Sample records for vertical jumping performance

  1. Relative net vertical impulse determines jumping performance.

    PubMed

    Kirby, Tyler J; McBride, Jeffrey M; Haines, Tracie L; Dayne, Andrea M

    2011-08-01

    The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.

  2. RELATIONSHIP BETWEEN ISOKINETIC KNEE STRENGTH AND JUMP CHARACTERISTICS FOLLOWING ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION.

    PubMed

    Laudner, Kevin; Evans, Daniel; Wong, Regan; Allen, Aaron; Kirsch, Tom; Long, Brian; Meister, Keith

    2015-06-01

    Clinicians are often challenged when making return-to-play decisions following anterior cruciate ligament reconstruction (ACL-R). Isokinetic strength and jump performance testing are common tools used to make this decision. Unfortunately, vertical jump performance standards have not been clearly established and many clinicians do not have access to isokinetic testing equipment. To establish normative jump and strength characteristics in ACL-R patients cleared by an orthopedic physician to return-to-play and to determine if relationships exist between knee isokinetic strength measurements and jump characteristics described using an electronic jump map system. Descriptive laboratory study. Thirty-three ACL-R patients who had been cleared to return to athletic competition participated in this study. Twenty-six of these ACL-R participants were also matched to 26 asymptomatic athletes based on sex, limb, height, and mass to determine isokinetic strength and jump characteristic differences between groups. Jump tests consisted of single leg vertical, double leg vertical, and a 4-jump single leg vertical jump assessed using an electronic jump mat system. Independent t-tests were used to determine differences between groups and multiple regression analyses were used to identify any relationships between jump performance and knee strength (p<0.05). The ACL-R group had lower vertical jump capabilities and some bilateral knee strength deficiencies compared to the matched control group. The ACL-R group also showed several moderate-to-strong positive relationships for both knee extension and flexion strength with several jump performance characteristics, such as single and double leg vertical jump height. The current results indicate that ACL-R patients present with several knee strength and vertical jump differences compared to a matched control group at the time of return-to-play. Also, ACL-R patient's performance on an electronic jump mat system is strongly related to isokinetic knee strength measures. 2b.

  3. Segmental and Kinetic Contributions in Vertical Jumps Performed with and without an Arm Swing

    ERIC Educational Resources Information Center

    Feltner, Michael E.; Bishop, Elijah J.; Perez, Cassandra M.

    2004-01-01

    To determine the contributions of the motions of the body segments to the vertical ground reaction force ([F.sub.z]), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm…

  4. Hip and knee extensor moments predict vertical jump height in adolescent girls.

    PubMed

    Ford, Kevin R; Myer, Gregory D; Brent, Jensen L; Hewett, Timothy E

    2009-07-01

    Biomechanical factors, such as hip and knee extensor moments, related to drop jump (DJ) performance have not been investigated in adolescent girls. The purpose of this study was to determine the key independent biomechanical variables that predict overall vertical jump performance in adolescent girls. Sixteen high school adolescent girls from club-sponsored and high school-sponsored volleyball teams performed DJ at 3 different drop heights (15, 30, and 45 cm). A motion analysis system consisting of 10 digital cameras and a force platform was used to calculate vertical jump height, joint angles, and joint moments during the tasks. A multiple linear regression was used to determine the biomechanical parameters that were best predictive of vertical jump height at each box drop distance. The 2 predictor variables in all 3 models were knee and hip extensor moments. The models predicted 82.9, 81.9, and 88% of the vertical jump height variance in the 15, 30, and 45 cm trials, respectively. The results of the investigation indicate that knee and hip joint moments are the main contributors to vertical jump height during the DJ in adolescent girls. Strength and conditioning specialists attempting to improve vertical jump performance should target power and strength training to the hip and knee extensors in their athletes.

  5. Effect of Olympic and traditional resistance training on vertical jump improvement in high school boys.

    PubMed

    Channell, Brian T; Barfield, J P

    2008-09-01

    The purpose of this study was to compare the effects of a ballistic resistance training program of Olympic lifts with those of a traditional resistance training program of power lifts on vertical jump improvement in male high school athletes. Twenty-seven male student athletes were recruited from a high school football program at a small, rural school in the Southeast. The subjects were divided into an Olympic training group (OT, n = 11), a power training group (PT, n = 10), and a control group (n = 6). Analysis of variance was used to determine whether a significant mean difference existed among groups on vertical jump improvement after 8 weeks of group-specific training. Effect size of vertical jump improvement between groups, and correlations between strength and vertical jump performance, were also examined. There was no significant mean difference (p >or= 0.05) among OT, PT, and control groups, but large effect sizes between OT and control (d = 1.06) and PT and control (d = 0.94) demonstrate that both OT and PT are effective in improving vertical jump performance in male high school athletes. Moderate to high correlations were noted between squat score and vertical jump after adjusting for body weight (r = 0.42) and between power clean and vertical jump after adjusting for body weight (r = 0.75). Findings from the current study indicate that Olympic lifts as well as power lifts provide improvement in vertical jump performance and that Olympic lifts may provide a modest advantage over power lifts for vertical jump improvement in high school athletes.

  6. [INFLUENCE OF BODY COMPOSITION ON VERTICAL JUMP PERFORMANCE ACCORDING WITH THE AGE AND THE PLAYING POSITION IN FOOTBALL PLAYERS].

    PubMed

    Chena Sinovas, Marcos; Pérez-López, Alberto; Álvarez Valverde, Irene; Bores Cerezal, Antonio; Ramos-Campo, Domingo Jesús; Rubio-Arias, Jacobo Ángel; Valadés Cerrato, David

    2015-07-01

    body composition and vertical jump are two factors in the multifactorial approach to talent identification in soccer with implication on performance monitorization and injury rehabilitation. The aim of this study was to describe the anthropometric attributes and vertical jump performance in young soccer players based on their playing position. four hundred and thirty-four young soccer players from 7 to 25 years (13.4 ± 3.45 yrs; 156 ± 17 cm; 47.9 ± 15.4 kg), who trained 3 days/week for 1.5 hours/ day, took part in the study. All were split up based on their age or soccer category (U9, U11, U13, U15, U17, U25) and playing position (goalkeeper, defenders, midfielders and forwards). Then, body composition was measure using the anthropometric method and vertical jump performance was analysed by three vertical jump test Squat Jump (SJ), Counter-movement Jump (CMJ) and Abalakov Jump (CMJA). significant differences among playing positions were mainly detected in categories U13, U15 and U25. Goalkeepers from U13 category reported a significantly higher fat free mass, appendicular lean body mass, area of the thigh and area of the calf (P < 0.05). While, defenders from U25 category showed a significantly greater vertical jump performance compared to midfielders for SJ, midfielders and forwards for CMJ and all playing position for CMJA (P < 0.05). in addition to biological age and muscle mass development, playing position should be taken into consideration as a relevant variable in the utilization of body composition and vertical jump performance as talent detection factors. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  7. Validation of the iPhone app using the force platform to estimate vertical jump height.

    PubMed

    Carlos-Vivas, Jorge; Martin-Martinez, Juan P; Hernandez-Mocholi, Miguel A; Perez-Gomez, Jorge

    2018-03-01

    Vertical jump performance has been evaluated with several devices: force platforms, contact mats, Vertec, accelerometers, infrared cameras and high-velocity cameras; however, the force platform is considered the gold standard for measuring vertical jump height. The purpose of this study was to validate an iPhone app called My Jump, that measures vertical jump height by comparing it with other methods that use the force platform to estimate vertical jump height, namely, vertical velocity at take-off and time in the air. A total of 40 sport sciences students (age 21.4±1.9 years) completed five countermovement jumps (CMJs) over a force platform. Thus, 200 CMJ heights were evaluated from the vertical velocity at take-off and the time in the air using the force platform, and from the time in the air with the My Jump mobile application. The height obtained was compared using the intraclass correlation coefficient (ICC). Correlation between APP and force platform using the time in the air was perfect (ICC=1.000, P<0.001). Correlation between APP and force platform using the vertical velocity at take-off was also very high (ICC=0.996, P<0.001), with an error margin of 0.78%. Therefore, these results showed that application, My Jump, is an appropriate method to evaluate the vertical jump performance; however, vertical jump height is slightly overestimated compared with that of the force platform.

  8. Ballistic stretching increases flexibility and acute vertical jump height when combined with basketball activity.

    PubMed

    Woolstenhulme, Mandy T; Griffiths, Christine M; Woolstenhulme, Emily M; Parcell, Allen C

    2006-11-01

    Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p < 0.0001), while vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p < 0.05). Coaches should consider using ballistic stretching as a warm-up for basketball play, as it is beneficial to vertical jump performance.

  9. Effects of Warm-Up and Fatigue on Knee Joint Position Sense and Jump Performance.

    PubMed

    Romero-Franco, N; Jiménez-Reyes, P

    2017-01-01

    The purpose of this study was to evaluate the effects of a warm-up and fatigue protocol on the vertical jump and knee joint position sense of sprinters. Thirty-two sprinters were randomly allocated to either a control group (CONT) or a plyometric group (PLYO) that performed a warm-up, followed by a high-intensity plyometric protocol. Absolute (AAE), relative (RAE), and variable (VAE) angular errors and vertical jump were evaluated before and after the warm-up, as well as after the plyometric protocol and again 5 min later. After the warm-up, athletes improved RAE and jump performance. After the plyometric protocol, scores on the RAE, VAE, and the vertical jump performance worsened compared to the control group and to the values obtained after the warm-up. Five minutes later, RAE and vertical jump continued to be impaired. AAE did not show significant differences. The vertical jump is improved after the warm-up, although it is deteriorated after high-intensity plyometry. Regarding knee proprioception, the lack of impairments in the AAE make unclear the effects of the plyometric exercises on knee proprioception.

  10. Increase in Jumping Height Associated with Maximal Effort Vertical Depth Jumps.

    ERIC Educational Resources Information Center

    Bedi, John F.; And Others

    1987-01-01

    In order to assess if there existed a statistically significant increase in jumping performance when dropping from different heights, 32 males, aged 19 to 26, performed a series of maximal effort vertical jumps after dropping from eight heights onto a force plate. Results are analyzed. (Author/MT)

  11. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-12-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.

  12. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed Central

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-01-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations. PMID:29643592

  13. Influence of lumbar spine extension on vertical jump height during maximal squat jumping.

    PubMed

    Blache, Yoann; Monteil, Karine

    2014-01-01

    The purpose of this study was to determine the influence of lumbar spine extension and erector spinae muscle activation on vertical jump height during maximal squat jumping. Eight male athletes performed maximal squat jumps. Electromyograms of the erector spinae were recorded during these jumps. A simulation model of the musculoskeletal system was used to simulate maximal squat jumping with and without spine extension. The effect on vertical jump height of changing erector spinae strength was also tested through the simulated jumps. Concerning the participant jumps, the kinematics indicated a spine extension and erector spinae activation. Concerning the simulated jumps, vertical jump height was about 5.4 cm lower during squat jump without trunk extension compared to squat jump. These results were explained by greater total muscle work during squat jump, more especially by the erector spinae work (+119.5 J). The erector spinae may contribute to spine extension during maximal squat jumping. The simulated jumps confirmed this hypothesis showing that vertical jumping was decreased if this muscle was not taken into consideration in the model. Therefore it is concluded that the erector spinae should be considered as a trunk extensor, which enables to enhance total muscle work and consequently vertical jump height.

  14. Predictive Ability of the Medicine Ball Chest Throw and Vertical Jump Tests for Determining Muscular Strength and Power in Adolescents

    ERIC Educational Resources Information Center

    Hackett, Daniel A.; Davies, Timothy B.; Ibel, Denis; Cobley, Stephen; Sanders, Ross

    2018-01-01

    This study examined the predictive ability of the medicine ball chest throw and vertical jump for muscular strength and power in adolescents. One hundred and ninety adolescents participated in this study. Participants performed trials of the medicine ball chest throw and vertical jump, with vertical jump peak power calculated via an estimation…

  15. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.

    PubMed

    Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio

    2016-03-01

    Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.

  16. Performance changes and relationship between vertical jump measures and actual sprint performance in elite sprinters with visual impairment throughout a Parapan American games training season

    PubMed Central

    Loturco, Irineu; Winckler, Ciro; Kobal, Ronaldo; Cal Abad, Cesar C.; Kitamura, Katia; Veríssimo, Amaury W.; Pereira, Lucas A.; Nakamura, Fábio Y.

    2015-01-01

    The aims of this study were to estimate the magnitude of variability and progression in actual competitive and field vertical jump test performances in elite Paralympic sprinters with visual impairment in the year leading up to the 2015 Parapan American Games, and to investigate the relationships between loaded and unloaded vertical jumping test results and actual competitive sprinting performance. Fifteen Brazilian Paralympic sprinters with visual impairment attended seven official competitions (four national, two international and the Parapan American Games 2015) between April 2014 and August 2015, in the 100- and 200-m dash. In addition, they were tested in five different periods using loaded (mean propulsive power [MPP] in jump squat [JS] exercise) and unloaded (squat jump [SJ] height) vertical jumps within the 3 weeks immediately prior to the main competitions. The smallest important effect on performances was calculated as half of the within-athlete race-to-race (or test-to-test) variability and a multiple regression analysis was performed to predict the 100- and 200-m dash performances using the vertical jump test results. Competitive performance was enhanced during the Parapan American Games in comparison to the previous competition averages, overcoming the smallest worthwhile enhancement in both the 100- (0.9%) and 200-m dash (1.43%). In addition, The SJ and JS explained 66% of the performance variance in the competitive results. This study showed that vertical jump tests, in loaded and unloaded conditions, could be good predictors of the athletes' sprinting performance, and that during the Parapan American Games the Brazilian team reached its peak competitive performance. PMID:26594181

  17. Relationships between explosive and maximal triple extensor muscle performance and vertical jump height.

    PubMed

    Chang, Eunwook; Norcross, Marc F; Johnson, Sam T; Kitagawa, Taichi; Hoffman, Mark

    2015-02-01

    The purpose of this study was to examine the relationships between maximum vertical jump height and (a) rate of torque development (RTD) calculated during 2 time intervals, 0-50 milliseconds (RTD50) and 0-200 milliseconds (RTD200) after torque onset and (b) peak torque (PT) for each of the triple extensor muscle groups. Thirty recreationally active individuals performed maximal isometric voluntary contractions (MVIC) of the hip, knee and ankle extensors, and a countermovement vertical jump. Rate of torque development was calculated from 0 to 50 (RTD50) and 0 to 200 (RTD200) milliseconds after the onset of joint torque. Peak torque was identified and defined as the maximum torque value during each MVIC trial. Greater vertical jump height was associated with greater knee and ankle extension RTD50, RTD200, and PT (p ≤ 0.05). However, hip extension RTD50, RTD200, and PT were not significantly related to maximal vertical jump height (p > 0.05). The results indicate that 47.6 and 32.5% of the variability in vertical jump height was explained by knee and ankle extensor RTD50, respectively. Knee and ankle extensor RTD50 also seemed to be more closely related to vertical jump performance than RTD200 (knee extensor: 28.1% and ankle extensor: 28.1%) and PT (knee extensor: 31.4% and ankle extensor: 13.7%). Overall, these results suggest that training specifically targeted to improve knee and ankle extension RTD, especially during the early phases of muscle contraction, may be effective for increasing maximal vertical jump performance.

  18. Vertical and Horizontal Asymmetries are Related to Slower Sprinting and Jump Performance in Elite Youth Female Soccer Players.

    PubMed

    Bishop, Chris; Read, Paul; McCubbine, Jermaine; Turner, Anthony

    2018-02-27

    Inter-limb asymmetries have been shown to be greater during vertical jumping compared to horizontal jumping. Notable inter-limb differences have also been established at an early age in male youth soccer players. Furthermore, given the multi-planar nature of soccer, establishing between-limb differences from multiple jump tests is warranted. At present, a paucity of data exists regarding asymmetries in youth female soccer players and their effects on physical performance. The aims of this study were to quantify inter-limb asymmetries from unilateral jump tests and examine their effects on speed and jump performance. Nineteen elite youth female soccer players performed a single leg countermovement jump (SLCMJ), single, triple, and crossover hops for distance and a 20 m sprint test. Test reliability was good to excellent (ICC = 0.81-0.99) and variability acceptable (CV = 1.74-5.42%). A one-way ANOVA highlighted larger asymmetries from the SLCMJ compared to all other jump tests (p < 0.05). Pearson's correlations portrayed significant relationships between vertical asymmetries from the SLCMJ and slower sprint times (r = 0.49-0.59). Significant negative relationships were also found between horizontal asymmetries during the triple hop test and horizontal jump performance (r = -0.47 to -0.58) and vertical asymmetries during the SLCMJ and vertical jump performance (r = -0.47 to -0.53). The results from this study highlight that the SLCMJ appears to be the most appropriate jump test for identifying between-limb differences with values ∼12% showing negative associations with sprint times. Furthermore, larger asymmetries are associated with reduced jump performance and would appear to be direction-specific. Practitioners can use this information as normative data to be mindful of when quantifying inter-limb asymmetries and assessing their potential impact on physical performance in youth female soccer players.

  19. Potentiation: Effect of Ballistic and Heavy Exercise on Vertical Jump Performance.

    PubMed

    Hester, Garrett M; Pope, Zachary K; Sellers, John H; Thiele, Ryan M; DeFreitas, Jason M

    2017-03-01

    Hester, GM, Pope, ZK, Sellers, JH, Thiele, RM, and DeFreitas, JM. Potentiation: Effect of ballistic and heavy exercise on vertical jump performance. J Strength Cond Res 31(3): 660-666, 2017-The purpose of this study was to compare the acute effects of heavy and ballistic conditioning protocols on vertical jump performance in resistance-trained men. Fourteen resistance-trained men (mean ± SD: age = 22 ± 2.1 years, body mass = 86.29 ± 9.95 kg, and height = 175.39 ± 9.34 cm) with an average relative full squat of 2.02 ± 0.28 times their body mass participated in this study. In randomized, counterbalanced order, subjects performed two countermovement vertical jumps before and 1, 3, 5, and 10 minutes after either performing 10 rapid jump squats or 5 heavy back squats. The back squat protocol consisted of 5 repetitions at 80% one repetition maximum (1RM), whereas the jump squat protocol consisted of 10 repetitions at 20% 1RM. Peak jump height (in centimeters) using a jump mat, along with power output (in Watts) and velocity (in meters per second) through a linear transducer, was recorded for each time interval. There was no significant condition × time interaction for any of the dependent variables (p = 0.066-0.127). In addition, there was no main effect for condition for any of the dependent variables (p = 0.457-0.899). Neither the ballistic nor heavy protocol used in this study enhanced vertical jump performance at any recovery interval. The use of these protocols in resistance-trained men to produce postactivation potentiation is not recommended.

  20. Bilateral asymmetries in max effort single-leg vertical jumps.

    PubMed

    Stephens, Thomas M; Lawson, Brooke R; Reiser, Raoul F

    2005-01-01

    While asymmetries in the lower extremity during jumping may have implications during rehabilitation, it is not clear if healthy subjects should be expected to jump equivalently on each leg. Therefore, the goal of this study was to determine if asymmetries exist in maximal effort single-leg vertical jumps. After obtaining university-approved informed consent, 13 men and 12 women with competitive volleyball playing experience and no injuries of the lower-extremity that would predispose them to asymmetries participated. After thorough warm-up, five maximal effort vertical jumps with countermovement were performed on each leg (random order) with ground reaction forces and lower extremity kinematics recorded. The best three jumps from each leg were analyzed, assigning the leg with the highest jump height average as the dominant side. Asymmetry was assessed by determining statistical significance in the dominant versus non-dominant sides (p < 0.05). A significant interaction existed between side and gender for thigh length and peak vertical ground reaction force. Women had a significantly shorter thigh and men a greater peak vertical ground reaction force on their dominant side. All other parameters were assessed as whole group. Jumps were significantly greater off the dominant leg (2.8 cm on average). No other differences between sides were observed. Significant differences in magnitude (p < 0.05) existed between the men and women in jump height, several anthropometric parameters, minimum ankle and hip angles, and vertical ground reaction forces (peak and average). In conclusion, though a person may jump slightly higher on one leg relative to the other, and women may jump slightly differently than men, the magnitude of the difference should be relatively small and due to the multi-factorial nature of jump performance, individual parameters related to performance may not be consistently different.

  1. Acute Effects of Drop-Jump Protocols on Explosive Performances of Elite Handball Players.

    PubMed

    Dello Iacono, Antonio; Martone, Domenico; Padulo, Johnny

    2016-11-01

    Dello Iacono, A, Martone, D, and Padulo, J. Acute effects of drop-jump protocols on explosive performances of elite handball players. J Strength Cond Res 30(11): 3122-3133, 2016-This study aimed to assess the acute effects of vertical and horizontal drop jump-based postactivation potentiation (PAP) protocols on neuromuscular abilities in tasks such as jumping, sprinting, and change of direction (COD). Eighteen handball players were assessed before and after PAP regimens, consisting of either vertical single-leg drop-jumps (VDJ) or horizontal single-leg drop-jumps (HDJ) single-leg drop-jumps, on countermovement jump (CMJ), linear sprint, shuttle sprint, and agility performance. The HDJ led to greater improvement of the COD performance in comparison with the VDJ (-6.8 vs. -1.3%; p ≤ 0.05), whereas the VDJ caused greater improvement in the CMJ task compared with the HDJs (+6.5 vs. +1%; p ≤ 0.05). Moreover, the VDJ regimens compared with HDJ induced greater changes in most of the kinetic variables associated with vertical jumping performance, such as peak ground reaction forces (+9.6 vs. +1.3%), vertical displacement (-13.4 vs. -5.3%), leg-spring stiffness (+18.6 vs. +3.6%), contact time (-9.2 vs. -1.3%), and reactive strength index (+7.3 vs. +2.4%) (all comparisons with p ≤ 0.05). Conversely, the HDJ regimens were able to improve the COD performance only by reducing the contact time on COD more than the VDJ (-13.3 vs. -2.4% with p ≤ 0.05). The results showed that both PAPs were able to improve the performances that specifically featured similar force-orientation production. This investigation showed the crucial role that different and specific PAP regimens play in optimizing related functional performances. Specifically oriented vertical and horizontal single-leg drop-jump protocols represent viable means for achieving enhanced explosive-based tasks such as jumping and COD.

  2. Associations Among Quadriceps Strength and Rate of Torque Development 6 Weeks Post Anterior Cruciate Ligament Reconstruction and Future Hop and Vertical Jump Performance: A Prospective Cohort Study.

    PubMed

    Pua, Yong-Hao; Mentiplay, Benjamin F; Clark, Ross A; Ho, Jia-Ying

    2017-11-01

    Study Design Prospective cohort. Background Quadriceps strength is associated with hop distance and jump height in persons who have undergone anterior cruciate ligament (ACL) reconstruction. However, it is unknown whether the ability to rapidly generate quadriceps torque in the early phase of recovery is associated with future hopping and jumping performance in this population. Objective To evaluate the prospective associations among quadriceps strength and rate of torque development (RTD) and single-leg hop for distance, vertical jump height, vertical ground reaction force (vGRF), and vertical force loading rate during a landing task in persons who have undergone ACL reconstruction. Methods Seventy patients with unilateral ACL reconstruction participated. At 6 weeks post ACL reconstruction, isometric quadriceps strength and RTD were measured using a dynamometer. At 6 months following ACL reconstruction, patients performed the single-leg hop for distance test. Patients also performed the single-leg vertical jump test on a force plate that measured maximum jump height, vGRF, and average loading rate during landing. Results Both quadriceps strength and RTD at 6 weeks post ACL reconstruction were associated with all hopping and jumping measures at 6 months post ACL reconstruction (P≤.04). Single-leg hop distance was associated more closely with quadriceps strength than with quadriceps RTD (P = .05), and vertical jump height and vGRF measures were associated more closely with quadriceps RTD than with quadriceps strength (P = .05 and P<.01, respectively). Both quadriceps measures were associated with loading rate. Conclusion Quadriceps strength and RTD are complementary but distinct predictors of future hopping and jumping performance in persons who have undergone ACL reconstruction. These findings may contribute to improved rehabilitation of patients who are at risk for poor jumping/hopping performance and abnormal knee loading. J Orthop Sports Phys Ther 2017;47(11):845-852. Epub 13 Oct 2017. doi:10.2519/jospt.2017.7133.

  3. Effect of a submaximal half-squats warm-up program on vertical jumping ability.

    PubMed

    Gourgoulis, Vassilios; Aggeloussis, Nickos; Kasimatis, Panagiotis; Mavromatis, Giorgos; Garas, Athanasios

    2003-05-01

    The purpose of the current research was to study the effect of a warm-up program including submaximal half-squats on vertical jumping ability. Twenty physically active men participated in the study. Each subject performed 5 sets of half-squats with 2 repetitions at each of the following intensities: 20, 40, 60, 80, and 90% of the 1 repetition maximum (1RM) load. Prior to the first set and immediately after the end of the last set, the subjects performed 2 countermovement jumps on a Kistler force platform; the primary goal was to jump as high as possible. The results showed that mean vertical jumping ability improved by 2.39% after the warm-up period. Subjects were then divided into 2 groups according to their 1RM values for the half-squat. Subjects with greater maximal strength ability improved their vertical jumping ability (4.01%) more than did subjects with lower maximal strength (0.42%). A warm-up protocol including half-squats with submaximal loads and explosive execution can be used for short-term improvements of vertical jumping performance, and this effect is greater in athletes with a relatively high strength ability.

  4. The relationship between vertical jump power estimates and weightlifting ability: a field-test approach.

    PubMed

    Carlock, Jon M; Smith, Sarah L; Hartman, Michael J; Morris, Robert T; Ciroslan, Dragomir A; Pierce, Kyle C; Newton, Robert U; Harman, Everett A; Sands, William A; Stone, Michael H

    2004-08-01

    The purpose of this study was to assess the usefulness of the vertical jump and estimated vertical-jump power as a field test for weightlifting. Estimated PP output from the vertical jump was correlated with lifting ability among 64 USA national-level weightlifters (junior and senior men and women). Vertical jump was measured using the Kinematic Measurement System, consisting of a switch mat interfaced with a laptop computer. Vertical jumps were measured using a hands-on-hips method. A counter-movement vertical jump (CMJ) and a static vertical jump (SJ, 90 degrees knee angle) were measured. Two trials were given for each condition. Test-retest reliability for jump height was intra-class correlation (ICC) = 0.98 (CMJ) and ICC = 0.96 (SJ). Athletes warmed up on their own for 2-3 minutes, followed by 2 practice jumps at each condition. Peak power (PP) was estimated using the equations developed by Sayers et al. (24). The athletes' current lifting capabilities were assessed by a questionnaire, and USA national coaches checked the listed values. Differences between groups (i.e., men versus women, juniors versus resident lifters) were determined using t-tests (p < or = 0.05). Correlations were determined using Pearson's r. Results indicate that vertical jumping PP is strongly associated with weightlifting ability. Thus, these results indicate that PP derived from the vertical jump (CMJ or SJ) can be a valuable tool in assessing weightlifting performance.

  5. The effects of proprioceptive neuromuscular facilitation and dynamic stretching techniques on vertical jump performance.

    PubMed

    Christensen, Bryan K; Nordstrom, Brad J

    2008-11-01

    The purpose of this study was to investigate the effects of 3 different warm-ups on vertical jump performance. The warm-ups included a 600-m jog, a 600-m jog followed by a dynamic stretching routine, and a 600-m jog followed by a proprioceptive neuromuscular facilitation (PNF) routine. A second purpose was to determine whether the effects of the warm-ups on vertical jump performance varied by gender. Sixty-eight men and women NCAA Division I athletes from North Dakota State University performed 3 vertical jumps on a Just Jump pad after each of the 3 warm-up routines. The subjects were split into 6 groups and rotated between 3 warm-up routines, completing 1 routine each day in a random order. The results of the 1-way repeated measures analysis of variance showed no significant differences in the combined (p = 0.927), men's (p = 0.798), or women's (p = 0.978) results. The results of this study showed that 3 different warm-ups did not have a significant affect on vertical jumping. The results also showed there were no gender differences between the 3 different warm-ups.

  6. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers

    PubMed Central

    Pauli, Carole A.; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R.

    2016-01-01

    Abstract Pauli, CA, Keller, M, Ammann, F, Hübner, K, Lindorfer, J, Taylor, WR, and Lorenzetti, S. Kinematics and kinetics of squats, drop jumps and imitation jumps of ski jumpers. J Strength Cond Res 30(3): 643–652, 2016—Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance. PMID:26418370

  7. Pelvic kinematic method for determining vertical jump height.

    PubMed

    Chiu, Loren Z F; Salem, George J

    2010-11-01

    Sacral marker and pelvis reconstruction methods have been proposed to approximate total body center of mass during relatively low intensity gait and hopping tasks, but not during a maximum effort vertical jumping task. In this study, center of mass displacement was calculated using the pelvic kinematic method and compared with center of mass displacement using the ground-reaction force-impulse method, in experienced athletes (n = 13) performing restricted countermovement vertical jumps. Maximal vertical jumps were performed in a biomechanics laboratory, with data collected using an 8-camera motion analysis system and two force platforms. The pelvis center of mass was reconstructed from retro-reflective markers placed on the pelvis. Jump height was determined from the peak height of the pelvis center of mass minus the standing height. Strong linear relationships were observed between the pelvic kinematic and impulse methods (R² = .86; p < .01). The pelvic kinematic method underestimated jump height versus the impulse method, however, the difference was small (CV = 4.34%). This investigation demonstrates concurrent validity for the pelvic kinematic method to determine vertical jump height.

  8. Influence of Knee-to-Feet Jump Training on Vertical Jump and Hang Clean Performance.

    PubMed

    Stark, Laura; Pickett, Karla; Bird, Michael; King, Adam C

    2016-11-01

    Stark, L, Pickett, K, Bird, M, and King, AC. Influence of knee-to-feet jump training on vertical jump and hang clean performance. J Strength Cond Res 30(11): 3084-3089, 2016-From a motor learning perspective, the practice/training environment can result in positive, negative, or neutral transfer to the testing conditions. The purpose of this study was to examine the training effect of a novel movement (knee-to-feet [K2F] jumps) and whether a 6-week training program induced a positive transfer effect to other power-related movements (vertical jump and hang clean [HC]). Twenty-six intercollegiate athletes from power-emphasized sports were paired and counter-balanced into a control (i.e., maintained their respective sport-specific lifting regimen) or an experimental group (i.e., completed a 6-week progressive training program of K2F jumps in addition to respective lifting regimen). A pre- and posttest design was used to investigate the effect of training on K2F jump height and transfer effect to vertical jump height (VJH) and 2-repetition maximum (RM) HC performance. A significant increase in K2F jump height was found for the experimental group. Vertical jump height significantly increased from pre- to posttest but no group or interaction (group × time) effect was found, and there were nonsignificant differences for HC. Posttest data showed significant correlations between all pairs of the selected exercises with the highest correlation between K2F jump height and VJ H (R = 0.40) followed by VJH and 2RM HC (R = 0.38) and 2RM HC and K2F jump height (R = 0.23). The results suggest that K2F jump training induced the desired learning effect but was specific to the movement in that no effect of transfer occurred to the other power-related movements. This finding is value for strength and condition professionals who design training programs to enhance athletic performance.

  9. Improvement of Long-Jump Performance During Competition Using a Plyometric Exercise.

    PubMed

    Bogdanis, Gregory C; Tsoukos, Athanasios; Veligekas, Panagiotis

    2017-02-01

    To examine the acute effects of a conditioning plyometric exercise on long-jump performance during a simulated long-jump competition. Eight national-level track and field decathletes performed 6 long-jump attempts with a full approach run separated by 10-min recoveries. In the experimental condition subjects performed 3 rebound vertical jumps with maximal effort 3 min before the last 5 attempts, while the 1st attempt served as baseline. In the control condition the participants performed 6 long jumps without executing the conditioning exercise. Compared with baseline, long-jump performance progressively increased only in the experimental condition, from 3.0%, or 17.5 cm, in the 3rd attempt (P = .046, d = 0.56), to 4.8%, or 28.2 cm, in the 6th attempt (P = .0001, d = 0.84). The improvement in long-jump performance was due to a gradual increase in vertical takeoff velocity from the 3rd (by 8.7%, P = .0001, d = 1.82) to the 6th jump (by 17.7%, P = .0001, d = 4.38). Horizontal-approach velocity, takeoff duration, and horizontal velocity at takeoff were similar at all long-jump attempts in both conditions (P = .80, P = .36, and P = .15, respectively). Long-jump performance progressively improved during a simulated competition when a plyometric conditioning exercise was executed 3 min before each attempt. This improvement was due to a progressive increase in vertical velocity of takeoff, while there was no effect on the horizontal velocity.

  10. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height.

    PubMed

    Glatthorn, Julia F; Gouge, Sylvain; Nussbaumer, Silvio; Stauffacher, Simone; Impellizzeri, Franco M; Maffiuletti, Nicola A

    2011-02-01

    Vertical jump is one of the most prevalent acts performed in several sport activities. It is therefore important to ensure that the measurements of vertical jump height made as a part of research or athlete support work have adequate validity and reliability. The aim of this study was to evaluate concurrent validity and reliability of the Optojump photocell system (Microgate, Bolzano, Italy) with force plate measurements for estimating vertical jump height. Twenty subjects were asked to perform maximal squat jumps and countermovement jumps, and flight time-derived jump heights obtained by the force plate were compared with those provided by Optojump, to examine its concurrent (criterion-related) validity (study 1). Twenty other subjects completed the same jump series on 2 different occasions (separated by 1 week), and jump heights of session 1 were compared with session 2, to investigate test-retest reliability of the Optojump system (study 2). Intraclass correlation coefficients (ICCs) for validity were very high (0.997-0.998), even if a systematic difference was consistently observed between force plate and Optojump (-1.06 cm; p < 0.001). Test-retest reliability of the Optojump system was excellent, with ICCs ranging from 0.982 to 0.989, low coefficients of variation (2.7%), and low random errors (±2.81 cm). The Optojump photocell system demonstrated strong concurrent validity and excellent test-retest reliability for the estimation of vertical jump height. We propose the following equation that allows force plate and Optojump results to be used interchangeably: force plate jump height (cm) = 1.02 × Optojump jump height + 0.29. In conclusion, the use of Optojump photoelectric cells is legitimate for field-based assessments of vertical jump height.

  11. Traditional vs. Sport-Specific Vertical Jump Tests: Reliability, Validity, and Relationship With the Legs Strength and Sprint Performance in Adult and Teen Soccer and Basketball Players.

    PubMed

    Rodríguez-Rosell, David; Mora-Custodio, Ricardo; Franco-Márquez, Felipe; Yáñez-García, Juan M; González-Badillo, Juan J

    2017-01-01

    Rodríguez-Rosell, D, Mora-Custodio, R, Franco-Márquez, F, Yáñez-García, JM, González-Badillo, JJ. Traditional vs. sport-specific vertical jump tests: reliability, validity, and relationship with the legs strength and sprint performance in adult and teen soccer and basketball players. J Strength Cond Res 31(1): 196-206, 2017-The vertical jump is considered an essential motor skill in many team sports. Many protocols have been used to assess vertical jump ability. However, controversy regarding test selection still exists based on the reliability and specificity of the tests. The main aim of this study was to analyze the reliability and validity of 2 standardized (countermovement jump [CMJ] and Abalakov jump [AJ]) and 2 sport-specific (run-up with 2 [2-LEGS] or 1 leg [1-LEG] take-off jump) vertical jump tests, and their usefulness as predictors of sprint and strength performance for soccer (n = 127) and basketball (n = 59) players in 3 different categories (Under-15, Under-18, and Adults). Three attempts for each of the 4 jump tests were recorded. Twenty-meter sprint time and estimated 1 repetition maximum in full squat were also evaluated. All jump tests showed high intraclass correlation coefficients (0.969-0.995) and low coefficients of variation (1.54-4.82%), although 1-LEG was the jump test with the lowest absolute and relative reliability. All selected jump tests were significantly correlated (r = 0.580-0.983). Factor analysis resulted in the extraction of one principal component, which explained 82.90-95.79% of the variance of all jump tests. The 1-LEG test showed the lowest associations with sprint and strength performance. The results of this study suggest that CMJ and AJ are the most reliable tests for the estimation of explosive force in soccer and basketball players in different age categories.

  12. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players

    PubMed Central

    Wisloff, U; Castagna, C; Helgerud, J; Jones, R; Hoff, J

    2004-01-01

    Background: A high level of strength is inherent in elite soccer play, but the relation between maximal strength and sprint and jumping performance has not been studied thoroughly. Objective: To determine whether maximal strength correlates with sprint and vertical jump height in elite male soccer players. Methods: Seventeen international male soccer players (mean (SD) age 25.8 (2.9) years, height 177.3 (4.1) cm, weight 76.5 (7.6) kg, and maximal oxygen uptake 65.7 (4.3) ml/kg/min) were tested for maximal strength in half squats and sprinting ability (0–30 m and 10 m shuttle run sprint) and vertical jumping height. Result: There was a strong correlation between maximal strength in half squats and sprint performance and jumping height. Conclusions: Maximal strength in half squats determines sprint performance and jumping height in high level soccer players. High squat strength did not imply reduced maximal oxygen consumption. Elite soccer players should focus on maximal strength training, with emphasis on maximal mobilisation of concentric movements, which may improve their sprinting and jumping performance. PMID:15155427

  13. A Comparison of Mechanical Parameters Between the Counter Movement Jump and Drop Jump in Biathletes

    PubMed Central

    Król, Henryk; Mynarski, Władysław

    2012-01-01

    The main objective of the study was to determine to what degree higher muscular activity, achieved by increased load in the extension phase (eccentric muscle action) of the vertical jump, affects the efficiency of the vertical jump. Sixteen elite biathletes participated in this investigation. The biathletes performed tests that consisted of five, single “maximal” vertical jumps (counter movement jump – CMJ) and five, single vertical jumps, in which the task was to touch a bar placed over the jumping biathletes (specific task counter movement jump – SCMJ). Then, they performed five, single drop jumps from an elevation of 0.4m (DJ). Ground reaction forces were registered using the KISTLER 9182C force platform. MVJ software was used for signal processing (Król, 1999) and enabling calculations for kinematic and kinetic parameters of the subject’s jump movements (on-line system). The results indicate that only height of the jump (h) and mean power (Pmean) during the takeoff are statistically significant. Both h and Pmean are higher in the DJ. The results of this study may indicate that elite biathletes are well adapted to eccentric work of the lower limbs, thus reaching greater values of power during the drop jump. These neuromuscular adaptive changes may allow for a more dynamic and efficient running technique. PMID:23487157

  14. Vertical- vs. Horizontal-Oriented Drop Jump Training: Chronic Effects on Explosive Performances of Elite Handball Players.

    PubMed

    Dello Iacono, Antonio; Martone, Domenico; Milic, Mirjana; Padulo, Johnny

    2017-04-01

    Dello Iacono, A, Martone, D, Milic, M, and Padulo, J. Vertical- vs. horizontal-oriented drop jump training: chronic effects on explosive performances of elite handball players. J Strength Cond Res 31(4): 921-931, 2017-This study aimed to assess the chronic effects of vertical drop jump (VDJ)- and horizontal drop jump (HDJ)-based protocols on neuromuscular explosive abilities, such as jumping, sprinting, and changes of direction (COD). Eighteen elite male handball players (age 23.4 ± 4.6 years, height 192.5 ± 3.7 cm, weight 87.8 ± 7.4 kg) were assigned to either VDJ or HDJ group training twice a week for 10 weeks. Participants performed 5-8 sets × 6-10 repetitions of vertical alternate (VDJ) or horizontal alternate (HDJ) 1-leg drop jumps, landing from the top of a platform 25 cm in height. Before and after training, several performance, kinetic, and kinematic variables were assessed. The HDJ led to greater improvement of the sprint time (-8.5% vs. -4%, p ≤ 0.05) and COD performance in comparison with the VDJ (-7.9% vs. -1.1%, p ≤ 0.05), whereas the VDJ caused greater improvement in the vertical jump compared with the HDJ (+8.6% vs. +4.1%, p ≤ 0.05). Moreover, the VDJ regimen compared with the HDJ induced greater changes in the kinetic variables associated with vertical jumping performance, such as peak ground reaction forces (+10.3% vs. +4.3%), relative impulse (+12.4% vs. +5.7%), leg spring stiffness (+17.6% vs. +4.6%), contact time (CT) (-10.1% vs. -1.5%), and reactive strength index (+7.2% vs. +2.1%); all comparisons with p ≤ 0.05. Conversely, the HDJ regimen was able to improve the short-distance and COD performances by increasing the step length (+3.5% vs. +1.5% with p ≤ 0.05) and reducing the CT on COD (-12.1% vs. -2.1% with p ≤ 0.05) more than the VDJ. This investigation showed the crucial role that specific plyometric regimens play in optimizing similar biomechanical featured functional performances, such as jumping, sprinting, and COD.

  15. Effects of ethnicity on the relationship between vertical jump and maximal power on a cycle ergometer.

    PubMed

    Rouis, Majdi; Coudrat, Laure; Jaafar, Hamdi; Attiogbé, Elvis; Vandewalle, Henry; Driss, Tarak

    2016-06-01

    The aim of this study was to verify the impact of ethnicity on the maximal power-vertical jump relationship. Thirty-one healthy males, sixteen Caucasian (age: 26.3 ± 3.5 years; body height: 179.1 ± 5.5 cm; body mass: 78.1 ± 9.8 kg) and fifteen Afro-Caribbean (age: 24.4 ±2.6 years; body height: 178.9 ± 5.5 cm; body mass: 77.1 ± 10.3 kg) completed three sessions during which vertical jump height and maximal power of lower limbs were measured. The results showed that the values of vertical jump height and maximal power were higher for Afro-Caribbean participants (62.92 ± 6.7 cm and 14.70 ± 1.75 W∙kg-1) than for Caucasian ones (52.92 ± 4.4 cm and 12.75 ± 1.36 W∙kg-1). Moreover, very high reliability indices were obtained on vertical jump (e.g. 0.95 < ICC < 0.98) and maximal power performance (e.g. 0.75 < ICC < 0.97). However, multiple linear regression analysis showed that, for a given value of maximal power, the Afro-Caribbean participants jumped 8 cm higher than the Caucasians. Together, these results confirmed that ethnicity impacted the maximal power-vertical jump relationship over three sessions. In the current context of cultural diversity, the use of vertical jump performance as a predictor of muscular power should be considered with caution when dealing with populations of different ethnic origins.

  16. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability.

    PubMed

    Tsoukos, Athanasios; Bogdanis, Gregory C; Terzis, Gerasimos; Veligekas, Panagiotis

    2016-08-01

    Tsoukos, A, Bogdanis, GC, Terzis, G, and Veligekas, P. Acute improvement of vertical jump performance after isometric squats depends on knee angle and vertical jumping ability. J Strength Cond Res 30(8): 2250-2257, 2016-This study examined the acute effects of maximum isometric squats at 2 different knee angles (90 or 140°) on countermovement jump (CMJ) performance in power athletes. Fourteen national-level male track and field power athletes completed 3 main trials (2 experimental and 1 control) in a randomized and counterbalanced order 1 week apart. Countermovement jump performance was evaluated using a force-plate before and 15 seconds, 3, 6, 9, and 12 minutes after 3 sets of 3 seconds maximum isometric contractions with 1-minute rest in between, from a squat position with knee angle set at 90 or 140°. Countermovement jump performance was improved compared with baseline only in the 140° condition by 3.8 ± 1.2% on the 12th minute of recovery (p = 0.027), whereas there was no change in CMJ height in the 90° condition. In the control condition, there was a decrease in CMJ performance over time, reaching -3.6 ± 1.2% (p = 0.049) after 12 minutes of recovery. To determine the possible effects of baseline jump performance on subsequent CMJ performance, subjects were divided into 2 groups ("high jumpers" and "low jumpers"). The baseline CMJ values of "high jumpers" and "low jumpers" differed significantly (CMJ: 45.1 ± 2.2 vs. 37.1 ± 3.9 cm, respectively, p = 0.001). Countermovement jump was increased only in the "high jumpers" group by 5.4 ± 1.4% (p = 0.001) and 7.4 ± 1.2% (p = 0.001) at the knee angles of 90 and 140°, respectively. This improvement was larger at the 140° angle (p = 0.049). Knee angle during isometric squats and vertical jumping ability are important determinants of the acute CMJ performance increase observed after a conditioning activity.

  17. Acute effects of a loaded warm-up protocol on change of direction speed in professional badminton players.

    PubMed

    Maloney, Sean J; Turner, Anthony N; Miller, Stuart

    2014-10-01

    It has previously been shown that a loaded warm-up may improve power performances. We examined the acute effects of loaded dynamic warm-up on change of direction speed (CODS), which had not been previously investigated. Eight elite badminton players participated in three sessions during which they performed vertical countermovement jump and CODS tests before and after undertaking the dynamic warm-up. The three warm-up conditions involved wearing a weighted vest (a) equivalent to 5% body mass, (b) equivalent to 10% body mass, and (c) a control where a weighted vest was not worn. Vertical jump and CODS performances were then tested at 15 seconds and 2, 4, and 6 minutes post warm-up. Vertical jump and CODS significantly improved following all warm-up conditions (P < .05). Post warm-up vertical jump performance was not different between conditions (P = .430). Post warm-up CODS was significantly faster following the 5% (P = .02) and 10% (P < .001) loaded conditions compared with the control condition. In addition, peak CODS test performances, independent of recovery time, were faster than the control condition following the 10% loaded condition (P = .012). In conclusion, the current study demonstrates that a loaded warm-up augmented CODS, but not vertical jump performance, in elite badminton players.

  18. Test-retest reliability of jump execution variables using mechanography: A comparison of jump protocols

    USDA-ARS?s Scientific Manuscript database

    Mechanography during the vertical jump test allows for evaluation of force-time variables reflecting jump execution, which may enhance screening for functional deficits that reduce physical performance and determining mechanistic causes underlying performance changes. However, utility of jump mechan...

  19. Effects of Isometric Scaling on Vertical Jumping Performance

    PubMed Central

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  20. Single-leg lateral, horizontal, and vertical jump assessment: reliability, interrelationships, and ability to predict sprint and change-of-direction performance.

    PubMed

    Meylan, Cesar; McMaster, Travis; Cronin, John; Mohammad, Nur Ikhwan; Rogers, Cailyn; Deklerk, Melissa

    2009-07-01

    The purposes of this study were to determine the reliability of unilateral vertical, horizontal, and lateral countermovement jump assessments, the interrelationship between these tests, and their usefulness as predictors of sprint (10 m) and change-of-direction (COD) performance for 80 men and women physical education students. Jump performance was assessed on a contact mat and sprint, and COD performances were assessed using timing lights. With regard to the reliability statistics, the largest coefficient of variation (CV) was observed for the vertical jump (CV = 6.7-7.2%) of both genders, whereas the sprint and COD assessments had smallest variability (CV = 0.8 to 2.8%). All intraclass correlation coefficients (ICC) were greater than 0.85, except for the men's COD assessment with the alternate leg. The shared variance between the single-leg vertical, horizontal, and lateral jumps for men and women was less than 50%, indicating that the jumps are relatively independent of one another and represent different leg strength/power qualities. The ability of the jumps to predict sprint and COD performance was limited (R2 < 43%). It would seem that the ability to change direction with 1 leg is relatively independent of a COD with the other leg, especially in the women (R < 30%) of this study. However, if 1 jump assessment were selected to predict sprint and COD performance in a test battery, the single-leg horizontal countermovement jump would seem the logical choice, given the results of this study. Many of the findings in this study have interesting diagnostic and training implications for the strength and conditioning coach.

  1. Relationships Between Vertical Jump and Full Squat Power Outputs With Sprint Times in U21 Soccer Players

    PubMed Central

    López-Segovia, Manuel; Marques, Mário C.; van den Tillaar, Roland; González-Badillo, Juan J

    2011-01-01

    The aim of this study was to assess the relationship between power variables in the vertical jump and full squat with the sprint performance in soccer players. Fourteen under-21 soccer players were evaluated in two testing sessions separated by 7 days. In the first testing session, vertical jump height in countermovement was assessed, and power output for both loaded countermovement jump (CMJL) and full squat (FS) exercises in two progressive load tests. The second testing session included sprinting at 10, 20, and 30m (T10, T20, T30, T10–20, T10–30, T20–30). Power variables obtained in the loaded vertical jump with 20kg and full squat exercise with 70kg showed significant relationships with all split times (r=−0.56/–0.79; p≤ 0.01/0.01). The results suggest that power produced either with vertical jump or full squat exercises is an important factor to explain short sprint performance in soccer players. These findings might suggest that certain levels of neuromuscular activation are more related with sprint performance reflecting the greater suitability of loads against others for the improvement of short sprint ability in under-21 soccer players. PMID:23487438

  2. Eccentric-Overload Training in Team-Sport Functional Performance: Constant Bilateral Vertical Versus Variable Unilateral Multidirectional Movements.

    PubMed

    Gonzalo-Skok, Oliver; Tous-Fajardo, Julio; Valero-Campo, Carlos; Berzosa, César; Bataller, Ana Vanessa; Arjol-Serrano, José Luis; Moras, Gerard; Mendez-Villanueva, Alberto

    2017-08-01

    To analyze the effects of 2 different eccentric-overload training (EOT) programs, using a rotational conical pulley, on functional performance in team-sport players. A traditional movement paradigm (ie, squat) including several sets of 1 bilateral and vertical movement was compared with a novel paradigm including a different exercise in each set of unilateral and multi-directional movements. Forty-eight amateur or semiprofessional team-sport players were randomly assigned to an EOT program including either the same bilateral vertical (CBV, n = 24) movement (squat) or different unilateral multidirectional (VUMD, n = 24) movements. Training programs consisted of 6 sets of 1 exercise (CBV) or 1 set of 6 exercises (VUMD) × 6-10 repetitions with 3 min of passive recovery between sets and exercises, biweekly for 8 wk. Functional-performance assessment included several change-of-direction (COD) tests, a 25-m linear-sprint test, unilateral multidirectional jumping tests (ie, lateral, horizontal, and vertical), and a bilateral vertical-jump test. Within-group analysis showed substantial improvements in all tests in both groups, with VUMD showing more robust adaptations in pooled COD tests and lateral/horizontal jumping, whereas the opposite occurred in CBV respecting linear sprinting and vertical jumping. Between-groups analyses showed substantially better results in lateral jumps (ES = 0.21), left-leg horizontal jump (ES = 0.35), and 10-m COD with right leg (ES = 0.42) in VUMD than in CBV. In contrast, left-leg countermovement jump (ES = 0.26) was possibly better in CBV than in VUMD. Eight weeks of EOT induced substantial improvements in functional-performance tests, although the force-vector application may play a key role to develop different and specific functional adaptations.

  3. Validity of two alternative systems for measuring vertical jump height.

    PubMed

    Leard, John S; Cirillo, Melissa A; Katsnelson, Eugene; Kimiatek, Deena A; Miller, Tim W; Trebincevic, Kenan; Garbalosa, Juan C

    2007-11-01

    Vertical jump height is frequently used by coaches, health care professionals, and strength and conditioning professionals to objectively measure function. The purpose of this study is to determine the concurrent validity of the jump and reach method (Vertec) and the contact mat method (Just Jump) in assessing vertical jump height when compared with the criterion reference 3-camera motion analysis system. Thirty-nine college students, 25 females and 14 males between the ages of 18 and 25 (mean age 20.65 years), were instructed to perform the countermovement jump. Reflective markers were placed at the base of the individual's sacrum for the 3-camera motion analysis system to measure vertical jump height. The subject was then instructed to stand on the Just Jump mat beneath the Vertec and perform the jump. Measurements were recorded from each of the 3 systems simultaneously for each jump. The Pearson r statistic between the video and the jump and reach (Vertec) was 0.906. The Pearson r between the video and contact mat (Just Jump) was 0.967. Both correlations were significant at the 0.01 level. Analysis of variance showed a significant difference among the 3 means F(2,235) = 5.51, p < 0.05. The post hoc analysis showed a significant difference between the criterion reference (M = 0.4369 m) and the Vertec (M = 0.3937 m, p = 0.005) but not between the criterion reference and the Just Jump system (M = 0.4420 m, p = 0.972). The Just Jump method of measuring vertical jump height is a valid measure when compared with the 3-camera system. The Vertec was found to have a high correlation with the criterion reference, but the mean differed significantly. This study indicates that a higher degree of confidence is warranted when comparing Just Jump results with a 3-camera system study.

