolated vertically towards the bedrock in the case of the Podzol. This study provides evidence that subsurface pipe flow, lateral preferential flow along decomposed tree roots or logs in the unsaturated zone, is a major runoff formation process at the peat bog hillslope and in the adjacent riparian zone.

  14. Label-based routing for a family of small-world Farey graphs.

    PubMed

    Zhai, Yinhu; Wang, Yinhe

    2016-05-11

    We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.

  15. Label-based routing for a family of small-world Farey graphs

    NASA Astrophysics Data System (ADS)

    Zhai, Yinhu; Wang, Yinhe

    2016-05-01

    We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.

  16. Optical Tracker For Longwall Coal Shearer

    NASA Technical Reports Server (NTRS)

    Poulsen, Peter D.; Stein, Richard J.; Pease, Robert E.

    1989-01-01

    Photographic record yields information for correction of vehicle path. Tracking system records lateral movements of longwall coal-shearing vehicle. System detects lateral and vertical deviations of path of vehicle moving along coal face, shearing coal as it goes. Rides on rails in mine tunnel, advancing on toothed track in one of rails. As vehicle moves, retroreflective mirror rides up and down on teeth, providing series of pulsed reflections to film recorder. Recorded positions of pulses, having horizontal and vertical orientations, indicate vertical and horizontal deviations, respectively, of vehicle.

  17. Non-mechanical optical path switching and its application to dual beam spectroscopy including gas filter correlation radiometry

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)

    1992-01-01

    A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.

  18. Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Lin, H. S.

    2009-08-01

    The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.

  19. Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.

    2015-12-01

    Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based upon 2-D, steady-state thermal and flow regimes. We reiterate the importance of 4-D time evolution in subduction models. Analogue experiments allow added feedbacks and complexity improving intuition and providing insight for further investigation.

  20. Near Surface Geophysical Investigations of Potential Direct Recharge Zones in the Biscayne Aquifer within Everglades National Park, Florida.

    NASA Astrophysics Data System (ADS)

    Mount, G.; Comas, X.

    2017-12-01

    The karstic Miami Limestone of the Biscayne aquifer is characterized as having water flow that is controlled by the presence of dissolution enhanced porosity and mega-porous features. The dissolution features and other high porosity areas create horizontal preferential flow paths and high rates of ground water velocity, which may not be accurately conceptualized in groundwater flow models. In addition, recent research suggests the presence of numerous vertical dissolution features across Everglades National Park at Long Pine Key Trail, that may act as areas of direct recharge to the aquifer. These vertical features have been identified through ground penetrating radar (GPR) surveys as areas of velocity pull-down which have been modeled to have porosity values higher than the surrounding Miami Limestone. As climate change may induce larger and longer temporal variability between wet and dry times in the Everglades, a more comprehensive understanding of preferential flow pathways from the surface to the aquifer would be a great benefit to modelers and planners. This research utilizes near surface geophysical techniques, such as GPR, to identify these vertical dissolution features and then estimate the spatial variability of porosity using petrophysical models. GPR transects that were collected for several kilometers along the Long Pine Key Trail, show numerous pull down areas that correspond to dissolution enhanced porosity zones within the Miami Limestone. Additional 3D GPR surveys have attempted to delineate the boundaries of these features to elucidate their geometry for future modelling studies. We demonstrate the ability of near surface geophysics and petrophysical models to identify dissolution enhanced porosity in shallow karstic limestones to better understand areas that may act as zones of direct recharge into the Biscayne Aquifer.

  1. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, D.H.

    1984-08-30

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.

  2. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  3. Calcium isotope fractionation in a silicate dominated Cenozoic aquifer system

    NASA Astrophysics Data System (ADS)

    Li, Junxia; DePaolo, Donald J.; Wang, Yanxin; Xie, Xianjun

    2018-04-01

    To understand the characteristics of Ca isotope composition and fractionation in silicate-dominated Quaternary aquifer system, hydrochemical and isotope studies (87Sr/86Sr, 13CDIC and 44/40Ca) were conducted on groundwater, sediment and rock samples from the Datong basin, China. Along the groundwater flow path from the basin margin to the center, groundwater hydrochemical type evolves from Ca-HCO3 to Na-HCO3/Na-Cl type, which results from aluminosilicate hydrolysis, vertical mixing, cation exchange between CaX2 and NaX, and calcite/dolomite precipitation. These processes cause the decrease in groundwater Ca concentration and the associated modest fractionation of groundwater Ca isotopes along the flowpath. The groundwater δ44/40Ca value varies from -0.11 to 0.49‰. The elevated δ44/40Ca ratios in shallow groundwater are attributed to vertical mixing involving addition of irrigation water, which had the average δ44/40Ca ratio of 0.595‰. Chemical weathering of silicate minerals and carbonate generates depleted δ44/40Ca signatures in groundwater from Heng Mountain (east area) and Huanghua Uplift (west area), respectively. Along the groundwater flow path from Heng Mountain to central area of east area, cation exchange between CaX2 and NaX on clay mineral results in the enrichment of heavier Ca isotope in groundwater. All groundwater samples are oversaturated with respect to calcite and dolomite. The groundwater environment rich in organic matter promotes the precipitation of carbonate minerals via the biodegradation of organic carbon, thereby further promoting the elevation of groundwater δ44/40Ca ratios.

  4. Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis

    NASA Technical Reports Server (NTRS)

    Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)

    1998-01-01

    For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.

  5. Geologic, hydrologic, and geochemical identification of flow paths in the Edwards Aquifer, northeastern Bexar and southern Comal Counties, Texas

    USGS Publications Warehouse

    Otero, Cassi L.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, conducted a 4-year study during 2002?06 to identify major flow paths in the Edwards aquifer in northeastern Bexar and southern Comal Counties (study area). In the study area, faulting directs ground water into three hypothesized flow paths that move water, generally, from the southwest to the northeast. These flow paths are identified as the southern Comal flow path, the central Comal flow path, and the northern Comal flow path. Statistical correlations between water levels for six observation wells and between the water levels and discharges from Comal Springs and Hueco Springs yielded evidence for the hypothesized flow paths. Strong linear correlations were evident between the datasets from wells and springs within the same flow path and the datasets from wells in areas where flow between flow paths was suspected. Geochemical data (major ions, stable isotopes, sulfur hexafluoride, and tritium and helium) were used in graphical analyses to obtain evidence of the flow path from which wells or springs derive water. Major-ion geochemistry in samples from selected wells and springs showed relatively little variation. Samples from the southern Comal flow path were characterized by relatively high sulfate and chloride concentrations, possibly indicating that the water in the flow path was mixing with small amounts of saline water from the freshwater/saline-water transition zone. Samples from the central Comal flow path yielded the most varied major-ion geochemistry of the three hypothesized flow paths. Central Comal flow path samples were characterized, in general, by high calcium concentrations and low magnesium concentrations. Samples from the northern Comal flow path were characterized by relatively low sulfate and chloride concentrations and high magnesium concentrations. The high magnesium concentrations characteristic of northern Comal flow path samples from the recharge zone in Comal County might indicate that water from the Trinity aquifer is entering the Edwards aquifer in the subsurface. A graph of the relation between the stable isotopes deuterium and delta-18 oxygen showed that, except for samples collected following an unusually intense rain storm, there was not much variation in stable isotope values among the flow paths. In the study area deuterium ranged from -36.00 to -20.89 per mil and delta-18 oxygen ranged from -6.03 to -3.70 per mil. Excluding samples collected following the intense rain storm, the deuterium range in the study area was -33.00 to -20.89 per mil and the delta-18 oxygen range was -4.60 to -3.70 per mil. Two ground-water age-dating techniques, sulfur hexafluoride concentrations and tritium/helium-3 isotope ratios, were used to compute apparent ages (time since recharge occurred) of water samples collected in the study area. In general, the apparent ages computed by the two methods do not seem to indicate direction of flow. Apparent ages computed for water samples in northeastern Bexar and southern Comal Counties do not vary greatly except for some very young water in the recharge zone in central Comal County.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucci, A.A. Jr.

    Hydrogeologic maps are typical products of ground-water investigations. The features on these maps can be used by planning commissions to optimize land use. Planners could use confining-unit outcrop maps for siting landfills and hazardous material handling facilities. This paper examines ground-water chemistry from 53 wells, field measurements, hydrogeologic conditions from a quasi-3-D flow model for predevelopment (before 1900), and 1984 flow conditions, and evaluates relationships between them. Several recent reports have examined water quality in the area. The wells for this paper were screened in the Potomac-Raritan-Magothy aquifer system (PRMA) in the northern Coastal Plain of New Jersey in amore » 184 square mile area which is undergoing rapid growth. Hydrogeologic conditions considered include aquifer sampled, well location relative to flow-path distance from the outcrop, confining-unit thickness, and confining-unit vertical hydraulic conductivity (Kv). Visual, graphical and principal component analyses were used to evaluate the relationships.« less

  7. First status report on regional ground-water flow modeling for the Paradox Basin, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, R.W.

    1984-05-01

    Regional ground-water flow within the principal hydrogeologic units of the Paradox Basin is evaluated by developing a conceptual model of the flow regime in the shallow aquifers and the deep-basin brine aquifers and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis (a limited parametric study) is conducted to define the system response to changes in hydrologic properties or boundary conditions. A direct method for sensitivity analysis using an adjoint form of the flow equation is applied to the conceptualized flow regime in the Leadville limestone aquifer. All steps leading to the final results and conclusions aremore » incorporated in this report. The available data utilized in this study is summarized. The specific conceptual models, defining the areal and vertical averaging of litho-logic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. Two models were evaluated in this study: a regional model encompassing the hydrogeologic units above and below the Paradox Formation/Hermosa Group and a refined scale model which incorporated only the post Paradox strata. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and ground-water travel paths. Results from the adjoint sensitivity analysis include importance functions and sensitivity coefficients, using heads or the average Darcy velocities to represent system response. The reported work is the first stage of an ongoing evaluation of the Gibson Dome area within the Paradox Basin as a potential repository for high-level radioactive wastes.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khinkis, Mark J.; Kozlov, Aleksandr P.

    A radiant, non-catalytic recuperative reformer has a flue gas flow path for conducting hot exhaust gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is positioned adjacent to the flue gas flow path to permit heat transfer from the hot exhaust gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorificmore » fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, a portion of the reforming mixture flow path is positioned outside of flue gas flow path for a relatively large residence time.« less

  9. Map Projection Induced Variations in Locations of Polygon Geofence Edges

    NASA Technical Reports Server (NTRS)

    Neeley, Paula; Narkawicz, Anthony

    2017-01-01

    This Paper under-estimates answers to the following question under various constraints: If a geofencing algorithm uses a map projection to determine whether a position is inside/outside a polygon region, how far outside/inside the polygon can the point be and the algorithm determine that it is inside/outside (the opposite and therefore incorrect answer)? Geofencing systems for unmanned aircraft systems (UAS) often model stay-in and stay-out regions using 2D polygons with minimum and maximum altitudes. The vertices of the polygons are typically input as latitude-longitude pairs, and the edges as paths between adjacent vertices. There are numerous ways to generate these paths, resulting in numerous potential locations for the edges of stay-in and stay-out regions. These paths may be geodesics on a spherical model of the earth or geodesics on the WGS84 reference ellipsoid. In geofencing applications that use map projections, these paths are inverse images of straight lines in the projected plane. This projected plane may be a projection of a spherical earth model onto a tangent plane, called an orthographic projection. Alternatively, it may be a projection where the straight lines in the projected plane correspond to straight lines in the latitudelongitude coordinate system, also called a Plate Carr´ee projection. This paper estimates distances between different edge paths and an oracle path, which is a geodesic on either the spherical earth or the WGS84 ellipsoidal earth. This paper therefore estimates how far apart different edge paths can be rather than comparing their path lengths, which are not considered. Rather, the comparision is between the actual locations of the edges between vertices. For edges drawn using orthographic projections, this maximum distance increases as the distance from the polygon vertices to the projection point increases. For edges drawn using Plate Carr´ee projections, this maximum distance increases as the vertices become further from the equator. Distances between geodesics on a spherical earth and a WGS84 ellipsoidal earth are also analyzed, using the WGS84 ellipsoid as the oracle. Bounds on the 2D distance between a straight line and a great circle path, in an orthographically projected plane rather than on the surface of the earth, have been formally verified in the PVS theorem prover, meaning that they are mathematically correct in the absence of floating point errors.

  10. Application of 2D numerical model to unsteady performance evaluation of vertical-axis tidal current turbine

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Qu, Hengliang; Shi, Hongda; Hu, Gexing; Hyun, Beom-Soo

    2016-12-01

    Tidal current energy is renewable and sustainable, which is a promising alternative energy resource for the future electricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2×105 and 0.01 s are selected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coefficients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analysis of the vertical tidal stream turbine.

  11. Effects of Stochastic Traffic Flow Model on Expected System Performance

    DTIC Science & Technology

    2012-12-01

    NSWC-PCD has made considerable improvements to their pedestrian flow modeling . In addition to the linear paths, the 2011 version now includes...using stochastic paths. 2.2 Linear Paths vs. Stochastic Paths 2.2.1 Linear Paths and Direct Maximum Pd Calculation Modeling pedestrian traffic flow...as a stochastic process begins with the linear path model . Let the detec- tion area be R x C voxels. This creates C 2 total linear paths, path(Cs

  12. Topics on data transmission problem in software definition network

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Liang, Li; Xu, Tianwei; Gan, Jianhou

    2017-08-01

    In normal computer networks, the data transmission between two sites go through the shortest path between two corresponding vertices. However, in the setting of software definition network (SDN), it should monitor the network traffic flow in each site and channel timely, and the data transmission path between two sites in SDN should consider the congestion in current networks. Hence, the difference of available data transmission theory between normal computer network and software definition network is that we should consider the prohibit graph structures in SDN, and these forbidden subgraphs represent the sites and channels in which data can't be passed by the serious congestion. Inspired by theoretical analysis of an available data transmission in SDN, we consider some computational problems from the perspective of the graph theory. Several results determined in the paper imply the sufficient conditions of data transmission in SDN in the various graph settings.

  13. Role of the sedimentary structure of the urban vadose zone (URVAZO) on the transfer of heavy metals of an urban stormwater basin

    NASA Astrophysics Data System (ADS)

    Angulo-Jaramillo, R.; Winiarski, T.; Goutaland, D.; Lassabatere, L.

    2009-12-01

    Stormwater infiltration basins have become a common alternative practice to traditional stormwater pipe networks in urban areas. They are often built in permeable subsurface soils (Urban Vadose Zone, URVAZO), such as alluvial deposits. These sedimentary deposits are highly heterogeneous and generate preferential flow paths that may cause either rapid or non-uniform transport of contaminants at great depths. The understanding of how subsurface vadose zone heterogeneities transfer contaminant and fluid flow to the aquifer still remains a challenge in urban hydrology. Indeed, urban stormwater may contain pollutants that can contaminate either soil or groundwater. The aim of this study is to evaluate the role of the lithological heterogeneity of a glaciofluvial deposit underlying an urban infiltration basin on the link between water flow and heavy metals retention. A trench wall (14m length x 3m depth) was exposed by excavating the glaciofluvial formation. By a hydrogeophysical approach based on a sedimentary structural units and in situ hydraulic characterization (Beerkan tests), a realistic hydrostratigraphic 2D model was defined. The trench was sampled on nine vertical sections of 1.5m length, with ten samples per vertical section following each lithofacies. A total of 90 samples were analyzed. Coarse (mechanical sieving) and fine (laser diffraction) particle size distribution analysis, as well as the concentration of three replicates of Pb, Cu, Zn and organic matter (OM) was measured for each sample. The principal component analysis shows a strong correlation between metal concentration and the lithofacies. This hydrostratigraphic model was implemented in the finite element program Hydrus2D. The soil heterogeneity exerts an impact on the heterogeneity of the water content field under slightly saturated conditions, as they induce capillary barrier effects. These capillary barrier effects may generate water accumulation in some lithofacies overlying matrix-free gravel; they lead to lateral flow patterns known as funneled flows. Knowledge of the geometry (orientation, dip) at the structural scale is therefore a prerequisite for evaluating the preferential flow paths. They can explain that the silt fraction may come from colloidal migration through the vadose zone. The use of coupled water-geochemical transfer models enables us to advance assumptions helping the comprehension of principal hydrogeochemical process in the urban vadose zone.

  14. Effect of heterogeneity and anisotropy related to the construction method on transfer processes in waste rock piles.

    PubMed

    Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno

    2016-01-01

    Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize AMD, while controlling gas flow and oxygen supply. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A porewater - based stable isotope approach for the investigation of subsurface hydrological processes

    NASA Astrophysics Data System (ADS)

    Garvelmann, J.; Külls, C.; Weiler, M.

    2011-10-01

    Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid moutainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of porewater at various points along a fall line of a pasture hillslope in the southern Black Forest, Germany. The Porewater Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along two transects at the hillslopes. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in stream water during base flow. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.

  16. Heat and Groundwater Flow in the San Gabriel Mountains, California

    NASA Astrophysics Data System (ADS)

    Newman, A. A.; Becker, M.; Laton, W. R., Jr.

    2017-12-01

    Groundwater flow paths in mountainous terrain often vary widely in both time and space. Such systems remain difficult to characterize due to fracture-dominated flow paths, high topographic relief, and sparse hydrologic data. We develop a hydrogeologic conceptual model of the Western San Gabriel Mountains in Southern California based on geophysical, thermal, and hydraulic head data. Boreholes are located along the San Gabriel Fault Zone (SGFZ) and cover a wide range of elevations to capture the heterogeneity of the hydrogeologic system. Long term (2016-2017) monitoring of temperature and hydraulic head was carried out in four shallow (300-600m depth) boreholes within the study area using fiber-optic distributed temperature sensing (DTS). Borehole temperature profiles were used to assess the regional groundwater flow system and local flows in fractures intersecting the borehole. DTS temperature profiles were compared with available borehole geophysical logs and head measurements collected with grouted vibrating wire pressure transducers (VWPT). Spatial and temporal variations in borehole temperature profiles suggest that advective heat transfer due to fluid flow affected the subsurface thermal regime. Thermal evidence of groundwater recharge and/or discharge and flow through discrete fractures was found in all four boreholes. Analysis of temporal changes to the flow system in response to seasonal and drilling-induced hydraulic forcing was useful in reducing ambiguities in noisy datasets and estimating interborehole relationships. Acoustic televiewer logs indicate fractures were primarily concentrated in densely fractured intervals, and only a minor decrease of fracture density was observed with depth. Anomalously high hydraulic gradients across the SGFZ suggest that the feature is a potential barrier to lateral flow. However, transient thermal anomalies consistent with groundwater flow within the SGFZ indicate this feature may be a potential conduit to vertical flow. This study builds upon the limited hydrogeologic understanding of the region and demonstrates the value of DTS in characterization efforts.

  17. Catalytic reactor for low-Btu fuels

    DOEpatents

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  18. Oil shale retort apparatus

    DOEpatents

    Reeves, Adam A.; Mast, Earl L.; Greaves, Melvin J.

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  19. Annular vortex combustor

    DOEpatents

    Nieh, Sen; Fu, Tim T.

    1992-01-01

    An apparatus for burning coal water fuel, dry ultrafine coal, pulverized l and other liquid and gaseous fuels including a vertically extending outer wall and an inner, vertically extending cylinder located concentrically within the outer wall, the annnular space between the outer wall and the inner cylinder defining a combustion chamber and the all space within the inner cylinder defining an exhaust chamber. Fuel and atomizing air are injected tangentially near the bottom of the combustion chamber and secondary air is introduced at selected points along the length of the combustion chamber. Combustion occurs along the spiral flow path in the combustion chamber and the combined effects of centrifugal, gravitational and aerodynamic forces cause particles of masses or sizes greater than the threshold to be trapped in a stratified manner until completely burned out. Remaining ash particles are then small enough to be entrained by the flue gas and exit the system via the exhaust chamber in the opposite direction.

  20. Hypogenic origin, geologic controls and functional organization of a giant cave system in Precambrian carbonates, Brazil

    NASA Astrophysics Data System (ADS)

    Klimchouk, Alexander; Auler, Augusto S.; Bezerra, Francisco H. R.; Cazarin, Caroline L.; Balsamo, Fabrizio; Dublyansky, Yuri

    2016-01-01

    This study is focused on speleogenesis of the Toca da Boa Vista (TBV) and Toca da Barriguda (TBR), the longest caves in South America occurring in the Neoproterozoic Salitre Formation in the São Francisco Craton, NE Brazil. We employ a multidisciplinary approach integrating detailed speleomorphogenetic, lithostratigraphic and geological structure studies in order to reveal the origin of the caves, their functional organization and geologic controls on their development. The caves developed in deep-seated confined conditions by rising flow. The overall fields of passages of TBV and TBR caves represent a speleogenetically exploited large NE-SW-trending fracture corridor associated with a major thrust. This corridor vertically extends across the Salitre Formation allowing the rise of deep fluids. In the overall ascending flow system, the formation of the cave pattern was controlled by a system of sub-parallel anticlines and troughs with NNE-SSW dominant orientation, and by vertical and lateral heterogeneities in fracture distribution. Three cave-stratigraphic stories reflect the actual hydrostratigraphy during the main phase of speleogenesis. Cavities at different stories are distinct in morphology and functioning. The gross tree-dimensional pattern of the system is effectively organized to conduct rising flow in deep-seated confined conditions. Cavities in the lower story developed as recharge components to the system. A laterally extensive conduit network in the middle story formed because the vertical flow from numerous recharge points has been redirected laterally along the highly conductive unit, occurring below the major seal - a scarcely fractured unit. Rift-like and shaft-like conduits in the upper story developed along fracture-controlled outflow paths, breaching the integrity of the major seal, and served as outlets for the cave system. The cave system represents a series of vertically organized, functionally largely independent clusters of cavities developed within individual ascending flow cells. Lateral integration of clusters occurred due to hydrodynamic interaction between the flow cells in course of speleogenetic evolution and change of boundary conditions. The main speleogenetic phase, during which the gross cave pattern has been established and the caves acquired most of their volume, was likely related to rise of deep fluids at about 520 Ma or associated with rifting and the Pangea break-up in Triassic-Cretaceous. This study highlights the importance of speleogenetic studies for interpreting porosity and permeability features in carbonate reservoirs.

  1. Effect of Forest Age on Rainwater Infiltration in the Lowland Humid Tropics

    NASA Astrophysics Data System (ADS)

    Kempema, E. W.; Mojica, A.; Litt, G.; Carey, A. M.; Ogden, F. L.

    2015-12-01

    We are working in the headwaters of the Rio Agua Salud catchment in central Panama to test the hypothesis that varying land uses, including time since afforestation, have significant impacts on rainfall infiltration, runoff generation and groundwater recharge. Increased infiltration and groundwater recharge during the wet season may result in increased groundwater flow during the dry season, the "sponge effect hypothesis". We irrigate a 6m by 2m test plot with slightly saline water at varying applied rainfall intensities using an ARS-type rainfall simulator, which has an oscillating boom mounted 2m above the forest floor, and four spray nozzles. We install 10cm tall lawn edging at the bottom of the test plot to direct surface water runoff to a small flume where runoff rates are recorded over time. In addition, we use time lapse ERI (electrical resistivity imaging) to map the vertical and downslope flow paths. We add NaCl to the applied water at a concentration of 200 mg/l, tagged with 10 mg/l LiBr as a salinity/conductivity contrast. Because ERI is highly sensitivity to changes in the electrical conductivity of soils and solute, we obtain a clear time-lapse image of flow path and bulk flow velocities. In this presentation we compare and contrast results of observations collected in an actively grazed cattle pasture adjacent ~10-12 year and >25 year old secondary forest plots using data collected during the 2015 wet season.

  2. Open cycle ocean thermal energy conversion steam control and bypass system

    DOEpatents

    Wittig, J. Michael; Jennings, Stephen J.

    1980-01-01

    Two sets of hinged control doors for regulating motive steam flow from an evaporator to a condenser alternatively through a set of turbine blades in a steam bypass around the turbine blades. The evaporator has a toroidal shaped casing situated about the turbine's vertical axis of rotation and an outlet opening therein for discharging motive steam into an annular steam flow path defined between the turbine's radially inner and outer casing structures. The turbine blades extend across the steam flow path intermediate the evaporator and condenser. The first set of control doors is arranged to prevent steam access to the upstream side of the turbine blades and the second set of control doors acts as a bypass around the blades so as to maintain equilibrium between the evaporator and condenser during non-rotation of the turbine. The first set of control doors preferably extend, when closed, between the evaporator casing and the turbine's outer casing and, when open, extend away from the axis of rotation. The second set of control doors preferably constitute a portion of the turbine's outer casing downstream from the blades when closed and extend, when open, toward the axis of rotation. The first and second sets of control doors are normally held in the open and closed positions respectively by locking pins which may be retracted upon detecting an abnormal operating condition respectively to permit their closing and opening and provide steam flow from the evaporator to the condenser.

  3. Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus).

    PubMed

    Ponitz, Benjamin; Schmitz, Anke; Fischer, Dominik; Bleckmann, Horst; Brücker, Christoph

    2014-01-01

    This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon's body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.

  4. Modeling of leachate generation from MSW landfills by a 2-dimensional 2-domain approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellner, Johann, E-mail: j.fellner@tuwien.ac.a; Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.a

    2010-11-15

    The flow of water through Municipal Solid Waste (MSW) landfills is highly non-uniform and dominated by preferential pathways. Thus, concepts to simulate landfill behavior require that a heterogeneous flow regime is considered. Recent models are based on a 2-domain approach, differentiating between channel domain with high hydraulic conductivity, and matrix domain of slow water movement with high water retention capacity. These models focus on the mathematical description of rapid water flow in channel domain. The present paper highlights the importance of water exchange between the two domains, and expands the 1-dimensional, 2-domain flow model by taking into account water flowsmore » in two dimensions. A flow field consisting of a vertical path (channel domain) surrounded by the waste mass (matrix domain) is defined using the software HYDRUS-2D. When the new model is calibrated using data sets from a MSW-landfill site the predicted leachate generation corresponds well with the observed leachate discharge. An overall model efficiency in terms of r{sup 2} of 0.76 was determined for a simulation period of almost 4 years. The results confirm that water in landfills follows a preferential path way characterized by high permeability (K{sub s} = 300 m/d) and zero retention capacity, while the bulk of the landfill (matrix domain) is characterized by low permeability (K{sub s} = 0.1 m/d) and high retention capacity. The most sensitive parameters of the model are the hydraulic conductivities of the channel domain and the matrix domain, and the anisotropy of the matrix domain.« less

  5. Apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    DOEpatents

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2007-05-29

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  6. Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    DOEpatents

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2005-05-31

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  7. Fuel cell repeater unit including frame and separator plate

    DOEpatents

    Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F

    2013-11-05

    An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.

  8. Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities

    NASA Astrophysics Data System (ADS)

    Doster, F.; Celia, M. A.; Nordbotten, J. M.

    2012-12-01

    Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.

  9. On the total rainbow connection of the wheel related graphs

    NASA Astrophysics Data System (ADS)

    Hasan, M. S.; Slamin; Dafik; Agustin, I. H.; Alfarisi, R.

    2018-04-01

    Let G = (V(G), E(G)) be a nontrivial connected graph with an edge coloring c : E(G) → {1, 2, …, l}, l ɛ N, with the condition that the adjacent edges may be colored by the same colors. A path P in G is called rainbow path if no two edges of P are colored the same. The smallest number of colors that are needed to make G rainbow edge-connected is called the rainbow edge-connection of G, denoted by rc(G). A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The smallest number of colors that are needed to make G rainbow vertex-connected is called the rainbow vertex-connection of G, denoted by rvc(G). A total-colored path is total-rainbow if edges and internal vertices have distinct colours. The minimum number of colour required to color the edges and vertices of G is called the total rainbow connection number of G, denoted by trc(G). In this paper, we determine the total rainbow connection number of some wheel related graphs such as gear graph, antiweb-gear graph, infinite class of convex polytopes, sunflower graph, and closed-sunflower graph.

  10. Runoff processes in catchments with a small scale topography

    NASA Astrophysics Data System (ADS)

    Feyen, H.; Leuenberger, J.; Papritz, A.; Gysi, M.; Flühler, H.; Schleppi, P.

    1996-05-01

    How do runoff processes influence nitrogen export from forested catchments? To support nitrogen balance studies for three experimental catchments (1500m 2) in the Northern Swiss prealps water flow processes in the two dominating soil types are monitored. Here we present the results for an experimental wetland catchment (1500m 2) and for a delineated sloped soil plot (10m 2), both with a muck humus topsoil. Runoff measurements on both the catchment and the soil plot showed fast reactions of surface and subsurface runoff to rainfall inputs, indicating the dominance of fast-flow paths such as cracks and fissures. Three quarters of the runoff from the soil plot can be attributed to water flow in the gleyic, clayey subsoil, 20% to flow in the humic A horizon and only 5% to surface runoff. The water balance for the wetland catchment was closed. The water balance of the soil plot did not close. Due to vertical upward flow from the saturated subsoil into the upper layers, the surface runoff plus subsurface runoff exceeded the input (precipitation) to the plot.

  11. Interactions of diffuse and focused allogenic recharge in an eogenetic karst aquifer (Florida, USA)

    NASA Astrophysics Data System (ADS)

    Langston, Abigail L.; Screaton, Elizabeth J.; Martin, Jonathan B.; Bailly-Comte, Vincent

    2012-06-01

    The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit.

  12. Patterns and age distribution of ground-water flow to streams

    USGS Publications Warehouse

    Modica, E.; Reilly, T.E.; Pollock, D.W.

    1997-01-01

    Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.

  13. Measuring vertical oxygen profiles in the hyporheic zone using planar optodes

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2012-04-01

    On of the key parameters, controlling biogeochemical reactions in the hyporheic zone (HZ) is the distribution of oxygen. A reliable measurement of the vertical oxygen distribution is an important tool to understand the dynamic fluctuations of the aerobic zone within the HZ. With repeated measurements of continuous profiles, mixing of surface water and groundwater as well as the consumption of oxygen can be evaluated. We present a novel approach for the in situ measurements of vertical oxygen distribution in the riverbed using a planar optode. The luminescence based optode measurement enables a non invasive measurement without consumption of oxygen, no creation of preferential flow paths and only minimal disturbance of the flow field. Possible atmospheric contamination by pumping pore water into a vessel can be avoided and the readings are independent of flow velocity. A self manufactured planar optode is wrapped around an acrylic tube and installed in the riverbed. The measurement is performed by vertically moving a profiler-piston inside the acrylic tube. The piston holds a robust polymer optical fibre which emits a modulated light signal through the acrylic glass to the optode-foil and transmits the induced luminescence signal back to a commercially available trace oxygen meter. Temperature compensation is accomplished using a depth-oriented temperature probe nearby and processing the raw data within a Matlab script. Robust and unbiased oxygen profiles are obtained by averaging multiple consecutive measurements. To ensure a constant velocity of the profiler for replicating the exact measuring depths, an electric motor device is used. First results at our test site show a variable oxygen profile down to 40 cm depth which is strongly influenced by stream level and upwelling groundwater conditions. The measured oxygen profiles will serve as input parameter for a 3D solute transport and chemical reaction subsurface model of the HZ.

  14. Numerical investigations of solute transport in bimodal porous media under dynamic boundary conditions

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan

    2016-04-01

    Quantification of flow and solute transport in the shallow subsurface adjacent to the atmosphere is decisive to prevent groundwater pollution and conserve groundwater quality, to develop successful remediation strategies and to understand nutrient cycling. In nature, due to erratic precipitation-evaporation patterns, soil moisture content and related hydraulic conductivity in the vadose zone are not only variable in space but also in time. Flow directions and flow paths locally change between precipitation and evaporation periods. This makes the identification and description of solute transport processes in the vadose zone a complex problem. Recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a) focused on the investigation of upward transport of solutes during evaporation in heterogeneous soil columns, where heterogeneity was introduced by a sharp vertical material interface between two types of sand. Lateral solute transport through the interface in both (lateral) directions was observed at different depths of the investigated soil columns. Following recent approaches, we conduct two-dimensional numerical simulations in a similar setup which is composed of two sands with a sharp vertical material interface. The investigation is broadened from the sole evaporation to combined precipitation-evaporation cycles in order to quantify transport processes resulting from the combined effects of heterogeneous soil structure and dynamic flow conditions. Simulations are performed with a coupled finite volume and random walk particle tracking algorithm (Ippisch et al., 2006; Bechtold et al., 2011b). By comparing scenarios with cyclic boundary conditions and stationary counterparts with the same net flow rate, we found that duration and intensity of precipitation and evaporation periods potentially have an influence on lateral redistribution of solutes and thus leaching rates. Whether or not dynamic boundary conditions lead to significant deviations in the transport behavior depends on the magnitude of the flow rates and hydraulic conductivity curves of the materials. Based on the unsaturated hydraulic conductivity at the intersection point of conductivity curves, we are able to define an estimate of flow rates at which the dynamic of the upper boundary condition significantly alters preferential flow paths through the system. If flow rates are low, with regard to the materials hydraulic conductivity at the intersection point, the influence of dynamic boundary conditions is small. If flow rates are in the range of the unsaturated hydraulic conductivity at intersection, solute is trapped in the fine material during upwards transport, which results in a more pronounced tailing. For flow rates exceeding the intersection conductivity, a redistribution at the soil surface can occur. References: Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, T.P.A. Ferré and H. Veerecken. 2011a. Near-surface solute redistribution during evaporation. Geophys. Res. Lett., 38, L17404, doi:10.1029/2011GL048147. Bechtold, M., J. Vanderborght, O. Ippisch and H. Vereecken. 2011b. Efficient random walk particle tracking algorithm for advective dispersive transport in media with discontinuous dispersion coefficients and water contents. Water Resour. Res., 47, W10526, doi: 10.1029/2010WR010267. Ippisch O., H.-J. Vogel and P. Bastian. 2006. Validity limits fort he van Genuchten-Mualem model and implications for parameter estimation and numerical simulation. Adv. Water Resour., 29, 1780-1789, doi: 10.1016/j.advwateres.2005.12.011. Lehmann, P. and D. Or. 2009. Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E, 80, 046318, doi:10.1103/PhysRevE.80.046318.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberger, Seth A.; Klymko, Christine F.; Henderson, Keith A.

    Betweenness centrality is a graph statistic used to nd vertices that are participants in a large number of shortest paths in a graph. This centrality measure is commonly used in path and network interdiction problems and its complete form requires the calculation of all-pairs shortest paths for each vertex. This leads to a time complexity of O(jV jjEj), which is impractical for large graphs. Estimation of betweenness centrality has focused on performing shortest-path calculations on a subset of randomly- selected vertices. This reduces the complexity of the centrality estimation to O(jSjjEj); jSj < jV j, which can be scaled appropriatelymore » based on the computing resources available. An estimation strategy that uses random selection of vertices for seed selection is fast and simple to implement, but may not provide optimal estimation of betweenness centrality when the number of samples is constrained. Our experimentation has identi ed a number of alternate seed-selection strategies that provide lower error than random selection in common scale-free graphs. These strategies are discussed and experimental results are presented.« less

  16. Linking fault pattern with groundwater flow in crystalline rocks at the Grimsel Test Site (Switzerland)

    NASA Astrophysics Data System (ADS)

    Schneeberger, Raphael; Berger, Alfons; Mäder, Urs K.; Niklaus Waber, H.; Kober, Florian; Herwegh, Marco

    2017-04-01

    Water flow across crystalline bedrock is of major interest for deep-seated geothermal energy projects as well as for underground disposal of radioactive waste. In crystalline rocks enhanced fluid flow is related to zones of increased permeability, i.e. to fractures that are associated to fault zones. The flow regime around the Grimsel Test Site (GTS, Central Aar massif) was assessed by establishing a 3D fault zone pattern on a local scale in the GTS underground facility (deca-meter scale) and on a regional scale at the surface (km-scale). The study reveals the existence of a dense fault zone network consisting of several km long and few tens of cm to meter wide, sub-vertically oriented major faults that are connected by tens to hundreds of meters long minor bridging faults. This geometrical information was used as input for the generation of a 3D fault zone network model. The faults originate from ductile shear zones that were reactivated as brittle faults under retrograde conditions during exhumation. Embrittlement and associated dilatancy along the faults provide the pathways for today's groundwater flow. Detection of the actual 3D flow paths is, however, challenging since flow seem to be not planar but rather tube-like. Two strategies are applied to constrain the 3D geometry of the flow tubes: (i) Characterization of the groundwater infiltrating into the GTS (location, yield, hydraulic head, and chemical composition) and (ii) stress modelling on the base of the 3D structural model to unravel potential domains of enhanced fluid flow such as fault plane intersections and domains of dilatancy. At the Grimsel Test Site, hydraulic and structural data demonstrate that the groundwater flow is head-driven from the surface towards the GTS located some 450 m below the surface. The residence time of the groundwater in this surface-near section is >60 years as evidenced by absence of detectable tritium. However, hydraulic heads obtained from interval pressure measurements within boreholes are variable and do not correspond to the overburden above the interval. Underground mapping revealed close spatial relation between water inflow points and faults, major water inflows occur in strongly deformed areas of the GTS. Furthermore, persistent differences in the groundwater chemical composition between infiltration points indicate that connectivity between different water flow paths is poor. Different findings indicate complex flow path geometries. However, domains of enhanced dilatancy and domains with increased number of fault intersections correlate with areas in the underground with 'high' water inflow.

  17. Radial inlet guide vanes for a combustor

    DOEpatents

    Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S

    2013-02-12

    A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.

  18. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  19. Optimum gradient of mountain paths.

    PubMed

    Minetti, A E

    1995-11-01

    By combining the experiment results of R. Margaria (Atti Accad. Naz. Lincei Memorie 7: 299-368, 1938), regarding the metabolic cost of gradient locomotion, together with recent insights on gait biomechanics, a prediction about the most economical gradient of mountain paths (approximately 25%) is obtained and interpreted. The pendulum-like mechanism of walking produces a waste of mechanical work against gravity within the gradient range of up to 15% (the overall efficiency is dominated by the low transmission efficiency), whereas for steeper values only the muscular efficiency is responsible for the (slight) metabolic change (per meter of vertical displacement) with respect to gradient. The speeds at the optimum gradient turned out to be approximately 0.65 m/s (+0.16 m/s vertical) and 1.50 m/s (-0.36 m/s vertical), for uphill and downhill walking, respectively, and the ascensional energy expenditure was 0.4 and 2.0 ml O2.kg body mass-1.vertical m-1 climbed or descended. When the metabolic power becomes a burden, as in high-altitude mountaineering, the optimum gradient should be reduced. A sample of real mountain path gradients, experimentally measured, mimics the obtained predictions.

  20. Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths.

    PubMed

    Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco

    2013-09-01

    By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.

  1. Non-catalytic recuperative reformer

    DOEpatents

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  2. Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication

    DOEpatents

    Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke

    2015-01-13

    Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.

  3. Nonintrusive performance measurement of a gas turbine engine in real time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSilva, Upul P.; Claussen, Heiko

    Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculatedmore » from the gas density and the volumetric flow rate.« less

  4. Coupled long term simulation of reach scale water and heat fluxes across the river groundwater interface and hyporheic temperature dynamics

    NASA Astrophysics Data System (ADS)

    Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian

    2017-04-01

    Flow pattern and seasonal as well as diurnal temperature variations control ecological and biogeochemical conditions in hyporheic sediments. In particular, hyporheic temperatures have a great impact on many microbial processes. In this study we used 3-D coupled water flow and heat transport simulations applying the HydroGeoSphere code in combination with high frequent observations of hydraulic heads and temperatures for quantifying reach scale water and heat flux across the river groundwater interface and hyporheic temperature dynamics of a lowland gravel-bed river. The magnitude and dynamics of simulated temperatures matched the observed with an average mean absolute error of 0.7 °C and an average Nash Sutcliffe Efficiency of 0.87. Our results highlight that the average temperature in the hyporheic zone follows the temperature in the river which is characterized by distinct seasonal and daily temperature cycles. Individual hyporheic flow path temperature substantially varies around the average hyporheic temperature. Hyporheic flow path temperature was found to strongly depend on the flow path residence time and the temperature gradient between river and groundwater; that is, in winter the average flow path temperature of long flow paths is potentially higher compared to short flow paths. Based on the simulation results we derived a general empirical relationship, estimating the influence of hyporheic flow path residence time on hyporheic flow path temperature. Furthermore we used an empirical temperature relationship between effective temperature and respiration rate to estimate the influence of hyporheic flow path residence time and temperature on hyporheic oxygen consumption. This study highlights the relation between complex hyporheic temperature patterns, hyporheic residence times and their implications on temperature sensitive biogeochemical processes.

  5. 75 FR 66702 - Western Electric Coordinating Council; Qualified Transfer Path Unscheduled Flow Relief Regional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ...-WECC-1 summarizes the nine steps and related actions to address unscheduled flows. 10. NERC states that...] Western Electric Coordinating Council; Qualified Transfer Path Unscheduled Flow Relief Regional... Path Unscheduled Flow Relief) submitted to the Commission for approval by the North American Electric...

  6. Observations of tropospheric phase scintillations at 5 GHz on vertical paths

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Sramek, R. A.

    1982-01-01

    The article presents observations of turbulence-induced tropospheric phase fluctuations measured at 5 GHz on the near-vertical paths relevant to many astronomical and geophysical measurements. The data are summarized as phase power spectra, structure functions, and Allan variances. Comparisons to other microwave observations indicate relatively good agreement in both the level and shape of the power spectrum of these tropospheric phase fluctuations. Implications for precision Doppler tracking of spacecraft and geodesy/radio interferometry are discussed.

  7. A porewater-based stable isotope approach for the investigation of subsurface hydrological processes

    NASA Astrophysics Data System (ADS)

    Garvelmann, J.; Külls, C.; Weiler, M.

    2012-02-01

    Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid mountainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of pore water at various points along two fall lines of a pasture hillslope in the southern Black Forest, Germany. The Porewater-based Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along transects at the hillslope. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in streamwater during base flow conditions indicating the importance of the groundwater component in the catchment. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.

  8. Analysis of water flow paths: methodology and example calculations for a potential geological repository in Sweden.

    PubMed

    Werner, Kent; Bosson, Emma; Berglund, Sten

    2006-12-01

    Safety assessment related to the siting of a geological repository for spent nuclear fuel deep in the bedrock requires identification of potential flow paths and the associated travel times for radionuclides originating at repository depth. Using the Laxemar candidate site in Sweden as a case study, this paper describes modeling methodology, data integration, and the resulting water flow models, focusing on the Quaternary deposits and the upper 150 m of the bedrock. Example simulations identify flow paths to groundwater discharge areas and flow paths in the surface system. The majority of the simulated groundwater flow paths end up in the main surface waters and along the coastline, even though the particles used to trace the flow paths are introduced with a uniform spatial distribution at a relatively shallow depth. The calculated groundwater travel time, determining the time available for decay and retention of radionuclides, is on average longer to the coastal bays than to other biosphere objects at the site. Further, it is demonstrated how GIS-based modeling can be used to limit the number of surface flow paths that need to be characterized for safety assessment. Based on the results, the paper discusses an approach for coupling the present models to a model for groundwater flow in the deep bedrock.

  9. Swimming in external fields

    NASA Astrophysics Data System (ADS)

    Stark, Holger

    2016-11-01

    Microswimmers move autonomously but are subject to external fields, which influence their swimming path and their collective dynamics. With three concrete examples we illustrate swimming in external fields and explain the methodology to treat it. First, an active Brownian particle shows a conventional sedimentation profile in a gravitational field but with increased sedimentation length and some polar order along the vertical. Bottom-heavy swimmers are able to invert the sedimentation profile. Second, active Brownian particles interacting by hydrodynamic flow fields in a three-dimensional harmonic trap can spontaneously break the isotropic symmetry. They develop polar order, which one can describe by mean-field theory reminiscent to Weiss theory of ferromagnetism, and thereby pump fluid. Third, a single microswimmer shows interesting non-linear dynamics in Poiseuille flow including swinging and tumbling trajectories. For pushers, hydrodynamic interactions with bounding surfaces stabilize either straight swimming against the flow or tumbling close to the channel wall, while pushers always move on a swinging trajectory with a specific amplitude as limit cycle.

  10. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: An integrated modeling approach

    NASA Astrophysics Data System (ADS)

    Hassan, S. M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Su, Zhongbo

    2014-09-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface-groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface-groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y-1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y-1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.

  11. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    USGS Publications Warehouse

    Hassan, S.M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Zhongbo, Su

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface–groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y−1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y−1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.

  12. Diving-Flight Aerodynamics of a Peregrine Falcon (Falco peregrinus)

    PubMed Central

    Ponitz, Benjamin; Schmitz, Anke; Fischer, Dominik; Bleckmann, Horst; Brücker, Christoph

    2014-01-01

    This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h−1. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon’s body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred. PMID:24505258

  13. Effects of Sea Level Rise on Groundwater Flow Paths in a Coastal Aquifer System

    NASA Astrophysics Data System (ADS)

    Morrissey, S. K.; Clark, J. F.; Bennett, M. W.; Richardson, E.; Stute, M.

    2008-05-01

    Changes in groundwater flow in the Floridan aquifer system, South Florida, from the rise in sea level at the end of the last glacial period may be indicative of changes coastal aquifers will experience with continued sea level rise. As sea level rises, the hydraulic head near the coast increases. Coastal aquifers can therefore experience decreased groundwater gradients (increased residence times) and seawater intrusion. Stable isotopes of water, dissolved noble gas temperatures, radiocarbon and He concentrations were analyzed in water collected from 68 wells in the Floridan aquifer system throughout South Florida. Near the recharge area, geochemical data along groundwater flow paths in the Upper Floridan aquifer show a transition from recently recharged groundwater to glacial-aged water. Down gradient from this transition, little variation is apparent in the stable isotopes and noble gas recharge temperatures, indicating that most of the Upper Floridan aquifer contains groundwater recharged during the last glacial period. The rapid 120-meter rise in sea level marking the end of the last glacial period increased the hydraulic head in the Floridan aquifer system near the coast, slowing the flow of groundwater from the recharge area to the ocean and trapping glacial-aged groundwater. The raised sea level also flooded half of the Florida platform and caused seawater to intrude into the Lower Floridan. This circulation of seawater in the Lower Floridan continues today as our data indicate that the groundwater is similar to modern seawater with a freshwater component entering vertically from the recharge area to the Upper Floridan.

  14. The Time Window Vehicle Routing Problem Considering Closed Route

    NASA Astrophysics Data System (ADS)

    Irsa Syahputri, Nenna; Mawengkang, Herman

    2017-12-01

    The Vehicle Routing Problem (VRP) determines the optimal set of routes used by a fleet of vehicles to serve a given set of customers on a predefined graph; the objective is to minimize the total travel cost (related to the travel times or distances) and operational cost (related to the number of vehicles used). In this paper we study a variant of the predefined graph: given a weighted graph G and vertices a and b, and given a set X of closed paths in G, find the minimum total travel cost of a-b path P such that no path in X is a subpath of P. Path P is allowed to repeat vertices and edges. We use integer programming model to describe the problem. A feasible neighbourhood approach is proposed to solve the model

  15. An examination of the degrees of freedom of human jaw motion in speech and mastication.

    PubMed

    Ostry, D J; Vatikiotis-Bateson, E; Gribble, P L

    1997-12-01

    The kinematics of human jaw movements were assessed in terms of the three orientation angles and three positions that characterize the motion of the jaw as a rigid body. The analysis focused on the identification of the jaw's independent movement dimensions, and was based on an examination of jaw motion paths that were plotted in various combinations of linear and angular coordinate frames. Overall, both behaviors were characterized by independent motion in four degrees of freedom. In general, when jaw movements were plotted to show orientation in the sagittal plane as a function of horizontal position, relatively straight paths were observed. In speech, the slopes and intercepts of these paths varied depending on the phonetic material. The vertical position of the jaw was observed to shift up or down so as to displace the overall form of the sagittal plane motion path of the jaw. Yaw movements were small but independent of pitch, and vertical and horizontal position. In mastication, the slope and intercept of the relationship between pitch and horizontal position were affected by the type of food and its size. However, the range of variation was less than that observed in speech. When vertical jaw position was plotted as a function of horizontal position, the basic form of the path of the jaw was maintained but could be shifted vertically. In general, larger bolus diameters were associated with lower jaw positions throughout the movement. The timing of pitch and yaw motion differed. The most common pattern involved changes in pitch angle during jaw opening followed by a phase predominated by lateral motion (yaw). Thus, in both behaviors there was evidence of independent motion in pitch, yaw, horizontal position, and vertical position. This is consistent with the idea that motions in these degrees of freedom are independently controlled.

  16. Rankine cycle load limiting through use of a recuperator bypass

    DOEpatents

    Ernst, Timothy C.

    2011-08-16

    A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.

  17. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results show that both of the temperature and H2O concentration rose with the arrival of detonation wave. With the increase of the vertical distance between the detonation tube nozzle and the laser path, the time of temperature and concentration coming to the peak delayed, and the temperature variation trend tended to slow down. At 20 cm from detonation tube nozzle, the maximum temperature hit 1 329 K and the maximum H2O concentration of 0.19 occurred at 4 ms after ignition. The research can provide with us the support for expanding the detonation test field with absorption spectroscopy technology, and can also help to promote the detonation mechanism research and to enhance the level of detonation engine control technology.

  18. Scaling considerations related to interactions of hydrologic, pedologic and geomorphic processes (Invited)

    NASA Astrophysics Data System (ADS)

    Sidle, R. C.

    2013-12-01

    Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected by the spatial distribution of soil physical properties and bioturbations, but also by geomorphic attributes. Interactions among preferential flow paths can induce rapid pore water pressure response within soil mantles and trigger landslides during storm peaks. Alternatively, in poorly developed and unstructured soils, infiltration occurs mainly through the soil matrix and a lag time exists between the rainfall peak and development of pore water pressures at depth. Deep, slow-moving mass failures are also strongly controlled by secondary porosity within the regolith with the timing of activation linked to recharge dynamics. As such, understanding both small and larger scale processes is needed to estimate geomorphic impacts, as well as streamflow generation and contaminant migration.

  19. Method and apparatus for monitoring characteristics of a flow path having solid components flowing therethrough

    DOEpatents

    Hoskinson, Reed L [Rigby, ID; Svoboda, John M [Idaho Falls, ID; Bauer, William F [Idaho Falls, ID; Elias, Gracy [Idaho Falls, ID

    2008-05-06

    A method and apparatus is provided for monitoring a flow path having plurality of different solid components flowing therethrough. For example, in the harvesting of a plant material, many factors surrounding the threshing, separating or cleaning of the plant material and may lead to the inadvertent inclusion of the component being selectively harvested with residual plant materials being discharged or otherwise processed. In accordance with the present invention the detection of the selectively harvested component within residual materials may include the monitoring of a flow path of such residual materials by, for example, directing an excitation signal toward of flow path of material and then detecting a signal initiated by the presence of the selectively harvested component responsive to the excitation signal. The detected signal may be used to determine the presence or absence of a selected plant component within the flow path of residual materials.

  20. Using colloidal silica as isolator, diverter and blocking agent for subsurface geological applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.

    A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.

  1. A Hybrid Analytical/Numerical Model for the Characterization of Preferential Flow Path with Non-Darcy Flow

    PubMed Central

    Wang, Sen; Feng, Qihong; Han, Xiaodong

    2013-01-01

    Due to the long-term fluid-solid interactions in waterflooding, the tremendous variation of oil reservoir formation parameters will lead to the widespread evolution of preferential flow paths, thereby preventing the further enhancement of recovery efficiency because of unstable fingering and premature breakthrough. To improve oil recovery, the characterization of preferential flow paths is essential and imperative. In efforts that have been previously documented, fluid flow characteristics within preferential paths are assumed to obey Darcy's equation. However, the occurrence of non-Darcy flow behavior has been increasingly suggested. To examine this conjecture, the Forchheimer number with the inertial coefficient estimated from different empirical formulas is applied as the criterion. Considering a 10% non-Darcy effect, the fluid flow in a preferential path may do experience non-Darcy behavior. With the objective of characterizing the preferential path with non-Darcy flow, a hybrid analytical/numerical model has been developed to investigate the pressure transient response, which dynamically couples a numerical model describing the non-Darcy effect of a preferential flow path with an analytical reservoir model. The characteristics of the pressure transient behavior and the sensitivities of corresponding parameters have also been discussed. In addition, an interpretation approach for pressure transient testing is also proposed, in which the Gravitational Search Algorithm is employed as a non-linear regression technology to match measured pressure with this hybrid model. Examples of applications from different oilfields are also presented to illustrate this method. This cost-effective approach provides more accurate characterization of a preferential flow path with non-Darcy flow, which will lay a solid foundation for the design and operation of conformance control treatments, as well as several other Enhanced Oil Recovery projects. PMID:24386224

  2. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone

    PubMed Central

    Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J. -Michael

    2016-01-01

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed. PMID:27436676

  3. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone.