  4. Effect of Vertical, Horizontal, and Combined Plyometric Training on Explosive, Balance, and Endurance Performance of Young Soccer Players.

    PubMed

    Ramírez-Campillo, Rodrigo; Gallardo, Francisco; Henriquez-Olguín, Carlos; Meylan, Cesar M P; Martínez, Cristian; Álvarez, Cristian; Caniuqueo, Alexis; Cadore, Eduardo L; Izquierdo, Mikel

    2015-07-01

    The aim of this study was to compare the effects of 6 weeks of vertical, horizontal, or combined vertical and horizontal plyometric training on muscle explosive, endurance, and balance performance. Forty young soccer players aged between 10 and 14 years were randomly divided into control (CG; n = 10), vertical plyometric group (VG; n = 10), horizontal plyometric group (HG; n = 10), and combined vertical and horizontal plyometric group (VHG; n = 10). Players performance in the vertical and horizontal countermovement jump with arms, 5 multiple bounds test (MB5), 20-cm drop jump reactive strength index (RSI20), maximal kicking velocity (MKV), sprint, change of direction speed (CODS), Yo-Yo intermittent recovery level 1 test (Yo-Yo IR1), and balance was measured. No significant or meaningful changes in the CG, apart from small change in the Yo-Yo IR1, were observed while all training programs resulted in meaningful changes in explosive, endurance, and balance performance. However, only VHG showed a statistically significant (p ≤ 0.05) increase in all performance test and most meaningful training effect difference with the CG across tests. Although no significant differences in performance changes were observed between experimental groups, the VHG program was more effective compared with VG (i.e., jumps, MKV, sprint, CODS, and balance performance) and HG (i.e., sprint, CODS, and balance performance) to small effect. The study demonstrated that vertical, horizontal, and combined vertical and horizontal jumps induced meaningful improvement in explosive actions, balance, and intermittent endurance capacity. However, combining vertical and horizontal drills seems more advantageous to induce greater performance improvements.

  5. Vertical and Horizontal Jump Capacity in International Cerebral Palsy Football Players.

    PubMed

    Reina, Raúl; Iturricastillo, Aitor; Sabido, Rafael; Campayo-Piernas, Maria; Yanci, Javier

    2018-05-01

    To evaluate the reliability and validity of vertical and horizontal jump tests in football players with cerebral palsy (FPCP) and to analyze the jump performance differences between current International Federation for Cerebral Palsy Football functional classes (ie, FT5-FT8). A total of 132 international parafootballers (25.8 [6.7] y; 70.0 [9.1] kg; 175.7 [7.3] cm; 22.8 [2.8] kg·m -2 ; and 10.7 [7.5] y training experience) participated in the study. The participants were classified according to the International Federation for Cerebral Palsy Football classification rules, and a group of 39 players without cerebral palsy was included in the study as a control group. Football players' vertical and horizontal jump performance was assessed. All the tests showed good to excellent relative intrasession reliability scores, both in FPCP and in the control group (intraclass correlation = .78-.97, SEM < 10.5%). Significant between-groups differences (P < .001) were obtained in the countermovement jump, standing broad jump, 4 bounds for distance, and triple hop for distance dominant leg and nondominant leg. The control group performed higher/farther jumps with regard to all the FPCP classes, obtaining significant differences and moderate to large effect sizes (ESs) (.85 < ES < 5.54, P < .01). Players in FT8 class (less severe impairments) had significantly higher scores in all the jump tests than players in the lower classes (ES = moderate to large, P < .01). The vertical and horizontal jump tests performed in this study could be applied to the classification procedures and protocols for FPCP.

  6. Impact of Official Matches on Soccer Referees' Power Performance.

    PubMed

    Castillo, Daniel; Yanci, Javier; Cámara, Jesús

    2018-03-01

    The evaluation of match officials' neuromuscular performance is now an important consideration and the vertical jump test is considered suitable for assessing lower limb power, partly because it is directly related to refereeing. The aim of this study, therefore, was to determine the effect of soccer matches on match officials' vertical jump performance by assessing various biomechanical variables. Eighteen field referees (FRs) and 36 assistant referees (ARs) who officiated in 18 official matches participated in this study. Before the match, at half time and immediately after the match, officials performed two countermovement jumps. Flight phase time (FT), maximum force production (MFpropulsion), time to production of maximum force (TMFpropulsion), production of maximum power (MP), maximum landing force (MFlanding) and time to stabilization (TTS) were calculated for all jumps. There was a tendency for match officials' jumping performance to improve after matches than beforehand (FR: effect size (ES) = 0.19 ± 0.36, possibly trivial; AR: ES = 0.07 ± 0.17, likely trivial). There were also likely small and very likely moderate differences between FRs' MP in pre-match and half-time jumps (ES = 0.46 ± 0.47) and in their pre- and post-match jumps (ES = 0.71 ± 0.48). These results indicate that refereeing soccer matches does not reduce vertical jump performance; the subsequent neuromuscular fatigue is not sufficient to affect landing technique.

  7. Predicting vertical jump height from bar velocity.

    PubMed

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  8. Predicting Vertical Jump Height from Bar Velocity

    PubMed Central

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-01-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s-2). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r2 = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r2 = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key points Vertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer. The relationship between the point at which bar acceleration is less than -9.81 m·s-2 and the real take-off is affected by the velocity of movement. Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance. PMID:25983572

  9. Relationship between physical fitness at the end of pre-season and the in-season game performance in Japanese female professional baseball players.

    PubMed

    Watanabe, Yuya; Yamada, Yosuke; Yoshida, Tsukasa; Matsui, Tomoyuki; Seo, Kazuya; Azuma, Yoshikazu; Hiramoto, Machiko; Miura, Yuichiro; Fukushima, Hideaki; Shimazu, Akito; Eto, Toshiaki; Saotome, Homare; Kida, Noriyuki; Morihara, Toru

    2017-10-30

    This study examined anthropometric and fitness profiles of Japanese female professional baseball players and investigated the relationship between players' physical fitness and in-season game performance. Fifty-seven players who were registered in the Japan Women's Baseball League (JWBL) participated. Height, weight, grip strength, back strength, knee-extension and -flexion strength, hamstring extensibility, vertical jump height, and horizontal jump distance were measured at pre-season (February and March) in 2013. Game performance during the 2013 season (March to November) was obtained from official JWBL statistics. Vertical jump height showed significant positive correlations with individual performance records [e.g., total bases (r = 0.551), slugging percentage (r = 0.459), and stolen bases (r = 0.442)]. Similar relationships were observed between horizontal jump distance and performance statistics in most cases. In contrast, grip, back, and lower-limb strength, and hamstring extensibility were not significantly correlated with game performance. Stepwise regression analysis selected vertical jump height as an independent variable, significantly correlating with several game performance measures (e.g., total bases: adjusted R = 0.257). Also, vertical jump height and body mass index were identified as independent variables significantly associated with stolen bases (adjusted R = 0.251). Maximal jump performance, rather than simple isometric muscle strength or flexibility, is a good performance test that can be used at the end of pre-season to predict in-season batting and stolen base performance. Our findings demonstrate the importance of constructing pre-season training programs to enhance lower-limb muscular power that is linked to successful in-season performance in female baseball players.

  10. The Effects of the Swede-O, New Cross, and McDavid Ankle Braces and Adhesive Ankle Taping on Speed, Balance, Agility, and Vertical Jump

    PubMed Central

    Paris, David L.

    1992-01-01

    Scores from motor performance tests were compared using subjects with taped and untaped ankles. Previous studies have shown that taped ankle support may be detrimental in vertical and standing broad jumping performance. Conflicting data have been published on the effects of commercial ankle braces on various motor tasks. The performances of 18 elite soccer players in selected tests of speed, balance, agility, and vertical jumping were compared under conditions of untaped, nonelastic adhesive taped, Swede-O-braced, New Cross-braced, and McDavid-braced ankles. Vertical jump performance was significantly reduced when subjects wore New Cross braces. There were no significant differences in tests of speed, balance, and agility among any of the support conditions. Until now, nonelastic adhesive tape has been the preferred method of prophylactic ankle support. I conclude that certain commercial ankle braces may be used as a support alternative during selected activities. ImagesFig 1. PMID:16558170

  11. Aerial Rotation Effects on Vertical Jump Performance Among Highly Skilled Collegiate Soccer Players.

    PubMed

    Barker, Leland A; Harry, John R; Dufek, Janet S; Mercer, John A

    2017-04-01

    Barker, LA, Harry, JR, Dufek, JS, and Mercer, JA. Aerial rotation effects on vertical jump performance among highly skilled collegiate soccer players. J Strength Cond Res 31(4): 932-938, 2017-In soccer matches, jumps involving rotations occur when attempting to head the ball for a shot or pass from set pieces, such as corner kicks, goal kicks, and lob passes. However, the 3-dimensional ground reaction forces used to perform rotational jumping tasks are currently unknown. Therefore, the purpose of this study was to compare bilateral, 3-dimensional, and ground reaction forces of a standard countermovement jump (CMJ0) with those of a countermovement jump with a 180° rotation (CMJ180) among Division-1 soccer players. Twenty-four participants from the soccer team of the University of Nevada performed 3 trials of CMJ0 and CMJ180. Dependent variables included jump height, downward and upward phase times, vertical (Fz) peak force and net impulse relative to mass, and medial-lateral and anterior-posterior force couple values. Statistical significance was set a priori at α = 0.05. CMJ180 reduced jump height, increased the anterior-posterior force couple in the downward and upward phases, and increased upward peak Fz (p ≤ 0.05). All other variables were not significantly different between groups (p > 0.05). However, we did recognize that downward peak Fz trended lower in the CMJ0 condition (p = 0.059), and upward net impulse trended higher in the CMJ0 condition (p = 0.071). It was concluded that jump height was reduced during the rotational jumping task, and rotation occurred primarily via AP ground reaction forces through the entire countermovement jump. Coaches and athletes may consider additional rotational jumping in their training programs to mediate performance decrements during rotational jump tasks.

  12. Acceleration and Orientation Jumping Performance Differences Among Elite Professional Male Handball Players With or Without Previous ACL Reconstruction: An Inertial Sensor Unit-Based Study.

    PubMed

    Setuain, Igor; González-Izal, Miriam; Alfaro, Jesús; Gorostiaga, Esteban; Izquierdo, Mikel

    2015-12-01

    Handball is one of the most challenging sports for the knee joint. Persistent biomechanical and jumping capacity alterations can be observed in athletes with an anterior cruciate ligament (ACL) injury. Commonly identified jumping biomechanical alterations have been described by the use of laboratory technologies. However, portable and easy-to-handle technologies that enable an evaluation of jumping biomechanics at the training field are lacking. To analyze unilateral/bilateral acceleration and orientation jumping performance differences among elite male handball athletes with or without previous ACL reconstruction via a single inertial sensor unit device. Case control descriptive study. At the athletes' usual training court. Twenty-two elite male (6 ACL-reconstructed and 16 uninjured control players) handball players were evaluated. The participants performed a vertical jump test battery that included a 50-cm vertical bilateral drop jump, a 20-cm vertical unilateral drop jump, and vertical unilateral countermovement jump maneuvers. Peak 3-dimensional (X, Y, Z) acceleration (m·s(-2)), jump phase duration and 3-dimensional orientation values (°) were obtained from the inertial sensor unit device. Two-tailed t-tests and a one-way analysis of variance were performed to compare means. The P value cut-off for significance was set at P < .05. The ACL-reconstructed male athletes did not show any significant (P < .05) residual jumping biomechanical deficits regarding the measured variables compared with players who had not suffered this knee injury. A dominance effect was observed among non-ACL reconstructed controls but not among their ACL-reconstructed counterparts (P < .05). Elite male handball athletes with previous ACL reconstruction demonstrated a jumping biomechanical profile similar to control players, including similar jumping performance values in both bilateral and unilateral jumping maneuvers, several years after ACL reconstruction. These findings are in agreement with previous research showing full functional restoration of abilities in top-level male athletes after ACL reconstruction, rehabilitation and subsequent return to sports at the previous level. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  13. Biomechanical and Performance Differences Between Female Soccer Athletes in National Collegiate Athletic Association Divisions I and III

    PubMed Central

    Smith, Rose; Ford, Kevin R; Myer, Gregory D; Holleran, Adam; Treadway, Erin; Hewett, Timothy E

    2007-01-01

    Context: The recent increase in women's varsity soccer participation has been accompanied by a lower extremity injury rate that is 2 to 6 times that of their male counterparts. Objective: To define the differences between lower extremity biomechanics (knee abduction and knee flexion measures) and performance (maximal vertical jump height) between National Collegiate Athletic Association Division I and III female soccer athletes during a drop vertical jump. Design: Mixed 2 × 2 design. Setting: Research laboratory. Patients or Other Participants: Thirty-four female collegiate soccer players (Division I: n = 19; Division III: n = 15) participated in the study. The groups were similar in height and mass. Intervention(s): Each subject performed a maximal vertical jump, followed by 3 drop vertical jumps. Main Outcome Measure(s): Kinematics (knee abduction and flexion angles) and kinetics (knee abduction and flexion moments) were measured with a motion analysis system and 2 force platforms during the drop vertical jumps. Results: Knee abduction angular range of motion and knee abduction external moments were not different between groups (P > .05). However, Division I athletes demonstrated decreased knee flexion range of motion (P = .038) and greater peak external knee flexion moment (P = .009) compared with Division III athletes. Division I athletes demonstrated increased vertical jump height compared with Division III (P = .008). Conclusions: Division I athletes demonstrated different sagittal-plane mechanics than Division III athletes, which may facilitate improved performance. The similarities in anterior cruciate ligament injury risk factors (knee abduction torques and angles) may correlate with the consistent incidence of anterior cruciate ligament injury across divisions. PMID:18174935

  14. Ankle taping does not impair performance in jump or balance tests.

    PubMed

    Abián-Vicén, Javier; Alegre, Luis M; Fernández-Rodríguez, J Manuel; Lara, Amador J; Meana, Marta; Aguado, Xavier

    2008-01-01

    This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance) and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years) without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and conditions were randomly performed. The path of the center of pressures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96). The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed. Key pointsAnkle taping has no influence on balance performance.Ankle taping does not impair performance during the push-off phase of the jump.Ankle taping could increase the risk of injury during landings by increasing peak forces.

  15. Ankle Taping Does Not Impair Performance in Jump or Balance Tests

    PubMed Central

    Abián-Vicén, Javier; Alegre, Luis M.; Fernández-Rodríguez, J. Manuel; Lara, Amador J.; Meana, Marta; Aguado, Xavier

    2008-01-01

    This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance) and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years) without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and conditions were randomly performed. The path of the center of pressures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96). The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed. Key pointsAnkle taping has no influence on balance performance.Ankle taping does not impair performance during the push-off phase of the jump.Ankle taping could increase the risk of injury during landings by increasing peak forces. PMID:24149902

  16. Hypohydration Reduces Vertical Ground Reaction Impulse But Not Jump Height

    DTIC Science & Technology

    2010-01-01

    countermovement jump from a 660 9 660 9 60 mm dual force plate plat- form (Leonardo v3.07, Orthometrix, Inc.) connected to a PC for the purpose of collecting... force data and calculating jump height (described below). Subjects stood still on the platform with one foot on each force plate for approxi- mately 10...study examined vertical jump performance using a force platform and weighted vest to determine why hypohydration (~4% body mass) does not improve jump

  17. Does gymnastics practice improve vertical jump reliability from the age of 8 to 10 years?

    PubMed

    Marina, Michel; Torrado, Priscila

    2013-01-01

    The objective of this study was to confirm whether gymnastics practice from a young age can induce greater vertical jump reliability. Fifty young female gymnasts (8.84 ± 0.62 years) and 42 females in the control group (8.58 ± 0.92 years) performed the following jump tests on a contact mat: squat jump, countermovement jump, countermovement jump with arm swing and drop jump from heights of 40 and 60 cm. The two testing sessions had three trials each and were separated by one week. A 2 (groups) × 2 (sessions) × 3 (trials) repeated measures analysis of variance (ANOVA) and a test-retest correlation analysis were used to study the reliability. There was no systematic source of error in either group for non-plyometric jumps such as squat jump, countermovement jump, and countermovement jump with arm swing. A significant group per trial interaction revealed a learning effect in gymnasts' drop jumps from 40 cm height. Additionally, the test-retest correlation analysis and the higher minimum detectable error suggest that the quick drop jump technique was not fully consolidated in either group. At an introductory level of gymnastics and between the ages of 8-10 years, the condition of being a gymnast did not lead to conclusively higher reliability, aside from better overall vertical jump performance.

  18. The Acute Effects of Back Squats on Vertical Jump Performance in Men and Women

    PubMed Central

    Witmer, Chad A.; Davis, Shala E.; Moir, Gavin L.

    2010-01-01

    The aim of the present study was to investigate the acute effects of performing back squats on subsequent performance during a series of vertical jumps in men and women. Twelve men and 12 women were tested on three separate occasions, the first of which was used to determine their 1-repetition maximum (1-RM) parallel back squat. Following this, subjects performed a potentiation and a control treatment in a counterbalanced order. The potentiation treatment culminated with subjects performing parallel back squats with a load equivalent to 70% 1- RM for three repetitions, following which they performed one countermovement vertical jump (CMJ) for maximal height every three minutes for a total of 10 jumps. During the control treatment, subjects performed only the CMJs. Jump height (JH) and vertical stiffness (VStiff) were calculated for each jump from the vertical force signal recorded from a force platform. There were no significant changes in JH or VStiff following the treatments and no significant differences in the responses between men and women (p > 0.05). Correlations between normalized 1-RM back squat load and the absolute change in JH and VStiff were small to moderate for both men and women, with most correlations being negative. Large variations in response to the back squats were noted in both men and women. The use of resistance exercises performed prior to a series of vertical jumps can result in improvements in performance in certain individuals, although the gains tend to be small and dependent upon the mechanical variable measured. There does not seem to be any differences between men and women in the response to dynamic potentiation protocols. Key points Substantial individual responses were noted in both men and women in response to the PAP protocol used in the present study. The choice of dependent variable influences the ef-ficacy of the PAP protocol, with JH and VStiff demonstrating disparate responses in individual sub-jects.Such individual responses may render such PAP protocols impractical for strength and conditioning practitioners as the protocols are likely to require in-dividualizing to each athlete. PMID:24149687

  19. The acute effects of back squats on vertical jump performance in men and women.

    PubMed

    Witmer, Chad A; Davis, Shala E; Moir, Gavin L

    2010-01-01

    The aim of the present study was to investigate the acute effects of performing back squats on subsequent performance during a series of vertical jumps in men and women. Twelve men and 12 women were tested on three separate occasions, the first of which was used to determine their 1-repetition maximum (1-RM) parallel back squat. Following this, subjects performed a potentiation and a control treatment in a counterbalanced order. The potentiation treatment culminated with subjects performing parallel back squats with a load equivalent to 70% 1- RM for three repetitions, following which they performed one countermovement vertical jump (CMJ) for maximal height every three minutes for a total of 10 jumps. During the control treatment, subjects performed only the CMJs. Jump height (JH) and vertical stiffness (VStiff) were calculated for each jump from the vertical force signal recorded from a force platform. There were no significant changes in JH or VStiff following the treatments and no significant differences in the responses between men and women (p > 0.05). Correlations between normalized 1-RM back squat load and the absolute change in JH and VStiff were small to moderate for both men and women, with most correlations being negative. Large variations in response to the back squats were noted in both men and women. The use of resistance exercises performed prior to a series of vertical jumps can result in improvements in performance in certain individuals, although the gains tend to be small and dependent upon the mechanical variable measured. There does not seem to be any differences between men and women in the response to dynamic potentiation protocols. Key pointsSubstantial individual responses were noted in both men and women in response to the PAP protocol used in the present study.The choice of dependent variable influences the ef-ficacy of the PAP protocol, with JH and VStiff demonstrating disparate responses in individual sub-jects.Such individual responses may render such PAP protocols impractical for strength and conditioning practitioners as the protocols are likely to require in-dividualizing to each athlete.

  20. Cognitive Demands Influence Lower Extremity Mechanics During a Drop Vertical Jump Task in Female Athletes.

    PubMed

    Almonroeder, Thomas Gus; Kernozek, Thomas; Cobb, Stephen; Slavens, Brooke; Wang, Jinsung; Huddleston, Wendy

    2018-05-01

    Study Design Cross-sectional study. Background The drop vertical jump task is commonly used to screen for anterior cruciate ligament injury risk; however, its predictive validity is limited. The limited predictive validity of the drop vertical jump task may be due to not imposing the cognitive demands that reflect sports participation. Objectives To investigate the influence of additional cognitive demands on lower extremity mechanics during execution of the drop vertical jump task. Methods Twenty uninjured women (age range, 18-25 years) were required to perform the standard drop vertical jump task, as well as drop vertical jumps that included additional cognitive demands. The additional cognitive demands were related to attending to an overhead goal (ball suspended overhead) and/or temporal constraints on movement selection (decision making). Three-dimensional ground reaction forces and lower extremity mechanics were compared between conditions. Results The inclusion of the overhead goal resulted in higher peak vertical ground reaction forces and lower peak knee flexion angles in comparison to the standard drop vertical jump task. In addition, participants demonstrated greater peak knee abduction angles when trials incorporated temporal constraints on decision making and/or required participants to attend to an overhead goal, in comparison to the standard drop vertical jump task. Conclusion Imposing additional cognitive demands during execution of the drop vertical jump task influenced lower extremity mechanics in a manner that suggested increased loading of the anterior cruciate ligament. Tasks utilized in anterior cruciate ligament injury risk screening may benefit from more closely reflecting the cognitive demands of the sports environment. J Orthop Sports Phys Ther 2018;48(5):381-387. Epub 10 Jan 2018. doi:10.2519/jospt.2018.7739.

  1. Loaded and unloaded jump performance of top-level volleyball players from different age categories

    PubMed Central

    Kitamura, Katia; Pereira, Lucas Adriano; Kobal, Ronaldo; Cal Abad, Cesar Cavinato; Finotti, Ronaldo; Nakamura, Fábio Yuzo

    2017-01-01

    The aim of this study was to investigate the differences in loaded and unloaded jump performances between different age categories of top-level volleyball players from the same club. Forty-three volleyball players were divided into four age groups: under-17, under-19, under-21 and professional. Vertical jumping height for squat jump (SJ), countermovement jump (CMJ) and CMJ with arm swing (CMJa) and mean propulsive velocity (MPV) in the loaded jump squat exercise with 40% of the athlete’s body mass were compared among the different age categories, considering body mass as a covariate. SJ and CMJ jump height values were higher for professional and under-21 players than under-17 players (p<0.05). CMJa height was higher for under-21 players than under-19 and under-17 players (p<0.05). MPV in the loaded jump squat was higher for under-21 players than under-17 players (p<0.05). From a general perspective, these results suggest that aging per se is not capable of substantially improving loaded and unloaded vertical jump performances across different age categories of top-level volleyball players. Therefore, to increase the vertical jumping ability of these team sport athletes throughout their long-term development, coaches and strength and conditioning professionals are encouraged to implement consistent neuromuscular training strategies, in accordance with the specific needs and physiological characteristics of each age group. PMID:29158621

  2. Loaded and unloaded jump performance of top-level volleyball players from different age categories.

    PubMed

    Kitamura, Katia; Pereira, Lucas Adriano; Kobal, Ronaldo; Cal Abad, Cesar Cavinato; Finotti, Ronaldo; Nakamura, Fábio Yuzo; Loturco, Irineu

    2017-09-01

    The aim of this study was to investigate the differences in loaded and unloaded jump performances between different age categories of top-level volleyball players from the same club. Forty-three volleyball players were divided into four age groups: under-17, under-19, under-21 and professional. Vertical jumping height for squat jump (SJ), countermovement jump (CMJ) and CMJ with arm swing (CMJa) and mean propulsive velocity (MPV) in the loaded jump squat exercise with 40% of the athlete's body mass were compared among the different age categories, considering body mass as a covariate. SJ and CMJ jump height values were higher for professional and under-21 players than under-17 players (p<0.05). CMJa height was higher for under-21 players than under-19 and under-17 players (p<0.05). MPV in the loaded jump squat was higher for under-21 players than under-17 players (p<0.05). From a general perspective, these results suggest that aging per se is not capable of substantially improving loaded and unloaded vertical jump performances across different age categories of top-level volleyball players. Therefore, to increase the vertical jumping ability of these team sport athletes throughout their long-term development, coaches and strength and conditioning professionals are encouraged to implement consistent neuromuscular training strategies, in accordance with the specific needs and physiological characteristics of each age group.

  3. The reliability of jump kinematics and kinetics in children of different maturity status.

    PubMed

    Meylan, Cesar M P; Cronin, John B; Oliver, Jon L; Hughes, Michael G; McMaster, D Travis

    2012-04-01

    The purpose of this study was to determine the reliability of eccentric (ECC) and concentric (CON) kinematic and kinetic variables thought to be critical to jump performance during bilateral vertical countermovement jump (VCMJ) and horizontal countermovement jump (HCMJ) across children of different maturity status. Forty-two athletic male and female participants between 9 and 16 years of age were divided into 3 maturity groups according to peak height velocity (PHV) offset (Post-PHV, At-PHV, and Pre-PHV) and percent of predicted adult stature. All the participants performed 3 VCMJ and HCMJ trials and the kinematics, and kinetics of these jumps were measured via a force plate over 3 testing sessions. In both jumps, vertical CON mean and peak power and jump height or distance were the most reliable measures across all groups (change in the mean [CM] = -5.4 to 6.2%; coefficient of variation [CV] = 2.1-9.4%; Intraclass correlation coefficient [ICC] = 0.82-0.98), whereas vertical ECC mean power was the only ECC variable with acceptable reliability for both jumps (CM = -0.7 to 10.1%; CV = 5.2-15.6%; ICC = 0.74-0.97). A less mature state was "likely" to "very likely" to reduce the reliability of the HCMJ ECC kinetics and kinematics. These findings suggested that movement variability is associated with the ECC phase of CMJs, especially in Pre-PHV during the HCMJ. Vertical CON mean and peak power and ECC mean power were deemed reliable and appropriate to be used in children as indicators of jump and stretch-shortening cycle performance.

  4. Countermovement strategy changes with vertical jump height to accommodate feasible force constraints.

    PubMed

    Kim, Seyoung; Park, Sukyung; Choi, Sangkyu

    2014-09-22

    In this study, we developed a curve-fit model of countermovement dynamics and examined whether the characteristics of a countermovement jump can be quantified using the model parameter and its scaling; we expected that the model-based analysis would facilitate an understanding of the basic mechanisms of force reduction and propulsion with a simplified framework of the center of mass (CoM) mechanics. Ten healthy young subjects jumped straight up to five different levels ranging from approximately 10% to 35% of their body heights. The kinematic and kinetic data on the CoM were measured using a force plate system synchronized with motion capture cameras. All subjects generated larger vertical forces compared with their body weights from the countermovement and sufficiently lowered their CoM position to support the work performed by push-off as the vertical elevations became more challenging. The model simulation reasonably reproduced the trajectories of vertical force during the countermovement, and the model parameters were replaced by linear and polynomial regression functions in terms of the vertical jump height. Gradual scaling trends of the individual model parameters were observed as a function of the vertical jump height with different degrees of scaling, depending on the subject. The results imply that the subjects may be aware of the jumping dynamics when subjected to various vertical jump heights and may select their countermovement strategies to effectively accommodate biomechanical constraints, i.e., limited force generation for the standing vertical jump. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Optimum Drop Jump Height in Division III Athletes: Under 75% of Vertical Jump Height.

    PubMed

    Peng, Hsien-Te; Khuat, Cong Toai; Kernozek, Thomas W; Wallace, Brian J; Lo, Shin-Liang; Song, Chen-Yi

    2017-10-01

    Our purpose was to evaluate the vertical ground reaction force, impulse, moments and powers of hip, knee and ankle joints, contact time, and jump height when performing a drop jump from different drop heights based on the percentage of a performer's maximum vertical jump height (MVJH). Fifteen male Division III athletes participated voluntarily. Eleven synchronized cameras and two force platforms were used to collect data. One-way repeated-measures analysis of variance tests were used to examine the differences between drop heights. The maximum hip, knee and ankle power absorption during 125%MVJH and 150%MVJH were greater than those during 75%MVJH. The impulse during landing at 100%MVJH, 125%MVJH and 150%MVJH were greater than 75%MVJH. The vertical ground reaction force during 150%MVJH was greater than 50%MVJH, 75%MVJH and 100%MVJH. Drop height below 75%MVJH had the most merits for increasing joint power output while having a lower impact force, impulse and joint power absorption. Drop height of 150%MVJH may not be desirable as a high-intensity stimulus due to the much greater impact force, increasing the risk of injury, without increasing jump height performance. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Evaluation of different jumping tests in defining position-specific and performance-level differences in high level basketball players

    PubMed Central

    Pehar, Miran; Sekulic, Damir; Sisic, Nedim; Spasic, Miodrag; Uljevic, Ognjen; Krolo, Ante; Sattler, Tine

    2017-01-01

    The importance of jumping ability in basketball is well known, but there is an evident lack of studies that have examined different jumping testing protocols in basketball players at advanced levels. The aim of this study was to assess the applicability of different tests of jumping capacity in identifying differences between (i) playing position and (ii) competitive levels of professional players. Participants were 110 male professional basketball players (height: 194.92±8.09 cm; body mass: 89.33±10.91 kg; 21.58±3.92 years of age; Guards, 49; Forwards, 22; Centres, 39) who competed in the first (n = 58) and second division (n = 52). The variables included anthropometrics and jumping test performance. Jumping performances were evaluated by the standing broad jump (SBJ), countermovement jump (CMJ), reactive strength index (RSI), repeated reactive strength ability (RRSA) and four running vertical jumps: maximal jump with (i) take-off from the dominant leg and (ii) non-dominant leg, lay-up shot jump with take-off from the (iii) dominant leg and (iv) non-dominant leg. First-division players were taller (ES: 0.76, 95%CI: 0.35-1.16, moderate differences), heavier (0.69, 0.29-1.10), had higher maximal reach height (0.67, 0.26-1.07, moderate differences), and had lower body fat % (-0.87, -1.27-0.45, moderate differences) than second-division players. The playing positions differed significantly in three of four running jump achievements, RSI and RRSA, with Centres being least successful. The first-division players were superior to second-division players in SBJ (0.63, 0.23-1.03; 0.87, 0.26-1.43; 0.76, 0.11-1.63, all moderate differences, for total sample, Guards, and Forwards, respectively). Running vertical jumps and repeated jumping capacity can be used as valid measures of position-specific jumping ability in basketball. The differences between playing levels in vertical jumping achievement can be observed by assessing vertical jump scores together with differences in anthropometric indices between levels. PMID:29158620

  7. Inter-segmental moment analysis characterises the partial correspondence of jumping and jerking

    PubMed Central

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony MJ

    2014-01-01

    The aim of this study was to quantify internal joint moments of the lower limb during vertical jumping and the weightlifting jerk in order to improve awareness of the control strategies and correspondence between these activities, and to facilitate understanding of the likely transfer of training effects. Athletic males completed maximal unloaded vertical jumps (n=12) and explosive push jerks at 40 kg (n=9). Kinematic data were collected using optical motion tracking and kinetic data via a force plate, both at 200 Hz. Joint moments were calculated using a previously described biomechanical model of the right lower limb. Peak moment results highlighted that sagittal plane control strategies differed between jumping and jerking (p<0.05) with jerking being a knee dominant task in terms of peak moments as opposed to a more balanced knee and hip strategy in jumping and landing. Jumping and jerking exhibited proximal to distal joint involvement and landing was typically reversed. High variability was seen in non-sagittal moments at the hip and knee. Significant correlations were seen between jump height and hip and knee moments in jumping (p<0.05). Whilst hip and knee moments were correlated between jumping and jerking (p<0.05), joint moments in the jerk were not significantly correlated to jump height (p>0.05) possibly indicating a limit to the direct transferability of jerk performance to jumping. Ankle joint moments were poorly related to jump performance (p>0.05). Peak knee and hip moment generating capacity are important to vertical jump performance. The jerk appears to offer an effective strategy to overload joint moment generation in the knee relative to jumping. However, an absence of hip involvement would appear to make it a general, rather than specific, training modality in relation to jumping. PMID:22362089

  8. Effect of an Arm Swing on Countermovement Vertical Jump Performance in Elite Volleyball Players: FINAL.

    PubMed

    Vaverka, Frantisek; Jandačka, Daniel; Zahradník, David; Uchytil, Jaroslav; Farana, Roman; Supej, Matej; Vodičar, Janez

    2016-12-01

    The aim of this study was to determine how elite volleyball players employed the arm swing (AS) to enhance their jump performance. The study assessed how the AS influenced the duration and magnitude of the vertical ground reaction force (VGRF) during the main phases (preparatory, braking and accelerating) of the countermovement vertical jump (CMVJ), the starting position of the body at the beginning of the accelerating phase and the moment when the AS began contributing to increasing the jump height. Eighteen elite volleyball players performed three CMVJs with and without an AS. Kinetics and kinematics data were collected using two Kistler force plates and the C-motion system. The time and force variables were evaluated based on the VGRF, and the position of the body and the trajectory of the arm movement were determined using kinematic analysis. The AS improved the CMVJ by increasing the jump height by 38% relative to jumping without an AS. The AS significantly shortened the braking phase and prolonged the accelerating phase, however, it did not influence the preparatory phase or the overall jump duration. The AS also significantly increased the average force during the accelerating phase as well as the accelerating impulse. The AS upward began at 76% into the overall jump duration. The AS did not influence the body position at the beginning of the accelerating phase. These findings can be used to improve performance of the CMVJ with the AS and in teaching beginning volleyball players proper jumping technique.

  9. Does plyometric training improve vertical jump height? A meta-analytical review.

    PubMed

    Markovic, Goran

    2007-06-01

    The aim of this study was to determine the precise effect of plyometric training (PT) on vertical jump height in healthy individuals. Meta-analyses of randomised and non-randomised controlled trials that evaluated the effect of PT on four typical vertical jump height tests were carried out: squat jump (SJ); countermovement jump (CMJ); countermovement jump with the arm swing (CMJA); and drop jump (DJ). Studies were identified by computerised and manual searches of the literature. Data on changes in jump height for the plyometric and control groups were extracted and statistically pooled in a meta-analysis, separately for each type of jump. A total of 26 studies yielding 13 data points for SJ, 19 data points for CMJ, 14 data points for CMJA and 7 data points for DJ met the initial inclusion criteria. The pooled estimate of the effect of PT on vertical jump height was 4.7% (95% CI 1.8 to 7.6%), 8.7% (95% CI 7.0 to 10.4%), 7.5% (95% CI 4.2 to 10.8%) and 4.7% (95% CI 0.8 to 8.6%) for the SJ, CMJ, CMJA and DJ, respectively. When expressed in standardised units (ie, effect sizes), the effect of PT on vertical jump height was 0.44 (95% CI 0.15 to 0.72), 0.88 (95% CI 0.64 to 1.11), 0.74 (95% CI 0.47 to 1.02) and 0.62 (95% CI 0.18 to 1.05) for the SJ, CMJ, CMJA and DJ, respectively. PT provides a statistically significant and practically relevant improvement in vertical jump height with the mean effect ranging from 4.7% (SJ and DJ), over 7.5% (CMJA) to 8.7% (CMJ). These results justify the application of PT for the purpose of development of vertical jump performance in healthy individuals.

  10. The type of mat (Contact vs. Photocell) affects vertical jump height estimated from flight time.

    PubMed

    García-López, Juan; Morante, Juan C; Ogueta-Alday, Ana; Rodríguez-Marroyo, Jose A

    2013-04-01

    The purposes of this study were to analyze the validity and reliability of 2 photocell mats and to probe the possible influence of the type of mat (contact vs. photocell) on vertical jump height estimated from flight time. In 2 separate studies, 89 and 92 physical students performed 3 countermovement jumps that were simultaneously registered by a Force Plate (gold standard method), 2 photocell mats (SportJump System Pro and ErgoJump Plus), and a contact mat (SportJump-v1.0). The first study showed that the 2 photocell mats underestimated the vertical jump height (1.3 ± 0.2 cm and 5.9 ± 5.2 cm, respectively), but only SportJump System Pro showed a high correlation with the Force Plate (r = 0.999 and 0.676, respectively) and good intraday reliability (coefficient of variation = 2.98 and 15.94%, intraclass correlation coefficients = 0.95-0.97 and 0.45-0.57, respectively). The second study demonstrated a strong correlation (r = 0.994) between the 2 technologies (contact vs. photocell mats) with differences in vertical jump height of 2.0 ± 0.8 cm (95% confidence interval = 1.9-2.1 cm), which depended on both flight time and subjects' body mass. In conclusion, SportJump System Pro was a valid and reliable device. The new devices to measure vertical jump height from flight time should be validated. The type of mat (contact vs. photocell) affected approximately 6% the vertical jump height (approximately 2 cm in this study), which should be considered in further studies. The use of validated photocell mats instead of the contact mats was recommended.

  11. Vertical jumping tests in volleyball: reliability, validity, and playing-position specifics.

    PubMed

    Sattler, Tine; Sekulic, Damir; Hadzic, Vedran; Uljevic, Ognjen; Dervisevic, Edvin

    2012-06-01

    Vertical jumping is known to be important in volleyball, and jumping performance tests are frequently studied for their reliability and validity. However, most studies concerning jumping in volleyball have dealt with standard rather than sport-specific jumping procedures and tests. The aims of this study, therefore, were (a) to determine the reliability and factorial validity of 2 volleyball-specific jumping tests, the block jump (BJ) test and the attack jump (AJ) test, relative to 2 frequently used and systematically validated jumping tests, the countermovement jump test and the squat jump test and (b) to establish volleyball position-specific differences in the jumping tests and simple anthropometric indices (body height [BH], body weight, and body mass index [BMI]). The BJ was performed from a defensive volleyball position, with the hands positioned in front of the chest. During an AJ, the players used a 2- to 3-step approach and performed a drop jump with an arm swing followed by a quick vertical jump. A total of 95 high-level volleyball players (all men) participated in this study. The reliability of the jumping tests ranged from 0.97 to 0.99 for Cronbach's alpha coefficients, from 0.93 to 0.97 for interitem correlation coefficients and from 2.1 to 2.8 for coefficients of variation. The highest reliability was found for the specific jumping tests. The factor analysis extracted one significant component, and all of the tests were highly intercorrelated. The analysis of variance with post hoc analysis showed significant differences between 5 playing positions in some of the jumping tests. In general, receivers had a greater jumping capacity, followed by libero players. The differences in jumping capacities should be emphasized vis-a-vis differences in the anthropometric measures of players, where middle hitters had higher BH and body weight, followed by opposite hitters and receivers, with no differences in the BMI between positions.

  12. Maximum height and minimum time vertical jumping.

    PubMed

    Domire, Zachary J; Challis, John H

    2015-08-20

    The performance criterion in maximum vertical jumping has typically been assumed to simply raise the center of mass as high as possible. In many sporting activities minimizing movement time during the jump is likely also critical to successful performance. The purpose of this study was to examine maximum height jumps performed while minimizing jump time. A direct dynamics model was used to examine squat jump performance, with dual performance criteria: maximize jump height and minimize jump time. The muscle model had activation dynamics, force-length, force-velocity properties, and a series of elastic component representing the tendon. The simulations were run in two modes. In Mode 1 the model was placed in a fixed initial position. In Mode 2 the simulation model selected the initial squat configuration as well as the sequence of muscle activations. The inclusion of time as a factor in Mode 1 simulations resulted in a small decrease in jump height and moderate time savings. The improvement in time was mostly accomplished by taking off from a less extended position. In Mode 2 simulations, more substantial time savings could be achieved by beginning the jump in a more upright posture. However, when time was weighted more heavily in these simulations, there was a more substantial reduction in jump height. Future work is needed to examine the implications for countermovement jumping and to examine the possibility of minimizing movement time as part of the control scheme even when the task is to jump maximally. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Muscle activation history at different vertical jumps and its influence on vertical velocity.

    PubMed

    Kopper, Bence; Csende, Zsolt; Sáfár, Sándor; Hortobágyi, Tibor; Tihanyi, József

    2013-02-01

    In the present study we investigated displacement, time, velocity and acceleration history of center of mass (COM) and electrical activity of knee extensors to estimate the dominance of the factors influencing the vertical velocity in squat jumps (SJs), countermovement jumps (CMJs) and drop jumps (DJs) performed with small (40°) and large (80°) range of joint motion (SROM and LROM). The maximum vertical velocity (v4) was 23.4% (CMJ) and 7.8% (DJ) greater when the jumps were performed with LROM compared with SROM (p < 0.05). These differences are considerably less than it could be expected from the greater COM and knee angular displacement and duration of active state. This small difference can be attributed to the greater deceleration during eccentric phase (CMJ:32.1%, DJ:91.5%) in SROM than that in LROM. v4 was greater for SJ in LROM than for SJ in SROM indicating the significance of the longer active state and greater activation level (p < 0.001). The difference in v4 was greater between SJ and CMJ in SROM (38.6%) than in LROM (9.0%), suggesting that elastic energy storage and re-use can be a dominant factor in the enhancement of vertical velocity of CMJ and DJ compared with SJ performed with SROM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Comparison of the Hang High-Pull and Loaded Jump Squat for the Development of Vertical Jump and Isometric Force-Time Characteristics.

    PubMed

    Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J

    2017-04-15

    Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.

  15. The concurrent validity and reliability of a low-cost, high-speed camera-based method for measuring the flight time of vertical jumps.

    PubMed

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos M; del Campo-Vecino, Juan; Bavaresco, Nicolás

    2014-02-01

    Flight time is the most accurate and frequently used variable when assessing the height of vertical jumps. The purpose of this study was to analyze the validity and reliability of an alternative method (i.e., the HSC-Kinovea method) for measuring the flight time and height of vertical jumping using a low-cost high-speed Casio Exilim FH-25 camera (HSC). To this end, 25 subjects performed a total of 125 vertical jumps on an infrared (IR) platform while simultaneously being recorded with a HSC at 240 fps. Subsequently, 2 observers with no experience in video analysis analyzed the 125 videos independently using the open-license Kinovea 0.8.15 software. The flight times obtained were then converted into vertical jump heights, and the intraclass correlation coefficient (ICC), Bland-Altman plot, and Pearson correlation coefficient were calculated for those variables. The results showed a perfect correlation agreement (ICC = 1, p < 0.0001) between both observers' measurements of flight time and jump height and a highly reliable agreement (ICC = 0.997, p < 0.0001) between the observers' measurements of flight time and jump height using the HSC-Kinovea method and those obtained using the IR system, thus explaining 99.5% (p < 0.0001) of the differences (shared variance) obtained using the IR platform. As a result, besides requiring no previous experience in the use of this technology, the HSC-Kinovea method can be considered to provide similarly valid and reliable measurements of flight time and vertical jump height as more expensive equipment (i.e., IR). As such, coaches from many sports could use the HSC-Kinovea method to measure the flight time and height of their athlete's vertical jumps.

  16. Ski jump takeoff performance predictions for a mixed-flow, remote-lift STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.

    1992-01-01

    A ski jump model was developed to predict ski jump takeoff performance for a short takeoff and vertical landing (STOVL) aircraft. The objective was to verify the model with results from a piloted simulation of a mixed flow, remote lift STOVL aircraft. The prediction model is discussed. The predicted results are compared with the piloted simulation results. The ski jump model can be utilized for basic research of other thrust vectoring STOVL aircraft performing a ski jump takeoff.

  17. Acute effects of unilateral whole body vibration training on single leg vertical jump height and symmetry in healthy men.

    PubMed

    Shin, Seungho; Lee, Kyeongjin; Song, Changho

    2015-12-01

    [Purpose] The aim of the present study was to investigate the acute effects of unilateral whole body vibration training on height and symmetry of the single leg vertical jump in healthy men. [Subjects] Thirty males with no history of lower limb dysfunction participated in this study. [Methods] The participants were randomly allocated to one of three groups: the unilateral vibratory stimulation group (n=10), bilateral vibratory stimulation group (n=10), and, no vibratory stimulation group (n=10). The subjects in the unilateral and bilateral stimulation groups participated in one session of whole body vibration training at 26 Hz for 3 min. The no vibratory stimulation group subjects underwent the same training for 3 min without whole body vibration. All participants performed the single leg vertical jump for each lower limb, to account for the strong and weak sides. The single leg vertical jump height and symmetry were measured before and after the intervention. [Results] The single leg vertical jump height of the weak lower limb significantly improved in the unilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump height of the strong lower limb significantly improved in the bilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump symmetry significantly improved in the unilateral vibratory stimulation group, but not in the other groups. [Conclusion] Therefore, the present study found that the effects of whole body vibration training were different depending on the type of application. To improve the single leg vertical jump height in the weak lower limbs as well as limb symmetry, unilateral vibratory stimulation might be more desirable.

  18. Comparing short-term complex and compound training programs on vertical jump height and power output.

    PubMed

    Mihalik, Jason P; Libby, Jeremiah J; Battaglini, Claudio L; McMurray, Robert G

    2008-01-01

    The purpose of this study was to determine whether there were differences in vertical jump height and lower body power production gains between complex and compound training programs. A secondary purpose was to determine whether differences in gains were observed at a faster rate between complex and compound training programs. Thirty-one college-aged club volleyball players (11 men and 20 women) were assigned into either a complex training group or a compound training group based on gender and pre-training performance measures. Both groups trained twice per week for 4 weeks. Work was equated between the 2 groups. Complex training alternated between resistance and plyometric exercises on each training day; whereas, compound training consisted of resistance training on one day and plyometric training on the other. Our analyses showed significant improvements in vertical jump height in both training groups after only 3 weeks of training (P < 0.0001); vertical jump height increased by approximately 5% and 9% in the complex and compound training groups, respectively. However, neither group improved significantly better than the other, nor did either group experience faster gains in vertical leap or power output. The results of this study suggest that performing a minimum of 3 weeks of either complex or compound training is effective for improving vertical jump height and power output; thus, coaches should choose the program which best suits their training schedules.

  19. Mobile Jump Assessment (mJump): A Descriptive and Inferential Study.

    PubMed

    Mateos-Angulo, Alvaro; Galán-Mercant, Alejandro; Cuesta-Vargas, Antonio

    2015-08-26

    Vertical jump tests are used in athletics and rehabilitation to measure physical performance in people of different age ranges and fitness. Jumping ability can be analyzed through different variables, and the most commonly used are fly time and jump height. They can be obtained by a variety of measuring devices, but most are limited to laboratory use only. The current generation of smartphones contains inertial sensors that are able to record kinematic variables for human motion analysis, since they are tools for easy access and portability for clinical use. The aim of this study was to describe and analyze the kinematics characteristics using the inertial sensor incorporated in the iPhone 4S, the lower limbs strength through a manual dynamometer, and the jump variables obtained with a contact mat in the squat jump and countermovement jump tests (fly time and jump height) from a cohort of healthy people. A cross sectional study was conducted on a population of healthy young adults. Twenty-seven participants performed three trials (n=81 jumps) of squat jump and countermovement jump tests. Acceleration variables were measured through a smartphone's inertial sensor. Additionally, jump variables from a contact mat and lower limbs dynamometry were collected. In the present study, the kinematic variables derived from acceleration through the inertial sensor of a smartphone iPhone 4S, dynamometry of lower limbs with a handheld dynamometer, and the height and flight time with a contact mat have been described in vertical jump tests from a cohort of young healthy subjects. The development of the execution has been described, examined and identified in a squat jump test and countermovement jump test under acceleration variables that were obtained with the smartphone. The built-in iPhone 4S inertial sensor is able to measure acceleration variables while performing vertical jump tests for the squat jump and countermovement jump in healthy young adults. The acceleration kinematics variables derived from the smartphone's inertial sensor are higher in the countermovement jump test than the squat jump test. ©Alvaro Mateos-Angulo, Alejandro Galán-Mercant, Antonio Cuesta-Vargas. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 26.08.2015.

  20. Vertical Jump Height Estimation Algorithm Based on Takeoff and Landing Identification Via Foot-Worn Inertial Sensing.

    PubMed

    Wang, Jianren; Xu, Junkai; Shull, Peter B

    2018-03-01

    Vertical jump height is widely used for assessing motor development, functional ability, and motor capacity. Traditional methods for estimating vertical jump height rely on force plates or optical marker-based motion capture systems limiting assessment to people with access to specialized laboratories. Current wearable designs need to be attached to the skin or strapped to an appendage which can potentially be uncomfortable and inconvenient to use. This paper presents a novel algorithm for estimating vertical jump height based on foot-worn inertial sensors. Twenty healthy subjects performed countermovement jumping trials and maximum jump height was determined via inertial sensors located above the toe and under the heel and was compared with the gold standard maximum jump height estimation via optical marker-based motion capture. Average vertical jump height estimation errors from inertial sensing at the toe and heel were -2.2±2.1 cm and -0.4±3.8 cm, respectively. Vertical jump height estimation with the presented algorithm via inertial sensing showed excellent reliability at the toe (ICC(2,1)=0.98) and heel (ICC(2,1)=0.97). There was no significant bias in the inertial sensing at the toe, but proportional bias (b=1.22) and fixed bias (a=-10.23cm) were detected in inertial sensing at the heel. These results indicate that the presented algorithm could be applied to foot-worn inertial sensors to estimate maximum jump height enabling assessment outside of traditional laboratory settings, and to avoid bias errors, the toe may be a more suitable location for inertial sensor placement than the heel.

  1. Influence of sports flooring and shoes on impact forces and performance during jump tasks.

    PubMed

    Malisoux, Laurent; Gette, Paul; Urhausen, Axel; Bomfim, Joao; Theisen, Daniel

    2017-01-01

    We aim to determine the influence of sports floorings and sports shoes on impact mechanics and performance during standardised jump tasks. Twenty-one male volunteers performed ankle jumps (four consecutive maximal bounds with very dynamic ankle movements) and multi-jumps (two consecutive maximal counter-movement jumps) on force plates using minimalist and cushioned shoes under 5 sports flooring (SF) conditions. The shock absorption properties of the SF, defined as the proportion of peak impact force absorbed by the tested flooring when compared with a concrete hard surface, were: SF0 = 0% (no flooring), SF1 = 19%, SF2 = 26%, SF3 = 37% and SF4 = 45%. Shoe and flooring effects were compared using 2x5 repeated-measures ANOVA with post-hoc Bonferroni-corrected comparisons. A significant interaction between SF and shoe conditions was found for VILR only (p = 0.003). In minimalist shoes, SF influenced Vertical Instantaneous Loading Rate (VILR) during ankle jumps (p = 0.006) and multi-jumps (p<0.001), in accordance with shock absorption properties. However, in cushioned shoes, SF influenced VILR during ankle jumps only (p<0.001). Contact Time was the only additional variable affected by SF, but only during multi-jumps in minimalist shoes (p = 0.037). Cushioned shoes induced lower VILR (p<0.001) and lower Contact Time (p≤0.002) during ankle jumps and multi-jumps compared to minimalist shoes. During ankle jumps, cushioned shoes induced greater Peak Vertical Ground Reaction Force (PVGRF, p = 0.002), greater Vertical Average Loading Rate (p<0.001), and lower eccentric (p = 0.008) and concentric (p = 0.004) work. During multi-jumps, PVGRF was lower (p<0.001) and jump height was higher (p<0.001) in cushioned compared to minimalist shoes. In conclusion, cushioning influenced impact forces during standardised jump tasks, whether it was provided by the shoes or the sports flooring. VILR is the variable that was the most affected.

  2. Influence of sports flooring and shoes on impact forces and performance during jump tasks

    PubMed Central

    Urhausen, Axel; Bomfim, Joao

    2017-01-01

    We aim to determine the influence of sports floorings and sports shoes on impact mechanics and performance during standardised jump tasks. Twenty-one male volunteers performed ankle jumps (four consecutive maximal bounds with very dynamic ankle movements) and multi-jumps (two consecutive maximal counter-movement jumps) on force plates using minimalist and cushioned shoes under 5 sports flooring (SF) conditions. The shock absorption properties of the SF, defined as the proportion of peak impact force absorbed by the tested flooring when compared with a concrete hard surface, were: SF0 = 0% (no flooring), SF1 = 19%, SF2 = 26%, SF3 = 37% and SF4 = 45%. Shoe and flooring effects were compared using 2x5 repeated-measures ANOVA with post-hoc Bonferroni-corrected comparisons. A significant interaction between SF and shoe conditions was found for VILR only (p = 0.003). In minimalist shoes, SF influenced Vertical Instantaneous Loading Rate (VILR) during ankle jumps (p = 0.006) and multi-jumps (p<0.001), in accordance with shock absorption properties. However, in cushioned shoes, SF influenced VILR during ankle jumps only (p<0.001). Contact Time was the only additional variable affected by SF, but only during multi-jumps in minimalist shoes (p = 0.037). Cushioned shoes induced lower VILR (p<0.001) and lower Contact Time (p≤0.002) during ankle jumps and multi-jumps compared to minimalist shoes. During ankle jumps, cushioned shoes induced greater Peak Vertical Ground Reaction Force (PVGRF, p = 0.002), greater Vertical Average Loading Rate (p<0.001), and lower eccentric (p = 0.008) and concentric (p = 0.004) work. During multi-jumps, PVGRF was lower (p<0.001) and jump height was higher (p<0.001) in cushioned compared to minimalist shoes. In conclusion, cushioning influenced impact forces during standardised jump tasks, whether it was provided by the shoes or the sports flooring. VILR is the variable that was the most affected. PMID:29020108

  3. Acute Effects of Plyometric Intervention—Performance Improvement and Related Changes in Sprinting Gait Variability.

    PubMed

    Maćkała, Krzysztof; Fostiak, Marek

    2015-07-01

    The purpose of this study was to examine the effect of a short high-intensity plyometric program on the improvement of explosive power of lower extremities and sprint performance as well as changes in sprinting stride variability in male sprinters. Fourteen healthy male sprinters (mean ± SD: age: 18.07 ± 0.73 years, body mass: 73 ± 9.14 kg, height: 180.57 ± 8.16 cm, and best 100 m: 10.89 ± 0.23) participated in the experiment. The experimental protocol included vertical jumping such as squat jump, countermovement jump, and horizontal jumps; standing long jump and standing triple jumps to assess lower-body power, maximal running velocity; a 20-m flying start sprint that evaluated variability of 10 running steps and 60-m starting block sprint. All analyzed parameters were obtained using the new technology of OptoJump-Microgate (OptoJump, Italy). The short-term plyometric training program significantly increased the explosive power of lower extremities, both vertical and horizontal jumping improvement. However, the vertical jumps increased much more than the horizontal. The 20-m improvements were derived from an increase of stride frequency from 4.31 to 4.39 Hz because of a decrease of ground contact time from 138 to 133 milliseconds. This did not translate into step length changes. Therefore, the significantly increased frequency of stride (1.8%), which is a specific expression of ground contact time reduction during support phase, resulted in an increase of speed. The training volume of 2 weeks (with 6 sessions) using high-intensity (between 180 and 250 jumps per session) plyometric exercises can be recommended as the short-term strategy that will optimize one's probability of reaching strong improvements in explosive power and sprint velocity performance.

  4. The Effects of Caffeine on Vertical Jump Height and Execution in Collegiate Athletes.

    PubMed

    Bloms, Lucas P; Fitzgerald, John S; Short, Martin W; Whitehead, James R

    2016-07-01

    Bloms, LP, Fitzgerald, JS, Short, MW, and Whitehead, JR. The effects of caffeine on vertical jump height and execution in collegiate athletes. J Strength Cond Res 30(7): 1855-1861, 2016-Caffeine ingestion elicits a variety of physiological effects that may be beneficial to maximal-intensity exercise performance, although its effectiveness and physical mechanism of action enhancing ballistic task performance are unclear. The purpose of this study was to examine the effects of caffeine ingestion on vertical jump height and jump execution in Division I collegiate athletes. The study used a single-blind, randomized, crossover design. Athletes (n = 25) consumed either caffeine (5 mg·kg) or placebo. After a 60-minute waiting period, athletes performed 3 squat jumps (SJ) and 3 countermovement jumps (CMJ) while standing on a force platform. Jump height and execution variables were calculated from mechanography data. In comparison with placebo, caffeine increased SJ height (32.8 ± 6.2 vs. 34.5 ± 6.7 cm; p = 0.001) and CMJ height (36.4 ± 6.9 vs. 37.9 ± 7.4 cm; p = 0.001). Peak force (p = 0.032) and average rate of force development (p = 0.037) were increased during the CMJ in the caffeine trail compared with the control. Time to half peak force was the only execution variable improved with caffeine (p = 0.019) during the SJ. It seems that caffeine affects both height and execution of jumping. Our data indicate that the physical mechanism of jump enhancement is increased peak force production or rate of force development during jumping depending on technique. The physical mechanism of jump enhancement suggests that the ergogenic effects of caffeine may transfer to other ballistic tasks involving the lower-body musculature in collegiate athletes.

  5. Determination of the best pre-jump height for improvement of two-legged vertical jump.

    PubMed

    Jafari, Mahsa; Zolaktaf, Vahid; Marandi, Sayyed M

    2013-04-01

    Athletic performance in many sports depends on two-legged vertical jump. The objective of this study was to examine the effect of different pre-jump height exercises on two-legged vertical jump and to determine the best pre-jump height(s). Subjects included 35 females and 42 males. By matched randomized sampling, subjects of each sex were assigned into four groups, namely, control, 10-cm hurdle, 20-cm hurdle, and 30-cm hurdle. They participated in the same training program for 6 weeks. Statistical analyses were based on one-way and repeated-measure analysis of variance (ANOVA). Analysis of the data showed that practice over hurdles of 10 cm was better than no hurdle and hurdles of >10 cm. Also, jump attempts over hurdles were efficient for trained athletes, but not for untrained athletes. For both sexes, the rate of spike improvement was much better in the experimental groups than in the control groups; it was independent from the rate of progress in jump, which was relatively less evident. It is likely that rather than increasing jump height, training over hurdle enabled the players to use a higher percent of their jump potentials.

  6. The effects of maturation on jumping ability and sprint adaptations to plyometric training in youth soccer players.

    PubMed

    Asadi, Abbas; Ramirez-Campillo, Rodrigo; Arazi, Hamid; Sáez de Villarreal, Eduardo

    2018-04-03

    The aim of this study was to investigate the effects of maturation on power and sprint performance adaptations following 6 weeks of plyometric training in youth soccer players during pre-season. Sixty male soccer players were categorized into 3 maturity groups (Pre, Mid and Post peak height velocity [PHV]) and then randomly assigned to plyometric group and control group. Vertical jump, standing long jump, and 20-m sprint (with and without ball) tests were collected before- and after-intervention. After the intervention, the Pre, Mid and Post-PHV groups showed significant (P ≤ 0.05) and small to moderate effect size (ES) improvement in vertical jump (ES = 0.48; 0.57; 0.73), peak power output (E = 0.60; 0.64; 0.76), standing long jump (ES = 0.62; 0.65; 0.7), 20-m sprint (ES = -0.58; -0.66), and 20-m sprint with ball (ES = -0.44; -0.8; -0.55) performances. The Post-PHV soccer players indicated greater gains than Pre-PHV in vertical jump and sprint performance after training (P ≤ 0.05). Short-term plyometric training had positive effects on sprinting and jumping-power which are important determinants of match-winning actions in soccer. These results indicate that a sixty foot contact, twice per week program, seems effective in improving power and sprint performance in youth soccer players.

  7. Test-retest reliability of jump execution variables using mechanography: a comparison of jump protocols

    USDA-ARS?s Scientific Manuscript database

    Mechanography during the vertical jump may enhance screening and determining mechanistic causes for functional deficits that reduce physical performance. Utility of jump mechanography for evaluation is limited by scant test-retest reliability data on force-time variables. This study examined the tes...

  8. The Effects of Short-Term Ski Trainings on Dynamic Balance Performance and Vertical Jump in Adolescents

    ERIC Educational Resources Information Center

    Camliguney, Asiye Filiz

    2013-01-01

    Skiing is a sport where balance and strength are critical and which can be practiced actively especially from early years to old age. The purpose of this study is to examine the effect of a 5-day training of skiing skills on dynamic balance performance and development of vertical jump strength in adolescents. Sixteen adolescent volunteers who do…

  9. Effects of short-term two weeks low intensity plyometrics combined with dynamic stretching training in improving vertical jump height and agility on trained basketball players.

    PubMed

    Ramachandran, Selvam; Pradhan, Binita

    2014-01-01

    Sport specific training in basketball players should focus on vertical jump height and agility in consistent with demands of the sport. Since plyometrics training improves vertical jump height and agility, it can be useful training strategy to improve the performance of basketball players. A convenience sample of thirty professional basketball players were recruited. Following pre-intervention assessment, interventions using plyometrics training and dynamic stretching protocol was administered on the basketball players. The outcome measures were assessed before the intervention and at the end of first and second week. Statistically significant improvements in vertical jump height (31.68 ± 11.64 to 37.57 ± 16.74; P < 0.012) and agility (16.75 ± 2.49 to 16.51 ± 2.80; P <0.00) were observed between pretest--posttest measures and no changes in muscle girth and isometric muscle strength. The study concludes that short term two weeks plyometrics training combined with dynamic stretching as a useful sport specific training strategy to improve vertical jump height and agility on trained basketball players.

  10. Vertical jump performance of professional male and female volleyball players: effects of playing position and competition level.

    PubMed

    Sattler, Tine; Hadžić, Vedran; Dervišević, Edvin; Markovic, Goran

    2015-06-01

    Vertical jump (VJ) performance is an important element for successful volleyball practice. The aims of the study were (a) to explore the overall VJ performance of elite volleyball players of both sexes, (b) to explore the differences in VJ performance among different competition levels and different playing positions, and (c) to evaluate the sex-related differences in the role of the arm swing and 3-step approach with arm swing on the jump height. We assessed the VJ capacity in 253 volleyball players (113 males and 140 females) from Slovenian first and second Volleyball Division. The height of squat jump (SJ), countermovement jump, block jump, and attack jump was tested using an Optojump system. We observed significant differences (p ≤ 0.05) in VJ height between different levels of play that were most pronounced in the SJ. Position-related differences in VJ performance were observed in male players between receivers and setters (p ≤ 0.05), whereas in females, VJ performance across different playing positions seems equal. Finally, we found that male players significantly better use the arm swing during VJ than females (p ≤ 0.05), whereas the use of eccentric part of the jump and approach before the spike to improve VJ performance seem to be equally mastered activity in both sexes. These results could assist coaches in the development of jumping performance in volleyball players. Furthermore, presented normative data for jump heights of elite male and female volleyball players could be useful in selection and profiling of young volleyball players.

  11. Barbell deadlift training increases the rate of torque development and vertical jump performance in novices.

    PubMed

    Thompson, Brennan J; Stock, Matt S; Shields, JoCarol E; Luera, Micheal J; Munayer, Ibrahim K; Mota, Jacob A; Carrillo, Elias C; Olinghouse, Kendra D

    2015-01-01

    The primary purpose of this study was to examine the effects of 10 weeks of barbell deadlift training on rapid torque characteristics of the knee extensors and flexors. A secondary aim was to analyze the relationships between training-induced changes in rapid torque and vertical jump performance. Fifty-four subjects (age, mean ± SD = 23 ± 3 years) were randomly assigned to a control (n = 20) or training group (n = 34). Subjects in the training group performed supervised deadlift training twice per week for 10 weeks. All subjects performed isometric strength testing of the knee extensors and flexors and vertical jumps before and after the intervention. Torque-time curves were used to calculate rate of torque development (RTD) values at peak and at 50 and 200 milliseconds from torque onset. Barbell deadlift training induced significant pre- to post-increases of 18.8-49.0% for all rapid torque variables (p < 0.01). Vertical jump height increased from 46.0 ± 11.3 to 49.4 ± 11.3 cm (7.4%; p < 0.01), and these changes were positively correlated with improvements in RTD for the knee flexors (r = 0.30-0.37, p < 0.01-0.03). These findings showed that a 10-week barbell deadlift training program was effective at enhancing rapid torque capacities in both the knee extensors and flexors. Changes in rapid torque were associated with improvements in vertical jump height, suggesting a transfer of adaptations from deadlift training to an explosive, performance-based task. Professionals may use these findings when attempting to design effective, time-efficient resistance training programs to improve explosive strength capacities in novices.

  12. The effects of resistance training interventions on vertical jump performance in basketball players: a meta-analysis.

    PubMed

    Sperlich, Paula F; Behringer, Michael; Mester, Joachim

    2016-01-01

    Vertical jump performance is one of the key factors in basketball. In order to determine the effectiveness of previously published interventions and their influencing factors we performed a meta-analysis. A computerized search was conducted using the databases PubMed (1966), Web of Science (1900), SPORTDiscus™ (1975),Medline (1966) and SportPilot (2008). Studies involving healthy male or female basketball players at any age and performance level were included. All trials had to investigate the benefits of resistance training programs on jumping performance in basketball players and provide a control group. The effect size (ES) was computed and the relationship between ESs and continuous variables was examined by meta-regressions, whereas subgroup meta-analyses and z-tests were used to assess the impact of categorical moderator variables. The meta-analysis included 14 studies with 20 subgroups and a total of 37 outcomes. A total of 399 participants were examined, N.=157 served as control and N.=242 took part in particular training interventions. The overall weighted ES of 0.78 (95% CI 0.41, 1.15) was significantly greater than zero (P<0.001). None of the categorical moderator variables affected the training effect. However, positive correlations were found for training duration (r=0.68; P=0.02). The present meta-analysis demonstrates that resistance training throughout the year, using bodyweight or external weight, significantly improves vertical jump performance in healthy basketball players. Since vertical jump improvements were independent of intervention period but dependent on the duration of each individual training session the total training amount should be based on longer training sessions.

  13. Do Bilateral Vertical Jumps With Reactive Jump Landings Achieve Osteogenic Thresholds With and Without Instruction in Premenopausal Women?

    PubMed

    Clissold, Tracey L; Winwood, Paul W; Cronin, John B; De Souza, Mary Jane

    2018-04-01

    Jumps have been investigated as a stimulus for bone development; however, effects of instruction, jump type, and jump-landing techniques need investigation. This study sought to identify whether ground reaction forces (GRFs) for bilateral vertical jumps (countermovement jumps and drop jumps) with reactive jump-landings (ie, jumping immediately after initial jump-landing), with instruction and with instruction withdrawn, achieve magnitudes and rates of strain previously shown to improve bone mass among premenopausal women. Twenty-one women (Mean ± SD: 43.3 ± 5.9 y; 69.4 ± 9.6 kg; 167 ± 5.5 cm; 27.5 ± 8.7% body fat) performed a testing session 'with instruction' followed by a testing session performed 1 week later with 'instruction withdrawn.' The magnitudes (4.59 to 5.49 body weight [BW]) and rates of strain (263 to 359 BW·s -1 ) for the jump-landings, performed on an AMTI force plate, exceeded previously determined thresholds (>3 BWs and >43 BW·s -1 ). Interestingly, significantly larger peak resultant forces, (↑10%; P = .002) and peak rates of force development (↑20%; P < .001) values (in relation to BW and BW·s -1 , respectively) were observed for the second jump-landing (postreactive jump). Small increases (ES = 0.22-0.42) in all landing forces were observed in the second jump-landing with 'instruction withdrawn.' These jumps represent a unique training stimulus for premenopausal women and achieve osteogenic thresholds thought prerequisite for bone growth.

  14. COMPARISON OF DRY NEEDLING VS. SHAM ON THE PERFORMANCE OF VERTICAL JUMP.

    PubMed

    Bandy, William D; Nelson, Russell; Beamer, Lisa

    2017-10-01

    Dry needling has been reported to decrease pain in subjects having myofascial trigger points, as well as pain in muscle and connective tissue. The purpose of the study was to compare the effects on the ability to perform a two-legged vertical jump between a group who received one bout of dry needling and a group who received one bout of a sham treatment. Thirty-five healthy students (19 males, 16 females) were recruited to participate in this study (mean age 22.7+/- 2.4 years). The subjects were randomly divided into two groups- dry needling (n=18) vs sham (n=17). The dry needling group received needling to four sites on bilateral gastrocnemius muscles; two at the medial head and two at the lateral head. The sham group had the four areas of the gastrocnemius muscle pressed with the tube housing the needle, but the needle was never inserted into the skin. Two-legged vertical jump was measured with chalk marks on the wall before and after the dry needling and sham treatments. Analysis with a t-test indicated that the dry needling group significantly increased vertical jump height 1.2 inches over the sham group. One bout of dry needling showed an immediate effect at significantly increasing vertical jump height in healthy, young adults. Future research is needed to determine if dry needling has any long-term effects. 2b.

  15. New Tool to Control and Monitor Weighted Vest Training Load for Sprinting and Jumping in Soccer.

    PubMed

    Carlos-Vivas, Jorge; Freitas, Tomás T; Cuesta, Miguel; Perez-Gomez, Jorge; De Hoyo, Moisés; Alcaraz, Pedro E

    2018-04-26

    Carlos-Vivas, J, Freitas, TT, Cuesta, M, Perez-Gomez, J, De Hoyo, M, and Alcaraz, PE. New tool to control and monitor weighted vest training load for sprinting and jumping in soccer. J Strength Cond Res XX(X): 000-000, 2018-The purpose of this study was to develop 2 regression equations that accurately describe the relationship between weighted vest loads and performance indicators in sprinting (i.e., maximum velocity, Vmax) and jumping (i.e., maximum height, Hmax). Also, this study aimed to investigate the effects of increasing the load on spatio-temporal variables and power development in soccer players and to determine the "optimal load" for sprinting and jumping. Twenty-five semiprofessional soccer players performed the sprint test, whereas a total of 46 completed the vertical jump test. Two different regression equations were developed for calculating the load for each exercise. The following equations were obtained: % body mass (BM) = -2.0762·%Vmax + 207.99 for the sprint and % BM = -0.7156·%Hmax + 71.588 for the vertical jump. For both sprinting and jumping, when the load increased, Vmax and Hmax decreased. The "optimal load" for resisted training using weighted vest was unclear for sprinting and close to BM for vertical jump. This study presents a new tool to individualize the training load for resisted sprinting and jumping using weighted vest in soccer players and to develop the whole force-velocity spectrum according to the objectives of the different periods of the season.

  16. Measurement errors when estimating the vertical jump height with flight time using photocell devices: the example of Optojump.

    PubMed

    Attia, A; Dhahbi, W; Chaouachi, A; Padulo, J; Wong, D P; Chamari, K

    2017-03-01

    Common methods to estimate vertical jump height (VJH) are based on the measurements of flight time (FT) or vertical reaction force. This study aimed to assess the measurement errors when estimating the VJH with flight time using photocell devices in comparison with the gold standard jump height measured by a force plate (FP). The second purpose was to determine the intrinsic reliability of the Optojump photoelectric cells in estimating VJH. For this aim, 20 subjects (age: 22.50±1.24 years) performed maximal vertical jumps in three modalities in randomized order: the squat jump (SJ), counter-movement jump (CMJ), and CMJ with arm swing (CMJarm). Each trial was simultaneously recorded by the FP and Optojump devices. High intra-class correlation coefficients (ICCs) for validity (0.98-0.99) and low limits of agreement (less than 1.4 cm) were found; even a systematic difference in jump height was consistently observed between FT and double integration of force methods (-31% to -27%; p<0.001) and a large effect size (Cohen's d >1.2). Intra-session reliability of Optojump was excellent, with ICCs ranging from 0.98 to 0.99, low coefficients of variation (3.98%), and low standard errors of measurement (0.8 cm). It was concluded that there was a high correlation between the two methods to estimate the vertical jump height, but the FT method cannot replace the gold standard, due to the large systematic bias. According to our results, the equations of each of the three jump modalities were presented in order to obtain a better estimation of the jump height.

  17. Measurement errors when estimating the vertical jump height with flight time using photocell devices: the example of Optojump

    PubMed Central

    Attia, A; Chaouachi, A; Padulo, J; Wong, DP; Chamari, K

    2016-01-01

    Common methods to estimate vertical jump height (VJH) are based on the measurements of flight time (FT) or vertical reaction force. This study aimed to assess the measurement errors when estimating the VJH with flight time using photocell devices in comparison with the gold standard jump height measured by a force plate (FP). The second purpose was to determine the intrinsic reliability of the Optojump photoelectric cells in estimating VJH. For this aim, 20 subjects (age: 22.50±1.24 years) performed maximal vertical jumps in three modalities in randomized order: the squat jump (SJ), counter-movement jump (CMJ), and CMJ with arm swing (CMJarm). Each trial was simultaneously recorded by the FP and Optojump devices. High intra-class correlation coefficients (ICCs) for validity (0.98-0.99) and low limits of agreement (less than 1.4 cm) were found; even a systematic difference in jump height was consistently observed between FT and double integration of force methods (-31% to -27%; p<0.001) and a large effect size (Cohen’s d>1.2). Intra-session reliability of Optojump was excellent, with ICCs ranging from 0.98 to 0.99, low coefficients of variation (3.98%), and low standard errors of measurement (0.8 cm). It was concluded that there was a high correlation between the two methods to estimate the vertical jump height, but the FT method cannot replace the gold standard, due to the large systematic bias. According to our results, the equations of each of the three jump modalities were presented in order to obtain a better estimation of the jump height. PMID:28416900

  18. Short-Term Effects of Kinesio Taping on Muscle Recruitment Order During a Vertical Jump: A Pilot Study.

    PubMed

    Mendez-Rebolledo, Guillermo; Ramirez-Campillo, Rodrigo; Guzman-Muñoz, Eduardo; Gatica-Rojas, Valeska; Dabanch-Santis, Alexis; Diaz-Valenzuela, Francisco

    2018-06-22

    Kinesio taping is commonly used in sports and rehabilitation settings with the aim of prevention and treatment of musculoskeletal injuries. However, limited evidence exists regarding the effects of 24 and 72 hours of kinesio taping on trunk and lower limb neuromuscular and kinetic performance during a vertical jump. The purpose of this study was to analyze the short-term effects of kinesio taping on height and ground reaction force during a vertical jump, in addition to trunk and lower limb muscle latency and recruitment order. Single-group pretest-posttest. University laboratory. Twelve male athletes from different sports (track and field, basketball, and soccer). They completed a single squat and countermovement jump at basal time (no kinesio taping), 24, and 72 hours of kinesio taping application on the gluteus maximus, biceps femoris, rectus femoris, gastrocnemius medialis, and longissimus. Muscle onset latencies were assessed by electromyography during a squat and countermovement jump, in addition to measurements of the jump height and normalized ground reaction force. The kinesio taping had no effect after 24 hours on either the countermovement or squat jump. However, at 72 hours, the kinesio taping increased the jump height (P = .02; d = 0.36) and normalized ground reaction force (P = .001; d = 0.45) during the countermovement jump. In addition, 72-hour kinesio taping reduced longissimus onset latency (P = .03; d = 1.34) and improved muscle recruitment order during a countermovement jump. These findings suggest that kinesio taping may improve neuromuscular and kinetic performance during a countermovement jump only after 72 hours of application on healthy and uninjured male athletes. However, no changes were observed on a squat jump. Future studies should incorporate a control group to verify kinesio taping's effects and its influence on injured athletes.

  19. Influence of Familiarization and Competitive Level on the Reliability of Countermovement Vertical Jump Kinetic and Kinematic Variables.

    PubMed

    Nibali, Maria L; Tombleson, Tom; Brady, Philip H; Wagner, Phillip

    2015-10-01

    Understanding typical variation of vertical jump (VJ) performance and confounding sources of its typical variability (i.e., familiarization and competitive level) is pertinent in the routine monitoring of athletes. We evaluated the presence of systematic error (learning effect) and nonuniformity of error (heteroscedasticity) across VJ performances of athletes that differ in competitive level and quantified the reliability of VJ kinetic and kinematic variables relative to the smallest worthwhile change (SWC). One hundred thirteen high school athletes, 30 college athletes, and 35 professional athletes completed repeat VJ trials. Average eccentric rate of force development (RFD), average concentric (CON) force, CON impulse, and jump height measurements were obtained from vertical ground reaction force (VGRF) data. Systematic error was assessed by evaluating changes in the mean of repeat trials. Heteroscedasticity was evaluated by plotting the difference score (trial 2 - trial 1) against the mean of the trials. Variability of jump variables was calculated as the typical error (TE) and coefficient of variation (%CV). No substantial systematic error (effect size range: -0.07 to 0.11) or heteroscedasticity was present for any of the VJ variables. Vertical jump can be performed without the need for familiarization trials, and the variability can be conveyed as either the raw TE or the %CV. Assessment of VGRF variables is an effective and reliable means of assessing VJ performance. Average CON force and CON impulse are highly reliable (%CV: 2.7% ×/÷ 1.10), although jump height was the only variable to display a %CV ≤SWC. Eccentric RFD is highly variable yet should not be discounted from VJ assessments on this factor alone because it may be sensitive to changes in response to training or fatigue that exceed the TE.

  20. The effects of passive leg press training on jumping performance, speed, and muscle power.

    PubMed

    Liu, Chiang; Chen, Chuan-Shou; Ho, Wei-Hua; Füle, Róbert János; Chung, Pao-Hung; Shiang, Tzyy-Yuang

    2013-06-01

    Passive leg press (PLP) training was developed based on the concepts of the stretch-shortening cycle (SSC) and the benefits of high muscle contraction velocity. Passive leg press training enables lower limb muscle groups to apply a maximum downward force against a platform moved up and down at high frequency by an electric motor. Thus, these muscle groups accomplished both concentric and eccentric isokinetic contractions in a passive, rapid, and repetitive manner. This study investigates the effects of 10 weeks of PLP training at high and low movement frequencies have on jumping performance, speed, and muscle power. The authors selected 30 college students who had not performed systematic resistance training in the previous 6 months, including traditional resistance training at a squat frequency of 0.5 Hz, PLP training at a low frequency of 0.5 Hz, and PLP training at a high frequency of 2.5 Hz, and randomly divided them into 3 groups (n = 10). The participants' vertical jump, drop jump, 30-m sprint performance, explosive force, and SSC efficiency were tested under the same experimental procedures at pre- and post-training. Results reveal that high-frequency PLP training significantly increased participants' vertical jump, drop jump, 30-m sprint performance, instantaneous force, peak power, and SSC efficiency (p < 0.05). Additionally, their change rate abilities were substantially superior to those of the traditional resistance training (p < 0.05). The low-frequency PLP training significantly increased participants' vertical jump, 30-m sprint performance, instantaneous force, and peak power (p < 0.05). However, traditional resistance training only increased participants' 30-m sprint performance and peak power (p < 0.05). The findings suggest that jump performance, speed, and muscle power significantly improved after 10 weeks of PLP training at high movement frequency. A PLP training machine powered by an electrical motor enables muscles of the lower extremities to contract faster compared with voluntary contraction. Therefore, muscle training with high contraction velocity is one of the main methods of increasing muscle power. Passive leg press training is a unique method for enhancing jump performance, speed, and muscle power.

  1. The validity and reliability of an iPhone app for measuring vertical jump performance.

    PubMed

    Balsalobre-Fernández, Carlos; Glaister, Mark; Lockey, Richard Anthony

    2015-01-01

    The purpose of this investigation was to analyse the concurrent validity and reliability of an iPhone app (called: My Jump) for measuring vertical jump performance. Twenty recreationally active healthy men (age: 22.1 ± 3.6 years) completed five maximal countermovement jumps, which were evaluated using a force platform (time in the air method) and a specially designed iPhone app. My jump was developed to calculate the jump height from flight time using the high-speed video recording facility on the iPhone 5 s. Jump heights of the 100 jumps measured, for both devices, were compared using the intraclass correlation coefficient, Pearson product moment correlation coefficient (r), Cronbach's alpha (α), coefficient of variation and Bland-Altman plots. There was almost perfect agreement between the force platform and My Jump for the countermovement jump height (intraclass correlation coefficient = 0.997, P < 0.001; Bland-Altman bias = 1.1 ± 0.5 cm, P < 0.001). In comparison with the force platform, My Jump showed good validity for the CMJ height (r = 0.995, P < 0.001). The results of the present study showed that CMJ height can be easily, accurately and reliably evaluated using a specially developed iPhone 5 s app.

  2. Variability of Plyometric and Ballistic Exercise Technique Maintains Jump Performance.

    PubMed

    Chandler, Phillip T; Greig, Matthew; Comfort, Paul; McMahon, John J

    2018-06-01

    Chandler, PT, Greig, M, Comfort, P, and McMahon, JJ. Variability of plyometric and ballistic exercise technique maintains jump performance. J Strength Cond Res 32(6): 1571-1582, 2018-The aim of this study was to investigate changes in vertical jump technique over the course of a training session. Twelve plyometric and ballistic exercise-trained male athletes (age = 23.4 ± 4.6 years, body mass = 78.7 ± 18.8 kg, height = 177.1 ± 9.0 cm) performed 3 sets of 10 repetitions of drop jump (DJ), rebound jump (RJ) and squat jump (SJ). Each exercise was analyzed from touchdown to peak joint flexion and peak joint flexion to take-off. Squat jump was analyzed from peak joint flexion to take-off only. Jump height, flexion and extension time and range of motion, and instantaneous angles of the ankle, knee, and hip joints were measured. Separate 1-way repeated analyses of variance compared vertical jump technique across exercise sets and repetitions. Exercise set analysis found that SJ had lower results than DJ and RJ for the angle at peak joint flexion for the hip, knee, and ankle joints and take-off angle of the hip joint. Exercise repetition analysis found that the ankle joint had variable differences for the angle at take-off, flexion, and extension time for RJ. The knee joint had variable differences for flexion time for DJ and angle at take-off and touchdown for RJ. There was no difference in jump height. Variation in measured parameters across repetitions highlights variable technique across plyometric and ballistic exercises. This did not affect jump performance, but likely maintained jump performance by overcoming constraints (e.g., level of rate coding).

  3. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    PubMed Central

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal segments. PMID:26919645

  4. The effects of 6 weeks of preseason skill-based conditioning on physical performance in male volleyball players.

    PubMed

    Trajković, Nebojša; Milanović, Zoran; Sporis, Goran; Milić, Vladan; Stanković, Ratko

    2012-06-01

    The purpose of this study was to determine the changes in physical performance after a 6-week skill-based conditioning training program in male competitive volleyball players. Sixteen male volleyball players (mean ± SD: age 22.3 ± 3.7 years, body height 190.7 ± 4.2 cm, and body mass 78.4 ± 4.5 kg) participated in this study. The players were tested for sprinting (5- and 10-m sprint), agility, and jumping performance (the vertical-jump test, the spike-jump test, and the standing broad jump [SBJ]). Compared with pretraining, there was a significant improvement in the 5- and 10-m speed. There were no significant differences between pretraining and posttraining for lower-body muscular power (vertical-jump height, spike-jump height, and SBJ) and agility. Based on our results, it could be concluded that a preseason skill-based conditioning program does not offer a sufficient stimulus for volleyball players. Therefore, a general conditioning and hypertrophy training along with specific volleyball conditioning is necessary in the preseason period for the development of the lower-body strength, agility and speed performance in volleyball players.

  5. Effects of an 8-Week Body-Weight Neuromuscular Training on Dynamic Balance and Vertical Jump Performances in Elite Junior Skiing Athletes: A Randomized Controlled Trial.

    PubMed

    Vitale, Jacopo A; La Torre, Antonio; Banfi, Giuseppe; Bonato, Matteo

    2018-04-01

    Vitale, JA, La Torre, A, Banfi, G, and Bonato, M. Effects of an 8-week body-weight neuromuscular training on dynamic balance and vertical jump performances in elite junior skiing athletes: a randomized controlled trial. J Strength Cond Res 32(4): 911-920, 2018-The aim of the present randomized controlled trial was to evaluate the effects of an 8-week neuromuscular training program focused on core stability, plyometric, and body-weight strengthening exercises on dynamic postural control and vertical jump performance in elite junior skiers. Twenty-four Italian elite junior male skiers were recruited and randomized to either an experimental group (EG), performing neuromuscular warm-up exercises, (EG; n = 12; age 18 ± 1 years; body mass 66 ± 21 kg; height 1.70 ± 0.1 m) or a control group (CG) involved in a standard warm-up (CG; n = 12; age 18 ± 1 years; body mass 62 ± 14 kg; height 1.73 ± 0.1 m). lower quarter Y-Balance Test (YBT), countermovement jump (CMJ), and drop jump (DJ) at baseline (PRE) and at the end (POST) of the experimental procedures were performed. No significant differences between EG and CG were observed at baseline. Results showed that EG achieved positive effects from PRE to POST measures in the anterior, posteromedial, posterolateral directions, and composite score of YBT for both lower limbs, whereas no significant differences were detected for CG. Furthermore, 2-way analysis of variance with Bonferroni's multiple comparisons test did not reveal any significant differences in CMJ and DJ for both EG and CG. The inclusion of an 8-week neuromuscular warm-up program led to positive effects in dynamic balance ability but not in vertical jump performance in elite junior skiers. Neuromuscular training may be an effective intervention to specifically increase lower limb joint awareness and postural control.

  6. Hypohydration reduces vertical ground reaction impulse but not jump height.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Ely, Brett R; Harman, Everett A; Castellani, John W; Frykman, Peter N; Nindl, Bradley C; Sawka, Michael N

    2010-08-01

    This study examined vertical jump performance using a force platform and weighted vest to determine why hypohydration (approximately 4% body mass) does not improve jump height. Measures of functional performance from a force platform were determined for 15 healthy and active males when euhydrated (EUH), hypohydrated (HYP) and hypohydrated while wearing a weighted vest (HYP(v)) adjusted to precisely match water mass losses. HYP produced a significant loss of body mass [-3.2 +/- 0.5 kg (-3.8 +/- 0.6%); P < 0.05], but body mass in HYP(v) was not different from EUH. There were no differences in absolute or relative peak force or power among trials. Jump height was not different between EUH (0.380 +/- 0.048 m) and HYP (0.384 +/- 0.050 m), but was 4% lower (P < 0.05) in HYP(v) (0.365 +/- 0.52 m) than EUH due to a lower jump velocity between HYP(v) and EUH only (P < 0.05). However, vertical ground reaction impulse (VGRI) was reduced in both HYP and HYP(v) (2-3%) compared with EUH (P < 0.05). In conclusion, this study demonstrates the failure to improve jump height when HYP can be explained by offsetting reductions in both VGRI and body mass.

  7. COMPARISON OF DRY NEEDLING VS. SHAM ON THE PERFORMANCE OF VERTICAL JUMP

    PubMed Central

    Nelson, Russell; Beamer, Lisa

    2017-01-01

    Introduction Dry needling has been reported to decrease pain in subjects having myofascial trigger points, as well as pain in muscle and connective tissue. Objective The purpose of the study was to compare the effects on the ability to perform a two-legged vertical jump between a group who received one bout of dry needling and a group who received one bout of a sham treatment. Methods Thirty-five healthy students (19 males, 16 females) were recruited to participate in this study (mean age 22.7+/- 2.4 years). The subjects were randomly divided into two groups- dry needling (n=18) vs sham (n=17). The dry needling group received needling to four sites on bilateral gastrocnemius muscles; two at the medial head and two at the lateral head. The sham group had the four areas of the gastrocnemius muscle pressed with the tube housing the needle, but the needle was never inserted into the skin. Two-legged vertical jump was measured with chalk marks on the wall before and after the dry needling and sham treatments. Results Analysis with a t-test indicated that the dry needling group significantly increased vertical jump height 1.2 inches over the sham group. Conclusion One bout of dry needling showed an immediate effect at significantly increasing vertical jump height in healthy, young adults. Future research is needed to determine if dry needling has any long-term effects. Level of Evidence 2b PMID:29181252

  8. Examination of Self-Myofascial Release vs. Instrument-Assisted Soft-Tissue Mobilization Techniques on Vertical and Horizontal Power in Recreational Athletes.

    PubMed

    Stroiney, Debra A; Mokris, Rebecca L; Hanna, Gary R; Ranney, John D

    2018-05-08

    Stroiney, DA, Mokris, RL, Hanna, GR, and Ranney, JD. Examination of self-myofascial release vs. instrument-assisted soft-tissue mobilization techniques on vertical and horizontal power in recreational athletes. J Strength Cond Res XX(X): 000-000, 2018-This study examined whether pre-exercise self-myofascial release (SMR) and instrument-assisted soft-tissue mobilization (IASTM) would improve performance on measures of vertical jump height and 40-yd sprint time. Differences in perceived pain levels were also examined. Forty-nine college students volunteered for the study and were randomly assigned to receive either IASTM via Tècnica Gavilàn PTB or SMR via The Stick before performance assessments. After the massage intervention, subjects rated their level of perceived pain using a visual analog scale. An independent t test was used to analyze differences in perceived pain levels between the 2 massage interventions. A 2 × 2 analyses of covariance analyzed differences between sex and the 2 massage interventions. There was no interaction (p > 0.05) between the massage intervention and sex for both the vertical jump and 40-yd sprint tests. There was a significant main effect for vertical jump and SMR (p = 0.04). Sex also had a significant main effect for both the vertical jump (p = 0.04) and the 40-yd sprint (p = 0.02). There were no significant differences between massage interventions for the 40-yd sprint times (p = 0.73). There were no significant differences in perceived pain (t(49) = -1.60, p > 0.05). The use of SMR before exercise may improve vertical jump height in recreational athletes. Pain should not be a factor when choosing massage interventions for athletes because IASTM was not perceived to be more painful than SMR. Self-myofascial release and IASTM did not enhance sprinting performance in this study.

  9. Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women.

    PubMed

    Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W

    2012-03-01

    The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.

  10. Association of plasma 25-hydroxyvitamin D with physical performance in physically active children.

    PubMed

    Bezrati, Ikram; Hammami, Raouf; Ben Fradj, Mohamed Kacem; Martone, Domenico; Padulo, Johnny; Feki, Moncef; Chaouachi, Anis; Kaabachi, Naziha

    2016-11-01

    Vitamin D is thought to regulate skeletal muscle function and boost physical performance. The aim of this study was to assess the relationship between vitamin D and physical performance in physically active children. This cross-sectional study included 125 children who practice football as a leisure activity. Plasma 25-hydroxyvitamin D (25-OHD) was assessed using a chemiluminescence immunoassay method. Vitamin D inadequacy was defined as 25-OHD < 20 ng/mL. Physical performance testing included measurements of muscle strength (maximal isometric contraction), jumping ability (vertical jump, standing broad jump, triple hop test), linear sprint (10 m and 20 m), and agility (9 × 4-m shuttle run). Plasma 25-OHD concentrations were positively correlated with muscle strength (r = 0.539; p < 0.001), vertical jump (r = 0.528; p < 0.001), and standing broad jump (r = 0.492; p < 0.001) but inversely correlated with sprint performance (r = -0.539; p < 0.001). In multivariate analysis models, plasma 25-OHD concentrations were associated with each physical performance parameter independently of age, maturity status, body mass index, fat mass, and protein and calcium intakes. In conclusion, a low plasma 25-OHD level was associated with decreased muscle strength, agility, and jumping and sprinting abilities in physically active children. Vitamin D inadequacy may limit exercise performance. Further research should verify whether correction of vitamin D deficiency enhances physical performance.

  11. Comparison of Anthropometry and Lower Limb Power Qualities According to Different Levels and Ranking Position of Competitive Surfers.

    PubMed

    Fernandez-Gamboa, Iosu; Yanci, Javier; Granados, Cristina; Camara, Jesus

    2017-08-01

    Fernandez-Gamboa, I, Yanci, J, Granados, C, and Camara, J. Comparison of anthropometry and lower limb power qualities according to different levels and ranking position of competitive surfers. J Strength Cond Res 31(8): 2231-2237, 2017-The aim of this study was to compare competitive surfers' lower limb power output depending on their competitive level, and to evaluate the association between competition rankings. Twenty competitive surfers were divided according to the competitive level as follows: international (INT) or national (NAT), and competitive ranking (RANK1-50 or RANK51-100). Vertical jump and maximal peak power of the lower limbs were measured. No differences were found between INT and NAT surfers in the anthropometric variables, in the vertical jump, or in lower extremity power; although the NAT group had higher levels on the elasticity index, squat jumps (SJs), and counter movement jumps (CMJs) compared with the INT group. The RANK1-50 group had a lower biceps skinfold (p < 0.01), lower skinfolds in the legs (Front thigh: p ≤ 0.05; medial calf: p < 0.01), lower sum of skinfolds (p ≤ 0.05), higher SJ (p < 0.01), CMJ (p < 0.01), and 15 seconds vertical CMJ (p ≤ 0.05); also, maximal peak power of the right leg (MPPR) and left leg (MPPL) were higher in the RANK1-50 group. Moderate to large significant correlations were obtained between the surfers' ranking position and some skinfolds, the sum of skinfolds, and vertical jump. Results demonstrate that surfers' physical performance seems to be an accurate indicator of ranking positioning, also revealing that vertical jump capacity and anthropometric variables play an important role in their competitive performance, which may be important when considering their power training.

  12. Self-talk influences vertical jump performance and kinematics in male rugby union players.

    PubMed

    Edwards, Christian; Tod, David; McGuigan, Michael

    2008-11-01

    We examined the effects of instructional and motivational self-talk on centre of mass displacement and hip kinematics during the vertical jump. Twenty-four male rugby union players (age 21.1 years, s = 3.5; body mass 81.0 kg, s = 8.9; height 1.80 m, s = 0.06) performed three vertical jump tests, with a 2 min rest between jumps. Before each jump, participants engaged in one of three counterbalanced interventions (motivational self-talk, instructional self-talk or no-intervention). Motivational self-talk led to greater centre of mass displacement (0.602 m, s = 0.076; P = 0.012) than the no-intervention control (0.583 m, s = 0.085). Centre of mass displacement did not differ between instructional self-talk and the control condition or between motivational and instructional self-talk. Motivational (100.75 degrees , s = 16.05; P = 0.001) and instructional self-talk (106.14 degrees , s = 17.04; P = 0.001) led to greater hip displacement than the no-intervention control (94.11 degrees , s = 17.14). There was also a significant difference in hip displacement between motivational and instructional self-talk (P = 0.014), although there was no difference between instructional self-talk and the control condition. Motivational (451.69 degrees /s, s = 74.34; P = 0.008) and instructional self-talk (462.01 degrees /s, s = 74.37; P = 0.001) led to greater hip rotation velocity than the no-intervention control (434.37 degrees /s, s = 75.37), although there was no difference between the two self-talk interventions. These results indicate that self-talk may influence performance and technique during the vertical jump in male rugby players.

  13. Acute Effect of Foam Rolling and Dynamic Stretching on Flexibility and Jump Height.

    PubMed

    Smith, Jason C; Pridgeon, Brooke; Hall, MacGregor C

    2018-04-04

    Smith, JC, Pridgeon, B, and Hall, MC. Acute effect of foam rolling and dynamic stretching on flexibility and jump height. J Strength Cond Res XX(X): 000-000, 2017-Dynamic stretching (DS) can acutely improve vertical jump (VJ) performance but its effect lasts no more than 5 minutes. Foam rolling (FR), a form of self-myofascial release, can acutely increase range of motion (ROM) with this effect lasting less than 10 minutes. Therefore, the purpose of this study was to evaluate the time course of these effects, separately and combined, on VJ height and ROM. Twenty-nine university students completed 4 different sessions (control, FR, DS, and combo) in a randomized order. After a warm-up and baseline assessments of VJ height and sit-and-reach, participants rested (control) and performed FR, DS, and the combination of FR and DS (combo). Vertical jump height and ROM were assessed every 5 minutes for 20 minutes after treatment. Mean scores at each time point were expressed as a percent change from baseline scores. Immediately after FR, sit-and-reach was significantly greater than control (p = 0.003). Vertical jump height immediately after treatment for DS and combo was significantly greater than the control and FR counterparts (p ≤ 0.002). Vertical jump height for DS and combo was also significantly greater than the control counterpart at 5 minutes after treatment (p < 0.001). At 15 minutes after treatment, the percent change in VJ height for the combo was significantly greater than the control counterpart (p = 0.002). Although FR has no effect on VJ performance, it can acutely increase ROM, but its effect was quickly dissipated. Foam rolling does not seem to enhance VJ height either alone or in combination with DS.

  14. Leg stiffness and expertise in men jumping.

    PubMed

    Laffaye, Guillaume; Bardy, Benoît G; Durey, Alain

    2005-04-01

    The aim of the present study is to investigate: a) the leg spring behavior in the one-leg vertical jump, b) the contribution of impulse parameters to this behavior, and c) the effect of jumping expertise on leg stiffness. Four categories of experts (handball, basketball, volleyball players, and Fosbury athletes), as well as novice subjects performed a run-and-jump test to touch a ball with the head. Five experimental conditions were tested from 55 to 95% of the maximum jump height. Kinematic and kinetic data were collected using six cameras and a force plate. The mechanical behavior of the musculoskeleton component of the human body can be modeled as a simple mass-spring system, from which leg stiffness values can be extracted to better understand energy transfer during running or jumping. The results indicate that leg stiffness (mean value of 11.5 kN.m) decreased with jumping height. Leg shortening at takeoff also increased with jumping height, whereas contact time decreased (-18%). No difference was found between experts and novices for leg stiffness. However, a principal components analysis (PCA) indicated the contribution of two main factors to the performance. The first factor emerged out of vertical force, stiffness, and duration of impulse. The second factor included leg shortening and jumping height. Differences between experts and novices were observed in terms of the contribution of leg stiffness to jump height, and more importantly, clear differences existed between experts in jumping parameters. The analysis performed on the sport categories indeed revealed different jumping profiles, characterized by specific, sport-related impulse parameters.

  15. Outcome and Process in Motor Performance: A Comparison of Jumping by Typically Developing Children and Those with Low Motor Proficiency

    ERIC Educational Resources Information Center

    Williams, Morgan D.; Saunders, John E.; Maschette, Wayne E.; Wilson, Cameron J.

    2013-01-01

    The motivation for this study was to explore a conceptual framework to understand the outcomes and processes of motor performance in children. Vertical jumping, a fundamental movement skill, was used to compare children (ages 6-12 years) who were typically developing (TD) and those identified as having low motor proficiency (LMP). Jumps were…

  16. Vertical Jump and Leg Power Normative Data for Colombian Schoolchildren Aged 9-17.9 Years: The FUPRECOL Study.

    PubMed

    Ramírez-Vélez, Robinson; Correa-Bautista, Jorge E; Lobelo, Felipe; Cadore, Eduardo L; Alonso-Martinez, Alicia M; Izquierdo, Mikel

    2017-04-01

    Ramírez-Vélez, R, Correa-Bautista, JE, Lobelo, F, Cadore, EL, Alonso-Martinez, AM, and Izquierdo, M. Vertical jump and leg power normative data for Colombian schoolchildren aged 9-17.9 years: the FUPRECOL study. J Strength Cond Res 31(4): 990-998, 2017-The aims of the present study were to generate normative vertical jump height and predicted peak power (Ppeak) data for 9- to 17.9-year-olds and to investigate between-sex and age group differences in these measures. This was a cross-sectional study of 7,614 healthy schoolchildren (boys n = 3,258 and girls n = 4,356, mean [SD] age 12.8 [2.3] years). Each participant performed 2 countermovement jumps; jump height was calculated using a Takei 5414 Jump-DF Digital Vertical (Takei Scientific Instruments Co., Ltd.). The highest jump was used for analysis and in the calculation of predicted Ppeak. Centile smoothed curves, percentiles, and tables for the 3rd, 10th, 25th, 50th, 75th, 90th, and 97th percentiles were calculated using Cole's LMS (L [curve Box-Cox], M [curve median], and S [curve coefficient of variation]) method. The 2-way analysis of variance tests showed that maximum jump height (in centimeters) and predicted Ppeak (in watts) were higher in boys than in girls (p < 0.01). Post hoc analyses within sexes showed yearly increases in jump height and Ppeak in all ages. In boys, the maximum jump height and predicted Ppeak 50th percentile ranged from 24.0 to 38.0 cm and from 845.5 to 3061.6 W, respectively. In girls, the 50th percentile for jump height ranged from 22.3 to 27.0 cm, and the predicted Ppeak was 710.1-2036.4 W. For girls, jump height increased yearly from 9 to 17.9 years old. Our results provide, for the first time, sex- and age-specific vertical jump height and predicted Ppeak reference standards for Colombian schoolchildren aged 9-17.9 years.

  17. The reliability of vertical jump tests between the Vertec and My Jump phone application.

    PubMed

    Yingling, Vanessa R; Castro, Dimitri A; Duong, Justin T; Malpartida, Fiorella J; Usher, Justin R; O, Jenny

    2018-01-01

    The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. One hundred and thirty-five healthy participants aged 18-39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump . Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747-0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897-0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050-0.859]) and poor to excellent reliability relative to absolute agreement for peak power (ICC = 0.851; 95% CI [0.272-0.946]) between the Vertec and My Jump values were found; Vertec VJ height, and thus, Vertec calculated peak power values, were significantly higher than those calculated from My Jump values ( p < 0.0001). The My Jump app may provide a reliable measure of vertical jump height and calculated peak power in multiple field and laboratory settings without the need of costly equipment such as force plates or Vertec. The reliability relative to degree of consistency between the Vertec and My Jump app was moderate to excellent. However, the reliability relative to absolute agreement between Vertec and My Jump values contained significant variation (based on CI values), thus, it is recommended that either the My Jump or the Vertec be used to assess VJ height in repeated measures within subjects' designs; these measurement tools should not be considered interchangeable within subjects or in group measurement designs.

  18. The reliability of vertical jump tests between the Vertec and My Jump phone application

    PubMed Central

    Castro, Dimitri A.; Duong, Justin T.; Malpartida, Fiorella J.; Usher, Justin R.; O, Jenny

    2018-01-01

    Background The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. Methods One hundred and thirty-five healthy participants aged 18–39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump. Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Results Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747–0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897–0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050–0.859]) and poor to excellent reliability relative to absolute agreement for peak power (ICC = 0.851; 95% CI [0.272–0.946]) between the Vertec and My Jump values were found; Vertec VJ height, and thus, Vertec calculated peak power values, were significantly higher than those calculated from My Jump values (p < 0.0001). Discussion The My Jump app may provide a reliable measure of vertical jump height and calculated peak power in multiple field and laboratory settings without the need of costly equipment such as force plates or Vertec. The reliability relative to degree of consistency between the Vertec and My Jump app was moderate to excellent. However, the reliability relative to absolute agreement between Vertec and My Jump values contained significant variation (based on CI values), thus, it is recommended that either the My Jump or the Vertec be used to assess VJ height in repeated measures within subjects’ designs; these measurement tools should not be considered interchangeable within subjects or in group measurement designs. PMID:29692955

  19. Is increased residual shank length a competitive advantage for elite transtibial amputee long jumpers?

    PubMed

    Nolan, Lee; Patritti, Benjamin L; Stana, Laura; Tweedy, Sean M

    2011-07-01

    The purpose of this study was to evaluate the extent to which residual shank length affects long jump performance of elite athletes with a unilateral transtibial amputation. Sixteen elite, male, long jumpers with a transtibial amputation were videoed while competing in major championships (World Championships 1998, 2002 and Paralympic Games, 2004). The approach, take-off, and landing of each athlete's best jump was digitized to determine residual and intact shank lengths, jump distance, and horizontal and vertical velocity of center of mass at touchdown. Residual shank length ranged from 15 cm to 38 cm. There were weak, nonsignificant relationships between residual shank length and (a) distance jumped (r = 0.30), (b) horizontal velocity (r = 0.31), and vertical velocity (r = 0.05). Based on these results, residual shank length is not an important determinant of long jump performance, and it is therefore appropriate that all long jumpers with transtibial amputation compete in the same class. The relationship between residual shank length and key performance variables was stronger among athletes that jumped off their prosthetic leg (N = 5), and although this result must be interpreted cautiously, it indicates the need for further research.

  20. Countermovement depth - a variable which clarifies the relationship between the maximum power output and height of a vertical jump.

    PubMed

    Gajewski, Jan; Michalski, Radosław; Buśko, Krzysztof; Mazur-Różycka, Joanna; Staniak, Zbigniew

    2018-01-01

    The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.