    PubMed

    Nagaya, Takayoshi; Walker, Andrew M; Wookey, James; Wallis, Simon R; Ishii, Kazuhiko; Kendall, J-Michael

    2016-07-20

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.

  4. Investigation of Preferential Flow in Low Impact Development Practice

    NASA Astrophysics Data System (ADS)

    Liu, L.; Cao, R.; Wang, C.; Jiang, W.; Wang, J.; Xia, Z.

    2016-12-01

    The characteristics of preferential flow in soil affect Low Impact Development (LID) practices in two aspects. On the one hand, preferential flow may facilitate drainage of stormwater by causing non-uniform movement of water through a small portion of media (such as cracks and holes), and thus leading to much faster transport of water and solutes in one specific direction than others. On the other hand, within a certain ranges, preferential flow may weaken the subgrade capacity of pressure and/or shear stress resistance. Therefore, for the purpose of improving LID practices, there may exist an optimum scenario with a high allowable flowrate and least negative impact of resistance capacity for a soil layer. This project aims to assist the LID design by exploring the features of preferential flow in different soil compositions, studying how different flow paths affect the stability of subgrade, preliminarily analyzing the sensitivity of preferential flow impacting on drainage capacity and subgrade stability in the LID, and further optimizing LID practices. Accordingly, the concepts of Essential Direction Path, Unessential Direction Path and the Sensitivity Coefficient are defined and analyzed to simulate a hypothetical funneling scenario in LID practice. Both irrigation apparatus experiments and numerical models are utilized in this research to investigate the features of preferential flow, effective strength and overall shear strength. The main conclusions include: (1) Investigation of preferential flow characteristics in essential direction path and unessential direction path, respectively; (2) Optimum design of preferential flow in LID practice; (3) Transport capacity determination of preferential flow path in different soils; (4) Study of preferential flow impact on roadbed stability. KEY WORDS: Preferential Flow, Subgrade stability, LID, Sensitivity Coefficient, Funneling Preferential Flow Path

  5. Effects of woody vegetation on overbank sand transport during a large flood, Rio Puerco, New Mexico

    USGS Publications Warehouse

    Griffin, Eleanor R.; Perignon, Mariela C.; Friedman, Jonathan M.; Tucker, Gregory E.

    2014-01-01

    Distributions of woody vegetation on floodplain surfaces affect flood-flow erosion and deposition processes. A large flood along the lower Rio Puerco, New Mexico, in August 2006 caused extensive erosion in a reach that had been sprayed with herbicide in September 2003 for the purpose of saltcedar (Tamarix spp.) control. Large volumes of sediment, including a substantial fraction of sand, were delivered to the reach downstream, which had not been treated with herbicide. We applied physically based, one-dimensional models of flow and suspended-sediment transport to compute volume concentrations of sand in suspension in floodplain flow at a site within the sprayed reach and at a site downstream from the sprayed reach. We computed the effects of drag on woody stems in reducing the skin friction shear stress, velocity of flow, and suspended-sand transport from open paths into patches of dense stems. Total flow and suspended-sand fluxes were computed for each site using well-constrained flood-flow depths, water-surface slopes, and measured shrub characteristics. Results show that flow in open paths carried high concentrations of sand in suspension with nearly uniform vertical distributions. Drag on woody floodplain stems reduced skin friction shear stresses by two orders of magnitude, yet sufficient velocities were maintained to transport sand more than 50 m into fields of dense, free-surface-penetrating stems. An increase in shrub canopy extent from 31% in the sprayed reach site to 49% in the downstream site was found to account for 69% of the computed decrease in discharge between the two sites. The results demonstrate the need to compute the spatial distribution of skin friction shear stress in order to effectively compute suspended-sand transport and to predict the fate of sediment and contaminants carried in suspension during large floods.

  6. Path Flow Estimation Using Time Varying Coefficient State Space Model

    NASA Astrophysics Data System (ADS)

    Jou, Yow-Jen; Lan, Chien-Lun

    2009-08-01

    The dynamic path flow information is very crucial in the field of transportation operation and management, i.e., dynamic traffic assignment, scheduling plan, and signal timing. Time-dependent path information, which is important in many aspects, is nearly impossible to be obtained. Consequently, researchers have been seeking estimation methods for deriving valuable path flow information from less expensive traffic data, primarily link traffic counts of surveillance systems. This investigation considers a path flow estimation problem involving the time varying coefficient state space model, Gibbs sampler, and Kalman filter. Numerical examples with part of a real network of the Taipei Mass Rapid Transit with real O-D matrices is demonstrated to address the accuracy of proposed model. Results of this study show that this time-varying coefficient state space model is very effective in the estimation of path flow compared to time-invariant model.

  7. Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Khong, Thuan H.

    2013-01-01

    A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.

  8. MRI investigation of water-oil two phase flow in straight capillary, bifurcate channel and monolayered glass bead pack.

    PubMed

    Liu, Yu; Jiang, Lanlan; Zhu, Ningjun; Zhao, Yuechao; Zhang, Yi; Wang, Dayong; Yang, Mingjun; Zhao, Jiafei; Song, Yongchen

    2015-09-01

    The study of immiscible fluid displacement between aqueous-phase liquids and non-aqueous-phase liquids in porous media is of great importance to oil recovery, groundwater contamination, and underground pollutant migration. Moreover, the attendant viscous, capillary, and gravitational forces are essential to describing the two-phase flows. In this study, magnetic resonance imaging was used to experimentally examine the detailed effects of the viscous, capillary, and gravitational forces on water-oil flows through a vertical straight capillary, bifurcate channel, and monolayered glass-bead pack. Water flooding experiments were performed at atmospheric pressure and 37.8°C, and the evolution of the distribution and saturation of the oil as well as the characteristics of the two-phase flow were investigated and analyzed. The results showed that the flow paths, i.e., the fingers of the displacing phase, during the immiscible displacement in the porous medium were determined by the viscous, capillary, and gravitational forces as well as the sizes of the pores and throats. The experimental results afford a fundamental understanding of immiscible fluid displacement in a porous medium. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Controlled pilot oxidizer for a gas turbine combustor

    DOEpatents

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  10. Two-stage preconcentrator for vapor/particle detection

    DOEpatents

    Linker, Kevin L.; Brusseau, Charles A.

    2002-01-01

    A device for concentrating particles from a high volume gas stream and delivering the particles for detection in a low volume gas stream includes first and second preconcentrators. The first preconcentrator has a first structure for retaining particles in a first gas flow path through which a first gas flows at a relatively high volume, valves for selectively stopping the first gas flow; and a second gas flow path through which gas flows at an intermediate flow volume for moving particles from the first structure. The second preconcentrator includes a second structure for retaining particles in the second gas flow path; a valve for selectively stopping the second gas flow; and a third gas flow path through which gas flows at a low volume for moving particles from the second structure to a detector. Each of the particle retaining structures is preferably a metal screen that may be resistively heated by application of an electric potential to release the particles.

  11. Topographic Controls on Landslide and Debris-Flow Mobility

    NASA Astrophysics Data System (ADS)

    McCoy, S. W.; Pettitt, S.

    2014-12-01

    Regardless of whether a granular flow initiates from failure and liquefaction of a shallow landslide or from overland flow that entrains sediment to form a debris flow, the resulting flow poses hazards to downslope communities. Understanding controls on granular-flow mobility is critical for accurate hazard prediction. The topographic form of granular-flow paths can vary significantly across different steeplands and is one of the few flow-path properties that can be readily altered by engineered control structures such as closed-type check dams. We use grain-scale numerical modeling (discrete element method simulations) of free-surface, gravity-driven granular flows to investigate how different topographic profiles with the same mean slope and total relief can produce notable differences in flow mobility due to strong nonlinearities inherent to granular-flow dynamics. We describe how varying the profile shape from planar, to convex up, to concave up, as well how varying the number, size, and location of check dams along a flow path, changes flow velocity, thickness, discharge, energy dissipation, impact force and runout distance. Our preliminary results highlight an important path dependence for this nonlinear system, show that caution should be used when predicting flow dynamics from path-averaged properties, and provide some mechanics-based guidance for engineering control structures.

  12. Tracer Transport Along a Vertical Fault Located in Welded Tuffs

    NASA Astrophysics Data System (ADS)

    Salve, R.; Liu, H.; Hu, Q.

    2002-12-01

    A near-vertical fault that intercepts the fractured welled tuff formation in the underground Exploratory Studies Facility (ESF) at Yucca Mountain, Nevada, has provided a unique opportunity to evaluate important hydrological parameters associated with faults (e.g., flow velocity, matrix diffusion, fault-fracture-matrix interactions). Alcove 8, which intersects the fault is located in the cross drift of the ESF, has been excavated for liquid releases through this fault and a network of fractures. Located 25 m below Alcove 8 in the main drift of the ESF, Niche 3 which also intercepts the fault, serves as the site for monitoring the wetting front and for collecting seepage following liquid releases in Alcove 8. To investigate the importance of matrix diffusion and the extent of area subject to fracture-matrix interactions, we released a mix of conservative tracers (pentafluorobenzoic acid [PFBA] and lithium bromide [LiBr]) along the fault. The ceiling of Niche 3 was blanketed with an array of trays to capture seepage, and seepage rates were continuously monitored by a water collection system connected to the trays. Additionally, a water sampling device, the passive-discreet water sampler (PDWS), was connected to three of the collections trays in Niche 3 into which water was seeping. The PDWS, designed to isolate continuous seepage from each tray into discreet samples for chemical analysis, remained connected to the trays over a period of three months. During this time, all water that seeped into the three trays was captured sequentially into sampling bottles and analyzed for concentrations of PFBA and LiBr. Water released along the fault initially traveled the 25 m vertical distance over a period of 36 days (at a velocity ~0.7 m/day). The seepage recovered in Niche 3 was less than 10% of the injected water with significant spatial and temporal fluctuations in seepage rates. Along a fast flow path, the benzoic tracer (PFBA) and LiBr were first detected ~12 days after they were released into the fault. Along slower flow paths the tracers appeared ~ two weeks later, with PFBA preceding the LiB. The differing travel times of the two conservative tracers suggests the impact of matrix diffusion in the transport process. This work was supported by the Director, Office of Civilian Radioactive Waste Management, U.S. Department of Energy, through Memorandum Purchase Order EA9013MC5X between Bechtel SAIC Company, LLC, and the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab). The support is provided to Berkeley Lab through the U.S. Department of Energy Contract No. DE-AC03-76SF00098.

  13. Comparison of upconing under vertical and horizontal wells in freshwater lenses: sand-box experiments and numerical modeling

    NASA Astrophysics Data System (ADS)

    Stoeckl, Leonard; Stefan, Loeffler; Houben, Georg

    2013-04-01

    Freshwater lenses on islands and in inland areas are often the primary freshwater resource there. The fragile equilibrium between saline and fresh groundwater can be disrupted by excessive pumping, leading to an upward migration of the saline water underneath the well. Sand-box experiments were conducted to compare the upconing at vertical and horizontal wells pumping from a freshwater lens. Results were then compared to numerical simulations. To simulate the cross-section of an "infinite strip island", an acrylic box with a spacing of 5 cm was filled with coarse sand. After saturating the model with degassed saltwater from bottom to top, freshwater recharge was applied from above. By coloring the infiltrating freshwater with different tracer colors using uranine and indigotine we were able to visualize flow paths during pumping. A horizontal and a vertical well were placed at the left and right side of the symmetric island. Both had equal diameter, screen length, depth of placement, and distance to shore. Three increasing pumping rates were applied to each well successively and the electrical conductivity of the abstracted water was continuously measured using a through-flow cell. Results show that no saltwater entered the wells when pumping at the lowest rate. Still, slight saltwater upconing and a shift of the freshwater divide in the island were observed. At the second rate a clear saltwater breakthrough into the vertical well occurred, while the electrical conductivity remained nearly unchanged in the horizontal well. Applying the third (highest) abstraction rate to each of the wells saltwater entered both wells, exceeding drinking water standards in the vertical well. The described behavior indicates the advantage of horizontal over vertical wells on islands and in coastal zones prone to saltwater up-coning. Numerical simulations show similar patterns, even though deviations exist between the second and the third pumping rate, which are under and overestimated by the numerical simulation, respectively. Further investigations are necessary to investigate the dynamics of pumping from freshwater lenses under the influence of climate change (i.e. sea level rise).

  14. Assessment of the hydrogeology and water quality in a near-shore well field, Sarasota, Florida

    USGS Publications Warehouse

    Broska, J.C.; Knochenmus, L.A.

    1996-01-01

    The city of Sarasota, Florida, operates a downtown well field that pumps mineralized water from ground water sources to supply a reverse osmosis plant. Because of the close proximity of the well field to Sarasota Bay and the high sulfate and chloride concentrations of ground-water supplies, a growing concern exists about the possibility of lateral movement of saltwater in a landward direction (intrusion) and vertical movement of relict sea water (upconing). In 1992, the U.S. Geological Survey began a 3-year study to evaluate the hydraulic characteristics and water quality of ground-water resources within the downtown well field and the surrounding 235-square-mile study area. Delineation of the hydrogeology of the study area was based on water- quality data, aquifer test data, and extensive borehole geophysical surveys (including gamma, caliper, temperature, electrical resistivity, and flow meter logs) from the six existing production wells and from a corehole drilled as part of the study, as well as from published and unpublished reports on file at the U.S. Geological Survey, the Southwest Florida Water Management District, and consultant's reports. Water-quality data were examined for spatial and temporal trends that might relate to the mechanism for observed water-quality changes. Water quality in the study area appears to be dependent upon several mechanisms, including upconing of higher salinity water from deeper zones within the aquifer system, interbore-hole flow between zones of varying water quality through improperly cased and corroded wells, migration of highly mineralized waters through structural deformities, and the presence of unflushed relict seawater. A numerical ground-water flow model was developed as an interpretative tool where field-derived hydrologic characteristics could be tested. The conceptual model consisted of seven layers to represent the multilayered aquifer systems underlying the study area. Particle tracking was utilized to delineate the travel path of water as it enters the model area under a set of given conditions. Within the model area, simulated flow in the intermediate aquifer system originates primarily from the northwestern boundary. Simulated flow in the Upper Floridan aquifer originates in lower model layers (deeper flow zones) and ultimately can be traced to the southeastern and northwestern boundaries. Volumetric budgets calculated from numerical simulation of a hypothetical well field indicate that the area of contribution to the well field changes seasonally. Although ground-water flow patterns change with wet and dry seasons, most water enters the well-field flow system through lower parts of the Upper Floridan aquifer from a southeastern direction. Moreover, particle tracking indicated that ground-water flow paths with strictly lateral pathlines in model layers correspond to the intermediate aquifer system, whereas particles traced through model layers corresponding to the Upper Floridan aquifer had components of vertical and lateral flow.

  15. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2002-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  16. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2001-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  17. Thermo-Rotational Instability in Plasma Disks Around Compact Objects*

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2008-04-01

    Differentially rotating plasma disks, around compact objects, that are imbedded in a ``seed'' magnetic field are shown to develop vertically localized ballooning modes that are driven by the combined radial gradient of the rotation frequency and the vertical gradients of the plasma density and temperature [1]. When the electron mean free path is shorter than the disk height and the (vertical) thermal conductivity can be neglected, the vertical particle flows produced by of these modes have the effect to drive the density and temperature profiles toward the ``adiabatic condition'' where ηT≡(dlnT/dz/(dlnn/dz)=2/3. Here T is the plasma temperature and n the particle density. The faster growth rates correspond to steeper temperature profiles (ηT>2/3) such as those produced by an internal (e.g. viscous) heating process. In the end, ballooning modes excited for various values of ηT can lead to the evolution of the disk into a different current carrying configuration such as a sequence of plasma rings[2].*Sponsored in part by the U.S. Department of Energy[1]B. Coppi, M.I.T. (LNS) Report HEP, 07/02, Cambridge, MA (2007), Invited Paper at the International Symposium on ``Momentum Transport in Jets, Disks and Laboratory Plasmas'', Alba, Piedmont, September 2007, to be published in Europhysical Letters (EPL, IOP)[2]B. Coppi andF. Rousseau, Ap. J., 641, 458, (2006)

  18. Characterization of vertical mixing in oscillatory vegetated flows

    NASA Astrophysics Data System (ADS)

    Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.

    2016-02-01

    Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy-flow interactions.

  19. Flight Path Synthesis and HUD Scaling for V/STOL Terminal Area Operations

    DOT National Transportation Integrated Search

    1995-04-01

    A two circle horizontal flightpath synthesis algorithm for Vertical/Short : Takeoff and Landing (V/STOL) terminal area operations is presented. This : algorithm provides a flight-path that is tangential to the aircraft's velocity : vector at the inst...

  20. Measurement of greenhouse gas emissions from agricultural sites using open-path optical remote sensing method.

    PubMed

    Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick

    2009-08-01

    Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.

  1. Effects of near-bed turbulence and micro-topography on macroinvertebrate movements across contrasting gravel-bed surfaces (Invited)

    NASA Astrophysics Data System (ADS)

    Buffin-Belanger, T. K.; Rice, S. P.; Reid, I.; Lancaster, J.

    2009-12-01

    Fluvial habitats can be described from a series of physical variables but to adequately address the habitat quality it becomes necessary to develop an understanding that combines the physical variables with the behaviour of the inhabitating organisms. The hypothesis of flow refugia provide a rational that can explain the persistence of macroinvertebrate communities in gravel-bed rivers when spates occur. The movement behaviour of macroinvertebrates is a key element to the flow refugia hypothesis, but little is known about how local near-bed turbulence and bed microtopography may affect macroinvertebrate movements. We reproduced natural gravel-bed substrates with contrasting gravel bed textures in a large flume where we were able to document the movement behaviour of the cased caddisfly Potamophylax latipennis for a specific discharge. The crawling paths and drift events of animals were analysed from video recordings. Characteristics of movements differ from one substrate to another. The crawling speed is higher for the small grain-size substrates but the mean travel distance remains approximately the same between substrates. For each substrate, the animals tended to follow consistent paths across the surface. The number of drift events and mean distance drifted is higher for the small grain-size substrate. ADV measurements close to the boundary allow detailed characterisation of near-bed hydraulic variables, including : skewness coefficients, TKE, UV correlation coefficients and integral time scales from autocorrelation analysis. For these variables, the vertical patterns of turbulence parameters are similar between the substrates but the amplitude of the average values and standard errors vary significantly. The spatial distribution of this variability is considered in relation to the crawling paths. It appears that the animals tend to crawl within areas of the substrate where low flow velocities and low turbulent kinetic energies are found, while sites that insects avoided were characterised by higher elevations, velocities and turbulence.

  2. Vertical groundwater flow in Permo-Triassic sediments underlying two cities in the Trent River Basin (UK)

    NASA Astrophysics Data System (ADS)

    Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.

    2003-12-01

    The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.

  3. Simulation of ground-water flow to assess geohydrologic factors and their effect on source-water areas for bedrock wells in Connecticut

    USGS Publications Warehouse

    Starn, J. Jeffrey; Stone, Janet Radway

    2005-01-01

    Generic ground-water-flow simulation models show that geohydrologic factors?fracture types, fracture geometry, and surficial materials?affect the size, shape, and location of source-water areas for bedrock wells. In this study, conducted by the U.S. Geological Survey in cooperation with the Connecticut Department of Public Health, ground-water flow was simulated to bedrock wells in three settings?on hilltops and hillsides with no surficial aquifer, in a narrow valley with a surficial aquifer, and in a broad valley with a surficial aquifer?to show how different combinations of geohydrologic factors in different topographic settings affect the dimensions and locations of source-water areas in Connecticut. Three principal types of fractures are present in bedrock in Connecticut?(1) Layer-parallel fractures, which developed as partings along bedding in sedimentary rock and compositional layering or foliation in metamorphic rock (dips of these fractures can be gentle or steep); (2) unroofing joints, which developed as strain-release fractures parallel to the land surface as overlying rock was removed by erosion through geologic time; and (3) cross fractures and joints, which developed as a result of tectonically generated stresses that produced typically near-vertical or steeply dipping fractures. Fracture geometry is defined primarily by the presence or absence of layering in the rock unit, and, if layered, by the angle of dip in the layering. Where layered rocks dip steeply, layer-parallel fracturing generally is dominant; unroofing joints also are typically well developed. Where layered rocks dip gently, layer-parallel fracturing also is dominant, and connections among these fractures are provided only by the cross fractures. In gently dipping rocks, unroofing joints generally do not form as a separate fracture set; instead, strain release from unroofing has occurred along gently dipping layer-parallel fractures, enhancing their aperture. In nonlayered and variably layered rocks, layer-parallel fracturing is absent or poorly developed; fracturing is dominated by well-developed subhorizontal unroofing joints and steeply dipping, tectonically generated fractures and (or) cooling joints. Cross fractures (or cooling joints) in nonlayered and variably layered rocks have more random orientations than in layered rocks. Overall, nonlayered or variably layered rocks do not have a strongly developed fracture direction. Generic ground-water-flow simulation models showed that fracture geometry and other geohydrologic factors affect the dimensions and locations of source-water areas for bedrock wells. In general, source-water areas to wells reflect the direction of ground-water flow, which mimics the land-surface topography. Source-water areas to wells in a hilltop setting were not affected greatly by simulated fracture zones, except for an extensive vertical fracture zone. Source-water areas to wells in a hillside setting were not affected greatly by simulated fracture zones, except for the combination of a subhorizontal fracture zone and low bedrock vertical hydraulic conductivity, as might be the case where an extensive subhorizontal fracture zone is not connected or is poorly connected to the surface through vertical fractures. Source-water areas to wells in a narrow valley setting reflect complex ground-water-flow paths. The typical flow path originates in the uplands and passes through either till or bedrock into the surficial aquifer, although only a small area of the surficial aquifer actually contributes water to the well. Source-water areas in uplands can include substantial areas on both sides of a river. Source-water areas for wells in this setting are affected mainly by the rate of ground-water recharge and by the degree of anisotropy. Source-water areas to wells in a broad valley setting (bedrock with a low angle of dip) are affected greatly by fracture properties. The effect of a given fracture is to channel the

  4. Two-phase flow characterization based on advanced instrumentation, neural networks, and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Mi, Ye

    1998-12-01

    The major objective of this thesis is focused on theoretical and experimental investigations of identifying and characterizing vertical and horizontal flow regimes in two-phase flows. A methodology of flow regime identification with impedance-based neural network systems and a comprehensive model of vertical slug flow have been developed. Vertical slug flow has been extensively investigated and characterized with geometric, kinematic and hydrodynamic parameters. A multi-sensor impedance void-meter and a multi-sensor magnetic flowmeter were developed. The impedance void-meter was cross-calibrated with other reliable techniques for void fraction measurements. The performance of the impedance void-meter to measure the void propagation velocity was evaluated by the drift flux model. It was proved that the magnetic flowmeter was applicable to vertical slug flow measurements. Separable signals from these instruments allow us to unearth most characteristics of vertical slug flow. A methodology of vertical flow regime identification was developed. Supervised neural network and self-organizing neural network systems were employed. First, they were trained with results from an idealized simulation of impedance in a two-phase mixture. The simulation was mainly based on Mishima and Ishii's flow regime map, the drift flux model, and the newly developed model of slug flow. Then, these trained systems were tested with impedance signals. The results showed that the neural network systems were appropriate classifiers of vertical flow regimes. The theoretical models and experimental databases used in the simulation were reliable. Furthermore, this approach was applied successfully to horizontal flow identification. A comprehensive model was developed to predict important characteristics of vertical slug flow. It was realized that the void fraction of the liquid slug is determined by the relative liquid motion between the Taylor bubble tail and the Taylor bubble wake. Relying on this understanding and experimental results, a special relationship was built for the void fraction of the liquid slug. The prediction of the void fraction of the liquid slug was considerably improved. Experimental characterization of vertical slug flows was performed extensively with the impedance void-meter and the magnetic flowmeter. The theoretical predictions were compared with the experimental results. The agreements between them are very satisfactory.

  5. Inter-relationship between shallow and deep aquifers under the influence of deep groundwater exploitation in the North China Plain

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Cao, Guoliang; Love, Andrew J.

    2017-04-01

    In the North China Plain (NCP), the interaction between shallow and deep groundwater flow systems enhanced by groundwater extraction has been investigated using multi-isotopic and chemical tracers for understanding the mechanism of salt water transport, which has long been one of the major regional environmental hydrogeological problems in NCP. Information about the problem will be determined using multiple lines of evidence, including field surveys of drilling and water sampling, as well as laboratory experiments and physical and numerical simulations. A conceptual model of groundwater flow system along WE cross-section from piedmont area to coastal region (Shijiazhuang-Hengshui-Cangzhou) has been developed and verified by geochemical modeling. A combined hydrogeochemical and isotopic investigation using ion relationships such as Cl/Br ratios, and environment isotopes (δ 18O, δ 2H, δ 34SSO4-δ 18OSO4, δ 15NNO_3-δ 18ONO_3, δ 13C and 87Sr/86Sr) was reviewed and carried for determining the sources of aquifer recharge, the origin of solutes and the mixing processes in groundwater flow system under the anthropogenic pumping and pollution. Results indicate that hydrochemistry of groundwater is characterized by mixing between end-members coming directly from Piedmont recharge areas, saline groundwater formed during geohistorical transgression in the shallow aquifers of central plain, and to groundwater circulating in a deeply buried Quaternary sediments. We also reviewed the groundwater age (tritium contents, 14C ages, 3H-3He ages, basin-scale flow modeling ages of groundwater) to recognize the local distributed recharge in this strongly exploited aquifer system. Finally, combined with the 1-D Cl transport modeling for the pore water of clay-rich aquitard, we reveal that salt transport in the aquitard is primarily controlled by vertical diffusion on million years' time scale, and the observed the salinized groundwater in deep aquifer may be caused by passing through ``windows'' or preferential flow path, rather than vertical flow through the aquitard.

  6. A Microwave Radiometric Method to Obtain the Average Path Profile of Atmospheric Temperature and Humidity Structure Parameters and Its Application to Optical Propagation System Assessment

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.; Vyhnalek, Brian E.

    2015-01-01

    The values of the key atmospheric propagation parameters Ct2, Cq2, and Ctq are highly dependent upon the vertical height within the atmosphere thus making it necessary to specify profiles of these values along the atmospheric propagation path. The remote sensing method suggested and described in this work makes use of a rapidly integrating microwave profiling radiometer to capture profiles of temperature and humidity through the atmosphere. The integration times of currently available profiling radiometers are such that they are approaching the temporal intervals over which one can possibly make meaningful assessments of these key atmospheric parameters. Since these parameters are fundamental to all propagation conditions, they can be used to obtain Cn2 profiles for any frequency, including those for an optical propagation path. In this case the important performance parameters of the prevailing isoplanatic angle and Greenwood frequency can be obtained. The integration times are such that Kolmogorov turbulence theory and the Taylor frozen-flow hypothesis must be transcended. Appropriate modifications to these classical approaches are derived from first principles and an expression for the structure functions are obtained. The theory is then applied to an experimental scenario and shows very good results.

  7. Impact of sub-horizontal discontinuities and vertical heterogeneities on recharge processes in a weathered crystalline aquifer in southern India

    NASA Astrophysics Data System (ADS)

    Nicolas, Madeleine; Selles, Adrien; Bour, Olivier; Maréchal, Jean-Christophe; Crenner, Marion; Wajiduddin, Mohammed; Ahmed, Shakeel

    2017-04-01

    In the face of increasing demands for irrigated agriculture, many states in India are facing water scarcity issues, leading to severe groundwater depletion. Because perennial water resources in southern India consist mainly of crystalline aquifers, understanding how recharge takes place and the role of preferential flow zones in such heterogeneous media is of prime importance for successful and sustainable aquifer management. Here we investigate how vertical heterogeneities and highly transmissive sub-horizontal discontinuities may control groundwater flows and recharge dynamics. Recharge processes in the vadose zone were examined by analysing the propagation of an infiltration front and mass transfers resulting from the implementation of a managed aquifer recharge (MAR) structure. Said structure was set up in the Experimental Hydrogeological Park in Telangana (Southern India), a well-equipped and continuously monitored site, which is periodically supplied with surface water deviated from the nearby Musi river, downstream of Hyderabad. An initial volume balance equation was applied to quantify the overall inputs from the MAR structure into the groundwater system, which was confirmed using a chloride mass balance approach. To understand how this incoming mass is then distributed within the aquifer, we monitored the evolution of water volumes in the tank, and the resulting lateral propagation front observed in the surrounding borehole network. Borehole logs of temperature and conductivity were regularly performed to identify preferential flow paths. As a result we observed that mass transfers take place in the way of preferential lateral flow through the most transmissive zones of the profile. These include the interface between the lower portion of the upper weathered horizon (the saprolite) and the upper part of the underlying fissured granite, as well as the first flowing fractures. This leads to a rapid lateral transfer of recharge, which allows quick replenishment of aquifers but may have severe implications regarding groundwater quality, whether contaminants originate from diffuse sources (such as fertilizers), or a localized injection of polluted surface water. These findings confirm previous studies about the non-linear behaviour of hard rock aquifers (Guihéneuf et al., 2014) and recharge processes (Boisson et al., 2015; Alazard et al., 2015). Depending on water level conditions, the aquifer shifts from a regional flow system (when superficial more connected and weathered levels are saturated), to independent local flow systems (when only the lower lesser fractured portion is saturated). Thus recharge seems to be controlled by the existence of (i) vertical heterogeneities within the unsaturated zone and (ii) highly transmissive sub-horizontal discontinuities, both of which controlling groundwater flows and recharge dynamics.

  8. Physically-based distributed hydrologic modeling of tropical catchments: Hypothesis testing on model formation and runoff generation

    NASA Astrophysics Data System (ADS)

    Abebe, N. A.; Ogden, F. L.

    2011-12-01

    Watersheds vary in their nature based on their geographic location, altitude, climate, geology, soils, and land use/land cover. These variations lead to differences in the conceptualization and formulation of hydrological models intended to represent the expected hydrological processes in a given catchment. Watersheds in the tropics are characterized by intensive and persistent biological activity and a large amount of rainfall. Our study focuses on the Agua Salud project catchments located in the Panama Canal Watershed, Panama, which have steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. These catchments are also highly affected by soil cracks, decayed tree roots and animal burrows that form a network of preferential flow paths. One hypothesis is that these macropores conduct interflow during heavy rainfall, when a transient perched water table forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant flow processes, including overland flow, channel flow, vertical matrix and non-Richards film flow, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer and deep saturated groundwater flow. In our model formulation, we use the model to examine a variety of hydrological processes which we anticipate may occur. Emphasis is given to the modeling of the soil moisture dynamics in the bioturbation layer, development of lateral preferential flow and activation of the macropores and exchange of water at the interface between a bioturbation layer and a second layer below it. We consider interactions between surface water, ground water, channel water and perched water in the riparian zone cells with the aim of understanding likely runoff generation mechanisms. Results show that inclusion of as many different flow processes as possible during conceptualization and during model development helps to reject infeasible scenarios/hypotheses, and suggests further watershed-scale studies to improve our understanding of the hydrologic behavior of these poorly understood catchments.

  9. A Linear Kernel for Co-Path/Cycle Packing

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Zhong; Fellows, Michael; Fu, Bin; Jiang, Haitao; Liu, Yang; Wang, Lusheng; Zhu, Binhai

    Bounded-Degree Vertex Deletion is a fundamental problem in graph theory that has new applications in computational biology. In this paper, we address a special case of Bounded-Degree Vertex Deletion, the Co-Path/Cycle Packing problem, which asks to delete as few vertices as possible such that the graph of the remaining (residual) vertices is composed of disjoint paths and simple cycles. The problem falls into the well-known class of 'node-deletion problems with hereditary properties', is hence NP-complete and unlikely to admit a polynomial time approximation algorithm with approximation factor smaller than 2. In the framework of parameterized complexity, we present a kernelization algorithm that produces a kernel with at most 37k vertices, improving on the super-linear kernel of Fellows et al.'s general theorem for Bounded-Degree Vertex Deletion. Using this kernel,and the method of bounded search trees, we devise an FPT algorithm that runs in time O *(3.24 k ). On the negative side, we show that the problem is APX-hard and unlikely to have a kernel smaller than 2k by a reduction from Vertex Cover.

  10. Modeling Groundwater Flow System of a Drainage Basin in the Basement Complex Environment of Southwestern Nigera

    NASA Astrophysics Data System (ADS)

    Akinwumiju, Akinola S.; Olorunfemi, Martins O.

    2018-05-01

    This study attempted to model the groundwater flow system of a drainage basin within the Basement Complex environment of Southwestern Nigeria. Four groundwater models were derived from Vertical Electrical Sounding (VES) Data, remotely sensed data, geological information (hydrolineaments and lithology) and borehole data. Subsequently, two sub-surface (local and regional) flow systems were delineated in the study area. While the local flow system is controlled by surface topography, the regional flow system is controlled by the networks of intermediate and deep seated faults/fractures. The local flow system is characterized by convergence, divergence, inflow and outflow in places, while the regional flow system is dominated by NNE-SSW and W-E flow directions. Minor flow directions include NNW-SSE and E-W with possible linkages to the main flow-paths. The NNE-SSW regional flow system is a double open ended flow system with possible linkage to the Niger Trough. The W-E regional flow system is a single open ended system that originates within the study area (with possible linkage to the NNE-SSW regional flow system) and extends to Ikogosi in the adjoining drainage basin. Thus, the groundwater drainage basin of the study area is much larger and extensive than its surface drainage basin. The all year round flowing (perennial) rivers are linked to groundwater outcrops from faults/fractures and contact zones. Consequently, larger percentage of annual rainwater usually leaves the basin in form of runoff and base flow. Therefore, the basin is categorized as a donor basin but with suspected subsurface water input at its northeastern axis.

  11. Dissolution-induced preferential flow in a limestone fracture.

    PubMed

    Liu, Jishan; Polak, Amir; Elsworth, Derek; Grader, Avrami

    2005-06-01

    Flow in a rock fracture is surprisingly sensitive to the evolution of flow paths that develop as a result of dissolution. Net dissolution may either increase or decrease permeability uniformly within the fracture, or may form a preferential flow path through which most of the injected fluid flows, depending on the prevailing ambient mechanical and chemical conditions. A flow-through test was completed on an artificial fracture in limestone at room temperature under ambient confining stress of 3.5 MPa. The sample was sequentially circulated by water of two different compositions through the 1500 h duration of the experiment; the first 935 h by tap groundwater, followed by 555 h of distilled water. Measurements of differential pressures between the inlet and the outlet, fluid and dissolved mass fluxes, and concurrent X-ray CT imaging and sectioning were used to characterize the evolution of flow paths within the limestone fracture. During the initial circulation of groundwater, the differential pressure increased almost threefold, and was interpreted as a net reduction in permeability as the contacting asperities across the fracture are removed, and the fracture closes. With the circulation of distilled water, permeability initially reduces threefold, and ultimately increases by two orders of magnitude. This spontaneous switch from net decrease in permeability, to net increase occurred with no change in flow rate or applied effective stress, and is attributed to the evolving localization of flow path as evidenced by CT images. Based on the X-ray CT characterizations, a flow path-dependent flow model was developed to simulate the evolution of flow paths within the fracture and its influence on the overall flow behaviors of the injected fluid in the fracture.

  12. Simulator study of vortex encounters by a twin-engine, commercial, jet transport airplane

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Keyser, G. L., Jr.

    1982-01-01

    A simulator study of vortex encounters was conducted for a twin-engine, commercial, jet transport airplane encountering the vortex flow field of a heavy, four-engine, commercial, jet transport airplane in the final-approach configuration. The encounters were conducted with fixed controls and with a pilot using a state-of-the-art, manual-control system. Piloted encounters with the base-line vortex flow field out of ground effect (unattenuated) resulted in initial bank-angle excursions greater than 40 deg, coupled with initial sideslip-angle excursions greater than 10 deg. The severity of these initial upsets was significantly reduced when the vortex center was moved laterally or vertically away from the flight path of the encountering airplane. Smaller reductions occurred when the flow field was attenuated by the flight spoilers on the generating airplane. The largest reduction in the severity of the initial upsets, however, was from aging in ground effect. The severity of the initial upsets of the following airplane was relatively unaffected by the approach speed. Increasing the lift coefficient of the generating airplane resulted in an increase in the severity of the initial upsets.

  13. Experimental and numerical study of the relation between flow paths and fate of a pesticide in a riparian wetland

    NASA Astrophysics Data System (ADS)

    Kidmose, Jacob; Dahl, Mette; Engesgaard, Peter; Nilsson, Bertel; Christensen, Britt S. B.; Andersen, Stine; Hoffmann, Carl Christian

    2010-05-01

    SummaryA field-scale pulse-injection experiment with the herbicide Isoproturon was conducted in a Danish riparian wetland. A non-reactive tracer (bromide) experiment was also carried out to characterize the physical transport system. Groundwater flow and reactive transport modelling was used to simulate flow paths, residence times, as well as bromide and Isoproturon distributions. The wetland can be characterized by two distinct riparian flow paths; one flow path discharges 2/3 of the incoming groundwater directly to the free water surface of the wetland near the foot of the hillslope with an average residence time of 205 days, and another flow path diffusively discharging the remaining 1/3 of the incoming groundwater to the stream with an average residence time of 425 days. The reactive transport simulations reveal that Isoproturon is retarded by a factor of 2-4, which is explained by the high organic content in the peat layer of the wetland. Isoproturon was found to be aerobically degraded with a half-life in the order of 12-80 days. Based on the quantification of flow paths, residence times and half-lives it is estimated that about 2/3 of the injected Isoproturon is removed in the wetland. Thus, close to 1/3 may find its way to the stream through overland flow. It is also possible that high concentrations of metabolites will reach the stream.

  14. Vertical Scales of Turbulence at the Mount Wilson Observatory

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Lowe, Stephen T.; Bester, Manfred; Danchi, William C.; Townes, Charles H.

    1995-01-01

    The vertical scales of turbulence at the Mount Wilson Observatory are inferred from data from the University of California at Berkeley Infrared Spatial Interferometer (ISI), by modeling path length fluctuations observed in the interferometric paths to celestial objects and those in instrumental ground-based paths. The correlations between the stellar and ground-based path length fluctuations and the temporal statistics of those fluctuations are modeled on various timescales to constrain the vertical scales. A Kolmogorov-Taylor turbulence model with a finite outer scale was used to simulate ISI data. The simulation also included the white instrumental noise of the interferometer, aperture-filtering effects, and the data analysis algorithms. The simulations suggest that the path delay fluctuations observed in the 1992-1993 ISI data are largely consistent with being generated by refractivity fluctuations at two characteristic vertical scales: one extending to a height of 45 m above the ground, with a wind speed of about 1 m/ s, and another at a much higher altitude, with a wind speed of about 10 m/ s. The height of the lower layer is of the order of the dimensions of trees and other structures near the interferometer, which suggests that these objects, including elements of the interferometer, may play a role in generating the lower layer of turbulence. The modeling indicates that the high- attitude component contributes primarily to short-period (less than 10 s) fluctuations, while the lower component dominates the long-period (up to a few minutes) fluctuations. The lower component turbulent height, along with outer scales of the order of 10 m, suggest that the baseline dependence of long-term interferometric, atmospheric fluctuations should weaken for baselines greater than a few tens of meters. Simulations further show that there is the potential for improving the seeing or astrometric accuracy by about 30%-50% on average, if the path length fluctuations in the lower component are directly calibrated. Statistical and systematic effects induce an error of about 15 m in the estimate of the lower component turbulent altitude.

  15. Determination of shelf heat transfer coefficients along the shelf flow path of a freeze dryer using the shelf fluid temperature perturbation approach.

    PubMed

    Kuu, Wei Y; Nail, Steven L; Hardwick, Lisa M

    2007-01-01

    The spatial distribution of local shelf heat transfer coefficients, Ks, was determined by mapping the transient temperature response of the shelf surface along the serpentine internal channels of the shelf while the temperature of the heat transfer fluid was ramped from -40 degrees to 40 degrees C. The solution of a first-order non-steady-state differential equation resulted in a predicted shelf surface temperature as a function of the shelf fluid temperature at any point along the flow path. During the study, the shelf surfaces were maintained under a thermally insulated condition so that the heat transfers by gas conduction and radiation were negligible. To minimize heat conduction by gas, the chamber was evacuated to a low pressure, such as 100 mTorr. To minimize heat transfers between shelves, shelves were moved close together, with a gap of approximately 3 mm between any two shelves, because the shelf surface temperatures at corresponding vertical locations of two shelves are virtually equal. In addition, this also provides a shielding from radiation heat transfer from shelf to walls. Local heat transfer coefficients at the probed locations h(x) ( approximately Ks) were calculated by fitting the experimental shelf temperature response to the theoretical value. While the resulting values of K(s) are in general agreement with previously reported values, the values of Ks close to the inlet are significantly higher than those of other locations of the shelf channel. This observation is most likely attributed to the variation of the flow pattern of heat transfer fluid within the channels.

  16. Hydrogeologic controls imposed by mechanical stratigraphy in layered rocks of the Châteauguay River Basin, a U.S.-Canada transborder aquifer

    NASA Astrophysics Data System (ADS)

    Morin, Roger; Godin, RéJean; Nastev, Miroslav; Rouleau, Alain

    2007-04-01

    The Châteauguay River Basin delineates a transborder watershed with roughly half of its surface area located in northern New York State and half in southern Québec Province, Canada. As part of a multidisciplinary study designed to characterize the hydrogeologic properties of this basin, geophysical logs were obtained in 12 wells strategically located to penetrate the four major sedimentary rock formations that constitute the regional aquifers. The layered rocks were classified according to their elastic properties into three primary units: soft sandstone, hard sandstone, and dolostone. Downhole measurements were analyzed to identify fracture patterns associated with each unit and to evaluate their role in controlling groundwater flow. Fracture networks are composed of orthogonal sets of laterally extensive, subhorizontal bedding plane partings and bed-delimited, subvertical joints with spacings that are consistent with rock mechanics principles and stress models. The vertical distribution of transmissive zones is confined to a few select bedding plane fractures, with soft sandstone having the fewest (one per 70-m depth) and hard sandstone the most (five per 70-m depth). Bed-normal permeability is examined using a probabilistic model that considers the lengths of flow paths winding along joints and bedding plane fractures. Soft sandstone has the smallest bed-normal permeability primarily because of its wide, geomechanically undersaturated joint spacing. Results indicate that the three formations have similar values of bulk transmissivity, within roughly an order of magnitude, but that each rock unit has its own unique system of groundwater flow paths that constitute that transmissivity.

  17. Hydrogeologic controls imposed by mechanical stratigraphy in layered rocks of the Chateauguay River Basin, a U.S.-Canada transborder aquifer

    USGS Publications Warehouse

    Morin, Roger H.; Godin, Rejean; Nastev, Miroslav; Rouleau, Alain

    2007-01-01

    [1] The Châteauguay River Basin delineates a transborder watershed with roughly half of its surface area located in northern New York State and half in southern Québec Province, Canada. As part of a multidisciplinary study designed to characterize the hydrogeologic properties of this basin, geophysical logs were obtained in 12 wells strategically located to penetrate the four major sedimentary rock formations that constitute the regional aquifers. The layered rocks were classified according to their elastic properties into three primary units: soft sandstone, hard sandstone, and dolostone. Downhole measurements were analyzed to identify fracture patterns associated with each unit and to evaluate their role in controlling groundwater flow. Fracture networks are composed of orthogonal sets of laterally extensive, subhorizontal bedding plane partings and bed-delimited, subvertical joints with spacings that are consistent with rock mechanics principles and stress models. The vertical distribution of transmissive zones is confined to a few select bedding plane fractures, with soft sandstone having the fewest (one per 70-m depth) and hard sandstone the most (five per 70-m depth). Bed-normal permeability is examined using a probabilistic model that considers the lengths of flow paths winding along joints and bedding plane fractures. Soft sandstone has the smallest bed-normal permeability primarily because of its wide, geomechanically undersaturated joint spacing. Results indicate that the three formations have similar values of bulk transmissivity, within roughly an order of magnitude, but that each rock unit has its own unique system of groundwater flow paths that constitute that transmissivity.

  18. V/STOL Systems Research Aircraft: A Tool for Cockpit Integration

    NASA Technical Reports Server (NTRS)

    Stortz, Michael W.; ODonoghue, Dennis P.; Tiffany, Geary (Technical Monitor)

    1995-01-01

    The next generation ASTOVL aircraft will have a complicated propulsion System. The configuration choices include Direct Lift, Lift-Fan and Lift+Lift /Cruise but the aircraft must also have supersonic performance and low-observable characteristics. The propulsion system may have features such as flow blockers, vectoring nozzles and flow transfer schemes. The flight control system will necessarily fully integrate the aerodynamic surfaces and the propulsive elements. With a fully integrated, fly-by-wire flight/propulsion control system, the options for cockpit integration are interesting and varied. It is possible to decouple longitudinal and vertical responses allowing the pilot to close the loop on flight path and flight path acceleration directly. In the hover, the pilot can control the translational rate directly without having to stabilize the inner rate and attitude loops. The benefit of this approach, reduced workload and increased precision. has previously been demonstrated through several motion-based simulations. In order to prove the results in flight, the V/STOL System Research Aircraft (VSRA) was developed at the NASA Ames Research Center. The VSRA is the YAV-8B Prototype modified with a research flight control system using a series-parallel servo configuration in all the longitudinal degrees of freedom (including thrust and thrust vector angle) to provide an integrated flight and propulsion control system in a limited envelope. Development of the system has been completed and flight evaluations of the response types have been performed. In this paper we will discuss the development of the VSRA, the evolution of the flight path command and translational rate command response types and the Guest Pilot evaluations of the system. Pilot evaluation results will be used to draw conclusions regarding the suitability of the system to satisfy V/STOL requirements.

  19. Inverse modeling of the hydraulic properties of fractured media : development of a flow tomography approach

    NASA Astrophysics Data System (ADS)

    Bour, O.; Klepikova, M.; Le Borgne, T.; De Dreuzy, J.

    2013-12-01

    Inverse modeling of hydraulic and geometrical properties of fractured media is a very challenging objective due to the spatial heterogeneity of the medium and the scarcity of data. Here we present a flow tomography approach that permits to characterize the location, the connectivity and the hydraulic properties of main flow paths in fractured media. The accurate characterization of the location, hydraulic properties and connectivity of major fracture zones is essential to model flow and solute transport in fractured media. Cross-borehole flowmeter tests, which consist of measuring changes in vertical borehole flows when pumping a neighboring borehole, were shown to be an efficient technique to provide information on the properties of the flow zones that connect borehole pairs [Paillet, 1998; Le Borgne et al., 2006]. The interpretation of such experiments may however be quite uncertain when multiple connections exist. In this study, we explore the potential of flow tomography (i.e., sequential cross-borehole flowmeter tests) for characterizing aquifer heterogeneity. We first propose a framework for inverting flow and drawdown data to infer fracture connectivity and transmissivities. Here we use a simplified discrete fracture network approach that highlights main connectivity structures. This conceptual model attempts to reproduce fracture network connectivity without taking fracture geometry (length, orientation, dip) into account. We then explore the potential of the method for simplified synthetic fracture network models and quantify the sensitivity of drawdown and borehole flow velocities to the transmissivity of the connecting flowpaths. Flow tomography is expected to be most effective if cross-borehole pumping induces large changes in vertical borehole velocities. The uncertainty of the transmissivity estimates increases for small borehole flow velocities. The uncertainty about the transmissivity of fractures that connect the main flowpath but not the boreholes is generally higher. We demonstrate that successively changing pumping and observation boreholes improves the quality of available information and reduces the indetermination of the problem. The inverse method is validated for different synthetic flow scenarios. It is shown to provide a good estimation of connectivity patterns and transmissivities of main flowpaths. Although the chosen fracture network geometry has been simplified, flow tomography appears to be a promising approach for characterizing connectivity patterns and transmissivities of fractured media.

  20. Electrophoretic sample insertion. [device for uniformly distributing samples in flow path

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R. (Inventor)

    1974-01-01

    Two conductive screens located in the flow path of an electrophoresis sample separation apparatus are charged electrically. The sample is introduced between the screens, and the charge is sufficient to disperse and hold the samples across the screens. When the charge is terminated, the samples are uniformly distributed in the flow path. Additionally, a first separation by charged properties has been accomplished.

  1. Imaging lateral groundwater flow in the shallow subsurface using stochastic temperature fields

    NASA Astrophysics Data System (ADS)

    Fairley, Jerry P.; Nicholson, Kirsten N.

    2006-04-01

    Although temperature has often been used as an indication of vertical groundwater movement, its usefulness for identifying horizontal fluid flow has been limited by the difficulty of obtaining sufficient data to draw defensible conclusions. Here we use stochastic simulation to develop a high-resolution image of fluid temperatures in the shallow subsurface at Borax Lake, Oregon. The temperature field inferred from the geostatistical simulations clearly shows geothermal fluids discharging from a group of fault-controlled hydrothermal springs, moving laterally through the subsurface, and mixing with shallow subsurface flow originating from nearby Borax Lake. This interpretation of the data is supported by independent geochemical and isotopic evidence, which show a simple mixing trend between Borax Lake water and discharge from the thermal springs. It is generally agreed that stochastic simulation can be a useful tool for extracting information from complex and/or noisy data and, although not appropriate in all situations, geostatistical analysis may provide good definition of flow paths in the shallow subsurface. Although stochastic imaging techniques are well known in problems involving transport of species, e.g. delineation of contaminant plumes from soil gas survey data, we are unaware of previous applications to the transport of thermal energy for the purpose of inferring shallow groundwater flow.

  2. Geometric and kinematic features of the dike complex at Mt. Somma, Vesuvio (Italy)

    NASA Astrophysics Data System (ADS)

    Porreca, M.; Acocella, V.; Massimi, E.; Mattei, M.; Funiciello, R.; De Benedetti, A. A.

    2006-05-01

    Dikes provide important information on the structure, state of stress and activity of a volcano. Mt. Somma borders part of the Vesuvio cone (Italy), displaying ˜ 100 dikes emplaced between ˜ 18 and 30 ka. Field, AMS (anisotropy of magnetic susceptibility) and thin section analyses are used to characterize their geometry and kinematics (direction and sense of flow). The dikes mostly have a NNW-SSE to NE-SW strike. Approximately 57% are radial to the older Somma edifice, ˜ 27% are oblique and ˜ 16% tangential. Among the latter two groups, ˜ 32% are outward dipping and ˜ 11% inward dipping. The dike thickness varies between 0.2 and 3 m, with a mean value of 1.17 m. The kinematics of 19 dikes is determined through a combination of field (8 dikes), AMS (16 dikes) and thin section analyses (15 dikes). Thirteen dikes have a vertical upward flow, whereas six have an oblique-subhorizontal flow, suggesting a lateral propagation from the summit or eccentric vents of the former Somma edifice. These propagation paths differ from those deducible from the recent activity, as all the seven major fissure eruptions between 1631 and 1944 were related to the lateral propagation of radial dikes. We propose that these different behaviours in dike propagation may be mainly related to the opening conditions of the summit conduit. The laterally propagating dikes in 1631-1944 formed with an open conduit. Conversely, the vertically propagating dikes may have formed, between 18 and 30 ka, with a closed conduit.