  1. Validity of two methods for estimation of vertical jump height.

    PubMed

    Dias, Jonathan Ache; Dal Pupo, Juliano; Reis, Diogo C; Borges, Lucas; Santos, Saray G; Moro, Antônio R P; Borges, Noé G

    2011-07-01

    The objectives of this study were (a) to determine the concurrent validity of the flight time (FT) and double integration of vertical reaction force (DIF) methods in the estimation of vertical jump height with the video method (VID) as reference; (b) to verify the degree of agreement among the 3 methods; (c) to propose regression equations to predict the jump height using the FT and DIF. Twenty healthy male and female nonathlete college students participated in this study. The experiment involved positioning a contact mat (CTM) on the force platform (FP), with a video camera 3 m from the FP and perpendicular to the sagittal plane of the subject being assessed. Each participant performed 15 countermovement jumps with 60-second intervals between the trials. Significant differences were found between the jump height obtained by VID and the results with FT (p ≤ 0.01) and DIF (p ≤ 0.01), showing that the methods are not valid. Additionally, the DIF showed a greater degree of agreement with the reference method than the FT did, and both presented a systematic error. From the linear regression test was determined the prediction equations with a high degree of linearity between the methods VID vs. DIF (R = 0.988) and VID vs. FT (R = 0.979). Therefore, the prediction equations suggested may allow coaches to measure the vertical jump performance of athletes by the FT and DIF, using a CTM or an FP, which represents more practical and viable approaches in the sports field; comparisons can then be made with the results of other athletes evaluated by VID.

  2. Physical Determinants of Interval Sprint Times in Youth Soccer Players

    PubMed Central

    Amonette, William E.; Brown, Denham; Dupler, Terry L.; Xu, Junhai; Tufano, James J.; De Witt, John K.

    2014-01-01

    Relationships between sprinting speed, body mass, and vertical jump kinetics were assessed in 243 male soccer athletes ranging from 10–19 years. Participants ran a maximal 36.6 meter sprint; times at 9.1 (10 y) and 36.6 m (40 y) were determined using an electronic timing system. Body mass was measured by means of an electronic scale and body composition using a 3-site skinfold measurement completed by a skilled technician. Countermovement vertical jumps were performed on a force platform - from this test peak force was measured and peak power and vertical jump height were calculated. It was determined that age (r=−0.59; p<0.01), body mass (r=−0.52; p<0.01), lean mass (r=−0.61; p<0.01), vertical jump height (r=−0.67; p<0.01), peak power (r=−0.64; p<0.01), and peak force (r=−0.56; p<0.01) were correlated with time at 9.1 meters. Time-to-complete a 36.6 meter sprint was correlated with age (r=−0.71; p<0.01), body mass (r=−0.67; p<0.01), lean mass (r=−0.76; p<0.01), vertical jump height (r=−0.75; p<0.01), peak power (r=−0.78; p<0.01), and peak force (r=−0.69; p<0.01). These data indicate that soccer coaches desiring to improve speed in their athletes should devote substantive time to fitness programs that increase lean body mass and vertical force as well as power generating capabilities of their athletes. Additionally, vertical jump testing, with or without a force platform, may be a useful tool to screen soccer athletes for speed potential. PMID:25031679

  3. Effects of Unloaded vs. Loaded Plyometrics on Speed and Power Performance of Elite Young Soccer Players.

    PubMed

    Kobal, Ronaldo; Pereira, Lucas A; Zanetti, Vinicius; Ramirez-Campillo, Rodrigo; Loturco, Irineu

    2017-01-01

    The purpose of this study was to investigate the effects of loaded and unloaded plyometric training strategies on speed and power performance of elite young soccer players. Twenty-three under-17 male soccer players (age: 15.9 ± 1.2 years, height: 178.3 ± 8.1 cm, body-mass (BM): 68.1 ± 9.3 kg) from the same club took part in this study. The athletes were pair-matched in two training groups: loaded vertical and horizontal jumps using an haltere type handheld with a load of 8% of the athletes' body mass (LJ; n = 12) and unloaded vertical and horizontal plyometrics (UJ; n = 11). Sprinting speeds at 5-, 10-, and 20-m, mean propulsive power (MPP) relative to the players' BM in the jump squat exercise, and performance in the squat jump (SJ) and countermovement jump (CMJ) were assessed pre- and post-training period. During the experimental period, soccer players performed 12 plyometric training sessions across a 6-week preseason period. Magnitude based inferences and standardized differences were used for statistical analysis. A very likely increase in the vertical jumps was observed for the LJ group (99/01/00 and 98/02/00 for SJ and CMJ, respectively). In the UJ group a likely increase was observed for both vertical jumps (83/16/01 and 90/10/00, for SJ and CMJ, respectively). An almost certainly decrease in the sprinting velocities along the 20-m course were found in the LJ group (00/00/100 for all split distances tested). Meanwhile, in the UJ likely to very likely decreases were observed for all sprinting velocities tested (03/18/79, 01/13/86, and 00/04/96, for velocities in 5-, 10-, and 20-m, respectively). No meaningful differences were observed for the MPP in either training group (11/85/04 and 37/55/08 for LJ and UJ, respectively). In summary, under-17 professional soccer players increased jumping ability after a 6-week preseason training program, using loaded or unloaded jumps. Despite these positive adaptations, both plyometric strategies failed to produce worthwhile improvements in maximal speed and power performances, which is possible related to the interference of concurrent training effects. New training strategies should be developed to ensure adequate balance between power and endurance loads throughout short (and high-volume) soccer preseasons.

  4. Knee biomechanics during a jump-cut maneuver: Effects of gender & ACL surgery

    PubMed Central

    Miranda, Daniel L.; Fadale, Paul D.; Hulstyn, Michael J.; Shalvoy, Robert M.; Machan, Jason T.; Fleming, Braden C.

    2012-01-01

    Purpose The purpose of this study was to compare kinetic and knee kinematic measurements from male and female ACL-intact (ACLINT) and ACL-reconstructed (ACLREC) subjects during a jump-cut maneuver using biplanar videoradiography. Methods Twenty subjects were recruited; 10 ACLINT (5 males, 5 females) and 10 ACLREC (4 males, 6 females; five years post surgery). Each subject performed a jump-cut maneuver by landing on a single leg and performing a 45° side-step cut. Ground reaction force was measured by a force plate and expressed relative to body weight. Six-degree-of-freedom knee kinematics were determined from a biplanar videoradiography system and an optical motion capture system. Results ACLINT female subjects landed with a larger peak vertical GRF (p<0.001) compared to ACLINT male subjects. ACLINT subjects landed with a larger peak vertical GRF (p≤0.036) compared to ACLREC subjects. Regardless of ACL reconstruction status, female subjects underwent less knee flexion angle excursion (p=0.002) and had an increased average rate of anterior tibial translation (0.05±0.01%/millisecond; p=0.037) after contact compared to male subjects. Furthermore, ACLREC subjects had a lower rate of anterior tibial translation compared to ACLINT subjects (0.05±0.01%/millisecond; p=0.035). Finally, no striking differences were observed in other knee motion parameters. Conclusion Women permit a smaller amount of knee flexion angle excursion during a jump-cut maneuver, resulting in a larger peak vertical GRF and increased rate of anterior tibial translation. Notably, ACLREC subjects also perform the jump cut maneuver with lower GRF than ACLINT subjects five years post surgery. This study proposes a causal sequence whereby increased landing stiffness (larger peak vertical GRF combined with less knee flexion angle excursion) leads to an increased rate of anterior tibial translation while performing a jump-cut maneuver. PMID:23190595

  5. Effects of Jaw Clenching and Jaw Alignment Mouthpiece Use on Force Production During Vertical Jump and Isometric Clean Pull.

    PubMed

    Allen, Charles R; Fu, Yang-Chieh; Cazas-Moreno, Vanessa; Valliant, Melinda W; Gdovin, Jacob R; Williams, Charles C; Garner, John C

    2018-01-01

    Allen, CR, Fu, Y-C, Cazas-Moreno, V, Valliant, MW, Gdovin, JR, Williams, CC, and Garner, JC. Effects of jaw clenching and jaw alignment mouthpiece use on force production during vertical jump and isometric clean pull. J Strength Cond Res 32(1): 237-243, 2018-This study examined the effects of jaw clenching, a self-adapted, jaw-repositioning mouthpiece on force production during maximum countermovement vertical jump and maximum isometric midthigh clean pull assessments in an attempt to determine any ergogenic effect attributable to clenching, jaw-repositioning mouthpiece use, or the combination of both. Thirty-six male subjects performed vertical jump and isometric clean pull assessments from a force platform under various mouthpiece and clench conditions. A 3 × 2 (mouthpiece × clench) repeated-measures analysis of variance was conducted to analyze each of the following force production variables for both assessments: peak force, normalized peak force, and rate of force development. In addition, jump height was analyzed for the vertical jump. Results revealed improvements in peak force (F1,35 = 15.84, p ≤ 0.001, (Equation is included in full-text article.)= 0.31), normalized peak force (F1,35 = 16.28, p ≤ 0.001, (Equation is included in full-text article.)= 0.32), and rate of force development (F1,35 = 12.89, p = 0.001, (Equation is included in full-text article.)= 0.27) during the isometric clean pull assessment when participants maximally clenched their jaw, regardless of mouthpiece condition. There were no statistically significant differences in jump height, peak force, normalized peak force, or rate of force development during the vertical jump for any treatment condition. This study supports previous research demonstrating that the implementation of remote voluntary contractions such as jaw clenching can lead to concurrent activation potentiation and a resulting ergogenic effect during activities involving and requiring high-force production.

  6. The acute effects of manipulating volume and load of back squats on countermovement vertical jump performance.

    PubMed

    Moir, Gavin L; Mergy, David; Witmer, Ca; Davis, Shala E

    2011-06-01

    The acute effects of manipulating the volume and load of back squats on subsequent countermovement vertical jump performance were investigated in the present study. Eleven National Collegiate Athletic Association division II female volleyball players performed 10 countermovement vertical jumps (CMJs) on a force platform 2 minutes after the last squat repetition of a high-load (HL) or high-volume (HV) squat protocol. Two minutes of rest was provided between each CMJ. The HL protocol culminated in the subjects having to perform 3 repetitions with a load equivalent to 90% 1 repetition maximum (1RM) back squat, whereas 12 repetitions with a load equivalent to 37% 1RM were performed in the HV protocol. During an initial familiarization session, knee angles were recorded during a series of CMJs, and these angles were used to control the depth of descent during all subsequent back squats. Jump height (JH) and vertical stiffness (VStiff) were calculated during each of the 10 CMJ, and the change in these variables after the 2 squat protocols was assessed using an analysis of variance model with repeated measures on 2 factors (Protocol [2-levels]; Time [2-levels]). There was no significant difference in JH after the HL and HV protocols (p > 0.05). A significant Protocol × Time interaction for VStiff resulted from the increase after the HL protocol being greater than that after the HV protocol (p = 0.03). The knee angles before the HL and HV protocols were significantly greater than those measured during the initial familiarization session (p = 0.001). Although neither squat protocol provided any benefit in improving JH, the heavy squat protocol produced greater increases in VStiff during the CMJ. Because of the increased VStiff caused by the HL protocol, volleyball coaches may consider using such protocols with their players to improve performance in jumps performed from a run such as the spike and on-court agility.

  7. Effects of mini trampoline exercise on male gymnasts' physiological parameters: a pilot study.

    PubMed

    Karakollukçu, M; Aslan, C S; Paoli, A; Bianco, A; Sahin, F N

    2015-01-01

    There are limited studies that indicate the effects of trampoline exercise on strength and other physiological parameters. This study aims to determine whether twelve weeks of trampoline exercise would have any effects on the physical and physiological parameters of male gymnasts. A number of 20 intercollegiate competitive male gymnasts (as experimental group) and 20 non-athlete male (as control group) participated voluntarily. Their anthropometric characteristics and the anaerobic power were measured and their back strength, vertical jump, standing long jump and 20 meter sprint performances were measured. As a result; whereas 12 weeks of trampoline exercise improved standing long jump (before 242.35±3.40 cm; after 251.70±2.95 cm) and also vertical jump, 20 meter sprint speed and anaerobic power of subjects. We did not observe significant changes on back strength performances (before 148.32±5.73 kg; after 148.10±5.71). The trampoline exercise protocol improved significantly speed, jump and anaerobic performances of the experimental group, while did not induced any changes on back strength performances. More studies are necessary to confirm the interesting results coming from this pilot intervention.

  8. Anthropometry as a predictor of vertical jump heights derived from an instrumented platform.

    PubMed

    Caruso, John F; Daily, Jeremy S; Mason, Melissa L; Shepherd, Catherine M; McLagan, Jessica R; Marshall, Mallory R; Walker, Ron H; West, Jason O

    2012-01-01

    The current study purpose examined the vertical height-anthropometry relationship with jump data obtained from an instrumented platform. Our methods required college-aged (n = 177) subjects to make 3 visits to our laboratory to measure the following anthropometric variables: height, body mass, upper arm length (UAL), lower arm length, upper leg length, and lower leg length. Per jump, maximum height was measured in 3 ways: from the subjects' takeoff, hang times, and as they landed on the platform. Standard multivariate regression assessed how well anthropometry predicted the criterion variance per gender (men, women, pooled) and jump height method (takeoff, hang time, landing) combination. Z-scores indicated that small amounts of the total data were outliers. The results showed that the majority of outliers were from jump heights calculated as women landed on the platform. With the genders pooled, anthropometry predicted a significant (p < 0.05) amount of variance from jump heights calculated from both takeoff and hang time. The anthropometry-vertical jump relationship was not significant from heights calculated as subjects landed on the platform, likely due to the female outliers. Yet anthropometric data of men did predict a significant amount of variance from heights calculated when they landed on the platform; univariate correlations of men's data revealed that UAL was the best predictor. It was concluded that the large sample of men's data led to greater data heterogeneity and a higher univariate correlation. Because of our sample size and data heterogeneity, practical applications suggest that coaches may find our results best predict performance for a variety of college-aged athletes and vertical jump enthusiasts.

  9. Prediction of vertical jump height from anthropometric factors in male and female martial arts athletes.

    PubMed

    Abidin, Nahdiya Zainal; Adam, Mohd Bakri

    2013-01-01

    Vertical jump is an index representing leg/kick power. The explosive movement of the kick is the key to scoring in martial arts competitions. It is important to determine factors that influence the vertical jump to help athletes improve their leg power. The objective of the present study is to identify anthropometric factors that influence vertical jump height for male and female martial arts athletes. Twenty-nine male and 25 female athletes participated in this study. Participants were Malaysian undergraduate students whose ages ranged from 18 to 24 years old. Their heights were measured using a stadiometer. The subjects were weighted using digital scale. Body mass index was calculated by kg/m(2). Waist-hip ratio was measured from the ratio of waist to hip circumferences. Body fat % was obtained from the sum of four skinfold thickness using Harpenden callipers. The highest vertical jump from a stationary standing position was recorded. The maximum grip was recorded using a dynamometer. For standing back strength, the maximum pull upwards using a handle bar was recorded. Multiple linear regression was used to obtain the relationship between vertical jump height and explanatory variables with gender effect. Body fat % has a significant negative relationship with vertical jump height (P < 0.001). The effect of gender is significant (P < 0.001): on average, males jumped 26% higher than females did. Vertical jump height of martial arts athletes can be predicted by body fat %. The vertical jump for male is higher than for their female counterparts. Reducing body fat by proper dietary planning will help to improve leg power.

  10. Assessment of isokinetic knee strength in elite young female basketball players: correlation with vertical jump.

    PubMed

    Rouis, M; Coudrat, L; Jaafar, H; Filliard, J-R; Vandewalle, H; Barthelemy, Y; Driss, T

    2015-12-01

    To explore the isokinetic concentric strength of the knee muscle groups, and the relationship between the isokinetic knee extensors strength and the vertical jump performance in young elite female basketball players. Eighteen elite female basketball players performed a countermovement jump, and an isokinetic knee test using a Biodex dynamometer. The maximal isokinetic peak torque of the knee extensor and flexor muscles was recorded at four angular velocities (90°/s, 180°/s, 240°/s and 300°/s) for the dominant and non-dominant legs. The conventional hamstring/quadriceps ratio (H/Q) was assessed at each angular velocity for both legs. There was no significant difference between dominant and non-dominant leg whatever the angular velocity (all P>0.05). However, the H/Q ratio enhanced as the velocity increased from 180°/s to 300°/s (P<0.05). Furthermore, low to high significant positive correlations were detected between the isokinetic measures of the knee extensors and the vertical jump height. The highest one was found for the knee extensors peak torque at a velocity of 240°/s (r=0.88, P<0.001). The results accounted for an optimal velocity at which a strong relationship could be obtained between isokinetic knee extensors strength and vertical jump height. Interestingly, the H/Q ratio of the young elite female basketball players in the present study was unusual as it was close to that generally observed in regular sportsmen.

  11. Effect of a Trampoline Exercise on the Anthropometric Measures and Motor Performance of Adolescent Students

    PubMed Central

    Aalizadeh, Bahman; Mohammadzadeh, Hassan; Khazani, Ali; Dadras, Ali

    2016-01-01

    Background: Physical exercises can influence some anthropometric and fitness components differently. The aim of present study was to evaluate how a relatively long-term training program in 11-14-year-old male Iranian students affects their anthropometric and motor performance measures. Methods: Measurements were conducted on the anthropometric and fitness components of participants (n = 28) prior to and following the program. They trained 20 weeks, 1.5 h/session with 10 min rest, in 4 times trampoline training programs per week. Motor performance of all participants was assessed using standing long jump and vertical jump based on Eurofit Test Battery. Results: The analysis of variance (ANOVA) repeated measurement test showed a statistically significant main effect of time in calf girth P = 0.001, fat% P = 0.01, vertical jump P = 0.001, and long jump P = 0.001. The ANOVA repeated measurement test revealed a statistically significant main effect of group in fat% P = 0.001. Post hoc paired t-tests indicated statistical significant differences in trampoline group between the two measurements about calf girth (t = −4.35, P = 0.001), fat% (t = 5.87, P = 0.001), vertical jump (t = −5.53, P = 0.001), and long jump (t = −10.00, P = 0.001). Conclusions: We can conclude that 20-week trampoline training with four physical activity sessions/week in 11–14-year-old students seems to have a significant effect on body fat% reduction and effective results in terms of anaerobic physical fitness. Therefore, it is suggested that different training model approach such as trampoline exercises can help students to promote the level of health and motor performance. PMID:27512557

  12. Effect of a Trampoline Exercise on the Anthropometric Measures and Motor Performance of Adolescent Students.

    PubMed

    Aalizadeh, Bahman; Mohammadzadeh, Hassan; Khazani, Ali; Dadras, Ali

    2016-01-01

    Physical exercises can influence some anthropometric and fitness components differently. The aim of present study was to evaluate how a relatively long-term training program in 11-14-year-old male Iranian students affects their anthropometric and motor performance measures. Measurements were conducted on the anthropometric and fitness components of participants (n = 28) prior to and following the program. They trained 20 weeks, 1.5 h/session with 10 min rest, in 4 times trampoline training programs per week. Motor performance of all participants was assessed using standing long jump and vertical jump based on Eurofit Test Battery. The analysis of variance (ANOVA) repeated measurement test showed a statistically significant main effect of time in calf girth P = 0.001, fat% P = 0.01, vertical jump P = 0.001, and long jump P = 0.001. The ANOVA repeated measurement test revealed a statistically significant main effect of group in fat% P = 0.001. Post hoc paired t-tests indicated statistical significant differences in trampoline group between the two measurements about calf girth (t = -4.35, P = 0.001), fat% (t = 5.87, P = 0.001), vertical jump (t = -5.53, P = 0.001), and long jump (t = -10.00, P = 0.001). We can conclude that 20-week trampoline training with four physical activity sessions/week in 11-14-year-old students seems to have a significant effect on body fat% reduction and effective results in terms of anaerobic physical fitness. Therefore, it is suggested that different training model approach such as trampoline exercises can help students to promote the level of health and motor performance.

  13. Jump-Squat and Half-Squat Exercises: Selective Influences on Speed-Power Performance of Elite Rugby Sevens Players

    PubMed Central

    Loturco, Irineu; Pereira, Lucas A.; Moraes, José E.; Kitamura, Katia; Cal Abad, César C.; Kobal, Ronaldo; Nakamura, Fábio Y.

    2017-01-01

    The aim of this study was to evaluate the relation between the maximum mean propulsive power (MPP) obtained in the loaded jump squat (JS) and half squat (HS) exercises and functional performances in vertical jumps, 40 m linear speed (VEL) and change-of-direction (COD) tests, using the median split technique. Twenty-two male rugby sevens players from the Brazilian National Olympic Team (Rio-2016) performed vertical jumping tests (squat and countermovement jumps [SJ and CMJ]), JS and HS exercises, COD speed test and sprinting velocity in 40 m, in this order. Based on the results of the MPP in the JS and HS exercises the participants were divided, using the median split, into four groups as follows: higher JS, lower JS, higher HS, and lower HS. Between-group differences in the functional tasks were detected via magnitude-based inferences. The athletes with higher MPP in the JS were capable of jumping higher and sprinting faster (including the COD speed test) than their weaker counterparts. This pattern was not observed in the HS exercise. To conclude, JS was shown to be more connected to sprinting, COD speed and jumping abilities than HS in elite rugby sevens players and should be preferred for assessing and possibly training elite athletes needing to improve speed-power related abilities. PMID:28114431

  14. Jump-Squat and Half-Squat Exercises: Selective Influences on Speed-Power Performance of Elite Rugby Sevens Players.

    PubMed

    Loturco, Irineu; Pereira, Lucas A; Moraes, José E; Kitamura, Katia; Cal Abad, César C; Kobal, Ronaldo; Nakamura, Fábio Y

    2017-01-01

    The aim of this study was to evaluate the relation between the maximum mean propulsive power (MPP) obtained in the loaded jump squat (JS) and half squat (HS) exercises and functional performances in vertical jumps, 40 m linear speed (VEL) and change-of-direction (COD) tests, using the median split technique. Twenty-two male rugby sevens players from the Brazilian National Olympic Team (Rio-2016) performed vertical jumping tests (squat and countermovement jumps [SJ and CMJ]), JS and HS exercises, COD speed test and sprinting velocity in 40 m, in this order. Based on the results of the MPP in the JS and HS exercises the participants were divided, using the median split, into four groups as follows: higher JS, lower JS, higher HS, and lower HS. Between-group differences in the functional tasks were detected via magnitude-based inferences. The athletes with higher MPP in the JS were capable of jumping higher and sprinting faster (including the COD speed test) than their weaker counterparts. This pattern was not observed in the HS exercise. To conclude, JS was shown to be more connected to sprinting, COD speed and jumping abilities than HS in elite rugby sevens players and should be preferred for assessing and possibly training elite athletes needing to improve speed-power related abilities.

  15. Prediction of Vertical Jump Height from Anthropometric Factors in Male and Female Martial Arts Athletes

    PubMed Central

    Abidin, Nahdiya Zainal; Adam, Mohd Bakri

    2013-01-01

    Background: Vertical jump is an index representing leg/kick power. The explosive movement of the kick is the key to scoring in martial arts competitions. It is important to determine factors that influence the vertical jump to help athletes improve their leg power. The objective of the present study is to identify anthropometric factors that influence vertical jump height for male and female martial arts athletes. Methods: Twenty-nine male and 25 female athletes participated in this study. Participants were Malaysian undergraduate students whose ages ranged from 18 to 24 years old. Their heights were measured using a stadiometer. The subjects were weighted using digital scale. Body mass index was calculated by kg/m2. Waist–hip ratio was measured from the ratio of waist to hip circumferences. Body fat % was obtained from the sum of four skinfold thickness using Harpenden callipers. The highest vertical jump from a stationary standing position was recorded. The maximum grip was recorded using a dynamometer. For standing back strength, the maximum pull upwards using a handle bar was recorded. Multiple linear regression was used to obtain the relationship between vertical jump height and explanatory variables with gender effect. Results: Body fat % has a significant negative relationship with vertical jump height (P < 0.001). The effect of gender is significant (P < 0.001): on average, males jumped 26% higher than females did. Conclusion: Vertical jump height of martial arts athletes can be predicted by body fat %. The vertical jump for male is higher than for their female counterparts. Reducing body fat by proper dietary planning will help to improve leg power. PMID:23785254

  16. Vertical and Horizontal Impact Force Comparison During Jump Landings With and Without Rotation in NCAA Division I Male Soccer Players.

    PubMed

    Harry, John R; Barker, Leland A; Mercer, John A; Dufek, Janet S

    2017-07-01

    Harry, JR, Barker, LA, Mercer, JA, and Dufek, JS. Vertical and horizontal impact force comparison during jump landings with and without rotation in NCAA Division I male soccer players. J Strength Cond Res 31(7): 1780-1786, 2017-There is a wealth of research on impact force characteristics when landing from a jump. However, there are no data on impact forces during landing from a jump with an airborne rotation about the vertical axis. We examined impact force parameters in the vertical and horizontal axes during vertical jump (VJ) landings and VJ landings with a 180° rotation (VJR). Twenty-four Division I male soccer players performed 3 VJ and VJR landings on a dual-force platform system. Paired-samples t-tests (α = 0.05) compared differences in the first (F1) and second (F2) peak vertical ground reaction forces, times to F1 (tF1), F2 (tF2), and the end of the impact phase, vertical impulse, and anterior-posterior and medial-lateral force couples. Effect sizes (ES; large >0.8) were computed to determine the magnitude of the differences. Lower jump height (41.60 ± 4.03 cm, VJ landings; 39.40 ± 4.05 cm, VJR landings; p = 0.002; ES = 0.39), greater F2 (55.71 ± 11.95 N·kg, VJ; 68.16 ± 14.82 N·kg; p < 0.001; ES = 0.94), faster tF2 (0.057 ± 0.012 seconds, VJ; 0.047 ± 0.011 seconds, VJR; p = 0.001; ES = 0.89), greater anterior-posterior (0.06 ± 0.03 N·s·kg, VJ; 0.56 ± 0.15 N·s·kg, VJR; p < 0.001; ES = 1.83) and medial-lateral force couples (0.29 ± 0.11 N·s·kg, VJ; 0.56 ± 0.14 N·s·kg, VJR; p < 0.001; ES = 1.46) occurred during VJR landings. No other differences were identified. This kinetic analysis determined that landing from a jump with 180° airborne rotation is different than landing from a jump without an airborne rotation. Male Division I soccer players could benefit from increasing the volume of VJR landings during training to address the differences in jump height and force parameters compared with VJ landings.

  17. Changes in vertical jump height, anthropometric characteristics, and biochemical parameters after contrast training in master athletes and physically active older people.

    PubMed

    González-Ravé, José M; Delgado, Manuel; Vaquero, Manuel; Juarez, Daniel; Newton, Robert U

    2011-07-01

    The purpose of this study was to determine the effects of 16 weeks of contrast training (CT) on older adults (with different levels of physical conditioning) in vertical jump performance (squat jump [SJ], countermovement jump [CMJ], CMJ during 15 seconds [CMJ15], depth jump [DJ]), body weight, fat percentage, muscle mass (MM), muscle cross-sectional area ([CSA] of the arm and thigh) and biochemical parameters (creatine kinase [CK], creatinine, and urea). Sixteen older (63.55 ± 6.89 years) recreational master runners (A) and 16 physically active older people (60.30 ± 5.18 years) though not athletes (NA), participated in the CT using a combination of heavy-resistance and explosive exercise. The dependent variables were measured pretraining and posttraining. The CT resulted in significant improvements (α = 0.05) for both groups in jump performance. The SJ height improved in NA by 21.68% and in A by 21.81%, the CMJ height increased in NA by 21.51% and in A by 14.81%, the DJ height increased in NA by 26.45% and in A by 7.43%, and CMJ15 increased in NA by 6.20% and in A by 6.17%). Significant improvements in MM (16.44% in NA and 14.78% in A), thigh CSA (19.68% in NA and 21.67% in A), and arm CSA (7.43% in NA and 5.52% in A), and significant decreases in creatinine (8.65%) and CK (25.49%) in A were observed. In conclusion, CT improved vertical jump performance and MM in both groups, regardless of the training history and current physical activity of each group. These improvements were accompanied by a slight decrease in body fat but no changes in total body weight. These findings suggest that CT can have a significant effect on maximal jump height and MM in NA and A.

  18. Does increasing active warm-up duration affect afternoon short-term maximal performance during Ramadan?

    PubMed

    Baklouti, Hana; Aloui, Asma; Chtourou, Hamdi; Briki, Walid; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    The purpose of this study was to examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the afternoon. Twelve healthy active men took part in the study. The experimental design consisted of four test sessions conducted at 5 p.m., before and during Ramadan, either with a 5-minute or a 15-minute warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. During each session, the subjects performed two vertical jump tests (squat jump and counter movement jump) for measurement of vertical jump height followed by a 30-second Wingate test for measurement of peak and mean power. Oral temperature was recorded at rest and after warming-up. Moreover, ratings of perceived exertion were obtained immediately after the Wingate test. Oral temperature was higher before Ramadan than during Ramadan at rest, and was higher after the 15-minute warm-up than the 5-minute warm-up both before and during Ramadan. In addition, vertical jump heights were not significantly different between the two warm-up conditions before and during Ramadan, and were lower during Ramadan than before Ramadan after both warm-up conditions. Peak and mean power were not significantly different between the two warm-up durations before Ramadan, but were significantly higher after the 5-minute warm-up than the 15-minute warm-up during Ramadan. Moreover, peak and mean power were lower during Ramadan than before Ramadan after both warm-up conditions. Furthermore, ratings of perceived exertion were higher after the 15-minute warm-up than the 5-minute warm-up only during Ramadan. The prolonged active warm-up has no effect on vertical jump height but impairs anaerobic power assessed during Ramadan in the afternoon.

  19. Does Increasing Active Warm-Up Duration Affect Afternoon Short-Term Maximal Performance during Ramadan?

    PubMed Central

    Baklouti, Hana; Aloui, Asma; Chtourou, Hamdi; Briki, Walid; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    Aim The purpose of this study was to examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the afternoon. Methods Twelve healthy active men took part in the study. The experimental design consisted of four test sessions conducted at 5 p.m., before and during Ramadan, either with a 5-minute or a 15-minute warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. During each session, the subjects performed two vertical jump tests (squat jump and counter movement jump) for measurement of vertical jump height followed by a 30-second Wingate test for measurement of peak and mean power. Oral temperature was recorded at rest and after warming-up. Moreover, ratings of perceived exertion were obtained immediately after the Wingate test. Results Oral temperature was higher before Ramadan than during Ramadan at rest, and was higher after the 15-minute warm-up than the 5-minute warm-up both before and during Ramadan. In addition, vertical jump heights were not significantly different between the two warm-up conditions before and during Ramadan, and were lower during Ramadan than before Ramadan after both warm-up conditions. Peak and mean power were not significantly different between the two warm-up durations before Ramadan, but were significantly higher after the 5-minute warm-up than the 15-minute warm-up during Ramadan. Moreover, peak and mean power were lower during Ramadan than before Ramadan after both warm-up conditions. Furthermore, ratings of perceived exertion were higher after the 15-minute warm-up than the 5-minute warm-up only during Ramadan. Conclusion The prolonged active warm-up has no effect on vertical jump height but impairs anaerobic power assessed during Ramadan in the afternoon. PMID:25646955

  20. Reliability and validity of an accele-rometric system for assessing vertical jumping performance.

    PubMed

    Choukou, M-A; Laffaye, G; Taiar, R

    2014-03-01

    The validity of an accelerometric system (Myotest©) for assessing vertical jump height, vertical force and power, leg stiffness and reactivity index was examined. 20 healthy males performed 3×"5 hops in place", 3×"1 squat jump" and 3× "1 countermovement jump" during 2 test-retest sessions. The variables were simultaneously assessed using an accelerometer and a force platform at a frequency of 0.5 and 1 kHz, respectively. Both reliability and validity of the accelerometric system were studied. No significant differences between test and retest data were found (p < 0.05), showing a high level of reliability. Besides, moderate to high intraclass correlation coefficients (ICCs) (from 0.74 to 0.96) were obtained for all variables whereas weak to moderate ICCs (from 0.29 to 0.79) were obtained for force and power during the countermovement jump. With regards to validity, the difference between the two devices was not significant for 5 hops in place height (1.8 cm), force during squat (-1.4 N · kg(-1)) and countermovement (0.1 N · kg(-1)) jumps, leg stiffness (7.8 kN · m(-1)) and reactivity index (0.4). So, the measurements of these variables with this accelerometer are valid, which is not the case for the other variables. The main causes of non-validity for velocity, power and contact time assessment are temporal biases of the takeoff and touchdown moments detection.

  1. Athletic Performance at the National Basketball Association Combine After Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Mehran, Nima; Williams, Phillip N.; Keller, Robert A.; Khalil, Lafi S.; Lombardo, Stephen J.; Kharrazi, F. Daniel

    2016-01-01

    Background: Anterior cruciate ligament (ACL) injuries are significant injuries in elite-level basketball players. In-game statistical performance after ACL reconstruction has been demonstrated; however, few studies have reviewed functional performance in National Basketball Association (NBA)–caliber athletes after ACL reconstruction. Purpose: To compare NBA Combine performance of athletes after ACL reconstruction with an age-, size-, and position-matched control group of players with no previous reported knee injury requiring surgery. We hypothesized that there is no difference between the 2 groups in functional performance. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 1092 NBA-caliber players who participated in the NBA Combine between 2000 and 2015 were reviewed. Twenty-one athletes were identified as having primary ACL reconstruction prior to participation in the combine. This study group was compared with an age-, size-, and position-matched control group in objective functional performance testing, including the shuttle run test, lane agility test, three-quarter court sprint, vertical jump (no step), and maximum vertical jump (running start). Results: With regard to quickness and agility, both ACL-reconstructed athletes and controls scored an average of 11.5 seconds in the lane agility test and 3.1 seconds in the shuttle run test (P = .745 and .346, respectively). Speed and acceleration was measured by the three-quarter court sprint, in which both the study group and the control group averaged 3.3 seconds (P = .516). In the maximum vertical jump, which demonstrates an athlete’s jumping ability with a running start, the ACL reconstruction group had an average height of 33.6 inches while the controls averaged 33.9 inches (P = .548). In the standing vertical jump, the ACL reconstruction group averaged 28.2 inches while the control group averaged 29.2 inches (P = .067). Conclusion: In athletes who are able to return to sport and compete at a high level such as the NBA Combine, there is no significant difference in any combine performance test between players who have had primary ACL reconstruction compared with an age-, size-, and position-matched control group. Clinical Relevance: Athletes with previous ACL reconstruction who are able to return to high-level professional basketball have equivalent performance measures with regard to speed, quickness, and jumping ability as those athletes who have not undergone knee surgery. PMID:27294169

  2. Athletic Performance at the National Basketball Association Combine After Anterior Cruciate Ligament Reconstruction.

    PubMed

    Mehran, Nima; Williams, Phillip N; Keller, Robert A; Khalil, Lafi S; Lombardo, Stephen J; Kharrazi, F Daniel

    2016-05-01

    Anterior cruciate ligament (ACL) injuries are significant injuries in elite-level basketball players. In-game statistical performance after ACL reconstruction has been demonstrated; however, few studies have reviewed functional performance in National Basketball Association (NBA)-caliber athletes after ACL reconstruction. To compare NBA Combine performance of athletes after ACL reconstruction with an age-, size-, and position-matched control group of players with no previous reported knee injury requiring surgery. We hypothesized that there is no difference between the 2 groups in functional performance. Cross-sectional study; Level of evidence, 3. A total of 1092 NBA-caliber players who participated in the NBA Combine between 2000 and 2015 were reviewed. Twenty-one athletes were identified as having primary ACL reconstruction prior to participation in the combine. This study group was compared with an age-, size-, and position-matched control group in objective functional performance testing, including the shuttle run test, lane agility test, three-quarter court sprint, vertical jump (no step), and maximum vertical jump (running start). With regard to quickness and agility, both ACL-reconstructed athletes and controls scored an average of 11.5 seconds in the lane agility test and 3.1 seconds in the shuttle run test (P = .745 and .346, respectively). Speed and acceleration was measured by the three-quarter court sprint, in which both the study group and the control group averaged 3.3 seconds (P = .516). In the maximum vertical jump, which demonstrates an athlete's jumping ability with a running start, the ACL reconstruction group had an average height of 33.6 inches while the controls averaged 33.9 inches (P = .548). In the standing vertical jump, the ACL reconstruction group averaged 28.2 inches while the control group averaged 29.2 inches (P = .067). In athletes who are able to return to sport and compete at a high level such as the NBA Combine, there is no significant difference in any combine performance test between players who have had primary ACL reconstruction compared with an age-, size-, and position-matched control group. Athletes with previous ACL reconstruction who are able to return to high-level professional basketball have equivalent performance measures with regard to speed, quickness, and jumping ability as those athletes who have not undergone knee surgery.

  3. Evaluation of strength and conditioning measures with game success in Division I collegiate volleyball: A retrospective study.

    PubMed

    Bunn, Jennifer A; Ryan, Greg A; Button, Gabriel R; Zhang, S

    2017-08-04

    The purpose of this study was to retrospectively assess relationships between strength and conditioning (SC) measures and game performance in Division I volleyball. Five years of SC and game data were collected from one women's Division I collegiate team, n = 76. SC measures included: T-drill, 18.3 m sprint, back squat, hang clean, vertical jump, and broad jump. All game and SC stats were normalized to Z-scores. Analyses included assessing SC differences by position, and multiple stepwise regression to assess relationships between game and SC stats. There was a significant difference by position for broad jump (p =.002), 18.3 m sprint (p =.036), vertical (p <.001), and total strength (p =.019). Overall, game performance and SC measures were significantly correlated (r = .439, p <.001). Multiple regression analyses indicated significant relationships (p < .05) between SC measures and game success by position as follows: defensive specialist stats with squat and total strength; setters game stats with hang cleans, T-drill, and broad jump; pin hitter game stats with vertical, squat, and total strength; middle blockers game stats with broad jump. These data indicate that SC measures correlate well with game performance and are specific by position. These data could help SC coaches create a more precise training approach to focus on improving specific measures by position, which could then translate to improved game performance. These data could also help coaches with talent identification to determine playing time and rotations to maximize player ability and achieve success.

  4. Validity of a jump training apparatus using Wii Balance Board.

    PubMed

    Yamamoto, Keizo; Matsuzawa, Mamoru

    2013-05-01

    The dynamic quantification of jump ability is useful for sports performance evaluation. We developed a force measurement system using the Wii Balance Board (WBB). This study was conducted to validate the system in comparison with a laboratory-grade force plate (FP). For a static validation, weights of 10-180kg were put progressively on the WBB put on the FP. The vertical component of the ground reaction force (vGRF) was measured using both devices and compared. For the dynamic validation, 10 subjects without lower limb pathology participated in the study and performed vertical jumping twice on the WBB on the FP. The range of analysis was set from the landing after the first jump to taking off of the second jump. The peak values during the landing phase and jumping phase were obtained and the force-time integral (force impulse) was measured. The relations of the values measured using each device were compared using Pearson's correlation coefficient test and Bland-Altman plots (BAP). Significant correlation (P<.01, r=.99) was found between the values of both devices in the static and the dynamic test. Examination of the BAP revealed a proportion error in the landing phase and showed no relation in the jumping phase between the difference and the mean in the dynamic test. The WBB detects the vGRF in the jumping phase with high precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Manifestations of Proprioception During Vertical Jumps to Specific Heights

    PubMed Central

    Struzik, Artur; Pietraszewski, Bogdan; Winiarski, Sławomir; Juras, Grzegorz; Rokita, Andrzej

    2017-01-01

    Abstract Artur, S, Bogdan, P, Kawczyński, A, Winiarski, S, Grzegorz, J, and Andrzej, R. Manifestations of proprioception during vertical jumps to specific heights. J Strength Cond Res 31(6): 1694–1701, 2017—Jumping and proprioception are important abilities in many sports. The efficiency of the proprioceptive system is indirectly related to jumps performed at specified heights. Therefore, this study recorded the ability of young athletes who play team sports to jump to a specific height compared with their maximum ability. A total of 154 male (age: 14.8 ± 0.9 years, body height: 181.8 ± 8.9 cm, body weight: 69.8 ± 11.8 kg, training experience: 3.8 ± 1.7 years) and 151 female (age: 14.1 ± 0.8 years, body height: 170.5 ± 6.5 cm, body weight: 60.3 ± 9.4 kg, training experience: 3.7 ± 1.4 years) team games players were recruited for this study. Each participant performed 2 countermovement jumps with arm swing to 25, 50, 75, and 100% of the maximum height. Measurements were performed using a force plate. Jump height and its accuracy with respect to a specified height were calculated. The results revealed no significant differences in jump height and its accuracy to the specified heights between the groups (stratified by age, sex, and sport). Individuals with a higher jumping accuracy also exhibited greater maximum jump heights. Jumps to 25% of the maximum height were approximately 2 times higher than the target height. The decreased jump accuracy to a specific height when attempting to jump to lower heights should be reduced with training, particularly among athletes who play team sports. These findings provide useful information regarding the proprioceptive system for team sport coaches and may shape guidelines for training routines by working with submaximal loads. PMID:28538322

  6. Validity and reliability of the Myotest accelerometric system for the assessment of vertical jump height.

    PubMed

    Casartelli, Nicola; Müller, Roland; Maffiuletti, Nicola A

    2010-11-01

    The aim of the present study was to verify the validity and reliability of the Myotest accelerometric system (Myotest SA, Sion, Switzerland) for the assessment of vertical jump height. Forty-four male basketball players (age range: 9-25 years) performed series of squat, countermovement and repeated jumps during 2 identical test sessions separated by 2-15 days. Flight height was simultaneously quantified with the Myotest system and validated photoelectric cells (Optojump). Two calculation methods were used to estimate the jump height from Myotest recordings: flight time (Myotest-T) and vertical takeoff velocity (Myotest-V). Concurrent validity was investigated comparing Myotest-T and Myotest-V to the criterion method (Optojump), and test-retest reliability was also examined. As regards validity, Myotest-T overestimated jumping height compared to Optojump (p < 0.001) with a systematic bias of approximately 7 cm, even though random errors were low (2.7 cm) and intraclass correlation coefficients (ICCs) where high (>0.98), that is, excellent validity. Myotest-V overestimated jumping height compared to Optojump (p < 0.001), with high random errors (>12 cm), high limits of agreement ratios (>36%), and low ICCs (<0.75), that is, poor validity. As regards reliability, Myotest-T showed high ICCs (range: 0.92-0.96), whereas Myotest-V showed low ICCs (range: 0.56-0.89), and high random errors (>9 cm). In conclusion, Myotest-T is a valid and reliable method for the assessment of vertical jump height, and its use is legitimate for field-based evaluations, whereas Myotest-V is neither valid nor reliable.

  7. Effects of Baseline Levels of Flexibility and Vertical Jump Ability on Performance Following Different Volumes of Static Stretching and Potentiating Exercises in Elite Gymnasts

    PubMed Central

    Donti, Olyvia; Tsolakis, Charilaos; Bogdanis, Gregory C.

    2014-01-01

    This study examined the effects of baseline flexibility and vertical jump ability on straight leg raise range of motion (ROM) and counter-movement jump performance (CMJ) following different volumes of stretching and potentiating exercises. ROM and CMJ were measured after two different warm-up protocols involving static stretching and potentiating exercises. Three groups of elite athletes (10 male, 14 female artistic gymnasts and 10 female rhythmic gymnasts) varying greatly in ROM and CMJ, performed two warm-up routines. One warm-up included short (15 s) static stretching followed by 5 tuck jumps, while the other included long static stretching (30 s) followed by 3x5 tuck jumps. ROM and CMJ were measured before, during and for 12 min after the two warm-up routines. Three-way ANOVA showed large differences between the three groups in baseline ROM and CMJ performance. A type of warm-up x time interaction was found for both ROM (p = 0.031) and CMJ (p = 0.016). However, all athletes, irrespective of group, responded in a similar fashion to the different warm-up protocols for both ROM and CMJ, as indicated from the lack of significant interactions for group (condition x group, time x group or condition x time x group). In the short warm-up protocol, ROM was not affected by stretching, while in the long warm-up protocol ROM increased by 5.9% ± 0.7% (p = 0.001) after stretching. Similarly, CMJ remained unchanged after the short warm-up protocol, but increased by 4.6 ± 0.9% (p = 0.012) 4 min after the long warm- up protocol, despite the increased ROM. It is concluded that the initial levels of flexibility and CMJ performance do not alter the responses of elite gymnasts to warm-up protocols differing in stretching and potentiating exercise volumes. Furthermore, 3 sets of 5 tuck jumps result in a relatively large increase in CMJ performance despite an increase in flexibility in these highly-trained athletes. Key Points The initial levels of flexibility and vertical jump ability have no effect on straight leg raise range of motion (ROM) and counter-movement jump performance (CMJ) of elite gymnasts following warm-up protocols differing in stretching and potentiating exercise volumes Stretching of the main leg muscle groups for only 15 s has no effect on ROM of elite gymnasts In these highly-trained athletes, one set of 5 tuck jumps during warm-up is not adequate to increase CMJ performance, while 3 sets of 5 tuck jumps result in a relatively large increase in CMJ performance (by 4.6% above baseline), despite a 5.9% increase in flexibility due to the 30 s stretching exercises PMID:24570613

  8. Role of Vertical Jumps and Anthropometric Variables in Maximal Kicking Ball Velocities in Elite Soccer Players

    PubMed Central

    Rodríguez-Lorenzo, Lois; Fernandez-del-Olmo, Miguel; Sanchez-Molina, José Andrés

    2016-01-01

    Abstract Kicking is one of the most important skills in soccer and the ability to achieve ma ximal kicking velocity with both legs leads to an advantage for the soccer player. This study examined the relationship be tween kicking ball velocity with both legs using anthropometric measurements and vertical jumps (a squat jump (SJ); a countermovement jump without (CMJ) and with the arm swing (CMJA) and a reactive jump (RJ)). Anthropome tric measurements did not correlate with kicking ball velocity. Vertical jumps correlated significantly with kicking ball velocity using the dominant leg only (r = .47, r = .58, r = .44, r = .51, for SJ, CMJ, CMJA and RJ, respectively) . Maximal kicking velocity with the dominant leg was significantly higher than with the non-dominant leg (t = 18.0 4, p < 0.001). Our results suggest that vertical jumps may be an optimal test to assess neuromuscular skills involved in kicking at maximal speed. Lack of the relationship between vertical jumps and kicking velocity with the non-dominant leg may reflect a difficulty to exhibit the neuromuscular skills during dominant leg kicking. PMID:28149419

  9. The role of human ankle plantar flexor muscle-tendon interaction and architecture in maximal vertical jumping examined in vivo.

    PubMed

    Farris, Dominic James; Lichtwark, Glen A; Brown, Nicholas A T; Cresswell, Andrew G

    2016-02-01

    Humans utilise elastic tendons of lower limb muscles to store and return energy during walking, running and jumping. Anuran and insect species use skeletal structures and/or dynamics in conjunction with similarly compliant structures to amplify muscle power output during jumping. We sought to examine whether human jumpers use similar mechanisms to aid elastic energy usage in the plantar flexor muscles during maximal vertical jumping. Ten male athletes performed maximal vertical squat jumps. Three-dimensional motion capture and a musculoskeletal model were used to determine lower limb kinematics that were combined with ground reaction force data in an inverse dynamics analysis. B-mode ultrasound imaging of the lateral gastrocnemius (GAS) and soleus (SOL) muscles was used to measure muscle fascicle lengths and pennation angles during jumping. Our results highlighted that both GAS and SOL utilised stretch and recoil of their series elastic elements (SEEs) in a catapult-like fashion, which likely serves to maximise ankle joint power. The resistance of supporting of body weight allowed initial stretch of both GAS and SOL SEEs. A proximal-to-distal sequence of joint moments and decreasing effective mechanical advantage early in the extension phase of the jumping movement were observed. This facilitated a further stretch of the SEE of the biarticular GAS and delayed recoil of the SOL SEE. However, effective mechanical advantage did not increase late in the jump to aid recoil of elastic tissues. © 2016. Published by The Company of Biologists Ltd.

  10. Acute effects of a resisted dynamic warm-up protocol on jumping performance.

    PubMed

    Cilli, M; Gelen, E; Yildiz, S; Saglam, T; Camur, Mh

    2014-12-01

    This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg) studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10%) was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ) and the squat jump (SJ) measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p < 0.05). On the other hand, no significant difference in different percentages of body weight states was observed (p > 0.05). In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p > 0.05), in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p < 0.05). The dynamic resistance warm-up method was found to cause changes in the kinematics of jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely.

  11. ACUTE EFFECTS OF A RESISTED DYNAMIC WARM-UP PROTOCOL ON JUMPING PERFORMANCE

    PubMed Central

    Cilli, M; Yildiz, S; Saglam, T; Camur, MH

    2014-01-01

    This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg) studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10%) was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ) and the squat jump (SJ) measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p < 0.05). On the other hand, no significant difference in different percentages of body weight states was observed (p > 0.05). In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p > 0.05), in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p < 0.05). The dynamic resistance warm-up method was found to cause changes in the kinematics of jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely. PMID:25435670

  12. Acute effects of static and dynamic stretching on jump performance after 15 min of reconditioning shooting phase in basketball players.

    PubMed

    Annino, Giuseppe; Ruscello, Bruno; Lebone, Pietro; Palazzo, Francesco; Lombardo, Mauro; Padua, Elvira; Verdecchia, Luca; Tancredi, Virginia; Iellamo, Ferdinando

    2017-04-01

    The aim of this study was to assess the effects of static (SS) and dynamic stretching (DS) on vertical jump performance executed before, immediately after and at the end of the shooting phase (i.e., 15 min later), as to simulate the actual conditions preceding a match, in professional basketball players. Ten elite basketball players (age: 29±6.73 years, height: 194.67±7.75 cm, weight: 91±8.17 kg and BMI 23.8±7.91 kg.m-2) participated to the study. SS and DS protocols were administered during the first training session of the week, 48 hours after the championship match. Stretching protocols consisted in ~7 minutes of general warm-up phase followed by ~8 minutes of SS and DS, performed with a cross-over design., and ~15 minutes of a specific warm-up shooting phase (SP). Vertical jump tests consisted in counter movement jump (CMJ) and CMJ with arm swings (CMJas) and were performed immediately after the end of each stretching phase (preS, postS, postSP). A significant decrease (P=0.05; η2partial=0.29) in jumping tests height occurred in CMJas, when performed after the SS (i.e., PostS). However, no significant differences in jumping performances, occurred after the general warm phase and the specific warm-up shooting phase, between the two stretching protocols. These results would indicate that, overall, stretching routines either dynamic or static, performed before a basketball match are transient and affect only marginally leg muscles performance. Stretching routines, particularly the dynamic ones, may be useful to maintain muscle performance before a competition, provided that this latter begins shortly after.

  13. Effects of 12-week on-field combined strength and power training on physical performance among U-14 young soccer players.

    PubMed

    Wong, Pui-lam; Chamari, Karim; Wisløff, Ulrik

    2010-03-01

    This study examined the effects of on-field combined strength and power training (CSPT) on physical performance among U-14 young soccer players. Players were assigned to experimental (EG, n = 28) and control groups (CG, n = 23). Both groups underwent preseason soccer training for 12 weeks. EG performed CSPT twice a week, which consisted of strength and power exercises that trained the major muscles of the core, upper, and lower body. CSPT significantly (p < 0.05) improved vertical jump height, ball-shooting speed, 10 m and 30 m sprint times, Yo-Yo intermittent endurance run (YYIER), and reduced submaximal running cost (RC). CSPT had moderate effect on vertical jump, ball-shooting, 30 m sprint, and YYIER, small effect on 10 m sprint, RC, and maximal oxygen uptake. YYIER had significant (p < 0.05) correlations with 10 m (r = -0.47) and 30 m (r = -0.43) sprint times, ball-shooting speed (r = 0.51), and vertical jump (r = 0.34). The CSPT can be performed together with soccer training with no concomitant interference on aerobic capacity and with improved explosive performances. In addition, it is suggested that CSPT be performed during the preseason period rather than in-season to avoid insufficient recovery/rest or overtraining.

  14. Validity of the Jump-and-Reach Test in Subelite Adolescent Handball Players.

    PubMed

    Muehlbauer, Thomas; Pabst, Jan; Granacher, Urs; Büsch, Dirk

    2017-05-01

    Muehlbauer, T, Pabst, J, Granacher, U, and Büsch, D. Validity of the jump-and-reach test in subelite adolescent handball players. J Strength Cond Res 31(5): 1282-1289, 2017-The primary purpose of this study was to examine concurrent validity of the jump-and-reach (JaR) test using the Vertec system and a criterion device (i.e., Optojump system). In separate subanalyses, we investigated the influence of gym floor condition and athletes' sex on the validity of vertical jump height. Four hundred forty subelite adolescent female (n = 222, mean age: 14 ± 1 year, age range: 13-15 years) and male (n = 218, mean age: 15 ± 1 year, age range: 14-16 years) handball players performed the JaR test in gyms with region or point elastic floors. Maximal vertical jump height was simultaneously assessed using the Vertec and the Optojump systems. In general, significantly higher jump heights were obtained for the Vertec compared with the Optojump system (11.2 cm, Δ31%, Cohen's d = 2.58). The subanalyses revealed significantly larger jump heights for the Vertec compared with the Optojump system irrespective of gym floor condition and players' sex. The association between Optojump- and Vertec-derived vertical jump heights amounted to rP = 0.84, with a coefficient of determination (R) of 0.71. The subanalyses indicated significantly larger correlations in males (rP = 0.75, R = 0.56) than in females (rP = 0.63, R = 0.40). Yet, correlations were not significantly different between region (rP = 0.83, R = 0.69) as opposed to point elastic floor (rP = 0.87, R = 0.76). Our findings indicate that the 2 apparatuses cannot be used interchangeably. Consequently, gym floor and sex-specific regression equations were provided to estimate true (Optojump system) vertical jump height from Vertec-derived data.

  15. Effects of different re-warm up activities in football players' performance.

    PubMed

    Abade, Eduardo; Sampaio, Jaime; Gonçalves, Bruno; Baptista, Jorge; Alves, Alberto; Viana, João

    2017-01-01

    Warm up routines are commonly used to optimize football performance and prevent injuries. Yet, official pre-match protocols may require players to passively rest for approximately 10 to 15 minutes between the warm up and the beginning of the match. Therefore, the aim of this study was to explore the effect of different re-warm up activities on the physical performance of football players. Twenty-Two Portuguese elite under-19 football players participated in the study conducted during the competitive season. Different re-warm up protocols were performed 6 minutes after the same standardized warm up in 4 consecutive days in a crossover controlled approach: without, eccentric, plyometric and repeated changes of direction. Vertical jump and Sprint performances were tested immediately after warm up and 12 minutes after warm up. Results showed that repeated changes of direction and plyometrics presented beneficial effects to jump and sprint. Different practical implications may be taken from the eccentric protocol since a vertical jump impairment was observed, suggesting a possibly harmful effect. The absence of re-warm up activities may be detrimental to players' physical performance. However, the inclusion of re-warm up prior to match is a complex issue, since the manipulation of volume, intensity and recovery may positively or negatively affect the subsequent performance. In fact, this exploratory study shows that eccentric exercise may be harmful for physical performance when performed prior a football match. However, plyometric and repeated changes of direction exercises seem to be simple, quick and efficient activities to attenuate losses in vertical jump and sprint capacity after warm up. Coaches should aim to develop individual optimal exercise modes in order to optimize physical performance after re warm activities.

  16. The Acute Effects of Heavy Deadlifts on Vertical Jump Performance in Men

    PubMed Central

    Arias, Jerry C.; Coburn, Jared W.; Brown, Lee E.; Galpin, Andrew J.

    2016-01-01

    The purpose of this study was to investigate the effects of deadlifts as a postactivation potentiation stimulus on vertical jump performance. Fifteen men (age, 23.9 ± 4.2 years; height, 176.3 ± 8.6 cm; mass, 76.1 ± 16.3 kg) participated in the study. Participants visited the lab for three sessions, each separated by at least 48 h. One repetition maximum (1RM) in the deadlift was measured during the first visit. For Visit 2, participants performed one of two experimental sessions: a deadlift session or a control session. Participants performed a single maximal vertical jump (VJ; counter movement jump without an arm swing), then either performed five repetitions of the deadlift using 85% 1RM (deadlift session) or were told to stand still for ten seconds (control). Following either condition, participants performed single VJ at 15 s, 2, 4, 6, 8, 10, 12, 14, and 16 min post condition. Peak VJ height and peak ground reaction forces (pGRF) were measured using a force plate. For Visit 3, whatever condition was not administered at Visit 2 was performed. The results showed that VJ height was significantly lower 15 s following deadlifting (36.9 ± 5.1 cm) compared to the control condition (40.1 ± 4.6 cm). In addition, VJ height 15 s after the deadlift was lower than VJ height measured at minutes 2–16 following the deadlift. Performance of five repetitions of deadlifting did not affect pGRF. These results suggest that performing five repetitions of the deadlift exercise at 85% 1RM does not induce a postactivation potentiation (PAP) effect, and may in fact cause an acute reduction in VJ performance.

  17. Accuracy of a vertical jump contact mat for determining jump height and flight time.

    PubMed

    Whitmer, Tyler D; Fry, Andrew C; Forsythe, Charles M; Andre, Matthew J; Lane, Michael T; Hudy, Andrea; Honnold, Darric E

    2015-04-01

    Several devices are available to measure vertical jump (VJ) height based on flight time, VJ reach height, or ground reaction forces. The purpose of this study was to determine the accuracy of a VJ mat for measuring flight time and VJ height compared with a VJ tester or a force plate. Seventeen men and 18 women (X ± SD; age = 20.9 ± 0.7 years, height = 176.1 ± 0.9 cm, weight = 72.6 ± 13.5 kg) served as subjects. Subjects performed counter-movement vertical jumps while standing on both a force plate (1,000 Hz) and a VJ mat. A Vertec VJ tester was used to measure jump reach. Compared with the force plate, the VJ mat reported greater VJ height (VJ mat = 0.50 ± 0.12 m, force plate = 0.34 ± 0.10 m) and flight time (VJ mat = 0.629 ± 0.078 seconds, force plate = 0.524 ± 0.077 seconds). Comparison of VJ heights from the VJ mat and the Vertec revealed no significant differences (Vertec = 0.48 ± 0.11 m). Regression analyses indicated strong relationships between testing methods and suggested that high VJ performances may be underestimated with the VJ mat. This particular VJ mat compared favorably with the Vertec but not the force plate. It seems that the different flight times derived from the VJ mat may permit the VJ mat to be in closer agreement with VJ heights from the Vertec. Also, the VJ mat may not be an appropriate tool for assessing high VJ performances (i.e., ≥0.70 m; ≈28 inches). Practitioners and researchers using similar VJ mats may not obtain accurate flight times and may underestimate high performers.

  18. Effects of fatigue and surface instability on neuromuscular performance during jumping.

    PubMed

    Lesinski, M; Prieske, O; Demps, M; Granacher, U

    2016-10-01

    It has previously been shown that fatigue and unstable surfaces affect jump performance. However, the combination thereof is unresolved. Thus, the purpose of this study was to examine the effects of fatigue and surface instability on jump performance and leg muscle activity. Twenty elite volleyball players (18 ± 2 years) performed repetitive vertical double-leg box jumps until failure. Before and after a fatigue protocol, jump performance (i.e., jump height) and electromyographic activity of selected lower limb muscles were recorded during drop jumps (DJs) and countermovement jumps (CMJs) on a force plate on stable and unstable surfaces (i.e., balance pad on top of force plate). Jump performance (3-7%; P < 0.05; 1.14 ≤ d ≤ 2.82), and muscle activity (2-27%; P < 0.05; 0.59 ≤ d ≤ 3.13) were lower following fatigue during DJs and CMJs, and on unstable compared with stable surfaces during DJs only (jump performance: 8%; P < 0.01; d = 1.90; muscle activity: 9-25%; P < 0.05; 1.08 ≤ d ≤ 2.54). No statistically significant interactions of fatigue by surface condition were observed. Our findings revealed that fatigue impairs neuromuscular performance during DJs and CMJs in elite volleyball players, whereas surface instability affects neuromuscular DJ performance only. Absent fatigue × surface interactions indicate that fatigue-induced changes in jump performance are similar on stable and unstable surfaces in jump-trained athletes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. The effect of a braking device in reducing the ground impact forces inherent in plyometric training.

    PubMed

    Humphries, B J; Newton, R U; Wilson, G J

    1995-02-01

    As a consequence of performing plyometric type exercises, such as depth jumps, impact forces placed on the musculoskeletal system during landing can lead to a potential for injury. A reduction of impact forces upon landing could therefore contribute to reduce the risk of injury. Twenty subjects performed a series of loaded jumps for maximal height, with and without a brake mechanism designed to reduce impact force during landing. The braked jumps were performed on the Plyometric Power System (PPS) with its braking mechanism set at 75% of body weight during the downward phase. The non-braked condition involved jumps with no braking. Vertical ground reaction force data, sampled for 5.5 s at 550 Hz from a Kistler forceplate, were collected for each jump condition. The following parameters were then calculated: peak vertical force, time to peak force, passive impact impulse and maximum concentric force. The brake served to significantly (p < 0.01) reduce peak impact force by 155% and passive impact impulse by 200%. No significant differences were found for peak concentric force production. The braking mechanism of the PPS significantly reduced ground impact forces without impeding concentric force production. The reduction in eccentric loading, using the braking mechanism, may reduce the incidence of injury associated with landings from high intensity plyometric exercises.

  20. Relationship between relative net vertical impulse and jump height in jump squats performed to various squat depths and with various loads.

    PubMed

    McBride, Jeffrey M; Kirby, Tyler J; Haines, Tracie L; Skinner, Jared

    2010-12-01

    The purpose of the current investigation was to determine the relationship between relative net vertical impulse (net vertical impulse (VI)) and jump height in the jump squat (JS) going to different squat depths and utilizing various loads. Ten males with two years of jumping experience participated in this investigation (Age: 21.8 ± 1.9 y; Height: 176.9 ± 5.2 cm; Body Mass: 79.0 ± 7.1 kg, 1RM: 131.8 ± 29.5 kg, 1RM/BM: 1.66 ± 0.27). Subjects performed a series of static jumps (SJS) and countermovement jumps (CMJJS) with various loads (Body Mass, 20% of 1RM, 40% of 1RM) in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth. During the concentric phase of each JS, peak force (PF), peak power (PP), jump height (JH) and relative VI were recorded and analyzed. Increasing squat depth corresponded to a decrease in PF and an increase in JH, relative VI for both SJS and CMJJS during all loads. Across all squat depths and loading conditions relative VI was statistically significantly correlated to JH in the SJS (r = .8956, P < .0001, power = 1.000) and CMJJS (r = .6007, P < .0001, power = 1.000). Across all squat depths and loading conditions PF was statistically nonsignificantly correlated to JH in the SJS (r = -0.1010, P = .2095, power = 0.2401) and CMJJS (r = -0.0594, P = .4527, power = 0.1131). Across all squat depths and loading conditions peak power (PP) was significantly correlated with JH during both the SJS (r = .6605, P < .0001, power = 1.000) and the CMJJS (r = .6631, P < .0001, power = 1.000). PP was statistically significantly higher at BM in comparison with 20% of 1RM and 40% of 1RM in the SJS and CMJJS across all squat depths. Results indicate that relative VI and PP can be used to predict JS performance, regardless of squat depth and loading condition. However, relative VI may be the best predictor of JS performance with PF being the worst predictor of JS performance.

  1. Isokinetic Leg Strength and Power in Elite Handball Players

    PubMed Central

    González-Ravé, José M.; Juárez, Daniel; Rubio-Arias, Jacobo A.; Clemente-Suarez, Vicente J; Martinez-Valencia, María A; Abian-Vicen, Javier

    2014-01-01

    Isokinetic strength evaluation of the knee flexion and extension in concentric mode of contraction is an important part of the comprehensive evaluation of athletes. The aims of this study were to evaluate the isokinetic knee peak torque in both the extension and flexion movement in the dominant and non-dominant leg, and the relationship with jumping performance. Twelve elite male handball players from the top Spanish handball division voluntary participated in the study (age 27.68 ± 4.12 years; body mass 92.89 ± 12.34 kg; body height 1.90 ± 0.05 m). The knee extensor and flexor muscle peak torque of each leg were concentrically measured at 60º/s and 180º/s with an isokinetic dynamometer. The Squat Jump and Countermovement Jump were performed on a force platform to determine power and vertical jump height. Non-significant differences were observed between legs in the isokinetic knee extension (dominant= 2.91 ± 0.53 Nm/kg vs non-dominant = 2.70 ± 0.47 Nm/kg at 60º/s; dominant = 1.90 ± 0.31 Nm/kg vs non-dominant = 1.83 ± 0.29 Nm/kg at 180º/s) and flexion peak torques (dominant = 1.76 ± 0.29 Nm/kg vs non-dominant = 1.72 ± 0.39 Nm/kg at 60º/s; dominant = 1.30 ± 0.23 Nm/kg vs non-dominant = 1.27 ± 0.35 Nm/kg at 180º/s). Low and non-significant correlation coefficients were found between the isokinetic peak torques and vertical jumping performance (SJ = 31.21 ± 4.32 cm; CMJ = 35.89 ± 4.20 cm). Similar isokinetic strength was observed between the legs; therefore, no relationship was found between the isokinetic knee flexion and extension peak torques as well as vertical jumping performance in elite handball players. PMID:25114749

  2. Isokinetic leg strength and power in elite handball players.

    PubMed

    González-Ravé, José M; Juárez, Daniel; Rubio-Arias, Jacobo A; Clemente-Suarez, Vicente J; Martinez-Valencia, María A; Abian-Vicen, Javier

    2014-06-28

    Isokinetic strength evaluation of the knee flexion and extension in concentric mode of contraction is an important part of the comprehensive evaluation of athletes. The aims of this study were to evaluate the isokinetic knee peak torque in both the extension and flexion movement in the dominant and non-dominant leg, and the relationship with jumping performance. Twelve elite male handball players from the top Spanish handball division voluntary participated in the study (age 27.68 ± 4.12 years; body mass 92.89 ± 12.34 kg; body height 1.90 ± 0.05 m). The knee extensor and flexor muscle peak torque of each leg were concentrically measured at 60º/s and 180º/s with an isokinetic dynamometer. The Squat Jump and Countermovement Jump were performed on a force platform to determine power and vertical jump height. Non-significant differences were observed between legs in the isokinetic knee extension (dominant= 2.91 ± 0.53 Nm/kg vs non-dominant = 2.70 ± 0.47 Nm/kg at 60º/s; dominant = 1.90 ± 0.31 Nm/kg vs non-dominant = 1.83 ± 0.29 Nm/kg at 180º/s) and flexion peak torques (dominant = 1.76 ± 0.29 Nm/kg vs non-dominant = 1.72 ± 0.39 Nm/kg at 60º/s; dominant = 1.30 ± 0.23 Nm/kg vs non-dominant = 1.27 ± 0.35 Nm/kg at 180º/s). Low and non-significant correlation coefficients were found between the isokinetic peak torques and vertical jumping performance (SJ = 31.21 ± 4.32 cm; CMJ = 35.89 ± 4.20 cm). Similar isokinetic strength was observed between the legs; therefore, no relationship was found between the isokinetic knee flexion and extension peak torques as well as vertical jumping performance in elite handball players.

  3. An Investigation Into the Relationship Between Maximum Isometric Strength and Vertical Jump Performance.

    PubMed

    Thomas, Christopher; Jones, Paul A; Rothwell, James; Chiang, Chieh Y; Comfort, Paul

    2015-08-01

    Research has demonstrated a clear relationship between dynamic strength and vertical jump (VJ) performance; however, the relationship of isometric strength and VJ performance has been studied less extensively. The aim of this study was to determine the relationship between isometric strength and performance during the squat jump (SJ) and countermovement jump (CMJ). Twenty-two male collegiate athletes (mean ± SD; age = 21.3 ± 2.9 years; height = 175.63 ± 8.23 cm; body mass = 78.06 ± 10.77 kg) performed isometric midthigh pulls (IMTPs) to assess isometric peak force (IPF), maximum rate of force development, and impulse (IMP) (I100, I200, and I300). Force-time data, collected during the VJs, were used to calculate peak velocity, peak force (PF), peak power (PP), and jump height. Absolute IMTP measures of IMP showed the strongest correlations with VJ PF (r = 0.43-0.64; p ≤ 0.05) and VJ PP (r = 0.38-0.60; p ≤ 0.05). No statistical difference was observed in CMJ height (0.33 ± 0.05 m vs. 0.36 ± 0.05 m; p = 0.19; ES = -0.29) and SJ height performance (0.29 ± 0.06 m vs. 0.33 ± 0.05 m; p = 0.14; ES = -0.34) when comparing stronger to weaker athletes. The results of this study illustrate that absolute IPF and IMP are related to VJ PF and PP but not VJ height. Because stronger athletes did not jump higher than weaker athletes, dynamic strength tests may be more practical methods of assessing the relationships between relative strength levels and dynamic performance in collegiate athletes.

  4. Validity Study of a Jump Mat Compared to the Reference Standard Force Plate.

    PubMed

    Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger

    2015-12-01

    In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 × [value HE jump mat] and VJH = -1.73777 + 1.011156 × [value HE jump mat]. The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change).

  5. Time to stability differences between male and female dancers after landing from a jump on flat and inclined floors.

    PubMed

    Pappas, Evangelos; Kremenic, Ian; Liederbach, Marijeanne; Orishimo, Karl F; Hagins, Marshall

    2011-07-01

    To determine the effect of gender and inclined floor on time to stability (TTS) after landing from a vertical jump. This study used a repeated measures design with male and female professional dancers landing on a flat and 4 inclined floors. A repeated measures univariate analysis of variance (gender × floor) was performed on TTS in the anterior-posterior and medial-lateral directions. Biomechanics laboratory. Twenty-three female and 13 male professional dancers. Gender and floor inclination (flat, posterior, anterior, lateral, and medial). Time to stability in the anterior-posterior and medial-lateral directions after landing from a vertical jump. Female dancers exhibited longer TTS in both directions (P ≤ 0.05). Floor inclination or the interaction of gender × floor did not have an effect on TTS (P > 0.3). Female dancers exhibited longer TTS after landing from a vertical jump compared with their male counterparts. This balance difference may be a factor related to the higher rate of ankle sprain among female dancers. Additionally, professional dancers exhibited similar TTS when landing on flat and inclined floors.

  6. Biomechanics research in ski jumping, 1991-2006.

    PubMed

    Schwameder, Hermann

    2008-01-01

    In this paper, I review biomechanics research in ski jumping with a specific focus on publications presented between 1991 and 2006 on performance enhancement, limiting factors of the take-off, specific training and conditioning, aerodynamics, and safety. The first section presents a brief description of ski jumping phases (in-run, take-off, early flight, stable flight, and landing) regarding the biomechanical and functional fundamentals. The most important and frequently used biomechanical methods in ski jumping (kinematics, ground reaction force analyses, muscle activation patterns, aerodynamics) are summarized in the second section. The third section focuses on ski jumping articles and research findings published after the establishment of the V-technique in 1991, as the introduction of this technique has had a major influence on performance enhancement, ski jumping regulations, and the construction of hill profiles. The final section proposes topics for future research in the biomechanics of ski jumping, including: take-off and early flight and the relative roles of vertical velocity and forward somersaulting angular momentum; optimal jumping patterns utilizing the capabilities of individual athletes; development of kinematic and kinetic feedback systems for hill jumps; comparisons of simulated and hill jumps; effect of equipment modifications on performance and safety enhancement.

  7. Kinetic and kinematic differences between first and second landings of a drop vertical jump task: implications for injury risk assessments.

    PubMed

    Bates, Nathaniel A; Ford, Kevin R; Myer, Gregory D; Hewett, Timothy E

    2013-04-01

    Though the first landing of drop vertical jump task is commonly used to assess biomechanical performance measures that are associated with anterior cruciate ligament injury risk in athletes, the implications of the second landing in this task have largely been ignored. We examined the first and second landings of a drop vertical jump for differences in kinetic and kinematic behaviors at the hip and knee. A cohort of 239 adolescent female basketball athletes (age=13.6 (1.6) years) completed drop vertical jump tasks from an initial height of 31 cm. A three dimensional motion capture system recorded positional data while dual force platforms recorded ground reaction forces for each trial. The first landing demonstrated greater hip adduction angle, knee abduction angle, and knee abduction moment than the second landing (P-values<0.028). The second landing demonstrated smaller flexion angles and moments at the hip and knee than the first landing (P-values<0.035). The second landing also demonstrated greater side-to-side asymmetry in hip and knee kinematics and kinetics for both the frontal and sagittal planes (P-values<0.044). The results have important implications for the future use of the drop vertical jump as an assessment tool for anterior cruciate ligament injury risk behaviors in adolescent female athletes. The second landing may be a more rigorous task and provides a superior tool to evaluate sagittal plane risk factors than the first landing, which may be better suited to evaluate frontal plane risk factors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Kinetic and kinematic differences between first and second landings of a drop vertical jump task: Implications for injury risk assessments✩

    PubMed Central

    Bates, Nathaniel A.; Ford, Kevin R.; Myer, Gregory D.; Hewett, Timothy E.

    2013-01-01

    Background Though the first landing of drop vertical jump task is commonly used to assess biomechanical performance measures that are associated with anterior cruciate ligament injury risk in athletes, the implications of the second landing in this task have largely been ignored. We examined the first and second landings of a drop vertical jump for differences in kinetic and kinematic behaviors at the hip and knee. Methods Acohort of 239 adolescent female basketball athletes (age = 13.6 (1.6) years) completed drop vertical jump tasks from an initial height of 31 cm. A three dimensional motion capture system recorded positional data while dual force platforms recorded ground reaction forces for each trial. Findings The first landing demonstrated greater hip adduction angle, knee abduction angle, and knee abduction moment than the second landing (P-values < 0.028). The second landing demonstrated smaller flexion angles and moments at the hip and knee than the first landing (P-values < 0.035). The second landing also demonstrated greater side-to-side asymmetry in hip and knee kinematics and kinetics for both the frontal and sagittal planes (P-values < 0.044). Interpretation The results have important implications for the future use of the drop vertical jump as an assessment tool for anterior cruciate ligament injury risk behaviors in adolescent female athletes. The second landing may be a more rigorous task and provides a superior tool to evaluate sagittal plane risk factors than the first landing, which may be better suited to evaluate frontal plane risk factors. PMID:23562293

  9. A comparative study on the cardiac morphology and vertical jump height of adolescent black South African male and female amateur competitive footballers.

    PubMed

    Gradidge, Philippe Jean-Luc; Constantinou, Demitri

    The aim of this comparative study was to determine the gender differences in cardiac morphology and performance in adolescent black South African footballers. Anthropometry, electrocardiography and echocardiography data were measured in 167 (85 males and 82 females) adolescent black South African footballers (mean age: 14.8 ± 1.3 years). Vertical jump height was used as a performance measure of explosive lower-limb power. The males had less body fat compared with the females (12.1 ± 3.6 vs 16.8 ± 4.1%, p < 0.05), while females had higher left ventricular end-diastolic diameters compared with males (48.7 ± 3.7 vs 40.7 ± 8.1, p < 0.05). Vertical jump height was higher in males (37.2 ± 10.3) compared with females (31.2 ± 8) and was inversely associated with body fat (β = -0.2, p < 0.05) and positively associated with lean mass (β = 0.5, p < 0.05). The findings showed that adolescent black South African male footballers had a performance advantage over females for explosive lower-limb power, which was explained by differences in body composition and not cardiac morphology.

  10. Comparison of lower limb kinetics during vertical jumps in turnout and neutral foot positions by classical ballet dancers.

    PubMed

    Imura, Akiko; Iino, Yoichi

    2017-03-01

    The purpose of this study was to investigate the effect of hip external rotation (turnout) on lower limb kinetics during vertical jumps by classical ballet dancers. Vertical jumps in a turnout (TJ) and a neutral hip position (NJ) performed by 12 classical female ballet dancers were analysed through motion capture, recording of the ground reaction forces, and inverse dynamics analysis. At push-off, the lower trunk leaned forward 18.2° and 20.1° in the TJ and NJ, respectively. The dancers jumped lower in the TJ than in the NJ. The knee extensor and hip abductor torques were smaller, whereas the hip external rotator torque was larger in the TJ than in the NJ. The work done by the hip joint moments in the sagittal plane was 0.28 J/(Body mass*Height) and 0.33 J/(Body mass*Height) in the TJ and NJ, respectively. The joint work done by the lower limbs were not different between the two jumps. These differences resulted from different planes in which the lower limb flexion-extension occurred, i.e. in the sagittal or frontal plane. This would prevent the forward lean of the trunk by decreasing the hip joint work in the sagittal plane and reduce the knee extensor torque in the jump.

  11. Jump Training in Youth Soccer Players: Effects of Haltere Type Handheld Loading.

    PubMed

    Rosas, F; Ramirez-Campillo, R; Diaz, D; Abad-Colil, F; Martinez-Salazar, C; Caniuqueo, A; Cañas-Jamet, R; Loturco, I; Nakamura, F Y; McKenzie, C; Gonzalez-Rivera, J; Sanchez-Sanchez, J; Izquierdo, M

    2016-12-01

    The aim of this study was to compare the effects of a jump training program, with or without haltere type handheld loading, on maximal intensity exercise performance. Youth soccer players (12.1±2.2 y) were assigned to either a jump training group (JG, n=21), a jump training group plus haltere type handheld loading (LJG, n=21), or a control group following only soccer training (CG, n=21). Athletes were evaluated for maximal-intensity performance measures before and after 6 weeks of training, during an in-season training period. The CG achieved a significant change in maximal kicking velocity only (ES=0.11-0.20). Both jump training groups improved in right leg (ES=0.28-0.45) and left leg horizontal countermovement jump with arms (ES=0.32-0.47), horizontal countermovement jump with arms (ES=0.28-0.37), vertical countermovement jump with arms (ES=0.26), 20-cm drop jump reactive strength index (ES=0.20-0.37), and maximal kicking velocity (ES=0.27-0.34). Nevertheless, compared to the CG, only the LJG exhibited greater improvements in all performance tests. Therefore, haltere type handheld loading further enhances performance adaptations during jump training in youth soccer players. © Georg Thieme Verlag KG Stuttgart · New York.

  12. THE EFFECT OF KINESIO® TAPE ON VERTICAL JUMP AND DYNAMIC POSTURAL CONTROL

    PubMed Central

    Baldridge, Carolann

    2013-01-01

    Introduction and Background: Ankle injuries are one of the most common injuries among physically active individuals. The role of prophylactic ankle taping and bracing has been studied extensively. Kinesio® Tape (KT) is a somewhat new type of taping technique gaining popularity as both treatment and performance enhancement tool. However, there is limited research on the effect of KT on functional performance. Purpose: The purpose of this study was to determine whether the application of Kinesio Tex® Tape had an effect on vertical jump and dynamic postural control in healthy young individuals. Methods: 52 healthy subjects free of ankle or lower extremity problems (28 males and 24 females; age: 22.12±2.08 years; height: 170.77±8.69 cm; weight: 69.90±12.03 kg) participated in the study. Subjects were randomly assigned to either the experimental group (KT with tension) or the control group (KT without tension). Vertical jump was measured using the VertiMetric device and dynamic postural control was assessed using the Star Excursion Balance Test (SEBT) under three conditions: (1) without taping; (2) immediately after taping; (3) 24 hours after taping with the taping remaining in situ. Results: Three-way repeated measure ANOVA was conducted in order to identify differences between the experimental and the control group during the three conditions. Overall, there were no differences between groups in vertical jump maximum height, vertical jump average height, or the SEBT scores for the three time periods (pre-test, post-test, 24hrs-post-test). However, the main effect of KT was moderated by a significant gender interaction, resulting in a statistically significant effect of KT for the SEBT scores in the posterior-medial direction, F(1.72, 82.57) = 4.50, p = 0.018 and the medial direction, F(1.75, 83.81) = 4.27, p = 0.021. Follow-up analyses indicated that female subjects in the KT group had increased SEBT scores between three time periods when compared to the placebo group. Discussion: KT application on the ankle neither decreased nor increased vertical jump height in healthy non-injured young individuals, but did increase dynamic postural control in females for certain directions. Additional study is warranted using different measures of balance to further investigate the effect of KT on dynamic postural control. Level of Evidence: 2b PMID:24175126

  13. Kinetic and Kinematic Analysis for Assessing the Differences in Countermovement Jump Performance in Rugby Players.

    PubMed

    Floría, Pablo; Gómez-Landero, Luis A; Suárez-Arrones, Luis; Harrison, Andrew J

    2016-09-01

    Floría, P, Gómez-Landero, LA, Suárez-Arrones, L, and Harrison, AJ. Kinetic and kinematic analysis for assessing the differences in countermovement jump performance in rugby players. J Strength Cond Res 30(9): 2533-2539, 2016-The aim of this study was to ascertain the differences in kinetic and kinematic profiles between better and poorer performers of the vertical jump within a homogeneous group of trained adults. Fifty rugby players were divided into low scoring (LOW) and high scoring (HIGH) groups based on their performance in the vertical jump. The force, velocity, displacement, and rate of force development (RFD)-time curves were analyzed to determine the differences between groups. The analysis of the data showed differences in all the patterns of the ensemble mean curves of the HIGH and LOW groups. During the eccentric phase, the differences in the HIGH group with respect to the LOW group were lower crouch position, higher downward velocity, and higher force and RFD during the braking of the downward movement. During the concentric phase, the HIGH group achieved higher upward velocity, higher force at the end of phase, and a higher position at takeoff. The higher jump performances seem to be related to a more effective stretch-shortening cycle function that is characterized by a deeper and faster countermovement with higher eccentric forces being applied to decelerate the downward movement leading to enhanced force generation during the concentric phase.

  14. Kinetic quantification of plyometric exercise intensity.

    PubMed

    Ebben, William P; Fauth, McKenzie L; Garceau, Luke R; Petushek, Erich J

    2011-12-01

    Ebben, WP, Fauth, ML, Garceau, LR, and Petushek, EJ. Kinetic quantification of plyometric exercise intensity. J Strength Cond Res 25(12): 3288-3298, 2011-Quantification of plyometric exercise intensity is necessary to understand the characteristics of these exercises and the proper progression of this mode of exercise. The purpose of this study was to assess the kinetic characteristics of a variety of plyometric exercises. This study also sought to assess gender differences in these variables. Twenty-six men and 23 women with previous experience in performing plyometric training served as subjects. The subjects performed a variety of plyometric exercises including line hops, 15.24-cm cone hops, squat jumps, tuck jumps, countermovement jumps (CMJs), loaded CMJs equal to 30% of 1 repetition maximum squat, depth jumps normalized to the subject's jump height (JH), and single leg jumps. All plyometric exercises were assessed with a force platform. Outcome variables associated with the takeoff, airborne, and landing phase of each plyometric exercise were evaluated. These variables included the peak vertical ground reaction force (GRF) during takeoff, the time to takeoff, flight time, JH, peak power, landing rate of force development, and peak vertical GRF during landing. A 2-way mixed analysis of variance with repeated measures for plyometric exercise type demonstrated main effects for exercise type and all outcome variables (p ≤ 0.05) and for the interaction between gender and peak vertical GRF during takeoff (p ≤ 0.05). Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the outcome variables assessed (p ≤ 0.05). These findings can be used to guide the progression of plyometric training by incorporating exercises of increasing intensity over the course of a program.

  15. The Effects of Eccentric Contraction Duration on Muscle Strength, Power Production, Vertical Jump, and Soreness.

    PubMed

    Mike, Jonathan N; Cole, Nathan; Herrera, Chris; VanDusseldorp, Trisha; Kravitz, Len; Kerksick, Chad M

    2017-03-01

    Mike, JN, Cole, N, Herrera, C, VanDusseldorp, T, Kravitz, L, and Kerksick, CM. The effects of eccentric contraction duration on muscle strength, power production, vertical jump, and soreness. J Strength Cond Res 31(3): 773-786, 2017-Previous research has investigated the effects of either eccentric-only training or comparing eccentric and concentric exercise on changes related to strength and power expression, but no research to date has investigated the impact of altering the duration of either the concentric or the eccentric component on these parameters. Therefore, the purpose of this study was to assess the duration of eccentric (i.e., 2-second, 4-second vs. 6-second) muscle contractions and their effect on muscle strength, power production, vertical jump, and soreness using a plate-loaded barbell Smith squat exercise. Thirty college-aged men (23 ± 3.5 years, 178 ± 6.8 cm, 82 ± 12 kg, and 11.6 ± 5.1% fat) with 3.0 ± 1.0 years of resistance training experience and training frequency of 4.3 ± 0.9 days per week were randomized and assigned to 1 of 3 eccentric training groups that incorporated different patterns of contraction. For every repetition, all 3 groups used 2-second concentric contractions and paused for 1 second between the concentric and eccentric phases. The control group (2S) used 2-second eccentric contractions, whereas the 4S group performed 4-second eccentric contractions and the 6S group performed 6-second eccentric contractions. All repetitions were completed using the barbell Smith squat exercise. All participants completed a 4-week training protocol that required them to complete 2 workouts per week using their prescribed contraction routine for 4 sets of 6 repetitions at an intensity of 80-85% one repetition maximum (1RM). For all performance data, significant group × time (G × T) interaction effects were found for average power production across all 3 sets of a squat jump protocol (p = 0.04) while vertical jump did not reach significance but there was a trend toward a difference (G × T, p = 0.07). No other significant (p > 0.05) G × T interaction effects were found for the performance variables. All groups showed significant main effects for time in 1RM (p < 0.001), vertical jump (p = 0.004), peak power (p < 0.001), and average power (p < 0.001). Peak velocity data indicated that the 6S group experienced a significant reduction in peak velocity during the squat jump protocol as a result of the 4-week training program (p = 0.03). Soreness data revealed significant increases across time in all groups at both week 0 and week 4. Paired sample t-tests revealed greater differences in soreness values across time in the 2S group. The results provide further evidence that resistance training with eccentrically dominated movement patterns can be an effective method to acutely increase maximal strength and power expression in trained college age men. Furthermore, longer eccentric contractions may negatively impact explosive movements such as the vertical jump, whereas shorter eccentric contractions may instigate greater amounts of soreness. These are important considerations for the strength and conditioning professional to more fully understand that expressions of strength and power through eccentric training and varying durations of eccentric activity can have a significant impact for populations ranging from athletes desiring peak performance.

  16. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics.

    PubMed

    Lake, Jason; Mundy, Peter; Comfort, Paul; McMahon, John J; Suchomel, Timothy J; Carden, Patrick

    2018-05-29

    This study examined concurrent validity of countermovement vertical jump (CMJ) reactive strength index modified and force-time characteristics recorded using a one dimensional portable and laboratory force plate system. Twenty-eight men performed bilateral CMJs on two portable force plates placed on top of two in-ground force plates, both recording vertical ground reaction force at 1000 Hz. Time to take-off, jump height, reactive strength index modified, braking and propulsion impulse, mean net force, and duration were calculated from the vertical force from both force plate systems. Results from both systems were highly correlated (r≥.99). There were small (d<.12) but significant differences between their respective braking impulse, braking mean net force, propulsion impulse, and propulsion mean net force (p<.001). However, limits of agreement yielded a mean value of 1.7% relative to the laboratory force plate system (95% CL: .9% to 2.5%), indicating very good agreement across all of the dependent variables. The largest limits of agreement belonged to jump height (2.1%), time to take-off (3.4%), and reactive strength index modified (3.8%). The portable force plate system provides a valid method of obtaining reactive strength measures, and several underpinning force-time variables, from unloaded CMJ and practitioners can use both force plates interchangeably.

  17. Understanding the etiology of the posteromedial tibial stress fracture.

    PubMed

    Milgrom, Charles; Burr, David B; Finestone, Aharon S; Voloshin, Arkady

    2015-09-01

    Previous human in vivo tibial strain measurements from surface strain gauges during vigorous activities were found to be below the threshold value of repetitive cyclical loading at 2500 microstrain in tension necessary to reduce the fatigue life of bone, based on ex vivo studies. Therefore it has been hypothesized that an intermediate bone remodeling response might play a role in the development of tibial stress fractures. In young adults tibial stress fractures are usually oblique, suggesting that they are the result of failure under shear strain. Strains were measured using surface mounted unstacked 45° rosette strain gauges on the posterior aspect of the flat medial cortex just below the tibial midshaft, in a 48year old male subject while performing vertical jumps, staircase jumps and running up and down stadium stairs. Shear strains approaching 5000 microstrain were recorded during stair jumping and vertical standing jumps. Shear strains above 1250 microstrain were recorded during runs up and down stadium steps. Based on predictions from ex vivo studies, stair and vertical jumping tibial shear strain in the test subject was high enough to potentially produce tibial stress fracture subsequent to repetitive cyclic loading without necessarily requiring an intermediate remodeling response to microdamage. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Vitamin D status and its relation to exercise performance and iron status in young ice hockey players

    PubMed Central

    Orysiak, Joanna; Mazur-Rozycka, Joanna; Fitzgerald, John; Starczewski, Michal; Malczewska-Lenczowska, Jadwiga

    2018-01-01

    Objectives The aim was to examine the association between serum vitamin D concentration and isometric strength of various muscle groups, vertical jump performance, and repeated sprint ability in young ice hockey players. The secondary aim was to determine the association between vitamin D deficiency and indices of iron status. Methods Fifty male ice hockey players (17.2±0.9 years) participated in this cross-sectional study. Exercise performance was evaluated using isometric strength measures of upper and lower extremities, vertical jump performance and repeated sprint ability (RSA). Blood samples were collected for the determination of serum 25-hydroxyvitamin D (25(OH)D) and multiple indicies of iron status. Results The mean serum 25(OH)D concentration was 30.4 ng·ml-1 and ranged from 12.5 to 91.4 ng·ml-1. Eleven participants (22%) had vitamin D deficiency and 20 athletes (40%) had vitamin D insufficiency. Serum 25(OH)D concentration was not positively correlated with isometric muscle strength, vertical jump performance, or RSA after adjusting for age, training experience, fat mass, fat free mass and height. Serum 25(OH)D concentration was not associated with indices of iron status. Conclusion Vitamin D insufficiency is highly prevalent in ice hockey players, but 25(OH)D concentration but it is not associated with exercise performance or indices of iron status. PMID:29630669

  19. Application of force-velocity cycle ergometer test and vertical jump tests in the functional assessment of karate competitor.

    PubMed

    Ravier, G; Grappe, F; Rouillon, J D

    2004-12-01

    The aim of this study was to analyze the links between tests performances (vertical jump and force-velocity sprint on cycle ergometer) and 2 different karate level groups in order to propose a test battery adjusted to karate. Twenty-two karate competitors (10 national junior team (IJ) and 12 national competition level (NL)) performed 4 maximal squat jumps (SJ), 4 maximal counter movement jumps (CMJ) on an ergojump and 3 8-s sprints on a friction braked cycle ergometer (friction loads of 0.5, 0.7, 0.9 N x kg(-1)). The maximal theoretical force (F(0)) and velocity (V(0)), the maximal power output (P(max)) and the optimal pedalling velocity (V(opt)) were derived from both the force -- velocity and the power -- velocity relationships plotted from all the 3 friction loads data. V(0), F(0), V(opt), P(max) and the best SJ and CMJ, were compared between IJ and NL groups. The IJ group was characterised by significantly higher values of V(0) (+13%) and SJ (+14.3%) compared to NL group, whereas no significant difference was observed between groups for F(0). Thus, karate performance would depend on maximal velocity and explosive strength. In addition, V(opt) was significantly higher in IJ group compared to NL group (135.4 rpm vs 119.2 rpm, p<0.001). Although based upon indirect evidence, these results accounted for mechanical functional capabilities of experts which could be particularly valuable when monitoring training of karate competitor. A force-velocity and a vertical jump tests may be applied in the functional assessment of karate competitor.

  20. Ancient peat and apple extracts supplementation may improve strength and power adaptations in resistance trained men.

    PubMed

    Joy, Jordan M; Vogel, Roxanne M; Moon, Jordan R; Falcone, Paul H; Mosman, Matt M; Pietrzkowski, Zbigniew; Reyes, Tania; Kim, Michael P

    2016-07-18

    Increased cellular ATP levels have the potential to enhance athletic performance. A proprietary blend of ancient peat and apple extracts has been supposed to increase ATP production. Therefore, the purpose of this investigation was to determine the effects of this supplement on athletic performance when used during 12 weeks of supervised, periodized resistance training. Twenty-five healthy, resistance-trained, male subjects completed this study. Subjects supplemented once daily with either 1 serving (150 mg) of a proprietary blend of ancient peat and apple extract (TRT) or an equal-volume, visually-identical placebo (PLA) daily. Supervised resistance training consisted of 8 weeks of daily undulating periodized training followed by a 2 week overreach and a 2 week taper phase. Strength was determined using 1-repetition-maximum (1RM) testing in the barbell back squat, bench press (BP), and deadlift exercises. Peak power and peak velocity were determined during BP at 30 % 1RM and vertical jump tests as well as a 30s Wingate test, which also provided relative power (watt:mass) A group x time interaction was present for squat 1RM, deadlift 1RM, and vertical jump peak power and peak velocity. Squat and deadlift 1RM increased in TRT versus PLA from pre to post. Vertical jump peak velocity increased in TRT versus PLA from pre to week 10 as did vertical jump peak power, which also increased from pre to post. Wingate peak power and watt:mass tended to favor TRT. Supplementing with ancient peat and apple extract while participating in periodized resistance training may enhance performance adaptations. ClinicalTrials.gov registration ID: NCT02819219 , retrospectively registered on 6/29/2016.

  1. Vertical Jump and Leg Power Norms for Young Adults

    ERIC Educational Resources Information Center

    Patterson, David D.; Peterson, D. Fred

    2004-01-01

    Medical students and their spouses (N = 724) served as participants to create norm-referenced vertical jump values for active, healthy people ages 21-30. All tests were conducted and measured by the same individual during a campus fitness evaluation using a Vertec[TM] apparatus. Jump height was measured to the nearest 0.5 in. Mean jump height was…

  2. DC-Powered Jumping Ring

    NASA Astrophysics Data System (ADS)

    Jeffery, Rondo N.; Amiri, Farhang

    2016-02-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant differences from the AC case. In particular, the ring does not fly off the core but rises a short distance and then falls back. If the ring jumps high enough, the rising and the falling motion of the ring does not follow simple vertical motion of a projectile. This indicates that there are additional forces on the ring in each part of its motion. Four possible stages of the motion of the ring with DC are identified, which result from the ring current changing directions during the jump in response to a changing magnetic flux through the moving ring.

  3. Comparing the Effectiveness of a Short-Term Vertical Jump vs. Weightlifting Program on Athletic Power Development.

    PubMed

    Teo, Shaun Y M; Newton, Michael J; Newton, Robert U; Dempsey, Alasdair R; Fairchild, Timothy J

    2016-10-01

    Teo, SYM, Newton, MJ, Newton, RU, Dempsey, AR, and Fairchild, TJ. Comparing the effectiveness of a short-term vertical jump vs. weightlifting program on athletic power development. J Strength Cond Res 30(10): 2741-2748, 2016-Efficient training of neuromuscular power and the translation of this power to sport-specific tasks is a key objective in the preparation of athletes involved in team-based sports. The purpose of this study was to compare changes in center of mass (COM) neuromuscular power and performance of sport-specific tasks after short-term (6-week) training adopting either Olympic-style weightlifting (WL) exercises or vertical jump (VJ) exercises. Twenty-six recreationally active men (18-30 years; height: 178.7 ± 8.3 cm; mass: 78.6 ± 12.2 kg) were randomly allocated to either a WL or VJ training group and performance during the countermovement jump (CMJ), squat jump (SJ), depth jump (DJ), 20-m sprint, and the 5-0-5 agility test-assessed pre and posttraining. Despite the WL group demonstrating larger increases in peak power output during the CMJ (WL group: 10% increase, d = 0.701; VJ group: 5.78% increase, d = 0.328) and SJ (WL group: 12.73% increase, d = 0.854; VJ group: 7.27% increase, d = 0.382), no significant between-group differences were observed in any outcome measure studied. There was a significant main effect of time observed for the 3 VJs (CMJ, SJ, and DJ), 0- to 5-m and 0- to 20-m sprint times, and the 5-0-5 agility test time, which were all shown to improve after the training (all main effects of time p < 0.01). Irrespective of the training approach adopted by coaches or athletes, addition of either WL or VJ training for development of power can improve performance in tasks associated with team-based sports, even in athletes with limited preseason training periods.

  4. Ground Reaction Force Differences in the Countermovement Jump in Girls with Different Levels of Performance

    ERIC Educational Resources Information Center

    Floría, Pablo; Harrison, Andrew J.

    2013-01-01

    Purpose: The aim of this study was to ascertain the biomechanical differences between better and poorer performers of the vertical jump in a homogeneous group of children. Method: Twenty-four girls were divided into low-scoring (LOW; M [subscript age] = 6.3 ± 0.8 years) and high-scoring (HIGH; M [subscript age] = 6.6 ± 0.8 years) groups based on…

  5. A Study on the Relationship between the Performance Characteristics and the Body Mass Index of 8-10 Year-Old Children

    ERIC Educational Resources Information Center

    Ayan, Vedat

    2018-01-01

    The study was carried out to discover the relationship between the performance characteristics (20 m. running, vertical jump, standing long jump, ball throwing, shuttle run) and the body mass index of 8-10 year-old school children. 3772 children (1995 male and 1777 female) aged 8-10 from Ankara participated in the study voluntarily. To measure the…

  6. A case study for integrated STEM outreach in an urban setting using a do-it-yourself vertical jump measurement platform.

    PubMed

    Drazan, John F; Danielsen, Heather; Vercelletto, Matthew; Loya, Amy; Davis, James; Eglash, Ron

    2016-08-01

    The purpose of this study was to develop and deploy a low cost vertical jump platform using readily available materials for Science, Technology, Engineering, and Mathematics (STEM) education and outreach in the inner city. The platform was used to measure the jumping ability of participants to introduce students to the collection and analysis of scientific data in an engaging, accessible manner. This system was designed and fabricated by a student team of engineers as part of a socially informed engineering and design class. The vertical jump platform has been utilized in 10 classroom lectures in physics and biology. The system was also used in an after school program in which high school volunteers prepared a basketball based STEM outreach program, and at a community outreach events with over 100 participants. At present, the same group of high school students are now building their own set of vertical jump platform under the mentorship of engineering undergraduates. The construction and usage of the vertical jump platform provides an accessible introduction to the STEM fields within the urban community.

  7. A Comparison of Isometric Midthigh-Pull Strength, Vertical Jump, Sprint Speed, and Change-of-Direction Speed in Academy Netball Players.

    PubMed

    Thomas, Christopher; Comfort, Paul; Jones, Paul A; Dos'Santos, Thomas

    2017-08-01

    To investigate the relationships between maximal isometric strength, vertical jump (VJ), sprint speed, and change-of-direction speed (CoDS) in academy netball players and determine whether players who have high performance in isometric strength testing would demonstrate superior performance in VJ, sprint speed, and CoDS measures. Twenty-six young female netball players (age 16.1 ± 1.2 y, height 173.9 ± 5.7 cm, body mass 66.0 ± 7.2 kg) from a regional netball academy performed isometric midthigh pull (IMTP), squat jumps (SJs), countermovement jumps (CMJs), 10-m sprints, and CoDS (505). IMTP measures displayed moderate to strong correlations with sprint and CoDS performance (r = -.41 to -.66). The VJs, which included SJs and CMJs, demonstrated strong correlations with 10-m sprint times (r = -.60 to -.65; P < .01) and CoDS (r = -.60 to -.71; P = .01). Stronger players displayed significantly faster sprint (ES = 1.1-1.2) and CoDS times (ES = 1.2-1.7) and greater VJ height (ES = 0.9-1.0) than weaker players. The results of this study illustrate the importance of developing high levels of lower-body strength to enhance VJ, sprint, and CoDS performance in youth netball players, with stronger athletes demonstrating superior VJ, sprint, and CoDS performances.

  8. A simple method for quantifying jump loads in volleyball athletes.

    PubMed

    Charlton, Paula C; Kenneally-Dabrowski, Claire; Sheppard, Jeremy; Spratford, Wayne

    2017-03-01

    Evaluate the validity of a commercially available wearable device, the Vert, for measuring vertical displacement and jump count in volleyball athletes. Propose a potential method of quantifying external load during training and match play within this population. Validation study. The ability of the Vert device to measure vertical displacement in male, junior elite volleyball athletes was assessed against reference standard laboratory motion analysis. The ability of the Vert device to count jumps during training and match-play was assessed via comparison with retrospective video analysis to determine precision and recall. A method of quantifying external load, known as the load index (LdIx) algorithm was proposed using the product of the jump count and average kinetic energy. Correlation between two separate Vert devices and three-dimensional trajectory data were good to excellent for all jump types performed (r=0.83-0.97), with a mean bias of between 3.57-4.28cm. When matched against jumps identified through video analysis, the Vert demonstrated excellent precision (0.995-1.000) evidenced by a low number of false positives. The number of false negatives identified with the Vert was higher resulting in lower recall values (0.814-0.930). The Vert is a commercially available tool that has potential for measuring vertical displacement and jump count in elite junior volleyball athletes without the need for time-consuming analysis and bespoke software. Subsequently, allowing the collected data to better quantify load using the proposed algorithm (LdIx). Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. The trampoline aftereffect: the motor and sensory modulations associated with jumping on an elastic surface.

    PubMed

    Márquez, Gonzalo; Aguado, Xavier; Alegre, Luis M; Lago, Angel; Acero, Rafael M; Fernández-del-Olmo, Miguel

    2010-08-01

    After repeated jumps over an elastic surface (e.g. a trampoline), subjects usually report a strange sensation when they jump again overground (e.g. they feel unable to jump because their body feels heavy). However, the motor and sensory effects of exposure to an elastic surface are unknown. In the present study, we examined the motor and perceptual effects of repeated jumps over two different surfaces (stiff and elastic), measuring how this affected maximal countermovement vertical jump (CMJ). Fourteen subjects participated in two counterbalanced sessions, 1 week apart. Each experimental session consisted of a series of maximal CMJs over a force plate before and after 1 min of light jumping on an elastic or stiff surface. We measured actual motor performance (height jump and leg stiffness during CMJ) and how that related to perceptual experience (jump height estimation and subjective sensation). After repeated jumps on an elastic surface, the first CMJ showed a significant increase in leg stiffness (P < or = 0.01), decrease in jump height (P < or = 0.01) increase in perceptual misestimation (P < or = 0.05) and abnormal subjective sensation (P < or = 0.001). These changes were not observed after repeated jumps on a rigid surface. In a complementary experiment, continuous surface transitions show that the effects persist across cycles, and the effects over the leg stiffness and subjective experience are minimized (P < or = 0.05). We propose that these aftereffects could be the consequence of an erroneous internal model resulting from the high vertical forces produced by the elastic surface.

  10. Promoting balance and jumping skills in children with Down syndrome.

    PubMed

    Wang, Wai-Yi; Ju, Yun-Huei

    2002-04-01

    The purpose of this study was to investigate the changes in balance and qualitative and quantitative jumping performances by 20 children with Down syndrome (3 to 6 years) on jumping lessons. 30 typical children ages 3 to 6 years were recruited as a comparison group. Before the jumping lesson, a pretest was given subjects for balance and jumping skill measures based on the Motor Proficiency and Motor Skill Inventory, respectively. Subjects with Down syndrome received 3 sessions on jumping per week for 6 weeks but not the typical children. Then, a posttest was administered to all subjects. Analysis of covariance showed the pre- and posttest differences on scores for floor walk, beam walk, and horizontal and vertical jumping by subjects with Down syndrome were significantly greater than those for the typical children.