  3. Use of Inverse-Modeling Methods to Improve Ground-Water-Model Calibration and Evaluate Model-Prediction Uncertainty, Camp Edwards, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; LeBlanc, Denis R.

    2008-01-01

    Historical weapons testing and disposal activities at Camp Edwards, which is located on the Massachusetts Military Reservation, western Cape Cod, have resulted in the release of contaminants into an underlying sand and gravel aquifer that is the sole source of potable water to surrounding communities. Ground-water models have been used at the site to simulate advective transport in the aquifer in support of field investigations. Reasonable models developed by different groups and calibrated by trial and error often yield different predictions of advective transport, and the predictions lack quantitative measures of uncertainty. A recently (2004) developed regional model of western Cape Cod, modified to include the sensitivity and parameter-estimation capabilities of MODFLOW-2000, was used in this report to evaluate the utility of inverse (statistical) methods to (1) improve model calibration and (2) assess model-prediction uncertainty. Simulated heads and flows were most sensitive to recharge and to the horizontal hydraulic conductivity of the Buzzards Bay and Sandwich Moraines and the Buzzards Bay and northern parts of the Mashpee outwash plains. Conversely, simulated heads and flows were much less sensitive to vertical hydraulic conductivity. Parameter estimation (inverse calibration) improved the match to observed heads and flows; the absolute mean residual for heads improved by 0.32 feet and the absolute mean residual for streamflows improved by about 0.2 cubic feet per second. Advective-transport predictions in Camp Edwards generally were most sensitive to the parameters with the highest precision (lowest coefficients of variation), indicating that the numerical model is adequate for evaluating prediction uncertainties in and around Camp Edwards. The incorporation of an advective-transport observation, representing the leading edge of a contaminant plume that had been difficult to match by using trial-and-error calibration, improved the match between an observed and simulated plume path; however, a modified representation of local geology was needed to simultaneously maintain a reasonable calibration to heads and flows and to the plume path. Advective-transport uncertainties were expressed as about 68-, 95-, and 99-percent confidence intervals on three dimensional simulated particle positions. The confidence intervals can be graphically represented as ellipses around individual particle positions in the X-Y (geographic) plane and in the X-Z or Y-Z (vertical) planes. The merging of individual ellipses allows uncertainties on forward particle tracks to be displayed in map or cross-sectional view as a cone of uncertainty around a simulated particle path; uncertainties on reverse particle-track endpoints - representing simulated recharge locations - can be geographically displayed as areas at the water table around the discrete particle endpoints. This information gives decisionmakers insight into the level of confidence they can have in particle-tracking results and can assist them in the efficient use of available field resources.

  4. Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Sang, Liwen; Ren, Bing; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Tanaka, Atsushi; Cho, Yujin; Harada, Yoshitomo; Nabatame, Toshihide; Sekiguchi, Takashi; Usami, Shigeyoshi; Honda, Yoshio; Amano, Hiroshi

    2017-09-01

    Electrical characteristics of leakage current paths in vertical-type n-GaN Schottky barrier diodes (SBDs) on free-standing GaN substrates are investigated by using photon emission microscopy (PEM). The PEM mapping shows that the initial failure of the SBD devices at low voltages is due to the leakage current paths from polygonal pits in the GaN epilayers. It is observed that these polygonal pits originate from carbon impurity accumulation to the dislocations with a screw-type component by microstructure analysis. For the SBD without polygonal pits, no initial failure is observed and the first leakage appeals at the edge of electrodes as a result of electric field concentration. The mechanism of leakage at pits is explained in terms of trap assisted tunneling through fitting current-voltage characteristics.

  5. Joint Estimation of Source Range and Depth Using a Bottom-Deployed Vertical Line Array in Deep Water

    PubMed Central

    Li, Hui; Yang, Kunde; Duan, Rui; Lei, Zhixiong

    2017-01-01

    This paper presents a joint estimation method of source range and depth using a bottom-deployed vertical line array (VLA). The method utilizes the information on the arrival angle of direct (D) path in space domain and the interference characteristic of D and surface-reflected (SR) paths in frequency domain. The former is related to a ray tracing technique to backpropagate the rays and produces an ambiguity surface of source range. The latter utilizes Lloyd’s mirror principle to obtain an ambiguity surface of source depth. The acoustic transmission duct is the well-known reliable acoustic path (RAP). The ambiguity surface of the combined estimation is a dimensionless ad hoc function. Numerical efficiency and experimental verification show that the proposed method is a good candidate for initial coarse estimation of source position. PMID:28590442

  6. Some special values of vertices of trees on the suborbital graphs

    NASA Astrophysics Data System (ADS)

    Deǧer, A. H.; Akbaba, Ü.

    2018-01-01

    In the present study, the action of a congruence subgroup of S L(2, Z) on ℚ ^ is examined. From this action and its properties, vertices of paths of minimal length on the suborbital graph Fu,N give rise to some special sequence values, that are alternate sequences such as identity, Fibonacci and Lucas sequences. These types of vertices also give rise to special continued fractions, hence from recurrence relations for continued fractions, values of these vertices and values of special sequences were associated.

  7. Fuel injection and mixing systems and methods of using the same

    DOEpatents

    Mao, Chien-Pei; Short, John

    2010-08-03

    A fuel injection and mixing system is provided. The system includes an injector body having a fuel inlet and a fuel outlet, and defines a fuel flow path between the inlet and outlet. The fuel flow path may include a generally helical flow passage having an inlet end portion disposed proximate the fuel inlet of the injector body. The flow path also may include an expansion chamber downstream from and in fluid communication with the helical flow passage, as well as a fuel delivery device in fluid communication with the expansion chamber for delivering fuel. Heating means is also provided in thermal communication with the injector body. The heating means may be adapted and configured for maintaining the injector body at a predetermined temperature to heat fuel traversing the flow path. A method of preheating and delivering fuel is also provided.

  8. Systems and methods for analyzing liquids under vacuum

    DOEpatents

    Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua

    2013-10-15

    Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  10. Modelling information flow along the human connectome using maximum flow.

    PubMed

    Lyoo, Youngwook; Kim, Jieun E; Yoon, Sujung

    2018-01-01

    The human connectome is a complex network that transmits information between interlinked brain regions. Using graph theory, previously well-known network measures of integration between brain regions have been constructed under the key assumption that information flows strictly along the shortest paths possible between two nodes. However, it is now apparent that information does flow through non-shortest paths in many real-world networks such as cellular networks, social networks, and the internet. In the current hypothesis, we present a novel framework using the maximum flow to quantify information flow along all possible paths within the brain, so as to implement an analogy to network traffic. We hypothesize that the connection strengths of brain networks represent a limit on the amount of information that can flow through the connections per unit of time. This allows us to compute the maximum amount of information flow between two brain regions along all possible paths. Using this novel framework of maximum flow, previous network topological measures are expanded to account for information flow through non-shortest paths. The most important advantage of the current approach using maximum flow is that it can integrate the weighted connectivity data in a way that better reflects the real information flow of the brain network. The current framework and its concept regarding maximum flow provides insight on how network structure shapes information flow in contrast to graph theory, and suggests future applications such as investigating structural and functional connectomes at a neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer

    USGS Publications Warehouse

    Lu, Ning; Ge, Shemin

    1996-01-01

    By including the constant flow of heat and fluid in the horizontal direction, we develop an analytical solution for the vertical temperature distribution within the semiconfining layer of a typical aquifer system. The solution is an extension of the previous one-dimensional theory by Bredehoeft and Papadopulos [1965]. It provides a quantitative tool for analyzing the uncertainty of the horizontal heat and fluid flow. The analytical results demonstrate that horizontal flow of heat and fluid, if at values much smaller than those of the vertical, has a negligible effect on the vertical temperature distribution but becomes significant when it is comparable to the vertical.

  12. Eccentric connectivity index of chemical trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haoer, R. S., E-mail: raadsehen@gmail.com; Department of Mathematics, Faculty of Computer Sciences and Mathematics, University Of Kufa, Najaf; Atan, K. A., E-mail: kamel@upm.edu.my

    Let G = (V, E) be a simple connected molecular graph. In such a simple molecular graph, vertices and edges are depicted atoms and chemical bonds respectively, we refer to the sets of vertices by V (G) and edges by E (G). If d(u, v) be distance between two vertices u, v ∈ V(G) and can be defined as the length of a shortest path joining them. Then, the eccentricity connectivity index (ECI) of a molecular graph G is ξ(G) = ∑{sub v∈V(G)} d(v) ec(v), where d(v) is degree of a vertex v ∈ V(G). ec(v) is the length ofmore » a greatest path linking to another vertex of v. In this study, we focus the general formula for the eccentricity connectivity index (ECI) of some chemical trees as alkenes.« less

  13. Hydrocarbon fluid, ejector refrigeration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, G.J.; Foster, A.R.

    1993-08-31

    A refrigeration system is described comprising: a vapor ejector cycle including a working fluid having a property such that entropy of the working fluid when in a saturated vapor state decreases as pressure decreases, the vapor ejector cycle comprising: a condenser located on a common fluid flow path; a diverter located downstream from the condenser for diverting the working fluid into a primary fluid flow path and a secondary fluid flow path parallel to the primary fluid flow path; an evaporator located on the secondary fluid flow path; an expansion device located on the secondary fluid flow path upstream ofmore » the evaporator; a boiler located on the primary fluid flow path parallel to the evaporator for boiling the working fluid, the boiler comprising an axially extending core region having a substantially constant cross sectional area and a porous capillary region surrounding the core region, the core region extending a length sufficient to produce a near sonic velocity saturated vapor; and an ejector having an outlet in fluid communication with the inlet of the condenser and an inlet in fluid communication with the outlet of the evaporator and the outlet of the boiler and in which the flows of the working fluid from the evaporator and the boiler are mixed and the pressure of the working fluid is increased to at least the pressure of the condenser, the ejector inlet, located downstream from the axially extending core region, including a primary nozzle located sufficiently close to the outlet of the boiler to minimize a pressure drop between the boiler and the primary nozzle, the primary nozzle of the ejector including a converging section having an included angle and length preselected to receive the working fluid from the boiler as a near sonic velocity saturated vapor.« less

  14. Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths

    USGS Publications Warehouse

    Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.

    2011-01-01

    This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.

  15. Geohydrology and simulated ground-water flow in northwestern Elkhart County, Indiana

    USGS Publications Warehouse

    Arihood, L.D.; Cohen, D.A.

    1998-01-01

    In 1994, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency and the City of Elkhart, developed a ground-water model of the Elkhart, Indiana, area to determine the avail-ability and source of water at potential new well fields. The modeled area covered 190 square miles of northwestern Elkhart County and a small part of southern Michigan. Three Superfund sites and several other sites in this area are undergoing environmental cleanup. The model would be used to guide the location of well fields so that Superfund sites and environmental cleanup areas would not be within recharge areas for the well fields. The City of Elkhart obtains its water supply from two aquifers separated by a generally continuous confining unit. The upper aquifer is composed primarily of sand and gravel of glacial origin. Thickness of the upper aquifer ranges from 0 to 116 feet and averages 47 feet. The lower aquifer is composed of sand and gravel with interbedded lenses of silt and clay. Thickness of the lower aquifer ranges from 1 to 335 feet and averages 35 feet. The intervening confining unit is composed of silt and clay with interbedded sand and gravel; the confining unit ranges from 0 to 177 feet, with an average thickness of 27 feet. Flow through the aquifers is generally horizontal vertically downward from the upper aquifer, through the confining unit, and into the lower aquifer, except where flow is vertically upward at the St. Joseph River and other large streams. The hydraulic characteristics of the aquifers and confining unit were estimated by analyzing aquifer-test data from well drillers? logs and by calibration of the model. The horizontal hydraulic conductivity of the upper aquifer is 170 feet per day within about 1 mile of the St. Joseph and Elkhart Rivers and 370 feet per day at distances greater than about 1 mile. The horizontal hydraulic conductivity of the lower aquifer is 370 feet per day throughout the modeled area, with the exception of an area near the center of the modeled area where the horizontal hydraulic conductivity is 170 feet per day. Transmissivity of the lower aquifer increases generally from southwest to northeast; transmissivity values range from near 0 where the lower aquifer is absent to 57,000 square feet per day and average about 8,100 square feet per day. The vertical hydraulic conductivity of the confining unit is 0.07 feet per day; the vertical conductivity of the streambeds commonly is 1.0 foot per day and ranges from 0.05 foot per day to 50 feet per day. The areal recharge rate to the outwash deposits was determined by a base-flow separation technique to be 16 inches per year, and the areal recharge rate to the till was assumed to be 4 inches per year. A two-layer digital model was used to simulate flow in the ground-water system. The model was calibrated on the basis of historical water-use data, water-level records, and gain/loss data for streams during May and June 1979. The model was recalibrated with water-use data and water-level records from 1988. For 1979 data, 49 percent of the inflow to the model area is from precipitation and 46 percent is ground-water inflow across the model boundaries. Most of the ground-water inflow across the model boundary is from the north and east, which corresponds to high values of transmissivity?as high as 57,000 feet squared per day?in the model layers in the northern and eastern areas. Eighty-two percent of the ground-water discharge is to the streams; 5 percent of the ground-water discharge is to wells. Source areas and flow paths to the City of Elkhart public well fields are affected by the location of streams and the geology in the area. Flow to the North Well Field originates north-west of the well field, forms relatively straight flow paths, and moves southeast toward the well field and the St. Joseph River. Flow to the South Well Field begins mostly in the out-wash along Yellow Creek south of the well field, moves northward, and t

  16. Flow tilt angle measurements using lidar anemometry

    NASA Astrophysics Data System (ADS)

    Dellwik, Ebba; Mann, Jakob

    2010-05-01

    A new way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 minute mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175m above ground level, (2) a reference site in flat agricultural terrain and (3) a second reference site in very complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by comparing tilt estimates at various heights. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. However, the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical, the measurement height and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over forest, it is evaluated that the systematic error due to the inhomogeneity of the flow is less than 0.2 degrees. Other possibilities for utilizing lidars for flow tilt angle and mean vertical velocities are discussed.

  17. Modifying Ship Air-Wake Vortices for Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Lamar, John E.

    2004-01-01

    Columnar-vortex generators (CVG) have been proposed as means to increase the safety of takeoffs and landings of aircraft on aircraft or helicopter carriers and other ships at sea. According to the proposal, CVGs would be installed at critical edge locations on ships to modify the vortices in the air wakes of the ships. The desired effects of modifications are to smooth airflows over takeoff and landing deck areas and divert vortices from takeoff and landing flight paths. With respect to aircraft operations, the wake flows of primary interest are those associated with the bow and side edges of aircraft-carrier decks and with superstructures of ships in general (see Figure 1). The bow and deck-edge vortices can adversely affect airplane and helicopter operations on carriers, while the superstructure wakes can primarily affect operations of helicopters. The concept of the CVG is not new; what is new is the proposed addition of CVGs to ship structures to effect favorable modifications of air wakes. Figure 2 depicts a basic CVG, vertical and horizontal CVGs installed on a simple superstructure, and horizontal CVGs installed on the bow and deck edges. The vertical CVGs would be closed at the deck but open at the top. Each horizontal CVG would be open at both ends. The dimensions of the CVGs installed on the aft edges of the superstructure would be chosen so that the portion of the flow modified by the vertical CVGs would interact synergistically with the portion of the flow modified by the horizontal CVG to move the air wake away from the takeoff-and-landing zone behind the superstructure. The deck-edge CVGs would be mounted flush with, and would extend slightly ahead of the bow of, the flight deck. The overall length of each tube would exceed that of the flight deck. Each deck-edge CVG would capture that portion of the airflow that generates a deck-edge vortex and would generate a columnar vortex of opposite sense to that of the unmodified vortex. The vortex generated by the CVG could be dispersed at its base, thereby removing unwanted turbulence in the path of an approaching airplane. The deck-edge CVGs would promote smooth flow over the entire flight deck. In the case of a Nimitz-class aircraft carrier like that of Figure 1, there would be a CVG on each of the outer edges of the two left portions of the flight deck and a single CVG on the right side of the flight deck. The forward-most CVG on the left side would take the generated vortex underneath the angled flight deck. A CVG could also be installed on the bow of the flight deck to smooth the flow of air onto the flight deck. In the case of wind incident on the deck from an azimuth other than straight ahead, the vortex generated by the bow CVG could, perhaps, be used to feed the CVG(s) of the leeward side edge of the flight deck.

  18. Theoretical analysis for scaling law of thermal blooming based on optical phase deference

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie

    2016-10-01

    In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling parameters and the geometric scaling parameters can really describe the gas thermal blooming effect in the axial pipe flow. These conclusions can give a good reference for the construction of the thermal blooming test system of laser system. Contrasted with the thermal blooming scaling parameters of the Bradley-Hermann distortion number ND and Fresnel number NF, which were derived based on the change of far field beam intensity distortion, the scaling parameters of pipe flow thermal blooming deduced from the optical path deference variation are very suitable for the optical system with short laser propagation distance, large Fresnel number and obviously changed optical path deference.

  19. Axial static mixer

    DOEpatents

    Sandrock, H.E.

    1982-05-06

    Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.

  20. System and method for multi-stage bypass, low operating temperature suppressor for automatic weapons

    DOEpatents

    Moss, William C.; Anderson, Andrew T.

    2015-06-09

    The present disclosure relates to a suppressor for use with a weapon. The suppressor may be formed to have a body portion having a bore extending concentric with a bore axis of the weapon barrel. An opening in the bore extends at least substantially circumferentially around the bore. A flow path communicates with the opening and defines a channel for redirecting gasses flowing in the bore out from the bore, through the opening, into a rearward direction in the flow path. The flow path raises a pressure at the opening to generate a Mach disk within the bore at a location approximately coincident with the opening. The Mach disk forms as a virtual baffle to divert at least a portion of the gasses into the opening and into the flow path.

  1. Time-of-flight dependency on transducer separation distance in a reflective-path guided-wave ultrasonic flow meter at zero flow conditions.

    PubMed

    Aanes, Magne; Kippersund, Remi Andre; Lohne, Kjetil Daae; Frøysa, Kjell-Eivind; Lunde, Per

    2017-08-01

    Transit-time flow meters based on guided ultrasonic wave propagation in the pipe spool have several advantages compared to traditional inline ultrasonic flow metering. The extended interrogation field, obtained by continuous leakage from guided waves traveling in the pipe wall, increases robustness toward entrained particles or gas in the flow. In reflective-path guided-wave ultrasonic flow meters (GW-UFMs), the flow equations are derived from signals propagating solely in the pipe wall and from signals passing twice through the fluid. In addition to the time-of-flight (TOF) through the fluid, the fluid path experiences an additional time delay upon reflection at the opposite pipe wall due to specular and non-specular reflections. The present work investigates the influence of these reflections on the TOF in a reflective-path GW-UFM as a function of transducer separation distance at zero flow conditions. Two models are used to describe the signal propagation through the system: (i) a transient full-wave finite element model, and (ii) a combined plane-wave and ray-tracing model. The study shows that a range-dependent time delay is associated with the reflection of the fluid path, introducing transmitter-receiver distance dependence. Based on these results, the applicability of the flow equations derived using model (ii) is discussed.

  2. Assessment of Surrogate Fractured Rock Networks for Evidence of Complex Behavior

    NASA Astrophysics Data System (ADS)

    Wood, T. R.; McJunkin, T. R.; Podgorney, R. K.; Glass, R. J.; Starr, R. C.; Stoner, D. L.; Noah, K. S.; LaViolette, R. A.; Fairley, J.

    2001-12-01

    A complex system or complex process is -"one whose properties are not fully explained by an understanding of its component parts". Results from field experiments conducted at the Hell's Half-Acre field site (Arco, Idaho) suggest that the flow of water in an unsaturated, fractured medium exhibits characteristics of a complex process. A series of laboratory studies is underway with sufficient rigor to determine if complex behavior observed in the field is in fact a fundamental characteristic of water flow in unsaturated, fractured media. As an initial step, a series of four duplicate experiments has been performed using an array of bricks to simulate fractured, unsaturated media. The array consisted of 12 limestone blocks cut to uniform size (5cm x 7 cm x 30 cm) stacked on end 4 blocks wide and 3 blocks high with the interfaces between adjacent blocks representing 3 vertical fractures intersecting 2 horizontal fractures. Water was introduced at three point sources on the upper boundary of the model at the top of the vertical fractures. Water was applied under constant flux at a rate below the infiltration capacity of the system, thus maintaining unsaturated flow conditions. Water was collected from the lower boundary via fiberglass wicks at the bottom of each fracture. An automated system acquired and processed water inflow and outflow data and time-lapse photographic data during each of the 72-hour tests. From these experiments, we see that a few general statements can be made on the overall advance of the wetting front in the surrogate fracture networks. For instance, flow generally converged with depth to the center fracture in the bottom row of bricks. Another observation is that fracture intersections integrate the steady flow in overlying vertical fractures and allow or cause short duration high discharge pulses or "avalanches" of flow to quickly traverse the fracture network below. Smaller scale tests of single fracture and fracture intersections are underway to evaluate a wide array of unit processes that are believed to contribute to complex behavior. Examples of these smaller scale experiments include the role of fracture intersections in integrating a steady inflow to generate giant fluctuations in network discharge; the influence of microbe growth on flow; and the role of geochemistry in alterations of flow paths. Experiments are planned at the meso and field scale to document and understand the controls on self-organized behavior. Modeling is being conducted in parallel with the experiments to understand how simulations can be improved to capture the complexity of fluid flow in fractured rock vadose zones and to make better predictions of contaminant transport.

  3. Radiant energy receiver having improved coolant flow control means

    DOEpatents

    Hinterberger, H.

    1980-10-29

    An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

  4. Fuel cell assembly fluid flow plate having conductive fibers and rigidizing material therein

    DOEpatents

    Walsh, Michael M.

    2000-01-01

    A fluid flow plate is preferably formed with three initial sections, for instance, two layers of conductive (e.g., metal) fibers and a barrier material (e.g., metal foil) which is interposed between the two layers. For example, sintering of these three sections can provide electrical path(s) between outer faces of the two layers. Then, the sintered sections can be, for instance, placed in a mold for forming of flow channel(s) into one or more of the outer faces. Next, rigidizing material (e.g., resin) can be injected into the mold, for example, to fill and/or seal space(s) about a conductive matrix of the electrical path(s). Preferably, abrading of surface(s) of the outer face(s) serves to expose electrical contact(s) to the electrical path(s).

  5. Difficulties in Forecasting Flow Paths During the 2014-2015 Lava Flow Crisis at Kīlauea Volcano (Hawaíi)

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Trusdell, F.; Llewellin, E. W.; Kauahikaua, J. P.

    2015-12-01

    Kīlauea's East Rift Zone (ERZ) eruptive activity at Púu ´Ō´ō shifted to a new vent in June 2014, sparking a lava flow crisis that threatened critical infrastructure near the town of Pāhoa in east Hawaíi. The lava flow proved to be challenging to forecast because of the influence of ground cracks on flow direction, frequent fluctuations in lava supply, and the subtle interplay between ground slope and confining topography that prevented the flow from spreading laterally. After its onset, the "June 27th" flow, named informally for its start date, advanced northeast at up to several hundred m/day. The flow's path through heavy forest was forecast using steepest-descent paths derived from a digital elevation model (DEM). Flow path uncertainties were minimized using a multiple-run technique and built-in random DEM errors (modified from Favalli et al., 2005). In mid-August, the flow encountered and entered one of many deep, discontinuous ground cracks along Kīlauea's middle ERZ. The flow continued to advance out of sight in the crack, as inferred from a forward-progressing line of steam. A week later, lava spilled from the crack 1.3 km downslope, advancing along a different flow path than was forecast. By early September, the flow had entered and exited three more cracks sequentially, carrying the flow across slope, thus making flow path forecasts unreliable. Moreover, lava-occupied cracks dilated by up to 3 m. The lava accumulating in the ground cracks forced immense, but apparently mobile, blocks to shift. Thus, while an open crack was required to capture the lava, the lava was able to force its way beyond where the crack closed. In this way, the lava flow acted as an intruding dike. The flow eventually advanced beyond the area of cracks and onto a steepest-descent path that guided the flow toward the town of Pāhoa, where it destroyed one house, reached to within ~155 m of the main street in Pāhoa, and threatened the main highway and shopping center serving the east side of the Island of Hawaíi. The flow front stalled on March 13, 2015, owing to reservoir depressurization occurring at Kīlauea's summit. When the summit system recovered, activity withdrew to within ~9 km of the vent, ending the immediate threat to the Pāhoa area.

  6. Systems for column-based separations, methods of forming packed columns, and methods of purifying sample components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  7. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2006-02-21

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  8. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components.

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2004-08-24

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  9. Comparison of micrometeorological methods using open-path optical instruments for measuring methane emission from agricultural sites

    USDA-ARS?s Scientific Manuscript database

    In this study, we evaluated the accuracies of two relatively new micrometeorological methods using open-path tunable diode laser absorption spectrometers: vertical radial plume mapping method (US EPA OTM-10) and the backward Lagragian stochastic method (Wintrax®). We have evaluated the accuracy of t...

  10. Modeling heading and path perception from optic flow in the case of independently moving objects

    PubMed Central

    Raudies, Florian; Neumann, Heiko

    2013-01-01

    Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589

  11. A Numerical Model of Exchange Chromatography Through 3D Lattice Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salloum, Maher; Robinson, David B.

    Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less

  12. A Numerical Model of Exchange Chromatography Through 3D Lattice Structures

    DOE PAGES

    Salloum, Maher; Robinson, David B.

    2018-01-30

    Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less

  13. Are Atmospheric Updrafts a Key to Unlocking Climate Forcing and Sensitivity?

    DOE PAGES

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...

    2016-06-08

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  14. Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.

    PubMed

    Vitale, Sarah A; Robbins, Gary A

    2017-07-01

    Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%. © 2017, National Ground Water Association.

  15. Infiltration and hydraulic connections from the Niagara River to a fractured-dolomite aquifer in Niagara Falls, New York

    USGS Publications Warehouse

    Yager, R.M.; Kappel, W.M.

    1998-01-01

    The spatial distribution of hydrogen and oxygen stable-isotope values in groundwater can be used to distinguish different sources of recharge and to trace groundwater flow directions from recharge boundaries. This method can be particularly useful in fractured-rock settings where multiple lines of evidence are required to delineate preferential flow paths that result from heterogeneity within fracture zones. Flow paths delineated with stable isotopes can be combined with hydraulic data to form a more complete picture of the groundwater flow system. In this study values of ??D and ??18O were used to delineate paths of river-water infiltration into the Lockport Group, a fractured dolomite aquifer, and to compute the percentage of fiver water in groundwater samples from shallow bedrock wells. Flow paths were correlated with areas of high hydraulic diffusivity in the shallow bedrock that were delineated from water-level fluctuations induced by diurnal stage fluctuations in man-made hydraulic structures. Flow paths delineated with the stable-isotope and hydraulic data suggest that fiver infiltration reaches an unlined storm sewer in the bedrock through a drainage system that surrounds aqueducts carrying river water to hydroelectric power plants. This finding is significant because the storm sewer is the discharge point for contaminated groundwater from several chemical waste-disposal sites and the cost of treating the storm sewer's discharge could be reduced if the volume of infiltration from the river were decreased.The spatial distribution of hydrogen and oxygen stable-isotope values in groundwater can be used to distinguish different sources of recharge and to trace groundwater flow directions from recharge boundaries. This method can be particularly useful in fractured-rock settings where multiple lines of evidence are required to delineate preferential flow paths that result from heterogeneity within fracture zones. Flow paths delineated with stable isotopes can be combined with hydraulic data to form a more complete picture of the groundwater flow system. In this study values of ??D and ??18O were used to delineate paths of river-water infiltration into the Lockport Group, a fractured dolomite aquifer, and to compute the percentage of river water in groundwater samples from shallow bedrock wells. Flow paths were correlated with areas of high hydraulic diffusivity in the shallow bedrock that were delineated from water-level fluctuations induced by diurnal stage fluctuations in man-made hydraulic structures. Flow paths delineated with the stable-isotope and hydraulic data suggest that river infiltration reaches an unlined storm sewer in the bedrock through a drainage system that surrounds aqueducts carrying river water to hydroelectric power plants. This finding is significant because the storm sewer is the discharge point for contaminated groundwater from several chemical waste-disposal sites and the cost of treating the storm sewer's discharge could be reduced if the volume of infiltration from the river were decreased.

  16. Dip and anisotropy effects on flow using a vertically skewed model grid.

    PubMed

    Hoaglund, John R; Pollard, David

    2003-01-01

    Darcy flow equations relating vertical and bedding-parallel flow to vertical and bedding-parallel gradient components are derived for a skewed Cartesian grid in a vertical plane, correcting for structural dip given the principal hydraulic conductivities in bedding-parallel and bedding-orthogonal directions. Incorrect-minus-correct flow error results are presented for ranges of structural dip (0 < or = theta < or = 90) and gradient directions (0 < or = phi < or = 360). The equations can be coded into ground water models (e.g., MODFLOW) that can use a skewed Cartesian coordinate system to simulate flow in structural terrain with deformed bedding planes. Models modified with these equations will require input arrays of strike and dip, and a solver that can handle off-diagonal hydraulic conductivity terms.

  17. Flow tilt angles near forest edges - Part 2: Lidar anemometry

    NASA Astrophysics Data System (ADS)

    Dellwik, E.; Mann, J.; Bingöl, F.

    2010-05-01

    A novel way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 min mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175 m a.g.l. (above ground level), (2) a reference site in flat agricultural terrain and (3) a second reference site in complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by assuming zero tilt angle at high altitudes. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are potentially slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct, and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. It is demonstrated that the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over forest, it is evaluated that the systematic error due to the inhomogeneity of the flow is less than 0.2°. The results of the vertical conical scans were promising, and yielded positive flow angles for a sector where the forest is fetch-limited. However, more data and analysis are needed for a complete evaluation of the lidar technique.

  18. A hydrogeologic approach to identify land uses that overlie ground-water flow paths, Broward County, Florida

    USGS Publications Warehouse

    Sonenshein, R.S.

    1995-01-01

    A hydrogeologic approach that integrates the use of hydrogeologic and spatial tools aids in the identification of land uses that overlie ground- water flow paths and permits a better understanding of ground-water flow systems. A mathematical model was used to simulate the ground-water flow system in Broward County, particle-tracking software was used to determine flow paths leading to the monitor wells in Broward County, and a Geographic Information System was used to identify which land uses overlie the flow paths. A procedure using a geographic information system to evaluate the output from a ground-water flow model has been documented. The ground-water flow model was used to represent steady-state conditions during selected wet- and dry-season months, and an advective flow particle- tracking program was used to simulate the direction of ground-water flow in the aquifer system. Digital spatial data layers were created from the particle pathlines that lead to the vicinity of the open interval of selected wells in the Broward County ground-water quality monitoring network. Buffer zone data layers were created, surrounding the particle pathlines to represent the area of contribution to the water sampled from the monitor wells. Spatial data layers, combined with a land-use data layer, were used to identify the land uses that overlie the ground-water flow paths leading to the monitor wells. The simulation analysis was performed on five Broward County wells with different hydraulic parameters to determine the source of ground-water stress, determine selected particle pathlines, and identify land use in buffer zones in the vicinity of the wells. The flow paths that lead to the grid cells containing wells G-2355, G-2373, and G-2373A did not vary between the wet- and dry-season conditions. Changes in the area of contribution for wells G-2345X and G-2369 were attributed to variations in rainfall patterns, well-field pumpage, and surface-water management practices. Additionally, using a different open interval at a site, such as for wells G-2373 and G-2373A, can result in a very different area that overlies the flow path leading to the monitor well.

  19. Dynamic hyporheic exchange at intermediate timescales: testing the relative importance of evapotranspiration and flood pulses

    USGS Publications Warehouse

    Larsen, Laurel G.; Harvey, Judson W.; Maglio, Morgan M.

    2014-01-01

    Hyporheic fluxes influence ecological processes across a continuum of timescales. However, few studies have been able to characterize hyporheic fluxes and residence time distributions (RTDs) over timescales of days to years, during which evapotranspiration (ET) and seasonal flood pulses create unsteady forcing. Here we present a data-driven, particle-tracking piston model that characterizes hyporheic fluxes and RTDs based on measured vertical head differences. We used the model to test the relative influence of ET and seasonal flood pulses in the Everglades (FL, USA), in a manner applicable to other low-energy floodplains or broad, shallow streams. We found that over the multiyear timescale, flood pulses that drive relatively deep (∼1 m) flow paths had the dominant influence on hyporheic fluxes and residence times but that ET effects were discernible at shorter timescales (weeks to months) as a break in RTDs. Cumulative RTDs on either side of the break were generally well represented by lognormal functions, except for when ET was strong and none of the standard distributions applied to the shorter timescale. At the monthly timescale, ET increased hyporheic fluxes by 1–2 orders of magnitude; it also decreased 6 year mean residence times by 53–87%. Long, slow flow paths driven by flood pulses increased 6 year hyporheic fluxes by another 1–2 orders of magnitude, to a level comparable to that induced over the short term by shear flow in streams. Results suggest that models of intermediate-timescale processes should include at least two-storage zones with different RTDs, and that supporting field data collection occur over 3–4 years.

  20. Delineation of Groundwater Flow Pathway in Fractured Bedrock Using Nano-Iron Tracer Test in the Sealed Well

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-04-01

    Deterministic delineation of the preferential flow paths and their hydraulic properties are desirable for developing hydrogeological conceptual models in bedrock aquifers. In this study, we proposed using nanoscale zero-valent iron (nZVI) as a tracer to characterize the fractured connectivity and hydraulic properties. Since nZVI particles are magnetic, we designed a magnet array to attract the arriving nZVI particles in the observation well for identifying the location of incoming tracer. This novel approach was examined at two experiment wells with well hydraulic connectivity in a hydrogeological research station in the fractured aquifer. Heat-pulse flowmeter test was used to detect the vertical distribution of permeable zones in the borehole, providing the design basis of tracer test. Then, the less permeable zones in the injection well were sealed by casing to prevent the injected nZVI particles from being stagnated at the bottom hole. Afterwards, hydraulic test was implemented to examine the hydraulic connectivity between two wells. When nZVI slurry was released in the injection well, they could migrate through connected permeable fractures to the observation well. A breakthrough curve was obtained by the fluid conductivity sensor in the observation well, indicating the arrival of nZVI slurry. The iron nanoparticles that were attracted to the magnets in the observation well provide the quantitative information to locate the position of tracer inlet, which corroborates well with the depth of a permeable zone delineated by the flowmeter. Finally, the numerical method was utilized to simulate the process of tracer migration. This article demonstrates that nano-iron tracer test can be a promising approach for characterizing connectivity patterns and transmissivities of the flow paths in the fractured rock.

  1. Graph theory applied to noise and vibration control in statistical energy analysis models.

    PubMed

    Guasch, Oriol; Cortés, Lluís

    2009-06-01

    A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.

  2. Rare Earth Element Concentrations and Fractionation Patterns Along Groundwater Flow Paths in Two Different Aquifer Types (i.e., Sand vs. Carbonate)

    NASA Astrophysics Data System (ADS)

    Johannesson, K. H.; Tang, J.

    2003-12-01

    Groundwater samples were collected in two different types of aquifer (i.e., Carrizo Sand Aquifer, Texas and Upper Floridan carbonate Aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. Major solutes and dissolved organic carbon (DOC) were also measured in these groundwaters. The Carrizo Sand aquifer was sampled in October 2002 and June 2003, whereas, to date, we have only sampled the Floridan once (i.e., June 2003). The data reveal no significant seasonal differences in major solute and REE concentrations for the Carrizo. In Carrizo sand aquifer, groundwaters from relatively shallow wells (i.e., less than 167 m) in the recharge zone are chiefly Ca-Na-HCO3-Cl type waters. With flow down-gradient the groundwaters shift composition to the Na-HCO3 waters. pH and alkalinity initially decrease with flow away from the recharge zone before increasing again down-gradient. DOC is generally low (0.65 mg/L) along the flow path. REE concentrations are highest in groundwaters from the recharge zone (Nd 40.5 pmol/kg), and decrease substantially with flow down-gradient reaching relatively low and stable values (Nd 4.1-8.6 pmol/kg) roughly 10 km from the recharge zone. Generally, Carrizo groundwaters exhibit HREE-enriched shale-normalized patterns. The HREE enrichments are especially strong for waters from the recharge zone [(Yb/Nd)SN =1.7-5.6], whereas down-gradient (deep) groundwaters have flatter patterns [(Yb/Nd)SN =0.7-2.5]. All groundwaters have slightly positive Eu anomalies (Eu/Eu* 0.09-0.14) and negative Ce anomalies (Ce/Ce* -0.85 - -0.07). In the Upper Floridan Aquifer, Ca, Mg, SO4, and Cl concentrations generally increase along groundwater flow path, whereas pH and alkalinity generally decrease. DOC is higher (0.64 - 2.29 mg/L) than in the Carrizo and initially increases along the flow path and then decreases down-gradient. LREE (Nd) concentrations generally increase along groundwater flow path, however, MREE (Gd) exhibit little change and HREE (Yb) concentrations tend to decreases along the flow path. Floridan groundwaters have HREE enriched shale-normalized patterns, although (Yb/Nd)SN values decrease along groundwater flow path. Thus, REE patterns of Floridan groundwaters tend to flatten with flow down-gradient. All groundwaters show positive Eu anomalies (0.06 - 0.17) and negative Ce anomalies (-0.12 - -0.63).

  3. Acoustic Monitoring of Gravity-Driven Controls on CaCO3 Precipitates in a Fracture

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Sheets, J.; Zhang, L.; Kim, D.; Kneafsey, T. J.; Cole, D. R.; Jun, Y. S.; Pyrak-Nolte, L. J.

    2017-12-01

    Sealing fractures by mineral precipitation is an important process for improving caprock integrity in subsurface reservoirs. In this study, the ability to monitor precipitate distribution in fractures with buoyant fluids was examined. Fractures with uniform aperture distributions of 0.5, 1.0 and 2.0 mm were created from acrylic plates to enable direct imaging of precipitate formation over time. CaCO3 precipitation was induced in a fracture from invasion of 1M CaCl2 and 0.3M Na2CO3 solutions. During chemical invasion, a fracture plane was oriented either parallel or perpendicular to gravity. Acoustic (P) wave transmission ( 1 MHz) and optical imaging were used to monitor the sample prior to, during and after fluid injection. Complementary X-ray computed tomography was performed throughout the experiments on vertical fractures and post injection for the horizontal fractures. Precipitate particle sizes during formation were determined using SAXS and WAXS. In both horizontal and vertical fractures, the density contrast between the two solutions affected the spatial distribution of precipitation. In vertical fractures, the denser CaCl2 solution almost completely displaced the NaCO3 solution, causing strong localization of precipitates. However, in the horizontal fractures, flow stratification occurred in the 2 mm aperture fractures, with the less dense Na2CO3 flowing over the CaCl2 solution, resulting in a more even distribution of precipitates cross the fracture plane. P-wave amplitudes increased up to 8% and the arrival time decreased with precipitate accumulation in the horizontal fracture. This is consistent with a three-layered approach as the seismic impedance inside the fracture increases. The initial contact between the two was observed as a decrease in the P-wave amplitude. As precipitates accumulated, the amplitude recovered and increased, with greater increases observed along the mixing flow path. Fractures in the subsurface may seal differently depending on the orientation thus affecting the ability of a fracture to self-heal if oriented vertically. This work was supported by the Center for Nanoscale Controls on Geologic CO (NCGC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-AC02-05CH11231

  4. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth; Finsterle, Stefan; Zhang, Yingqi

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency andmore » project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.« less

  5. Sediment Vertical Flux in Unsteady Sheet Flows

    NASA Astrophysics Data System (ADS)

    Hsu, T.; Jenkins, J. T.; Liu, P. L.

    2002-12-01

    In models for sediment suspension, two different boundary conditions have been employed at the sediment bed. Either the sediment concentration is given or the vertical flux of sediment is specified. The specification of the latter is usually called the pick-up function. Recently, several developments towards a better understanding of the sediment bed boundary condition have been reported. Nielson et al (Coastal Engineering 2002, 45, p61-68) have indicated a better performance using the sediment vertical flux as the bed boundary condition in comparisons with experimental data. Also, Drake and Calantoni (Journal of Geophysical Research 2001, 106, C9, p19859-19868) have suggested that in the nearshore environment with its various unsteady flow conditions, the appropriate sediment boundary conditions of a large-scale morphology model must consider both the magnitude the free stream velocity and the acceleration of the flow. In this research, a small-scale sheet flow model based on the two-phase theory is implemented to further study these issues. Averaged two-phase continuum equations are presented for concentrated flows of sediment that are driven by strong, fully developed, unsteady turbulent shear flows over a mobile bed. The particle inter-granular stress is modeled using collisional granular flow theory and a two-equation closure for the fluid turbulence is adopted. In the context of the two-phase theory, sediment is transported through the sediment vertical velocity. Using the fully developed sediment phase continuity equation, it can be shown that the vertical velocity of the sediment must vanish when the flow reaches a steady state. In other words, in fully developed conditions, it is the unsteadiness of the flow that induces the vertical motion of the sediment and that changes the sediment concentration profile. Therefore, implementing a boundary condition based on sediment vertical flux is consistent with both the two-phase theory and with the observation that the flow acceleration is an important parameter. In this paper, the vertical flux of sediment is studied under various combinations of free stream velocity, acceleration, and sediment material properties using the two-phase sheet flow model. Some interesting features of sediment dynamics within the sheet, such as time history of sediment vertical velocity, collisional and turbulent suspension mechanisms are presented.

  6. Fracture sealing caused by mineral precipitation: The role of aperture and mineral heterogeneity on precipitation-induced permeability loss

    NASA Astrophysics Data System (ADS)

    Jones, T.; Detwiler, R. L.

    2017-12-01

    Fractures act as dominant pathways for fluid flow in low-permeability rocks. However, in many subsurface environments, fluid rock reactions can lead to mineral precipitation, which alters fracture surface geometry and reduces fracture permeability. In natural fractures, surface mineralogy and roughness are often heterogeneous, leading to variations in both velocity and reactive surface area. The combined effects of surface roughness and mineral heterogeneity can lead to large disparities in local precipitation rates that are difficult to predict due to the strong coupling between dissolved mineral transport and reactions at the fracture surface. Recent experimental observations suggest that mineral precipitation in a heterogeneous fracture may promote preferential flow and focus large dissolved ion concentrations into regions with limited reactive surface area. Here, we build on these observations using reactive transport simulations. Reactive transport is simulated with a quasi-steady-state 2D model that uses a depth-averaged mass-transfer relationship to describe dissolved mineral transport across the fracture aperture and local precipitation reactions. Mineral precipitation-induced changes to fracture surface geometry are accounted for using two different approaches: (1) by only allowing reactive minerals to grow vertically, and (2) by allowing three-dimensional mineral growth at reaction sites. Preliminary results from simulations using (1) suggest that precipitation-induced aperture reduction focuses flow into thin flow paths. This flow focusing causes a reduction in the fracture-scale precipitation rate, and precipitation ceases when the reaction zone extends the entire length of the fracture. This approach reproduces experimental observations at early time reasonably well, but as precipitation proceeds, reaction sites can grow laterally along the fracture surfaces, which is not predicted by (1). To account for three-dimensional mineral growth (2), we have incorporated a level-set-method based approach for tracking the mineral interfaces in three dimensions. This provides a mechanistic approach for simulating the dynamics of the formation, and eventual closing, of preferential flow paths by precipitation-induced aperture alteration, that do not occur using (1).

  7. Towards apparent convergence in asymptotically safe quantum gravity

    NASA Astrophysics Data System (ADS)

    Denz, T.; Pawlowski, J. M.; Reichert, M.

    2018-04-01

    The asymptotic safety scenario in gravity is accessed within the systematic vertex expansion scheme for functional renormalisation group flows put forward in Christiansen et al. (Phys Lett B 728:114, 2014), Christiansen et al. (Phy Rev D 93:044036, 2016), and implemented in Christiansen et al. (Phys Rev D 92:121501, 2015) for propagators and three-point functions. In the present work this expansion scheme is extended to the dynamical graviton four-point function. For the first time, this provides us with a closed flow equation for the graviton propagator: all vertices and propagators involved are computed from their own flows. In terms of a covariant operator expansion the current approximation gives access to Λ , R, R^2 as well as R_{μ ν }^2 and higher derivative operators. We find a UV fixed point with three attractive and two repulsive directions, thus confirming previous studies on the relevance of the first three operators. In the infrared we find trajectories that correspond to classical general relativity and further show non-classical behaviour in some fluctuation couplings. We also find signatures for the apparent convergence of the systematic vertex expansion. This opens a promising path towards establishing asymptotically safe gravity in terms of apparent convergence.

  8. The combined use of heat-pulse flowmeter logging and packer testing for transmissive fracture recognition

    NASA Astrophysics Data System (ADS)

    Lo, Hung-Chieh; Chen, Po-Jui; Chou, Po-Yi; Hsu, Shih-Meng

    2014-06-01

    This paper presents an improved borehole prospecting methodology based on a combination of techniques in the hydrogeological characterization of fractured rock aquifers. The approach is demonstrated by on-site tests carried out in the Hoshe Experimental Forest site and the Tailuge National Park, Taiwan. Borehole televiewer logs are used to obtain fracture location and distribution along boreholes. The heat-pulse flow meter log is used to measure vertical velocity flow profiles which can be analyzed to estimate fracture transmissivity and to indicate hydraulic connectivity between fractures. Double-packer hydraulic tests are performed to determine the rock mass transmissivity. The computer program FLASH is used to analyze the data from the flowmeter logs. The FLASH program is confirmed as a useful tool which quantitatively predicts the fracture transmissivity in comparison to the hydraulic properties obtained from packer tests. The location of conductive fractures and their transmissivity is identified, after which the preferential flow paths through the fracture network are precisely delineated from a cross-borehole test. The results provide robust confirmation of the use of combined flowmeter and packer methods in the characterization of fractured-rock aquifers, particularly in reference to the investigation of groundwater resource and contaminant transport dynamics.

  9. Applicability of a diffusion model to lateral transport in the terrestrial and lunar exospheres.

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1972-01-01

    Kinetic theory is used to determine a series expansion of the vertical flux of particles in an exosphere in terms of time and space derivatives of particle concentration, exobase velocity, and temperature. For sufficiently large scale variations of these parameters in time and space, the series can be truncated to a form that is similar to a diffusion equation. Owing to this analogy, it is possible to unite the mathematical description of molecular diffusion, which governs thermospheric flow, and the corresponding exospheric equation by using effective transport coefficients which change smoothly with altitude through the transition from thermosphere to exosphere. A new definition of the exobase for lateral flow emerges from the analogy of exospheric and thermospheric diffusion, as the altitude where the horizontal mean free path length equals the mean horizontal extent of ballistic trajectories of the transported gas, as opposed to the scale height of the dominant gas which determines the exobase for escape. It is shown that the approximation of exospheric lateral flow as a diffusion process is applicable to global scale problems concerning terrestrial helium and heavier gases, and lunar gases heavier than helium.

  10. Characterization of Acoustic Streaming Beyond 100 MHz

    NASA Astrophysics Data System (ADS)

    Eisener, J.; Lippert, A.; Nowak, T.; Cairós, C.; Reuter, F.; Mettin, R.

    The aim of this study is to investigate acoustic streaming in water at very high ultrasonic frequencies, namely beyond 100 MHz. At such high frequencies, the dissipation length of acoustic waves shrinks considerably, and the acoustic streaming transforms from the well-known Eckart type into a Stuart-Lighthill type: While Eckart streaming is driven by a small momentum transfer along the path of a weakly damped travelling sound wave, Stuart-Lighthill streaming is generated by rather local and strong momentum transfer of a highly damped and therefore rapidly decaying wave. Then the inertia of the induced flow cannot be neglected anymore, and a potentially turbulent jet flow emerges. Here we report on streaming velocity measurements for the case where the sound is completely absorbed within a region much smaller than the generated jet. In contrast to previous work in this frequency range, where mainly surface acoustic wave transducers have been employed, we use piston-type transducers that emit vertically to the transducer surface. The acoustic streaming effects are characterized by ink front tracking and particle tracking velocimetry, and by numerical studies. The results show narrow high-speed jet flows that extend much farther into the liquid than the acoustic field. Velocities of several m/s are observed.

  11. Coupled Long-Term Simulation of Reach-Scale Water and Heat Fluxes Across the River-Groundwater Interface for Retrieving Hyporheic Residence Times and Temperature Dynamics

    NASA Astrophysics Data System (ADS)

    Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian

    2017-11-01

    Flow patterns in conjunction with seasonal and diurnal temperature variations control ecological and biogeochemical conditions in hyporheic sediments. In particular, hyporheic temperatures have a great impact on many temperature-sensitive microbial processes. In this study, we used 3-D coupled water flow and heat transport simulations applying the HydroGeoSphere code in combination with high-resolution observations of hydraulic heads and temperatures to quantify reach-scale water and heat flux across the river-groundwater interface and hyporheic temperature dynamics of a lowland gravel bed river. The model was calibrated in order to constrain estimates of the most sensitive model parameters. The magnitude and variations of the simulated temperatures matched the observed ones, with an average mean absolute error of 0.7°C and an average Nash Sutcliffe efficiency of 0.87. Our results indicate that nonsubmerged streambed structures such as gravel bars cause substantial thermal heterogeneity within the saturated sediment at the reach scale. Individual hyporheic flow path temperatures strongly depend on the flow path residence time, flow path depth, river, and groundwater temperature. Variations in individual hyporheic flow path temperatures were up to 7.9°C, significantly higher than the daily average (2.8°C), but still lower than the average seasonal hyporheic temperature difference (19.2°C). The distribution between flow path temperatures and residence times follows a power law relationship with exponent of about 0.37. Based on this empirical relation, we further estimated the influence of hyporheic flow path residence time and temperature on oxygen consumption which was found to partly increase by up to 29% in simulations.

  12. Vertical exploration and dimensional modularity in mice

    PubMed Central

    Benjamini, Yoav; Golani, Ilan

    2018-01-01

    Exploration is a central component of animal behaviour studied extensively in rodents. Previous tests of free exploration limited vertical movement to rearing and jumping. Here, we attach a wire mesh to the arena wall, allowing vertical exploration. This provides an opportunity to study the morphogenesis of behaviour along the vertical dimension, and examine the context in which it is performed. In the current set-up, the mice first use the doorway as a point reference for establishing a borderline linear path along the circumference of the arena floor, and then use this path as a linear reference for performing horizontal forays towards the centre (incursions) and vertical forays on the wire mesh (ascents). Vertical movement starts with rearing on the wall, and commences with straight vertical ascents that increase in extent and complexity. The mice first reach the top of the wall, then mill about within circumscribed horizontal sections, and then progress horizontally for increasingly longer distances on the upper edge of the wire mesh. Examination of the sequence of borderline segments, incursions and ascents reveals dimensional modularity: an initial series (bout) of borderline segments precedes alternating bouts of incursions and bouts of ascents, thus exhibiting sustained attention to each dimension separately. The exhibited separate growth in extent and in complexity of movement and the sustained attention to each of the three dimensions disclose the mice's modular perception of this environment and validate all three as natural kinds. PMID:29657827

  13. A Comparison of Electromagnetic Induction Mapping to Measurements of Maximum Effluent Flow Depth for Assessing Flow Paths in Vegetative Treatment Areas

    USDA-ARS?s Scientific Manuscript database

    Vegetative treatment systems (VTSs) are one type of control structure that has shown potential to control runoff from open feedlots. To achieve maximum performance, sheet-flow over the width of the vegetative treatment area (VTA) is required. Tools, such as maps of flow paths through the VTA, are ne...

  14. Viability of Cross-Flow Fan for Vertical Take-Off and Landing Aircraft

    DTIC Science & Technology

    2012-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited VIABILITY OF CROSS...FLOW FAN FOR VERTICAL TAKE-OFF AND LANDING AIRCRAFT by Christopher T. Delagrange June 2012 Thesis Advisor: Garth V. Hobson Second...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Viability of Cross-Flow Fan for Vertical Take-Off and Landing Aircraft 5. FUNDING

  15. Quality Characteristics of Ground Water in the Ozark Aquifer of Northwestern Arkansas, Southeastern Kansas, Southwestern Missouri, and Northeastern Oklahoma, 2006-07

    USGS Publications Warehouse

    Pope, L.M.; Mehl, H.E.; Coiner, R.L.