  11. Combined Effects of Fatigue and Surface Instability on Jump Biomechanics in Elite Athletes.

    PubMed

    Prieske, Olaf; Demps, Marie; Lesinski, Melanie; Granacher, Urs

    2017-09-01

    The present study aimed to examine the effects of fatigue and surface instability on kinetic and kinematic jump performance measures. Ten female and 10 male elite volleyball players (18±2 years) performed repetitive vertical double-leg box jumps until failure. Pre and post fatigue, jump height/performance index, ground reaction force and knee flexion/valgus angles were assessed during drop and countermovement jumps on stable and unstable surfaces. Fatigue, surface condition, and sex resulted in significantly lower drop jump performance and ground reaction force (p≤0.031, 1.1≤d≤3.5). Additionally, drop jump knee flexion angles were significantly lower following fatigue (p=0.006, d=1.5). A significant fatigue×surface×sex interaction (p=0.020, d=1.2) revealed fatigue-related decrements in drop jump peak knee flexion angles under unstable conditions and in men only. Knee valgus angles were higher on unstable compared to stable surfaces during drop jumps and in females compared to males during drop and countermovement jumps (p≤0.054, 1.0≤d≤1.1). Significant surface×sex interactions during countermovement jumps (p=0.002, d=1.9) indicated that knee valgus angles at onset of ground contact were significantly lower on unstable compared to stable surfaces in males but higher in females. Our findings revealed that fatigue and surface instability resulted in sex-specific knee motion strategies during jumping in elite volleyball players. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    PubMed

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  13. Physique and motor performance characteristics of US national rugby players.

    PubMed

    Carlson, B R; Carter, J E; Patterson, P; Petti, K; Orfanos, S M; Noffal, G J

    1994-08-01

    Anthropometric and performance data were collected on 65 US rugby players (mean age = 26.3 years) to make comparison on these characteristics by player position and performance level. Anthropometry included stature, body mass, nine skinfolds, two girths and two bone breadths. Skinfold patterns, estimated percent fat and Heath-Carter somatotypes were calculated from anthropometry. Motor performance measures included standing vertical jump, 40 yard dash, 110 yard dash, shuttle run, repeated jump in place, push-up, sit-up and squat thrust. Descriptive statistics were used for the total sample as well as selected sub-groups. Discriminant function analyses were employed to determine which combination of variables best discriminated between position and level of performance for the anthropometric and performance data. The results indicated that forwards were taller, heavier and had more subcutaneous adiposity than backs. Additionally, forwards and backs differed in somatotypes, with forwards being more endo-mesomorphic than backs and with a greater scatter about their mean. The anthropometric variables that best discriminated between backs and forwards were body mass, femur breadth and arm girth, with 88% correctly classified using these variables. The motor performance variables that best discriminated between backs and forwards were repeated jump in place, push-up and standing vertical jump, with 76% correct classification using these variables. Classification into three playing levels was unsatisfactory using either anthropometric or motor performance variables. These data can be used to assess present status and change in players, or potential national players, by position to locate strengths and weaknesses.

  14. Warm-up effects from concomitant use of vibration and static stretching after cycling.

    PubMed

    Yang, Wen-Wen; Liu, Chiang; Shiang, Tzyy-Yuang

    2017-04-01

    Static stretch is routinely used in traditional warm-up but impaired muscle performance. Combining vibration with static stretching as a feasible component may be an alternative to static stretching after submaximal aerobic exercise to improve jumping as well as flexibility. Therefore, the purpose of this study was to investigate and compare the effects of aerobic exercise, static stretching, and vibration with static stretching on flexibility and vertical jumping performance. A repeated measures experimental design was used in this study. Twelve participants randomly underwent 5 different warm-ups including cycling alone (C warm-up), static stretching alone (S warm-up), combining vibration with static stretching (VS warm-up), cycling followed by S (C+S warm-up), and cycling followed by VS (C+VS warm-up) on 5 separate days. Sit-and-reach, squat jump (SJ), and counter movement jump (CMJ) were measured for pre- and post- tests. The sit-and-reach scores after the S, VS, C+S and C+VS warm-ups were significantly enhanced (P<0.001), and were significantly greater than that of the C warm-up (P<0.05). The jumping height of SJ and CMJ after the C and C+VS warm-ups were significantly increased (P<0.05), whereas a significant reduction was found after the S warm-up (P<0.05). Vibration combined with stretching after submaximal cycling exercise (C+VS warm-up) could be a feasible warm-up protocol to improve both flexibility and vertical jump performance, compared with the traditional warm-up (C+S warm-up).

  15. A Comparison of the Effects of Short-Term Plyometric and Resistance Training on Lower Body Muscular Performance.

    PubMed

    Whitehead, Malcolm T; Scheett, Timothy P; McGuigan, Michael R; Auckland, N Z; Martin, Angel V

    2017-11-01

    The purpose of this study was to compare effects of short-term plyometric and resistance training on lower body muscular performance. A convenience sample of thirty males aged 21.3 ± 1.8 years, height 177.3 ± 9.4 cm, mass 80.0 ± 2.6 kg, body fat 16.1 ± 1.2 % participated in this investigation. Participants were grouped and participated in progressive plyometric (PLT) or resistance training (SRT) twice per week for eight consecutive weeks or a control (CNT) group that did not participate in any training. Performance tests were administered prior to and following the training period and included measures of high-speed muscular strength (standing long jump, vertical jump), low-speed muscular strength (one-repetition maximal back squat), running speed (20-meter sprint) and running agility (505 agility test agility test-Test). Analysis of variance followed by post hoc analyses was performed to determine significant differences between the groups. Significance set at p ≤ 0.05 for all analyses. Significant improvements were observed in the PLT group for standing long jump, vertical jump, and one-repetition maximal back squat compared to the CNT group, and for vertical jump as compared to the SRT group. Significant improvements were observed in the SRT group one-repetition maximal back squat compared to the CNT group. There were no differences observed between any of the groups for the 20-meter sprint or the 505 agility test following the training. These data indicate eight weeks of progressive plyometric training results in improvements in parameters of high and low-speed muscular strength with no appreciable change in speed or agility. Additionally, the improvement in low-speed muscular strength observed from 8-weeks of progressive plyometric training was comparable to the results observed from 8-weeks of progressive strength training.

  16. Influence of low-level laser therapy on vertical jump in sedentary individuals

    PubMed Central

    Kakihata, Camila Mayumi Martin; Malanotte, Jéssica Aline; Higa, Jessica Yumie; Errero, Tatiane Kamada; Balbo, Sandra Lucinei; Bertolini, Gladson Ricardo Flor

    2015-01-01

    Objective To investigate the effects of low intensity laser (660nm), on the surae triceps muscle fatigue and power, during vertical jump in sedentary individuals, in addition to delayed onset muscle soreness. Methods We included 22 sedentary volunteers in the study, who were divided into three groups: G1 (n=8) without performing low intensity laser (control); G2 (n=7) subjected to 6 days of low intensity laser applications; and G3 (n=7) subjected to 10 days of low intensity laser applications. All subjects were evaluated by means of six evaluations of vertical jumps lasting 60 seconds each. In G2 and G3, laser applications in eight points, uniformly distributed directly to the skin in the region of the triceps surae were performed. Another variable analyzed was the delayed onset muscle soreness using the Visual Analog Scale of Pain. Results There was no significant difference in fatigue and mechanical power. In the evaluation of delayed onset muscle soreness, there was significant difference, being the first evaluation higher than the others. Conclusion The low intensity laser on the triceps surae, in sedentary individuals, had no significant effects on the variables evaluated. PMID:25993067

  17. Instruction of jump-landing technique using videotape feedback: altering lower extremity motion patterns.

    PubMed

    Oñate, James A; Guskiewicz, Kevin M; Marshall, Stephen W; Giuliani, Carol; Yu, Bing; Garrett, William E

    2005-06-01

    Anterior cruciate ligament injury prevention programs have used videotapes of jump-landing technique as a key instructional component to improve landing performance. All videotape feedback model groups will increase knee flexion angles at initial contact and overall knee flexion motion and decrease peak vertical ground reaction forces and peak proximal anterior tibial shear forces to a greater extent than will a nonfeedback group. The secondary hypothesis is that the videotape feedback using the combination of the expert and self models will create the greatest change in each variable. Controlled laboratory study. Knee kinematics and kinetics of college-aged recreational athletes randomly placed in 3 different videotape feedback model groups (expert only, self only, combination of expert and self) and a nonfeedback group were collected while participants performed a basketball jump-landing task on 3 testing occasions. All feedback groups significantly increased knee angular displacement flexion angles [F(6,70) = 8.03, P = .001] and decreased peak vertical ground reaction forces [F(6,78) = 2.68, P = .021] during performance and retention tests. The self and combination groups significantly increased knee angular displacement flexion angles more than the control group did; the expert model group did not change significantly more than the control group did. All feedback groups and the nonfeedback group significantly reduced peak vertical forces across performance and retention tests. There were no statistically significant changes in knee flexion angle at initial ground contact (P = .111) and peak proximal anterior tibial shear forces (P = .509) for both testing sessions for each group. The use of self or combination videotape feedback is most useful for increasing knee angular displacement flexion angles and reducing peak vertical forces during landing. The use of self or combination modeling is more effective than is expert-only modeling for the implementation of instructional programs aimed at reducing the risk of jump-landing anterior cruciate ligament injuries.

  18. Utilization of stored elastic energy in leg extensor muscles by men and women.

    PubMed

    Komi, P V; Bosco, C

    1978-01-01

    An alternating cycle of eccentric-concentric contractions in locomotion represents a sequence when storage and utilization of elastic energy takes place. It is possible that this storage capacity and its utilization depends on the imposed stretch loads in activated muscles, and that sex differences may be present in these phenomena. To investigate these assumed differences, subjects from both sexes and of good physical condition performed vertical jumps on the force-platform from the following experimental conditions: squatting jump (SJ) from a static starting position; counter-movement jump (CMJ) from a free standing position and with a preparatory counter-movement; drop jumps (DJ) from the various heights (20 to 100 cm) on to the platform followed immediately by a vertical jump. In all subjects the SJ, in which condition no appreciable storage of elastic energy takes place, produced the lowest height of rise of the whole body center of gravity (C.G.). The stretch load (drop height) influenced the performance so that height of rise of C. of G. increased when the drop height increased from 26 up to 62 cm (males) and from 20 to 50 cm (females). In all jumping conditions the men jumped higher than the women. However, examination of the utilization of elastic energy indicated that in CMJ the female subjects were able to utilize most (congruent to 90%) of the energy produced in the prestretching phase. Similarly, in DJ the overall change in positive energy over SJ condition was higher in women as compared to men. Thus the results suggest that although the leg extensor muscles of the men subjects could sustain much higher stretch loads, the females may be able to utilize a greater portion of the stored elastic energy in jumping activities.

  19. Energy and time optimal trajectories in exploratory jumps of the spider Phidippus regius.

    PubMed

    Nabawy, Mostafa R A; Sivalingam, Girupakaran; Garwood, Russell J; Crowther, William J; Sellers, William I

    2018-05-08

    Jumping spiders are proficient jumpers that use jumps in a variety of behavioural contexts. We use high speed, high resolution video to measure the kinematics of a single regal jumping spider for a total of 15 different tasks based on a horizontal gap of 2-5 body lengths and vertical gap of +/-2 body lengths. For short range jumps, we show that low angled trajectories are used that minimise flight time. For longer jumps, take-off angles are steeper and closer to the optimum for minimum energy cost of transport. Comparison of jump performance against other arthropods shows that Phidippus regius is firmly in the group of animals that use dynamic muscle contraction for actuation as opposed to a stored energy catapult system. We find that the jump power requirements can be met from the estimated mass of leg muscle; hydraulic augmentation may be present but appears not to be energetically essential.

  20. Isometric and dynamic strength and neuromuscular attributes as predictors of vertical jump performance in 11- to 13-year-old male athletes.

    PubMed

    McKinlay, Brandon John; Wallace, Phillip J; Dotan, Raffy; Long, Devon; Tokuno, Craig; Gabriel, David A; Falk, Bareket

    2017-09-01

    In explosive contractions, neural activation is a major factor in determining the rate of torque development, while the latter is an important determinant of jump performance. However, the contribution of neuromuscular activation and rate of torque development to jump performance in children and youth is unclear. The purpose of this study was to examine the relationships between the rate of neuromuscular activation, peak torque, rate of torque development, and jump performance in young male athletes. Forty-one 12.5 ± 0.5-year-old male soccer players completed explosive, unilateral isometric and dynamic (240°/s) knee extensions (Biodex System III), as well as countermovement-, squat-, and drop-jumps. Peak torque (pT), peak rate of torque development (pRTD), and rate of vastus lateralis activation (Q 30 ) during the isometric and dynamic contractions were examined in relation to attained jump heights. Isometric pT and pRTD were strongly correlated (r = 0.71) but not related to jump performance. Dynamic pT and pRTD, normalized to body mass, were significantly related to jump height in all 3 jumps (r = 0.38-0.66, p < 0.05). Dynamic normalized, but not absolute pRTD, was significantly related to Q 30 (r = 0.35, p < 0.05). In young soccer players, neuromuscular activation and rate of torque development in dynamic contractions are related to jump performance, while isometric contractions are not. These findings have implications in the choice of training and assessment methods for young athletes.

  1. Effects of Strength Training Combined with Specific Plyometric exercises on body composition, vertical jump height and lower limb strength development in elite male handball players: a case study.

    PubMed

    Carvalho, Alberto; Mourão, Paulo; Abade, Eduardo

    2014-06-28

    The purpose of the present study was to identify the effects of a strength training program combined with specific plyometric exercises on body composition, vertical jump (VJ) height and strength development of lower limbs in elite male handball players. A 12-week program with combined strength and specific plyometric exercises was carried out for 7 weeks. Twelve elite male handball players (age: 21.6 ± 1.73) competing in the Portuguese Major League participated in the study. Besides the anthropometric measurements, several standardized jump tests were applied to assess VJ performance together with the strength development of the lower limbs in an isokinetic setting. No significant changes were found in body circumferences and diameters. Body fat content and fat mass decreased by 16.4 and 15.7% respectively, while lean body mass increased by 2.1%. Despite small significance, there was in fact an increase in squat jump (SJ), counter movement jump (CMJ) and 40 consecutive jumps after the training period (6.1, 3.8 and 6.8%, respectively). After the applied protocol, peak torque increased in lower limb extension and flexion in the majority of the movements assessed at 90ºs-1. Consequently, it is possible to conclude that combining general strength-training with plyometric exercises can not only increase lower limb strength and improve VJ performance but also reduce body fat content.

  2. Effects of Strength Training Combined with Specific Plyometric exercises on body composition, vertical jump height and lower limb strength development in elite male handball players: a case study

    PubMed Central

    Carvalho, Alberto; Mourão, Paulo; Abade, Eduardo

    2014-01-01

    The purpose of the present study was to identify the effects of a strength training program combined with specific plyometric exercises on body composition, vertical jump (VJ) height and strength development of lower limbs in elite male handball players. A 12-week program with combined strength and specific plyometric exercises was carried out for 7 weeks. Twelve elite male handball players (age: 21.6 ± 1.73) competing in the Portuguese Major League participated in the study. Besides the anthropometric measurements, several standardized jump tests were applied to assess VJ performance together with the strength development of the lower limbs in an isokinetic setting. No significant changes were found in body circumferences and diameters. Body fat content and fat mass decreased by 16.4 and 15.7% respectively, while lean body mass increased by 2.1%. Despite small significance, there was in fact an increase in squat jump (SJ), counter movement jump (CMJ) and 40 consecutive jumps after the training period (6.1, 3.8 and 6.8%, respectively). After the applied protocol, peak torque increased in lower limb extension and flexion in the majority of the movements assessed at 90ºs-1. Consequently, it is possible to conclude that combining general strength-training with plyometric exercises can not only increase lower limb strength and improve VJ performance but also reduce body fat content. PMID:25114739

  3. Optimal coordination of maximal-effort horizontal and vertical jump motions – a computer simulation study

    PubMed Central

    Nagano, Akinori; Komura, Taku; Fukashiro, Senshi

    2007-01-01

    Background The purpose of this study was to investigate the coordination strategy of maximal-effort horizontal jumping in comparison with vertical jumping, using the methodology of computer simulation. Methods A skeletal model that has nine rigid body segments and twenty degrees of freedom was developed. Thirty-two Hill-type lower limb muscles were attached to the model. The excitation-contraction dynamics of the contractile element, the tissues around the joints to limit the joint range of motion, as well as the foot-ground interaction were implemented. Simulations were initiated from an identical standing posture for both motions. Optimal pattern of the activation input signal was searched through numerical optimization. For the horizontal jumping, the goal was to maximize the horizontal distance traveled by the body's center of mass. For the vertical jumping, the goal was to maximize the height reached by the body's center of mass. Results As a result, it was found that the hip joint was utilized more vigorously in the horizontal jumping than in the vertical jumping. The muscles that have a function of joint flexion such as the m. iliopsoas, m. rectus femoris and m. tibialis anterior were activated to a greater level during the countermovement in the horizontal jumping with an effect of moving the body's center of mass in the forward direction. Muscular work was transferred to the mechanical energy of the body's center of mass more effectively in the horizontal jump, which resulted in a greater energy gain of the body's center of mass throughout the motion. Conclusion These differences in the optimal coordination strategy seem to be caused from the requirement that the body's center of mass needs to be located above the feet in a vertical jumping, whereas this requirement is not so strict in a horizontal jumping. PMID:17543118

  4. RELIABILITY AND VALIDITY OF AN ACCELEROMETRIC SYSTEM FOR ASSESSING VERTICAL JUMPING PERFORMANCE

    PubMed Central

    Laffaye, G.; Taiar, R.

    2014-01-01

    The validity of an accelerometric system (Myotest©) for assessing vertical jump height, vertical force and power, leg stiffness and reactivity index was examined. 20 healthy males performed 3ד5 hops in place”, 3ד1 squat jump” and 3× “1 countermovement jump” during 2 test-retest sessions. The variables were simultaneously assessed using an accelerometer and a force platform at a frequency of 0.5 and 1 kHz, respectively. Both reliability and validity of the accelerometric system were studied. No significant differences between test and retest data were found (p < 0.05), showing a high level of reliability. Besides, moderate to high intraclass correlation coefficients (ICCs) (from 0.74 to 0.96) were obtained for all variables whereas weak to moderate ICCs (from 0.29 to 0.79) were obtained for force and power during the countermovement jump. With regards to validity, the difference between the two devices was not significant for 5 hops in place height (1.8 cm), force during squat (-1.4 N · kg−1) and countermovement (0.1 N · kg−1) jumps, leg stiffness (7.8 kN · m−1) and reactivity index (0.4). So, the measurements of these variables with this accelerometer are valid, which is not the case for the other variables. The main causes of non-validity for velocity, power and contact time assessment are temporal biases of the takeoff and touchdown moments detection. PMID:24917690

  5. Neuromuscular Taping Application in Counter Movement Jump: Biomechanical Insight in a Group of Healthy Basketball Players.

    PubMed

    Marcolin, Giuseppe; Buriani, Alessandro; Giacomelli, Andrea; Blow, David; Grigoletto, Davide; Gesi, Marco

    2017-06-24

    Kinesiologic elastic tape is widely used for both clinical and sport applications although its efficacy in enhancing agonistic performance is still controversial. Aim of the study was to verify in a group of healthy basketball players whether a neuromuscular taping application (NMT) on ankle and knee joints could affect the kinematic and the kinetic parameters of the jump, either by enhancing or inhibiting the functional performance. Fourteen healthy male basketball players without any ongoing pathologies at upper limbs, lower limbs and trunk volunteered in the study. They randomly performed 2 sets of 5 counter movement jumps (CMJ) with and without application of Kinesiologic tape. The best 3 jumps of each set were considered for the analysis. The Kinematics parameters analyzed were: knees maximal flexion and ankles maximal dorsiflexion during the push off phase, jump height and take off velocity. Vertical ground reaction force and maximal power expressed in the push off phase of the jump were also investigated. The NMT application in both knees and ankles showed no statistically significant differences in the kinematic and kinetic parameters and did not interfere with the CMJ performance. Bilateral NMT application in the group of healthy male basketball players did not change kinematics and kinetics jump parameters, thus suggesting that its routine use should have no negative effect on functional performance. Similarly, the combined application of the tape on both knees and ankles did not affect in either way jump performance.

  6. Neuromuscular Taping Application in Counter Movement Jump: Biomechanical Insight in a Group of Healthy Basketball Players

    PubMed Central

    Marcolin, Giuseppe; Buriani, Alessandro; Giacomelli, Andrea; Blow, David; Grigoletto, Davide; Gesi, Marco

    2017-01-01

    Kinesiologic elastic tape is widely used for both clinical and sport applications although its efficacy in enhancing agonistic performance is still controversial. Aim of the study was to verify in a group of healthy basketball players whether a neuromuscular taping application (NMT) on ankle and knee joints could affect the kinematic and the kinetic parameters of the jump, either by enhancing or inhibiting the functional performance. Fourteen healthy male basketball players without any ongoing pathologies at upper limbs, lower limbs and trunk volunteered in the study. They randomly performed 2 sets of 5 counter movement jumps (CMJ) with and without application of Kinesiologic tape. The best 3 jumps of each set were considered for the analysis. The Kinematics parameters analyzed were: knees maximal flexion and ankles maximal dorsiflexion during the push off phase, jump height and take off velocity. Vertical ground reaction force and maximal power expressed in the push off phase of the jump were also investigated. The NMT application in both knees and ankles showed no statistically significant differences in the kinematic and kinetic parameters and did not interfere with the CMJ performance. Bilateral NMT application in the group of healthy male basketball players did not change kinematics and kinetics jump parameters, thus suggesting that its routine use should have no negative effect on functional performance. Similarly, the combined application of the tape on both knees and ankles did not affect in either way jump performance. PMID:28713536

  7. The biomechanical effect of arm mass on long jump performance: A case study of a paralympic upper limb amputee.

    PubMed

    Pradon, Didier; Mazure-Bonnefoy, Alice; Rabita, Giuseppe; Hutin, Emilie; Zory, Raphael; Slawinski, Jean

    2014-06-01

    The role of arm motion during the long jump has been well studied. The aim of this study was to quantify the effect of forearm mass on impulse and the kinematics of the flight phase in an upper limb amputee. A world-record paralympic long jumper carried out jumps in three conditions: wearing his usual forearm prosthesis and with 0.3 and 0.4 kg added mass. A motion capture system including force plates was used to record the jump. At take-off, the addition of 0.4 kg to the prosthesis decreased the vertical velocity of the centre of mass but increased horizontal velocity. These modifications were associated with an increase in landing distance and an improvement of the synchronization between arms. Increasing forearm mass appears to improve long jump performance. Further studies need to evaluate the optimal prosthetic mass for both training and competition. This biomechanical analysis of the long jump highlighted the effects of changing prosthesis mass on performance. This methodological approach may be useful in the context of sport and performance research. © The International Society for Prosthetics and Orthotics 2013.

  8. Transcutaneous spinal direct current stimulation induces lasting fatigue resistance and enhances explosive vertical jump performance

    PubMed Central

    Tate, Rothwelle J.; Conway, Bernard A.

    2017-01-01

    Transcutaneous spinal direct current stimulation (tsDCS) is a non-invasive neuromodulatory intervention that has been shown to modify excitability in spinal and supraspinal circuits in animals and humans. Our objective in this study was to explore the functional neuromodulatory potential of tsDCS by examining its immediate and lasting effects over the repeated performance of a whole body maximal exercise in healthy volunteers. Using a double-blind, randomized, crossover, sham-controlled design we investigated the effects of 15 min of anodal tsDCS on repeated vertical countermovement jump (VCJ) performance at 0, 20, 60, and 180 minutes post-stimulation. Measurements of peak and take-off velocity, vertical displacement, peak power and work done during countermovement and push-off VCJ phases were derived from changes in vertical ground reaction force (12 performance parameters) in 12 healthy participants. The magnitude and direction of change in VCJ performance from pre- to post-stimulation differed significantly between sham and active tsDCS for 7 of the 12 VCJ performance measures (P < 0.05). These differences comprised of a post-sham fatigue in VCJ displacement/work done, peak to peak power and take-off velocity, and a resilience to this fatigue effect post-active tsDCS. In addition there was also an enhancement of countermovement performance and total work done (P < 0.05). These changes did not vary across repeated VCJ performances over time post-tsDCS (P > 0.05). Our original findings demonstrate that one single session of anodal tsDCS in healthy subjects can prevent fatigue and maintain or enhance different aspects of whole body explosive motor power over repeated sets of VCJs performed over a period of three hours. The observed effects are discussed in relation to alterations in central fatigue mechanisms, muscle contraction mode during jump execution and changes in spinal cord excitability. These findings have important implications for power endurance sport performance and for neuromotor rehabilitation. PMID:28379980

  9. Lower-Body Muscle Structure and Jump Performance of Stronger and Weaker Surfing Athletes.

    PubMed

    Secomb, Josh L; Nimphius, Sophia; Farley, Oliver R; Lundgren, Lina; Tran, Tai T; Sheppard, Jeremy M

    2016-07-01

    To identify whether there are any significant differences in the lower-body muscle structure and countermovement-jump (CMJ) and squat-jump (SJ) performance between stronger and weaker surfing athletes. Twenty elite male surfers had their lower-body muscle structure assessed with ultrasonography and completed a series of lower-body strength and jump tests including isometric midthigh pull (IMTP), CMJ, and SJ. Athletes were separated into stronger (n = 10) and weaker (n = 10) groups based on IMTP performance. Large significant differences were identified between the groups for vastus lateralis (VL) thickness (P = .02, ES = 1.22) and lateral gastrocnemius (LG) pennation angle (P = .01, ES = 1.20), and a large nonsignificant difference was identified in LG thickness (P = .08, ES = 0.89). Furthermore, significant differences were present between the groups for peak force, relative peak force, and jump height in the CMJ and SJ (P < .01-.05, ES = 0.90-1.47) and eccentric peak velocity, as well as vertical displacement of the center of mass during the CMJ (P < .01, ES = 1.40-1.41). Stronger surfing athletes in this study had greater VL and LG thickness and LG pennation angle. These muscle structures may explain their better performance in the CMJ and SJ. A unique finding in this study was that the stronger group appeared to better use their strength and muscle structure for braking as they had significantly higher eccentric peak velocity and vertical displacement during the CMJ. This enhanced eccentric phase may have resulted in a greater production and subsequent utilization of stored elastic strain energy that led to the significantly better CMJ performance in the stronger group.

  10. The Effects of Cold Whirlpool on Power, Speed, Agility, and Range of Motion

    PubMed Central

    Patterson, Stephen M.; Udermann, Brian E.; Doberstein, Scott T.; Reineke, David M.

    2008-01-01

    The purpose was to determine if cold whirlpool treatment decreases functional performance equally regardless of gender. A secondary aim was to determine if there is a gradual increase in functional performance across time. Twenty-one college-aged subjects volunteered to participate in this study and were required to perform four measures of functional performance including: counter movement vertical jump, T-test, 36.58-meter dash (40-yard), and active range of motion of the ankle. Participants were treated with a 20 minute, 10 degree Celsius cold whirlpool following the pre-test of a given functional performance measure. Participants demonstrated significant decreases in counter movement vertical jump, T-test, and 40-yard dash performance immediately following treatment. Vertical jump performance remained impaired for at least 32 minutes. While both the T-test and 40-yard dash were affected for 7 and 22 minutes post- treatment, respectively. Participants also demonstrated significant decreases in peak power and average power immediately after and for 32 minutes post-treatment. Dorsiflexion was significantly decreased 7 and 12 minutes following treatment. There were no differences for plantar flexion, inversion, or eversion. These data suggest functional performance was affected immediately following and for up to 32 minutes after cold whirlpool treatment. It was also evident that there is a gradual performance increase for each measure of functional performance across time. Therefore, the consequences should be carefully considered before returning athletes to activity following cold whirlpool treatment. Key pointsCryotherapy is a common and highly effective modality in treating acute and chronic athletic injuries.The results indicated that cold whirlpool does have an immediate and subsequent effect on functional performance.Understanding how cold whirlpool adversely affects functional performance allows clinicians to continue using this modality before vigorous athletic activity. PMID:24149907

  11. Countermovement jump height: gender and sport-specific differences in the force-time variables.

    PubMed

    Laffaye, Guillaume; Wagner, Phillip P; Tombleson, Tom I L

    2014-04-01

    The goal of this study was to assess (a) the eccentric rate of force development, the concentric force, and selected time variables on vertical performance during countermovement jump, (b) the existence of gender differences in these variables, and (c) the sport-specific differences. The sample was composed of 189 males and 84 females, all elite athletes involved in college and professional sports (primarily football, basketball, baseball, and volleyball). The subjects performed a series of 6 countermovement jumps on a force plate (500 Hz). Average eccentric rate of force development (ECC-RFD), total time (TIME), eccentric time (ECC-T), Ratio between eccentric and total time (ECC-T:T) and average force (CON-F) were extracted from force-time curves and the vertical jumping performance, measured by impulse momentum. Results show that CON-F (r = 0.57; p < 0.001) and ECC-RFD (r = 0.52, p < 0.001) are strongly correlated with the jump height (JH), whereas the time variables are slightly and negatively correlated (r = -0.21-0.23, p < 0.01). Force variables differ between both sexes (p < 0.01), whereas time variables did not differ, showing a similar temporal structure. The best way to jump high is to increase CON-F and ECC-RFD thus minimizing the ECC-T. Principal component analysis (PCA) accounted for 76.8% of the JH variance and revealed that JH is predicted by a temporal and a force component. Furthermore, the PCA comparison made among athletes revealed sport-specific signatures: volleyball players revealed a temporal-prevailing profile, a weak-force with large ECC-T:T for basketball players and explosive and powerful profiles for football and baseball players.

  12. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology.

    PubMed

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Kim, Ho-Young

    2016-12-07

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  13. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G.; Kim, Ho-Young

    2016-12-01

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  14. Lower- extremity biomechanics and maintenance of vertical-jump height during prolonged intermittent exercise.

    PubMed

    Schmitz, Randy J; Cone, John C; Copple, Timothy J; Henson, Robert A; Shultz, Sandra J

    2014-11-01

    Potential biomechanical compensations allowing for maintenance of maximal explosive performance during prolonged intermittent exercise, with respect to the corresponding rise in injury rates during the later stages of exercise or competition, are relatively unknown. To identify lower-extremity countermovement-jump (CMJ) biomechanical factors using a principal-components approach and then examine how these factors changed during a 90-min intermittent-exercise protocol (IEP) while maintaining maximal jump height. Mixed-model design. Laboratory. Fifty-nine intermittent-sport athletes (30 male, 29 female) participated in experimental and control conditions. Before and after a dynamic warm-up and every 15 min during the 1st and 2nd halves of an individually prescribed 90-min IEP, participants were assessed on rating of perceived exertion, sprint/cut speed, and 3-dimensional CMJ biomechanics (experimental). On a separate day, the same measures were obtained every 15 min during 90 min of quiet rest (control). Univariate piecewise growth models analyzed progressive changes in CMJ performance and biomechanical factors extracted from a principal-components analysis of the individual biomechanical dependent variables. While CMJ height was maintained during the 1st and 2nd halves, the body descended less and knee kinetic and energetic magnitudes decreased as the IEP progressed. The results indicate that vertical-jump performance is maintained along with progressive biomechanical changes commonly associated with decreased performance. A better understanding of lower-extremity biomechanics during explosive actions in response to IEP allows us to further develop and individualize performance training programs.

  15. Effect of Core Training Program on Physical Functional Performance in Female Soccer Players

    ERIC Educational Resources Information Center

    Taskin, Cengiz

    2016-01-01

    The purpose of this study was to determine the effect of core training program on speed, acceleration, vertical jump, and standing long jump in female soccer players. A total of 40 female soccer players volunteered to participate in this study. They were divided randomly into 1 of 2 groups: core training group (CTG; n = 20) and control group (CG;…

  16. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race

    PubMed Central

    Rousanoglou, Elissavet N.; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A.; Boudolos, Konstantinos D.

    2016-01-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key points The 4.1% reduction of jump height immediately after the race is not statistically significant The eccentric phase alterations of jump mechanics precede those of the concentric ones. Force-velocity alterations present a timing shift rather than a change in force or velocity magnitude. PMID:27274665

  17. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race.

    PubMed

    Rousanoglou, Elissavet N; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A; Boudolos, Konstantinos D

    2016-06-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key pointsThe 4.1% reduction of jump height immediately after the race is not statistically significantThe eccentric phase alterations of jump mechanics precede those of the concentric ones.Force-velocity alterations present a timing shift rather than a change in force or velocity magnitude.

  18. Relationship Between Vertical Jump Height and Swimming Start Performance Before and After an Altitude Training Camp.

    PubMed

    García-Ramos, Amador; Padial, Paulino; de la Fuente, Blanca; Argüelles-Cienfuegos, Javier; Bonitch-Góngora, Juan; Feriche, Belén

    2016-06-01

    This study aimed (a) to analyze the development in the squat jump height and swimming start performance after an altitude training camp, (b) to correlate the jump height and swimming start performance before and after the altitude training period, and (c) to correlate the percent change in the squat jump height with the percent change in swimming start performance. Fifteen elite male swimmers from the Spanish Junior National Team (17.1 ± 0.8 years) were tested before and after a 17-day training camp at moderate altitude. The height reached in the squat jump exercise with additional loads of 0, 25, 50, 75, and 100% of swimmers' pretest body weight and swimming start performance (time to 5, 10, and 15 m) were the dependent variables analyzed. Significant increases in the jump height (p ≤ 0.05; effect size [ES]: 0.35-0.48) and swimming start performance (p < 0.01; ES: 0.48-0.52) after the training period were observed. The start time had similar correlations with the jump height before training (r = -0.56 to -0.77) and after training (r = -0.50 to -0.71). The change in the squat jump height was inversely correlated with the change in the start time at 5 m (r = -0.47), 10 m (r = -0.73), and 15 m (r = -0.62). These results suggest that altitude training can be suitable to enhance explosive performance. The correlations obtained between the squat jump height and start time in the raw and change scores confirm the relevance of having high levels of lower-body muscular power to optimize swimming start performance.

  19. Kinetic factors of vertical jumping for heading a ball in flexible flatfooted amateur soccer players with and without insole adoption.

    PubMed

    Arastoo, Ali Asghar; Aghdam, Esmaeil Moharrami; Habibi, Abdoul Hamid; Zahednejad, Shahla

    2014-06-01

    According to literature, little is known regarding the effects of orthotic management of flatfoot on kinetics of vertical jump. To compare the kinetic and temporal events of two-legged vertical jumping take-off from a force plate for heading a ball in normal and flexible flatfoot subjects with and without insole. A functional based interventional controlled study. Random sampling method was employed to draw a control group of 15 normal foot subjects to a group of 15 flatfoot subjects. A force platform was used to record kinetics of two-legged vertical jump shots. Results indicate that insole did not lead to a significant effect on kinetics regarding anterior-posterior and mediolateral directions (p > 0.05). Results of kinetics related to vertical direction for maximum force due to take-off and stance duration revealed significant differences between the normal and flexible flatfoot subjects without insole (p < 0.05) and no significant differences between the normal foot and flexible flatfoot subjects with insole adoption (p > 0.05). These results suggest that the use of an insole in the flexible flatfoot subjects led to improved stance time and decrease of magnitude of kinetics regarding vertical direction at take-off as the main feature of two-legged vertical jumping function. Adoption of the insole improved the design of the shoe-foot interface support for the flexible flatfoot athletes, enabling them to develop more effective take-off kinetics for vertical jumping in terms of ground reaction force and stance duration similar to that of normal foot subjects without insole. © The International Society for Prosthetics and Orthotics 2013.

  20. Concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height in female sub-elite youth soccer players.

    PubMed

    Lesinski, Melanie; Muehlbauer, Thomas; Granacher, Urs

    2016-01-01

    The aim of the present study was to verify concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height. Nineteen female sub-elite youth soccer players (mean age: 14.7 ± 0.6 years) performed three trials of countermovement (CMJ) and squat jumps (SJ), respectively. Maximal vertical jump height was simultaneously quantified with the Gyko system, a Kistler force-plate (i.e., gold standard), and another criterion device that is frequently used in the field, the Optojump system. Compared to the force-plate, the Gyko system determined significant systematic bias for mean CMJ (-0.66 cm, p  < 0.01, d  = 1.41) and mean SJ (-0.91 cm, p  < 0.01, d  = 1.69) height. Random bias was ± 3.2 cm for CMJ and ± 4.0 cm for SJ height and intraclass correlation coefficients (ICCs) were "excellent" (ICC = 0.87 for CMJ and 0.81 for SJ). Compared to the Optojump device, the Gyko system detected a significant systematic bias for mean CMJ (0.55 cm, p  < 0.05, d  = 0.94) but not for mean SJ (0.39 cm) height. Random bias was ± 3.3 cm for CMJ and ± 4.2 cm for SJ height and ICC values were "excellent" (ICC = 0.86 for CMJ and 0.82 for SJ). Consequently, apparatus specific regression equations were provided to estimate true vertical jump height for the Kistler force-plate and the Optojump device from Gyko-derived data. Our findings indicate that the Gyko system cannot be used interchangeably with a Kistler force-plate and the Optojump device in trained individuals. It is suggested that practitioners apply the correction equations to estimate vertical jump height for the force-plate and the Optojump system from Gyko-derived data.

  1. Methodological Considerations on the Relationship Between the 1,500-M Rowing Ergometer Performance and Vertical Jump in National-Level Adolescent Rowers.

    PubMed

    Maciejewski, Hugo; Rahmani, Abderrahmane; Chorin, Frédéric; Lardy, Julien; Samozino, Pierre; Ratel, Sébastien

    2018-03-12

    The purpose of the present study was to investigate whether three different approaches for evaluating squat jump performance were correlated to rowing ergometer performance in elite adolescent rowers. Fourteen young male competitive rowers (15.3 ± 0.6 years), who took part in the French rowing national championships, performed a 1,500-m all-out rowing ergometer performance (P1500) and a squat jump (SJ) test. The performance in SJ was determined by calculating the jump height (HSJ in cm), a jump index (ISJ = HSJ · body mass · gravity, in J) and the mean power output (PSJ in W) from the Samozino et al.'s method. Furthermore, allometric modelling procedures were used to consider the importance of body mass (BM) in the assessment of HSJ, ISJ and PSJ, and their relationships with between P1500 and jump scores. P1500 was significantly correlated to HSJ (r2 = 0.29, P < 0.05), ISJ (r2 = 0.72, P < 0.0001) and PSJ (r2 = 0.86, P < 0.0001). Furthermore, BM explained at least 96% of the relationships between SJ and rowing performances. However, the similarity between both allometric exponents for PSJ and P1500 (1.15 and 1.04, respectively) indicates that BM could influence jump and rowing ergometer performances at the same rate, and that PSJ could be the best correlate of P1500. Therefore, the calculation of power seems to be more relevant than HSJ and ISJ to (i) evaluate jump performance, and (ii) infer the capacity of adolescent rowers to perform 1,500-m all-out rowing ergometer performance, irrespective of their body mass. This could help coaches to improve their training program and potentially identify talented young rowers.

  2. Effect of Ankle Joint Contact Angle and Ground Contact Time on Depth Jump Performance.

    PubMed

    Phillips, Joshua H; Flanagan, Sean P

    2015-11-01

    Athletes often need to both jump high and get off the ground quickly, but getting off the ground quickly can decrease the vertical ground reaction force (VGRF) impulse, impeding jump height. Energy stored in the muscle-tendon complex during the stretch-shortening cycle (SSC) may mitigate the effects of short ground contact times (GCTs). To take advantage of the SSC, several coaches recommend "attacking" the ground with the foot in a dorsiflexed (DF) position at contact. However, the efficacy of this technique has not been tested. This investigation tested the hypotheses that shorter GCTs would lead to smaller vertical depth jump heights (VDJH), and that this difference could be mitigated by instructing the athletes to land in a DF as opposed to a plantar flexed (PF) foot position. Eighteen healthy junior college athletes performed depth jumps from a 45-cm box onto force platforms under instruction to achieve one of the 2 objectives (maximum jump height [hmax] or minimal GCT [tmin]), with one of the 2 foot conditions (DF or PF). These variations created 4 distinct jump conditions: DF-hmax, DF-tmin, PF-hmax, and PF-tmin. For all variables examined, there were no significant interactions. For all 4 conditions, the ankle was PF during landing, but the DF condition was 28.87% less PF than the PF condition. The tmin conditions had a 23.48% shorter GCT than hmax. There were no significant main effects for jump height. The peak impact force for tmin was 22.14% greater than hmax and 19.11% greater for DF compared with PF conditions. A shorter GCT did not necessitate a smaller jump height, and a less PF foot did not lead to improvements in jump height or contact time during a depth jump from a 45-cm box. The same jump height was attained in less PF and shorter GCT conditions by larger impact forces. To decrease contact time while maintaining jump height, athletes should be instructed to "get off the ground as fast as possible." This cue seems to be more important than foot position. However, it should be acknowledged that this technique leads to larger impact forces, which should be considered when prescribing the number of foot contacts in a plyometrics program. The ability of athletes to truly land in a DF position during depth jumps is questioned and needs further investigation.

  3. Do Lower-Body Dimensions and Body Composition Explain Vertical Jump Ability?

    PubMed

    Caia, Johnpaul; Weiss, Lawrence W; Chiu, Loren Z F; Schilling, Brian K; Paquette, Max R; Relyea, George E

    2016-11-01

    Caia, J, Weiss, LW, Chiu, LZF, Schilling, BK, Paquette, MR, and Relyea, GE. Do lower-body dimensions and body composition explain vertical jump ability? J Strength Cond Res 30(11): 3073-3083, 2016-Vertical jump (VJ) capability is integral to the level of success attained by individuals participating in numerous sport and physical activities. Knowledge of factors related to jump performance may help with talent identification and/or optimizing training prescription. Although myriad variables are likely related to VJ, this study focused on determining if various lower-body dimensions and/or body composition would explain some of the variability in performance. Selected anthropometric dimensions were obtained from 50 university students (25 men and 25 women) on 2 occasions separated by 48 or 72 hours. Estimated body fat percentage (BF%), height, body weight, hip width, pelvic width, bilateral quadriceps angle (Q-angle), and bilateral longitudinal dimensions of the feet, leg, thigh, and lower limb were obtained. Additionally, participants completed countermovement VJs. Analysis showed BF% to have the highest correlation with countermovement VJ displacement (r = -0.76, p < 0.001). When examining lower-body dimensions, right-side Q-angle displayed the strongest association with countermovement VJ displacement (r = -0.58, p < 0.001). Regression analysis revealed that 2 different pairs of variables accounted for the greatest variation (66%) in VJ: (a) BF% and sex and (b) BF% and body weight. Regression models involving BF% and lower-body dimensions explained up to 61% of the variance observed in VJ. Although the variance explained by BF% may be increased by using several lower-body dimensions, either sex identification or body weight explains comparatively more. Therefore, these data suggest that the lower-body dimensions measured herein have limited utility in explaining VJ performance.

  4. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data.

    PubMed

    Schultz, Elise V; Schultz, Christopher J; Carey, Lawrence D; Cecil, Daniel J; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  5. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    NASA Technical Reports Server (NTRS)

    Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  6. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    PubMed Central

    SCHULTZ, ELISE V.; SCHULTZ, CHRISTOPHER J.; CAREY, LAWRENCE D.; CECIL, DANIEL J.; BATEMAN, MONTE

    2017-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system’s performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The system’s performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system’s performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system. PMID:29303164

  7. Comparison of Olympic vs. traditional power lifting training programs in football players.

    PubMed

    Hoffman, Jay R; Cooper, Joshua; Wendell, Michael; Kang, Jie

    2004-02-01

    Twenty members of an National Collegiate Athletic Association Division III collegiate football team were assigned to either an Olympic lifting (OL) group or power lifting (PL) group. Each group was matched by position and trained 4-days.wk(-1) for 15 weeks. Testing consisted of field tests to evaluate strength (1RM squat and bench press), 40-yard sprint, agility, vertical jump height (VJ), and vertical jump power (VJP). No significant pre- to posttraining differences were observed in 1RM bench press, 40-yard sprint, agility, VJ or in VJP in either group. Significant improvements were seen in 1RM squat in both the OL and PL groups. After log10-transformation, OL were observed to have a significantly greater improvement in Delta VJ than PL. Despite an 18% greater improvement in 1RM squat (p > 0.05), and a twofold greater improvement (p > 0.05) in 40-yard sprint time by OL, no further significant group differences were seen. Results suggest that OL can provide a significant advantage over PL in vertical jump performance changes.

  8. Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise.

    PubMed

    Toumi, Hechmi; Poumarat, Georges; Best, Thomas M; Martin, Alain; Fairclough, John; Benjamin, Mike

    2006-10-01

    The purpose of the present study was to compare vertical jump performance after 2 different fatigue protocols. In the first protocol, subjects performed consecutive sets of 10 repetitions of stretch-shortening cycle (SSC) contractions. In the second protocol, successive sets of 10 repetitions of isometric contractions were performed for 10 s with the knee at 90 degrees of flexion. The exercises were stopped when the subjects failed to reach 50% of their maximum voluntary isometric contractions. Maximal isometric force and maximal concentric power were assessed by performing supine leg presses, squat jumps, and drop jumps. Surface EMG was used to determine changes in muscle activation before and after fatigue. In both groups, the fatigue exercises reduced voluntary isometric force, maximal concentric power, and drop jump performance. Kinematic data showed a decrease in knee muscle-tendon stiffness accompanied by a lengthened ground contact time. EMG analysis showed that the squat and drop jumps were performed similarly before and after the fatigue exercise for both groups. Although it was expected that the stiffness would decrease more after SSC than after isometric fatigue (as a result of a greater alteration of the reflex sensitivity SSC), our results showed that both protocols had a similar effect on knee muscle stiffness during jumping exercises. Both fatigue protocols induced muscle fatigue, and the decrease in jump performance was linked to a decrease in the strength and stiffness of the knee extensor muscles.

  9. Frontal plane comparison between drop jump and vertical jump: implications for the assessment of ACL risk of injury.

    PubMed

    Cesar, Guilherme M; Tomasevicz, Curtis L; Burnfield, Judith M

    2016-11-01

    The potential to use the vertical jump (VJ) to assess both athletic performance and risk of anterior cruciate ligament (ACL) injury could have widespread clinical implications since VJ is broadly used in high school, university, and professional sport settings. Although drop jump (DJ) and VJ observationally exhibit similar lower extremity mechanics, the extent to which VJ can also be used as screening tool for ACL injury risk has not been assessed. This study evaluated whether individuals exhibit similar knee joint frontal plane kinematic and kinetic patterns when performing VJs compared with DJs. Twenty-eight female collegiate athletes performed DJs and VJs. Paired t-tests indicated that peak knee valgus angles did not differ significantly between tasks (p = 0.419); however, peak knee internal adductor moments were significantly larger during the DJ vs. VJ (p < 0.001). Pearson correlations between the DJ and VJ revealed strong correlations for knee valgus angles (r = 0.93, p < 0.001) and for internal knee adductor moments (r = 0.82, p < 0.001). Our results provide grounds for investigating whether frontal plane knee mechanics during VJ can predict ACL injuries and thus can be used as an effective tool for the assessment of risk of ACL injury in female athletes.

  10. Physical Characteristics and Performance of Japanese Top-Level American Football Players.

    PubMed

    Yamashita, Daichi; Asakura, Masaki; Ito, Yoshihiko; Yamada, Shinzo; Yamada, Yosuke

    2017-09-01

    Yamashita, D, Asakura, M, Ito, Y, Yamada, S, and Yamada, Y. Physical characteristics and performance of Japanese top-level American football players. J Strength Cond Res 31(9): 2455-2461, 2017-This study aimed to compare the physical characteristics and performance between top-level nonprofessional football players in Japan and National Football League (NFL) Combine invited players and between top-level and middle-level players in Japan to determine the factors that enhance performance in international and national competitions. A total of 168 American football players (>20 years) in Japan participated in an anthropometric (height and weight) and physical (vertical jump, long jump, 40-yard dash, pro-agility shuttle, 3-cone drill, and bench press repetition test) measurement program based on the NFL Combine program to compete in the selection of candidates for the Senior World Championship. All players were categorized into 1 of the 3 position groups based on playing position: skill players, big skill players, and linemen. Japanese players were additionally categorized into selected and nonselected players for the second tryout. The NFL Combine candidates had significantly better performance than selected Japanese players on all variables except on performance related to quickness among the 3 position groups. Compared with nonselected players, selected Japanese skill players had better performance in the 40-yard dash and bench press test and big skill players had better performance in the vertical jump, broad jump, and 40-yard dash. Selected and nonselected Japanese linemen were not different in any measurements. These results showed the challenges in American football in Japan, which include not only improving physical performance of top-level players, but also increasing the number of football players with good physical performance.

  11. Physical Characteristics and Performance of Japanese Top-Level American Football Players

    PubMed Central

    Asakura, Masaki; Ito, Yoshihiko; Yamada, Shinzo; Yamada, Yosuke

    2017-01-01

    Abstract Yamashita, D, Asakura, M, Ito, Y, Yamada, S, and Yamada, Y. Physical characteristics and performance of Japanese top-level American football players. J Strength Cond Res 31(9): 2455–2461, 2017—This study aimed to compare the physical characteristics and performance between top-level nonprofessional football players in Japan and National Football League (NFL) Combine invited players and between top-level and middle-level players in Japan to determine the factors that enhance performance in international and national competitions. A total of 168 American football players (>20 years) in Japan participated in an anthropometric (height and weight) and physical (vertical jump, long jump, 40-yard dash, pro-agility shuttle, 3-cone drill, and bench press repetition test) measurement program based on the NFL Combine program to compete in the selection of candidates for the Senior World Championship. All players were categorized into 1 of the 3 position groups based on playing position: skill players, big skill players, and linemen. Japanese players were additionally categorized into selected and nonselected players for the second tryout. The NFL Combine candidates had significantly better performance than selected Japanese players on all variables except on performance related to quickness among the 3 position groups. Compared with nonselected players, selected Japanese skill players had better performance in the 40-yard dash and bench press test and big skill players had better performance in the vertical jump, broad jump, and 40-yard dash. Selected and nonselected Japanese linemen were not different in any measurements. These results showed the challenges in American football in Japan, which include not only improving physical performance of top-level players, but also increasing the number of football players with good physical performance. PMID:28052052

  12. Differences in Neuromuscular Strategies Between Landing and Cutting Tasks in Female Basketball and Soccer Athletes

    PubMed Central

    Cowley, Hanni R; Ford, Kevin R; Myer, Gregory D; Kernozek, Thomas W; Hewett, Timothy E

    2006-01-01

    Context: High school female athletes are most likely to sustain a serious knee injury during soccer or basketball, 2 sports that often involve a rapid deceleration before a change of direction or while landing from a jump. Objective: To determine if female high school basketball and soccer players show neuromuscular differences during landing and cutting tasks and to examine neuromuscular differences between tasks and between dominant and nondominant sides. Design: A 3-way mixed factorial design investigating the effects of sport (basketball, soccer), task (jumping, cutting), and side (dominant, nondominant). Setting: Laboratory. Patients or Other Participants: Thirty high school female athletes who listed either basketball or soccer as their only sport of participation (basketball: n = 15, age = 15.1 ± 1.7 years, experience = 6.9 ± 2.2 years, height = 165.3 ± 7.9 cm, mass = 61.8 ± 9.3 kg; soccer: n = 15, age = 14.8 ± 0.8 years, experience = 8.8 ± 2.5 years, height = 161.8 ± 4.1 cm, mass = 54.6 ± 7.6 kg). Main Outcome Measure(s): Ground reaction forces, stance time, valgus angles, and valgus moments were assessed during (1) a drop vertical jump with an immediate maximal vertical jump and (2) an immediate side-step cut at a 45° angle. Results: Basketball athletes had greater ground reaction forces (P < .001) and decreased stance time (P < .001) during the drop vertical jump, whereas soccer players had greater ground reaction forces (P <.001) and decreased stance time (P < .001) during the cut. Subjects in both sports had greater valgus angles (initial contact and maximum, P = .02 and P = .012, respectively) during cutting than during the drop vertical jump. Greater valgus moments (P = .006) were noted on the dominant side during cutting. Conclusions: Our subjects demonstrated differences in ground reaction forces and stance times during 2 movements associated with noncontact anterior cruciate ligament injuries. Knee valgus moment and angle were significantly influenced by the type of movement performed. Sport-specific neuromuscular training may be warranted, with basketball players focusing on jumping and landing and soccer players focusing on unanticipated cutting maneuvers. PMID:16619097

  13. Potential for Non-Contact ACL Injury Between Step-Close-Jump and Hop-Jump Tasks.

    PubMed

    Wang, Li-I; Gu, Chin-Yi; Chen, Wei-Ling; Chang, Mu-San

    2010-01-01

    This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury. Key pointsThe different landing techniques required for these two stop-jump tasks do not necessarily affect the jump height.Hop-jump decreased the hip joint angular velocity at initial foot contact with ground, which could lead to an increasing peak posterior GRF during the landing phase.Hop-jump decreased hip and knee joint angular flexion displacement during the landing, which could increase the peak vertical loading rate during the landing phase.

  14. The Effect of a Combined High-Intensity Plyometric and Speed Training Program on the Running and Jumping Ability of Male Handball Players

    PubMed Central

    Cherif, Monsef; Said, Mohamed; Chaatani, Sana; Nejlaoui, Olfa; Gomri, Daghbaji; Abdallah, Aouidet

    2012-01-01

    Purpose The aim of this study was to investigate the effect of a combined program including sprint repetitions and drop jump training in the same session on male handball players. Methods Twenty-two male handball players aged more than 20 years were assigned into 2 groups: experimental group (n=11) and control group (n=11). Selection was based on variables “axis” and “lines”, goalkeepers were not included. The experimental group was subjected to 2 testing periods (test and retest) separated by 12 weeks of an additional combined plyometric and running speed training program. The control group performed the usual handball training. The testing period comprised, at the first day, a medical checking, anthropometric measurements and an incremental exercise test called yo-yo intermittent recovery test. 2 days later, participants performed the Repeated Sprint Ability test (RSA), and performed the Jumping Performance using 3 different events: Squat jump (SJ), Countermovement jump without (CMJ) and with arms (CMJA), and Drop jump (DJ). At the end of the training period, participants performed again the repeated sprint ability test, and the jumping performance. Results The conventional combined program improved the explosive force ability of handball players in CMJ (P=0.01), CMJA (P=0.01) and DJR (P=0.03). The change was 2.78, 2.42 and 2.62% respectively. No significant changes were noted in performances of the experimental group at the squat jump test and the drop jump with the left leg test. The training intervention also improved the running speed ability of the experimental group (P=0.003). No statistical differences were observed between lines or axes. Conclusion Additional combined training program between sprint repetition and vertical jump in the same training session positively influence the jumping ability and the sprint ability of handball players. PMID:22461962

  15. The effect of a combined high-intensity plyometric and speed training program on the running and jumping ability of male handball players.

    PubMed

    Cherif, Monsef; Said, Mohamed; Chaatani, Sana; Nejlaoui, Olfa; Gomri, Daghbaji; Abdallah, Aouidet

    2012-03-01

    The aim of this study was to investigate the effect of a combined program including sprint repetitions and drop jump training in the same session on male handball players. Twenty-two male handball players aged more than 20 years were assigned into 2 groups: experimental group (n=11) and control group (n=11). Selection was based on variables "axis" and "lines", goalkeepers were not included. The experimental group was subjected to 2 testing periods (test and retest) separated by 12 weeks of an additional combined plyometric and running speed training program. The control group performed the usual handball training. The testing period comprised, at the first day, a medical checking, anthropometric measurements and an incremental exercise test called yo-yo intermittent recovery test. 2 days later, participants performed the Repeated Sprint Ability test (RSA), and performed the Jumping Performance using 3 different events: Squat jump (SJ), Countermovement jump without (CMJ) and with arms (CMJA), and Drop jump (DJ). At the end of the training period, participants performed again the repeated sprint ability test, and the jumping performance. The conventional combined program improved the explosive force ability of handball players in CMJ (P=0.01), CMJA (P=0.01) and DJR (P=0.03). The change was 2.78, 2.42 and 2.62% respectively. No significant changes were noted in performances of the experimental group at the squat jump test and the drop jump with the left leg test. The training intervention also improved the running speed ability of the experimental group (P=0.003). No statistical differences were observed between lines or axes. Additional combined training program between sprint repetition and vertical jump in the same training session positively influence the jumping ability and the sprint ability of handball players.

  16. The Effects of Multiple Sets of Squats and Jump Squats on Mechanical Variables.

    PubMed

    Rossetti, Michael L; Munford, Shawn N; Snyder, Brandon W; Davis, Shala E; Moir, Gavin L

    2017-07-28

    The mechanical responses to two non-ballistic squat and two ballistic jump squat protocols performed over multiple sets were investigated. One protocol from each of the two non-ballistic and ballistic conditions incorporated a pause between the eccentric and concentric phases of the movements in order to determine the influence of the coupling time on the mechanical variables and post-activation potentiation (PAP). Eleven men (age: 21.9 ± 1.8 years; height: 1.79 ± 0.05 m; mass: 87.0 ± 7.4 kg) attended four sessions where they performed multiple sets of squats and jump squats with a load equivalent to 30% 1-repeititon maximum under one of the following conditions: 1) 3 × 4 repetitions of non-ballistic squats (30N-B); 2) 3 × 4 repetitions of non-ballistic squats with a 3-second pause between the eccentric and concentric phases of each repetition (30PN-B); 3) 3 × 4 repetitions of ballistic jump squats (30B); 4) 3 × 4 repetitions of ballistic jump squats with a 3-second pause between the eccentric and concentric phases of each repetition (30PB). Force plates were used to calculate variables including average vertical velocity, average vertical force (GRF), and average power output (PO). Vertical velocities during the ballistic conditions were significantly greater than those attained during the non-ballistic conditions (mean differences: 0.21 - 0.25 m/s, p<0.001, effect sizes [ES]: 1.70 - 1.89) as were GRFs (mean differences: 478 - 526 N, p<0.001, ES: 1.61 - 1.63), and PO (mean differences: 711 - 869 W, p<0.001, ES: 1.66 - 1.73). Moreover, the increase in PO across the three sets in 30B was significantly greater than the changes observed during 30N-B, 30PN-B, and 30PB (p≤0.015). The pause reduced the mechanical variables during both the non-ballistic and ballistic conditions, although the differences were not statistically significant (p>0.05). Ballistic jump squats may be an effective exercise for developing PO given the high velocities and forces generated in these exercises. Furthermore, the completion of multiple sets of jump squats may induce PAP to enhance PO. The coupling times between the eccentric and concentric phases of the jump squats should be short in order to maximize the GRF and PO across the sets.

  17. Unipedal Postural Balance and Countermovement Jumps After a Warm-up and Plyometric Training Session: A Randomized Controlled Trial.

    PubMed

    Romero-Franco, Natalia; Jiménez-Reyes, Pedro

    2015-11-01

    The purpose of this study was to analyze the immediate effects of a plyometric training protocol on unipedal postural balance and countermovement jumps. In addition, we analyzed the effects of a warm-up on these parameters. Thirty-two amateur male sprinters (24.9 ± 4.1 years; 72.3 ± 10.7 kg; 1.78 ± 0.05 m; 22.6 ± 3.3 kg·m) were randomly sorted into a control group (n = 16) (they did not perform any physical activity) and a plyometric training group (n = 16) (they performed a 15-minute warm-up and a high-intensity plyometric protocol consisting of 10 sets of 15 vertical jumps). Before and after the warm-up, and immediately after and 5 minutes after the plyometric protocol, all athletes indicated the perceived exertion on calf and quad regions on a scale from 0 (no exertion) to 10 (maximum exertion). They also carried out a maximum countermovement jump and a unipedal postural balance test (athletes would remain as still as possible for 15 seconds in a left leg and right leg support stance). Results showed that, in the plyometric group, length and velocity of center-of-pressure movement in right leg support stance increased compared with baseline (p = 0.001 and p = 0.004, respectively) and to the control group (p = 0.035 and p = 0.029, respectively) immediately after the plyometric protocol. In addition, the countermovement jump height decreased right after the plyometric protocol (p < 0.001). The perceived exertion on calf and quad regions increased after the plyometry (p < 0.001). Five minutes later, these parameters remained deteriorated despite a slight recovery (length: p = 0.044; velocity: p = 0.05; countermovement jump height: p < 0.001; local exertion: p < 0.001). Data also showed that countermovement jump height improved after the warm-up (p = 0.021), but unipedal postural balance remained unaltered. As a conclusion, high-intensity plyometric exercises blunt unipedal postural balance and countermovement jump performance. The deterioration lasts at least 5 minutes, which may influence future exercises in the training session. Coaches should plan the training routine according to the immediate effects of plyometry on postural balance and vertical jumps, which play a role in injury prevention and sports performance.

  18. Effects of passive muscle stiffness measured by Shear Wave Elastography, muscle thickness, and body mass index on athletic performance in adolescent female basketball players.

    PubMed

    Akkoc, Orkun; Caliskan, Emine; Bayramoglu, Zuhal

    2018-05-02

    Athletic performance in basketball comprises the contributions of anaerobic and aerobic performance. The aim was to investigate the effects of passive muscle stiffness, using shear wave elastography (SWE), as well as muscle thickness, and body mass index (BMI), on both aerobic and anaerobic performances in adolescent female basketball players.Material and methods: Anaerobic and aerobic (VO2max) performance was assessed using the vertical jump and shuttle run tests, respectively, in 24 volunteer adolescent female basketball players. Passive muscle stiffness of the rectus femoris (RF), gastrocnemius medialis (GM), gastrocnemius lateralis (GL) and soleus muscles were measured by SWE, and the thickness of each muscle was assessed by gray scale ultrasound. The BMI of each participant was also calculated. The relationship between vertical jump and VO2max values, and those of muscle stiffness, thickness, and BMI were investigated via Pearson's correlation and multivariate linear regression analysis. No significant correlation was observed between muscle stiffness and VO2max or vertical jump (p>0.05). There was significant negative correlation between GL thickness and VO2max (p=0.026), and soleus thickness and VO2max (p=0.046). There was also a significant negative correlation between BMI and VO2max (p=0.001). Conclusions: This preliminary work can be a reference for future research. Although our article indicates that passive muscle stiffness measured by SWE is not directly related to athletic performance, future comprehensive studies should be performed in order to illuminate the complex nature of muscles. The  maintenance of lower muscle thickness and optimal BMI may be associated with better aerobic performance.

  19. Effects of a contrast training programme on jumping, sprinting and agility performance of prepubertal basketball players.

    PubMed

    Latorre Román, Pedro Ángel; Villar Macias, Francisco Javier; García Pinillos, Felipe

    2018-04-01

    The purpose of this study was to examine the effects of a 10 week contrast training (CT) programme (isometric + plyometric) on jumping, sprinting abilities and agility performance in prepubertal basketball players. Fifty-eight children from a basketball academy (age: 8.72 ± 0.97 years; body mass index: 17.22 ± 2.48 kg/m 2 ) successfully completed the study. Participants were randomly assigned to experimental groups (EG, n = 30) and control groups (CG, n = 28). The CT programme was included in the experimental group's training sessions - twice a week - as part of their usual weekly training regime. This programme included 3 exercises: 1 isometric and 2 plyometric. Jumping, sprinting and agility performance were assessed before and after the training programme. Significant differences were found in posttest between EG and CG in sprint and T-test: EG showed better results than CG. Furthermore, there were significant differences in posttest-pretest between EG and CG in squat jump, countermovement jump, drop jump, sprint and T-test with the EG showing better results than CG. The CT programme led to increases in vertical jump, sprint and agility levels, so that the authors suggest that prepubertal children exhibit high muscular strength trainability.

  20. Importance of Speed and Power in Elite Youth Soccer Depends on Maturation Status.

    PubMed

    Murtagh, Conall F; Brownlee, Thomas E; OʼBoyle, Andrew; Morgans, Ryland; Drust, Barry; Erskine, Robert M

    2018-02-01

    Murtagh, CF, Brownlee, TE, O'Boyle, A, Morgans, R, Drust, B, and Erskine, RM. Importance of speed and power in elite youth soccer depends on maturation status. J Strength Cond Res 32(2): 297-303, 2018-Maturation status is a confounding factor when identifying talent in elite youth soccer players (ESP). By comparing performance of ESP and control participants (CON) matched for maturation status, the aims of our study were to establish the importance of acceleration, sprint, horizontal-forward jump, and vertical jump capabilities for determining elite soccer playing status at different stages of maturation. Elite youth soccer players (n = 213; age, 14.0 ± 3.5 years) and CON (n = 113; age, 15.0 ± 4.4 years) were grouped using years from/to predicted peak height velocity (PHV) to determine maturation status (ESP: pre-PHV, n = 100; mid-PHV, n = 25; post-PHV, n = 88; CON: pre-PHV, n = 44; mid-PHV, n = 15; post-PHV, n = 54). Participants performed 3 reps of 10- and 20-m sprint, bilateral vertical countermovement jump (BV CMJ), and bilateral horizontal-forward CMJ (BH CMJ). Elite youth soccer players demonstrated faster 10-m (p < 0.001) and 20-m sprint (p < 0.001) performance than CON at all stages of maturation. Mid-PHV and post-PHV ESP achieved greater BV CMJ height (p < 0.001) and BH CMJ distance (ESP vs. CON; mid-PHV: 164.32 ± 12.75 vs. 136.53 ± 21.96 cm; post-PHV: 197.57 ± 17.05 vs. 168.06 ± 18.50 cm; p < 0.001) compared with CON, but there was no difference in BV or BH CMJ between pre-PHV ESP and CON. Although 10 and 20 m and sprint performance may be determinants of elite soccer playing status at all stages of maturation, horizontal-forward and vertical jumping capabilities only discriminate ESP from CON participants at mid- and post-PHV. Our data therefore suggest that soccer talent identification protocols should include sprint, but not jump assessments in pre-PHV players.

  1. Physical Performance Comparison between Under 15 Elite and Sub-Elite Soccer Players

    PubMed Central

    Trecroci, Athos; Milanović, Zoran; Frontini, Matteo; Iaia, F. Marcello; Alberti, Giampietro

    2018-01-01

    Abstract The aim of this study was to compare the physical performance profile among young soccer players of different competitive levels. Two teams of elite (n = 22) and sub-elite (n = 22) soccer players at national (highly skilled) and regional (moderately skilled) level were recruited in the study. All participants were tested using a modified Illinois change of direction speed test, a T-drill with and without a ball, a countermovement jump, and a 10-m sprint. The analysis revealed significant differences in favor of elite players in sprint (d = 1.54, large) and vertical jump (d = 2.03, very large) outcomes, while no differences were observed in both modified Illinois change of direction speed (d = 0.16, trivial) and T-drill (d = 0.20, small) tests between the groups. The ability to change direction and speed with and without a ball was found not to be suitable enough to highlight the difference among youth players with moderate-to-high level of play. In conclusion, multi-testing approach based on task-related power should include vertical jump and sprint performance to delineate players of a higher level. PMID:29599873

  2. Relationship Between Body Fatness and Performance in Preadolescent Children.

    ERIC Educational Resources Information Center

    Hensley, Larry D.; And Others

    This study investigated the relationship between physical performance tests and body fatness in young children, and the extent to which differences in performance between the sexes could be explained by differences in body fatness. Measurements of age, height, weight, skinfold thicknesses, and performance scores on the vertical jump, standing…

  3. Differences in muscle mechanical properties between elite power and endurance athletes: a comparative study.

    PubMed

    Loturco, Irineu; Gil, Saulo; Laurino, Cristiano Frota de Souza; Roschel, Hamilton; Kobal, Ronaldo; Cal Abad, Cesar C; Nakamura, Fabio Y

    2015-06-01

    The aim of this study was to compare muscle mechanical properties (using tensiomyography-TMG) and jumping performance of endurance and power athletes and to quantify the associations between TMG parameters and jumping performance indices. Forty-one high-level track and field athletes from power (n = 22; mean ± SD age, height, and weight were 27.2 ± 3.6 years; 180.2 ± 5.4 cm; and 79.4 ± 8.6 kg, respectively) and endurance (endurance runners and triathletes; n = 19; mean ± SD age, height, and weight were 27.1 ± 6.9 years; 169.6 ± 9.8 cm; 62.2 ± 13.1 kg, respectively) specialties had the mechanical properties of their rectus femoris (RF) and biceps femoris (BF) assessed by TMG. Muscle displacement (Dm), contraction time (Tc), and delay time (Td) were retained for analyses. Furthermore, they performed squat jumps (SJs), countermovement jumps (CMJs), and drop jumps to assess reactive strength index (RSI), using a contact platform. Comparisons between groups were performed using differences based on magnitudes, and associations were quantified by the Spearman's ρ correlation. Power athletes showed almost certain higher performance in all jumping performance indices when compared with endurance athletes (SJ = 44.9 ± 4.1 vs. 30.7 ± 6.8 cm; CMJ = 48.9 ± 4.5 vs. 33.6 ± 7.2 cm; RSI = 2.19 ± 0.58 vs. 0.84 ± 0.39, for power and endurance athletes, mean ± SD, respectively; 00/00/100, almost certain, p ≤ 0.05), along with better contractile indices reflected by lower Dm, Tc, and Td (Tc BF = 14.3 ± 2.3 vs. 19.4 ± 3.3 milliseconds; Dm BF = 1.67 ± 1.05 vs. 4.23 ± 1.75 mm; Td BF = 16.8 ± 1.6 vs. 19.6 ± 1.3 milliseconds; Tc RF = 18.3 ± 2.8 vs. 22.9 ± 4.0 milliseconds; Dm RF = 4.98 ± 3.71 vs. 8.88 ± 3.45 mm; Td RF = 17.5 ± 1.0 vs. 20.9 ± 1.6 milliseconds, for power and endurance athletes, mean ± SD, respectively; 00/00/100, almost certain, p ≤ 0.05). Moderate correlations (Spearman's ρ between -0.61 and -0.72) were found between TMG and jumping performance. The power group presented better performance in vertical jumps, supporting the validity of these tests to distinguish between endurance and power athletes. Furthermore, TMG can discriminate the "athlete-type" using noninvasive indices moderately correlated with explosive lower-body performance. In summary, both vertical jump and TMG assessments could be useful in identifying and selecting young athletes.

  4. The effect of a secondary cognitive task on landing mechanics and jump performance.

    PubMed

    Dai, Boyi; Cook, Ross F; Meyer, Elizabeth A; Sciascia, Yvonne; Hinshaw, Taylour J; Wang, Chaoyi; Zhu, Qin

    2018-06-01

    Anterior cruciate ligament (ACL) injuries commonly occur during jump-landing tasks when individuals' attention is simultaneously allocated to other objects and tasks. The purpose of the current study was to investigate the effect of allocation of attention imposed by a secondary cognitive task on landing mechanics and jump performance. Thirty-eight recreational athletes performed a jump-landing task in three conditions: no counting, counting backward by 1 s from a randomly given number, and counting backward by 7 s from a randomly given number. Three-dimensional kinematics and ground reaction forces were collected and analysed. Participants demonstrated decreased knee flexion angles at initial contact (p = 0.001) for the counting by 1 s condition compared with the no counting condition. Participants also showed increased peak posterior and vertical ground reaction forces during the first 100 ms of landing (p ≤ 0.023) and decreased jump height (p < 0.001) for the counting by 1 s and counting by 7 s conditions compared with the no counting condition. Imposition of a simultaneous cognitive challenge resulted in landing mechanics associated with increased ACL loading and decreased jump performance. ACL injury risk screening protocols and injury prevention programmes may incorporate cognitive tasks into jump-landing tasks to better simulate sports environments.

  5. The Effects of Aquatic Plyometric Training on Repeated Jumps, Drop Jumps and Muscle Damage.

    PubMed

    Jurado-Lavanant, A; Alvero-Cruz, J R; Pareja-Blanco, F; Melero-Romero, C; Rodríguez-Rosell, D; Fernandez-Garcia, J C

    2015-09-22

    The purpose of this study was to compare the effects of land- vs. aquatic based plyometric training programs on the drop jump, repeated jump performance and muscle damage. Sixty-five male students were randomly assigned to one of 3 groups: aquatic plyometric training group (APT), plyometric training group (PT) and control group (CG). Both experimental groups trained twice a week for 10 weeks performing the same number of sets and total jumps. The following variables were measured prior to, halfway through and after the training programs: creatine kinase (CK) concentration, maximal height during a drop jump from the height of 30 (DJ30) and 50 cm (DJ50), and mean height during a repeated vertical jump test (RJ). The training program resulted in a significant increase (P<0.01-0.001) in RJ, DJ30, and DJ50 for PT, whereas neither APT nor CG reached any significant improvement APT showed likely/possibly improvements on DJ30 and DJ50, respectively. Greater intra-group Effect Size in CK was found for PT when compared to APT. In conclusion, although APT seems to be a safe alternative method for reducing the stress produced on the musculoskeletal system by plyometric training, PT produced greater gains on reactive jumps performance than APT. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Olympic weightlifting training causes different knee muscle-coactivation adaptations compared with traditional weight training.

    PubMed

    Arabatzi, Fotini; Kellis, Eleftherios

    2012-08-01

    The purpose of this study was to compare the effects of an Olympic weightlifting (OL) and traditional weight (TW) training program on muscle coactivation around the knee joint during vertical jump tests. Twenty-six men were assigned randomly to 3 groups: the OL (n = 9), the TW (n = 9), and Control (C) groups (n = 8). The experimental groups trained 3 d · wk(-1) for 8 weeks. Electromyographic (EMG) activity from the rectus femoris and biceps femoris, sagittal kinematics, vertical stiffness, maximum height, and power were collected during the squat jump, countermovement jump (CMJ), and drop jump (DJ), before and after training. Knee muscle coactivation index (CI) was calculated for different phases of each jump by dividing the antagonist EMG activity by the agonist. Analysis of variance showed that the CI recorded during the preactivation and eccentric phases of all the jumps increased in both training groups. The OL group showed a higher stiffness and jump height adaptation than the TW group did (p < 0.05). Further, the OL showed a decrease or maintenance of the CI recorded during the propulsion phase of the CMJ and DJs, which is in contrast to the increase in the CI observed after TW training (p < 0.05). The results indicated that the altered muscle activation patterns about the knee, coupled with changes of leg stiffness, differ between the 2 programs. The OL program improves jump performance via a constant CI, whereas the TW training caused an increased CI, probably to enhance joint stability.

  7. Bilateral contact ground reaction forces and contact times during plyometric drop jumping.

    PubMed

    Ball, Nick B; Stock, Christopher G; Scurr, Joanna C

    2010-10-01

    Drop jumping (DJ) is used in training programs aimed to improve lower extremity explosive power. When performing double-leg drop jumps, it is important to provide an equal stimulus to both legs to ensure balanced development of the lower legs. The aim of this study was to bilaterally analyze the ground reactions forces and temporal components of drop jumping from 3 heights. Ten recreationally active male subjects completed 3 bounce-drop jumps from 3 starting heights (0.2, 0.4, and 0.6 m). Two linked force platforms were used to record left- and right-leg peak vertical force, time to peak force, average force, ground contact time, impulse and time differential. Between-height and between-leg comparisons for each variable were made using a multivariate analysis of variance with post hoc Wilcoxon tests (p < 0.05). Results indicated that force and time variables increased as drop jump height increased (p < 0.0001). Post hoc analyses showed that at 0.2- and 0.4-m bilateral differences were present in the time to peak force, average force, and impulse. No bilateral differences for any variables were shown at 0.6-m starting height. The contact time for all jumps was <0.26 seconds. At 0.2 m, only 63% of the subjects had a starting time differential of <0.01 seconds, rising to 96.3% at 0.6 m. The results indicated that 0.6 m is the suggested drop jump height to ensure that no bilateral differences in vertical forces and temporal components occur; however, shorter contact times were found at the lower heights.

  8. Effects of spine flexion and erector spinae maximal force on vertical squat jump height: a computational simulation study.

    PubMed

    Blache, Yoann; Monteil, Karine

    2015-03-01

    The purpose of this study was to evaluate the single and combined effects of initial spine flexion and maximal isometric force of the erector spinae on maximal vertical jump height during maximal squat jumping. Seven initial flexions of the 'thorax-head-arm' segment (between 20.1° and 71.6°) and five maximal isometric forces of the erector spinae (between 5600 and 8600 N) were tested. Thus, 35 squat jumps were simulated using a 2D simulation model of the musculoskeletal system. Vertical jump height varied at most about 0.094 and 0.021 m when the initial flexion of the 'thorax-head-arm' segment and the maximal force of the erector spinae were, respectively, maximal. These results were explained for the most part by the variation of total muscle work. The latter was mainly influenced by the work produced by the erector spinae which increased at most about 57 and 110 J when the initial flexion of the 'thorax-head-arm' segment and the maximal force of the erector spinae were, respectively, maximal. It was concluded that the increase in the initial flexion of the 'thorax-head-arm' segment and in the maximal isometric force of the erector spinae enables an increase in maximal vertical jump height during maximal squat jumping.

  9. Physiologic performance test differences in female volleyball athletes by competition level and player position.

    PubMed

    Schaal, Monique; Ransdell, Lynda B; Simonson, Shawn R; Gao, Yong

    2013-07-01

    The purpose of this study was to examine physiologic performance test differences by competition level (high school and Division-I collegiate athletes) and player position (hitter, setter, defensive specialist) in 4 volleyball-related tests. A secondary purpose was to establish whether a 150-yd shuttle could be used as a field test to assess anaerobic capacity. Female participants from 4 varsity high school volleyball teams (n = 27) and 2 Division-I collegiate volleyball teams (n = 26) were recruited for the study. Participants completed 4 performance-based field tests (vertical jump, agility T-test, and 150- and 300-yd shuttle runs) after completing a standardized dynamic warm-up. A 2-way multivariate analysis of variance with Bonferroni post hoc adjustments (when appropriate) and effect sizes were used for the analyses. The most important findings of this study were that (a) college volleyball athletes were older, heavier, and taller than high school athletes; (b) high school athletes had performance deficiencies in vertical jump/lower-body power, agility, and anaerobic fitness; (c) lower-body power was the only statistically significant difference in the performance test measures by player position; and (d) the correlation between the 150- and 300-yd shuttle was moderate (r = 0.488). Female high school volleyball players may enhance their ability to play collegiate volleyball by improving their vertical jump, lower-body power, agility, and anaerobic fitness. Furthermore, all player positions should emphasize lower-body power conditioning. These physical test scores provide baseline performance scores that should help strength and conditioning coaches create programs that will address deficits in female volleyball player performance, especially as they transition from high school to college.

  10. Effect of chiropractic manipulation on vertical jump height in young female athletes with talocrural joint dysfunction: a single-blind randomized clinical pilot trial.

    PubMed

    Hedlund, Sofia; Nilsson, Hans; Lenz, Markus; Sundberg, Tobias

    2014-02-01

    The main objective of this pilot study was to explore the effect of chiropractic high-velocity, low-amplitude (HVLA) manipulation on vertical jump height in young female athletes with talocrural joint dysfunction. This was a randomized assessor-blind clinical pilot trial. Twenty-two female handball players with talocrural joint dysfunction were randomized to receive either HVLA manipulation (n = 11) or sham treatment (n = 11) once a week during a 3-week period. The main outcome was change in vertical jump height from baseline to follow-up within and between groups after 3 weeks. Nineteen athletes completed the study. After 3 weeks, the group receiving HVLA manipulation (n = 11) had a statistically significant mean (SD) improvement in vertical jump height of 1.07 (1.23) cm (P = .017). The sham treatment group (n = 8) improved their vertical jump height by 0.59 (2.03) cm (P = .436). The between groups' change was 0.47 cm (95% confidence interval, -1.31 to 2.26; P = .571) in favor of the group receiving HVLA manipulation. Blinding and sham procedures were feasible, and there were no reported adverse events. The results of this pilot study show that a larger-scale study is feasible. Preliminary results suggest that chiropractic HVLA manipulation may increase vertical jump height in young female athletes with talocrural joint dysfunction. However, the clinical result in favor of HVLA manipulation compared with sham treatment needs statistical confirmation in a larger randomized clinical trial. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  11. Augmented feedback supports skill transfer and reduces high-risk injury landing mechanics: a double-blind, randomized controlled laboratory study.

    PubMed

    Myer, Gregory D; Stroube, Benjamin W; DiCesare, Christopher A; Brent, Jensen L; Ford, Kevin R; Heidt, Robert S; Hewett, Timothy E

    2013-03-01

    There is a current need to produce a simple, yet effective method for screening and targeting possible deficiencies related to increased anterior cruciate ligament (ACL) injury risk. Frontal plane knee angle (FPKA) during a drop vertical jump will decrease upon implementing augmented feedback into a standardized sport training program. Controlled laboratory study. Thirty-seven female participants (mean ± SD: age, 14.7 ± 1.5 years; height, 160.9 ± 6.8 cm; weight, 54.5 ± 7.2 kg) were trained over 8 weeks. During each session, each participant received standardized training consisting of strength training, plyometrics, and conditioning. They were also videotaped running on a treadmill at a standardized speed and performing a repeated tuck jump for 10 seconds. Study participants were randomized into 2 groups and received augmented feedback on either their jumping (AF) or sprinting (CTRL) form. Average (mean of 3 trials) and most extreme (trial with greatest knee abduction) FPKA were calculated from 2-dimensional video captured during performance of the drop vertical jump. After testing, a main effect of time was noted, with the AF group reducing their FPKA average by 37.9% over the 3 trials while the CTRL group demonstrated a 26.7% reduction average across the 3 trials (P < .05). Conversely, in the most extreme drop vertical jump trial, a significant time-by-group interaction was noted (P < .05). The AF group reduced their most extreme FPKA by 6.9° (pretest, 18.4° ± 12.3°; posttest, 11.4° ± 10.1°) on their right leg and 6.5° (pretest, 16.3° ± 14.5°; posttest, 9.8° ± 10.7°) on their left leg, which represented a 37.7% and 40.1% reduction in FPKA, respectively. In the CTRL group, no similar changes were noted in the right (pretest, 16.9° ± 14.3°; posttest, 14.0° ± 12.3°) or left leg (pretest, 9.8° ± 11.1°; posttest, 7.2° ± 9.2°) after training. Providing athletes with augmented feedback on deficits identified by the tuck jump assessment has a positive effect on their biomechanics during a different drop vertical jump task that is related to increased ACL injury risk. The ability of the augmented feedback to support the transfer of skills and injury risk factor reductions across different tasks provides exciting new evidence related to how neuromuscular training may ultimately cross over into retained biomechanics that reduce ACL injuries during sport. The tuck jump assessment's ease of use makes it a timely and economically favorable method to support ACL prevention strategies in young girls.

  12. Total and Lower Extremity Lean Mass Percentage Positively Correlates With Jump Performance.

    PubMed

    Stephenson, Mitchell L; Smith, Derek T; Heinbaugh, Erika M; Moynes, Rebecca C; Rockey, Shawn S; Thomas, Joi J; Dai, Boyi

    2015-08-01

    Strength and power have been identified as valuable components in both athletic performance and daily function. A major component of strength and power is the muscle mass, which can be assessed with dual-energy x-ray absorptiometry (DXA). The primary purpose of this study was to quantify the relationship between total body lean mass percentage (TBLM%) and lower extremity lean mass percentage (LELM%) and lower extremity force/power production during a countermovement jump (CMJ) in a general population. Researchers performed a DXA analysis on 40 younger participants aged 18-35 years, 28 middle-aged participants aged 36-55 years, and 34 older participants aged 56-75 years. Participants performed 3 CMJ on force platforms. Correlations revealed significant and strong relationships between TBLM% and LELM% compared with CMJ normalized peak vertical ground reaction force (p < 0.001, r = 0.59), normalized peak vertical power (p < 0.001, r = 0.73), and jump height (p < 0.001, r = 0.74) for the combined age groups. Most relationships were also strong within each age group, with some relationships being relatively weaker in the middle-aged and older groups. Minimal difference was found between correlation coefficients of TBLM% and LELM%. Coefficients of determination were all below 0.6 for the combined group, indicating that between-participant variability in CMJ measures cannot be completely explained by lean mass percentages. The findings have implications in including DXA-assessed lean mass percentage as a component for evaluating lower extremity strength and power. A paired DXA analysis and CMJ jump test may be useful for identifying neuromuscular deficits that limit performance.

  13. Relationships and Predictive Capabilities of Jump Assessments to Soccer-Specific Field Test Performance in Division I Collegiate Players.

    PubMed

    Lockie, Robert G; Stage, Alyssa A; Stokes, John J; Orjalo, Ashley J; Davis, DeShaun L; Giuliano, Dominic V; Moreno, Matthew R; Risso, Fabrice G; Lazar, Adrina; Birmingham-Babauta, Samantha A; Tomita, Tricia M

    2016-12-03

    Leg power is an important characteristic for soccer, and jump tests can measure this capacity. Limited research has analyzed relationships between jumping and soccer-specific field test performance in collegiate male players. Nineteen Division I players completed tests of: leg power (vertical jump (VJ), standing broad jump (SBJ), left- and right-leg triple hop (TH)); linear (30 m sprint; 0⁻5 m, 5⁻10 m, 0⁻10, 0⁻30 m intervals) and change-of-direction (505) speed; soccer-specific fitness (Yo-Yo Intermittent Recovery Test Level 2); and 7 × 30-m sprints to measure repeated-sprint ability (RSA; total time (TT), performance decrement (PD)). Pearson's correlations ( r ) determined jump and field test relationships; stepwise regression ascertained jump predictors of the tests ( p < 0.05). All jumps correlated with the 0⁻5, 0⁻10, and 0⁻30 m sprint intervals ( r = -0.65⁻-0.90). VJ, SBJ, and left- and right-leg TH correlated with RSA TT ( r = -0.51⁻-0.59). Right-leg TH predicted the 0⁻5 and 0⁻10 m intervals (R² = 0.55⁻0.81); the VJ predicted the 0⁻30 m interval and RSA TT (R² = 0.41⁻0.84). Between-leg TH asymmetry correlated with and predicted left-leg 505 and RSA PD ( r = -0.68⁻0.62; R² = 0.39⁻0.46). Improvements in jumping ability could contribute to faster speed and RSA performance in collegiate soccer players.

  14. Vertical Jumping Tests versus Wingate Anaerobic Test in Female Volleyball Players: The Role of Age

    PubMed Central

    Nikolaidis, Pantelis Theodoros; Afonso, Jose; Clemente-Suarez, Vicente Javier; Alvarado, Jose Rafael Padilla; Driss, Tarak; Knechtle, Beat; Torres-Luque, Gema

    2016-01-01

    Single and continuous vertical jumping tests, as well as the Wingate anaerobic test (WAnT), are commonly used to assess the short-term muscle power of female volleyball players; however, the relationship among these tests has not been studied adequately. Thus, the aim of the present study was to examine the relationship of single and continuous vertical jumps with the WAnT in female volleyball players. Seventy adolescent (age 16.0 ± 1.0 years, body mass 62.5 ± 7.1 kg, height 170.4 ± 6.1 cm, body fat 24.2% ± 4.3%) and 108 adult female volleyball players (age 24.8 ± 5.2 years, body mass 66.5 ± 8.7 kg, height 173.2 ± 7.4 cm, body fat 22.0% ± 5.1%) performed the squat jump (SJ), countermovement jump (CMJ), Abalakov jump (AJ), 30 s Bosco test and WAnT (peak power, Ppeak; mean power, Pmean). Mean power in the Bosco test was correlated (low to large magnitude) with Pmean of the WAnT (r = 0.27, p = 0.030 in adolescents versus r = 0.56, p < 0.001 in adults). SJ, CMJ and AJ also correlated with Ppeak (0.28 ≤ r ≤ 0.46 in adolescents versus 0.58 ≤ r ≤ 0.61 in adults) and with Pmean (0.43 ≤ r ≤ 0.51 versus 0.67 ≤ r ≤ 0.71, respectively) of the WAnT (p < 0.05). In summary, the impact of the Bosco test and WAnT on muscle power varied, especially in the younger age group. Single jumping tests had larger correlations with WAnT in adults than in adolescent volleyball players. These findings should be taken into account by volleyball coaches and fitness trainers during the assessment of short-term muscle power of their athletes.

  15. Effects of timing of signal indicating jump directions on knee biomechanics in jump-landing-jump tasks.

    PubMed

    Stephenson, Mitchell L; Hinshaw, Taylour J; Wadley, Haley A; Zhu, Qin; Wilson, Margaret A; Byra, Mark; Dai, Boyi

    2018-03-01

    A variety of the available time to react (ATR) has been utilised to study knee biomechanics during reactive jump-landing tasks. The purpose was to quantify knee kinematics and kinetics during a jump-land-jump task of three possible directions as the ATR was reduced. Thirty-four recreational athletes performed 45 trials of a jump-land-jump task, during which the direction of the second jump (lateral, medial or vertical) was indicated before they initiated the first jump, the instant they initiated the first jump, 300 ms before landing, 150 ms before landing or at the instant of landing. Knee joint angles and moments close to the instant of landing were significantly different when the ATR was equal to or more than 300 ms before landing, but became similar when the ATR was 150 ms or 0 ms before landing. As the ATR was decreased, knee moments decreased for the medial jump direction, but increased for the lateral jump direction. When the ATR is shorter than an individual's reaction time, the movement pattern cannot be pre-planned before landing. Knee biomechanics are dependent on the timing of the signal and the subsequent jump direction. Precise control of timing and screening athletes with low ATR are suggested.

  16. Acute kinematic and kinetic adaptations to wearable resistance during vertical jumping.

    PubMed

    Macadam, Paul; Simperingham, Kim D; Cronin, John B; Couture, Grace; Evison, Chloe

    2017-06-01

    One variation of vertical jump (VJ) training is resisted or weighted jump training, where wearable resistance (WR) enables jumping to be overloaded in a movement specific manner. A two-way analysis of variance with Bonferroni post hoc contrasts was used to determine the acute changes in VJ performance with differing load magnitudes and load placements. Kinematic and kinetic data were quantified using a force plate and contact mat. Twenty sport active subjects (age: 27.8 ± 3.8 years; body mass (BM): 70.2 ± 12.2 kg; height: 1.74 ± 0.78 m) volunteered to participate in the study. Subjects performed the counter movement jump (CMJ), drop jump (DJ) and pogo jump (PJ) wearing no resistance, 3% or 6% BM affixed to the upper or lower body. The main finding in terms of the landing phase was that the effect of WR was non-significant (P > .05) on peak ground reaction force. With regard to the propulsive phase the main findings were that for both the CMJ and DJ, WR resulted in a significant (P < .05) decrease in jump height (CMJ: -12% to -17%, DJ: -10% to -14%); relative peak power (CMJ: -8% to -17%, DJ: -7% to -10%); and peak velocity (CMJ: -4% to -7%, DJ: -3% to -8%); while PJ reactive strength index was significantly reduced (-15% to -21%) with all WR conditions. Consideration should be given to the inclusion of WR in sports where VJ's are important components as it may provide a novel movement specific training stimulus. Highlights WR of 3 or 6 % BM provided a means to overload the subjects in this study resulting in decreased propulsive power and velocity that lead to a reduced jump height and landing force. Specific strength exercises that closely mimic sporting performance are more likely to optimise transference, therefore WR with light loads of 3-6% body mass (BM)appear a suitable tool for movement specific overload training and maximising transference to sporting performance. Practitioners can safely load their athletes with upper or lower body WR of 3-6% BM without fear of overloading the athletesover and above the landing forces they are typically accustomed too. As a training stimulus it would seem the WR loading provides adequate overload and athletes should focus on velocity of movement to improve power output and jump height i.e. take-off velocity.

  17. The biomechanics of one-footed vertical jump performance in unilateral trans-tibial amputees.

    PubMed

    Strike, S C; Diss, C

    2005-04-01

    This study investigated vertical jumps from single support for two trans-tibial amputees from a standing position. The mechanisms used to achieve flight and the compensatory mechanisms used in the production of force in the absence of plantarflexors are detailed. Two participants completed countermovement maximum vertical jumps from the prosthetic and the sound limbs. The jumps were recorded by a 7-camera 512 VICON motion analysis system integrated with a Kistler forceplate. Flight height was 5 cm jumping from the prosthetic side and 18-19 cm from the sound side. The countermovement was shallower and its duration was less on the prosthetic side compared to the sound side. The reduced and passive range of motion at the prosthesis resulted in an asymmetrical countermovement for both participants with the knee and ankle joints most affected. The duration of the push-off phase was not consistently affected. At take-off the joints on the sound side reached close to full extension while on the prosthetic side they remained more flexed. Joint extension velocity in the push-off phase was similar for both participants on the sound side, though the timing for participant 2 illustrated earlier peaks. The pattern of joint extension velocity was not a smooth proximal to distal sequence on the prosthetic side. The magnitude and timing of the inter-segment extensor moments were asymmetrical for both subjects. The power pattern was asymmetrical in both the countermovement and push-off phases; the lack of power generation at the ankle affected that produced at the remaining joints.

  18. The Effect of Teeth Clenching on Dynamic Balance at Jump-Landing: A Pilot Study.

    PubMed

    Nakamura, Tomomasa; Yoshida, Yuriko; Churei, Hiroshi; Aizawa, Junya; Hirohata, Kenji; Ohmi, Takehiro; Ohji, Shunsuke; Takahashi, Toshiyuki; Enomoto, Mitsuhiro; Ueno, Toshiaki; Yagishita, Kazuyoshi

    2017-07-01

    The aim of this study was to analyze the effect of teeth clenching on dynamic balance at jump landing. Twenty-five healthy subjects performed jump-landing tasks with or without teeth clenching. The first 3 trials were performed with no instruction; subsequently, subjects were ordered to clench at the time of landing in the following 3 trials. We collected the data of masseter muscle activity by electromyogram, the maximum vertical ground reaction force (vGRFmax) and center of pressure (CoP) parameters by force plate during jump-landing. According to the clenching status of control jump-landing, all participants were categorized into a spontaneous clenching group and no clenching group, and the CoP data were compared. The masseter muscle activity was correlated with vGRFmax during anterior jump-landing, while it was not correlated with CoP. In comparisons between the spontaneous clenching and the no clenching group during anterior jump-landing, the spontaneous clenching group showed harder landing and the CoP area became larger than the no clenching group. There were no significant differences between pre- and postintervention in both spontaneous clenching and no clenching groups. The effect of teeth clenching on dynamic balance during jump-landing was limited.

  19. Force-velocity property of leg muscles in individuals of different level of physical fitness

    PubMed Central

    Cuk, Ivan; Mirkov, Dragan; Nedeljkovic, Aleksandar; Kukolj, Milos; Ugarkovic, Dusan; Jaric, Slobodan

    2016-01-01

    The present study explored the method of testing muscle mechanical properties through the linear force-velocity (F–V) relationships obtained from loaded vertical jumps. Specifically, we hypothesised that the F-V relationship parameters depicting the force, power, and velocity of the tested muscles will differ among individuals of different physical fitness. Strength trained, physically active, and sedentary male participants (N=10+10+10; age 20–29 years) were tested on maximum countermovement and squat jumps where manipulation of external loads provided a range of F and V data. The observed F–V relationships of the tested leg muscles were approximately linear and mainly strong (median correlation coefficients ranged from 0.77 to 0.92; all p < 0.05), independently of either the tested group or the jump type. The maximum power revealed higher values in the strength trained than in the physically active and sedentary participants. This difference originated from the differences in F-intercepts, rather than from the V-intercepts. We conclude that the observed parameters could be sensitive enough to detect the differences among both the individuals of different physical fitness and various jump types. The present findings support using loaded vertical jumps and, possibly, other maximum performance multi-joint movements for the assessment of mechanical properties of active muscles. PMID:27111493

  20. The potential of toe flexor muscles to enhance performance.

    PubMed

    Goldmann, Jan-Peter; Sanno, Maximilian; Willwacher, Steffen; Heinrich, Kai; Brüggemann, Gert-Peter

    2013-01-01

    The metatarsal phalangeal joint (MPJ) and its crossing toe flexor muscles (TFM) represent the link between the large energy generating leg extensor muscles and the ground. The purpose of this study was to examine the functional adaptability of TFM to increased mechanical stimuli and the effects on walking, running and jumping performance. Fifteen men performed a heavy resistance TFM strength training with 90% of the maximal voluntary isometric contraction (MVIC) for 7 weeks (560 contractions) for the left and right foot. Maximal MPJ and ankle plantar flexion moments during MVICs were measured in dynamometers before and after the intervention. Motion analyses (inverse dynamics) were performed during barefoot walking, running, and vertical and horizontal jumping. Athletic performance was determined by measuring jump height and distance. Left (0.21 to 0.38 Nm · kg(-1); P < 0.001) and right (0.24 to 0.40 Nm · kg(-1); P < 0.001) MPJ plantar flexion moments in the dynamometer, external MPJ dorsiflexion moments (0.69 to 0.75 Nm · kg(-1); P = 0.012) and jump distance (2.25 to 2.31 m; P = 0.006) in horizontal jumping increased significantly. TFM responded highly to increased loading within a few weeks. The increased force potential made a contribution to an athlete's performance enhancement.

  1. Game-induced fatigue patterns in elite female soccer.

    PubMed

    Krustrup, Peter; Zebis, Mette; Jensen, Jack M; Mohr, Magni

    2010-02-01

    The purpose was to examine the fatigue pattern of elite female soccer players after competitive games. Soccer players (n = 23) from the Danish women Premier League performed a countermovement vertical jump test, a repeated 30-m sprint test, and the Yo-Yo intermittent endurance level 2 (Yo-Yo IE2) test at rested state and after a competitive game. Average heart rate during the game was 86 +/- 1% of maximal heart rate with no differences between halves. Blood lactate was 5.1 +/- 0.5 mmol.L after the first half, which was higher (p < 0.05) than after the second half (2.7 +/- 0.4 mmol.L). Yo-Yo IE2 performance was 484 +/- 50 m after the game, which was 62% lower (p < 0.05) than at rested state (1,265 +/- 133 m). Average sprinting time of three 30-m sprints was 5.06 +/- 0.06 seconds after the game, which was 4% slower (p < 0.05) than at rest (4.86 +/- 0.06 seconds). No game-induced effect was observed on vertical jump performance. Significant inverse correlations were observed between Yo-Yo IE2 test performance and fatigue index during the repeated sprint test both at rest (r = -0.76, p < 0.05) and after the game (r = -0.66, p < 0.05). The study demonstrates that the type of fatigue that occurs after a female soccer game does cause marked impairment in intense intermittent exercise and repeated sprint performance but does not affect vertical jump performance. These findings support the notion that decrements in distance covered by sprinting and high-speed running toward the end of elite female games are caused by fatigue.

  2. Effect of hang cleans or squats paired with countermovement vertical jumps on vertical displacement.

    PubMed

    Andrews, Tedi R; Mackey, Theresa; Inkrott, Thomas A; Murray, Steven R; Clark, Ida E; Pettitt, Robert W

    2011-09-01

    Complex training is characterized by pairing resistance exercise with plyometric exercise to exploit the postactivation potentiation (PAP) phenomenon, thereby promising a better training effect. Studies on PAP as measured by human power performances are equivocal. One issue may be the lack of analyses across multiple sets of paired exercises, a common practice used by athletes. We evaluated countermovement vertical jump (CMJ) performance in 19 women, collegiate athletes in 3 of the following trials: (a) CMJs-only, where 1 set of CMJs served as a conditioning exercise, (b) heavy-load, back squats paired with CMJs, and (c) hang cleans paired with CMJs. The CMJ vertical displacement (3-attempt average), as measured with digital video, served as the dependent variable of CMJ performance. Across 3 sets of paired-exercise regimens, CMJ-only depreciated 1.6 cm and CMJ paired with back squats depreciated 2.0 cm (main effect, p < 0.05). Conversely, CMJ paired with hang cleans depreciated 0.30 cm (interaction, p < 0.05). Thus, the best complex training scheme was achieved by pairing CMJs with hang cleans in comparison to back squats or CMJs in and of themselves. Future research on exercise modes of complex training that best help athletes preserve and train with the highest power possible, in a given training session, is warranted.

  3. Reliability of fitness tests using methods and time periods common in sport and occupational management.

    PubMed

    Burnstein, Bryan D; Steele, Russell J; Shrier, Ian

    2011-01-01

    Fitness testing is used frequently in many areas of physical activity, but the reliability of these measurements under real-world, practical conditions is unknown. To evaluate the reliability of specific fitness tests using the methods and time periods used in the context of real-world sport and occupational management. Cohort study. Eighteen different Cirque du Soleil shows. Cirque du Soleil physical performers who completed 4 consecutive tests (6-month intervals) and were free of injury or illness at each session (n = 238 of 701 physical performers). Performers completed 6 fitness tests on each assessment date: dynamic balance, Harvard step test, handgrip, vertical jump, pull-ups, and 60-second jump test. We calculated the intraclass coefficient (ICC) and limits of agreement between baseline and each time point and the ICC over all 4 time points combined. Reliability was acceptable (ICC > 0.6) over an 18-month time period for all pairwise comparisons and all time points together for the handgrip, vertical jump, and pull-up assessments. The Harvard step test and 60-second jump test had poor reliability (ICC < 0.6) between baseline and other time points. When we excluded the baseline data and calculated the ICC for 6-month, 12-month, and 18-month time points, both the Harvard step test and 60-second jump test demonstrated acceptable reliability. Dynamic balance was unreliable in all contexts. Limit-of-agreement analysis demonstrated considerable intraindividual variability for some tests and a learning effect by administrators on others. Five of the 6 tests in this battery had acceptable reliability over an 18-month time frame, but the values for certain individuals may vary considerably from time to time for some tests. Specific tests may require a learning period for administrators.

  4. The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks

    PubMed Central

    2011-01-01

    The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground. Single-leg stop-jump exhibited greater peak knee extension and valgus moment during the landing phase than the double-leg stop-jump task. Single-leg stop-jump extended the hip joint at initial foot contact with the ground. PMID:24149308

  5. Integrated injury prevention program improves balance and vertical jump height in children.

    PubMed

    DiStefano, Lindsay J; Padua, Darin A; Blackburn, J Troy; Garrett, William E; Guskiewicz, Kevin M; Marshall, Stephen W

    2010-02-01

    Implementing an injury prevention program to athletes under age 12 years may reduce injury rates. There is limited knowledge regarding whether these young athletes will be able to modify balance and performance measures after completing a traditional program that has been effective with older athletes or whether they require a specialized program for their age. The purpose of this study was to compare the effects of a pediatric program, which was designed specifically for young athletes, and a traditional program with no program in the ability to change balance and performance measures in youth athletes. We used a cluster-randomized controlled trial to evaluate the effects of the programs before and after a 9-week intervention period. Sixty-five youth soccer athletes (males: n = 37 mass = 34.16 +/- 5.36 kg, height = 143.07 +/- 6.27 cm, age = 10 +/- 1 yr; females: n = 28 mass = 33.82 +/- 5.37 kg, height = 141.02 +/- 6.59 cm) volunteered to participate and attended 2 testing sessions in a research laboratory. Teams were cluster-randomized to either a pediatric or traditional injury prevention program or a control group. Change scores for anterior-posterior and medial-lateral time-to-stabilization measures and maximum vertical jump height and power were calculated from pretest and post-test sessions. Contrary with our original hypotheses, the traditional program resulted in positive changes, whereas the pediatric program did not result in any improvements. Anterior-posterior time-to-stabilization decreased after the traditional program (mean change +/- SD = -0.92 +/- 0.49 s) compared with the control group (-0.49 +/- 0.59 s) (p = 0.003). The traditional program also increased vertical jump height (1.70 +/- 2.80 cm) compared with the control group (0.20 +/- 0.20 cm) (p = 0.04). There were no significant differences between control and pediatric programs. Youth athletes can improve balance ability and vertical jump height after completing an injury prevention program. Training specificity appears to affect improvements and should be considered with future program design.

  6. Dynamic Warm-Up Protocols, With and Without a Weighted Vest, and Fitness Performance in High School Female Athletes

    PubMed Central

    Faigenbaum, Avery D; McFarland, James E; Schwerdtman, Jeff A; Ratamess, Nicholas A; Kang, Jie; Hoffman, Jay R

    2006-01-01

    Context: Recent authors have not found substantial evidence to support the use of static stretching for improving performance, so interest in dynamic warm-up procedures has risen. Our findings may improve the understanding of the acute effects of different types of pre-exercise protocols on performance and may help clinicians develop effective warm-up protocols for sports practice and competition. Objective: To examine the acute effects of 4 warm-up protocols with and without a weighted vest on anaerobic performance in female high school athletes. Design: Randomized, counterbalanced, repeated-measures design. Setting: High school fitness center. Patients or Other Participants: Eighteen healthy high school female athletes (age = 15.3 ± 1.2 years, height = 166.3 ± 9.1 cm, mass = 61.6 ± 10.4 kg). Intervention(s): After 5 minutes of jogging, subjects performed 4 randomly ordered warm-up protocols: (1) Five static stretches (2 × 30 seconds) (SS), (2) nine moderate-intensity to high-intensity dynamic exercises (DY), (3) the same 9 dynamic exercises performed with a vest weighted with 2% of body mass (DY2), and (4) the same 9 dynamic exercises performed with a vest weighted with 6% of body mass (DY6). Main Outcome Measure(s): Vertical jump, long jump, seated medicine ball toss, and 10-yard sprint. Results: Vertical jump performance was significantly greater after DY (41.3 ± 5.4 cm) and DY2 (42.1 ± 5.2 cm) compared with SS (37.1 ± 5.1 cm), and long jump performance was significantly greater after DY2 (180.5 ± 20.3 cm) compared with SS (160.4 ± 20.8 cm) ( P ≤ .05). No significant differences between trials were observed for the seated medicine ball toss or 10-yard sprint. Conclusions: A dynamic warm-up performed with a vest weighted with 2% of body mass may be the most effective warm-up protocol for enhancing jumping performance in high school female athletes. PMID:17273458

  7. The Three-Dimensionality of Spiral Shocks: Did Chondrules Catch a Breaking Wave?

    NASA Astrophysics Data System (ADS)

    Boley, A. C.; Durisen, R. H.; Pickett, M. K.