    2009-01-01

    Because of water quantity and quality concerns within the Ozark aquifer, the State of Kansas in 2004 issued a moratorium on most new appropriations from the aquifer until results were made available from a cooperative study between the U.S. Geological Survey and the Kansas Water Office. The purposes of the study were to develop a regional ground-water flow model and a water-quality assessment of the Ozark aquifer in northwestern Arkansas, southeastern Kansas, southwestern Missouri, and northeastern Oklahoma (study area). In 2006 and 2007, water-quality samples were collected from 40 water-supply wells completed in the Ozark aquifer and spatially distributed throughout the study area. Samples were analyzed for physical properties, dissolved solids and major ions, nutrients, trace elements, and selected isotopes. This report presents the results of the water-quality assessment part of the cooperative study. Water-quality characteristics were evaluated relative to U.S. Environmental Protection Agency drinking-water standards. Secondary Drinking-Water Regulations were exceeded for dissolved solids (11 wells), sulfate and chloride (2 wells each), fluoride (3 wells), iron (4 wells), and manganese (2 wells). Maximum Contaminant Levels were exceeded for turbidity (3 wells) and fluoride (1 well). The Maximum Contaminant Level Goal for lead (0 milligrams per liter) was exceeded in water from 12 wells. Analyses of isotopes in water from wells along two 60-mile long ground-water flow paths indicated that water in the Ozark aquifer was at least 60 years old but the upper age limit is uncertain. The source of recharge water for the wells along the flow paths appeared to be of meteoric origin because of isotopic similarity to the established Global Meteoric Water Line and a global precipitation relation. Additionally, analysis of hydrogen-3 (3H) and carbon-14 (14C) indicated that there was possible leakage of younger ground water into the lower part of the Ozark aquifer. This may be caused by cracks or fissures in the confining unit that separates the upper and lower parts of the aquifer, poorly constructed or abandoned wells, or historic mining activities. Analyses of major ions in water from wells along the flow paths indicated a transition from freshwater in the east to saline water in the west. Generally, ground water along flow paths evolved from a calcium magnesium bicarbonate type to a sodium calcium bicarbonate or a sodium calcium chloride bicarbonate type as water moved from recharge areas in Missouri into Kansas. Much of this evolution occurred within the last 20 to 25 miles of the flow paths along a water-quality transition zone near the Kansas-Missouri State line and west. The water quality of the Kansas part of the Ozark aquifer is degraded compared to the Missouri part. Geophysical and well-bore flow information and depth-dependent water-quality samples were collected from a large-capacity (1,900-2,300 gallons per minute) municipal-supply well to evaluate vertical ground-water flow accretion and variability in water-quality characteristics at different levels. Although the 1,050-foot deep supply well had 500 feet of borehole open to the Ozark aquifer, 77 percent of ground-water flow entering the borehole came from two 20-foot thick rock layers above the 1,000-foot level. For the most part, water-quality characteristics changed little from the deepest sample to the well-head sample, and upwelling of saline water from deeper geologic formations below the well was not evident. However, more saline water may be present below the bottom of the well.

  16. Hydraulic characteristics of, and ground-water flow in, coal-bearing rocks of southwestern Virginia

    USGS Publications Warehouse

    Harlow, George E.; LeCain, Gary D.

    1993-01-01

    This report presents the results of a study by the U.S Geological Survey, in cooperation with the Virginia Department of Mines, Minerals, and Energy, Division of Mined Land Reclamation, and the Powell River Project, to describe the hydraulic characteristics of major water-bearing zones in the coal-bearing rocks of southwestern Virginia and to develop a conceptual model of the ground-water-flow system. Aquifer testing in1987 and 1988 of 9-ft intervals in coal-exploration coreholes indicates that transmissivity decreases with increasing depth. Most rock types are permeable to a depth of approximately 100 ft; however, only coal seams are consistently permeable (transmissivity greater than 0.001 ft/d) at depths greater than 200 ft . Constant-head injection testing of rock intervals adjacent to coal seams usually indicated lower values of transmissivity than those values obtained when coal seams were isolated within the test interval; thus, large values of horizontal hydraulic conductivity at depth are associated with coal seams. Potentiometric-head measurements indicate that high topographic areas (ridges) function as recharge areas; water infiltrates through the surface, percolates into regolith, and flows downward and laterally through fractures in the shallow bedrock. Hydraulic conductivity decreases with increasing depth, and ground water flows primarily in the lateral direction along fractures or bedding planes or through coal seams. If vertical hydraulic conductivity is negligible, ground water continues to flow laterally, discharging as springs or seeps on hill slopes. Where vertical hydraulic conductivity is appreciable, groundwater follows a stair step path through the regolith, fractures, bedding planes, and coal seams, discharging to streams and (or) recharging coal seams at depth. Permeable coal seams probably underlie valleys in the region; however, aquifer-test data indicate that the horizontal hydraulic conductivity of coal is a function of depth and probably decreases under ridges because of increased overburden pressures. Ground water beneath valleys that does not discharge to streams probably flows down gradient as underflow beneath the streams. Topographic relief in the area provides large hydraulic-head differences (greater than 300 ft in some instances) for the ground-water-flow system. Transmissivity data from the range of depths tested during this study indicate that most ground-water flow takes place at moderate depths (less than 300 ft) and that little deep regional ground-water flow occurs.

  17. Optimal symmetric flight with an intermediate vehicle model

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.

    1983-01-01

    Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs. The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems.

  18. Assessing Receiving Water Quality Impacts due to Flow Path Alteration in Residential Catchments, using the Stormwater and Wastewater Management Model

    NASA Astrophysics Data System (ADS)

    Wolosoff, S. E.; Duncan, J.; Endreny, T.

    2001-05-01

    The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.

  19. Repeatability and oblique flow response characteristics of current meters

    USGS Publications Warehouse

    Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.; ,

    1993-01-01

    Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.

  20. Influence of Processing Parameters on the Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.; Nunes, A. C., Jr.

    2006-01-01

    Friction stir welding (FSW) is a solid phase welding process that unites thermal and mechanical aspects to produce a high quality joint. The process variables are rpm, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the individual flow path taken by the particular filament of metal flowing around the tool as influenced by the process variables. The resulting properties of the weld are determined by the strain-temperature history. Thus to control FSW properties, improved understanding of the processing parameters on the metal flow path is necessary.

  1. Application of digital profile modeling techniques to ground-water solute transport at Barstow, California

    USGS Publications Warehouse

    Robson, Stanley G.

    1978-01-01

    This study investigated the use of a two-dimensional profile-oriented water-quality model for the simulation of head and water-quality changes through the saturated thickness of an aquifer. The profile model is able to simulate confined or unconfined aquifers with nonhomogeneous anisotropic hydraulic conductivity, nonhomogeneous specific storage and porosity, and nonuniform saturated thickness. An aquifer may be simulated under either steady or nonsteady flow conditions provided that the ground-water flow path along which the longitudinal axis of the model is oriented does not move in the aquifer during the simulation time period. The profile model parameters are more difficult to quantify than are the corresponding parameters for an areal-oriented water-fluality model. However, the sensitivity of the profile model to the parameters may be such that the normal error of parameter estimation will not preclude obtaining acceptable model results. Although the profile model has the advantage of being able to simulate vertical flow and water-quality changes in a single- or multiple-aquifer system, the types of problems to which it can be applied is limited by the requirements that (1) the ground-water flow path remain oriented along the longitudinal axis of the model and (2) any subsequent hydrologic factors to be evaluated using the model must be located along the land-surface trace of the model. Simulation of hypothetical ground-water management practices indicates that the profile model is applicable to problem-oriented studies and can provide quantitative results applicable to a variety of management practices. In particular, simulations of the movement and dissolved-solids concentration of a zone of degraded ground-water quality near Barstow, Calif., indicate that halting subsurface disposal of treated sewage effluent in conjunction with pumping a line of fully penetrating wells would be an effective means of controlling the movement of degraded ground water.

  2. Subsurface Supergranular Vertical Flows as Measured Using Large Distance Separations in Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Hanasoge, S. M.

    2012-01-01

    As large-distance rays (say, 10-24 deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large separation travel times associated with upergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations,reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel time difference in the separation range 10-24 deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity for the average supergranule, 5.1 s, is constant over the distance range. This magnitude of signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 m/s extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 m/s at a depth of 2.3 Mm and a peak horizontal flow of 700 m/s at a depth of 1.6 Mm.

  3. Water transport through tall trees: A vertically-explicit, analytical model of xylem hydraulic conductance in stems.

    PubMed

    Couvreur, Valentin; Ledder, Glenn; Manzoni, Stefano; Way, Danielle A; Muller, Erik B; Russo, Sabrina E

    2018-05-08

    Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially-explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from nonlinear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits. This article is protected by copyright. All rights reserved.

  4. Boiler using combustible fluid

    DOEpatents

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  5. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.

  6. Measuring trace gas emission from multi-distributed sources using vertical radial plume mapping (VRPM) and backward Lagrangian stochastic (bLS) techniques

    USDA-ARS?s Scientific Manuscript database

    Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The accuracy of the vertical radial plume mapping (VRPM) and the backward Lagrangian (bLS) techniques with an open-path optical spectrosco...

  7. Comparison of ground-water flow model particle-tracking results and isotopic data in the Mojave River ground-water basin, southern California, USA

    USGS Publications Warehouse

    Izbicki, John A.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2004-01-01

    Flow-path and time-of-travel results for the Mojave River ground-water basin, southern California, calculated using the ground-water flow model MODFLOW and particle-tracking model MODPATH were similar to flow path and time-of-travel interpretations derived from delta-deuterium and carbon-14 data. Model and isotopic data both show short flow paths and young ground-water ages throughout the floodplain aquifer along most the Mojave River. Longer flow paths and older ground-water ages as great as 10,000 years before present were measured and simulated in the floodplain aquifer near the Mojave Valley. Model and isotopic data also show movement of water between the floodplain and regional aquifer and subsequent discharge of water from the river to dry lakes in some areas. It was not possible to simulate the isotopic composition of ground-water in the regional aquifer away from the front of the San Gabriel and San Bernardino Mountains - because recharge in these areas does not occur under the present-day climatic conditions used for calibration of the model.

  8. Critical Velocities in Open Capillary Flow

    NASA Technical Reports Server (NTRS)

    Dreyer, Michael; Langbein, Dieter; Rath, Hans J.

    1996-01-01

    This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.

  9. Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2004-01-01

    In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  10. Safety drain system for fluid reservoir

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2012-01-01

    A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.

  11. Increasing vertical resolution of three-dimensional atmospheric water vapor retrievals using a network of scanning compact microwave radiometers

    NASA Astrophysics Data System (ADS)

    Sahoo, Swaroop

    2011-12-01

    The thermodynamic properties of the troposphere, in particular water vapor content and temperature, change in response to physical mechanisms, including frictional drag, evaporation, transpiration, heat transfer and flow modification due to terrain. The planetary boundary layer (PBL) is characterized by a high rate of change in its thermodynamic state on time scales of typically less than one hour. Large horizontal gradients in vertical wind speed and steep vertical gradients in water vapor and temperature in the PBL are associated with high-impact weather. Observation of these gradients in the PBL with high vertical resolution and accuracy is important for improvement of weather prediction. Satellite remote sensing in the visible, infrared and microwave provide qualitative and quantitative measurements of many atmospheric properties, including cloud cover, precipitation, liquid water content and precipitable water vapor in the upper troposphere. However, the ability to characterize the thermodynamic properties of the PBL is limited by the confounding factors of ground emission in microwave channels and of cloud cover in visible and IR channels. Ground-based microwave radiometers are routinely used to measure thermodynamic profiles. The vertical resolution of such profiles retrieved from radiometric brightness temperatures depends on the number and choice of frequency channels, the scanning strategy and the accuracy of brightness temperature measurements. In the standard technique, which uses brightness temperatures from vertically pointing radiometers, the vertical resolution of the retrieved water vapor profile is similar to or larger than the altitude at which retrievals are performed. This study focuses on the improvement of the vertical resolution of water vapor retrievals by including scanning measurements at a variety of elevation angles. Elevation angle scanning increases the path length of the atmospheric emission, thus improving the signal-to-noise ratio. This thesis also discusses Colorado State University's (CSU) participation in the European Space Agency (ESA)'s "Mitigation of Electromagnetic Transmission errors induced by Atmospheric WAter Vapor Effects" (METAWAVE) experiment conducted in the fall of 2008. CSU deployed a ground-based network of three Compact Microwave Radiometers for Humidity profiling (CMR-Hs) in Rome to measure atmospheric brightness temperatures. These measurements were used to retrieve high-resolution 3-D atmospheric water vapor and its variation with time. High-resolution information about water vapor can be crucial for the mitigation of wet tropospheric path delay variations that limit the quality of Interferometric Synthetic Aperture Radar satellite interferograms. Three-dimensional water vapor retrieval makes use of radiative transfer theory, algebraic tomographic reconstruction and Bayesian optimal estimation coupled with Kalman filtering. In addition, spatial interpolation (kriging) is used to retrieve water vapor density at unsampled locations. 3-D humidity retrievals from Rome data with vertical and horizontal resolution of 0.5 km are presented. The water vapor retrieved from CMR-H measurements is compared with MM5 Mesoscale Model output, as well as with measurements from the Medium Resolution Imaging Spectrometer (MERIS) aboard ESA's ENVISAT and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Aqua and Terra satellites.

  12. Siphon flows in isolated magnetic flux tubes. 3: The equilibrium path of the flux tube arch

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinis, Benjamin

    1989-01-01

    The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.

  13. Free-fall dynamics of a pair of rigidly linked disks

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum

    2018-03-01

    We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.

  14. Are preferential flow paths perpetuated by microbial activity in the soil matrix? A review

    NASA Astrophysics Data System (ADS)

    Morales, Verónica L.; Parlange, J.-Yves; Steenhuis, Tammo S.

    2010-10-01

    SummaryRecently, the interactions between soil structure and microbes have been associated with water transport, retention and preferential or column flow development. Of particular significance is the potential impact of microbial extracellular polymeric substances (EPS) on soil porosity (i.e., hydraulic conductivity reduction or bioclogging) and of exudates from biota, including bacteria, fungi, roots and earthworms on the degree of soil water repellency. These structural and surface property changes create points of wetting instability, which under certain infiltrating conditions can often result in the formation of persistent preferential flow paths. Moreover, distinct differences in physical and chemical properties between regions of water flow (preferential flow paths) and no-flow (soil matrix) provide a unique set of environmental living conditions for adaptable microorganisms to exist. In this review, special consideration is given to: (1) the functional significance of microbial activity in the host porous medium in terms of feedback mechanisms instigated by irregular water availability and (2) the related physical and chemical conditions that force the organization and formation of unique microbial habitats in unsaturated soils that prompt and potentially perpetuate the formation of preferential flow paths in the vadose zone.

  15. Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear

    NASA Technical Reports Server (NTRS)

    Zhang, Minghua; Geller, Marvin A.

    1994-01-01

    The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.

  16. Explicit wave action conservation for water waves on vertically sheared flows

    NASA Astrophysics Data System (ADS)

    Quinn, Brenda; Toledo, Yaron; Shrira, Victor

    2016-04-01

    Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical structure of the currents in wave modelling which is currently universal, might lead to significant errors in wave amplitude and the predicted wave ray paths. An extension of the work toward the more complex case of turbulent currents will also be discussed.

  17. Stable isotopes and volatile organic compounds along seven ground-water flow paths in divergent and convergent flow systems, southern California, 2000

    USGS Publications Warehouse

    Milby Dawson, Barbara J.; Belitz, Kenneth; Land, Michael; Danskin, Wesley R.

    2003-01-01

    Ground water is a major source of drinking water in southern California. In an effort to understand factors influencing the susceptibility of ground water tapped by public supply wells, the U.S. Geological Survey has undertaken studies in cooperation with the California State Water Resources Control Board. The vertical and lateral distribution of stable isotopes (deuterium and oxygen-18) and volatile organic compounds (VOC) were examined along seven ground-water flow paths in three urban ground-water basins in southern California: Central Basin in Los Angeles County, Main Basin in Orange County, and Bunker Hill Basin in San Bernardino County. Forty-seven monitoring wells and 100 public supply wells were sampled. The results of this study suggest that the direction of flow and perhaps the degree of confinement in an aquifer system are important controls on the distribution of VOCs. Ground-water flow in the Central and Main Basins in the southern California coastal plain is characterized as radially divergent, with ground-water flow directions moving outward from focused areas of recharge in the unconfined part of the aquifer system toward dispersed areas of discharge in the more confined part. In these basins, there is a volume of water containing VOCs that extends out into a volume of water containing no VOCs. This pattern suggests that radially divergent flow systems disperse VOCs in distal areas. The overall pattern also suggests that ground water in the pressure area is generally insulated from compounds introduced at land surface. These two factors?dispersion of VOCs due to divergence of flow and insulation from land-surface inputs?suggest that the susceptibility of public supply wells to surface contamination decreases with distance in radially divergent, well confined ground-water flow system. In the inland Bunker Hill Basin, ground-water flow is characterized as radially convergent; ground-water flow directions move inward from dispersed recharge areas in the unconfined part of the aquifer system, toward an area of focused discharge in the more confined part. The number of VOCs increased and the concentrations of individual VOCs increased, or remained the same, with increasing travel distance. Methyl tert-butyl ether was detected only in wells in the confined part of the aquifer system, suggesting that the confining units present in the distal part of the Bunker Hill Basin do not prevent VOCs from reaching ground water. These results suggest that VOCs in the Bunker Hill Basin are collected and concentrated as ground water moves downgradient because of radial convergenence of flow. They also suggest that ground water in the Bunker Hill Basin has an increasing opportunity to pick up VOCs introduced at land surface as it moves along a flow path. Some of the downgradient increase in VOC occurrence and concentration may be due to pumping that selectively removes cleaner ground water, thus leaving ground water containing more VOCs in the aquifer. These two factors?collection of VOCs due to convergence of flow and increasing opportunity to collect surficial contaminants perhaps due to a relative absence of confinement?suggest that the susceptibility of public supply wells to surface contamination increases with distance in radially convergent ground-water flow systems, particularly those that are unconfined.

  18. Semianalytical computation of path lines for finite-difference models

    USGS Publications Warehouse

    Pollock, D.W.

    1988-01-01

    A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author

  19. Hydrogeological characterization of flow system in a karstic aquifer, Seymareh dam, Iran

    NASA Astrophysics Data System (ADS)

    Behrouj Peely, Ahmad; Mohammadi, Zargham; Raeisi, Ezzatollah; Solgi, Khashayar; Mosavi, Mohammad J.; Kamali, Majid

    2018-07-01

    In order to determine the characteristics of the flow system in a karstic aquifer, an extensive hydrogeological study includes dye tracing test was conducted. The aquifer suited left abutment of Seymareh Dam, in Ravandi Anticline and discharges by more than 50 springs in the southern flank. Flow system in the aquifer is mainly controlled by the reservoir of Seymareh Dam. Time variations of the spring discharge and water table in the observation wells were highly correlated with the reservoir water level. The average groundwater velocity ranges from 0.2 to more than 14 m/h based on the dye tracing test. The probable flow paths were differentiated in two groups including the flow paths in the northern and southern flanks of Ravandi Anticline. Types of groundwater flow in the proposed flow paths are determined as diffuse or conduit flow type considering groundwater velocity and shape of the breakthrough curves. An index is proposed for differentiation of diffuse and conduit flow system based on relationship of groundwater velocity and hydraulic gradient. Dominant geometry of the flow routs (e.g., conduit diameter and fracture aperture) is estimated for the groundwater flow paths toward the springs. Based on velocity variations and variance coefficient of the water table and discharge of springs on map view a major karst conduit was probably developed in the aquifer. This research emphasizes applying of an extensive hydrogeological study for characterization of flow system in the karst aquifer.

  20. Tortuous path chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  1. On the strong metric dimension of generalized butterfly graph, starbarbell graph, and {C}_{m}\\odot {P}_{n} graph

    NASA Astrophysics Data System (ADS)

    Yunia Mayasari, Ratih; Atmojo Kusmayadi, Tri

    2018-04-01

    Let G be a connected graph with vertex set V(G) and edge set E(G). For every pair of vertices u,v\\in V(G), the interval I[u, v] between u and v to be the collection of all vertices that belong to some shortest u ‑ v path. A vertex s\\in V(G) strongly resolves two vertices u and v if u belongs to a shortest v ‑ s path or v belongs to a shortest u ‑ s path. A vertex set S of G is a strong resolving set of G if every two distinct vertices of G are strongly resolved by some vertex of S. The strong metric basis of G is a strong resolving set with minimal cardinality. The strong metric dimension sdim(G) of a graph G is defined as the cardinality of strong metric basis. In this paper we determine the strong metric dimension of a generalized butterfly graph, starbarbell graph, and {C}mȯ {P}n graph. We obtain the strong metric dimension of generalized butterfly graph is sdim(BFn ) = 2n ‑ 2. The strong metric dimension of starbarbell graph is sdim(S{B}{m1,{m}2,\\ldots,{m}n})={\\sum }i=1n({m}i-1)-1. The strong metric dimension of {C}mȯ {P}n graph are sdim({C}mȯ {P}n)=2m-1 for m > 3 and n = 2, and sdim({C}mȯ {P}n)=2m-2 for m > 3 and n > 2.

  2. Fraction of young water as an indicator of aquifer vulnerability along two regional flow paths in the Mississippi embayment aquifer system, southeastern USA

    USGS Publications Warehouse

    Kingsbury, James A.; Barlow, Jeannie R.; Jurgens, Bryant; McMahon, Peter B.; Carmichael, John K.

    2017-01-01

    Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.

  3. Fraction of young water as an indicator of aquifer vulnerability along two regional flow paths in the Mississippi embayment aquifer system, southeastern USA

    NASA Astrophysics Data System (ADS)

    Kingsbury, James A.; Barlow, Jeannie R. B.; Jurgens, Bryant C.; McMahon, Peter B.; Carmichael, John K.

    2017-09-01

    Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.

  4. WATER QUALITY CHANGES IN HYPORHEIC FLOW PATHS BETWEEN A LARGE GRAVEL BED RIVER AND OFF-CHANNEL ALCOVES IN OREGON, USA

    EPA Science Inventory

    Changes in water quality that occur as water flows along hyporheic flow paths may have important effects on surface water quality and aquatic habitat, yet very few studies have examined these hyporheic processes along large gravel bed rivers. To determine water quality changes as...

  5. Eddy-correlation measurements of fluxes of CO 2 and H 2O above a spruce stand

    NASA Astrophysics Data System (ADS)

    Ibrom, A.; Schütz, C.; Tworek, T.; Morgenstern, K.; Oltchev, A.; Falk, M.; Constantin, J.; Gravenhorst, G.

    1996-12-01

    Atmospheric fluxes of CO 2 and H 2O above a mature spruce stand ( Picea abies (L.) Karst.) have been investigated using the eddy- correlation technique. A closed path sensor adapted to the special requirements of long-term studies has been developed and tested. Field measurements have been performed since April 1995. Estimates of fetch showed a very narrow source area dimension under instable stratification (≤ 200 m). Fetch requirements at night are not met in some directions. Energy balance closure was influenced systematically by the wind direction indicating a substantial attenuation of the vertical wind motion by the tower (up to 40 %). Even for optimal flow directions, energy balance closure was about 88%. Intercomparison of the used ultra sonic anemometer (USAT-3) with a GILL - anemometer showed systematically lower values of vertical wind speed fluctuations (13 %). Average CO 2-fluxes ranged between -13 at noon to 3 μ mol m-2, s-1 at night in summer. In November and December the stand released CO 2 on a daily basis. A preliminary estimate of the cumulative net carbon balance over the observed period of 9 months is 4-5 t, Cha-1.

  6. Looking Deeper Into Hydrologic Connectivity and Streamflow Generation: A Groundwater Hydrologist's Perspective.

    NASA Astrophysics Data System (ADS)

    Gardner, W. P.

    2016-12-01

    In this presentation the definition of hydraulic connection will be explored with a focus on the role of deep groundwater in streamflow generation and its time and space limits. Regional groundwater flow paths can be important sources of baseflow and potentially event response in surface water systems. This deep groundwater discharge plays an important role in determining how the watershed responds to climatic forcing, whether watersheds are a carbon source or sink and can be significant for watershed geochemistry and nutrient loading. These flow paths potentially "connect" to surface water systems and saturated soil zones at large distances, and over long time scales. However, these flow paths are challenging to detect, especially with hydraulic techniques. Here we will discuss some of the basic physical processes that affect the hydraulic signal along a groundwater flow path and their implications for the definition of hydrologic connection. Methods of measuring hydraulic connection using groundwater head response and their application in detecting regional groundwater discharge will be discussed. Environmental tracers are also a powerful method for identifying connected flowpaths in groundwater systems, and are commonly used to determine flow connection and flow rates in groundwater studies. Isotopic tracer methods for detecting deep, regional flow paths in watersheds will be discussed, along with observations of deep groundwater discharge in shallow alluvial systems around the world. The goal of this talk is to discuss hydraulic and hydrologic connection from a groundwater hydrologist's perspective, spark conversation on the meaning of hydrologic connection, the processes which govern hydraulic response and methods to measure flow connections and flux.

  7. The Spatial and Temporal Variability of Meltwater Flow Paths: Insights From a Grid of Over 100 Snow Lysimeters

    NASA Astrophysics Data System (ADS)

    Webb, R. W.; Williams, M. W.; Erickson, T. A.

    2018-02-01

    Snowmelt is an important part of the hydrologic cycle and ecosystem dynamics for headwater systems. However, the physical process of water flow through snow is a poorly understood aspect of snow hydrology as meltwater flow paths tend to be highly complex. Meltwater flow paths diverge and converge as percolating meltwater reaches stratigraphic layer interfaces creating high spatial variability. Additionally, a snowpack is temporally heterogeneous due to rapid localized metamorphism that occurs during melt. This study uses a snowmelt lysimeter array at tree line in the Niwot Ridge study area of northern Colorado. The array is designed to address the issue of spatial and temporal variability of basal discharge at 105 locations over an area of 1,300 m2. Observed coefficients of variation ranged from 0 to almost 10 indicating more variability than previously observed, though this variability decreased throughout each melt season. Snowmelt basal discharge also significantly increases as snow depth decreases displaying a cluster pattern that peaks during weeks 3-5 of the snowmelt season. These results are explained by the flow of meltwater along snow layer interfaces. As the snowpack becomes less stratified through the melt season, the pattern transforms from preferential flow paths to uniform matrix flow. Correlation ranges of the observed basal discharge correspond to a mean representative elementary area of 100 m2, or a characteristic length of 10 m. Snowmelt models representing processes at scales less than this will need to explicitly incorporate the spatial variability of snowmelt discharge and meltwater flow paths through snow between model pixels.

  8. Application of Micropore Filter Technology: Exploring the Blood Flow Path in Arterial-Line Filters and Its Effect on Bubble Trapping Functions

    PubMed Central

    Herbst, Daniel P.

    2017-01-01

    Abstract: Conventional arterial-line filters commonly use a large volume circular shaped housing, a wetted micropore screen, and a purge port to trap, separate, and remove gas bubbles from extracorporeal blood flow. Focusing on the bubble trapping function, this work attempts to explore how the filter housing shape and its resulting blood flow path affect the clinical application of arterial-line filters in terms of gross air handling. A video camera was used in a wet-lab setting to record observations made during gross air-bolus injections in three different radially designed filters using a 30–70% glycerol–saline mixture flowing at 4.5 L/min. Two of the filters both had inlet ports attached near the filter-housing top with bottom oriented outlet ports at the bottom, whereas the third filter had its inlet and outlet ports both located at the bottom of the filter housing. The two filters with top-in bottom-out fluid paths were shown to direct the incoming flow downward as it passed through the filter, placing the forces of buoyancy and viscous drag in opposition to each other. This contrasted with the third filter's bottom-in bottom-out fluid path, which was shown to direct the incoming flow upward so that the forces of buoyancy and viscous drag work together. The direction of the blood flow path through a filter may be important to the application of arterial-line filter technology as it helps determine how the forces of buoyancy and flow are aligned with one another. PMID:28298665

  9. Application of Micropore Filter Technology: Exploring the Blood Flow Path in Arterial-Line Filters and Its Effect on Bubble Trapping Functions.

    PubMed

    Herbst, Daniel P

    2017-03-01

    Conventional arterial-line filters commonly use a large volume circular shaped housing, a wetted micropore screen, and a purge port to trap, separate, and remove gas bubbles from extracorporeal blood flow. Focusing on the bubble trapping function, this work attempts to explore how the filter housing shape and its resulting blood flow path affect the clinical application of arterial-line filters in terms of gross air handling. A video camera was used in a wet-lab setting to record observations made during gross air-bolus injections in three different radially designed filters using a 30-70% glycerol-saline mixture flowing at 4.5 L/min. Two of the filters both had inlet ports attached near the filter-housing top with bottom oriented outlet ports at the bottom, whereas the third filter had its inlet and outlet ports both located at the bottom of the filter housing. The two filters with top-in bottom-out fluid paths were shown to direct the incoming flow downward as it passed through the filter, placing the forces of buoyancy and viscous drag in opposition to each other. This contrasted with the third filter's bottom-in bottom-out fluid path, which was shown to direct the incoming flow upward so that the forces of buoyancy and viscous drag work together. The direction of the blood flow path through a filter may be important to the application of arterial-line filter technology as it helps determine how the forces of buoyancy and flow are aligned with one another.

  10. Subsurface Supergranular Vertical Flows as Measured Using Large Distance Separations in Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L., Jr.; Hanasoge, S. M.

    2012-01-01

    As large-distance rays (say, 10 - 24deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large-separation travel times associated with supergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations, reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel-time difference [outward-going time minus inward-going time] in the separation range delta= 10 - 24deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity, 5.1+/-0.1 seconds, is constant over the distance range. This magnitude of the signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 ms(exp-1) extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 ms(exp-1) at a depth of 2.3 Mm and a peak horizontal flow of 700 ms(exp-1) at a depth of 1.6 Mm.

  11. Modelling rapid subsurface flow at the hillslope scale with explicit representation of preferential flow paths

    NASA Astrophysics Data System (ADS)

    Wienhöfer, J.; Zehe, E.

    2012-04-01

    Rapid lateral flow processes via preferential flow paths are widely accepted to play a key role for rainfall-runoff response in temperate humid headwater catchments. A quantitative description of these processes, however, is still a major challenge in hydrological research, not least because detailed information about the architecture of subsurface flow paths are often impossible to obtain at a natural site without disturbing the system. Our study combines physically based modelling and field observations with the objective to better understand how flow network configurations influence the hydrological response of hillslopes. The system under investigation is a forested hillslope with a small perennial spring at the study area Heumöser, a headwater catchment of the Dornbirnerach in Vorarlberg, Austria. In-situ points measurements of field-saturated hydraulic conductivity and dye staining experiments at the plot scale revealed that shrinkage cracks and biogenic macropores function as preferential flow paths in the fine-textured soils of the study area, and these preferential flow structures were active in fast subsurface transport of artificial tracers at the hillslope scale. For modelling of water and solute transport, we followed the approach of implementing preferential flow paths as spatially explicit structures of high hydraulic conductivity and low retention within the 2D process-based model CATFLOW. Many potential configurations of the flow path network were generated as realisations of a stochastic process informed by macropore characteristics derived from the plot scale observations. Together with different realisations of soil hydraulic parameters, this approach results in a Monte Carlo study. The model setups were used for short-term simulation of a sprinkling and tracer experiment, and the results were evaluated against measured discharges and tracer breakthrough curves. Although both criteria were taken for model evaluation, still several model setups produced acceptable matches to the observed behaviour. These setups were selected for long-term simulation, the results of which were compared against water level measurements at two piezometers along the hillslope and the integral discharge response of the spring to reject some non-behavioural model setups and further reduce equifinality. The results of this study indicate that process-based modelling can provide a means to distinguish preferential flow networks on the hillslope scale when complementary measurements to constrain the range of behavioural model setups are available. These models can further be employed as a virtual reality to investigate the characteristics of flow path architectures and explore effective parameterisations for larger scale applications.

  12. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  13. A 2-dimensional optical architecture for solving Hamiltonian path problem based on micro ring resonators

    NASA Astrophysics Data System (ADS)

    Shakeri, Nadim; Jalili, Saeed; Ahmadi, Vahid; Rasoulzadeh Zali, Aref; Goliaei, Sama

    2015-01-01

    The problem of finding the Hamiltonian path in a graph, or deciding whether a graph has a Hamiltonian path or not, is an NP-complete problem. No exact solution has been found yet, to solve this problem using polynomial amount of time and space. In this paper, we propose a two dimensional (2-D) optical architecture based on optical electronic devices such as micro ring resonators, optical circulators and MEMS based mirror (MEMS-M) to solve the Hamiltonian Path Problem, for undirected graphs in linear time. It uses a heuristic algorithm and employs n+1 different wavelengths of a light ray, to check whether a Hamiltonian path exists or not on a graph with n vertices. Then if a Hamiltonian path exists, it reports the path. The device complexity of the proposed architecture is O(n2).

  14. Static internal performance of ventral and rear nozzle concepts for short-takeoff and vertical-landing aircraft

    NASA Technical Reports Server (NTRS)

    Re, Richard J.; Carson, George T., Jr.

    1991-01-01

    The internal performance of two exhaust system concepts applicable to single-engine short-take-off and vertical-landing tactical fighter configurations was investigated. These concepts involved blocking (or partially blocking) tailpipe flow to the rear (cruise) nozzle and diverting it through an opening to a ventral nozzle exit for vertical thrust. A set of variable angle vanes at the ventral nozzle exit were used to vary ventral nozzle thrust angle between 45 and 110 deg relative to the positive axial force direction. In the vertical flight mode the rear nozzle (or tailpipe flow to it) was completely blocked. In the transition flight mode flow in the tailpipe was split between the rear and ventral nozzles and the flow was vectored at both exits for aircraft control purposes through this flight regime. In the cruise flight mode the ventral nozzle was sealed and all flow exited through the rear nozzle.

  15. How the Learning Path and the Very Structure of a Multifloored Environment Influence Human Spatial Memory

    PubMed Central

    Dollé, Laurent; Droulez, Jacques; Bennequin, Daniel; Berthoz, Alain; Thibault, Guillaume

    2015-01-01

    Few studies have explored how humans memorize landmarks in complex multifloored buildings. They have observed that participants memorize an environment either by floors or by vertical columns, influenced by the learning path. However, the influence of the building’s actual structure is not yet known. In order to investigate this influence, we conducted an experiment using an object-in-place protocol in a cylindrical building to contrast with previous experiments which used rectilinear environments. Two groups of 15 participants were taken on a tour with a first person perspective through a virtual cylindrical three-floored building. They followed either a route discovering floors one at a time, or a route discovering columns (by simulated lifts across floors). They then underwent a series of trials, in which they viewed a camera movement reproducing either a segment of the learning path (familiar trials), or performing a shortcut relative to the learning trajectory (novel trials). We observed that regardless of the learning path, participants better memorized the building by floors, and only participants who had discovered the building by columns also memorized it by columns. This expands on previous results obtained in a rectilinear building, where the learning path favoured the memory of its horizontal and vertical layout. Taken together, these results suggest that both learning mode and an environment’s structure influence the spatial memory of complex multifloored buildings. PMID:26770288

  16. Axial Flow Conditioning Device for Mitigating Instabilities

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet (Inventor); Birkbeck, Roger M. (Inventor); Hosangadi, Ashvin (Inventor)

    2017-01-01

    A flow conditioning device for incrementally stepping down pressure within a piping system is presented. The invention includes an outer annular housing, a center element, and at least one intermediate annular element. The outer annular housing includes an inlet end attachable to an inlet pipe and an outlet end attachable to an outlet pipe. The outer annular housing and the intermediate annular element(s) are concentrically disposed about the center element. The intermediate annular element(s) separates an axial flow within the outer annular housing into at least two axial flow paths. Each axial flow path includes at least two annular extensions that alternately and locally direct the axial flow radially outward and inward or radially inward and outward thereby inducing a pressure loss or a pressure gradient within the axial flow. The pressure within the axial flow paths is lower than the pressure at the inlet end and greater than the vapor pressure for the axial flow. The invention minimizes fluidic instabilities, pressure pulses, vortex formation and shedding, and/or cavitation during pressure step down to yield a stabilized flow within a piping system.

  17. Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.

    PubMed

    Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho

    2009-07-01

    A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.

  18. EVIDENCE OF ENHANCED VERTICAL DISPERSION IN THE WAKES OF TALL BUILDINGS IN WIND TUNNEL SIMULATIONS OF LOWER MANHATTAN

    EPA Science Inventory

    Observations of flow and dispersion in urban areas with tall buildings have revealed a phenomenon whereby contaminants can be transported vertically up the lee sides of tall buildings due to the vertical flow in the wake of the building. This phenomenon, which contributes to w...

  19. Fluidic Oscillator Having Decoupled Frequency and Amplitude Control

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2017-01-01

    A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.

  20. Fluidic Oscillator Having Decoupled Frequency and Amplitude Control

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2016-01-01

    A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.

  1. Lidar Investigation of Aerosol Pollution Distribution near a Coal Power Plant

    NASA Technical Reports Server (NTRS)

    Mitsev, TS.; Kolarov, G.

    1992-01-01

    Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, we present results of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. We studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity.

  2. Modeling long-term suspended-sediment export from an undisturbed forest catchment

    NASA Astrophysics Data System (ADS)

    Zimmermann, Alexander; Francke, Till; Elsenbeer, Helmut

    2013-04-01

    Most estimates of suspended sediment yields from humid, undisturbed, and geologically stable forest environments fall within a range of 5 - 30 t km-2 a-1. These low natural erosion rates in small headwater catchments (≤ 1 km2) support the common impression that a well-developed forest cover prevents surface erosion. Interestingly, those estimates originate exclusively from areas with prevailing vertical hydrological flow paths. Forest environments dominated by (near-) surface flow paths (overland flow, pipe flow, and return flow) and a fast response to rainfall, however, are not an exceptional phenomenon, yet only very few sediment yields have been estimated for these areas. Not surprisingly, even fewer long-term (≥ 10 years) records exist. In this contribution we present our latest research which aims at quantifying long-term suspended-sediment export from an undisturbed rainforest catchment prone to frequent overland flow. A key aspect of our approach is the application of machine-learning techniques (Random Forest, Quantile Regression Forest) which allows not only the handling of non-Gaussian data, non-linear relations between predictors and response, and correlations between predictors, but also the assessment of prediction uncertainty. For the current study we provided the machine-learning algorithms exclusively with information from a high-resolution rainfall time series to reconstruct discharge and suspended sediment dynamics for a 21-year period. The significance of our results is threefold. First, our estimates clearly show that forest cover does not necessarily prevent erosion if wet antecedent conditions and large rainfalls coincide. During these situations, overland flow is widespread and sediment fluxes increase in a non-linear fashion due to the mobilization of new sediment sources. Second, our estimates indicate that annual suspended sediment yields of the undisturbed forest catchment show large fluctuations. Depending on the frequency of large events, annual suspended-sediment yield varies between 74 - 416 t km-2 a-1. Third, the estimated sediment yields exceed former benchmark values by an order of magnitude and provide evidence that the erosion footprint of undisturbed, forested catchments can be undistinguishable from that of sustainably managed, but hydrologically less responsive areas. Because of the susceptibility to soil loss we argue that any land use should be avoided in natural erosion hotspots.

  3. Thermo-Mechanical Processing in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.; Nunes, A. C., Jr.

    2002-01-01

    In Friction Stir Welding (FSW) a rotating pin-tool inserted into a weld seam literally stirs the edges of the seam together. In this study, two flow paths are proposed that define the FWS zone. Studies using a longitudinal tungsten wire (0.0025 dia.) were used to visualize and document the material flow. The material flow path is described using a mathematical model.

  4. Flow motifs reveal limitations of the static framework to represent human interactions

    NASA Astrophysics Data System (ADS)

    Rocha, Luis E. C.; Blondel, Vincent D.

    2013-04-01

    Networks are commonly used to define underlying interaction structures where infections, information, or other quantities may spread. Although the standard approach has been to aggregate all links into a static structure, some studies have shown that the time order in which the links are established may alter the dynamics of spreading. In this paper, we study the impact of the time ordering in the limits of flow on various empirical temporal networks. By using a random walk dynamics, we estimate the flow on links and convert the original undirected network (temporal and static) into a directed flow network. We then introduce the concept of flow motifs and quantify the divergence in the representativity of motifs when using the temporal and static frameworks. We find that the regularity of contacts and persistence of vertices (common in email communication and face-to-face interactions) result on little differences in the limits of flow for both frameworks. On the other hand, in the case of communication within a dating site and of a sexual network, the flow between vertices changes significantly in the temporal framework such that the static approximation poorly represents the structure of contacts. We have also observed that cliques with 3 and 4 vertices containing only low-flow links are more represented than the same cliques with all high-flow links. The representativity of these low-flow cliques is higher in the temporal framework. Our results suggest that the flow between vertices connected in cliques depend on the topological context in which they are placed and in the time sequence in which the links are established. The structure of the clique alone does not completely characterize the potential of flow between the vertices.

  5. Patterns and rates of ground-water flow on Long Island, New York

    USGS Publications Warehouse

    Buxton, Herbert T.; Modica, Edward

    1992-01-01

    Increased ground-water contamination from human activities on Long Island has prompted studies to define the pattern and rate of ground-water movement. A two-dimensional, fine-mesh, finite-element model consisting of 11,969 nodes and 22,880 elements was constructed to represent ground-water flow along a north-south section through central Long Island. The model represents average hydrologic conditions within a corridor approximately 15 miles wide. The model solves discrete approximations of both the potential and stream functions. The resulting flownet depicts flow paths and defines the vertical distribution of flow within the section. Ground-water flow rates decrease with depth. Sixty-two percent of the water flows no deeper than the upper glacial (water-table) aquifer, 38 percent enters the underlying Magothy aquifer, and only 3.1 percent enters the Lloyd aquifer. The limiting streamlines for flow to the Magothy and Lloyd aquifers indicate that aquifer recharge areas are narrow east-west bands through the center of the island. The recharge area of the Magothy aquifer is only 5.4 miles wide; that of the Lloyd aquifer is less than 0.5 miles. The distribution of ground-water traveltime and a flownet are calculated from model results; both are useful in the investigation of contaminant transport or the chemical evolution of ground water within the flow system. A major discontinuity in traveltime occurs across the streamline which separates the flow subsystems of the two confined aquifers. Water that reaches the Lloyd aquifer attains traveltimes as high as 10,000 years, whereas water that has not penetrated deeper than the Magothy aquifer attains traveltimes of only 2,000 years. The finite-element approach used in this study is particularly suited to ground-water systems that have complex hydrostratigraphy and cross-sectional symmetry.

  6. Hyporheic Exchange Flows and Biogeochemical Patterns near a Meandering Stream: East Fork of the Jemez River, Valles Caldera National Preserve, New Mexico

    NASA Astrophysics Data System (ADS)

    Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.

    2012-12-01

    A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed direction of inter-meander hyporheic flow.

  7. Solute transport along preferential flow paths in unsaturated fractures

    USGS Publications Warehouse

    Su, Grace W.; Geller, Jil T.; Pruess, Karsten; Hunt, James R.

    2001-01-01

    Laboratory experiments were conducted to study solute transport along preferential flow paths in unsaturated, inclined fractures. Qualitative aspects of solute transport were identified in a miscible dye tracer experiment conducted in a transparent replica of a natural granite fracture. Additional experiments were conducted to measure the breakthrough curves of a conservative tracer introduced into an established preferential flow path in two different fracture replicas and a rock‐replica combination. The influence of gravity was investigated by varying fracture inclination. The relationship between the travel times of the solute and the relative influence of gravity was substantially affected by two modes of intermittent flow that occurred: the snapping rivulet and the pulsating blob modes. The measured travel times of the solute were evaluated with three transfer function models: the axial dispersion, the reactors‐in‐series, and the lognormal models. The three models described the solute travel times nearly equally well. A mechanistic model was also formulated to describe transport when the pulsating blob mode occurred which assumed blobs of water containing solute mixed with residual pools of water along the flow path.

  8. Interpolating between random walks and optimal transportation routes: Flow with multiple sources and targets

    NASA Astrophysics Data System (ADS)

    Guex, Guillaume

    2016-05-01

    In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.

  9. Groundwater status and trends for the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    USGS Publications Warehouse

    Burns, Erick R.; Snyder, Daniel T.; Haynes, Jonathan V.; Waibel, Michael S.

    2012-01-01

    Well information and groundwater-level measurements for the Columbia Plateau Regional Aquifer System in Washington, Oregon, and Idaho, were compiled from data provided by the U.S. Geological Survey and seven other organizations. From the full set of about 60,000 wells and 450,000 water-level measurements a subset of 761 wells within the aquifers of the Columbia River Basalt Group (CRBG) then was used to develop a simple linear groundwater-level trend map for 1968–2009. The mean of the trends was a decline of 1.9 feet per year (ft/yr), with 72 percent of the water levels in wells declining. Rates of declines greater than 1.0 ft/yr were measured in 50 percent of wells, declines greater than 2.0 ft/yr in 38 percent of wells, declines greater than 4.0 ft/yr in 29 percent of wells, and declines greater than 8.0 ft/yr in 4 percent of wells. Water-level data were used to identify groups of wells with similar hydraulic heads and temporal trends to delineate areas of overall similar groundwater conditions. Discontinuities in hydraulic head between well groups were used to help infer the presence of barriers to groundwater flow such as changes in lithology or the occurrence of folds and faults. In areas without flow barriers, dissimilarities in response of well groups over time resulted from the formation of groundwater mounds caused by recharge from irrigation or regions of decline caused by pumping. The areas of focus for this analysis included the Umatilla area, Oregon, and the Palouse Slope/eastern Yakima Fold Belt in the Columbia Basin Ground Water Management Area (GWMA) consisting of Adams, Franklin, Grant, and Lincoln Counties, Washington. In the Umatilla area, water levels from 286 wells were used to identify multiple areas of high hydraulic gradient that indicate vertical and horizontal barriers to groundwater flow. These barriers divide the groundwater-flow system into several compartments with varying degrees of interconnection. Horizontal flow barriers commonly correspond to mapped geologic structure and result in horizontal hydraulic gradients that progressively become steeper from north to south corresponding to an increase in structural complexity that may be impeding recharge from the uplands into the heavily developed areas. Most CRBG aquifers in the Umatilla area are declining and since 1970, cumulative declines range from about 100 to 300 feet. Significant vertical hydraulic gradients are documented for relatively small areas near Umatilla, and since the 1970s, downward vertical gradients in these areas have been increasing as hydraulic heads in the deeper units have declined. The absence of vertical gradients over much of the area may be a consequence of flow through commingling wells that results in the equilibration of the heads between aquifers. On the Palouse Slope in the central GWMA, large groundwater declines occurred during 1968–2009 along a north-south swath in the middle of the region. An analysis of 1,195 wells along major flow paths and through the area of persistent groundwater-level declines indicates that barriers to flow are not as evident in this area as in Umatilla. This is consistent with the geologic interpretation of the Palouse Slope as being a gently folded structure created by voluminous sheet flows of CRBG lavas. Groundwater discharge into the sediment-filled coulees, where the upper aquifers are intersected at land surface by incised canyons, is proposed as an alternative to explain local steepening of the hydraulic gradient along the Palouse Slope previously attributed to the presence of a groundwater dam. Comparison of generalized potentiometric surface maps developed for pre-development conditions and post-2000 conditions indicate that pre-development groundwater flow was from the uplands toward the Columbia and Snake River and that post-2000 flow patterns in the area are controlled by irrigation practices that have resulted in broad regions of elevated or depressed hydraulic head. In some cases, irrigation-related changes in head have reversed groundwater flow directions. Evidence of significant vertical hydraulic gradients exists, although much of the aquifer thickness is affected by commingling of wells. The effect of commingling and its relative contribution to problems related to groundwater-level declines remains unclear.

  10. Determination of accurate vertical atmospheric profiles of extinction and turbulence

    NASA Astrophysics Data System (ADS)

    Hammel, Steve; Campbell, James; Hallenborg, Eric

    2017-09-01

    Our ability to generate an accurate vertical profile characterizing the atmosphere from the surface to a point above the boundary layer top is quite rudimentary. The region from a land or sea surface to an altitude of 3000 meters is dynamic and particularly important to the performance of many active optical systems. Accurate and agile instruments are necessary to provide measurements in various conditions, and models are needed to provide the framework and predictive capability necessary for system design and optimization. We introduce some of the path characterization instruments and describe the first work to calibrate and validate them. Along with a verification of measurement accuracy, the tests must also establish each instruments performance envelope. Measurement of these profiles in the field is a problem, and we will present a discussion of recent field test activity to address this issue. The Comprehensive Atmospheric Boundary Layer Extinction/Turbulence Resolution Analysis eXperiment (CABLE/TRAX) was conducted late June 2017. There were two distinct objectives for the experiment: 1) a comparison test of various scintillometers and transmissometers on a homogeneous horizontal path; 2) a vertical profile experiment. In this paper we discuss only the vertical profiling effort, and we describe the instruments that generated data for vertical profiles of absorption, scattering, and turbulence. These three profiles are the core requirements for an accurate assessment of laser beam propagation.

  11. Laboratory experiments on subduction-induced circulation in the wedge and the evolution of mantle diapirs

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.; Behn, M. D.; Zhang, N.

    2014-12-01

    Circulation in subduction zones involves large-scale, forced-convection by the motion of the down-going slab and small scale, buoyant diapirs of hydrated mantle or subducted sediments. Models of subduction-diapir interaction often neglect large-scale flow patterns induced by rollback, back-arc extension and slab morphology. We present results from laboratory experiments relating these parameters to styles of 4-D wedge circulation and diapir ascent. A glucose fluid is used to represent the mantle. Subducting lithosphere is modeled with continuous rubber belts moving with prescribed velocities, capable of reproducing a large range in downdip relative rollback plate rates. Differential steepening of distinct plate segments simulates the evolution of slab gaps. Back-arc extension is produced using Mylar sheeting in contact with fluid beneath the overriding plate that moves relative to the slab rollback rate. Diapirs are introduced at the slab-wedge interface in two modes: 1) distributions of low density rigid spheres and 2) injection of low viscosity, low density fluid to the base of the wedge. Results from 30 experiments with imposed along-trench (y) distributions of buoyancy, show near-vertical ascent paths only in cases with simple downdip subduction and ratios (W*) of diapir rise velocity to downdip plate rate of W*>1. For W* = 0.2-1, diapir ascent paths are complex, with large (400 km) lateral offsets between source and surfacing locations. Rollback and back-arc extension enhance these offsets, occasionally aligning diapirs from different along-trench locations into trench-normal, age-progressive linear chains beneath the overriding plate. Diapirs from different y-locations may surface beneath the same volcanic center, despite following ascent paths of very different lengths and transit times. In cases with slab gaps, diapirs from the outside edge of the steep plate move 1000 km parallel to the trench before surfacing above the shallow dipping plate. "Dead zones" resulting from lateral and vertical shear in the wedge above the slab gap, produce slow transit times. These 4-D ascent pathways are being incorporated into numerical models on the thermal and melting evolution of diapirs. Models show subduction-induced circulation significantly alters diapir ascent beneath arcs.

  12. The role of thermal stratification in tidal exchange at the mouth of San Diego Bay

    USGS Publications Warehouse

    Chadwick, D. B.; Largier, J. L.; Cheng, R.T.; Aubrey, D.G.; Friedrichs, C.T.; Aubrey, D.G.; Friedrichs, C.T.

    1996-01-01

    We have examined, from an observational viewpoint, the role of thermal stratification in the tidal exchange process at the mouth of San Diego Bay. In this region, we found that both horizontal and vertical exchange processes appear to be active. The vertical exchange in this case was apparently due to the temperature difference between the'bay water and ocean water. We found that the structure of the outflow and the nature of the tidal exchange process both appear to be influenced by thermal stratification. The tidal outflow was found to lift-off tan the bottom during the initial and later stages of the ebb flow when barotropic forcing was weak. During the peak ebb flow, the mouth section was flooded, and the outflow extended to the bottom. As the ebb flow weakened, a period of two-way exchange occurred, with the surface layer flowing seaward, and the deep layer flowing into the bay. The structure of the tidal-residual flow and the residual transport of a measured tracer were strongly influenced by this vertical exchange. Exchange appeared to occur laterally as well, in a manner consistent with the tidal-pumping mechanism described by Stommel and Farmer [1952]. Tidal cycle variations in shear and stratification were characterized by strong vertical shear and breakdown of stratification during the ebb, and weak vertical shear and build-up of stratification on the flood. Evaluation of multiple tidal-cycles from time-series records of flow and temperature indicated that the vertical variations of the flow and stratification observed during the cross-sectional measurements are a general phenomenon during the summer. Together, these observations suggest that thermal stratification can play an important role in regulating the tidal exchange of low-inflow estuaries.

  13. Heat exchanger efficiently operable alternatively as evaporator or condenser

    DOEpatents

    Ecker, Amir L.

    1981-01-01

    A heat exchanger adapted for efficient operation alternatively as evaporator or condenser and characterized by flexible outer tube having a plurality of inner conduits and check valves sealingly disposed within the outer tube and connected with respective inlet and outlet master flow conduits and configured so as to define a parallel flow path for a first fluid such as a refrigerant when flowed in one direction and to define a serpentine and series flow path for the first fluid when flowed in the opposite direction. The flexible outer tube has a heat exchange fluid, such as water, flowed therethrough by way of suitable inlet and outlet connections. The inner conduits and check valves form a package that is twistable so as to define a spiral annular flow path within the flexible outer tube for the heat exchange fluid. The inner conduits have thin walls of highly efficient heat transfer material for transferring heat between the first and second fluids. Also disclosed are specific materials and configurations.

  14. Hydrogeology of the upper Floridan Aquifer in the vicinity of the Marine Corps Logistics Base near Albany, Georgia

    USGS Publications Warehouse

    McSwain, Kristen Bukowski

    1999-01-01

    In 1995, the U.S. Navy requested that the U.S. Geological Survey conduct an investigation to describe the hydrogeology of the Upper Floridan aquifer in the vicinity of the Marine Corps Logistics Base, southeast and adjacent to Albany, Georgia. The study area encompasses about 90 square miles in the Dougherty Plain District of the Coastal Plain physiographic province, in Dougherty and Worth Counties-the Marine Corps Logistics Base encompasses about 3,600 acres in the central part of the study area. The Upper Floridan aquifer is the shallowest, most widely used source of drinking water for domestic use in the Albany area. The hydrogeologic framework of this aquifer was delineated by description of the geologic and hydrogeologic units that compose the aquifer; evaluation of the lithologic and hydrologic heterogeneity of the aquifer; comparison of the geologic and hydrogeologic setting beneath the base with those of the surrounding area; and determination of ground-water-flow directions, and vertical hydraulic conductivities and gradients in the aquifer. The Upper Floridan aquifer is composed of the Suwannee Limestone and Ocala Limestone and is divided into an upper and lower water-bearing zone. The aquifer is confined below by the Lisbon Formation and is semi-confined above by a low-permeability clay layer in the undifferentiated overburden. The thickness of the aquifer ranges from about 165 feet in the northeastern part of the study area, to about 325 feet in the southeastern part of the study area. Based on slug tests conducted by a U.S. Navy contractor, the upper water-bearing zone has low horizontal hydraulic conductivity (0.0224 to 2.07 feet per day) and a low vertical hydraulic conductivity (0.0000227 to 0.510 feet per day); the lower water-bearing zone has a horizontal hydraulic conductivity that ranges from 0.0134 to 2.95 feet per day. Water-level hydrographs of continuously monitored wells on the Marine Corps Logistics Base show excellent correlation between ground-water level and stage of the Flint River. Ground-water-flow direction in the southwestern part of the base generally is southeast to northwest; whereas, in the northeastern part of the base, flow directions generally are east to west, as well as from west to east, thus creating a ground-water low. Ground-water flow in the larger study area generally is east to west towards the Flint River, with a major ground-water-flow path existing from the Pelham Escarpment to the Flint River and a seasonal cone of depression the size of which is dependent upon the magnitude of irrigation pumping during the summer months. Calculated vertical hydraulic gradients (based upon data from 11 well-cluster sites on the Marine Corps Logistics Base) range from 0.0016 to 0.1770 foot per foot, and generally are highest in the central and eastern parts of the base. The vertical gradient is downward at all well-cluster sites.

  15. In Situ Measurement of Permeability in the Vicinity of Faulted Nonwelded Bishop Tuff, Bishop, CA

    NASA Astrophysics Data System (ADS)

    Dinwiddie, C. L.; Fedors, R. W.; Ferrill, D. A.; Bradbury, K. K.

    2002-12-01

    The nonwelded Bishop Tuff includes matrix-supported massive ignimbrites and clast-supported bedded deposits. Fluid flow through such faulted nonwelded tuff is likely to be influenced by a combination of host rock properties and the presence of deformation features, such as open fractures, mineralized fractures, and fault zones that exhibit comminuted fault rock and clays. Lithologic contacts between fine- and coarse-grained sub-units of nonwelded tuff may induce formation of capillary and/or permeability barriers within the unsaturated zone, potentially leading to down-dip lateral diversion of otherwise vertically flowing fluid. However, discontinuities (e.g., fractures and faults) may lead to preferential sub-vertical fast flow paths in the event of episodic infiltration rates, thus disrupting the potential for both (1) large-scale capillary and/or permeability barriers to form and for (2) redirection of water flow over great lateral distances. This study focuses on an innovative technique for measuring changes in matrix permeability near faults in situ--changes that may lead to enhancement of vertical fluid flow and disruption of lateral fluid flow. A small-drillhole minipermeameter probe provides a means to eliminate extraction of fragile nonwelded tuffs as a necessity for permeability measurement. Advantages of this approach include (1) a reduction of weathering-effects on measured permeability, and (2) provision of a superior sealing mechanism around the gas injection zone. In order to evaluate the effect of faults and fault zone deformation on nonwelded tuff matrix permeability, as well as to address the potential for disruption of lithologic barrier-induced lateral diversion of flow, data were collected from two fault systems and from unfaulted host rock. Two hundred and sixty-seven gas-permeability measurements were made at 89 locations; i.e. permeability measurements were made in triplicate at each location with three flow rates. Data were collected at the first fault and perpendicularly away from it within the hanging wall to a distance of 6 m [20 ft] along one transect, and perpendicular to the fault from the foot wall to the hanging wall for a distance of 6 m [20 ft] along a second transect. Additionally, eight water-permeameter tests were conducted in order to augment the gas-permeability data. Gas-permeability measurements were collected along two transects at the main fault of the second fault system and perpendicularly away from it within the foot wall to a distance of 10.5 m [34 ft], crossing several secondary faults in the process. Data were also collected within the fault gouge of the main fault, and were found to vary therein by an order of magnitude. This Bishop Tuff study supports the U.S. Nuclear Regulatory Commission (NRC) review of hydrologic property studies at Yucca Mountain, Nevada, which are conducted by the U.S. Department of Energy. This abstract is an independent product of the CNWRA and does not necessarily reflect the views or regulatory position of the NRC.

  16. Flow Visualization of Low Prandtl Number Fluids using Electrochemical Measurements

    NASA Technical Reports Server (NTRS)

    Crunkleton, D.; Anderson, T.; Narayanan, R.; Labrosse, G.

    2003-01-01

    It is well established that residual flows exist in contained liquid metal processes. In 1-g processing, buoyancy forces often drive these flows and their magnitudes can be substantial. It is also known that residual flows can exist during microgravity processing, and although greatly reduced in magnitude, they can influence the properties of the processed materials. Unfortunately, there are very few techniques to visualize flows in opaque, high temperature liquid metals, and those available are not easily adapted to flight investigation. In this study, a novel technique is developed that uses liquid tin as the model fluid and solid-state electrochemical cells constructed from Yttria-Stabilized Zirconia (YSZ) to establish and measure dissolved oxygen boundary conditions. The melt serves as a common electrode for each of the electrochemical cells in this design, while independent reference electrodes are maintained at the outside surfaces of the electrolyte. By constructing isolated electrochemical cells at various locations along the container walls, oxygen is introduced or extracted by imposing a known electrical potential or passing a given current between the melt and the reference electrode. This programmed titration then establishes a known oxygen concentration boundary condition at the selected electrolyte-melt interface. Using the other cells, the concentration of oxygen at the electrolyte-melt interface is also monitored by measuring the open-circuit potentials developed between the melt and reference electrodes. Thus the electrochemical cells serve to both establish boundary conditions for the passive tracer and sense its path. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically. Additionally, flow field oscillations are visualized and the effect of tilt on convecting systems is quantified. Experimental studies of the effect of convection in liquid tin are presented. Three geometries are studied: (1) double electrochemical cell with vertical concentration gradients; (2) double cell with horizontal concentration gradients; and (3) multiple cells with vertical temperature gradients. The first critical Rayleigh number transition is detected with geometry (1) and it is concluded that current measurements are not as affected by convection as EMF measurements. The system is compared with numerical simulations in geometry (2), and oscillating convection is detected with geometry (3).

  17. Comparison of vertical discretization techniques in finite-difference models of ground-water flow; example from a hypothetical New England setting

    USGS Publications Warehouse

    Harte, Philip T.

    1994-01-01

    Proper discretization of a ground-water-flow field is necessary for the accurate simulation of ground-water flow by models. Although discretiza- tion guidelines are available to ensure numerical stability, current guidelines arc flexible enough (particularly in vertical discretization) to allow for some ambiguity of model results. Testing of two common types of vertical-discretization schemes (horizontal and nonhorizontal-model-layer approach) were done to simulate sloping hydrogeologic units characteristic of New England. Differences of results of model simulations using these two approaches are small. Numerical errors associated with use of nonhorizontal model layers are small (4 percent). even though this discretization technique does not adhere to the strict formulation of the finite-difference method. It was concluded that vertical discretization by means of the nonhorizontal layer approach has advantages in representing the hydrogeologic units tested and in simplicity of model-data input. In addition, vertical distortion of model cells by this approach may improve the representation of shallow flow processes.

  18. Short paths in expander graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinberg, J.; Rubinfeld, R.

    Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratiomore » in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.« less

  19. Buoyancy effects in steeply inclined air-water bubbly shear flow in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Sanaullah, K.; Arshad, M.; Khan, A.; Chughtai, I. R.

    2015-07-01

    We report measurements of two-dimensional ( B/ D = 5) fully turbulent and developed duct flows (overall length/depth, L/ D = 60; D-based Reynolds number Re > 104) for inclinations to 30° from vertical at low voidages (< 5 % sectional average) representative of disperse regime using tap water bubbles (4-6 mm) and smaller bubbles (2 mm) stabilised in ionic solution. Pitot and static probe instrumentation, primitive but validated, provided adequate (10 % local value) discrimination of main aspects of the mean velocity and voidage profiles at representative streamwise station i.e L/ D = 40. Our results can be divided into three categories of behaviour. For vertical flow (0°) the evidence is inconclusive as to whether bubbles are preferentially trapped within the wall-layer as found in some, may be most earlier experimental works. Thus, the 4-mm bubbles showed indication of voidage retention but the 2-mm bubbles did not. For nearly vertical flow (5°) there was pronounced profiling of voidage especially with 4-mm bubbles but the transverse transport was not suppressed sufficiently to induce any obvious layering. In this context, we also refer to similarities with previous work on one-phase vertical and nearly vertical mixed convection flows displaying buoyancy inhibited mean shear turbulence. However, with inclined flow (10+ degrees) a distinctively layered pattern was invariably manifested in which voidage confinement increased with increasing inclination. In this paper we address flow behavior at near vertical conditions. Eulerian, mixed and VOF models were used to compute voidage and mean velocity profiles.

  20. Application of combined 81Kr and 4He chronometers to the dating of old groundwater in a tectonically active region of the North China Plain

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuya; Chen, Zongyu; Wei, Wen; Yang, Guo-Min; Hu, Shui-Ming; Zhang, Xiangyang

    2018-07-01

    Groundwater dating by radio-krypton (81Kr; half-life of about 229,000 years) was applied to the sedimentary basin aquifer of the North China Plain (NCP). Krypton gas extracted from deep groundwater in the Coastal Plain was analyzed for 81Kr/Kr ratios by Atom Trap Trace Analysis, which yielded normalized ratios of 0.05 to 0.20, corresponding to groundwater residence times of 0.5-1 million years. Helium isotope compositions were determined on groundwater samples collected from the Central Plain and the Coastal Plain along a flow path of about 200 km. Helium dissolved in the groundwater samples are a mixture of atmospheric, crustal radiogenic and mantle derived sources. Mantle derived 3He contributes up to 30% of the total, and the area of occurrence coincides with zones of previous magmatic/tectonic activities. By contrast, >90% of 4He is derived from crustal reservoirs and correlates with 81Kr ages. The absolute groundwater ages (81Kr) and radiogenic 4He concentrations permit us to calibrate the 4He flux into the aquifer as well as the vertical diffusion rate of 4He to utilize the radiogenic 4He in groundwater as a quantitative age tracer. Previously, groundwater showed 14C activities near the limit of detection (30-40 k yr), in contrast Kr and radiogenic 4He data reveal progressively older ages from the recharge area to the Coastal Plain, from <20,000 yr to 0.5 to 1 Ma along the flow path of the NCP aquifers.

  1. Design requirements and development of an airborne descent path definition algorithm for time navigation

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Thompson, J. L.; Groce, J. L.; Schwab, R. W.

    1986-01-01

    The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described.

  2. WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER

    EPA Science Inventory

    Water quality changes along hyporheic flow paths may have
    important effects on river water quality and aquatic habitat. Previous
    studies on the Willamette River, Oregon, showed that river water follows
    hyporheic flow paths through highly porous deposits created by river...

  3. Exploiting broad-area surface emitting lasers to manifest the path-length distributions of finite-potential quantum billiards.

    PubMed

    Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F

    2016-01-11

    Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.

  4. CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models

    USGS Publications Warehouse

    Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.

    2013-01-01

    The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.

  5. Concentrations and speciation of arsenic along a groundwater flow-path in the Upper Floridan aquifer, Florida, USA

    NASA Astrophysics Data System (ADS)

    Haque, S. E.; Johannesson, K. H.

    2006-05-01

    Arsenic (As) concentrations and speciation were determined in groundwaters along a flow-path in the Upper Floridan aquifer (UFA) to investigate the biogeochemical “evolution“ of As in this relatively pristine aquifer. Dissolved inorganic As species were separated in the field using anion-exchange chromatography and subsequently analyzed by inductively coupled plasma mass spectrometry. Total As concentrations are higher in the recharge area groundwaters compared to down-gradient portions of UFA. Redox conditions vary from relatively oxic to anoxic along the flow-path. Mobilization of As species in UFA groundwaters is influenced by ferric iron reduction and subsequent dissolution, sulfate reduction, and probable pyrite precipitation that are inferred from the data to occur along distinct regions of the flow-path. In general, the distribution of As species are consistent with equilibrium thermodynamics, such that arsenate dominates in more oxidizing waters near the recharge area, and arsenite predominates in the progressively reducing groundwaters beyond the recharge area.

  6. Device for improved air and fuel distribution to a combustor

    DOEpatents

    Laster, Walter R.; Schilp, Reinhard

    2016-05-31

    A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).

  7. Extended shortest path selection for package routing of complex networks

    NASA Astrophysics Data System (ADS)

    Ye, Fan; Zhang, Lei; Wang, Bing-Hong; Liu, Lu; Zhang, Xing-Yi

    The routing strategy plays a very important role in complex networks such as Internet system and Peer-to-Peer networks. However, most of the previous work concentrates only on the path selection, e.g. Flooding and Random Walk, or finding the shortest path (SP) and rarely considering the local load information such as SP and Distance Vector Routing. Flow-based Routing mainly considers load balance and still cannot achieve best optimization. Thus, in this paper, we propose a novel dynamic routing strategy on complex network by incorporating the local load information into SP algorithm to enhance the traffic flow routing optimization. It was found that the flow in a network is greatly affected by the waiting time of the network, so we should not consider only choosing optimized path for package transformation but also consider node congestion. As a result, the packages should be transmitted with a global optimized path with smaller congestion and relatively short distance. Analysis work and simulation experiments show that the proposed algorithm can largely enhance the network flow with the maximum throughput within an acceptable calculating time. The detailed analysis of the algorithm will also be provided for explaining the efficiency.

  8. Pyroclastic flow hazard at Volcán Citlaltépetl

    USGS Publications Warehouse

    Sheridan, Michael F.; Hubbard, Bernard E.; Carrasco-Nunez, Gerardo; Siebe, Claus

    2004-01-01

    Volcán Citlaltépetl (Pico de Orizaba) with an elevation of 5,675 m is the highest volcano in North America. Its most recent catastrophic events involved the production of pyroclastic flows that erupted approximately 4,000, 8,500, and 13,000 years ago. The distribution of mapped deposits from these eruptions gives an approximate guide to the extent of products from potential future eruptions. Because the topography of this volcano is constantly changing computer simulations were made on the present topography using three computer algorithms: energy cone, FLOW2D, and FLOW3D. The Heim Coefficient (μ), used as a code parameter for frictional sliding in all our algorithms, is the ratio of the assumed drop in elevation (H) divided by the lateral extent of the mapped deposits (L). The viscosity parameter for the FLOW2D and FLOW3D codes was adjusted so that the paths of the flows mimicked those inferred from the mapped deposits. We modeled two categories of pyroclastic flows modeled for the level I and level II events. Level I pyroclastic flows correspond to small but more frequent block-and-ash flows that remain on the main cone. Level II flows correspond to more widespread flows from catastrophic eruptions with an approximate 4,000-year repose period. We developed hazard maps from simulations based on a National Imagery and Mapping Agency (NIMA) DTED-1 DEM with a 90 m grid and a vertical accuracy of ±30 m. Because realistic visualization is an important aid to understanding the risks related to volcanic hazards we present the DEM as modeled by FLOW3D. The model shows that the pyroclastic flows extend for much greater distances to the east of the volcano summit where the topographic relief is nearly 4,300 m. This study was used to plot hazard zones for pyroclastic flows in the official hazard map that was published recently.

  9. Flow-Meter and Passive Diffusion Bag Tests and Potential Influences on the Vertical Distribution of Contaminants in Wells at Galena Airport, Galena, Alaska, August to October 2002

    USGS Publications Warehouse

    Vroblesky, Don A.; Peterson, J.E.

    2004-01-01

    Past activities at Galena Airport, a U.S. Air Force Base in Galena, Alaska, have resulted in ground-water contamination by volatile organic compounds. The primary contaminants are petroleum hydrocarbons and chlorinated aliphatic hydrocarbons. The U.S. Geological Survey and Earth Tech, in cooperation with the Air Force Center for Environmental Excellence, conducted investigations at Galena Airport from August to October 2002 using polyethylene diffusion bag samplers and borehole flow-meter testing to examine the vertical distribution of ground-water contamination in selected wells. This investigation was limited to the vicinity of building 1845 and to the area between building 1845 and the Yukon River. In addition, the U.S. Geological Survey was asked to determine whether additional wells are needed to more clearly define the nature and extent of the ground-water contamination at the Air Force Base. Little or no vertical water movement occurred under ambient conditions in the wells tested at Galena Airport, Alaska, in August 2002. All of the ambient vertical flows detected in wells were at rates less than the quantitative limit of the borehole flow meter (0.03 gallons per minute). In wells 06-MW-07 and 10-MW-01, no vertical flow was detected. In wells where ambient flow was detected, the direction of flow was downward. In general, concentrations of volatile organic compounds detected in the low-flow samples from wells at Galena Airport were approximately the same concentrations detected in the closest polyethylene diffusion bag sample for a wide variety of volatile organic compounds. The data indicate that the polyethylene diffusion bag sample results are consistent with the low-flow sample results. Vertical profiling of selected wells using polyethylene diffusion bag samplers at Galena Airport showed that from September 30 to October 1, 2002, little vertical change occurred in volatile organic compound concentrations along the screen length despite the fact that little or no vertical flow was measured in most of the tested wells in August 2002. Two of the wells (10-MW-03 and 06-MW-01) had slightly greater vertical concentration variation for some constituents. In these wells, the contaminant depth probably is lithologically influenced. The close match between concentrations measured in polyethylene diffusion bag and low-flow samples indicates that the bag samples accurately represent the distribution of volatile organic compounds in the wells. It is unclear, however, whether the distribution of volatile organic compounds in the wells, as indicated by the bag samplers, represents contaminant distributions in the aquifer or transient movement within the wells. The probable change in well hydraulics between August and late September to October indicates that the relatively uniform vertical distribution of volatile organic compounds in some of the wells may represent in-well mixing. This uncertainty could be clarified by the installation and sampling of well clusters at various times of the year. Additional insight into the vertical distribution of contamination and flow possibly could be obtained by conducting flow-meter tests and collecting polyethylene diffusion bag samples from selected wells at different times of the year. The westernmost contaminant plume at Million Gallon Hill appears to be surrounded by sufficient monitoring wells to detect changes in the plume extent; however, the installation of additional wells at Galena Airport has the potential to provide additional information on the extent of ground-water contamination in the remaining plumes. The additional information to be gained includes better definition of the vertical and lateral extents of the plumes and better definition of the ground-water flow directions.

  10. Uncertainty in the modelling of spatial and temporal patterns of shallow groundwater flow paths: The role of geological and hydrological site information

    NASA Astrophysics Data System (ADS)

    Woodward, Simon J. R.; Wöhling, Thomas; Stenger, Roland

    2016-03-01

    Understanding the hydrological and hydrogeochemical responses of hillslopes and other small scale groundwater systems requires mapping the velocity and direction of groundwater flow relative to the controlling subsurface material features. Since point observations of subsurface materials and groundwater head are often the basis for modelling these complex, dynamic, three-dimensional systems, considerable uncertainties are inevitable, but are rarely assessed. This study explored whether piezometric head data measured at high spatial and temporal resolution over six years at a hillslope research site provided sufficient information to determine the flow paths that transfer nitrate leached from the soil zone through the shallow saturated zone into a nearby wetland and stream. Transient groundwater flow paths were modelled using MODFLOW and MODPATH, with spatial patterns of hydraulic conductivity in the three material layers at the site being estimated by regularised pilot point calibration using PEST, constrained by slug test estimates of saturated hydraulic conductivity at several locations. Subsequent Null Space Monte Carlo uncertainty analysis showed that this data was not sufficient to definitively determine the spatial pattern of hydraulic conductivity at the site, although modelled water table dynamics matched the measured heads with acceptable accuracy in space and time. Particle tracking analysis predicted that the saturated flow direction was similar throughout the year as the water table rose and fell, but was not aligned with either the ground surface or subsurface material contours; indeed the subsurface material layers, having relatively similar hydraulic properties, appeared to have little effect on saturated water flow at the site. Flow path uncertainty analysis showed that, while accurate flow path direction or velocity could not be determined on the basis of the available head and slug test data alone, the origin of well water samples relative to the material layers and site contour could still be broadly deduced. This study highlights both the challenge of collecting suitably informative field data with which to characterise subsurface hydrology, and the power of modern calibration and uncertainty modelling techniques to assess flow path uncertainty in hillslopes and other small scale systems.

  11. Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer

    NASA Astrophysics Data System (ADS)

    Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles

    2012-11-01

    For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).

  12. Characterizing Reactive Flow Paths in Fractured Cement

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Huerta, N. J.; Hesse, M. A.; Bryant, S. L.

    2011-12-01

    Geologic carbon sequestration can be a viable method for reducing anthropogenic CO2 flux into the atmosphere. However, the technology must be economically feasible and pose acceptable risk to stakeholders. One key risk is CO2 leakage out of the storage reservoir. Potential driving forces for leakage are the overpressure due to CO2 injection and the buoyancy of free phase CO2. Potential hazards of leakage are contamination of Underground Sources of Drinking Water or the atmosphere and would be deemed an unacceptable risk. Wells potentially provide a fast path for leakage from the reservoir. While the well's cement casing is reactive with CO2 and CO2-saturated brine, the low cement matrix permeability and slow diffusion rate make it unlikely that CO2 will escape through a properly constructed wellbore. However, highly permeable fractures with micrometer scale apertures can occur in cement casings. Reactions that occur in the flow in these fractures can either be self-limiting or self-enhancing. Therefore, understanding the reactive flow is critical to understanding of leakage evolution through these fractures. The goal of our work is to characterize the modification of the flow paths in the fracture due to reaction with acidic brine. With this aim we have characterized both the initial flow path of un-reactive flow and the final flow path after introduction of low-pH acid along the same fracture. Class H cement cores 3-6 cm in length and 2.5 cm diameter are created and a single natural and unique fracture is produced in each core using the Brazilian method. Our experimental fluid is injected at a constant rate into the cement core housed in a Hassler Cell under confining pressure. A solution of red dye and deionized water is pumped through the fracture to stain the un-reactive flow paths. Deionized water is then pumped through the core to limit diffusion of the dye into non-flowing portions of the fracture. After staining the initial flow path, low pH water due to hydrochloric acid (HCL), is pumped through the core at the same rate as the dye. The low pH water is used as a proxy for acidic CO2-saturated brine. Both staining from the un-reactive dye and acid produce visible permanent color alterations on the cement fracture plane. Results show that nearly the entire fracture width is stained by the red dye, with only a few asperities un-dyed. However the low pH HCl forms restricted reacted channels that are a subset of the area open to un-reactive flow, occupying only 10-50% of the entire fracture width. Low pH HCl is believed to be the driving force for the reaction that causes channeling. As acid flows through the fracture, calcium is stripped from the low pH high velocity flow front and precipitates along of the edges of the channel where pH is higher due to the lower flow velocities outside the channel. It is hypothesized that this mineral precipitation restricts the flow into localized channels within the plane of fractures having apertures of tens of micrometers. Reactions restrict the flow path to a smaller fraction of the surface, which may be an indication of self-limiting behavior.

  13. The role of storm scale, position and movement in controlling urban flood response

    NASA Astrophysics Data System (ADS)

    ten Veldhuis, Marie-claire; Zhou, Zhengzheng; Yang, Long; Liu, Shuguang; Smith, James

    2018-01-01

    The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability.

  14. Whole cell quenched flow analysis.

    PubMed

    Chiang, Ya-Yu; Haeri, Sina; Gizewski, Carsten; Stewart, Joanna D; Ehrhard, Peter; Shrimpton, John; Janasek, Dirk; West, Jonathan

    2013-12-03

    This paper describes a microfluidic quenched flow platform for the investigation of ligand-mediated cell surface processes with unprecedented temporal resolution. A roll-slip behavior caused by cell-wall-fluid coupling was documented and acts to minimize the compression and shear stresses experienced by the cell. This feature enables high-velocity (100-400 mm/s) operation without impacting the integrity of the cell membrane. In addition, rotation generates localized convection paths. This cell-driven micromixing effect causes the cell to become rapidly enveloped with ligands to saturate the surface receptors. High-speed imaging of the transport of a Janus particle and fictitious domain numerical simulations were used to predict millisecond-scale biochemical switching times. Dispersion in the incubation channel was characterized by microparticle image velocimetry and minimized by using a horizontal Hele-Shaw velocity profile in combination with vertical hydrodynamic focusing to achieve highly reproducible incubation times (CV = 3.6%). Microfluidic quenched flow was used to investigate the pY1131 autophosphorylation transition in the type I insulin-like growth factor receptor (IGF-1R). This predimerized receptor undergoes autophosphorylation within 100 ms of stimulation. Beyond this demonstration, the extreme temporal resolution can be used to gain new insights into the mechanisms underpinning a tremendous variety of important cell surface events.

  15. On the metallicity gradients of the Galactic disk as revealed by LSS-GAC red clump stars

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Liu, Xiao-Wei; Zhang, Hua-Wei; Yuan, Hai-Bo; Xiang, Mao-Sheng; Chen, Bing-Qiu; Ren, Juan-Juan; Sun, Ning-Chen; Wang, Chun; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei; Yang, Ming

    2015-08-01

    Using a sample of over 70 000 red clump (RC) stars with 5%-10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z| ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle (7 ≤ RGC ≤ 115 kpc), the radial gradient has a moderately steep, negative slope of -0.08 dex kpc-1 near the midplane (|Z| < 0.1 kpc), and the slope flattens with increasing |Z|. In the outer disk (11.5 < RGC ≤ 14 kpc), the radial gradients have an essentially constant, much less steep slope of -0.01 dex kpc-1 at all heights above the plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk (0 ≤ |Z| ≤ 1 kpc) is found to flatten with RGC quicker than that of the upper disk (1 < |Z| ≤ 3 kpc). Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk (e.g. gas flows, radial migration, and internal and external perturbations).

  16. Outline of a novel architecture for cortical computation.

    PubMed

    Majumdar, Kaushik

    2008-03-01

    In this paper a novel architecture for cortical computation has been proposed. This architecture is composed of computing paths consisting of neurons and synapses. These paths have been decomposed into lateral, longitudinal and vertical components. Cortical computation has then been decomposed into lateral computation (LaC), longitudinal computation (LoC) and vertical computation (VeC). It has been shown that various loop structures in the cortical circuit play important roles in cortical computation as well as in memory storage and retrieval, keeping in conformity with the molecular basis of short and long term memory. A new learning scheme for the brain has also been proposed and how it is implemented within the proposed architecture has been explained. A few mathematical results about the architecture have been proposed, some of which are without proof.

  17. A physically-based Distributed Hydrologic Model for Tropical Catchments

    NASA Astrophysics Data System (ADS)

    Abebe, N. A.; Ogden, F. L.

    2010-12-01

    Hydrological models are mathematical formulations intended to represent observed hydrological processes in a watershed. Simulated watersheds in turn vary in their nature based on their geographic location, altitude, climatic variables and geology and soil formation. Due to these variations, available hydrologic models vary in process formulation, spatial and temporal resolution and data demand. Many tropical watersheds are characterized by extensive and persistent biological activity and a large amount of rain. The Agua Salud catchments located within the Panama Canal Watershed, Panama, are such catchments identified by steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. Tropical soils are highly affected by soil cracks, decayed tree roots and earthworm burrows forming a network of preferential flow paths that drain to a perched water table, which forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant processes in these tropical watersheds. The model incorporates the major flow processes including overland flow, channel flow, matrix and non-Richards film flow infiltration, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer, and deep saturated groundwater flow. Emphasis is given to the modeling of subsurface unsaturated zone soil moisture dynamics and the saturated preferential lateral flow from the network of macrospores. Preliminary results indicate that the model has the capability to simulate the complex hydrological processes in the catchment and will be a useful tool in the ongoing comprehensive ecohydrological studies in tropical catchments, and help improve our understanding of the hydrological effects of deforestation and aforestation.

  18. Pin Tool Geometry Effects in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Querin, J. A.; Rubisoff, H. A.; Schneider, J. A.

    2009-01-01

    In friction stir welding (FSW) there is significant evidence that material can take one of two different flow paths when being displaced from its original position in front of the pin tool to its final position in the wake of the weld. The geometry of the pin tool, along with the process parameters, plays an important role in dictating the path that the material takes. Each flow path will impart a different thermomechanical history on the material, consequently altering the material microstructure and subsequent weld properties. The intention of this research is to isolate the effect that different pin tool attributes have on the flow paths imparted on the FSWed material. Based on published weld tool geometries, a variety of weld tools were fabricated and used to join AA2219. Results from the tensile properties and microstructural characterization will be presented.

  19. Tracking trade transactions in water resource systems: A node-arc optimization formulation

    NASA Astrophysics Data System (ADS)

    Erfani, Tohid; Huskova, Ivana; Harou, Julien J.

    2013-05-01

    We formulate and apply a multicommodity network flow node-arc optimization model capable of tracking trade transactions in complex water resource systems. The model uses a simple node to node network connectivity matrix and does not require preprocessing of all possible flow paths in the network. We compare the proposed node-arc formulation with an existing arc-path (flow path) formulation and explain the advantages and difficulties of both approaches. We verify the proposed formulation model on a hypothetical water distribution network. Results indicate the arc-path model solves the problem with fewer constraints, but the proposed formulation allows using a simple network connectivity matrix which simplifies modeling large or complex networks. The proposed algorithm allows converting existing node-arc hydroeconomic models that broadly represent water trading to ones that also track individual supplier-receiver relationships (trade transactions).

  20. Preferential paths in yield stress fluid flow through a porous medium

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Waisbord, Nicolas; Stoop, Norbert; Dunkel, Jörn

    2016-11-01

    A broad range of biological, geological, and industrial materials with complex rheological properties are subjected to flow through porous media in applications ranging from oil recovery to food manufacturing. In this experimental study, we examine the flow of a model yield stress fluid (Carbopol micro-gel) through a quasi-2D porous medium, fabricated in a microfluidic channel. The flow is driven by applying a precisely-controlled pressure gradient and measured by particle tracking velocimetry, and our observations are complemented by a pore-network model of the yield stress fluid flow. While remaining unyielded at small applied pressure, the micro-gel begins to yield at a critical pressure gradient, exhibiting a single preferential flow path that percolates through the porous medium. As the applied pressure gradient increases, we observe a subsequent coarsening and invasion of the yielded, fluidized network. An examination of both the yielded network topology and pore-scale flow reveal that two cooperative phenomena are involved in sculpting the preferential flow paths: (1) the geometry of the porous microstructure, and (2) the adhesive surface interactions between the micro-gel and substrate. NSF CBET-1511340.

  1. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows-`sub-bottom sediment pump action'

    NASA Astrophysics Data System (ADS)

    Zhang, Shaotong; Jia, Yonggang; Wen, Mingzheng; Wang, Zhenhao; Zhang, Yaqi; Zhu, Chaoqi; Li, Bowen; Liu, Xiaolei

    2017-02-01

    A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as `sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that `sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of `sediment pump' are determined as hydrodynamics (wave energy), degree of consolidation, index of bioturbation (permeability) and content of fine-grained materials (sedimentary age). This new perspective of `sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.

  2. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes

    NASA Astrophysics Data System (ADS)

    Luo, Mingming; Chen, Zhihua; Zhou, Hong; Zhang, Liang; Han, Zhaofeng

    2018-03-01

    To be better understand the hydrological and thermal behavior of karst systems in South China, seasonal variations in flow, hydrochemistry and stable isotope ratios of five karst springs were used to delineate flow paths and recharge processes, and to interpret their thermal response. Isotopic data suggest that mean recharge elevations are 200-820 m above spring outlets. Springs that originate from high elevations have lower NO3 - concentrations than those originating from lower areas that have more agricultural activity. Measured Sr2+ concentrations reflect the strontium contents of the host carbonate aquifer and help delineate the spring catchment's saturated zone. Seasonal variations of NO3 - and Sr2+ concentrations are inversely correlated, because the former correlates with event water and the latter with baseflow. The mean annual water temperatures of springs were only slightly lower than the local mean annual surface temperature at the outlet elevations. These mean spring temperatures suggest a vertical gradient of 6 °C/vertical km, which resembles the adiabatic lapse rate of the Earth's stable atmosphere. Seasonal temperature variations in the springs are in phase with surface air temperatures, except for Heilongquan (HLQ) spring. Event-scale variations of thermal response are dramatically controlled by the circulation depth of karst systems, which determines the effectiveness of heat exchange. HLQ spring undergoes the deepest circulation depth of 820 m, and its thermal responses are determined by the thermally effective regulation processes at higher elevations and the mixing processes associated with thermally ineffective responses at lower elevations.

  3. Evaluation of the path integral for flow through random porous media

    NASA Astrophysics Data System (ADS)

    Westbroek, Marise J. E.; Coche, Gil-Arnaud; King, Peter R.; Vvedensky, Dimitri D.

    2018-04-01

    We present a path integral formulation of Darcy's equation in one dimension with random permeability described by a correlated multivariate lognormal distribution. This path integral is evaluated with the Markov chain Monte Carlo method to obtain pressure distributions, which are shown to agree with the solutions of the corresponding stochastic differential equation for Dirichlet and Neumann boundary conditions. The extension of our approach to flow through random media in two and three dimensions is discussed.

  4. SPH Simulation of Impact of a Surge on a Wall

    NASA Astrophysics Data System (ADS)

    Diwakar, Manoj Kumar; Mohapatra, Pranab Kumar; Tripathi, Shivam

    2014-05-01

    Structures located on the downstream of a dam are prone to impact of the surge due to dam break flow. Ramsden (1996) experimentally studied the run-up height on a vertical wall due to propagation of bore and surge on dry bed and measured their impact on the wall. Mohapatra et al. (2000) applied Navier Stokes equations to numerically study the impact of bore on vertical and inclined walls. They also obtained the evolution of surge on dry bed. In the present work, the impact of a surge wave due to dam break flow against the wall is modeled with a two-dimensional smoothed particle hydrodynamics (SPH) model. SPH is a mesh-free method that relies on the particle view of the field problem and approximates the continuity and momentum equations on a set of particles. The method solves the strong form of Navier-Stokes equations. The governing equations are solved numerically in the vertical plane. The propagation of the surge wave, its impact and the maximum run-up on the wall located at the boundary are analyzed. Surface profile, velocity field and pressure distributions are simulated. Non-dimensional run-up height obtained from the present numerical model is 0.86 and is in good agreement with the available experimental data of Ramsden (1996) which is in the range of 0.75-0.9. Also, the simulated profile of the surge tip was comparable to the empirical equations refereed in Ramsden (1996). The model is applied to the study the maximum force and the run-up height on inclined walls with different inclinations. The results indicate that the maximum force and the run-up height on the wall increase with the increment of wall inclination. Comparison of numerical results with analytical solutions derived from shallow water equations clearly shows the breakdown of shallow water assumption during the impact. In addition to these results, the numerical simulation yields the complete velocity and pressure ?elds which may be used to design structures located in the path of a dam-break wave. The study shows that the smoothed particle hydrodynamics can effectively simulate fluid flow dynamics. References: Mohapatra, P. K., Bhallamudi, S. M., and Eswaran, V. (2000). 'Numerical simulation of impact of bores against inclined walls.' J. Hydraulic. Engg., ASCE, 126(12), 942-945. Ramsden, J. D. (1996). 'Forces on a vertical wall due to long waves, bores, and dry-bed surges.' J. Waterway, Port, Coastal, and Ocean Engg., ASCE, 122(3), 134-141.

  5. Integration of Ground-Based Solar FT-IR Absorption Spectroscopy and Open-Path Systems for Atmospheric Analysis

    NASA Astrophysics Data System (ADS)

    Steill, J. D.; Hager, J. S.; Compton, R. N.

    2005-12-01

    Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provides a unique opportunity to analyze the local atmospheric chemical composition. Many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of diurnal trends in the trace gas concentrations. Anthropogenic influences are of special interest, and seasonal and daily trends in amounts of tropospheric pollutants such as ozone correlate with other sources such as the EPA. Although obviously limited by weather considerations, the technique is suited to the regional climate and a body of data of more than two years extent is available for analysis.

  6. Distributed Method to Optimal Profile Descent

    NASA Astrophysics Data System (ADS)

    Kim, Geun I.

    Current ground automation tools for Optimal Profile Descent (OPD) procedures utilize path stretching and speed profile change to maintain proper merging and spacing requirements at high traffic terminal area. However, low predictability of aircraft's vertical profile and path deviation during decent add uncertainty to computing estimated time of arrival, a key information that enables the ground control center to manage airspace traffic effectively. This paper uses an OPD procedure that is based on a constant flight path angle to increase the predictability of the vertical profile and defines an OPD optimization problem that uses both path stretching and speed profile change while largely maintaining the original OPD procedure. This problem minimizes the cumulative cost of performing OPD procedures for a group of aircraft by assigning a time cost function to each aircraft and a separation cost function to a pair of aircraft. The OPD optimization problem is then solved in a decentralized manner using dual decomposition techniques under inter-aircraft ADS-B mechanism. This method divides the optimization problem into more manageable sub-problems which are then distributed to the group of aircraft. Each aircraft solves its assigned sub-problem and communicate the solutions to other aircraft in an iterative process until an optimal solution is achieved thus decentralizing the computation of the optimization problem.

  7. Path profiles of Cn2 derived from radiometer temperature measurements and geometrical ray tracing

    NASA Astrophysics Data System (ADS)

    Vyhnalek, Brian E.

    2017-02-01

    Atmospheric turbulence has significant impairments on the operation of Free-Space Optical (FSO) communication systems, in particular temporal and spatial intensity fluctuations at the receiving aperture resulting in power surges and fades, changes in angle of arrival, spatial coherence degradation, etc. The refractive index structure parameter C 2 n is a statistical measure of the strength of turbulence in the atmosphere and is highly dependent upon vertical height. Therefore to understand atmospheric turbulence effects on vertical FSO communication links such as space-to-ground links, it is necessary to specify C 2 n profiles along the atmospheric propagation path. To avoid the limitations on the applicability of classical approaches, propagation simulation through geometrical ray tracing is applied. This is achieved by considering the atmosphere along the optical propagation path as a spatial distribution of spherical bubbles with varying relative refractive index deviations representing turbulent eddies. The relative deviations of the refractive index are statistically determined from altitude-dependent and time varying temperature fluctuations, as measured by a microwave profiling radiometer. For each representative atmosphere ray paths are analyzed using geometrical optics, which is particularly advantageous in situations of strong turbulence where there is severe wavefront distortion and discontinuity. The refractive index structure parameter is then determined as a function of height and time.

  8. Path Profiles of Cn2 Derived from Radiometer Temperature Measurements and Geometrical Ray Tracing

    NASA Technical Reports Server (NTRS)

    Vyhnalek, Brian E.

    2017-01-01

    Atmospheric turbulence has significant impairments on the operation of Free-Space Optical (FSO) communication systems, in particular temporal and spatial intensity fluctuations at the receiving aperture resulting in power surges and fades, changes in angle of arrival, spatial coherence degradation, etc. The refractive index structure parameter Cn2 is a statistical measure of the strength of turbulence in the atmosphere and is highly dependent upon vertical height. Therefore to understand atmospheric turbulence effects on vertical FSO communication links such as space-to-ground links, it is necessary to specify Cn2 profiles along the atmospheric propagation path. To avoid the limitations on the applicability of classical approaches, propagation simulation through geometrical ray tracing is applied. This is achieved by considering the atmosphere along the optical propagation path as a spatial distribution of spherical bubbles with varying relative refractive index deviations representing turbulent eddies. The relative deviations of the refractive index are statistically determined from altitude-dependent and time-varying temperature fluctuations, as measured by a microwave profiling radiometer. For each representative atmosphere ray paths are analyzed using geometrical optics, which is particularly advantageous in situations of strong turbulence where there is severe wavefront distortion and discontinuity. The refractive index structure parameter is then determined as a function of height and time.

  9. Low hydrostatic head electrolyte addition to fuel cell stacks

    DOEpatents

    Kothmann, Richard E.

    1983-01-01

    A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.

  10. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1988-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  11. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1989-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  12. Improved aethalometer

    DOEpatents

    Hansen, A.D.

    1988-01-25

    An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.

  13. The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe

    NASA Astrophysics Data System (ADS)

    Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde

    2017-08-01

    The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.

  14. Analysis of single-hole and cross-hole tracer tests conducted at the Nye County early warning drilling program well complex, Nye County, Nevada

    USGS Publications Warehouse

    Umari, A.; Earle, J.D.; Fahy, M.F.

    2006-01-01

    As part of the effort to understand the flow and transport characteristics downgradient from the proposed high-level radioactive waste geologic repository at Yucca Mountain, Nevada, single- and cross-hole tracer tests were conducted from December 2004 through October 2005 in boreholes at the Nye County 22 well complex. The results were analyzed for transport properties using both numerical and analytical solutions of the governing advection dispersion equation. Preliminary results indicate effective flow porosity values ranging from 1.0 ?? 10-2 for an individual flow path to 2.0 ?? 10 -1 for composite flow paths, longitudinal dispersivity ranging from 0.3 to 3 m, and a transverse horizontal dispersivity of 0.03 m. Individual flow paths identified from the cross-hole testing indicate some solute diffusion into the stagnant portion of the alluvial aquifer.

  15. Natural convection in melt crystal growth - The influence of flow pattern on solute segregation

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Yamaguchi, Y.; Chang, C. J.

    1982-01-01

    The results of two lines of research aimed at calculating the structure of the flows driven by buoyancy in small-scale crystal growth systems and at understanding the coupling between these flows, the shape of the solidification interface, and dopant segregation in the crystal are reviewed. First, finite-element methods are combined with computer-aided methods for detecting multiple steady solutions to analyze the structure of the buoyancy-driven axisymmetric flows in a vertical cylinder heated from below. This system exhibits onset of convection, multiple steady flows, and loss of the primary stable flow beyond a critical value of the Rayleigh number. Second, results are presented for calculations of convection, melt/solid interface shape, and dopant segregation within a vertical ampoule with thermal boundary conditions that represent a prototype of the vertical Bridgman growth system.

  16. Developments in Impeller/Seal Secondary Flow Path Modeling for Dynamic Force Coefficients and Leakage

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan; Bhattacharya, Avijit; Athavale, Mahesh; Venkataraman, Balaji; Ryan, Steve; Funston, Kerry

    1997-01-01

    This paper highlights bulk flow and CFD-based models prepared to calculate force and leakage properties for seals and shrouded impeller leakage paths. The bulk flow approach uses a Hir's based friction model and the CFD approach solves the Navier Stoke's (NS) equation with a finite whirl orbit or via analytical perturbation. The results show good agreement in most instances with available benchmarks.

  17. Obtaining parsimonious hydraulic conductivity fields using head and transport observations: A Bayesian geostatistical parameter estimation approach

    NASA Astrophysics Data System (ADS)

    Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.

    2009-08-01

    Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.

  18. Obtaining parsimonious hydraulic conductivity fields using head and transport observations: A Bayesian geostatistical parameter estimation approach

    USGS Publications Warehouse

    Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.

    2009-01-01

    Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.

  19. Saddle-node bifurcation to jammed state for quasi-one-dimensional counter-chemotactic flow.

    PubMed

    Fujii, Masashi; Awazu, Akinori; Nishimori, Hiraku

    2010-07-01

    The transition of a counter-chemotactic particle flow from a free-flow state to a jammed state in a quasi-one-dimensional path is investigated. One of the characteristic features of such a flow is that the constituent particles spontaneously form a cluster that blocks the path, called a path-blocking cluster (PBC), and causes a jammed state when the particle density is greater than a threshold value. Near the threshold value, the PBC occasionally collapses on itself to recover the free flow. In other words, the time evolution of the size of the PBC governs the flux of a counter-chemotactic flow. In this Rapid Communication, on the basis of numerical results of a stochastic cellular automata (SCA) model, we introduce a Langevin equation model for the size evolution of the PBC that reproduces the qualitative characteristics of the SCA model. The results suggest that the emergence of the jammed state in a quasi-one-dimensional counterflow is caused by a saddle-node bifurcation.

  20. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  1. Changing the scale of hydrogeophysical aquifer heterogeneity characterization

    NASA Astrophysics Data System (ADS)

    Paradis, Daniel; Tremblay, Laurie; Ruggeri, Paolo; Brunet, Patrick; Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Holliger, Klaus; Irving, James; Molson, John; Lefebvre, Rene

    2015-04-01

    Contaminant remediation and management require the quantitative predictive capabilities of groundwater flow and mass transport numerical models. Such models have to encompass source zones and receptors, and thus typically cover several square kilometers. To predict the path and fate of contaminant plumes, these models have to represent the heterogeneous distribution of hydraulic conductivity (K). However, hydrogeophysics has generally been used to image relatively restricted areas of the subsurface (small fractions of km2), so there is a need for approaches defining heterogeneity at larger scales and providing data to constrain conceptual and numerical models of aquifer systems. This communication describes a workflow defining aquifer heterogeneity that was applied over a 12 km2 sub-watershed surrounding a decommissioned landfill emitting landfill leachate. The aquifer is a shallow, 10 to 20 m thick, highly heterogeneous and anisotropic assemblage of littoral sand and silt. Field work involved the acquisition of a broad range of data: geological, hydraulic, geophysical, and geochemical. The emphasis was put on high resolution and continuous hydrogeophysical data, the use of direct-push fully-screened wells and the acquisition of targeted high-resolution hydraulic data covering the range of observed aquifer materials. The main methods were: 1) surface geophysics (ground-penetrating radar and electrical resistivity); 2) direct-push operations with a geotechnical drilling rig (cone penetration tests with soil moisture resistivity CPT/SMR; full-screen well installation); and 3) borehole operations, including high-resolution hydraulic tests and geochemical sampling. New methods were developed to acquire high vertical resolution hydraulic data in direct-push wells, including both vertical and horizontal K (Kv and Kh). Various data integration approaches were used to represent aquifer properties in 1D, 2D and 3D. Using relevant vector machines (RVM), the mechanical and geophysical CPT/SMR measurements were used to recognize hydrofacies (HF) and obtain high-resolution 1D vertical profiles of hydraulic properties. Bayesian sequential simulation of the low-resolution surface-based geoelectrical measurements as well as high-resolution direct-push measurements of the electrical and hydraulic conductivities provided realistic estimates of the spatial distribution of K on a 250-m-long 2D survey line. Following a similar approach, all 1D vertical profiles of K derived from CPT/SMR soundings were integrated with available 2D geoelectrical profiles to obtain the 3D distribution of K over the study area. Numerical models were developed to understand flow and mass transport and assess how indicators could constrain model results and their K distributions. A 2D vertical section model was first developed based on a conceptual representation of heterogeneity which showed a significant effect of layering on flow and transport. The model demonstrated that solute and age tracers provide key model constraints. Additional 2D vertical section models with synthetic representations of low and high K hydrofacies were also developed on the basis of CPT/SMR soundings. These models showed that high-resolution profiles of hydraulic head could help constrain the spatial distribution and continuity of hydrofacies. History matching approaches are still required to simulate geostatistical models of K using hydrogeophysical data, while considering their impact on flow and transport with constraints provided by tracers of solutes and groundwater age.

  2. On the coupled evolution of oceanic internal waves and quasi-geostrophic flow

    NASA Astrophysics Data System (ADS)

    Wagner, Gregory LeClaire

    Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three physical-space models are developed: an equation that describes quasi-geostrophic evolution in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model for the energetic interaction of quasi-geostrophic flow and oceanic internal tides. Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity. Second is the definition of a new material invariant: Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eulerian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call this extraction of balanced quasi-geostrophic energy 'stimulated generation' since it requires externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-geostrophic flow can encourage or 'catalyze' a nonlinear interaction between a near-inertial wave field and its second harmonic that transfers energy to the small near-inertial vertical scales of wave breaking and mixing.

  3. Modelling rapid flow response of a tile drained hillslope with explicit representation of preferential flow paths and consideration of equifinal model structures

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Zehe, Erwin

    2010-05-01

    Rapid water flow along spatially connected - often biologically mediated - flow paths of minimum flow resistance is widely acknowledged to play a key role in runoff generation at the hillslope and small catchment scales but also in the transport of solutes like agro chemicals and nutrients in cohesive soils. Especially at tile drained fields site connected vertical flow structures such as worm burrows, roots or shrinkage cracks act as short cuts allowing water flow to bypass the soil matrix. In the present study we propose a spatially explicit approach to represent worm burrows as connected structures of high conductivity and low retention capacity in a 2D physically model. With this approach tile drain discharge and preferential flow patterns in soil observed during the irrigation of a tile drained hillslope in the Weiherbach catchment were modelled. The model parameters derived from measurements and are considered to be uncertain. Given this uncertainty of key factors that organise flow and transport at tile drained sites the main objectives of the present studies are to shed light on the following three questions: 1. Does a simplified approach that explicitly represents worm burrows as continuous flow paths of small flow resistance and low retention properties in a 2D physically model allow successful reproduction of event flow response at a tile drained field site in the Weiherbach catchment? 2. Does the above described uncertainty in key factors cause equifinality i.e. are there several model structural setups that reproduce event flow response in an acceptable manner without compromising our physical understanding of the system? 3. If so, what are the key factors that have to be known at high accuracy to reduce the equifinality of model structures? The issue of equifinality is usually discussed in catchment modelling to indicate that often a large set of conceptual model parameter sets allows acceptable reproduction of the behaviour of the system of interest - in many cases catchment stream flow response. Beven and Binley (1992) suggest that these model structures should be considered to be equally likely to account for predictive uncertainty. In this study we show that the above outline approach allows successful prediction of the tile drain discharge and preferential flow patterns in soil observed during the irrigation of a tile drained hillslope in the Weiherbach catchment flow event. Strikingly we a found a considerable equifinality in the model structural setup, when key parameters such as the area density of worm burrows, their hydraulic conductivity and the conductivity of the tile drains were varied within the ranges of either our measurements or measurements reported in the literature. Thirteen different model setups yielded a normalised time-shifted Nash-Sutcliffe of more than 0.9, which means that more than 90% of the flow variability is explained by the model. Also the flow volumes were in good accordance and timing errors were less or equal than 20 min (which corresponds to two simulation output time steps). It is elaborated that this uncertainty/equifinality could be reduced when more precise data on initial states of the subsurface and on the drainage area of a single drainage tube could be made available. However, such data are currently most difficult to assess even at very well investigated site as the one that is dealt with here. We thus suggest non uniqueness of process based model structures seems thus to be an important factor causing predictive uncertainty at many sites where preferential flow dominates systems response. References Beven, K.J. and Binley, A.M., 1992. The future of distributed models: model calibration and uncertainty prediction, Hydrological Processes, 6, p.279-298.

  4. Flight investigation of a vertical-velocity command system for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Kelly, J. R.; Niessen, F. R.; Yenni, K. R.; Person, L. H., Jr.

    1977-01-01

    A flight investigation was undertaken to assess the potential benefits afforded by a vertical-velocity command system (VVCS) for VTOL (vertical take-off and landing) aircraft. This augmentation system was conceived primarily as a means of lowering pilot workload during decelerating approaches to a hover and/or landing under category III instrument meteorological conditions. The scope of the investigation included a determination of acceptable system parameters, a visual flight evaluation, and an instrument flight evaluation which employed a 10 deg, decelerating, simulated instrument approach task. The results indicated that the VVCS, which decouples the pitch and vertical degrees of freedom, provides more accurate glide-path tracking and a lower pilot workload than does the unaugmented system.

  5. 75 FR 9809 - Airworthiness Directives; Airbus Model A330-243, -341, -342, and -343 Airplanes; and Model A340...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ..., as a consequence of the over-torque, fail and move away, it would lead to loss of the vertical load pins, which could result in loss of the primary and/or secondary load path of the forward and/or aft..., as a consequence of the over-torque, fail and move away, it would lead to loss of the vertical load...

  6. RNAV STAR Procedural Adherence

    NASA Technical Reports Server (NTRS)

    Stewart, Michael J.; Matthews, Bryan L.

    2017-01-01

    In this exploratory archival study we mined the performance of 24 major US airports area navigation standard terminal arrival routes (RNAV STARs) over the preceding three years. Overlaying radar track data on top of RNAV STAR routes provided a comparison between aircraft flight paths and the waypoint positions and altitude restrictions. NASA Ames Supercomputing resources were utilized to perform the data mining and processing. We investigated STARs by lateral transition path (full-lateral), vertical restrictions (full-lateral/full-vertical), and skipped waypoints (skips). In addition, we graphed altitudes and their frequencies of occurrence for altitude restrictions. Full-lateral compliance was generally greater than Full-lateral/full-vertical, but the delta between the rates was not always consistent. Full-lateral/full-vertical usage medians of the 2016 procedures ranged from 0 in KDEN (Denver) to 21 in KMEM (Memphis). Waypoint skips ranged from 0 to nearly 100 for specific waypoints. Altitudes restrictions were sometimes missed by systemic amounts in 1000 ft. increments from the restriction, creating multi-modal distributions. Other times, altitude misses looked to be more normally distributed around the restriction. This work is a preliminary investigation into the objective performance of instrument procedures and provides a framework to track how procedural concepts and design intervention function. In addition, this tool may aid in providing acceptability metrics as well as risk assessment information.

  7. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  8. Preferential flow in municipal solid waste and implications for long-term leachate quality: valuation of laboratory-scale experiments.

    PubMed

    Rosqvist, N H; Dollar, L H; Fourie, A B

    2005-08-01

    In this paper, we study and quantify pollutant concentrations after long-term leaching at relatively low flow rates and residual concentrations after heavy flushing of a 0.14 m3 municipal solid waste sample. Moreover, water flow and solute transport through preferential flow paths are studied by model interpretation of experimental break-through curves (BTCs), generated by tracer tests. In the study it was found that high concentrations of chloride remain after several pore volumes of water have percolated through the waste sample. The residual concentration was found to be considerably higher than can be predicted by degradation models. For model interpretations of the experimental BTCs, two probabilistic model approaches were applied, the transfer function model and the Lagrangian transport formulation. The experimental BTCs indicated the presence of preferential flow through the waste mass and the model interpretation of the BTCs suggested that between 19 and 41% of the total water content participated in the transport of solute through preferential flow paths. In the study, the occurrence of preferential flow was found to be dependent on the flow rate in the sense that a high flow rate enhances the preferential flow. However, to fully quantify the possible dependence between flow rate and preferential flow, experiments on a broader range of experimental conditions are suggested. The chloride washout curve obtained over the 4-year study period shows that as a consequence of the water flow in favoured flow paths, bypassing other parts of the solid waste body, the leachate quality may reflect only the flow paths and their surroundings. The results in this study thus show that in order to improve long-term prediction of the leachate quality and quantity the magnitude of the preferential water flow through a landfill must be taken into account.

  9. Unraveling the Processing Parameters in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is translated along a weld seam, literally stirring the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path or paths is required. In this study, various markers are used to trace the flow paths of the metal. X-ray radiographs record the segmentation and position of the wire. Several variations in the trajectories can be differentiated within the weld zone.

  10. Constraining Path-Dependent Processes During Basalt-CO2 Interactions with Observations From Flow-Through and Batch Experiments

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Garing, C.; Zahasky, C.; Harrison, A. L.; Bird, D. K.; Benson, S. M.; Oelkers, E. H.; Maher, K.

    2017-12-01

    Predicting the timing and magnitude of CO2 storage in basaltic rocks relies partly on quantifying the dependence of reactivity on flow path and mineral distribution. Flow-through experiments that use intact cores are advantageous because the spatial heterogeneity of pore space and reactive phases is preserved. Combining aqueous geochemical analyses and petrologic characterization with non-destructive imaging techniques (e.g. micro-computed tomography) constrains the relationship between irreversible reactions, pore connectivity and accessible surface area. Our work enhances these capabilities by dynamically imaging flow through vesicular basalts with Positron Emission Tomography (PET) scanning. PET highlights the path a fluid takes by detecting photons produced during radioactive decay of an injected radiotracer (FDG). We have performed single-phase, CO2-saturated flow-through experiments with basaltic core from Iceland at CO2 sequestration conditions (50 °C; 76-90 bar Ptot). Constant flow rate and continuous pressure measurements at the inlet and outlet of the core constrain permeability. We monitor geochemical evolution through cation and anion analysis of outlet fluid sampled periodically. Before and after reaction, we perform PET scans and characterize the core using micro-CT. The PET scans indicate a discrete, localized flow path that appears to be a micro-crack connecting vesicles, suggesting that vesicle-lining minerals are immediately accessible and important reactants. Rapid increases in aqueous cation concentration, pH and HCO3- indicate that the rock reacts nearly immediately after CO2 injection. After 24 hours the solute release decreases, which may reflect a transition to reaction with phases with slower kinetic dissolution rates (e.g. zeolites and glasses to feldspar), a decrease in available reactive surface area or precipitation. We have performed batch experiments using crushed material of the same rock to elucidate the effect of flow path geometry and mineral accessibility on geochemical evolution. Interestingly, surface area-normalized dissolution rates as evinced by SiO2 release in all experiments approach similar values ( 10-15 mol/cm2/s). Our experiments show how imaging techniques are helpful in interpreting path-dependent processes in open systems.

  11. Investigations of groundwater system and simulation of regional groundwater flow for North Penn Area 7 Superfund site, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Goode, Daniel J.

    2013-01-01

    Groundwater in the vicinity of several industrial facilities in Upper Gwynedd Township and vicinity, Montgomery County, in southeast Pennsylvania has been shown to be contaminated with volatile organic compounds (VOCs), the most common of which is the solvent trichloroethylene (TCE). The 2-square-mile area was placed on the National Priorities List as the North Penn Area 7 Superfund site by the U.S. Environmental Protection Agency (USEPA) in 1989. The U.S. Geological Survey (USGS) conducted geophysical logging, aquifer testing, and water-level monitoring, and measured streamflows in and near North Penn Area 7 from fall 2000 through fall 2006 in a technical assistance study for the USEPA to develop an understanding of the hydrogeologic framework in the area as part of the USEPA Remedial Investigation. In addition, the USGS developed a groundwater-flow computer model based on the hydrogeologic framework to simulate regional groundwater flow and to estimate directions of groundwater flow and pathways of groundwater contaminants. The study area is underlain by Triassic- and Jurassic-age sandstones and shales of the Lockatong Formation and Brunswick Group in the Mesozoic Newark Basin. Regionally, these rocks strike northeast and dip to the northwest. The sequence of rocks form a fractured-sedimentary-rock aquifer that acts as a set of confined to partially confined layers of differing permeabilities. Depth to competent bedrock typically is less than 20 ft below land surface. The aquifer layers are recharged locally by precipitation and discharge locally to streams. The general configuration of the potentiometric surface in the aquifer is similar to topography, except in areas affected by pumping. The headwaters of Wissahickon Creek are nearby, and the stream flows southwest, parallel to strike, to bisect North Penn Area 7. Groundwater is pumped in the vicinity of North Penn Area 7 for industrial use, public supply, and residential supply. Results of field investigations by USGS at the site and results from other studies support, and are consistent with, a conceptual model of a layered leaky aquifer where the dip of the beds has a strong control on hydraulic connections in the groundwater system. Connections within and (or) parallel to bedding tend to be greater than across bedding. Transmissivities of aquifer intervals isolated by packers ranged over three orders of magnitude [from about 2.8 to 2,290 square feet per day (ft2/d) or 0.26 to 213 square meters per day (m2/d)], did not appear to differ much by mapped geologic unit, but showed some relation to depth being relatively smaller in the shallowest and deepest intervals (0 to 50 ft and more than 250 ft below land surface, respectively) compared to the intermediate depth intervals (50 to 250 ft below land surface) tested. Transmissivities estimated from multiple-observation well aquifer tests ranged from about 700 to 2,300 ft2/d (65 to 214 m2/d). Results of chemical analyses of water from isolated intervals or monitoring wells open to short sections of the aquifer show vertical differences in concentrations; chloride and silica concentrations generally were greater in shallow intervals than in deeper intervals. Chloride concentrations greater than 100 milligrams per liter (mg/L), combined with distinctive chloride/bromide ratios, indicate a different source of chloride in the western part of North Penn Area 7 than elsewhere in the site. Groundwater flow at a regional scale under steady-state conditions was simulated by use of a numerical model (MODFLOW-2000) for North Penn Area 7 with different layers representing saprolite/highly weathered rock near the surface and unweathered competent bedrock. The sedimentary formations that underlie the study area were modeled using dipping model layers for intermediate and deep zones of unweathered, fractured rock. Horizontal cell model size was 100 meters (m) by 100 meters (328 ft by 328 ft), and model layer thickness ranged from 6 m (19.7 ft) representing shallow weathered rock and saprolite up to 200 m (656 ft) representing deeper dipping bedrock. The model did not include detailed structure to account for local-scale differences in hydraulic properties, with the result that local-scale groundwater flow may not be well simulated. Additional detailed multi-well aquifer tests would be needed to establish the extent of interconnection between intervals at the local scale to address remediation of contamination at each source area. This regional groundwater-flow model was calibrated against measured groundwater levels (1996, 2000, and 2005) and base flow estimated from selected streamflow measurements by use of nonlinear-regression parameter-estimation algorithms to determine hydraulic conductivity and anisotropy of hydraulic conductivity, streambed hydraulic conductivity, and recharge during calibration periods. Results of the simulation using the calibrated regional model indicate that the aquifer appears to be anisotropic where hydraulic conductivity is greatest parallel to the orientation of bedding of the formations underlying the area and least in the cross-bed direction. The maximum hydraulic conductivity is aligned with the average regional strike of the formations, which is “subhorizontal” in the model because the altitudes of the beds and model cells vary in the strike, as well as dip, direction. Estimated subhorizontal hydraulic conductivities (in strike direction parallel to dipping beds) range from 0.001 to 1.67 meters per day (0.0032 to 5.5 feet per day). The ratio of minimum (dip direction) to maximum (strike direction) subhorizontal hydraulic conductivity ranges from 1/3.1 to 1/8.6, and the ratio of vertical to horizontal hydraulic conductivity ranges from 1/1 to 1/478. However, limited available field data precluded rigorous calibration of vertical anisotropy in the model. Estimated recharge rates corresponding to calibration periods in 1996, 2000, and 2005 are 150, 109, and 124 millimeters per year (5.9, 4.3, and 4.9 inches per year), respectively. The calibrated groundwater-flow model was used to simulate groundwater flow under steady-state conditions during periods of relatively high withdrawals (pumpage) (1990) and relatively low withdrawals (2000 and 2005). Groundwater-flow paths originating from recharge areas near known areas of soil contamination (sources) were simulated. Pumped industrial and production wells captured more groundwater from several of these sources during 1990 than after 1990 when pumping declined or ceased and greater amounts of contaminated groundwater moved away from North Penn Area 7 Superfund site to surrounding areas. Uncertainty in simulated groundwater-flow paths from contaminant sources and contributing areas, resulting from uncertainty in estimated hydraulic properties of the model, was illustrated through Monte Carlo simulations. The effect of uncertainty in the vertical anisotropy was not included in the Monte Carlo simulations. Contributing areas indicating the general configuration of groundwater flow towards production well MG-202 (L-22) in the study area also were simulated for the different time periods; as simulated, the flow paths do not pass through any identified contaminant source in North Penn Area 7. However, contributing areas to wells, such as MG-202, located near many pumped wells are particularly complex and, in some cases, include areas that contribute flow to streams that subsequently recharge the aquifer through stream loss. In these cases, water-quality constituents, including contaminants that are present in surface water may be drawn into the aquifer to nearby pumped wells. Results of a simulated shutdown of well MG-202 under steady-state 2005 conditions showed that the area contributing recharge for nearby production well MG-76 (L-17), when MG-202 is not pumping, shifts downstream and is similar to the area contributing recharge for MG-202 when both wells are pumping. Concentrations of constituents in groundwater samples collected in fall 2005 or spring 2006 were compared to simulated groundwater-flow paths for the year 2005 to provide a qualitative assessment of model results. The observed spatial distribution of selected constituents, including TCE, CFC-11, and CFC-113 in groundwater in 2005 and the chloride/bromide mass ratios in 2006, generally were consistent with the model results of the simulated 2005 groundwater-flow paths at North Penn Area 7, indicating the presence of several separate sources of contaminants within North Penn Area 7.

  12. Path perception during rotation: influence of instructions, depth range, and dot density

    NASA Technical Reports Server (NTRS)

    Li, Li; Warren, William H Jr

    2004-01-01

    How do observers perceive their direction of self-motion when traveling on a straight path while their eyes are rotating? Our previous findings suggest that information from retinal flow and extra-retinal information about eye movements are each sufficient to solve this problem for both perception and active control of self-motion [Vision Res. 40 (2000) 3873; Psych. Sci. 13 (2002) 485]. In this paper, using displays depicting translation with simulated eye rotation, we investigated how task variables such as instructions, depth range, and dot density influenced the visual system's reliance on retinal vs. extra-retinal information for path perception during rotation. We found that path errors were small when observers expected to travel on a straight path or with neutral instructions, but errors increased markedly when observers expected to travel on a curved path. Increasing depth range or dot density did not improve path judgments. We conclude that the expectation of the shape of an upcoming path can influence the interpretation of the ambiguous retinal flow. A large depth range and dense motion parallax are not essential for accurate path perception during rotation, but reference objects and a large field of view appear to improve path judgments.

  13. Simulation of 2D Granular Hopper Flow

    NASA Astrophysics Data System (ADS)

    Li, Zhusong; Shattuck, Mark

    2012-02-01

    Jamming and intermittent granular flow are big problems in industry, and the vertical hopper is a canonical example of these difficulties. We simulate gravity driven flow and jamming of 2D disks in a vertical hopper and compare with identical companion experiments presented in this session. We measure and compare the flow rate and probability for jamming as a function of particle properties and geometry. We evaluate the ability of standard Hertz-Mindlin contact mode to quantitatively predict the experimental flow.

  14. Scenarios for control and data flows in multiprotocol over ATM

    NASA Astrophysics Data System (ADS)

    Kujoory, Ali

    1997-10-01

    The multiprotocol over ATM (MPOA), specified by the ATM Forum, provides an architecture for transfer of Internetwork layer packets (Layer 3 datagram such as IP, IPX) over ATM subnets or across the emulated LANs. MPOA provides shortcuts that bypass routers to avoid router bottlenecks. It is a grand union of some of the existing standards such as LANE by the ATM Forum, NHRP by the IETF, and the Q.2931 by ITU. The intent of this paper is to clarify the data flows between pairs of source and destination hosts in an MPOA system. It includes scenarios for both the intra- and inter-subnet flows between different pairs of MPOA end-systems. The intrasubnet flows simply use LANE for address resolution or data transfer. The inter-subnet flows may use a default path for short-lived flows or a shortcut for long-lived flows. The default path uses the LANE and router capabilities. The shortcut path uses LANE plus NHRP for ATM address resoluton. An ATM virtual circuit is established before the data transfer. This allows efficient transfer of internetwork layer packets over ATM for real-time applications.

  15. Experimental evaluation of a flat wake theory for predicting rotor inflow-wake velocities

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1992-01-01

    The theory for predicting helicopter inflow-wake velocities called flat wake theory was correlated with several sets of experimental data. The theory was developed by V. E. Baskin of the USSR, and a computer code known as DOWN was developed at Princeton University to implement the theory. The theory treats the wake geometry as rigid without interaction between induced velocities and wake structure. The wake structure is assumed to be a flat sheet of vorticity composed of trailing elements whose strength depends on the azimuthal and radial distributions of circulation on a rotor blade. The code predicts the three orthogonal components of flow velocity in the field surrounding the rotor. The predictions can be utilized in rotor performance and helicopter real-time flight-path simulation. The predictive capability of the coded version of flat wake theory provides vertical inflow patterns similar to experimental patterns.

  16. Entrainment, transport and concentration of meteorites in polar ice sheets

    NASA Technical Reports Server (NTRS)

    Drewry, D. J.

    1986-01-01

    Glaciers and ice sheets act as slow-moving conveyancing systems for material added to both their upper and lower surfaces. Because the transit time for most materials is extremely long the ice acts as a major global storage facility. The effects of horizontal and vertical motions on the flow patterns of Antarctic ice sheets are summarized. The determination of the source areas of meteorites and their transport paths is a problem of central importance since it relates not only directly to concentration mechanisms but also to the wider issues in glaciology and meteorites. The ice and snow into which a meteorite falls, and which moves with it to the concentration area, encodes information about the infall area. The principle environmental conditions being former elevation, temperature (also related to elevation), and age of the ice. This encoded information could be used to identify the infall area.

  17. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    DOE PAGES

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    2016-11-08

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipatedmore » during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.« less

  18. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipatedmore » during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.« less

  19. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2014-10-21

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  20. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOEpatents

    Kaduchak, Gregory [Los Alamos, NM; Ward, Michael D [Los Alamos, NM

    2011-12-27

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  1. Funnel for localizing biological cell placement and arrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soscia, David; Benett, William J.; Mukerjee, Erik V.

    2018-03-06

    The present disclosure relates to a funnel apparatus for channeling cells onto a plurality of distinct, closely spaced regions of a seeding surface. The funnel apparatus has a body portion having an upper surface and a lower surface. The body portion forms a plurality of flow paths, at least one of which is shaped to have a decreasing cross-sectional area from the upper surface to the lower surface. The flow paths are formed at the lower surface to enable cells deposited into the flow paths at the upper surface of the funnel apparatus to be channeled into a plurality ofmore » distinct, closely spaced regions on the seeding surface positioned adjacent the lower surface.« less

  2. Total energy based flight control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.

  3. Functional integration of vertical flight path and speed control using energy principles

    NASA Technical Reports Server (NTRS)

    Lambregts, A. A.

    1984-01-01

    A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.

  4. Control of fluid flow during Bridgman crystal growth using low-frequency vibrational stirring

    NASA Astrophysics Data System (ADS)

    Zawilski, Kevin Thomas

    The goal of this research program was to develop an in depth understanding of a promising new method for stirring crystal growth melts called coupled vibrational stirring (CVS). CVS is a mixing technique that can be used in sealed systems and produces rapid mixing through vortex flows. Under normal operating conditions, CVS uses low-frequency vibrations to move the growth crucible along a circular path, producing a surface wave and convection in the melt. This research focused on the application of CVS to the vertical Bridgman technique. CVS generated flows were directly studied using a physical modeling system containing water/glycerin solutions. Sodium nitrate was chosen as a model growth system because the growth process could be directly observed using a transparent furnace. Lead magnesium niobate-lead titanate (PMNT) was chosen as the third system because of its potential application for high performance solid state transducers and actuators. In this study, the critical parameters for controlling CVS flows in cylindrical Bridgman systems were established. One of the most important results obtained was the dependence of an axial velocity gradient on the vibrational frequency. By changing the frequency, the intensity of fluid flow at a given depth can be easily manipulated. The intensity of CVS flows near the crystal-melt interface was found to be important. When flow intensity near the interface increased during growth, large growth rate fluctuations and significant changes in interface shape were observed. To eliminate such fluctuations, a constant flow rate near the crystal-melt interface was maintained by decreasing the vibrational frequency. A continuous frequency ramp was found to be essential to grow crystals of good quality under strong CVS flows. CVS generated flows were also useful in controlling the shape of the growth interface. In the sodium nitrate system without stirring, high growth rates produced a very concave interface. By adjusting the flow intensity near the interface, CVS flows were able to flatten the growth interface under these extreme growth conditions.

  5. The influence of anisotropy on preferential flow in landslides

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; Barontini, Stefano; Bogaard, Thom A.; Shao, Wei

    2015-04-01

    Infiltration is one of the most important landslides triggering mechanisms and it is controlled by the hydraulic characteristics of the soil, which depends on the degree of saturation, the existence of preferential flow paths and by anisotropy. Many soils, indeed, exhibit a certain degree of anisotropy due to the stratification associated with soil forming process. Recently, various authors investigated the effect of rainfall in layered soils and its effect on rainfall triggered landslides by means of experimental, conceptual, numerical and theoretical approaches. However, the combined effect of anisotropy and preferential flow on infiltration process and related to rainfall induced landslides has, according to the authors best knowledge, not been studied yet. Aiming at better understanding the soil hydrological processes which take place during an infiltration process, the stability of a synthetic hill slope is numerically investigated. The geometry we considered for the model is a slope with two different layers: the upper soil layer consists of sandy loam, while the lower soil layer is made out of clay. The geometry was studied using both a single permeability and a dual permeability model. In the first case the hydraulic conductivity at saturation was considered isotropic, equal in all directions. Then the vertical component of the hydraulic conductivity tensor at saturation was reduced, while in the third scenario the horizontal component was reduced. In this way the anisotropy effects on both the principal directions were studied. In the dual permeability model, the influence of the anisotropy was considered only in the preferential flow domain, and the hydraulic conductivity at saturation of the soil matrix domain was defined as being isotropic. In order to evaluate also the effects of rainfall intensity on the slope, two different rainfall events were studied: a low intensity rainfall with a long time duration (2 mmh-1,150 h) and an high intensity rainfall with a short duration (20 mmh-1,15 h). The results show that the anisotropy facilitates the saturation process in the slope and that the vertical component of the soil water flow is set especially in the soil matrix domain, while the lateral component dominates in the preferential flow domain. In some scenarios the patterns of the water content in the unsaturated soil layers suggest the possibility of the onset of a perched water table.

  6. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity

    USGS Publications Warehouse

    Lapham, Wayne W.

    1989-01-01

    The use of temperature profiles beneath streams to determine rates of vertical ground-water flow and effective vertical hydraulic conductivity of sediments was evaluated at three field sites by use of a model that numerically solves the partial differential equation governing simultaneous vertical flow of fluid and heat in the Earth. The field sites are located in Hardwick and New Braintree, Mass., and in Dover, N.J. In New England, stream temperature varies from about 0 to 25 ?C (degrees Celsius) during the year. This stream-temperature fluctuation causes ground-water temperatures beneath streams to fluctuate by more than 0.1 ?C during a year to a depth of about 35 ft (feet) in fine-grained sediments and to a depth of about 50 ft in coarse-grained sediments, if ground-water velocity is 0 ft/d (foot per day). Upward flow decreases the depth affected by stream-temperature fluctuation, and downward flow increases the depth. At the site in Hardwick, Mass., ground-water flow was upward at a rate of less than 0.01 ft/d. The maximum effective vertical hydraulic conductivity of the sediments underlying this site is 0.1 ft/d. Ground-water velocities determined at three locations at the site in New Braintree, Mass., where ground water discharges naturally from the underlying aquifer to the Ware River, ranged from 0.10 to 0.20 ft/d upward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.4 to 17.1 ft/d. Ground-water velocities determined at three locations at the Dover, N.J., site, where infiltration from the Rockaway River into the underlying sediments occurs because of pumping, were 1.5 ft/d downward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.2 to 2.5 ft/d. Independent estimates of velocity at two of the three sites are in general agreement with the velocities determined using temperature profiles. The estimates of velocities and conductivities derived from the temperature measurements generally fall within the ranges of expected rates of flow in, and conductivities of, the sediments encountered at the test sites. Application of the method at the three test sites demonstrates the feasibility of using the method to determine the rate of ground-water flow between a stream and underlying sediments and the effective vertical hydraulic conductivity of the sediments.

  7. Ray tracing simulation of aero-optical effect using multiple gradient index layer

    NASA Astrophysics Data System (ADS)

    Yang, Seul Ki; Seong, Sehyun; Ryu, Dongok; Kim, Sug-Whan; Kwon, Hyeuknam; Jin, Sang-Hun; Jeong, Ho; Kong, Hyun Bae; Lim, Jae Wan; Choi, Jong Hwa

    2016-10-01

    We present a new ray tracing simulation of aero-optical effect through anisotropic inhomogeneous media as supersonic flow field surrounds a projectile. The new method uses multiple gradient-index (GRIN) layers for construction of the anisotropic inhomogeneous media and ray tracing simulation. The cone-shaped projectile studied has 19° semi-vertical angle; a sapphire window is parallel to the cone angle; and an optical system of the projectile was assumed via paraxial optics and infrared image detector. The condition for the steady-state solver conducted through computational fluid dynamics (CFD) included Mach numbers 4 and 6 in speed, 25 km altitude, and 0° angle of attack (AoA). The grid refractive index of the flow field via CFD analysis and Gladstone-Dale relation was discretized into equally spaced layers which are parallel with the projectile's window. Each layer was modeled as a form of 2D polynomial by fitting the refractive index distribution. The light source of ray set generated 3,228 rays for varying line of sight (LOS) from 10° to 40°. Ray tracing simulation adopted the Snell's law in 3D to compute the paths of skew rays in the GRIN layers. The results show that optical path difference (OPD) and boresight error (BSE) decreases exponentially as LOS increases. The variation of refractive index decreases, as the speed of flow field increases the OPD and its rate of decay at Mach number 6 in speed has somewhat larger value than at Mach number 4 in speed. Compared with the ray equation method, at Mach number 4 and 10° LOS, the new method shows good agreement, generated 0.33% of relative root-mean-square (RMS) OPD difference and 0.22% of relative BSE difference. Moreover, the simulation time of the new method was more than 20,000 times faster than the conventional ray equation method. The technical detail of the new method and simulation is presented with results and implication.

  8. Relation of specific conductance in ground water to intersection of flow paths by wells, and associated major ion and nitrate geochemistry, Barton Springs Segment of the Edwards Aquifer, Austin, Texas, 1978-2003

    USGS Publications Warehouse

    Garner, Bradley D.; Mahler, Barbara J.

    2007-01-01

    Understanding of karst flow systems can be complicated by the presence of solution-enlarged conduits, which can transmit large volumes of water through the aquifer rapidly. If the geochemistry at a well can be related to streamflow or spring discharge (springflow), or both, the relations can indicate the presence of recent recharge in water at the well, which in turn might indicate that the well intersects a conduit (and thus a major flow path). Increasing knowledge of the occurrence and distribution of conduits in the aquifer can contribute to better understanding of aquifer framework and function. To that end, 26 wells in the Barton Springs segment of the Edwards aquifer, Austin, Texas, were investigated for potential intersection with conduits; 26 years of arbitrarily timed specific conductance measurements in the wells were compared to streamflow in five creeks that provide recharge to the aquifer and were compared to aquifer flow conditions as indicated by Barton Springs discharge. A nonparametric statistical test (Spearman's rho) was used to divide the 26 wells into four groups on the basis of correlation of specific conductance of well water to streamflow or spring discharge, or both. Potential relations between conduit intersection by wells and ground-water geochemistry were investigated through analysis of historical major ion and nitrate geochemistry for wells in each of the four groups. Specific conductance at nine wells was negatively correlated with both streamflow and spring discharge, or streamflow only. These correlations were interpreted as evidence of an influx of surface-water recharge during periods of high streamflow and the influence at the wells of water from a large, upgradient part of the aquifer; and further interpreted as indicating that four wells intersect major aquifer flow paths and five wells intersect minor aquifer flow paths (short, tributary conduits). Specific conductance at six wells was positively correlated with spring discharge, which was interpreted as not intersecting a flow path (conduit). Of the 11 wells for which specific conductance did not correlate with either streamflow or spring discharge, no interpretations regarding flow-path intersection by wells were made. In some cases, specific conductance data might not have indicated intersection with a flow path because of small sample sets. Water in the Barton Springs segment generally is a calcium-magnesium-bicarbonate type, although some water compositions deviate from this. Multiple geochemical processes were identified that might affect geochemistry at the wells, but in general the geochemical composition of ground water, except for dilution by surface-water recharge, was not related to intersection of a well with a flow path. Some samples from wells indicate inflow of water from the saline zone to the east; this inflow is associated with low streamflow and spring discharge. Other samples indicate that the aquifer at some wells might be receiving water that has been in contact with rocks of the Trinity aquifer; this mixing is most evident when spring discharge is high. Occurrence of nitrate in ground water was unrelated to intersection of flow paths by wells and appeared to be the result of localized contamination. However, most of the wells with one or more samples contaminated by nitrate are in the more densely populated parts of the study area.

  9. Hydrogeology and simulation of groundwater flow at the Green Valley reclaimed coal refuse site near Terre Haute, Indiana

    USGS Publications Warehouse

    Bayless, E. Randall; Arihood, Leslie D.; Fowler, Kathleen K.

    2011-01-01

    The Green Valley reclaimed coal refuse site, near Terre Haute, Ind., was mined for coal from 1948 to 1963. Subsurface coal was cleaned and sorted at land surface, and waste material was deposited over the native glacial till. Approximately 2.7 million cubic yards of waste was deposited over 159 acres (92.3 hectares) in tailings ponds and gob piles. During 1993, the Indiana Department of Natural Resources, Division of Reclamation, improved the site by grading gob piles, filling tailings ponds, and covering the refuse with a layer of glacial drift. During 2008, the Division of Reclamation and U.S. Geological Survey initiated a cooperative investigation to characterize the hydrogeology of the site and construct a calibrated groundwater flow model that could be used to simulate the results of future remedial actions. In support of the modeling, a data-collection network was installed at the Green Valley site to measure weather components, geophysical properties, groundwater levels, and stream and seep flow. Results of the investigation indicate that (1) there is negligible overland flow from the site, (2) the prevailing groundwater-flow direction is from northeast to southwest, with a much smaller drainage to the northeast, (3) there is not a direct hydraulic connection between the refuse and West Little Sugar Creek, (4) about 24 percent of the groundwater recharge emerges through seeps, and water from the seeps evaporates or eventually flows to West Little Sugar Creek and the Green Valley Mine Pond, and (5) about 72 percent of groundwater recharge moves vertically downward from the coal refuse into the till and follows long, slow flow paths to eventual dischage points.

  10. 4 Living roofs in 3 locations: Does configuration affect runoff mitigation?

    NASA Astrophysics Data System (ADS)

    Fassman-Beck, Elizabeth; Voyde, Emily; Simcock, Robyn; Hong, Yit Sing

    2013-05-01

    Four extensive living roofs and three conventional (control) roofs in Auckland, New Zealand have been evaluated over periods of 8 months to over 2 yrs for stormwater runoff mitigation. Up to 56% cumulative retention was measured from living roofs with 50-150 mm depth substrates installed over synthetic drainage layers, and with >80% plant coverage. Variation in cumulative %-retention amongst sites is attributed to different durations of monitoring, rather than actual performance. At all sites, runoff rarely occurred at all from storms with less than 25 mm of precipitation, from the combined effects of substrates designed to maximize moisture storage and because >90% of individual events were less than 25 mm. Living roof runoff depth per event is predicted well by a 2nd order polynomial model (R2 = 0.81), again demonstrating that small storms are well managed. Peak flow per event from the living roofs was 62-90% less than a corresponding conventional roof's runoff. Seasonal retention performance decreased slightly in winter, but was nonetheless substantial, maintaining 66% retention at one site compared to 45-93% in spring-autumn at two sites. Peak flow mitigation did not vary seasonally. During a 4-month period of concurrent monitoring at all sites, varied substrate depth did not influence runoff depth (volume), %-retention, or %-peak flow mitigation compared to a control roof at the same site. The magnitude of peak flow was greater from garden shed-scale living roofs compared to the full-scale living roofs. Two design aspects that could be manipulated to increase peak flow mitigation include lengthening the flow path through the drainage layer to vertical gutters and use of flow-retarding drainage layer materials.

  11. Geometric Hitting Set for Segments of Few Orientations

    DOE PAGES

    Fekete, Sandor P.; Huang, Kan; Mitchell, Joseph S. B.; ...

    2016-01-13

    Here we study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the \\hitting points"). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. Lastly, we give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.

  12. Canal–Otolith Interactions and Detection Thresholds of Linear and Angular Components During Curved-Path Self-Motion

    PubMed Central

    MacNeilage, Paul R.; Turner, Amanda H.

    2010-01-01

    Gravitational signals arising from the otolith organs and vertical plane rotational signals arising from the semicircular canals interact extensively for accurate estimation of tilt and inertial acceleration. Here we used a classical signal detection paradigm to examine perceptual interactions between otolith and horizontal semicircular canal signals during simultaneous rotation and translation on a curved path. In a rotation detection experiment, blindfolded subjects were asked to detect the presence of angular motion in blocks where half of the trials were pure nasooccipital translation and half were simultaneous translation and yaw rotation (curved-path motion). In separate, translation detection experiments, subjects were also asked to detect either the presence or the absence of nasooccipital linear motion in blocks, in which half of the trials were pure yaw rotation and half were curved path. Rotation thresholds increased slightly, but not significantly, with concurrent linear velocity magnitude. Yaw rotation detection threshold, averaged across all conditions, was 1.45 ± 0.81°/s (3.49 ± 1.95°/s2). Translation thresholds, on the other hand, increased significantly with increasing magnitude of concurrent angular velocity. Absolute nasooccipital translation detection threshold, averaged across all conditions, was 2.93 ± 2.10 cm/s (7.07 ± 5.05 cm/s2). These findings suggest that conscious perception might not have independent access to separate estimates of linear and angular movement parameters during curved-path motion. Estimates of linear (and perhaps angular) components might instead rely on integrated information from canals and otoliths. Such interaction may underlie previously reported perceptual errors during curved-path motion and may originate from mechanisms that are specialized for tilt-translation processing during vertical plane rotation. PMID:20554843

  13. Cooperative suction by vertical capillary array pump for controlling flow profiles of microfluidic sensor chips.

    PubMed

    Horiuchi, Tsutomu; Hayashi, Katsuyoshi; Seyama, Michiko; Inoue, Suzuyo; Tamechika, Emi

    2012-10-18

    A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.

  14. Three-dimensional analysis of flow and segregation in vertical Bridgman crystal growth under axial and transversal magnetic fields

    NASA Astrophysics Data System (ADS)

    Lan, C. W.; Lee, I. F.; Yeh, B. C.

    2003-07-01

    Three-dimensional simulation, both pseudo-steady and time-dependent states, is carried out to illustrate the effects of magnetic fields on the flow and segregation in a vertical Bridgman crystal growth. With an axial magnetic field in a perfectly vertical growth, the calculated results are in good agreement with those obtained by a two-dimensional axisymmetric model. The asymptotic scaling of flow damping is also consistent with the boundary layer approximation regardless to the magnetic orientation. Radial and axial segregations are further discussed concluding that radial segregation could be severe if the flow damping is not adequate. Moreover, there is a regime of enhanced global dopant mixing due to the flow stretching by the axial field. Accordingly, the transversal field is more effective in pushing the growth to the diffusion-controlled limit and suppressing the asymmetric global flow due to ampule tilting.

  15. Opposed slant tube diabatic sorber

    DOEpatents

    Erickson, Donald C.

    2004-01-20

    A sorber comprised of at least three concentric coils of tubing contained in a shell with a flow path for liquid sorbent in one direction, a flow path for heat transfer fluid which is in counter-current heat exchange relationship with sorbent flow, a sorbate vapor port in communication with at least one of sorbent inlet or exit ports, wherein each coil is coiled in opposite direction to those coils adjoining it, whereby the opposed slant tube configuration is achieved, with structure for flow modification in the core space inside the innermost coil.

  16. Kasei Valles

    NASA Image and Video Library

    2015-10-14

    Kasei Valles is a valley system was likely carved by some combination of flowing water and lava. In some areas, erosion formed cliffs along the flow path resulting in water or lava falls. In some areas, erosion formed cliffs along the flow path resulting in water or lava falls. The flowing liquid is gone but the channels and "dry falls" remain. Since its formation, Kasei Valles has suffered impacts-resulting in craters-and has been mantled in dust, sand, and fine gravel as evidenced by the rippled textures. http://photojournal.jpl.nasa.gov/catalog/PIA20004

  17. Unsteady flow characteristics in the near-wake of a two-dimensional obstacle

    NASA Technical Reports Server (NTRS)

    Dyment, A.; Gryson, P.

    1984-01-01

    The influence of the characteristics of the boundary layer separation on the formation of vortices and alternate paths in the wake of a bidimensional obstacle at high Reynolds numbers was studied by ultra fast visualization system. It is shown that there are alternate paths for laminar and turbulent flows, with similar flow characteristics. It is found that emission of vortices does not change substantially when the flow passes from laminar to turbulent. A film with a time scale change of 10,000 times illustrates some of the discussed phenomena.

  18. An in flight investigation of pitch rate flight control systems and application of frequency domain and time domain predictive criteria

    NASA Technical Reports Server (NTRS)

    Berthe, C. J.; Chalk, C. R.; Sarrafian, S.

    1984-01-01

    The degree of attitude control provided by current integral-proportional pitch rate command-type control systems, while a prerequisite for flared landing, is insufficient for 'Level 1' performance. The pilot requires 'surrogate' feedback cues to precisely control flight path in the landing flare. Monotonic stick forces and pilot station vertical acceleration are important cues which can be provided by means of angle-of-attack and pitch rate feedback in order to achieve conventional short period and phugoid characteristics. Integral-proportional pitch rate flight control systems can be upgraded to Level 1 flared landing performance by means of lead/lag and washout prefilters in the command path. Strong pilot station vertical acceleration cues can provide Level 1 flared landing performance even in the absence of monotonic stick forces.

  19. Hydraulic Performance of Shallow Foundations for the Support of Vertical-Wall Bridge Abutments

    DOT National Transportation Integrated Search

    2017-02-01

    This study combined abutment flume experiments with numerical modeling using computational fluid dynamics (CFD) to investigate flow fields and scour at vertical-wall abutments with shallow foundations. The focus was situations dominated by flow contr...

  20. Computer code for predicting coolant flow and heat transfer in turbomachinery

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.

    1990-01-01

    A computer code was developed to analyze any turbomachinery coolant flow path geometry that consist of a single flow passage with a unique inlet and exit. Flow can be bled off for tip-cap impingement cooling, and a flow bypass can be specified in which coolant flow is taken off at one point in the flow channel and reintroduced at a point farther downstream in the same channel. The user may either choose the coolant flow rate or let the program determine the flow rate from specified inlet and exit conditions. The computer code integrates the 1-D momentum and energy equations along a defined flow path and calculates the coolant's flow rate, temperature, pressure, and velocity and the heat transfer coefficients along the passage. The equations account for area change, mass addition or subtraction, pumping, friction, and heat transfer.

  1. Identifying storm flow pathways in a rainforest catchment using hydrological and geochemical modelling

    USGS Publications Warehouse

    Kinner, D.A.; Stallard, R.F.

    2004-01-01

    The hydrological model TOPMODEL is used to assess the water balance and describe flow paths for the 9??73 ha Lutz Creek Catchment in Central Panama. Monte Carlo results are evaluated based on their fit to the observed hydrograph, catchment-averaged soil moisture and stream chemistry. TOPMODEL, with a direct-flow mechanism that is intended to route water through rapid shallow-soil flow, matched observed chemistry and discharge better than the basic version of TOPMODEL and provided a reasonable fit to observed soil moisture and wet-season discharge at both 15-min and daily time-steps. The improvement of simulations with the implementation of a direct-flow component indicates that a storm flow path not represented in the original version of TOPMODEL plays a primary role in the response of Lutz Creek Catchment. This flow path may be consistent with the active and abundant pipeflow that is observed or delayed saturation overland flow. The 'best-accepted' simulations from 1991 to 1997 indicate that around 41% of precipitation becomes direct flow and around 10% is saturation overland flow. Other field observations are needed to constrain evaporative and groundwater losses in the model and to characterize chemical end-members posited in this paper. Published in 2004 by John Wiley and Sons, Ltd.

  2. Thermal convection currents in NMR: flow profiles and implications for coherence pathway selection

    PubMed

    Jerschow

    2000-07-01

    Rayleigh-Benard convection currents are visualized in a vertical cylindrical tube by means of magnetic resonance imaging. Axially antisymmetric flow, multiple vertical rolls, and twisted node planes are observed. The flow can also be induced by strong RF irradiation. Its effects on the coherence pathways in NMR experiments employing field gradients are discussed. Copyright 2000 Academic Press.

  3. Using borehole flow data to characterize the hydraulics of flow paths in operating wellfields

    USGS Publications Warehouse

    Paillet, F.; Lundy, J.

    2004-01-01

    Understanding the flow paths in the vicinity of water well intakes is critical in the design of effective wellhead protection strategies for heterogeneous carbonate aquifers. High-resolution flow logs can be combined with geophysical logs and borehole-wall-image logs (acoustic televiewer) to identify the porous beds, solution openings, and fractures serving as conduits connecting the well bore to the aquifer. Qualitative methods of flow log analysis estimate the relative transmissivity of each water-producing zone, but do not indicate how those zones are connected to the far-field aquifer. Borehole flow modeling techniques can be used to provide quantitative estimates of both transmissivity and far-field hydraulic head in each producing zone. These data can be used to infer how the individual zones are connected with each other, and to the surrounding large-scale aquifer. Such information is useful in land-use planning and the design of well intakes to prevent entrainment of contaminants into water-supply systems. Specific examples of flow log applications in the identification of flow paths in operating wellfields are given for sites in Austin and Faribault, Minnesota. Copyright ASCE 2004.

  4. 1r2dinv: A finite-difference model for inverse analysis of two dimensional linear or radial groundwater flow

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Butler, J.J.

    2001-01-01

    We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.

  5. Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain

    NASA Astrophysics Data System (ADS)

    Webb, Ryan W.; Fassnacht, Steven R.; Gooseff, Michael N.

    2018-01-01

    In many mountainous regions around the world, snow and soil moisture are key components of the hydrologic cycle. Preferential flow paths of snowmelt water through snow have been known to occur for years with few studies observing the effect on soil moisture. In this study, statistical analysis of the topographical and hydrological controls on the spatiotemporal variability of snow water equivalent (SWE) and soil moisture during snowmelt was undertaken at a subalpine forested setting with north, south, and flat aspects as a seasonally persistent snowpack melts. We investigated if evidence of preferential flow paths in snow can be observed and the effect on soil moisture through measurements of snow water equivalent and near-surface soil moisture, observing how SWE and near-surface soil moisture vary on hillslopes relative to the toes of hillslopes and flat areas. We then compared snowmelt infiltration beyond the near-surface soil between flat and sloping terrain during the entire snowmelt season using soil moisture sensor profiles. This study was conducted during varying snowmelt seasons representing above-normal, relatively normal, and below-normal snow seasons in northern Colorado. Evidence is presented of preferential meltwater flow paths at the snow-soil interface on the north-facing slope causing increases in SWE downslope and less infiltration into the soil at 20 cm depth; less association is observed in the near-surface soil moisture (top 7 cm). We present a conceptualization of the meltwater flow paths that develop based on slope aspect and soil properties. The resulting flow paths are shown to divert at least 4 % of snowmelt laterally, accumulating along the length of the slope, to increase the snow water equivalent by as much as 170 % at the base of a north-facing hillslope. Results from this study show that snow acts as an extension of the vadose zone during spring snowmelt and future hydrologic investigations will benefit from studying the snow and soil together.

  6. The Effects of More Extreme Rainfall Patterns on Infiltration and Nutrient Losses in Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2015-12-01

    In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.

  7. Structural controls on ground-water conditions and estimated aquifer properties near Bill Williams Mountain, Williams, Arizona

    USGS Publications Warehouse

    Pierce, Herbert A.

    2001-01-01

    As of 1999, surface water collected and stored in reservoirs is the sole source of municipal water for the city of Williams. During 1996 and 1999, reservoirs reached historically low levels. Understanding the ground-water flow system is critical to managing the ground-water resources in this part of the Coconino Plateau. The nearly 1,000-meter-deep regional aquifer in the Redwall and Muav Limestones, however, makes studying or utilizing the resource difficult. Near-vertical faults and complex geologic structures control the ground-water flow system on the southwest side of the Kaibab Uplift near Williams, Arizona. To address the hydrogeologic complexities in the study area, a suite of techniques, which included aeromagnetic, gravity, square-array resistivity, and audiomagnetotelluric surveys, were applied as part of a regional study near Bill Williams Mountain. Existing well data and interpreted geophysical data were compiled and used to estimate depths to the water table and to prepare a potentiometric map. Geologic characteristics, such as secondary porosity, coefficient of anisotropy, and fracture-strike direction, were calculated at several sites to examine how these characteristics change with depth. The 14-kilometer-wide, seismically active northwestward-trending Cataract Creek and the northeastward-trending Mesa Butte Fault systems intersect near Bill Williams Mountain. Several north-south-trending faults may provide additional block faulting north and west of Bill Williams Mountain. Because of the extensive block faulting and regional folding, the volcanic and sedimentary rocks are tilted toward one or more of these faults. These faults provide near-vertical flow paths to the regional water table. The nearly radial fractures allow water that reaches the regional aquifer to move away from the Bill Williams Mountain area. Depth to the regional aquifer is highly variable and depends on location and local structures. On the basis of interpreted audiomagnetotelluric and square-array resistivity sounding curves and limited well data, depths to water may range from 450 to 1,300 meters.

  8. On N. Park's Analytical solution for steady state density- and mixing regime—dependent solute transport in a vertical soil column

    NASA Astrophysics Data System (ADS)

    Thiele, Michael

    1998-04-01

    Recently, Park [1996] presented an analytical solution for stationary one-dimensional solute transport in a variable-density fluid flow through a vertical soil column. He used the widespread Bear-Scheidegger dispersion model describing solute mixing as a sum of molecular diffusion and velocity-proportional mechanical dispersion effects. His closed-form implicit concentration and pressure distributions thus allow for a discussion of the combined impact of molecular diffusion and mechanical dispersion in a variable-density environment. Whereas Park only considered the example of vanishing molecular diffusion in detail, both phenomena are taken into account simultaneously in the present study in order to elucidate their different influences on concentration distribution characteristics. The boundary value problem dealt with herein is based on an upward inflow of high-density fluid of constant solute concentration and corresponding outflow of a lower constant concentration fluid at the upper end of the column when dispersivity does not change along the flow path. The thickness of the transition zone between the two fluids appeared to strongly depend on the prevailing share of the molecular diffusion and mechanical dispersion mechanisms. The latter can be characterized by a molecular Peclet number Pe, which here is defined as the ratio of the column outflow velocity multiplied by a characteristic pore size and the molecular diffusion coefficient. For very small values of Pe, when molecular diffusion represents the exclusive mixing process, density differences have no impact on transition zone thicknesses. A relative density-;dependent thickness increases with flow velocities (increasing Pe values) very rapidly compared to the density-independent case, and after having passed a maximum decreases asymptotically to a constant value for the large Peclet number limit when mechanical dispersion is the only mixing mechanism. Hence the special transport problem analyzed gives further evidence for the importance of simultaneously considering molecular diffusion and mechanical dispersion in gravity-affected solute transport in porous media.

  9. Landing Characteristics of a Reentry Capsule with a Torus-Shaped Air Bag for Load Alleviation

    NASA Technical Reports Server (NTRS)

    McGehee, John R.; Hathaway, Melvin E.

    1960-01-01

    An experimental investigation has been made to determine the landing characteristics of a conical-shaped reentry capsule by using torus-shaped air bags for impact-load alleviation. An impact bag was attached below the large end of the capsule to absorb initial impact loads and a second bag was attached around the canister to absorb loads resulting from impact on the canister when the capsule overturned. A 1/6-scale dynamic model of the configuration was tested for nominal flight paths of 60 deg. and 90 deg. (vertical), a range of contact attitudes from -25 deg. to 30 deg., and a vertical contact velocity of 12.25 feet per second. Accelerations were measured along the X-axis (roll) and Z-axis (yaw) by accelerometers rigidly installed at the center of gravity of the model. Actual flight path, contact attitudes, and motions were determined from high-speed motion pictures. Landings were made on concrete and on water. The peak accelerations along the X-axis for landings on concrete were in the order of 3Og for a 0 deg. contact attitude. A horizontal velocity of 7 feet per second, corresponding to a flight path of 60 deg., had very little effect upon the peak accelerations obtained for landings on concrete. For contact attitudes of -25 deg. and 30 deg. the peak accelerations along the Z-axis were about +/- l5g, respectively. The peak accelerations measured for the water landings were about one-third lower than the peak accelerations measured for the landings on concrete. Assuming a rigid body, computations were made by using Newton's second law of motion and the force-stroke characteristics of the air bag to determine accelerations for a flight path of 90 deg. (vertical) and a contact attitude of 0 deg. The computed and experimental peak accelerations and strokes at peak acceleration were in good agreement for the model. The special scaling appears to be applicable for predicting full-scale time and stroke at peak acceleration for a landing on concrete from a 90 deg. flight path at a 0 deg. It appears that the full-scale approximately the same as those obtained from the model for the range of attitudes and flight paths investigated.

  10. Vibration characteristics of an inclined flip-flow screen panel in banana flip-flow screens

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoyan; Niu, Linkai; Gu, Chengxiang; Wang, Yinhua

    2017-12-01

    A banana flip-flow screen is an effective solution for the screening of high-viscosity, high-water and fine materials. As one of the key components, the vibration characteristics of the inclined flip-flow screen panel largely affects the screen performance and the processing capacity. In this paper, a mathematical model for the vibration characteristic of the inclined flip-flow screen panel is proposed based on Catenary theory. The reasonability of Catenary theory in analyzing the vibration characteristic of flip-flow screen panels is verified by a published experiment. Moreover, the effects of the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen on the vertical deflection, the vertical velocity and the vertical acceleration of the screen panel are investigated parametrically. The results show that the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen have significant effects on the vibrations of an inclined flip-flow screen panel, and these parameters should be optimized.

  11. Simulation of tidal flow and circulation patterns in the Loxahatchee River Estuary, southeastern Florida

    USGS Publications Warehouse

    Russell, G.M.; Goodwin, C.R.

    1987-01-01

    Results of a two-dimensional, vertically averaged, computer simulation model of the Loxahatchee River estuary show that under typical low freshwater inflow and vertically well mixed conditions, water circulation is dominated by freshwater inflow rather than by tidal influence. The model can simulate tidal flow and circulation in the Loxahatchee River estuary under typical low freshwater inflow and vertically well mixed conditions, but is limited, however, to low-flow and well mixed conditions. Computed patterns of residual water transport show a consistent seaward flow from the northwest fork through the central embayment and out Jupiter Inlet to the Atlantic Ocean. A large residual seaward flow was computed from the North Intracoastal Waterway to the inlet channel. Although the tide produces large flood and ebb flows in the estuary, tide-induced residual transport rates are low in comparison with freshwater-induced residual transport. Model investigations of partly mixed or stratified conditions in the estuary need to await development of systems capable of simulating three-dimensional flow patterns. (Author 's abstract)

  12. Diagnosing Hydrologic Flow Paths in Forest and Pasture Land Uses within the Panama Canal Watershed Using Simulated Rainfall and Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Mojica, A.; Kempema, E. W.; Briceno, J. C.; Regina, J. A.

    2014-12-01

    Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to water management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and use across the Panama Canal Watershed. In this study we used an ARS-type rainfall simulator to apply rainfall rates up to 200 mm per hour over a 2m by 6m area on deep saprolitic soils in forest and pasture land covers. A salinity contrast added to the applied rainwater allowed observation of bulk flow paths and velocities in the subsurface. The observed effects of land cover and land use on hydrological response were striking. In the forest site, we were unable to produce surface runoff even after the application of 600 mm of rainfall in three hours, and observed flow in soils down to approximately 2 m depth, and no downslope macropore flow. In the pasture site, surface runoff was produced, and we measured the permeability of the area with applied rainfall. Observed flow paths were much shallower, less than 1 m depth, with significant macropore flow observed at downslope positions. We hypothesize that land use and land cover have significant impacts on flow paths as they affect creation, connectivity, and function of biologically created macropores in the soil.

  13. Improved hydrological-model design by integrating nutrient and water flow

    NASA Astrophysics Data System (ADS)

    Arheimer, B.; Lindstrom, G.

    2013-12-01

    The potential of integrating hydrologic and nutrient concentration data to better understand patterns of catchment response and to better design hydrological modeling was explored using a national multi-basin model system for Sweden, called ';S-HYPE'. The model system covers more than 450 000 km2 and produce daily values of nutrient concentration and water discharge in 37 000 catchments from 1961 and onwards. It is based on the processed-based and semi-distributed HYdrological Predictions for the Environment (HYPE) code. The model is used operationally for assessments of water status or climate change impacts and for forecasts by the national warning service of floods, droughts and fire. The first model was launched in 2008, but S-HYPE is continuously improved and released in new versions every second year. Observations are available in 400 sites for daily water discharge and some 900 sites for monthly grab samples of nutrient concentrations. The latest version (2012) has an average NSE for water discharge of 0.7 and an average relative error of 5%, including both regulated and unregulated rivers with catchments from ten to several thousands of km2 and various landuse. The daily relative errors of nutrient concentrations are on average 20% for total Nitrogen and 35% for total Phosphorus. This presentation will give practical examples of how the nutrient data has been used to trace errors or inadequate parameter values in the hydrological model. Since 2008 several parts of the model structure has been reconsidered both in the source code, parameter values and input data of catchment characteristics. In this process water quality has been guiding much of the overall model design of catchment hydrological functions and routing along the river network. The model structure has thus been developed iteratively when evaluating results and checking time-series. Examples of water quality driven improvements will be given for estimation of vertical flow paths, such as separation of the hydrograph in surface flow, snow melt and baseflow, as well as horizontal flow paths in the landscape, such as mixing from various land use, impact from lakes and river channel volume. Overall, the S-HYPE model performance of water discharge increased from NSE 0.55 to 0.69 as an average for 400 gauges between the version 2010 and 2012. Most of this improvement, however, can be referred to improved regulations routines, rating curves for major lakes and parameters correcting ET and precipitation. Nevertheless, integrated water and nutrient modeling put constraints on the hydrological parameter values, which reduce equifinality for the hydrological part without reducing the model performance. The examples illustrates that the credibility of the hydrological model structure is thus improved by integrating water and nutrient flow. This lead to improved understanding of flow paths and water-nutrient process interactions in Sweden, which in turn will be very useful in further model analysis on impact of climate change or measures to reduce nutrient load from rivers to the Baltic Sea.

  14. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE PAGES

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...

    2016-10-20

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  15. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds.

    PubMed

    Miller, Daniel J; Zhang, Zhibo; Ackerman, Andrew S; Platnick, Steven; Baum, Bryan A

    2016-04-27

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness ( τ ) and effective radius ( r e ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m 2 . In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic r e profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.

  16. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds

    PubMed Central

    Miller, Daniel J.; Zhang, Zhibo; Ackerman, Andrew S.; Platnick, Steven; Baum, Bryan A.

    2018-01-01

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5–10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques. PMID:29637042

  17. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  18. An automatic alignment system for measuring optical path of transmissometer based on light beam scanning

    NASA Astrophysics Data System (ADS)

    Zhou, Shudao; Ma, Zhongliang; Wang, Min; Peng, Shuling

    2018-05-01

    This paper proposes a novel alignment system based on the measurement of optical path using a light beam scanning mode in a transmissometer. The system controls both the probe beam and the receiving field of view while scanning in two vertical directions. The system then calculates the azimuth angle of the transmitter and the receiver to determine the precise alignment of the optical path. Experiments show that this method can determine the alignment angles in less than 10 min with errors smaller than 66 μrad in the azimuth. This system also features high collimation precision, process automation and simple installation.

  19. Detecting duplicate biological entities using Shortest Path Edit Distance.

    PubMed

    Rudniy, Alex; Song, Min; Geller, James

    2010-01-01

    Duplicate entity detection in biological data is an important research task. In this paper, we propose a novel and context-sensitive Shortest Path Edit Distance (SPED) extending and supplementing our previous work on Markov Random Field-based Edit Distance (MRFED). SPED transforms the edit distance computational problem to the calculation of the shortest path among two selected vertices of a graph. We produce several modifications of SPED by applying Levenshtein, arithmetic mean, histogram difference and TFIDF techniques to solve subtasks. We compare SPED performance to other well-known distance algorithms for biological entity matching. The experimental results show that SPED produces competitive outcomes.

  20. Wind Tunnel Investigation of the Effects of Surface Porosity and Vertical Tail Placement on Slender Wing Vortex Flow Aerodynamics at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.

  1. Plasma flow patterns in and around magnetosheath jets

    NASA Astrophysics Data System (ADS)

    Plaschke, Ferdinand; Hietala, Heli

    2018-05-01

    The magnetosheath is commonly permeated by localized high-speed jets downstream of the quasi-parallel bow shock. These jets are much faster than the ambient magnetosheath plasma, thus raising the question of how that latter plasma reacts to incoming jets. We have performed a statistical analysis based on 662 cases of one THEMIS spacecraft observing a jet and another (second) THEMIS spacecraft providing context observations of nearby plasma to uncover the flow patterns in and around jets. The following results are found: along the jet's path, slower plasma is accelerated and pushed aside ahead of the fastest core jet plasma. Behind the jet core, plasma flows into the path to fill the wake. This evasive plasma motion affects the ambient magnetosheath, close to the jet's path. Diverging and converging plasma flows ahead and behind the jet are complemented by plasma flows opposite to the jet's propagation direction, in the vicinity of the jet. This vortical plasma motion results in a deceleration of ambient plasma when a jet passes nearby.

  2. In-Service Evaluation of the Dalmo Victor Active Beacon Collision Avoidance System (BCAS/TCAS).

    DTIC Science & Technology

    1982-10-01

    expected to make any substantial change to this report on operational performance. Collectively, this report and the additional technical per- fomance...deviation from the recorded flight path, while 10 others might have required some change in flight path, depending on the vertical rate of the TCAS...They are based on data collected with no response by the TCAS aircraft crew and will change when the crew initiates response action to resolution

  3. A Stochastic Approach to Path Planning in the Weighted-Region Problem

    DTIC Science & Technology

    1991-03-01

    polynomial time. However, the polyhedrons in this three-dimensional obstacle-avoidance problem are all obstacles (i.e. travel is not permitted within...them). Therefore, optimal paths tend to avoid their vertices, and settle into closest approach tangents across polyhedron edges. So, in a sense...intersection update map database with new vertex for this edge 3. IF (C1 > D) and (C2 > D) THEN edge intersects ellipse at two points OR edge is

  4. Flow Ambiguity: A Path Towards Classically Driven Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Mantri, Atul; Demarie, Tommaso F.; Menicucci, Nicolas C.; Fitzsimons, Joseph F.

    2017-07-01

    Blind quantum computation protocols allow a user to delegate a computation to a remote quantum computer in such a way that the privacy of their computation is preserved, even from the device implementing the computation. To date, such protocols are only known for settings involving at least two quantum devices: either a user with some quantum capabilities and a remote quantum server or two or more entangled but noncommunicating servers. In this work, we take the first step towards the construction of a blind quantum computing protocol with a completely classical client and single quantum server. Specifically, we show how a classical client can exploit the ambiguity in the flow of information in measurement-based quantum computing to construct a protocol for hiding critical aspects of a computation delegated to a remote quantum computer. This ambiguity arises due to the fact that, for a fixed graph, there exist multiple choices of the input and output vertex sets that result in deterministic measurement patterns consistent with the same fixed total ordering of vertices. This allows a classical user, computing only measurement angles, to drive a measurement-based computation performed on a remote device while hiding critical aspects of the computation.

  5. Navier-Stokes, dynamics and aeroelastic computations for vortical flows, buffet and flutter applications

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1993-01-01

    Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.

  6. Airborne Sun Photometer Measurements of Aerosol Optical Depth during SOLVE II: Comparison with SAGE III and POAM III Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Zawodny, J.

    2003-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II) and obtained successful measurements during the sunlit segments of eight science flights. These included six flights out of Kiruna, Sweden, one flight out of NASA Dryden Flight Research Center (DFRC), and the Kiruna-DFRC return transit flight. Values of spectral aerosol optical depth (AOD), columnar ozone and columnar water vapor have been derived from the AATS-14 measurements. In this paper, we focus on AATS-14 AOD data. In particular, we compare AATS-14 AOD spectra with temporally and spatially near-coincident measurements by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement III (POAM III) satellite sensors. We examine the effect on retrieved AOD of uncertainties in relative optical airmass (the ratio of AOD along the instrument-to-sun slant path to that along the vertical path) at large solar zenith angles. Airmass uncertainties result fiom uncertainties in requisite assumed vertical profiles of aerosol extinction due to inhomogeneity along the viewing path or simply to lack of available data. We also compare AATS-14 slant path solar transmission measurements with coincident measurements acquired from the DC-8 by the NASA Langley Research Center Gas and Aerosol Measurement Sensor (GAMS).

  7. Using dye tracing to establish groundwater flow paths in a limestone marble aquifer, University of California, Santa Cruz, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, J.; Bertschinger, V.; Aley, T.

    1993-04-01

    Areas underlain by karst aquifers are characterized by soluble rock with sinkholes, caves, and a complex underground drainage network. Groundwater issues such as flow direction, well pumping impacts, spring recharge areas, and potential contamination transport routes are greatly complicated by the unique structure of karst aquifers. Standard aquifer analysis techniques cannot be applied unless the structure of the karst aquifer is understood. Water soluble fluorescent dyes are a powerful tool for mapping the irregular subsurface connections and flow paths in karst aquifers. Mapping the subsurface connections allows reasonable estimates of the hydrologic behavior of the aquifer. Two different fluorescent dyesmore » were injected at two points in a limestone karst aquifer system beneath the University of California, Santa Cruz campus. Flow paths in the marble were thought to be closely tied to easily recognized geomorphic alignments of sinkholes associated with fault and fracture zones. The dye tests revealed unexpected and highly complex interconnections. These complex flow paths only partially corresponded to previous surface mapping and aerial photo analysis of fracture systems. Several interfingering but hydrologically unconnected flow paths evidently exist within the cavernous aquifer. For example, dye did not appear at some discharge springs close to the dye injection points, but did appear at more distant springs. This study shows how a dye tracing study in a small, well-defined limestone body can shed light on a variety of environmental and hydrological issues, including potential well pumping impact areas, wellhead protection and recharge areas, parking lot runoff injection to aquifers, and drainage routes from hazardous materials storage areas.« less

  8. Systems and methods for separating particles utilizing engineered acoustic contrast capture particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduchak, Gregory; Ward, Michael D.

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less

  9. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduchak, Gregory; Ward, Michael D

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less

  10. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, A.; Boardman, C.E.

    1995-04-11

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

  11. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1995-01-01

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

  12. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow

    USGS Publications Warehouse

    Kurylyk, Barret L.; Masaki, Masaki; Quinton, William L.; McKenzie, Jeffrey M.; Voss, Clifford I.

    2016-01-01

    Recent climate change has reduced the spatial extent and thickness of permafrost in many discontinuous permafrost regions. Rapid permafrost thaw is producing distinct landscape changes in the Taiga Plains of the Northwest Territories, Canada. As permafrost bodies underlying forested peat plateaus shrink, the landscape slowly transitions into unforested wetlands. The expansion of wetlands has enhanced the hydrologic connectivity of many watersheds via new surface and near-surface flow paths, and increased streamflow has been observed. Furthermore, the decrease in forested peat plateaus results in a net loss of boreal forest and associated ecosystems. This study investigates fundamental processes that contribute to permafrost thaw by comparing observed and simulated thaw development and landscape transition of a peat plateau-wetland complex in the Northwest Territories, Canada from 1970 to 2012. Measured climate data are first used to drive surface energy balance simulations for the wetland and peat plateau. Near-surface soil temperatures simulated in the surface energy balance model are then applied as the upper boundary condition to a three-dimensional model of subsurface water flow and coupled energy transport with freeze-thaw. Simulation results demonstrate that lateral heat transfer, which is not considered in many permafrost models, can influence permafrost thaw rates. Furthermore, the simulations indicate that landscape evolution arising from permafrost thaw acts as a positive feedback mechanism that increases the energy absorbed at the land surface and produces additional permafrost thaw. The modeling results also demonstrate that flow rates in local groundwater flow systems may be enhanced by the degradation of isolated permafrost bodies.

  13. Computational Investigation and Validation of Twin-Tail Buffet Response Including Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Multidisciplinary tools for prediction of single rectangular-tail buffet are extended to single swept-back-tail buffet in transonic-speed flow, and multidisciplinary tools for prediction and control of twin-tail buffet are developed and presented. The configuration model consists of a sharp-edged delta wing with single or twin tails that are oriented normal to the wing surface. The tails are treated as cantilevered beams fixed at the root and allowed to oscillate in both bending and torsion. This complex multidisciplinary problem is solved sequentially using three sets of equations on a dynamic single or multi-block grid structure. The first set is the unsteady, compressible, Reynolds-averaged Navier-Stokes equations which are used for obtaining the flow field vector and the aerodynamic loads on the tails. The Navier-Stokes equations are solved accurately in time using the implicit, upwind, flux-difference splitting, finite volume scheme. The second set is the coupled bending and torsion aeroelastic equations of cantilevered beams which are used for obtaining the bending and torsion deflections of the tails. The aeroelastic equations'are solved accurately in time using, a fifth-order-accurate Runge-Kutta scheme. The third set is the grid-displacement equations and the rigid-body dynamics equations, which are used for updating the grid coordinates due to the tail deflections and rigid-body motions. The tail-buffet phenomenon is predicted for highly-swept, single vertical tail placed at the plane of geometric symmetry, and for highly-swept, vertical twin tails placed at three different spanwise separation distances. The investigation demonstrates the effects of structural inertial coupling and uncoupling of the bending and torsion modes of vibration, spanwise positions of the twin-tail, angle of attack, and pitching and rolling dynamic motions of the configuration model on the tail buffet loading and response. The fundamental issue of twin-tail buffet alleviation is addressed using two active flow-control methods. These methods are the tangential leading-edge blowing and the flow suction from the leading-edge vortex cores along their paths. Qualitative and quantitative comparisons with the available experimental data are presented. The comparisons indicate that the present multidisciplinary aeroelastic analysis tools are robust, accurate and efficient.

  14. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  15. Computational fluid dynamics analysis of SSME phase 2 and phase 2+ preburner injector element hydrogen flow paths

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.

    1992-01-01

    Phase 2+ Space Shuttle Main Engine powerheads, E0209 and E0215 degraded their main combustion chamber (MCC) liners at a faster rate than is normal for phase 2 powerheads. One possible cause of the accelerated degradation was a reduction of coolant flow through the MCC. Hardware changes were made to the preburner fuel leg which may have reduced the resistance and, therefore, pulled some of the hydrogen from the MCC coolant leg. A computational fluid dynamics (CFD) analysis was performed to determine hydrogen flow path resistances of the phase 2+ fuel preburner injector elements relative to the phase 2 element. FDNS was implemented on axisymmetric grids with the hydrogen assumed to be incompressible. The analysis was performed in two steps: the first isolated the effect of the different inlet areas and the second modeled the entire injector element hydrogen flow path.

  16. Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain

    USGS Publications Warehouse

    Yi, C.; Monson, Russell K.; Zhai, Z.; Anderson, D.E.; Lamb, B.; Allwine, G.; Turnipseed, A.A.; Burns, Sean P.

    2005-01-01

    The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF6 diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF6 diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within-canopy air layer coincided with the height of maximum wake-to-shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO2 flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO2 flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO2 at this site with complex terrain. Copyright 2005 by the American Geophysical Union.

  17. Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain

    NASA Astrophysics Data System (ADS)

    Yi, Chuixiang; Monson, Russell K.; Zhai, Zhiqiang; Anderson, Dean E.; Lamb, Brian; Allwine, Gene; Turnipseed, Andrew A.; Burns, Sean P.

    2005-11-01

    The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF6 diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF6 diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within-canopy air layer coincided with the height of maximum wake-to-shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO2 flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO2 flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO2 at this site with complex terrain.

  18. Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics.

    PubMed

    Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu

    2003-01-01

    Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.

  19. Simulated groundwater flow paths, travel time, and advective transport of nitrogen in the Kirkwood-Cohansey aquifer system, Barnegat Bay–Little Egg Harbor Watershed, New Jersey

    USGS Publications Warehouse

    Voronin, Lois M.; Cauller, Stephen J.

    2017-07-31

    Elevated concentrations of nitrogen in groundwater that discharges to surface-water bodies can degrade surface-water quality and habitats in the New Jersey Coastal Plain. An analysis of groundwater flow in the Kirkwood-Cohansey aquifer system and deeper confined aquifers that underlie the Barnegat Bay–Little Egg Harbor (BB-LEH) watershed and estuary was conducted by using groundwater-flow simulation, in conjunction with a particle-tracking routine, to provide estimates of groundwater flow paths and travel times to streams and the BB-LEH estuary.Water-quality data from the Ambient Groundwater Quality Monitoring Network, a long-term monitoring network of wells distributed throughout New Jersey, were used to estimate the initial nitrogen concentration in recharge for five different land-use classes—agricultural cropland or pasture, agricultural orchard or vineyard, urban non-residential, urban residential, and undeveloped. Land use at the point of recharge within the watershed was determined using a geographic information system (GIS). Flow path starting locations were plotted on land-use maps for 1930, 1973, 1986, 1997, and 2002. Information on the land use at the time and location of recharge, time of travel to the discharge location, and the point of discharge were determined for each simulated flow path. Particle-tracking analysis provided the link from the point of recharge, along the particle flow path, to the point of discharge, and the particle travel time. The travel time of each simulated particle established the recharge year. Land use during the year of recharge was used to define the nitrogen concentration associated with each flow path. The recharge-weighted average nitrogen concentration for all flow paths that discharge to the Toms River upstream from streamflow-gaging station 01408500 or to the BB-LEH estuary was calculated.Groundwater input into the Barnegat Bay–Little Egg Harbor estuary from two main sources— indirect discharge from base flow to streams that eventually flow into the bay and groundwater discharge directly into the estuary and adjoining coastal wetlands— is summarized by quantity, travel time, and estimated nitrogen concentration. Simulated average groundwater discharge to streams in the watershed that flow into the BB-LEH estuary is approximately 400 million gallons per day. Particle-tracking results indicate that the travel time of 56 percent of this discharge is less than 7 years. Fourteen percent of the groundwater discharge to the streams in the BB-LEH watershed has a travel time of less than 7 years and originates in urban land. Analysis of flow-path simulations indicate that approximately 13 percent of the total groundwater flow through the study area discharges directly to the estuary and adjoining coastal wetlands (approximately 64 million gallons per day). The travel time of 19 percent of this discharge is less than 7 years. Ten percent of this discharge (1 percent of the total groundwater flow through the study area) originates in urban areas and has a travel time of less than 7 years. Groundwater that discharges to the streams that flow into the BB-LEH, in general, has shorter travel times, and a higher percentage of it originates in urban areas than does direct groundwater discharge to the Barnegat Bay–Little Egg Harbor estuary.The simulated average nitrogen concentration in groundwater that discharges to the Toms River, upstream from streamflow-gaging station 01408500 was computed and compared to summary concentrations determined from analysis of multiple surface-water samples. The nitrogen concentration in groundwater that discharges directly to the estuary and adjoining coastal wetlands is a current data gap. The particle tracking methodology used in this study provides an estimate of this concentration."

  20. Determination of trunk streams via using flow accumulation values

    NASA Astrophysics Data System (ADS)

    Farek, Vladimir

    2013-04-01

    There is often a problem, with schematisation of catchments and a channel networks in a broken relief like sandstone landscape (with high vertical segmentation, narrow valley lines, crags, sheer rocks, endorheic hollows etc.). Usual hydrological parameters (subcatchment areas, altitude of highest point of subcatchment, water discharge), which are mostly used for determination of trunk stream upstream the junction, are frequently not utilizable very well in this kind of relief. We found, that for small, relatively homogeneous catchments (within the meaning of land-use, geological subsurface, anthropogenic influence etc.), which are extremely shaped, the value called "flow accumulation" (FA) could be very useful. This value gives the number of cells of the Digital Elevation Model (DEM) grid, which are drained to each cell of the catchment. We can predict that the stream channel with higher values of flow accumulation represents the main stream. There are three crucial issues with this theory. At first it is necessary to find the most suitable algorithm for calculation flow accumulation in a broken relief. Various algorithms could have complications with correct flow routing (representation of divergent or convergent character of the flow), or with keeping the flow paths uninterrupted. Relief with high curvature changes (alternating concave/convex shapes, high steepness changes) causes interrupting of flow lines in many algorithms used for hydrological computing. Second - set down limits of this theory (e.g. the size and character of a surveyed catchment). Third - verify this theory in reality. We tested this theory on sandstone landscape of National park Czech Switzerland. The main data source were high-resolution LIDAR (Light Detection and Ranging) DEM snapshots of surveyed area. This data comes from TU Dresden project called Genesis (Geoinformation Networks For The Cross- Border National Park Region Saxon- Bohemian Switzerland). In order to solve these issues GIS applications (e. g. GIS GRASS and its hydrological modules like r.terraflow, r.watershed, r.flow etc.) are very useful. Key words: channel network, flow accumulation, Digital Elevation Model, LIDAR, broken relief, GIS GRASS

  1. Remote atmospheric probing by ground to ground line of sight optical methods

    NASA Technical Reports Server (NTRS)

    Lawrence, R. S.

    1969-01-01

    The optical effects arising from refractive-index variations in the clear air are qualitatively described, and the possibilities are discussed of using those effects for remotely sensing the physical properties of the atmosphere. The effects include scintillations, path length fluctuations, spreading of a laser beam, deflection of the beam, and depolarization. The physical properties that may be measured include the average temperature along the path, the vertical temperature gradient, and the distribution along the path of the strength of turbulence and the transverse wind velocity. Line-of-sight laser beam methods are clearly effective in measuring the average properties, but less effective in measuring distributions along the path. Fundamental limitations to the resolution are pointed out and experiments are recommended to investigate the practicality of the methods.

  2. ­Understanding Information Flow Interaction along Separable Causal Paths in Environmental Signals

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Kumar, P.

    2017-12-01

    Multivariate environmental signals reflect the outcome of complex inter-dependencies, such as those in ecohydrologic systems. Transfer entropy and information partitioning approaches have been used to characterize such dependencies. However, these approaches capture net information flow occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within an interested subsystem through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [2015] to develop a framework for quantifying information decomposition along separable causal paths. Momentary information transfer along causal paths captures the amount of information flow between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique and redundant information flow through separable causal paths. Multivariate analysis using this novel approach reveals precise understanding of causality and feedback. We illustrate our approach with synthetic and observed time series data. We believe the proposed framework helps better delineate the internal structure of complex systems in geoscience where huge amounts of observational datasets exist, and it will also help the modeling community by providing a new way to look at the complexity of real and modeled systems. Runge, Jakob. "Quantifying information transfer and mediation along causal pathways in complex systems." Physical Review E 92.6 (2015): 062829.

  3. Uniform Self-rectifying Resistive Switching Behavior via Preformed Conducting Paths in a Vertical-type Ta2O5/HfO2-x Structure with a Sub-μm(2) Cell Area.

    PubMed

    Yoon, Jung Ho; Yoo, Sijung; Song, Seul Ji; Yoon, Kyung Jean; Kwon, Dae Eun; Kwon, Young Jae; Park, Tae Hyung; Kim, Hye Jin; Shao, Xing Long; Kim, Yumin; Hwang, Cheol Seong

    2016-07-20

    To replace or succeed the present NAND flash memory, resistive switching random access memory (ReRAM) should be implemented in the vertical-type crossbar array configuration. The ReRAM cell must have a highly reproducible resistive switching (RS) performance and an electroforming-free, self-rectifying, low-power-consumption, multilevel-switching, and easy fabrication process with a deep sub-μm(2) cell area. In this work, a Pt/Ta2O5/HfO2-x/TiN RS memory cell fabricated in the form of a vertical-type structure was presented as a feasible contender to meet the above requirements. While the fundamental RS characteristics of this material based on the electron trapping/detrapping mechanisms have been reported elsewhere, the influence of the cell scaling size to 0.34 μm(2) on the RS performance by adopting the vertical integration scheme was carefully examined in this work. The smaller cell area provided much better switching uniformity while all the other benefits of this specific material system were preserved. Using the overstressing technique, the nature of RS through the localized conducting path was further examined, which elucidated the fundamental difference between the present material system and the general ionic-motion-related bipolar RS mechanism.

  4. Dynamics of nonreactive solute transport in the permafrost environment

    NASA Astrophysics Data System (ADS)

    Svyatskiy, D.; Coon, E. T.; Moulton, J. D.

    2017-12-01

    As part of the DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic, researchers are developing process-rich models to understand and predict the evolution of water sources and hydrologic flow pathways resulting from degrading permafrost. The sources and interaction of surface and subsurface water and flow paths are complex in space and time due to strong interplay between heterogeneous subsurface parameters, the seasonal to decadal evolution of the flow domain, climate driven melting and release of permafrost ice as a liquid water source, evolving surface topography and highly variable meteorological data. In this study, we seek to characterize the magnitude of vertical and lateral subsurface flows in a cold, wet tundra, polygonal landscape characteristic of the Barrow Peninsula, AK. To better understand the factors controlling water flux partitioning in these low gradient landscapes, NGEE researchers developed and are applying the Advanced Terrestrial Simulator (ATS), which fully couples surface and subsurface flow and energy processes, snow distribution and atmospheric forcing. Here we demonstrate the integration of a new solute transport model within the ATS, which enables the interpretation of applied and natural tracer experiments and observations aimed at quantifying water sources and flux partitioning. We examine the role of ice wedge polygon structure, freeze-thaw processes and soil properties on the seasonal transport of water within and through polygons features, and compare results to tracer experiments on 2D low-centered and high-centered transects corresponding to artificial as well as realistic topographical data from sites in polygonal tundra. These simulations demonstrate significant difference between flow patterns between permafrost and non-permafrost environments due to active layer freeze-thaw processes.

  5. Continuous measurements of flow rate in a shallow gravel-bed river by a new acoustic system

    NASA Astrophysics Data System (ADS)

    Kawanisi, K.; Razaz, M.; Ishikawa, K.; Yano, J.; Soltaniasl, M.

    2012-05-01

    The continuous measurement of river discharge for long periods of time is crucial in water resource studies. However, the accurate estimation of river discharge is a difficult and labor-intensive procedure; thus, a robust and efficient method of measurement is required. Continuous measurements of flowrate have been carried out in a wide, shallow gravel bed river (water depth ≈ 0.6 m under low-flow conditions, width ≈ 115 m) using Fluvial Acoustic Tomography System (FATS) that has 25 kHz broadband transducers with horizontally omnidirectional and vertically hemispherical beam patterns. Reciprocal sound transmissions were performed between the two acoustic stations located diagonally on both sides of the river. The horizontal distance between the transducers was 301.96 m. FATS enabled the measurement of the depth- and range-averaged sound speed and flow velocity along the ray path. In contrast to traditional point/transect measurements of discharge, in a fraction of a second, FATS covers the entire cross section of river in a single measurement. The flow rates measured by FATS were compared to those estimated by moving boat Acoustic Doppler Current Profiler (ADCP) and rating curve (RC) methods. FATS estimates were in good agreement with ADCP estimates over a range of 20 to 65 m3 s-1. The RMS of residual between the two measurements was 2.41 m3 s-1. On the other hand the flowrate by RC method fairly agreed with FATS estimates for greater discharges than around 40 m3 s-1. This inconsistency arises from biased RC estimates in low flows. Thus, the flow rates derived from FATS could be considered reliable.

  6. The influence of terracettes on surface hydrology and erosion on vegetated Alpine, mountain and steep-sloping environments

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus; (Phil) Greenwood, Philip

    2014-05-01

    Alpine and mountain slopes represent important pathways that link high altitude grazing areas to meadows and rangelands at lower elevations. Given the often acute gradient of mountain slopes, they represent a convenient and potentially highly efficient runoff conveyance route that facilitates the downslope transfer of fine-sediment and sediment-bound nutrients and contaminants during erosion events. Above a certain gradient, many slopes host small steps, or `terracettes`. As these are generally orientated across slope, their genesis is usually attributed to a combination of soil creep, coupled with (and often accentuated by) grazing animals. Motivated by the prevalence of these distinct landform features and lack of information on their role as runoff conveyance routes, this communication reports preliminary results from an investigation to explore the possibility that terracettes may act as preferential flow-paths, with an as yet undocumented ability to greatly influence surface hydrology in mountainous and steeply-sloping environments. A ca. 40 m2 area of vegetated terracettes and section of adjacent thalweg, with gradients ranging from approximately 25-35o, were scanned using an automated Topcon IS03 Total Station at a resolution of 0.1 * 0.1 m. Data were converted to a Digital Elevation Model (DEM) in ArcGIS 10 Geographical Information System (GIS), and queried using Spatial Analyst (Surface Hydrology; Flow Accumulation function) to identify slope-sections that could act as preferential flow-pathways during runoff events. These data were supplemented by information on soil physical properties that included grain size composition, bulk density and porosity, in order to establish spatial variations in soil characteristics associated with the vertical and horizontal terracette features. Combining the digital and in-situ data indicate that the technique is able to identify preferential surface flow-paths. Such information could greatly benefit the future management of grazing and rangelands in Alpine, mountain and steeply sloping environments. With higher resolution data covering larger areas, as well as the possibility of using fallout radionuclide data to establish sediment residence times on depositional areas, it is envisioned that runoff and transportation of fine-sediment and sediment-associated nutrients and contaminants down these flow pathways could be modeled, predicted and their effects mitigated and perhaps eventually reduced.

  7. Effect of gravitational and inertial forces on vertical distribution of pulmonary blood flow

    NASA Technical Reports Server (NTRS)

    Chevalier, P. A.; Reed, J. H., Jr.; Vandenberg, R. A.; Wood, E. H.

    1978-01-01

    Vertical distribution of pulmonary blood flow (VDPBF) was studied, using radioactive microsphere emboli, in dogs without thoracotomy in the right decubitus position during exposure to lateral accelerations of 1, 2, 4, and 6 G. At all levels of force environment studied, an inverse linear relationship was observed between vertical height in the thorax and pulmonary blood flow (ml/min/ml lung tissue) with a decrease in flow to the most dependent region of the lung despite large increases in intravascular pressures at this site. Changes in blood flow were smallest at the mid-lung level, the hydrostatic 'balance point' for vascular and pleural pressures. These force environment-dependent changes in VDPBF are not readily explainable by the Starling resistor analog. Gravity-dependent regional differences in pleural and associated interstitial pressures, plus possible changes in vascular tone resulting from inadequate aeration of blood in the most dependent regions of the lung, probably also affect VDPBF.

  8. The Sensitivity of Numerical Simulations of Cloud-Topped Boundary Layers to Cross-Grid Flow

    NASA Astrophysics Data System (ADS)

    Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.

    2018-02-01

    In mesoscale and global atmospheric simulations with large horizontal domains, strong horizontal flow across the grid is often unavoidable, but its effects on cloud-topped boundary layers have received comparatively little study. Here the effects of cross-grid flow on large-eddy simulations of stratocumulus and trade-cumulus marine boundary layers are studied across a range of grid resolutions (horizontal × vertical) between 500 m × 20 m and 35 m × 5 m. Three cases are simulated: DYCOMS nocturnal stratocumulus, BOMEX trade cumulus, and a GCSS stratocumulus-to-trade cumulus case. Simulations are performed with a stationary grid (with 4-8 m s-1 horizontal winds blowing through the cyclic domain) and a moving grid (equivalent to subtracting off a fixed vertically uniform horizontal wind) approximately matching the mean boundary-layer wind speed. For stratocumulus clouds, cross-grid flow produces two primary effects on stratocumulus clouds: a filtering of fine-scale resolved turbulent eddies, which reduces stratocumulus cloud-top entrainment, and a vertical broadening of the stratocumulus-top inversion which enhances cloud-top entrainment. With a coarse (20 m) vertical grid, the former effect dominates and leads to strong increases in cloud cover and LWP, especially as horizontal resolution is coarsened. With a finer (5 m) vertical grid, the latter effect is stronger and leads to small reductions in cloud cover and LWP. For the BOMEX trade cumulus case, cross-grid flow tends to produce fewer and larger clouds with higher LWP, especially for coarser vertical grid spacing. The results presented are robust to choice of scalar advection scheme and Courant number.

  9. Film flow and heat transfer during condensation of steam on inclined and vertical nonround tubes

    NASA Astrophysics Data System (ADS)

    Nikitin, N. N.; Semenov, V. P.

    2008-03-01

    We describe a mathematical model for calculating heat transfer during film condensation of stagnant steam on inclined and vertical smooth tubes with cross sections of arbitrary shape that takes into account the action of surface tension forces. The heat-transfer coefficients are calculated, and the hydrodynamic pattern is presented in which a condensate film flows over the surface of nonround inclined and vertical tubes with cross-section of different shapes.

  10. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate.

    PubMed

    Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E

    2016-07-01

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.

  11. Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2016-03-01

    Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.

  12. Nano-iron Tracer Test for Characterizing Preferential Flow Path in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Chia, Y.; Chuang, P. Y.

    2015-12-01

    Deterministic description of the discrete features interpreted from site characterization is desirable for developing a discrete fracture network conceptual model. It is often difficult, however, to delineate preferential flow path through a network of discrete fractures in the field. A preliminary cross-borehole nano-iron tracer test was conducted to characterize the preferential flow path in fractured shale bedrock at a hydrogeological research station. Prior to the test, heat-pulse flowmeter measurements were performed to detect permeable fracture zones at both the injection well and the observation well. While a few fracture zones are found permeable, most are not really permeable. Chemical reduction method was used to synthesize nano zero-valent iron particles with a diameter of 50~150 nm. The conductivity of nano-iron solution is about 3100 μs/cm. The recorded fluid conductivity shows the arrival of nano-iron solution in the observation well 11.5 minutes after it was released from the injection well. The magnetism of zero-valent iron enables it to be absorbed on magnet array designed to locate the depth of incoming tracer. We found nearly all of absorbed iron on the magnet array in the observation well were distributed near the most permeable fracture zone. The test results revealed a preferential flow path through a permeable fracture zone between the injection well and the observation well. The estimated hydraulic conductivity of the connected fracture is 2.2 × 10-3 m/s. This preliminary study indicated that nano-iron tracer test has the potential to characterize preferential flow path in fractured rock.

  13. [CO2 turbulent exchange in a broadleaved Korean pine forest in Changbai Mountains].

    PubMed

    Wu, Jia-bing; Guan, De-xin; Sun, Xiao-min; Shi, Ting-ting; Han, Shi-jie; Jin, Chang-jie

    2007-05-01

    The measurement of CO2 turbulent exchange in a broadleaved Korean pine forest in Changbai Mountains by an open-path eddy covariance system showed that with near neutral atmospheric stratification, the CO2 and vertical wind components over canopy in inertial subrange followed the expected -2/3 power law, and the dominant vertical eddy scale was about 40 m. The frequency ranges of eddy contributions to CO2 fluxes were mostly within 0.01-2.0 Hz, and the eddy translated by low frequency over canopy contributed more of CO2 fluxes. The open-path eddy covariance system could satisfy the estimation of turbulent fluxes over canopy, but the CO2 fluxes between forest and atmosphere were generally underestimated at night because the increment of non turbulent processes, suggesting that the CO2 fluxes estimated under weak turbulence needed to revise correspondingly.

  14. 76 FR 16691 - Western Electric Coordinating Council Qualified Transfer Path Unscheduled Flow Relief Regional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... of the Western Electricity Coordinating Council (WECC) IRO-006-WECC-1 (Qualified Transfer Path... the Western Electricity Coordinating Council (WECC) IRO-006-WECC-1 (Qualified Transfer Path...: Balancing Authorities and Reliability Coordinator in the Western Electricity Coordinating Council. Frequency...

  15. Aethalometer

    DOEpatents

    Hansen, Anthony D.

    1990-01-01

    An improved aethalometer (10) having a single light source (18) and a single light detector (20) and two light paths (21, 22) from the light source (18) to the light detector (20). A quartz fiber filter (13) is inserted in the device, the filter (13) having a collection area (23) in one light path (21) and a reference area (24) in the other light path (22). A gas flow path (46) through the aethalometer housing (11) allows ambient air to flow through the collection area (23) of the filter (13) so that aerosol particles can be collected on the filter. A rotating disk (31) with an opening (33) therethrough allows light for the light source (18) to pass alternately through the two light paths (21, 22). The voltage output of the detector (20) is applied to a VCO (52) and the VCO pulses for light transmission separately through the two light paths (21, 22 ) are counted and compared to determine the absorption coefficient of the collected aerosol particles.

  16. Putting it all together: Exhumation histories from a formal combination of heat flow and a suite of thermochronometers

    USGS Publications Warehouse

    d'Alessio, M. A.; Williams, C.F.

    2007-01-01

    A suite of new techniques in thermochronometry allow analysis of the thermal history of a sample over a broad range of temperature sensitivities. New analysis tools must be developed that fully and formally integrate these techniques, allowing a single geologic interpretation of the rate and timing of exhumation and burial events consistent with all data. We integrate a thermal model of burial and exhumation, (U-Th)/He age modeling, and fission track age and length modeling. We then use a genetic algorithm to efficiently explore possible time-exhumation histories of a vertical sample profile (such as a borehole), simultaneously solving for exhumation and burial rates as well as changes in background heat flow. We formally combine all data in a rigorous statistical fashion. By parameterizing the model in terms of exhumation rather than time-temperature paths (as traditionally done in fission track modeling), we can ensure that exhumation histories result in a sedimentary basin whose thickness is consistent with the observed basin, a physically based constraint that eliminates otherwise acceptable thermal histories. We apply the technique to heat flow and thermochronometry data from the 2.1 -km-deep San Andreas Fault Observatory at Depth pilot hole near the San Andreas fault, California. We find that the site experienced <1 km of exhumation or burial since the onset of San Andreas fault activity ???30 Ma.

  17. Geochemistry of ground water in the Gallup, Dakota, and Morrison aquifers, San Juan Basin, New Mexico

    USGS Publications Warehouse

    Dam, W.L.

    1995-01-01

    Ground water was sampled from wells completed in the Gallup, Dakota, and Morrison aquifers in the San Juan Basin, New Mexico, to examine controls on solute concentrations. Samples were collected from 38 wells primarily from the Morrison aquifer (25 wells) in the northwestern part of the basin. A series of samples was collected along ground-water flow paths; dissolved constituents varied horizontally and vertically. The understanding of the flow system changed as a result of the geochemical analyses. The conceptual model of the flow system in the Morrison aquifer prior to the study reported here assumed the Westwater Canyon Member of the Morrison aquifer as the only significant regional aquifer; flow was assumed to be two dimensional; and vertical leakage was assumed to be negligible. The geochemical results indicate that the Westwater Canyon Member is not the only major water-yielding zone and that the flow system is three dimensional. The data presented in this report suggest an upward component of flow into the Morrison aquifer. The entire section above and below the Morrison aquifer appears to be controlled by a three-dimensional flow regime where saline brine leaks near the San Juan River discharge area. Predominant ions in the Gallup aquifer were calcium bicarbonate in recharge areas and sodium sulfate in discharge areas. In the Dakota aquifer, predominant ions were sodium bicarbonate and sodium sulfate. Water in the Morrison aquifer was predominantly sodium bicarbonate in the recharge area, changing to sodium sulfate downgradient. Chemical and radioisotopic data indicate that water from overlying and underlying units mixes with recharge water in the Morrison aquifer. Recharge water contained a large ratio of chlorine-36 to chlorine and a small ratio of bromide to chloride. Approximately 10 miles downgradient, samples from four wells completed in the Morrison aquifer were considerably different in composition compared to recharge samples. Oxygen stable isotopes decreased by 2.8 per mil and deuterium decreased 26 per mil, relative to recharge. Carbon-14 radioisotope activities were not detectable. Chloride-36 radioisotope ratios were small and bromide to chloride concentration ratios were large. These results suggest two potentially viable processes: ion filtration or trapping of ancient dilute water recharged under a humid climate. For water samples near the San Juan River, pH decreased to about 8.0, chloride concentrations increased to more than 100 milligrams per liter, and ratios of chlorine-36 to chlorine and bromide to chloride were small. Leakage of deep basin brine into the fresher water of the Morrison aquifer appears to control ion concentrations.

  18. PUMPS FOR LIQUID CURRENT-CONDUCTING MATERIAL

    DOEpatents

    Watt, D.A.

    1958-12-23

    An induction-type liquid conductor pump is described wherein the induced current flow is substantially tnansverse to the flow of the liquid in the duct, thus eliminating parallel current flow that tends to cause unwanted pressures resulting in turbulence, eddy-flow, heating losses, and reduced pumping efficiency. This improvement is achieved by offering the parallel current a path of lower impedance along the duct than that offered by the liquid so that the induced currents remaining in the liquid flow in a substantially transverse directlon. Thick copper bars are brazed to the liquid duct parallel to the flow, and additional induced currents are created in the copper bars of appropriate magnitude to balance the ohmic drop ln the current paths outside of the liquid metal.

  19. An evaluation of borehole flowmeters used to measure horizontal ground-water flow in limestones of Indiana, Kentucky, and Tennessee, 1999

    USGS Publications Warehouse

    Wilson, John T.; Mandell, Wayne A.; Paillet, Frederick L.; Bayless, E. Randall; Hanson, Randall T.; Kearl, Peter M.; Kerfoot, William B.; Newhouse, Mark W.; Pedler, William H.

    2001-01-01

    Three borehole flowmeters and hydrophysical logging were used to measure ground-water flow in carbonate bedrock at sites in southeastern Indiana and on the westcentral border of Kentucky and Tennessee. The three flowmeters make point measurements of the direction and magnitude of horizontal flow, and hydrophysical logging measures the magnitude of horizontal flowover an interval. The directional flowmeters evaluated include a horizontal heat-pulse flowmeter, an acoustic Doppler velocimeter, and a colloidal borescope flowmeter. Each method was used to measure flow in selected zones where previous geophysical logging had indicated water-producing beds, bedding planes, or other permeable features that made conditions favorable for horizontal-flow measurements. Background geophysical logging indicated that ground-water production from the Indiana test wells was characterized by inflow from a single, 20-foot-thick limestone bed. The Kentucky/Tennessee test wells produced water from one or more bedding planes where geophysical logs indicated the bedding planes had been enlarged by dissolution. Two of the three test wells at the latter site contained measurable vertical flow between two or more bedding planes under ambient hydraulic head conditions. Field measurements and data analyses for each flow-measurement technique were completed by a developer of the technology or by a contractor with extensive experience in the application of that specific technology. Comparison of the horizontal-flow measurements indicated that the three point-measurement techniques rarely measured the same velocities and flow directions at the same measurement stations. Repeat measurements at selected depth stations also failed to consistently reproduce either flow direction, flow magnitude, or both. At a few test stations, two of the techniques provided similar flow magnitude or direction but usually not both. Some of this variability may be attributed to naturally occurring changes in hydraulic conditions during the 1-month study period in August and September 1999. The actual velocities and flow directions are unknown; therefore, it is uncertain which technique provided the most accurate measurements of horizontal flow in the boreholes and which measurements were most representative of flow in the aquifers. The horizontal heat-pulse flowmeter consistently yielded flow magnitudes considerably less than those provided by the acoustic Doppler velocimeter and colloidal borescope. The design of the horizontal heat-pulse flowmeter compensates for the local acceleration of ground-water velocity in the open borehole. The magnitude of the velocities estimated from the hydrophysical logging were comparable to those of the horizontal heat-pulse flowmeter, presumably because the hydrophysical logging also effectively compensates for the effect of the borehole on the flow field and averages velocity over a length of borehole rather than at a point. The acoustic Doppler velocimeter and colloidal borescope have discrete sampling points that allow for measuring preferential flow velocities that can be substantially higher than the average velocity through a length of borehole. The acoustic Doppler velocimeter and colloidal borescope also measure flow at the center of the borehole where the acceleration of the flow field should be greatest. Of the three techniques capable of measuring direction and magnitude of horizontal flow, only the acoustic Doppler velocimeter measured vertical flow. The acoustic Doppler velocimeter consistently measured downward velocity in all test wells. This apparent downward flow was attributed, in part, to particles falling through the water column as a result of mechanical disturbance during logging. Hydrophysical logging yielded estimates of vertical flow in the Kentucky/Tennessee test wells. In two of the test wells, the hydrophysical logging involved deliberate isolation of water-producing bedding planes with a packer to ensure that small horizontal flow could be quantified without the presence of vertical flow. The presence of vertical flow in the Kentucky/Tennessee test wells may preclude the definitive measurement of horizontal flow without the use of effective packer devices. None of the point-measurement techniques used a packer, but each technique used baffle devices to help suppress the vertical flow. The effectiveness of these baffle devices is not known; therefore, the effect of vertical flow on the measurements cannot be quantified. The general lack of agreement among the point-measurement techniques in this study highlights the difficulty of using measurements at a single depth point in a borehole to characterize the average horizontal flow in a heterogeneous aquifer. The effective measurement of horizontal flow may depend on the precise depth at which measurements are made, and the measurements at a given depth may vary over time as hydraulic head conditions change. The various measurements also demonstrate that the magnitude and possibly the direction of horizontal flow are affected by the presence of the open borehole. Although there is a lack of agreement among the measurement techniques, these results could mean that effective characterization of horizontal flow in heterogeneous aquifers might be possible if data from many depth stations and from repeat measurements can be averaged over an extended time period. Complications related to vertical flow in the borehole highlights the importance of using background logging methods like vertical flowmeters or hydrophysical logging to characterize the borehole environment before horizontal-flow measurements are attempted. If vertical flow is present, a packer device may be needed to acquire definitive measurements of horizontal flow. Because hydrophysical logging provides a complete depth profile of the borehole, a strength of this technique is in identifying horizontal- and vertical-flow zones in a well. Hydrophysical logging may be most applicable as a screening method. Horizontal- flow zones identified with the hydrophysical logging then could be evaluated with one of the point-measurement techniques for quantifying preferential flow zones and flow directions. Additional research is needed to determine how measurements of flow in boreholes relate to flow in bedrock aquifers. The flowmeters may need to be evaluated under controlled laboratory conditions to determine which of the methods accurately measure ground-water velocities and flow directions. Additional research also is needed to investigate variations in flow direction with time, daily changes in velocity, velocity corrections for fractured bedrock aquifers and unconsolidated aquifers, and directional differences in individual wells for hydraulically separated flow zones.

  20. Numerical Simulation of the Working Process in the Twin Screw Vacuum Pump

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Fu, Yu; Guo, Bei; Fu, Lijuan; Zhang, Qingqing; Chen, Xiaole

    2017-08-01

    Twin screw vacuum pumps inherit the advantages of screw machinery, such as high reliability, stable medium conveying, small vibration, simple and compact structures, convenient operation, etc, which have been widely used in petrochemical and air industry. On the basis of previous studies, this study analyzed the geometric features of variable pitch of the twin screw vacuum pump such as the sealing line, the meshing line and the volume between teeth. The mathematical model of numerical simulation of the twin screw vacuum pump was established. The leakage paths of the working volume including the sealing line and the addendum arc were comprehensively considered. The corresponding simplified geometric model of leakage flow was built up for different leak paths and the flow coefficients were calculated. The flow coefficient value range of different leak paths was given. The results showed that the flow coefficient of different leak paths can be taken as constant value for the studied geometry. The analysis of recorded indicator diagrams showed that the increasing rotational speed can dramatically decrease the exhaust pressure and the lower rotational speed can lead to over-compression. The pressure of the isentropic process which was affected by leakage was higher than the theoretical process.

  1. Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data

    NASA Astrophysics Data System (ADS)

    Mallast, U.; Gloaguen, R.; Geyer, S.; Rödiger, T.; Siebert, C.

    2011-08-01

    In this paper we present a semi-automatic method to infer groundwater flow-paths based on the extraction of lineaments from digital elevation models. This method is especially adequate in remote and inaccessible areas where in-situ data are scarce. The combined method of linear filtering and object-based classification provides a lineament map with a high degree of accuracy. Subsequently, lineaments are differentiated into geological and morphological lineaments using auxiliary information and finally evaluated in terms of hydro-geological significance. Using the example of the western catchment of the Dead Sea (Israel/Palestine), the orientation and location of the differentiated lineaments are compared to characteristics of known structural features. We demonstrate that a strong correlation between lineaments and structural features exists. Using Euclidean distances between lineaments and wells provides an assessment criterion to evaluate the hydraulic significance of detected lineaments. Based on this analysis, we suggest that the statistical analysis of lineaments allows a delineation of flow-paths and thus significant information on groundwater movements. To validate the flow-paths we compare them to existing results of groundwater models that are based on well data.

  2. Seismic-geodynamic constraints on three-dimensional structure, vertical flow, and heat transfer in the mantle

    USGS Publications Warehouse

    Forte, A.M.; Woodward, R.L.

    1997-01-01

    Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.

  3. Water Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.

  4. Water-Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    McGehee, John R.; Hathaway, Melvin E.; Vaughan, Victor L., Jr.

    1959-01-01

    Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.

  5. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.

  6. The Complexity of Parallel Algorithms,

    DTIC Science & Technology

    1985-11-01

    programns have been written for se(luiential coiipn ters. Many p~eop~le want coimp ~ilers dihal. will c(nimpile t he, code for parallel machines, to avoid...between two vertices. We also rely on parallel algorithms for maintaining data structures and manipulating graphs. We do not go into the details of these...Jpatlis and maintain connected coimp ~onents. The routine is: - 35 .- ExtendPath(r, Q, V) begin P +-0; s 4- while there is a path in V - P from s to a vertex

  7. Probabilistic Analysis of Combinatorial Optimization Problems on Hypergraph Matchings

    DTIC Science & Technology

    2012-02-01

    per dimension” ( recall that d is equal to the number of independent subsets of vertices Vk in the hypergraph Hd jn, and n denotes the number of...disjoint solutions whose costs are iid random variables. First, recalling the interpretation of feasible MAP solu- tions as paths in the index graph G, we...elements. On the other hand, recall that a (feasible) path G can be described as a set of n vectors D f.i .1/ 1 ; : : : ; i .1/ d /; : : : ; .i .n

  8. Hybrid indirect/direct contactor for thermal management of counter-current processes

    DOEpatents

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2018-03-20

    The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.

  9. Interprocedural Analysis and the Verification of Concurrent Programs

    DTIC Science & Technology

    2009-01-01

    SSPE ) problem is to compute a regular expression that represents paths(s, v) for all vertices v in the graph. The syntax of regular expressions is as...follows: r ::= ∅ | ε | e | r1 ∪ r2 | r1.r2 | r∗, where e stands for an edge in G. We can use any algorithm for SSPE to compute regular expressions for...a closed representation of loops provides an exponential speedup.2 Tarjan’s path-expression algorithm solves the SSPE problem efficiently. It uses

  10. VERTICAL INTEGRATION OF THREE-PHASE FLOW EQUATIONS FOR ANALYSIS OF LIGHT HYDROCARBON PLUME MOVEMENT

    EPA Science Inventory

    A mathematical model is derived for areal flow of water and light hydrocarbon in the presence of gas at atmospheric pressure. Closed-form expressions for the vertically integrated constitutive relations are derived based on a three-phase extension of the Brooks-Corey saturation-...

  11. Simulating phosphorus removal from a vertical-flow constructed wetland grown with C. alternifolius species

    USDA-ARS?s Scientific Manuscript database

    Vertical flow constructed wetland (VFCW) is a promising engineering technique for removal of excess nutrients and certain pollutants from wastewater and stormwater. The aim of this study was to develop a STELLA (Structural Thinking, Experiential Learning Laboratory with Animation) model for estimati...

  12. Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.

    2013-12-01

    Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.

  13. A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.

    PubMed

    Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang

    2018-01-01

    The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.

  14. Temporal dynamics in dominant runoff sources and flow paths in the Andean Páramo

    NASA Astrophysics Data System (ADS)

    Correa, Alicia; Windhorst, David; Tetzlaff, Doerthe; Crespo, Patricio; Célleri, Rolando; Feyen, Jan; Breuer, Lutz

    2017-07-01

    The relative importance of catchment's water provenance and flow paths varies in space and time, complicating the conceptualization of the rainfall-runoff responses. We assessed the temporal dynamics in source areas, flow paths, and age by End Member Mixing Analysis (EMMA), hydrograph separation, and Inverse Transit Time Proxies (ITTPs) estimation within a headwater catchment in the Ecuadorian Andes. Twenty-two solutes, stable isotopes, pH, and electrical conductivity from a stream and 12 potential sources were analyzed. Four end-members were required to satisfactorily represent the hydrological system, i.e., rainfall, spring water, and water from the bottom layers of Histosols and Andosols. Water from Histosols in and near the riparian zone was the highest source contributor to runoff throughout the year (39% for the drier season, 45% for the wetter season), highlighting the importance of the water that is stored in the riparian zone. Spring water contributions to streamflow tripled during the drier season, as evidenced by geochemical signatures that are consistent with deeper flow paths rather than shallow interflow through Andosols. Rainfall exhibited low seasonal variation in this contribution. Hydrograph separation revealed that 94% and 84% is preevent water in the drier and wetter seasons, respectively. From low-flow to high-flow conditions, all the sources increased their contribution except spring water. The relative age of stream water decreased during wetter periods, when the contributing area of the riparian zone expands. The multimethod and multitracer approach enabled to closely study the interchanging importance of flow processes and water source dynamics from an interannual perspective.

  15. Models for estimating runway landing capacity with Microwave Landing System (MLS)

    NASA Technical Reports Server (NTRS)

    Tosic, V.; Horonjeff, R.

    1975-01-01

    A model is developed which is capable of computing the ultimate landing runway capacity, under ILS and MLS conditions, when aircraft population characteristics and air traffic control separation rules are given. This model can be applied in situations when only a horizontal separation between aircraft approaching a runway is allowed, as well as when both vertical and horizontal separations are possible. It is assumed that the system is free of errors, that is that aircraft arrive at specified points along the prescribed flight path precisely when the controllers intend for them to arrive at these points. Although in the real world there is no such thing as an error-free system, the assumption is adequate for a qualitative comparison of MLS with ILS. Results suggest that an increase in runway landing capacity, caused by introducing the MLS multiple approach paths, is to be expected only when an aircraft population consists of aircraft with significantly differing approach speeds and particularly in situations when vertical separation can be applied. Vertical separation can only be applied if one of the types of aircraft in the mix has a very steep descent angle.

  16. Partially to fully saturated flow through smooth, clean, open fractures: qualitative experimental studies

    NASA Astrophysics Data System (ADS)

    Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.

    2018-05-01

    Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.

  17. Hydrodynamic implications of textural trends in sand deposits of the 2004 tsunami in Sri Lanka

    USGS Publications Warehouse

    Morton, R.A.; Goff, J.R.; Nichol, S.L.

    2008-01-01

    Field observations and sediment samples at a coastal-plain setting in southeastern Sri Lanka were used to document the erosional and depositional impacts of the 2004 Indian Ocean tsunami and to interpret the hydrodynamic processes that produced an extensive sand-sheet deposit. Tsunami deposit thicknesses ranged from 6 to 22??cm with thickness being controlled partly by antecedent topography. The deposit was composed of coarse to medium sand organized into plane-parallel laminae and a few laminasets. Vertical textural trends showed an overall but non-systematic upward fining and upward thinning of depositional units with an upward increase in heavy-mineral laminations at some locations. Repeated patterns in the vertical textural trends (upward fining, upward coarsening, uniform) were used to subdivide and correlate the deposit into five hydro-textural stratigraphic units. The depositional units were linked to hydrodynamic processes and upcurrent conditions, such as rates of sediment supply and composition of the sediment sources. Vertical changes in grain-size distributions recorded the depositional phases associated with flow acceleration, initial unsteady pulsating flow, relatively stable and uniform flow, flow deceleration, slack water, and return flow or flow redirection. Study results suggest that vertical textural trends from multiple cross-shore sections can be used to interpret complex tsunami flow histories, but at the location examined, interpretation of the lateral textural trends did not provide a basis for identifying the correct sediment transport pathways because flow near the landward boundary was multidirectional.

  18. Influence of visual path information on human heading perception during rotation.

    PubMed

    Li, Li; Chen, Jing; Peng, Xiaozhe

    2009-03-31

    How does visual path information influence people's perception of their instantaneous direction of self-motion (heading)? We have previously shown that humans can perceive heading without direct access to visual path information. Here we vary two key parameters for estimating heading from optic flow, the field of view (FOV) and the depth range of environmental points, to investigate the conditions under which visual path information influences human heading perception. The display simulated an observer traveling on a circular path. Observers used a joystick to rotate their line of sight until deemed aligned with true heading. Four FOV sizes (110 x 94 degrees, 48 x 41 degrees, 16 x 14 degrees, 8 x 7 degrees) and depth ranges (6-50 m, 6-25 m, 6-12.5 m, 6-9 m) were tested. Consistent with our computational modeling results, heading bias increased with the reduction of FOV or depth range when the display provided a sequence of velocity fields but no direct path information. When the display provided path information, heading bias was not influenced as much by the reduction of FOV or depth range. We conclude that human heading and path perception involve separate visual processes. Path helps heading perception when the display does not contain enough optic-flow information for heading estimation during rotation.

  19. Analysis of 2015 Winter In-Flight Icing Case Studies with Ground-Based Remote Sensing Systems Compared to In-Situ SLW Sondes

    NASA Technical Reports Server (NTRS)

    Serke, David J.; King, Michael Christopher; Hansen, Reid; Reehorst, Andrew L.

    2016-01-01

    National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage utilizes a vertical pointing cloud radar, a multi-frequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport. To date, statistical comparisons of the vertical profiling technology have been made to Pilot Reports and Icing Forecast Products. With the extension into relatively large area coverage and the output of microphysical properties in addition to icing severity, the use of these comparators is not appropriate and a more rigorous assessment is required. NASA conducted a field campaign during the early months of 2015 to develop a database to enable the assessment of the new terminal area icing remote sensing system and further refinement of terminal area icing weather information technologies in general. In addition to the ground-based remote sensors listed earlier, in-situ icing environment measurements by weather balloons were performed to produce a comprehensive comparison database. Balloon data gathered consisted of temperature, humidity, pressure, super-cooled liquid water content, and 3-D position with time. Comparison data plots of weather balloon and remote measurements, weather balloon flight paths, bulk comparisons of integrated liquid water content and icing cloud extent agreement, and terminal-area hazard displays are presented. Discussions of agreement quality and paths for future development are also included.

  20. Chemseal 3808-A2 penetration into small leak path

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Dehaye, R. F.

    1988-01-01

    A possible fix to a leak in the oxidizer system of the Space Shuttle Discovery's attitude control system was proposed by MSFC. This fix involved the passing of a shuttlecock past the leaking Dynaflow fitting and sealing the vent tube containing the fitting with Chemseal 3808-A2. The question of whether the Chemseal 3808-A2 can flow into the leak path and provide a better seal was addressed analytically and by experiment to verify the analytical formula used. The results show that the equations are applicable and that the Chemseal will flow into the expected leak path and seal.

  1. Optimal landing of a helicopter in autorotation

    NASA Technical Reports Server (NTRS)

    Lee, A. Y. N.

    1985-01-01

    Gliding descent in autorotation is a maneuver used by helicopter pilots in case of engine failure. The landing of a helicopter in autorotation is formulated as a nonlinear optimal control problem. The OH-58A helicopter was used. Helicopter vertical and horizontal velocities, vertical and horizontal displacement, and the rotor angle speed were modeled. An empirical approximation for the induced veloctiy in the vortex-ring state were provided. The cost function of the optimal control problem is a weighted sum of the squared horizontal and vertical components of the helicopter velocity at touchdown. Optimal trajectories are calculated for entry conditions well within the horizontal-vertical restriction curve, with the helicopter initially in hover or forwared flight. The resultant two-point boundary value problem with path equality constraints was successfully solved using the Sequential Gradient Restoration Technique.

  2. Ground-water flow paths and traveltime to three small embayments within the Peconic Estuary, eastern Suffolk County, New York

    USGS Publications Warehouse

    Schubert, Christopher E.

    1999-01-01

    The Peconic Estuary, at the eastern end of Long Island, has been plagued by a recurrent algal bloom that has caused the severe decline of local marine resources. Although the onset, duration, and cessation of the bloom remain unpredictable, ground-water discharge has been shown to affect surface-water quality in the western part of the estuary. Results from a study on the North Fork of Long Island indicate that local hydrogeologic factors cause differences in ground-water age and characteristics of discharge to the estuary. The need for information on the local patterns and rates of ground-water discharge to the Peconic Estuary prompted analysis of ground-water flow paths and traveltime to three small embayments within the estuary.Meetinghouse Creek, near the west end of the North Fork; Sag Harbor Cove, in the central part of the South Fork; and West Neck Bay, on Shelter Island.Ground-water-flow models were developed, and particle-tracking procedures were applied to the results of each model, to define the flow paths and traveltime of ground water to the three embayments. The steady-state flow models represent the two-dimensional ground-water-flow system along a vertical section through the uplands of each embayment and simulate long-term hydrologic conditions. The particle-tracking procedure used model-generated ground-water levels and flow rates to calculate the water-particle pathlines and times-of-travel through each flow system from the point of entry (recharge) to the point of exit at streams, the shore, or subsea-discharge areas.Results for the Meetinghouse Creek study area indicate that about 50 percent of the total recharge that enters the system flows southward to Meetinghouse Creek; half of this amount discharges as base flow to the fresh-water reach of the creek, and half as shoreline underflow to the estuarine reach. About 85 percent of the total discharge to Meetinghouse Creek has flowed entirely within the upper glacial aquifer, and about 15 percent has flowed through the Magothy aquifer. The average age of all ground water discharged to Meetinghouse Creek is about 60 years; the average age of base flow to the freshwater reach of the creek is about 7 years, and the average age of shoreline underflow to the estuarine reach is about 120 years. The results for the Sag Harbor Cove study area indicate that about 30 percent of the total recharge that enters the system flows northward to Sag Harbor Cove; about half of this amount discharges as shoreline underflow, and half as subsea underflow. About 40 percent of the total discharge to Sag Harbor Cove has flowed entirely within the upper glacial aquifer, and about 60 percent has flowed through the Pleistocene marine clay unit, Pleistocene(?) sand unit, or Magothy aquifer. The average age of all ground water discharged to Sag Harbor Cove is about 110 years; the average age of shoreline underflow is about 25 years, and the average age of subsea underflow is about 190 years.Results for the West Neck Bay study area indicate that about 65 percent of the total recharge that enters the system flows westward to West Neck Bay; virtually all of this amount discharges as shoreline underflow, but a negligible percentage discharges as subsea underflow. Virtually all discharge to West Neck Bay has flowed entirely within the upper glacial aquifer, although a minor amount has flowed through the Pleistocene marine clay unit. The average age of shoreline underflow to West Neck Bay is about 15 years, and the average age of subsea underflow is about 1,800 years.Ground water that discharges to streams and the shores represented in the models is mostly relatively young water that has flowed entirely within the shallow zones of the flow systems, whereas ground water that discharges to the subsea-discharge areas is mostly old water that has flowed through the deep zones. Data obtained from these models allows evaluation of each embayment.s vulnerability to contaminants introduced at the water table and can guide the development of source-area-protection strategies for the corresponding watersheds.

  3. Flow of GE90 Turbofan Engine Simulated

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1999-01-01

    The objective of this task was to create and validate a three-dimensional model of the GE90 turbofan engine (General Electric) using the APNASA (average passage) flow code. This was a joint effort between GE Aircraft Engines and the NASA Lewis Research Center. The goal was to perform an aerodynamic analysis of the engine primary flow path, in under 24 hours of CPU time, on a parallel distributed workstation system. Enhancements were made to the APNASA Navier-Stokes code to make it faster and more robust and to allow for the analysis of more arbitrary geometry. The resulting simulation exploited the use of parallel computations by using two levels of parallelism, with extremely high efficiency.The primary flow path of the GE90 turbofan consists of a nacelle and inlet, 49 blade rows of turbomachinery, and an exhaust nozzle. Secondary flows entering and exiting the primary flow path-such as bleed, purge, and cooling flows-were modeled macroscopically as source terms to accurately simulate the engine. The information on these source terms came from detailed descriptions of the cooling flow and from thermodynamic cycle system simulations. These provided boundary condition data to the three-dimensional analysis. A simplified combustor was used to feed boundary conditions to the turbomachinery. Flow simulations of the fan, high-pressure compressor, and high- and low-pressure turbines were completed with the APNASA code.

  4. Testing a Conception of How School Leadership Influences Student Learning

    ERIC Educational Resources Information Center

    Leithwood, Kenneth; Patten, Sarah; Jantzi, Doris

    2010-01-01

    Purpose: This article describes and reports the results of testing a new conception of how leadership influences student learning ("The Four Paths"). Framework: Leadership influence is conceptualized as flowing along four paths (Rational, Emotions, Organizational, and Family) toward student learning. Each path is populated by multiple…

  5. PATTERNS OF FLOWS IN AN INTERMEDIATE PROMINENCE OBSERVED BY HINODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kwangsu; Chae, Jongchul; Cao Wenda

    2010-09-20

    The investigation of plasma flows in filaments/prominences gives us clues to understanding their magnetic structures. We studied the patterns of flows in an intermediate prominence observed by Hinode/SOT. By examining a time series of H{alpha} images and Ca II H images, we have found horizontal flows in the spine and vertical flows in the barb. Both of these flows have a characteristic speed of 10-20 km s{sup -1}. The horizontal flows displayed counterstreaming. Our detailed investigation revealed that most of the moving fragments in fact reversed direction at the end point of the spine near a footpoint close to themore » associated active region. These returning flows may be one possible explanation of the well-known counterstreaming flows in prominences. In contrast, we have found vertical flows-downward and upward-in the barb. Most of the horizontal flows in the spine seem to switch into vertical flows when they approach the barb, and vice versa. We propose that the net force resulting from a small deviation from magnetohydrostatic equilibrium, where magnetic fields are predominantly horizontal, may drive these patterns of flow. In the prominence studied here, the supposed magnetohydrostatic configuration is characterized by magnetic field lines sagging with angles of 13{sup 0} and 39{sup 0} in the spine and the barb, respectively.« less

  6. Estimating vertical velocity and radial flow from Doppler radar observations of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Lee, J. L.; Lee, W. C.; MacDonald, A. E.

    2006-01-01

    The mesoscale vorticity method (MVM) is used in conjunction with the ground-based velocity track display (GBVTD) to derive the inner-core vertical velocity from Doppler radar observations of tropical cyclone (TC) Danny (1997). MVM derives the vertical velocity from vorticity variations in space and in time based on the mesoscale vorticity equation. The use of MVM and GBVTD allows us to derive good correlations among the eye-wall maximum wind, bow-shaped updraught and echo east of the eye-wall in Danny. Furthermore, we demonstrate the dynamically consistent radial flow can be derived from the vertical velocity obtained from MVM using the wind decomposition technique that solves the Poisson equations over a limited-area domain. With the wind decomposition, we combine the rotational wind which is obtained from Doppler radar wind observations and the divergent wind which is inferred dynamically from the rotational wind to form the balanced horizontal wind in TC inner cores, where rotational wind dominates the divergent wind. In this study, we show a realistic horizontal and vertical structure of the vertical velocity and the induced radial flow in Danny's inner core. In the horizontal, the main eye-wall updraught draws in significant surrounding air, converging at the strongest echo where the maximum updraught is located. In the vertical, the main updraught tilts vertically outwards, corresponding very well with the outward-tilting eye-wall. The maximum updraught is located at the inner edge of the eye-wall clouds, while downward motions are found at the outer edge. This study demonstrates that the mesoscale vorticity method can use high-temporal-resolution data observed by Doppler radars to derive realistic vertical velocity and the radial flow of TCs. The vorticity temporal variations crucial to the accuracy of the vorticity method have to be derived from a high-temporal-frequency observing system such as state-of-the-art Doppler radars.

  7. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees.

    PubMed

    Schuldt, Bernhard; Leuschner, Christoph; Brock, Nicolai; Horna, Viviana

    2013-02-01

    It is generally assumed that the largest vessels are occurring in the roots and that vessel diameters and the related hydraulic conductance in the xylem are decreasing acropetally from roots to leaves. With this study in five tree species of a perhumid tropical rainforest in Sulawesi (Indonesia), we searched for patterns in hydraulic architecture and axial conductivity along the flow path from small-diameter roots through strong roots and the trunk to distal sun-canopy twigs. Wood density differed by not more than 10% across the different flow path positions in a species, and branch and stem wood density were closely related in three of the five species. Other than wood density, the wood anatomical and xylem hydraulic traits varied in dependence on the position along the flow path, but were unrelated to wood density within a tree. In contrast to reports from conifers and certain dicotyledonous species, we found a hump-shaped variation in vessel diameter and sapwood area--specific conductivity along the flow path in all five species with a maximum in the trunk and strong roots and minima in both small roots and twigs; the vessel size depended on the diameter of the organ. This pattern might be an adaptation to the perhumid climate with a low risk of hydraulic failure. Despite a similar mean vessel diameter in small roots and twigs, the two distal organs, hydraulically weighted mean vessel diameters were on average 30% larger in small roots, resulting in ∼ 85% higher empirical and theoretical specific conductivities. Relative vessel lumen area in percent of sapwood area decreased linearly by 70% from roots to twigs, reflecting the increase in sclerenchymatic tissue and tracheids in acropetal direction in the xylem. Vessel size was more closely related to the organ diameter than to the distance along the root-to-shoot flow path. We conclude that (i) the five co-occurring tree species show convergent patterns in their hydraulic architecture despite different growth strategies, and (ii) the paradigm assuming continuous acropetal vessel tapering and decrease in specific conductance from fine roots towards distal twigs needs reconsideration.

  8. Investigation on the heat transfer characteristics during flow boiling of liquefied natural gas in a vertical micro-fin tube

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Shi, Yumei; Chen, Dongsheng

    2014-03-01

    This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.

  9. Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop: August 4-5, 2015, Washington, D.C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprague, Michael A.; Boldyrev, Stanislav; Fischer, Paul

    This report details the impact exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the DOE applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought together experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.

  10. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  11. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  12. Convective heater

    DOEpatents

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  13. Thermally determining flow and/or heat load distribution in parallel paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.

  14. Thermally determining flow and/or heat load distribution in parallel paths

    DOEpatents

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    2016-12-13

    A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.

  15. Aquifers of Arkansas: protection, management, and hydrologic and geochemical characteristics of groundwater resources in Arkansas

    USGS Publications Warehouse

    Kresse, Timothy M.; Hays, Phillip D.; Merriman, Katherine R.; Gillip, Jonathan A.; Fugitt, D. Todd; Spellman, Jane L.; Nottmeier, Anna M.; Westerman, Drew A.; Blackstock, Joshua M.; Battreal, James L.

    2014-01-01

    The Interior Highlands of western Arkansas has less reported groundwater use than other areas of the State, reflecting a combination of factors. These factors include prevalent and increasing use of surface water, less intensive agricultural uses, lower population and industry densities, lesser potential yield of the resource, and lack of detailed reporting. The overall low yields of aquifers of the Interior Highlands result in domestic supply as the dominant use, with minor industrial, public, and commercial-supply use. Where greater volumes are required for growth of population and industry, surface water is the greatest supplier of water needs in the Interior Highlands. The various aquifers of the Interior Highlands generally occur in shallow, fractured, well-indurated, structurally modified bedrock of this mountainous region of the State, as compared to the relatively flat-lying, unconsolidated sediments of the Coastal Plain. In terms of age from youngest to oldest, the aquifers of the Interior Highlands include: the Arkansas River Valley alluvial aquifer, the Ouachita Mountains aquifer, the Western Interior Plains confining system, the Springfield Plateau aquifer, and the Ozark aquifer. Spatial trends in groundwater geochemistry in the Interior Highlands differ greatly from trends noted for aquifers of the Coastal Plain. In the Coastal Plain, the prevalence of long regional flow paths results in regionally predictable and mappable geochemical changes along the flow paths. In the Interior Highlands, short, topographically controlled flow paths (from hilltops to valleys) within small watersheds represent the predominant groundwater-flow system. As such, dense data coverage from numerous wells would be required to effectively characterize these groundwater basins and define small-scale geochemical changes along any given flow path for aquifers of the Interior Highlands. Changes in geochemistry generally were related to rock type and residence time along individual flow paths. Dominant changes in geochemistry for the Ouachita Mountains aquifer and the Western Interior Plains confining system are attributed to rock/water interaction and changes in redox zonation along the flow path. In these areas, groundwater evolves along flow paths from a calcium- to a sodium-bicarbonate water type with increasing reducing conditions resulting in denitrification, elevated iron and manganese concentrations, and production of methane in the more geochemically evolved and strongest reducing conditions. In the Ozark and Springfield Plateau aquifers, rapid influx of surface-derived contaminants, especially nitrogen, coupled with few to no attenuation processes was attributed to the karst landscape developed on Mississippian- and Ordovician-age carbonate rocks of the Ozark Plateaus. Increasing nitrate concentrations are related to increasing agricultural land use, and areas of mature karst development result in higher nitrate concentrations than areas with less karst features.

  16. ARC Cell Science Validation (CS-V) Payload Overview

    NASA Technical Reports Server (NTRS)

    Gilkerson, Nikita

    2017-01-01

    Automated cell biology system for laboratory and International Space Station (ISS) National Laboratory research. Enhanced cell culture platform that provides undisturbed culture maintenance, including feedback temperature control, medical grade gas supply, perfusion nutrient delivery and removal of waste, and automated experiment manipulations. Programmable manipulations include: media feeds change out, injections, fraction collections, fixation, flow rate, and temperature modification within a one-piece sterile barrier flow path. Cassette provides 3 levels of containment and allows Crew access to the bioculture chamber and flow path assembly for experiment initiation, refurbishment, or sample retrieval and preservation.

  17. Methods to quantify seepage beneath Levee 30, Miami-Dade County, Florida

    USGS Publications Warehouse

    Sonenshein, R.S.

    2001-01-01

    A two-dimensional, cross-sectional, finite-difference, ground-water flow model and a simple application of Darcy?s law were used to quantify ground-water flow (from a wetlands) beneath Levee 30 in Miami-Dade County, Florida. Geologic and geophysical data, vertical seepage data from the wetlands, canal discharge data, ground-water-level data, and surface-water-stage data collected during 1995 and 1996 were used as boundary conditions and calibration data for the ground-water flow model and as input for the analytical model. Vertical seepage data indicated that water from the wetlands infiltrated the subsurface, near Levee 30, at rates ranging from 0.033 to 0.266 foot per day when the gates at the control structures along Levee 30 canal were closed. During the same period, stage differences between the wetlands (Water Conservation Area 3B) and Levee 30 canal ranged from 0.11 to 1.27 feet. A layer of low-permeability limestone, located 7 to 10 feet below land surface, restricts vertical flow between the surface water in the wetlands and the ground water. Based on measured water-level data, ground-water flow appears to be generally horizontal, except in the direct vicinity of the canal. The increase in discharge rate along a 2-mile reach of the Levee 30 canal ranged from 9 to 30 cubic feet per second per mile and can be attributed primarily to ground-water inflow. Flow rates in Levee 30 canal were greatest when the gates at the control structures were open. The ground-water flow model data were compared with the measured ground-water heads and vertical seepage from the wetlands. Estimating the horizontal ground-water flow rate beneath Levee 30 was difficult owing to the uncertainty in the horizontal hydraulic conductivity of the main flow zone of the Biscayne aquifer. Measurements of ground-water flows into Levee 30 canal, a substantial component of the water budget, were also uncertain, which lessened the ability to validate the model results. Because of vertical flows near Levee 30 canal and a very low hydraulic gradient east of the canal, a simplified Darcian approach simulated with the ground-water flow model does not accurately estimate the horizontal ground-water flow rate. Horizontal ground-water flow rates simulated with the ground-water flow model (for a 60-foot-deep by 1-foot-wide section of the Biscayne aquifer) ranged from 150 to 450 cubic feet per day west of Levee 30 and from 15 to 170 cubic feet per day east of Levee 30 canal. Vertical seepage from the wetlands, within 500 feet of Levee 30, generally accounted for 10 to 15 percent of the total horizontal flow beneath the levee. Simulated horizontal ground-water flow was highest during the wet season and when the gates at the control structures were open.

  18. Vertical pump with free floating check valve

    DOEpatents

    Lindsay, Malcolm

    1980-01-01

    A vertical pump with a bottom discharge having a free floating check valve isposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions.

  19. Evapotranspiration versus oxygen intrusion: which is the main force in alleviating bioclogging of vertical-flow constructed wetlands during a resting operation?

    PubMed

    Hua, Guofen; Chen, Qiuwen; Kong, Jun; Li, Man

    2017-08-01

    Clogging is the most significant challenge limiting the application of constructed wetlands. Application of a forced resting period is a practical way to relieve clogging, particularly bioclogging. To reveal the alleviation mechanisms behind such a resting operation, evapotranspiration and oxygen flux were studied during a resting period in a laboratory vertical-flow constructed wetland model through physical simulation and numerical model analysis. In addition, the optimum theoretical resting duration was determined based on the time required for oxygen to completely fill the pores, i.e., formation of a sufficiently thick and completely dry layer. The results indicated that (1) evapotranspiration was not the key factor, but was a driving force in the alleviation of bioclogging; (2) the rate of oxygen diffusion into the pores was sufficient to oxidize and disperse the flocculant biofilm, which was essential to alleviate bioclogging. This study provides important insights into understanding how clogging/bioclogging can be alleviated in vertical-flow constructed wetlands. Graphical abstract Evapotranspiration versus oxygen intrusion in alleviating bioclogging in vertical flow constructed wetlands.

  20. Flow visualization study of the horseshoe vortex in a turbine stator cascade

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.; Russell, L. M.

    1982-01-01

    Flow visualization techniques were used to show the behavior of the horseshoe vortex in a large scale turbine stator cascade. Oil drops on the end wall surface flowed in response to local shear stresses, indicating the limiting flow streamlines at the surface. Smoke injected into the flow and photographed showed time averaged flow behavior. Neutrally bouyant helium filled soap bubbles followed the flow and showed up on photographs as streaks, indicating the paths followed by individual fluid particles. Preliminary attempts to control the vortex were made by injecting air through control jets drilled in the end wall near the vane leading edge. Seventeen different hole locations were tested, one at a time, and the effect of the control jets on the path follwed by smoke in the boundary layer was recorded photographically.

  1. Development of the scheme of stepwise combustion of coal in the inverter firebox of a power unit of 1000 MW power

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. B.; Chernov, S. L.; Kirichkov, V. S.

    2017-09-01

    The desire to increase the efficiency of using the heat of burned solid fuel leads to the significant growth of the initial steam parameter at steam-turbine plants. At the maximum temperatures of fresh and secondary steam of 700-720°C, the price of connecting of steam pipelines between the boiler and turbine is up to 20% of the price of a power plant unit, which dictates the necessity to decrease their length. One of the methods to achieve this is the application of an inverter firebox. An M-shaped profile of boiler, allowing one to decrease the length of heat-resistant steam pipelines, was developed at NRU MPEI. A distinctive feature of the profile is two inclined connecting gas flues between the firebox and convective shaft, starting from the gas windows located in the lower third of the firebox height. The boiler was designed for the steam production of 2493 t/h with the parameters of fresh steam of 35 MPa and 710°C. Thermal and aerodynamic calculations made it possible to get the sizes of boiler and dimensions of heating surfaces, and they also allow one to get the values of temperatures in the characteristic points along the gas path. On the basis of the results of calculations, the coefficient of efficiency of the boiler was 93.07% and the fuel consumption was 91.13 kg/s. For this boiler, the technology of effective stepwise burning of coal in a direct-flow-vortex torch (DFVT) in a system of vertical and horizontal tangential torches in the mode of solid slag removal, previously successively used in boilers with a traditional profile and upgraded to an inverter firebox, is proposed. The layouts of the direct-flow burners and nozzles for even and odd vertical sections of the firebox and also in a horizontal section were proposed. Organization of staged air supply in the vertical direction with a high fraction of in-firebox recycle of hot gases leads to low concentration of nitrogen oxides.

  2. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    USGS Publications Warehouse

    Harvey, Judson W.; Fuller, Christopher C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheic-flow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/λs, of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/λh= 2.6 hours), and in laboratory batch experiments using streambed sediment (1/λ = 2.7 hours). The modeled depths of subsurface storage zones (ds = 4–17 cm) and modeled residence times of water in storage zones (ts = 3–12 min) were both consistent with direct measurements in hyporheic flow paths (dh = 0–15 cm, th = 1–25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (fs = 8.9%, andfh = 9.3%rpar;. Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1/λs ≈ 1.3 hours), and the hyporheic porewater residence timescale (ts ≈ 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (Ls = stream velocity/storage-zone exchange coefficient ≈ 1.3 km) and the length of Pinal Creek (L ≈ 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, Rs = λstsL/Ls (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of Rs > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.

  3. Flume experiments elucidate relationships between stream morphology, hyporheic residence time, and nitrous oxide production

    NASA Astrophysics Data System (ADS)

    Quick, Annika; Farrell, Tiffany B.; Reeder, William Jeffrey; Feris, Kevin P.; Tonina, Daniele; Benner, Shawn G.

    2015-04-01

    The hyporheic zone is a potentially important producer of nitrous oxide, a powerful greenhouse gas. The location and magnitude of nitrous oxide generation within the hyporheic zone involves complex interactions between multiple nitrogen species, redox conditions, microbial communities, and hydraulics. To better understand nitrous oxide generation and emissions from streams, we conducted large-scale flume experiments in which we monitored pore waters along hyporheic flow paths within stream dune structures. Measurements of dissolved oxygen, ammonia, nitrate, nitrite, and dissolved nitrous oxide showed distinct spatial relationships reflecting redox changes along flow paths. Using residence times along a flow path, clear trends in oxygen conditions and nitrogen species were observed. Three dune sizes were modeled, resulting in a range of residence times, carbon reactivity levels and respiration rates. We found that the magnitude and location of nitrous oxide production in the hyporheic zone is related to nitrate loading, dune morphology, and residence time. Specifically, increasing exogenous nitrate levels in surface water to approximately 3 mg/L resulted in an increase in dissolved N2O concentrations greater than 500% (up to 10 µg/L N-N2O) in distinct zones of specific residence times. We also found, however, that dissolved N2O concentrations decreased to background levels further along the flow path due to either reduction of nitrous oxide to dinitrogen gas or degassing. The decrease in measurable N2O along a flow path strongly suggests an important relationship between dune morphology, residence time, and nitrous oxide emissions from within stream sediments. Relating streambed morphology and loading of nitrogen species allows for prediction of nitrous oxide production in the hyporheic zone of natural systems.

  4. Microfluidic Chips Controlled with Elastomeric Microvalve Arrays

    PubMed Central

    Li, Nianzhen; Sip, Chris; Folch, Albert

    2007-01-01

    Miniaturized microfluidic systems provide simple and effective solutions for low-cost point-of-care diagnostics and high-throughput biomedical assays. Robust flow control and precise fluidic volumes are two critical requirements for these applications. We have developed microfluidic chips featuring elastomeric polydimethylsiloxane (PDMS) microvalve arrays that: 1) need no extra energy source to close the fluidic path, hence the loaded device is highly portable; and 2) allow for microfabricating deep (up to 1 mm) channels with vertical sidewalls and resulting in very precise features. The PDMS microvalves-based devices consist of three layers: a fluidic layer containing fluidic paths and microchambers of various sizes, a control layer containing the microchannels necessary to actuate the fluidic path with microvalves, and a middle thin PDMS membrane that is bound to the control layer. Fluidic layer and control layers are made by replica molding of PDMS from SU-8 photoresist masters, and the thin PDMS membrane is made by spinning PDMS at specified heights. The control layer is bonded to the thin PDMS membrane after oxygen activation of both, and then assembled with the fluidic layer. The microvalves are closed at rest and can be opened by applying negative pressure (e.g., house vacuum). Microvalve closure and opening are automated via solenoid valves controlled by computer software. Here, we demonstrate two microvalve-based microfluidic chips for two different applications. The first chip allows for storing and mixing precise sub-nanoliter volumes of aqueous solutions at various mixing ratios. The second chip allows for computer-controlled perfusion of microfluidic cell cultures. The devices are easy to fabricate and simple to control. Due to the biocompatibility of PDMS, these microchips could have broad applications in miniaturized diagnostic assays as well as basic cell biology studies. PMID:18989408

  5. Vertical and Lateral Electron Content in the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Paetzold, M. P.; Peter, K.; Bird, M. K.; Häusler, B.; Tellmann, S.

    2016-12-01

    The radio-science experiment MaRS (Mars Express Radio Science) on the Mars Express spacecraft sounds the neutral atmosphere and ionosphere of Mars since 2004. Approximately 800 vertical profiles of the ionospheric electron density have been acquired until today. The vertical electron content (TEC) is easily computed from the vertical electron density profile by integrating along the altitude. The TEC is typically a fraction of a TEC unit (1E16 m^-2) and depends on the solar zenith angle. The magnitude of the TEC is however fully dominated by the electron density contained in the main layer M2. The contributions by the M1 layer below M2 or the topside is marginal. MaRS is using two radio frequencies for the sounding of the ionosphere. The directly observed differential Doppler from the two received frequencies is a measure of the lateral electron content that means along the ray path and perpendicular to the vertical electron density profile. Combining both the vertical electron density profile, the vertical TEC and the directly observed lateral TEC describes the lateral electron density distribution in the ionosphere.

  6. Traditional and innovative methods applied to a crystalline aquifer for characterizing fault zone hydrology at different scales

    NASA Astrophysics Data System (ADS)

    Bour, O.; Ruelleu, S.; Le Borgne, T.; Boudin, F.; Moreau, F.; Durand, S.; Longuevergne, L.

    2011-12-01

    Crystalline rocks aquifers are difficult to characterize since flow is mainly localized in few fractures or faults. In particular, the geometry of the main flow paths and the connections of the aquifer with the sub-surface are often poorly constrained. Here, we present results from different geophysical and hydraulic methods to quantify fault zone hydrology of a crystalline confined aquifer (Ploemeur, French Brittany). This outstandingly productive crystalline rock aquifer is exploited at a rate of about 10 6 m3 per year since 1991. The pumping site is located at the intersection of two main structures: the contact zone between granite roof and overlying micaschists, and a steeply dipping fault striking North 20°, with combined dextral strike-slip and normal components. Core samples and borehole optical imagery reveals that the contact zone at the granite roof consists of alternating deformed granitic sheets and enclaves of micaschists, pegmatite and aplite dykes, as well as quartz veins. Locally, this contact is marked by mylonites and pegmatite-bearing breccias that are often but not systematically associated with major borehole inflows. Other significant inflows are localized within single fractures independently of the lithologies encountered. At the borehole scale the structural and hydraulic properties of the aquifer are thus highly variable. At the site scale - typically a kilometer squared - the water levels are monitored in 22 boreholes, 100 meters deep in average. The connectivity of the main flow paths and the hydraulic properties are relatively well constrained and quantified thanks to cross-borehole flowmeter tests and traditional pumping tests. In complement, long-base tiltmeters monitoring and ground-surface leveling allows to monitor sub-surface deformation. It provides a quantification of the hydro-mechanical properties of the aquifer and better constraints about the geometry of the main fault zone. Surprisingly, the storage coefficient of the confined aquifer is relatively high, in agreement with ground-surface deformation measurements that suggest a relativity high compressibility of the fault zone. At larger scale, we show through a high-resolution gravimetric survey that the highly fractured contact between granite and micaschists, which constitutes the main path for groundwater flow, is a gently dipping structure. A 3D gravimetric model confirms also the presence of sub-vertical faults that may constitute important drains for the aquifer recharge. In addition, groundwater temperature monitoring allows to shows that the main water supply comes from a depth of at least 300 meters. Such a depth in a low relief region involves relatively deep groundwater circulation that can be achieved only thanks to major permeable fault zone. This field example shows the advantages and limitations of some traditional and innovative methods to characterize fault zone hydrology in crystalline bedrock aquifers.

  7. Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach

    NASA Astrophysics Data System (ADS)

    Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.

    2017-08-01

    Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a realistic coastal region.

  8. Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry

    NASA Astrophysics Data System (ADS)

    Parsons, Daniel R.; Walker, Ian J.; Wiggs, Giles F. S.

    2004-04-01

    A Computational Fluid Dynamics (CFD) model (PHOENICS™ 3.5) previously validated for wind tunnel measurements is used to simulate the streamwise and vertical velocity flow fields over idealized transverse dunes of varying height ( h) and stoss slope basal length ( L). The model accurately reproduced patterns of: flow deceleration at the dune toe; stoss flow acceleration; vertical lift in the crest region; lee-side flow separation, re-attachment and reversal; and flow recovery distance. Results indicate that the flow field over transverse dunes is particularly sensitive to changes in dune height, with an increase in height resulting in flow deceleration at the toe, streamwise acceleration and vertical lift at the crest, and an increase in the extent of, and strength of reversed flows within, the lee-side separation cell. In general, the length of the separation zone varied from 3 to 15 h from the crest and increased over taller, steeper dunes. Similarly, the flow recovery distance ranged from 45 to >75 h and was more sensitive to changes in dune height. For the range of dune shapes investigated in this study, the differing effects of height and stoss slope length raise questions regarding the applicability of dune aspect ratio as a parameter for explaining airflow over transverse dunes. Evidence is also provided to support existing research on: streamline curvature and the maintenance of sand transport in the toe region; vertical lift in the crest region and its effect on grainfall delivery; relations between the turbulent shear layer and downward forcing of flow re-attachment; and extended flow recovery distances beyond the separation cell. Field validation is required to test these findings in natural settings. Future applications of the model will characterize turbulence and shear stress fields, examine the effects of more complex isolated dune forms and investigate flow over multiple dunes.

  9. Vadose zone process that control landslide initiation and debris flow propagation

    NASA Astrophysics Data System (ADS)

    Sidle, Roy C.

    2015-04-01

    Advances in the areas of geotechnical engineering, hydrology, mineralogy, geomorphology, geology, and biology have individually advanced our understanding of factors affecting slope stability; however, the interactions among these processes and attributes as they affect the initiation and propagation of landslides and debris flows are not well understood. Here the importance of interactive vadose zone processes is emphasized related to the mechanisms, initiation, mode, and timing of rainfall-initiated landslides that are triggered by positive pore water accretion, loss of soil suction and increase in overburden weight, and long-term cumulative rain water infiltration. Both large- and small-scale preferential flow pathways can both contribute to and mitigate instability, by respectively concentrating and dispersing subsurface flow. These mechanisms are influenced by soil structure, lithology, landforms, and biota. Conditions conducive to landslide initiation by infiltration versus exfiltration are discussed relative to bedrock structure and joints. The effects of rhizosphere processes on slope stability are examined, including root reinforcement of soil mantles, evapotranspiration, and how root structures affect preferential flow paths. At a larger scale, the nexus between hillslope landslides and in-channel debris flows is examined with emphasis on understanding the timing of debris flows relative to chronic and episodic infilling processes, as well as the episodic nature of large rainfall and related stormflow generation in headwater streams. The hydrogeomorphic processes and conditions that determine whether or not landslides immediately mobilize into debris flows is important for predicting the timing and extent of devastating debris flow runout in steep terrain. Given the spatial footprint of individual landslides, it is necessary to assess vadose zone processes at appropriate scales to ascertain impacts on mass wasting phenomena. Articulating the appropriate level of detail of small-scale vadose zone processes into landslide models is a particular challenge. As such, understanding flow pathways in regoliths susceptible to mass movement is critical, including distinguishing between conditions conducive to vertical recharge of water through relatively homogeneous soil mantles and conditions where preferential flow dominates - either by rapid infiltration and lateral flow through interconnected preferential flow networks or via exfiltration through bedrock fractures. These different hydrologic scenarios have major implications for the occurrence, timing, and mode of slope failures.

  10. Angle-of-Arrival Fluctuations of Light Propagating through the Intermittent Nocturnal Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Muschinski, A.; Hu, K.; Root, L. M.; Tichkule, S.; Wijesundara, S. N.

    2010-12-01

    Mean values and fluctuations of angles-of-arrival (AOAs) of light emitted from astronomical or terrestrial sources and observed through a telescope equipped with a CCD camera carry quantitative information about certain statistics of the wind and temperature field, integrated along the propagation path. While scintillometry (i.e., the retrieval of atmospheric quantities from light intensity fluctuations) has been a popular technique among micrometeorologists for many years, there have been relatively few attempts to utilize AOA observations to probe the atmospheric surface layer (ASL). Here we report results from a field experiment that we conducted at the Boulder Atmospheric Observatory (BAO) site near Erie, CO, in June 2010. During the night of 15/16 June, the ASL was characterized by intermittent turbulence and intermittent gravity-wave events. We measured temperature and wind with 12 sonics (R.M. Young, Model 81000, sampling rate 31 Hz) mounted on two portable towers at altitudes between 1.45 m and 4.84 m AGL; air pressure with two quartz-crystal barometers (Paroscientific, 10 Hz); and AOAs by means of a CCD camera (Lumenera, Model 075M, thirty 640x480 frames per second) attached to a 14-inch, Schmidt-Cassegrain telescope (Meade, Model LX200GPS) pointing at a rectangular array of four test lights (LEDs, vertical spacing 8 cm, horizontal spacing 10 cm) located at a distance of 182 m. The optical path was horizontal and 1.7 m above flat ground. The two towers were located 2 m away from the optical path. In our presentation, we focus on AOA retrievals of the following quantities: temporal fluctuations of the path-averaged, vertical temperature gradient; mean values and fluctuations of the path-averaged, lateral wind velocity; and mean values and fluctuations of the path-averaged temperature turbulence structure parameter. We compare the AOA retrievals with the collocated and simultaneous point measurements obtained with the sonics, and we analyze our observations in the framework of the Monin-Obukhov theory. The AOA techniques enable us to detect temporal fluctuations of the path-averaged vertical temperature gradient (estimated over a height increment defined by the telescope's aperture diameter) down to a few millikelvins per meter, which probably cannot be achieved with sonics. Extremely small wind velocities can also be resolved. Therefore, AOA techniques are well suited for observations of the nocturnal surface layer under quiet conditions. AOA retrieval techniques have major advantages over scintillometric techniques because AOAs can be understood within the framework of the weak-scattering theory or even geometrical optics (the eikonal-fluctuation theory), while the well-known "saturation effect" makes the weak-scattering theory invalid for intensity fluctuations in the majority of cases of practical relevance.

  11. Evaluating Titan2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Stinton, A. J.; Patra, A.; Pitman, E. B.; Bauer, A.; Nichita, C. C.

    2005-01-01

    The Titan2D geophysical mass-flow model is evaluated by comparing its simulation results and those obtained from another flow model, FLOW3D, with published data on the 1963 Little Tahoma Peak avalanches on Mount Rainier, Washington. The avalanches, totaling approximately 10×10 6 m 3 of broken lava blocks and other debris, traveled 6.8 km horizontally and fell 1.8 km vertically ( H/ L=0.246). Velocities calculated from runup range from 24 to 42 m/s and may have been as high as 130 m/s while the avalanches passed over Emmons Glacier. Titan2D is a code for an incompressible Coulomb continuum; it is a depth-averaged, 'shallow-water', granular-flow model. The conservation equations for mass and momentum are solved with a Coulomb-type friction term at the basal interface. The governing equations are solved on multiple processors using a parallel, adaptive mesh, Godunov scheme. Adaptive gridding dynamically concentrates computing power in regions of special interest; mesh refinement and coarsening key on the perimeter of the moving avalanche. The model flow initiates as a pile defined as an ellipsoid by a height ( z) and an elliptical base defined by radii in the x and y planes. Flow parameters are the internal friction angle and bed friction angle. Results from the model are similar in terms of velocity history, lateral spreading, location of runup areas, and final distribution of the Little Tahoma Peak deposit. The avalanches passed over the Emmons Glacier along their upper flow paths, but lower in the valley they traversed stream gravels and glacial outwash deposits. This presents difficulty in assigning an appropriate bed friction angle for the entire deposit. Incorporation of variable bed friction angles into the model using GIS will help to resolve this issue.

  12. Deleterious Thermal Effects due to Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    Reactor fuel rod surface area that is perpendicular to coolant flow direction (+S) i.e. perpendicular to the P creates areas of coolant stagnation leading to increased coolant temperatures resulting in localized changes in fluid properties. Changes in coolant fluid properties caused by minor increases in temperature lead to localized reductions in coolant mass flow rates leading to localized thermal instabilities. Reductions in coolant mass flow rates result in further increases in local temperatures exacerbating changes to coolant fluid properties leading to localized thermal runaway. Unchecked localized thermal runaway leads to localized fuel melting. Reactor designs with randomized flow paths are vulnerable to localized thermal instabilities, localized thermal runaway, and localized fuel melting.

  13. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  14. Stormflow generation: a meta-analysis of field studies and research catchments

    NASA Astrophysics Data System (ADS)

    Barthold, Frauke; Elsenbeer, Helmut

    2014-05-01

    Runoff characteristics are expressions of runoff generation mechanisms. In this study, we want to test the hypothesis if storm hydrographs of catchments with prevailing near-surface flow paths are dominated by new water. We aim to test this hypothesis using published data from the scientific literature. We developed a classification system based on three runoff characteristics: (1) hydrograph response (HR: slowly or quickly), (2) the temporal source of water that dominates the hydrograph (TS: pre-event vs. event water) and (3) the flow paths that the water takes until it is released to the stream (FP: subsurface vs. surface flow paths). We then performed a literature survey to collect information on these runoff characteristics for small, forested headwater catchments that served as study areas in runoff generation studies and assigned each study catchment to one of the 8 classes. For this purpose, we designed a procedure to objectively diagnose the predominant conceptual model of storm flow generation in each catchment and assess its temporal and spatial relevance for the catchment. Finally, we performed an explorative analysis of the classified research catchments and summarized field evidence. Our literature survey yielded a sample of 22 research catchments that fell within our defined criteria (small, naturally forested catchments which served as study areas in stormflow generation studies). We applied our classification procedure to all of these catchments. Among them were 14 catchments for which our meta-analysis yielded a complete set of stormflow characteristics resulting in one of the 8 model concepts and were assigned into our classification scheme. Of the 14 classified research catchments, 10 were dominated by subsurface flow paths while 4 were dominated by overland flow. The data also indicate that the spatial and temporal relevance is high for catchments with subsurface flow paths while often weak for surface flow paths dominated catchments. The catalogue of catchments supports our hypothesis; however, it is afflicted with a relative high degree of uncertainty. Two theories exist that may explain the imbalance between surface and subsurface dominated catchments: (1) the selection of research sites for stormflow generation studies was guided by the leading research question in hydrology, i.e. to address the "old water paradox", and (2) catchments with prevailing subsurface flow paths are much more common in nature. In a next step, the proposed catalogue of research catchments allows correlation of environmental characteristics with runoff characteristics to address questions of catchment organization and similarity. However, the successful application and relevance of such an approach depends on the range of conceptual models for which field support exist. Our results prompt us to highlight future research needs: (1) in order to cover a broader range of combinations of runoff characteristics a careful selection of research sites is necessary and (2) propose guidelines for field studies in order achieve higher comparability of resulting conceptual models of research sites and increase the spatial and temporal relevance of the dominant conceptual model.

  15. Acoustic transducer in system for gas temperature measurement in gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSilva, Upul P.; Claussen, Heiko

    An apparatus for controlling operation of a gas turbine engine including at least one acoustic transmitter/receiver device located on a flow path boundary structure. The acoustic transmitter/receiver device includes an elongated sound passage defined by a surface of revolution having opposing first and second ends and a central axis extending between the first and second ends, an acoustic sound source located at the first end, and an acoustic receiver located within the sound passage between the first and second ends. The boundary structure includes an opening extending from outside the boundary structure to the flow path, and the second endmore » of the surface of revolution is affixed to the boundary structure at the opening for passage of acoustic signals between the sound passage and the flow path.« less

  16. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution

    NASA Astrophysics Data System (ADS)

    Hemker, C. J.

    1999-11-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.

  17. Numerical study of 3D flow structure near a cylinder piercing turbulent free-convection boundary layer on a vertical plate

    NASA Astrophysics Data System (ADS)

    Levchenya, A. M.; Smirnov, E. M.; Zhukovskaya, V. D.

    2018-05-01

    The present contribution covers RANS-based simulation of 3D flow near a cylinder introduced into turbulent vertical-plate free-convection boundary layer. Numerical solutions were obtained with a finite-volume Navier-Stokes code of second-order accuracy using refined grids. Peculiarities of the flow disturbed by the obstacle are analyzed. Cylinder-diameter effect on the horseshoe vortex size and its position is evaluated.

  18. Use of a parallel path nebulizer for capillary-based microseparation techniques coupled with an inductively coupled plasma mass spectrometer for speciation measurements

    NASA Astrophysics Data System (ADS)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2004-06-01

    A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 μl/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography (μHPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5' deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and μHPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 μl/min.

  19. STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS

    EPA Science Inventory

    This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...

  20. A Computer Program for Flow-Log Analysis of Single Holes (FLASH)

    USGS Publications Warehouse

    Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.

    2011-01-01

    A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

Top