    2005-12-01

    Spiral shocks in vertically stratified disks lead to hydraulic/shock-jumps (hs-jumps) that stimulate large scale (tenths of an AU or more) radial and vertical motions, breaking surface waves, high-altitude shocks, and vortical flows. These effects are demonstrated by three-dimensional hydrodynamics simulations in Solar Nebula models. Trajectories of fluid elements, along with their thermal histories, suggest that hs-jumps mix the nebular gas and provide diverse pre-shock conditions, some of which are conducive to chondrule formation. In addition, hs-jumps may provide an energy source for driving nebular turbulence to size-sort chondrules.

  8. Repeated sprint ability related to recovery time in young soccer players.

    PubMed

    Padulo, J; Tabben, M; Ardigò, L P; Ionel, M; Popa, C; Gevat, C; Zagatto, A M; Dello Iacono, A

    2015-01-01

    This study aimed to describe the influence of recovery duration during a repeated sprint ability (RSA) test (6 × 40 m) by investigating a number of variables, such as general performance, metabolic demand, and muscular stretch-shortening performance. Seventeen male soccer outfield players (16 ± 0 years, 66 ± 10 kg) performed three field shuttle-running tests with 15, 20, and 25-sec recoveries. In addition to specific shuttle test's variables, blood lactate concentration and vertical jump height were assessed. Resulting measures were highly reliable (intra-class correlation coefficient up to 0.86). 25-sec recovery improved test performance (-3% total time from 15-sec to 25-sec recovery), vertical jump height (+7% post-test height from 15-sec to 25-sec recovery), and decreased blood lactate accumulation (-33% post-test from 15-sec to 25-sec recovery). Study findings suggest that metabolic acidosis plays a role in worsening performance and fatigue development during the shuttle test. A 25-sec recovery duration maximized performance, containing metabolic-anaerobic power involvement and muscular stretch-shortening performance deterioration during a RSA test.

  9. Effect of Progressive Volume-Based Overload During Plyometric Training on Explosive and Endurance Performance in Young Soccer Players.

    PubMed

    Ramírez-Campillo, Rodrigo; Henríquez-Olguín, Carlos; Burgos, Carlos; Andrade, David C; Zapata, Daniel; Martínez, Cristian; Álvarez, Cristian; Baez, Eduardo I; Castro-Sepúlveda, Mauricio; Peñailillo, Luis; Izquierdo, Mikel

    2015-07-01

    The purpose of the study was to compare the effects of progressive volume-based overload with constant volume-based overload on muscle explosive and endurance performance adaptations during a biweekly short-term (i.e., 6 weeks) plyometric training intervention in young soccer players. Three groups of young soccer players (age 13.0 ± 2.3 years) were divided into: control (CG; n = 8) and plyometric training with (PPT; n = 8) and without (NPPT; n = 8) a progressive increase in volume (i.e., 16 jumps per leg per week, with an initial volume of 80 jumps per leg each session). Bilateral and unilateral horizontal and vertical countermovement jump with arms (CMJA), 20-cm drop jump reactive strength index (RSI20), maximal kicking velocity (MKV), 10-m sprint, change of direction speed (CODS), and Yo-Yo intermittent recovery level 1 test (Yo-Yo IR1) were measured. Although both experimental groups significantly increased CMJA, RSI20, CODS, and endurance performance, only PPT showed a significant improvement in MKV and 10-m sprint time. In addition, only PPT showed a significantly higher performance improvement in jumping, MKV, and Yo-Yo IR1 compared with CG. Also, PPT showed higher meaningful improvement compared with NPPT in all (except 1) jump performance measures. Furthermore, although PPT involved a higher total volume compared with NPPT, training efficiency (i.e., percentage change in performance/total jump volume) was similar between groups. Our results show that PPT and NPPT ensured significant improvement in muscle explosive and endurance performance measures. However, a progressive increase in plyometric training volume seems more advantageous to induce soccer-specific performance improvements.

  10. Acute Effects of Two Different Resistance Circuit Training Protocols on Performance and Perceived Exertion in Semiprofessional Basketball Players.

    PubMed

    Freitas, Tomás T; Calleja-González, Julio; Alarcón, Francisco; Alcaraz, Pedro E

    2016-02-01

    This study aimed to investigate the acute effects of two different resistance circuit training protocols on basketball players' physical and technical performance and rating of perceived exertion (RPE). In a repeated-measures, crossover experimental design, 9 semiprofessional basketball players performed a Power Circuit Training (PCT; 45% 1RM) and a High-Resistance Circuit Training (HRC; 6RM), on consecutive weeks. Vertical and horizontal jump performance, 3-points shooting accuracy, repeated-sprint ability (RSA), agility, and upper body power output were measured before and after training. The RPE was assessed 20 minutes after resistance training. One-way repeated-measures analysis of variance showed performance decrements in vertical jump height and peak power, horizontal jump distance, 3-points percentage, bench-press power output, RSA total and ideal time, and agility T-Test at total time following HRC, but not PCT (p ≤ 0.05). The RPE was higher in HRC compared with PCT. The results of this study indicated that HRC was perceived as being harder and produced higher fatigue levels, which in turn lowered acute performance. However, low-to-moderate intensity loads did not negatively affect performance. Thus, completing a PCT session may be the most appropriate option before a practice or game as it avoids acute-resistance-training-induced performance decrements. However, if the objective of the basketball session is to develop or perfect technical skills during fatiguing conditions, HRC may be the more suitable option.

  11. Relationships and Predictive Capabilities of Jump Assessments to Soccer-Specific Field Test Performance in Division I Collegiate Players

    PubMed Central

    Lockie, Robert G.; Stage, Alyssa A.; Stokes, John J.; Orjalo, Ashley J.; Davis, DeShaun L.; Giuliano, Dominic V.; Moreno, Matthew R.; Risso, Fabrice G.; Lazar, Adrina; Birmingham-Babauta, Samantha A.; Tomita, Tricia M.

    2016-01-01

    Leg power is an important characteristic for soccer, and jump tests can measure this capacity. Limited research has analyzed relationships between jumping and soccer-specific field test performance in collegiate male players. Nineteen Division I players completed tests of: leg power (vertical jump (VJ), standing broad jump (SBJ), left- and right-leg triple hop (TH)); linear (30 m sprint; 0–5 m, 5–10 m, 0–10, 0–30 m intervals) and change-of-direction (505) speed; soccer-specific fitness (Yo-Yo Intermittent Recovery Test Level 2); and 7 × 30-m sprints to measure repeated-sprint ability (RSA; total time (TT), performance decrement (PD)). Pearson’s correlations (r) determined jump and field test relationships; stepwise regression ascertained jump predictors of the tests (p < 0.05). All jumps correlated with the 0–5, 0–10, and 0–30 m sprint intervals (r = −0.65–−0.90). VJ, SBJ, and left- and right-leg TH correlated with RSA TT (r = −0.51–−0.59). Right-leg TH predicted the 0–5 and 0–10 m intervals (R2 = 0.55–0.81); the VJ predicted the 0–30 m interval and RSA TT (R2 = 0.41–0.84). Between-leg TH asymmetry correlated with and predicted left-leg 505 and RSA PD (r = −0.68–0.62; R2 = 0.39–0.46). Improvements in jumping ability could contribute to faster speed and RSA performance in collegiate soccer players. PMID:29910304

  12. Plyometric Long Jump Training With Progressive Loading Improves Kinetic and Kinematic Swimming Start Parameters.

    PubMed

    Rebutini, Vanessa Z; Pereira, Gleber; Bohrer, Roberta C D; Ugrinowitsch, Carlos; Rodacki, André L F

    2016-09-01

    Rebutini, VZ, Pereira, G, Bohrer, RCD, Ugrinowitsch, C, and Rodacki, ALF. Plyometric long jump training with progressive loading improves kinetic and kinematic swimming start parameters. J Strength Cond Res 30(9): 2392-2398, 2016-This study was aimed to determine the effects of a plyometric long jump training program on torque around the lower limb joints and kinetic and kinematics parameters during the swimming jump start. Ten swimmers performed 3 identical assessment sessions, measuring hip and knee muscle extensors during maximal voluntary isometric contraction and kinetic and kinematics parameters during the swimming jump start, at 3 instants: INI (2 weeks before the training program, control period), PRE (2 weeks after INI measurements), and POST (24-48 hours after 9 weeks of training). There were no significant changes from INI to PRE measurements. However, the peak torque and rate of torque development increased significantly from PRE to POST measurements for both hip (47 and 108%) and knee (24 and 41%) joints. There were significant improvements to the horizontal force (7%), impulse (9%), and angle of resultant force (19%). In addition, there were significant improvements to the center of mass displacement (5%), horizontal takeoff velocity (16%), horizontal velocity at water entrance (22%), and peak angle velocity for the knee (15%) and hip joints (16%). Therefore, the plyometric long jump training protocol was effective to enhance torque around the lower limb joints and to control the resultant vector direction, to increase the swimming jump start performance. These findings suggest that coaches should use long jump training instead of vertical jump training to improve swimming start performance.

  13. Contributing factors to performance of a medicine ball explosive power test: a comparison between jump and nonjump athletes.

    PubMed

    Stockbrugger, Barry A; Haennel, Robert G

    2003-11-01

    The present study examined the factors contributing to performance of a backward overhead medicine ball throw (B-MBT) across 2 types of athletes. Twenty male volleyball players (jump athletes) and 20 wrestlers (nonjump athletes) were evaluated on 4 measures of power, including B-MBT, chest medicine ball throw (C-MBT), countermovement vertical jump (CMJ), and power index (PI). The athletes also completed 3 measures of strength: a 1-repetition-maximum (1RM) bench press (BP), a 1RM leg press (LP), and combined BP + LP strength. Jump athletes demonstrated greater absolute scores for CMJ, C-MBT, and B-MBT (p < 0.05), whereas nonjump athletes demonstrated greater strength scores for BP and for BP + LP (p < 0.05). When performances were examined on a relative basis, jump athletes achieved superior scores for C-MBT (p < 0.05), whereas nonjump athletes had greater scores for BP, LP, and BP + LP (p < 0.05). For both groups, B-MBT had strong correlations with PI (r = 0.817 [jump] and 0.917 [nonjump]), whereas for C-MBT, only nonjump athletes demonstrated a strong correlation (r = 0.842). When expressed in relative terms, B-MBT was strongly correlated with C-MBT (r = 0.762 [jump] and 0.835 [nonjump]) and CMJ (r = 0.899 [jump] and 0.945 [nonjump]). Only nonjump athletes demonstrated strong correlations with strength for absolute LP (r = 0.801) and BP + LP (r = 0.810) strength. The interaction of upper- and lower-body strength and power in the performance of a B-MBT appears complex, with the contributing factors differing for athletes with divergent skill sets and performance demands.

  14. Impact Forces of Plyometric Exercises Performed on Land and in Water

    PubMed Central

    Donoghue, Orna A.; Shimojo, Hirofumi; Takagi, Hideki

    2011-01-01

    Background: Aquatic plyometric programs are becoming increasingly popular because they provide a less stressful alternative to land-based programs. Buoyancy reduces the impact forces experienced in water. Purpose: To quantify the landing kinetics during a range of typical lower limb plyometric exercises performed on land and in water. Study Design: Crossover design. Methods: Eighteen male participants performed ankle hops, tuck jumps, a countermovement jump, a single-leg vertical jump, and a drop jump from 30 cm in a biomechanics laboratory and in a swimming pool. Land and underwater force plates (Kistler) were used to obtain peak impact force, impulse, rate of force development, and time to reach peak force for the landing phase of each jump. Results: Significant reductions were observed in peak impact forces (33%-54%), impulse (19%-54%), and rate of force development (33%-62%) in water compared with land for the majority of exercises in this study (P < 0.05). Conclusions: The level of force reduction varies with landing technique, water depth, and participant height and body composition. Clinical Relevance: This information can be used to reintroduce athletes to the demands of plyometric exercises after injury. PMID:23016022

  15. Changes in power and force generation during coupled eccentric-concentric versus concentric muscle contraction with training and aging.

    PubMed

    Caserotti, Paolo; Aagaard, Per; Puggaard, Lis

    2008-05-01

    Age-related decline in maximal concentric muscle power is associated with frailty and functional impairments in the elderly. Compared to concentric contraction, mechanical muscle output is generally enhanced when muscles are rapidly pre-stretched (eccentric contraction), albeit less pronounced with increasing age. Exercise has been recommended to prevent loss of muscle power and function and recent guidelines indicate training program for increasing muscle power highly relevant for elderly subjects. This study examined the differences in muscle power, force and movement pattern during concentric-alone and coupled eccentric-concentric contraction and selected functional motor performances before and after 36-week multicomponent training including aerobic, strength, balance, flexibility and coordination components in elderly males. Vertical force, excursion, velocity, power and acceleration of the body center of mass were measured in two standardised vertical jumps (squatting jump, SQJ; countermovement jump, CMJ). Pre-stretch enhancement during CMJ did not improve performance [i.e., no enhanced maximal muscle power (Ppeak) and jump height (JH)] compared to concentric-alone muscle contraction (SQJ). Nevertheless, pre-stretch enhancement occurred as for similar SQJ and CMJ maximal performance, elderly people employed lower mechanical work, higher mean muscle power (Pmean), shorter concentric phase duration and shorter body center of mass displacement during CMJ. Post training, CMJ Ppeak, Pmean and JH increased in training group (P<0.05) while Ppeak and JH decreased in control group during the CMJ and SQJ (P<0.05). In conclusion, long-term training counteracted the age-related decline in muscle power and functional performance observed in the control subjects, while substantial gains in muscular performance were observed in the trained elderly.

  16. The Relationship between Field Tests of Anaerobic Power and 10-km Run Performance.

    ERIC Educational Resources Information Center

    Sinnett, Aaron M.; Berg, Kris; Latin, Richard W.; Noble, John M.

    2001-01-01

    Investigated the relationship between several field tests of anaerobic power (e.g., +various sprints, vertical jumps, and a plyometric leap) and distance running performance in trained adult male and female runners. Results indicate that anaerobic power is significantly related to distance running performance and may explain a meaningful…

  17. Postural stabilization after single-leg vertical jump in individuals with chronic ankle instability.

    PubMed

    Nunes, Guilherme S; de Noronha, Marcos

    2016-11-01

    To investigate the impact different ways to define reference balance can have when analysing time to stabilization (TTS). Secondarily, to investigate the difference in TTS between people with chronic ankle instability (CAI) and healthy controls. Cross-sectional study. Laboratory. Fifty recreational athletes (25 CAI, 25 controls). TTS of the center of pressure (CoP) after maximal single-leg vertical jump using as reference method the single-leg stance, pre-jump period, and post-jump period; and the CoP variability during the reference methods. The post-jump reference period had lower values for TTS in the anterior-posterior (AP) direction when compared to single-leg stance (P = 0.001) and to pre-jump (P = 0.002). For TTS in the medio-lateral (ML) direction, the post-jump reference period showed lower TTS when compared to single-leg stance (P = 0.01). We found no difference between CAI and control group for TTS for any direction. The CAI group showed more CoP variability than control group in the single-leg stance reference period for both directions. Different reference periods will produce different results for TTS. There is no difference in TTS after a maximum vertical jump between groups. People with CAI have more CoP variability in both directions during single-leg stance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The effect of sprinting after each set of heavy resistance training on the running speed and jumping performance of young basketball players.

    PubMed

    Tsimahidis, Konstantinos; Galazoulas, Christos; Skoufas, Dimitrios; Papaiakovou, Georgios; Bassa, Eleni; Patikas, Dimitrios; Kotzamanidis, Christos

    2010-08-01

    The purpose of this study was to investigate the effect of a 10-week heavy resistance combined with a running training program on the strength, running speed (RS), and vertical jump performance of young basketball players. Twenty-six junior basketball players were equally divided in 2 groups. The control (CON) group performed only technical preparation and the group that followed the combined training program (CTP) performed additionally 5 sets of 8-5 repetition maximum (RM) half squat with 1 30-m sprint after each set. The evaluation took place before training and after the 5th and 10th weeks of training. Apart from the 1RM half squat test, the 10- and 30-m running time was measured using photocells and the jump height (squat, countermovement jump, and drop jump) was estimated taking into account the flight time. The 1RM increased by 30.3 +/- 1.5% at the 10th week of training for the CTP group (p < 0.05), whereas the CON group showed no significant increase (1.1 +/- 1.6%, p > 0.05). In general, all measured parameters showed a statistically significant increase after the 5th and 10th weeks (p < 0.05), in contrast to the CON group (p > 0.05). This suggests that the applied CTP is beneficial for the strength, RS, and jump height of young basketball players. The observed adaptations in the CTP group could be attributed to learning factors and to a more optimal transfer of the strength gain to running and jumping performance.

  19. Intra-Personal and Inter-Personal Kinetic Synergies During Jumping.

    PubMed

    Slomka, Kajetan; Juras, Grzegorz; Sobota, Grzegorz; Furmanek, Mariusz; Rzepko, Marian; Latash, Mark L

    2015-12-22

    We explored synergies between two legs and two subjects during preparation for a long jump into a target. Synergies were expected during one-person jumping. No such synergies were expected between two persons jumping in parallel without additional contact, while synergies were expected to emerge with haptic contact and become stronger with strong mechanical contact. Subjects performed jumps either alone (each foot standing on a separate force platform) or in dyads (parallel to each other, each person standing on a separate force platform) without any contact, with haptic contact, and with strong coupling. Strong negative correlations between pairs of force variables (strong synergies) were seen in the vertical force in one-person jumps and weaker synergies in two-person jumps with the strong contact. For other force variables, only weak synergies were present in one-person jumps and no negative correlations between pairs of force variable for two-person jumps. Pairs of moment variables from the two force platforms at steady state showed positive correlations, which were strong in one-person jumps and weaker, but still significant, in two-person jumps with the haptic and strong contact. Anticipatory synergy adjustments prior to action initiation were observed in one-person trials only. We interpret the different results for the force and moment variables at steady state as reflections of postural sway.

  20. Intra-Personal and Inter-Personal Kinetic Synergies During Jumping

    PubMed Central

    Slomka, Kajetan; Juras, Grzegorz; Sobota, Grzegorz; Furmanek, Mariusz; Rzepko, Marian; Latash, Mark L.

    2015-01-01

    We explored synergies between two legs and two subjects during preparation for a long jump into a target. Synergies were expected during one-person jumping. No such synergies were expected between two persons jumping in parallel without additional contact, while synergies were expected to emerge with haptic contact and become stronger with strong mechanical contact. Subjects performed jumps either alone (each foot standing on a separate force platform) or in dyads (parallel to each other, each person standing on a separate force platform) without any contact, with haptic contact, and with strong coupling. Strong negative correlations between pairs of force variables (strong synergies) were seen in the vertical force in one-person jumps and weaker synergies in two-person jumps with the strong contact. For other force variables, only weak synergies were present in one-person jumps and no negative correlations between pairs of force variable for two-person jumps. Pairs of moment variables from the two force platforms at steady state showed positive correlations, which were strong in one-person jumps and weaker, but still significant, in two-person jumps with the haptic and strong contact. Anticipatory synergy adjustments prior to action initiation were observed in one-person trials only. We interpret the different results for the force and moment variables at steady state as reflections of postural sway. PMID:26839608

  1. Application of a tri-axial accelerometer to estimate jump frequency in volleyball.

    PubMed

    Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald

    2015-03-01

    Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p < 0.05). These findings suggest that neither PVA nor PRA measured by a tri-axial accelerometer is an applicable method for estimating jump frequency in volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed.

  2. Exploring the effects of kinesiological awareness and mental imagery on movement intention in the performance of demi-plié.

    PubMed

    Couillandre, Annabelle; Lewton-Brain, Peter; Portero, Pierre

    2008-01-01

    This study was designed to assess the ability of a practitioner intervention using kinesiological explanations and mental imagery techniques to optimize the performance of demi-plié in dancers. Seven professional female ballet dancers were involved in the study. Biomechanical and electromyographical parameters (maximum knee flexion, jump height, maximal vertical acceleration and its duration, ratio of sagittal acceleration variation, and ratio of muscle activity in four muscles of the lower limb) were analyzed before and after the practitioner intervention. Results demonstrated no significant difference in the depth of the demi-plié, nor in the height of the jump that followed, nor in the maximal vertical acceleration and its duration, leading to the suggestion that the technical potential of the dancers was preserved. Significant differences were found in the SEMG of the hamstrings during the demi-plié and the jump, implying that an improvement in the dynamic alignment of the dancers was present. A correlation was also found between the ratio of sagittal acceleration variation and the hamstring activity, suggesting that increased hamstring engagement produces decreased disruption of dynamic alignment. However, the intervention was not assimilated equally by all of the dancers.

  3. Unilateral jumps in different directions: a novel assessment of soccer-associated power?

    PubMed

    Murtagh, Conall F; Vanrenterghem, Jos; O'Boyle, Andrew; Morgans, Ryland; Drust, Barry; Erskine, Robert M

    2017-11-01

    We aimed to determine whether countermovement jumps (CMJs; unilateral and bilateral) performed in different directions assessed independent lower-limb power qualities, and if unilateral CMJs would better differentiate between elite and non-elite soccer players than the bilateral vertical (BV) CMJ. Elite (n=23; age, 18.1±1.0years) and non-elite (n=20; age, 22.3±2.7years) soccer players performed three BV, unilateral vertical (UV), unilateral horizontal-forward (UH) and unilateral medial (UM) CMJs. Jump performance (height and projectile range), kinetic and kinematic variables from ground reaction forces, and peak activation levels of the vastus lateralis and biceps femoris (BF) muscles from surface electromyography, were compared between jumps and groups of players. Peak vertical power (V-power) was greater in BV (220.2±30.1W/kg) compared to UV (144.1±16.2W/kg), which was greater than UH (86.7±18.3W/kg) and UM (85.5±13.5W/kg) (all, p<0.05) but there was no difference between UH and UM (p=1.000). Peak BF EMG was greater in UH compared to all other CMJs (p≤0.001). V-power was greater in elite than non-elite for all CMJs (p≤0.032) except for BV (p=0.197). Elite achieved greater UH projectile range than non-elite (51.6±15.4 vs. 40.4±10.4cm, p=0.009). We have shown that UH, UV and UM CMJs assess distinct lower-limb muscular power capabilities in soccer players. Furthermore, as elite players outperformed non-elite players during unilateral but not BV CMJs, unilateral CMJs in different directions should be included in soccer-specific muscular power assessment and talent identification protocols, rather than the BV CMJ. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Test-retest reliability of jump execution variables using mechanography: a comparison of jump protocols.

    PubMed

    Fitzgerald, John S; Johnson, LuAnn; Tomkinson, Grant; Stein, Jesse; Roemmich, James N

    2018-05-01

    Mechanography during the vertical jump may enhance screening and determining mechanistic causes underlying physical performance changes. Utility of jump mechanography for evaluation is limited by scant test-retest reliability data on force-time variables. This study examined the test-retest reliability of eight jump execution variables assessed from mechanography. Thirty-two women (mean±SD: age 20.8 ± 1.3 yr) and 16 men (age 22.1 ± 1.9 yr) attended a familiarization session and two testing sessions, all one week apart. Participants performed two variations of the squat jump with squat depth self-selected and controlled using a goniometer to 80º knee flexion. Test-retest reliability was quantified as the systematic error (using effect size between jumps), random error (using coefficients of variation), and test-retest correlations (using intra-class correlation coefficients). Overall, jump execution variables demonstrated acceptable reliability, evidenced by small systematic errors (mean±95%CI: 0.2 ± 0.07), moderate random errors (mean±95%CI: 17.8 ± 3.7%), and very strong test-retest correlations (range: 0.73-0.97). Differences in random errors between controlled and self-selected protocols were negligible (mean±95%CI: 1.3 ± 2.3%). Jump execution variables demonstrated acceptable reliability, with no meaningful differences between the controlled and self-selected jump protocols. To simplify testing, a self-selected jump protocol can be used to assess force-time variables with negligible impact on measurement error.

  5. Training Effects of the FIFA 11+ Kids on Physical Performance in Youth Football Players: A Randomized Control Trial.

    PubMed

    Pomares-Noguera, Carlos; Ayala, Francisco; Robles-Palazón, Francisco Javier; Alomoto-Burneo, Juan F; López-Valenciano, Alejandro; Elvira, José L L; Hernández-Sánchez, Sergio; De Ste Croix, Mark

    2018-01-01

    To analyze the training effects of the FIFA 11+ kids on several parameters of physical performance in male youth football players. Twenty-three youth players were randomized within each team into two groups (control vs. intervention). The intervention group performed the FIFA 11+ kids programme 2 times a week for 4 weeks; the control groups completed their normal warm-up routines. Thirteen physical performance measures {range of motion (hip, knee, and ankle joints), dynamic postural control (measured throughout the Y balance test), 20 m sprint time, slalom dribble with a ball, agility, vertical jumping height [counter movement jump (CMJ) and drop jump (DJ)], horizontal jump distance, accuracy when volleying a ball [measured throughout the Wall Volley test]} were assessed. All physical performance parameters were compared via magnitude-based inference analysis. Significant between-group differences in favor of the FIFA 11+ players were found for dynamic postural control {anterior [mean and 90% confidence intervals (CI) = 1 cm, from -1.6 to 3.5 cm] and posteromedial (mean and 90% CI = 5.1 cm, from -1.8 to 12 cm) and posterolateral (mean and 90% CI = 4.8 cm, from 0.6 to 9.0 cm) distances}, agility run (mean and 90% CI = 0.5 s, from -0.9 to 0 s), vertical jump height [CMJ (mean and 90% CI = 3.1 cm, from 0.2 to 6.1 cm) and DJ (mean and 90% CI = 1.7 cm, from -0.5 to 3.9 cm)], and horizontal jump distance (mean and 90% CI = 2.5 cm, from -8 to 15 cm). The control groups showed better performance in 20 m sprint time (mean and 90% CI = -0.05 s, from -0.11 to 0.07) and wall volley tests (mean and 90% CI = 0.2, from -0.2 to 0.6) compared to the intervention group. The main findings of this study suggest that just 4 weeks of implementation of the FIFA 11+ kids produces improved physical performance compared with traditional warm-up routines in youth soccer players.

  6. Relationship between traditional and ballistic squat exercise with vertical jumping and maximal sprinting.

    PubMed

    Requena, Bernardo; García, Inmaculada; Requena, Francisco; de Villarreal, Eduardo Sáez-Sáez; Cronin, John B

    2011-08-01

    The purpose of this study was to quantify the magnitude of the relationship between vertical jumping and maximal sprinting at different distances with performance in the traditional and ballistic concentric squat exercise in well-trained sprinters. Twenty-one men performed 2 types of barbell squats (ballistic and traditional) across different loads with the aim of determining the maximal peak and average power outputs and 1 repetition maximum (1RM) values. Moreover, vertical jumping (countermovement jump test [CMJ]) and maximal sprints over 10, 20, 30, 40, 60, and 80 m were also assessed. In respect to 1RM in traditional squat, (a) no significant correlation was found with CMJ performance; (b) positive strong relationships (p < 0.01) were obtained with all the power measures obtained during both ballistic and traditional squat exercises (r = 0.53-0.90); (c) negative significant correlations (r = -0.49 to -0.59, p < 0.05) were found with sprint times in all the sprint distances measured when squat strength was expressed as a relative value; however, in the absolute mode, no significant relationships were observed with 10- and 20-m sprint times. No significant relationship was found between 10-m sprint time and relative or absolute power outputs using either ballistic or traditional squat exercises. Sprint time at 20 m was only related to ballistic and traditional squat performance when power values were expressed in relative terms. Moderate significant correlations (r = -0.39 to -0.56, p < 0.05) were observed between sprint times at 30 and 40 m and the absolute/relative power measures attained in both ballistic and traditional squat exercises. Sprint times at 60 and 80 m were mainly related to ballistic squat power outputs. Although correlations can only give insights into associations and not into cause and effect, from this investigation, it can be seen that traditional squat strength has little in common with CMJ performance and that relative 1RM and power outputs for both squat exercises are statistically correlated to most sprint distances underlying the importance of strength and power to sprinting.

  7. Force-velocity property of leg muscles in individuals of different level of physical fitness.

    PubMed

    Cuk, Ivan; Mirkov, Dragan; Nedeljkovic, Aleksandar; Kukolj, Milos; Ugarkovic, Dusan; Jaric, Slobodan

    2016-06-01

    The present study explored the method of testing muscle mechanical properties through the linear force-velocity (F-V) relationships obtained from loaded vertical jumps. Specifically, we hypothesised that the F-V relationship parameters depicting the force, power, and velocity of the tested muscles will differ among individuals of different physical fitness. Strength trained, physically active, and sedentary male participants (N = 10 + 10 + 10; age 20-29 years) were tested on maximum countermovement and squat jumps where manipulation of external loads provided a range of F and V data. The observed F-V relationships of the tested leg muscles were approximately linear and mainly strong (median correlation coefficients ranged from 0.77 to 0.92; all p < 0.05), independently of either the tested group or the jump type. The maximum power revealed higher values in the strength trained than in the physically active and sedentary participants. This difference originated from the differences in F-intercepts, rather than from the V-intercepts. We conclude that the observed parameters could be sensitive enough to detect the differences among both the individuals of different physical fitness and various jump types. The present findings support using loaded vertical jumps and, possibly, other maximum performance multi-joint movements for the assessment of mechanical properties of active muscles.

  8. The acute effects of moderately loaded concentric-only quarter squats on vertical jump performance.

    PubMed

    Crum, Aaron J; Kawamori, Naoki; Stone, Michael H; Haff, G Gregory

    2012-04-01

    Limited research exists examining the effect of moderately loaded conditioning activities that are employed as part of a strength-power potentiating complex (SPPC). Additionally, no studies to date have explored the effects of using a concentric-only quarter back squat protocol as part of an SPPC. Therefore, the purpose of this study was to examine the effects of a moderately loaded (50-65% of 1RM) concentric-only quarter back squat protocol on the occurrence of potentiation effects at various time points. Twenty men who could quarter back squat a minimum of 2.4 times their body mass (3.7 ± 0.7 kg·per body mass) participated in this investigation. All subjects participated in 3 conditions: control (CT), a 50% of 1RM trial (50POT), and a 65% of 1RM trial (65POT). One minute before each condition, a maximal countermovement vertical jump (CMJ) was performed. One minute later, the subject performed 1 of 3 conditions: CT condition, 50POT, or 65POT, followed by vertical jumps at 0.5, 3, 5, 10, and 15 minutes after conditioning activity. A force plate was used to quantify displacement, peak power output, peak force, and the rate of force development for each CMJ. There were no significant differences (p > 0.05) in any of the performance measures quantified during the CMJ trials when comparing the CT, 50POT, and 65POT treatment conditions. However, 48% of the subjects demonstrated some degree of potentiation at the 30 seconds after completing the 65POT trial, but this percent increase was not statistically significant. From a practical perspective, if the goal of the SPPC is to create a maximization of the potentiation effect, moderately loaded activities may not be the best alternative.

  9. The National Football League Combine: performance differences between drafted and nondrafted players entering the 2004 and 2005 drafts.

    PubMed

    Sierer, S Patrick; Battaglini, Claudio L; Mihalik, Jason P; Shields, Edgar W; Tomasini, Nathan T

    2008-01-01

    The purpose of this study was to examine performance differences between drafted and nondrafted athletes (N = 321) during the 2004 and 2005 National Football League (NFL) Combines. We categorized players into one of 3 groups: Skill, Big skill, and Linemen. Skill players (SP) consisted of wide receivers, cornerbacks, free safeties, strong safeties, and running backs. Big skill players (BSP) included fullbacks, linebackers, tight ends, and defensive ends. Linemen (LM) consisted of centers, offensive guards, offensive tackles, and defensive tackles. We analyzed player height and mass, as well as performance on the following combine drills: 40-yard dash, 225-lb bench press test, vertical jump, broad jump, pro-agility shuttle, and the 3-cone drill. Student t-tests compared performance on each of these measures between drafted and nondrafted players. Statistical significance was found between drafted and nondrafted SP for the 40-yard dash (P < 0.001), vertical jump (P = 0.003), pro-agility shuttle (P < 0.001), and 3-cone drill (P < 0.001). Drafted and nondrafted BSP performed differently on the 40-yard dash (P = 0.002) and 3-cone drill (P = 0.005). Finally, drafted LM performed significantly better than nondrafted LM on the 40-yard dash (P = 0.016), 225-lb bench press (P = 0.003), and 3-cone drill (P = 0.005). Certified strength and conditioning specialists will be able to utilize the significant findings to help better prepare athletes as they ready themselves for the NFL Combine.

  10. Knee extensor dynamics in the volleyball approach jump: the influence of patellar tendinopathy.

    PubMed

    Sorenson, Shawn C; Arya, Shruti; Souza, Richard B; Pollard, Christine D; Salem, George J; Kulig, Kornelia

    2010-09-01

    Controlled laboratory study using a cross-sectional design. To evaluate knee joint dynamics in elite volleyball players with and without a history of patellar tendinopathy, focusing on mechanical energy absorption and generation. We hypothesized that tendinopathy would be associated withreduced net joint work and net joint power. Patellar tendinopathy is a common, debilitating injury affecting competitive volleyball players. Thirteen elite male players with and without a history of patellar tendinopathy (mean ± SD age, 27 ± 7 years) performed maximum-effort volleyball approach jumps. Sagittal plane knee joint kinematics, kinetics, and energetics were quantified in the lead limb, using data obtained from a force platform and an 8-camera motion analysis system. Vertical ground reaction forces and pelvis vertical velocity at takeoff were examined. Independent sample t tests were used to evaluate group differences (α = .05). The tendinopathy group, compared to controls, demonstrated significant reductions (approximately 30%) in net joint work and net joint power during the eccentric phase of the jump, with no differences in the concentric phase. Positive to-negative net joint work and net joint power ratios were significantly higher in the tendinopathy group, which had a net joint work ratio of 1.00 (95% CI: 0.77, 1.24) versus 0.76 (95% CI: 0.64, 0.88) for controls, and a net joint power ratio of 1.62 (95% CI: 1.15, 2.10) versus 1.00 (95% CI: 0.80, 1.21) for controls. There were no significant differences in net joint moment, angular velocity, or range of motion. Peak vertical ground reaction forces were lower for the tendinopathy group, while average vertical ground reaction forces and pelvis vertical velocity were similar. Patellar tendinopathy is associated with differences in sagittal plane mechanical energy absorption at the knee during maximum-effort volleyball approach jumps. Net joint work and net joint power may help define underlying mechanisms, adaptive effects, or rehabilitative strategies for individuals with patellar tendinopathy.

  11. A biomechanical analysis of the last stride, touch-down and take-off characteristics of the women's long jump.

    PubMed

    Lees, A; Fowler, N; Derby, D

    1993-08-01

    This study was concerned with the measurement of a selection of performance variables from competitors in the women's long jump final of the World Student Games held in Sheffield, UK in July 1991. Several performances of each of six finalists were recorded on cine-film at 100 Hz. Resulting planar kinematic data were obtained for the last stride, touch-down and take-off. For the analysis, the point of maximum knee flexion was established and this was used to represent the point at which the compression phase had ended. A variety of variables describing the position, velocity and angular changes are presented as descriptive data. In addition, these were used to compute energies on the basis of a whole body model. The data were interpreted on the basis of a technique model of long jumping established from the literature. It was confirmed that take-off velocity was a function of touch-down velocity, and that there was an increase in vertical velocity at the expense of a reduction of horizontal velocity. An attempt was made to identify the mechanisms acting during the touch-down to take-off phase which were responsible for generating vertical velocity. It was concluded that there was evidence for mechanical, biomechanical and muscular mechanisms. The former relates to the generation of vertical velocity by the body riding over the base of support; the second is the elastic re-utilization of energy; and the third is the contribution by concentric muscular contraction.

  12. Peak leg muscle power, peak VO2 and its correlates with physical activity in 57 to 70-year-old women.

    PubMed

    Boussuge, P-Y; Rance, M; Bedu, M; Duche, P; Praagh, E Van

    2006-01-01

    The two aims of this study were first to measure short-term muscle power (STMP) by means of a cycling force-velocity test (cycling peak power: CPP) and a vertical jump test (jumping peak performance: JPP) and second, to examine the relationships between physical activity (PA) level, peak oxygen uptake (peak VO2) and STMP in healthy elderly women. Twenty-three independent community-dwelling elderly women (mean age: 64+/-4.4) performed on separate days, a peak oxygen uptake test on cycle ergometer, a cycling force-velocity test and a vertical jump test. A questionnaire (QUANTAP) was used to assess lifespan exercise habits. Four indices expressed in kJ day(-1) kg(-1) were calculated. Two indices represented average past PA level: 1/quantity of habitual physical activity (QHPA), 2/quantity of sports activities (QSA). Two indices represented the actual PA level: 3/actual quantity of habitual physical activity (AQHPA), 4/actual quantity of sports activities (AQSA). CPP (6.3+/-1.2 W kg(-1)) was closely correlated to JPP (14.8+/-3.4 cm) (r=0.80, P<0.001). AQHPA and AQSA were only positively associated with peak VO2 (ml min(-1) kg(-1)) (r=0.49; r=0.50, P<0.05, respectively). Past PA level was not related to fitness measurements. Results show that in this population: (1) jumping peak performance was closely related to CPP measured in the laboratory; (2) the cardio-respiratory fitness was related to the actual habitual physical activity level; (3) only age and anthropometric variables explained the actual performances in multivariate analysis.

  13. Evaluation of lower limb kinetics during gait, sprint and hop tests before and after anterior cruciate ligament reconstruction.

    PubMed

    Moya-Angeler, Joaquín; Vaquero, Javier; Forriol, Francisco

    2017-06-01

    The purpose of this study was to evaluate the functional status prior to and at different times after anterior cruciate ligament reconstruction (ACLR), and to analyze the changes in the kinetic patterns of the involved and uninvolved lower limb during gait, sprint and three hop tests. Seventy-four male patients with an ACL injury were included in the study. All patients performed a standardized kinetic protocol including gait, sprint and three hop tests (single-leg hop, drop vertical jump and vertical jump tests), preoperatively and at 3, 6, and 12 months after ACLR with a semitendinosus gracilis tendon autograft. Measurements were performed with two force plates. The lower limb symmetry index (LSI) was calculated to determine whether a side-to-side leg difference was classified as normal (LSI >90%) or abnormal (LSI <90%). The LSI presented high values (>90%) at almost all times before and after ACLR in gait, sprint and single-leg hop tests (p < 0.005), with a tendency to increase postoperatively. A lower LSI was observed (<90%) in tests where both extremities were tested simultaneously, such as the drop vertical jump and vertical hop tests (p < 0.05). We observed a tendency to increase symmetry restoration in the kinetics of the involved and uninvolved limb up to twelve months after ACLR, especially in those tests, in which, both limbs were tested individually (gait analysis, sprint and single-leg hop tests). Therefore, the isolation of the involved and uninvolved limb seems to be a critical component in the functional rehabilitation and evaluation of patients before and after ACLR. level III.

  14. The acute effect of different warm-up protocols on anaerobic performance in elite youth soccer players.

    PubMed

    Needham, Robert A; Morse, Christopher I; Degens, Hans

    2009-12-01

    The purpose of the study was to investigate the acute effect of different warm-up protocols on anaerobic performance in elite youth soccer players. Twenty elite youth soccer players (mean age 17.2 +/- 1.2 years) performed 3 different warm-up protocols in a random order on nonconsecutive days. Each warm-up protocol consisted of a 5-minute low-intensity jog followed by 10 minutes of static stretching (SS), dynamic stretching (DS), or dynamic stretching followed by 8 front squats + 20% body mass (DSR). Subjects performed a countermovement jump followed by a 10- and 20-m sprint test immediately and at 3 and 6 minutes after each warm-up protocol. Vertical jump performance following DSR was better at 3 and 6 minutes than after DS, which in turn was better than after SS at 0, 3, and 6 minutes (p < 0.05). Jump performance was better at 3 minutes than immediately after, and this improvement was maintained at 6 minutes after DSR (p < 0.05). A better sprint performance was observed after DSR and DS compared with SS immediately and at 3 and 6 minutes following each warm-up protocol (p < 0.05). The results of the study suggest that a dynamic warm-up with the inclusion of resistance enhances jumping ability more than dynamic exercise alone. In addition, a dynamic warm-up produces a superior sprint and jump performance compared to a warm-up consisting of static stretching.

  15. A Comparison of Isotonic, Isokinetic, and Plyometric Training Methods for Vertical Jump Improvement.

    ERIC Educational Resources Information Center

    Miller, Christine D.

    This annotated bibliography documents three training methods used to develop vertical jumping ability and power: isotonic, isokinetics, and plyometric training. Research findings on all three forms of training are summarized and compared. A synthesis of conclusions drawn from the annotated writings is presented. The report includes a glossary of…

  16. Comparing preseason frontal and sagittal plane plyometric programs on vertical jump height in high-school basketball players.

    PubMed

    King, Jeffrey A; Cipriani, Daniel J

    2010-08-01

    The primary purpose of this study was to evaluate whether frontal plane (FP) plyometrics, which are defined as plyometrics dominated with a lateral component, would produce similar increases in vertical jump height (VJH) compared to sagittal plane (SP) Plyometrics. Thirty-two junior varsity and varsity high-school basketball players participated in 6 weeks of plyometric training. Players participated in either FP or SP plyometrics for the entire study. Vertical jump height was measured on 3 occasions: preintervention (baseline), at week 3 of preparatory training, and at week 6 of training. Descriptive statistics were calculated for VJH. A 2-way analysis of variance (ANOVA) with repeated measures was used to test the difference in mean vertical jump scores using FP and SP training modalities. Results showed a significant effect over time for vertical jump (p < 0.001). Moreover, a significant time by protocol interaction was noted (p < 0.032). A 1-way ANOVA demonstrated that only the SP group demonstrated improvements over time, in VJH, p < 0.05. The FP group did not improve statistically. The data from this study suggest that FP plyometric training did not have a significant effect on VJH and significant improvement in VJH was seen in subjects participating in SP plyometrics thus reinforcing the specificity principle of training. However, coaches should implement both types of plyometrics because both training modalities can improve power and quickness among basketball players.

  17. A review of models of vertical, leg, and knee stiffness in adults for running, jumping or hopping tasks.

    PubMed

    Serpell, Benjamin G; Ball, Nick B; Scarvell, Jennie M; Smith, Paul N

    2012-01-01

    The 'stiffness' concept originates from Hooke's law which states that the force required to deform an object is related to a spring constant and the distance that object is deformed. Research into stiffness in the human body is undergoing unprecedented popularity; possibly because stiffness has been associated with sporting performance and some lower limb injuries. However, some inconsistencies surrounding stiffness measurement exists bringing into question the integrity of some research related to stiffness. The aim of this study was to review literature which describes how vertical, leg and knee stiffness has been measured in adult populations while running, jumping or hopping. A search of the entire MEDLINE, PubMed and SPORTDiscus databases and an iterative reference check was performed. Sixty-seven articles were retrieved; 21 measured vertical stiffness, 51 measured leg stiffness, and 22 measured knee stiffness. Thus, some studies measured several 'types' of stiffness. Vertical stiffness was typically the quotient of ground reaction force and centre of mass displacement. For leg stiffness it was and change in leg length, and for the knee it was the quotient of knee joint moments and change in joint angle. Sample size issues and measurement techniques were identified as limitations to current research.

  18. Training Strategies to Improve Muscle Power: Is Olympic-style Weightlifting Relevant?

    PubMed

    Helland, Christian; Hole, Eirik; Iversen, Erik; Olsson, Monica Charlotte; Seynnes, Olivier; Solberg, Paul Andre; Paulsen, Gøran

    2017-04-01

    This efficacy study investigated the effects of 1) Olympic-style weightlifting (OWL), 2) motorized strength and power training (MSPT), and 3) free weight strength and power training (FSPT) on muscle power. Thirty-nine young athletes (20 ± 3 yr; ice hockey, volleyball, and badminton) were randomized into the three training groups. All groups participated in two to three sessions per week for 8 wk. The MSPT and FSPT groups trained using squats (two legs and single leg) with high force and high power, whereas the OWL group trained using clean and snatch exercises. MSPT was conducted as slow-speed isokinetic strength training and isotonic power training with augmented eccentric load, controlled by a computerized robotic engine system. FSPT used free weights. The training volume (sum of repetitions × kg) was similar between all three groups. Vertical jumping capabilities were assessed by countermovement jump (CMJ), squat jump (SJ), drop jump (DJ), and loaded CMJ (10-80 kg). Sprinting capacity was assessed in a 30-m sprint. Secondary variables were squat one-repetition maximum (1RM), body composition, quadriceps thickness, and architecture. OWL resulted in trivial improvements and inferior gains compared with FSPT and MSPT for CMJ, SJ, DJ, and 1RM. MSPT demonstrated small but robust effects on SJ, DJ, loaded CMJ, and 1RM (3%-13%). MSPT was superior to FSPT in improving 30-m sprint performance. FSPT and MSPT, but not OWL, demonstrated increased thickness in the vastus lateralis and rectus femoris (4%-7%). MSPT was time-efficient and equally or more effective than FSPT training in improving vertical jumping and sprinting performance. OWL was generally ineffective and inferior to the two other interventions.

  19. Jump Squat is More Related to Sprinting and Jumping Abilities than Olympic Push Press.

    PubMed

    Loturco, I; Kobal, R; Maldonado, T; Piazzi, A F; Bottino, A; Kitamura, K; Abad, C C C; Pereira, L A; Nakamura, F Y

    2017-07-01

    The aim of this study was to test the relationships between jump squat (JS) and Olympic push press (OPP) power outputs and performance in sprint, squat jump (SJ), countermovement jump (CMJ) and change of direction (COD) speed tests in elite soccer players. 27 athletes performed a maximum power load test to determine their bar mean propulsive power (MPP) and bar mean propulsive velocity (MPV) in the JS and OPP exercises. Magnitude-based inference was used to compare the exercises. The MPV was almost certainly higher in the OPP than in the JS. The MPP relative to body mass (MPP REL) was possibly higher in the OPP. Only the JS MPP REL presented very large correlations with linear speed ( r> 0.7, for speed in 5, 10, 20 and 30 m) and vertical jumping abilities ( r> 0.8, for SJ and CMJ), and moderate correlation with COD speed ( r= 0.45). Although significant (except for COD), the associations between OPP outcomes and field-based measurements (speed, SJ and CMJ) were all moderate, ranging from 0.40 to 0.48. In a group composed of elite soccer players, the JS exercise is more associated with jumping and sprinting abilities than the OPP. Longitudinal studies are needed to confirm if these strong relationships imply superior training effects in favor of the JS exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Effects of volume-based overload plyometric training on maximal-intensity exercise adaptations in young basketball players.

    PubMed

    Asadi, Abbas; Ramirez-Campillo, Rodrigo; Meylan, Cesar; Nakamura, Fabio Y; Cañas-Jamett, Rodrigo; Izquierdo, Mikel

    2017-12-01

    The aim of the present study was to compare maximal-intensity exercise adaptations in young basketball players (who were strong individuals at baseline) participating in regular basketball training versus regular plus a volume-based plyometric training program in the pre-season period. Young basketball players were recruited and assigned either to a plyometric with regular basketball training group (experimental group [EG]; N.=8), or a basketball training only group (control group [CG]; N.=8). The athletes in EG performed periodized (i.e., from 117 to 183 jumps per session) plyometric training for eight weeks. Before and after the intervention, players were assessed in vertical and broad jump, change of direction, maximal strength and a 60-meter sprint test. No significant improvements were found in the CG, while the EG improved vertical jump (effect size [ES] 2.8), broad jump (ES=2.4), agility T test (ES=2.2), Illinois agility test (ES=1.4), maximal strength (ES=1.8), and 60-m sprint (ES=1.6) (P<0.05) after intervention, and the improvements were greater compared to the CG (P<0.05). Plyometric training in addition to regular basketball practice can lead to meaningful improvements in maximal-intensity exercise adaptations among young basketball players during the pre-season.

  1. The effects of load on system and lower-body joint kinetics during jump squats.

    PubMed

    Moir, Gavin L; Gollie, Jared M; Davis, Shala E; Guers, John J; Witmer, Chad A

    2012-11-01

    To investigate the effects of different loads on system and lower-body kinetics during jump squats, 12 resistance-trained men performed jumps under different loading conditions: 0%, 12%, 27%, 42%, 56%, 71%, and 85% of 1-repetition maximum (1-RM). System power output was calculated as the product of the vertical component of the ground reaction force and the vertical velocity of the bar during its ascent. Joint power output was calculated during bar ascent for the hip, knee, and ankle joints, and was also summed across the joints. System power output and joint power at knee and ankle joints were maximized at 0% 1-RM (p < 0.001) and followed the linear trends (p < 0.001) caused by power output decreasing as the load increased. Power output at the hip was maximized at 42% 1-RM (p = 0.016) and followed a quadratic trend (p = 0.030). Summed joint power could be predicted from system power (p < 0.05), while system power could predict power at the knee and ankle joints under some of the loading conditions. Power at the hip could not be predicted from system power. System power during loaded jumps reflects the power at the knee and ankle, while power at the hip does not correspond to system power.

  2. Neuromuscular and technical abilities related to age in water-polo players.

    PubMed

    De Siati, Fabio; Laffaye, Guillaume; Gatta, Giorgio; Dello Iacono, Antonio; Ardigò, Luca Paolo; Padulo, Johnny

    2016-08-01

    Testing is one of the important tasks in any multi-step sport programme. In most ball games, coaches assess motor, physical and technical skills on a regular basis in early stages of talent identification in order to further athletes' development. The purpose of the study was to investigate anthropometric variables and vertical jump heights as a free throw effectiveness predictor in water-polo players of different age groups. Two hundred and thirty-six young (10-18 years) male water-polo players partitioned into three age groups underwent anthropometric variables' measures and squat- and countermovement-jump tests, and performed water-polo free throws. Anthropometric variables, vertical jump heights and throw speed - as a proxy for free throw effectiveness - resulted different over age groups. Particularly, throw speed changed from 9.28 to 13.70 m · s(-1) (+48%) from younger to older players. A multiple-regression model indicated that body height, squat-jump height and throw time together explain 52% of variance of throw speed. In conclusion, tall height, high lower limb power and throwing quickness appeared to be relevant determinants for effective free throws. Such indications can help coaches during talent identification and development processes, even by means of novel training strategies. Further research is needed over different maturity statuses.

  3. The variance needed to accurately describe jump height from vertical ground reaction force data.

    PubMed

    Richter, Chris; McGuinness, Kevin; O'Connor, Noel E; Moran, Kieran

    2014-12-01

    In functional principal component analysis (fPCA) a threshold is chosen to define the number of retained principal components, which corresponds to the amount of preserved information. A variety of thresholds have been used in previous studies and the chosen threshold is often not evaluated. The aim of this study is to identify the optimal threshold that preserves the information needed to describe a jump height accurately utilizing vertical ground reaction force (vGRF) curves. To find an optimal threshold, a neural network was used to predict jump height from vGRF curve measures generated using different fPCA thresholds. The findings indicate that a threshold from 99% to 99.9% (6-11 principal components) is optimal for describing jump height, as these thresholds generated significantly lower jump height prediction errors than other thresholds.

  4. Measures of functional performance and their association with hip and thigh strength.

    PubMed

    Kollock, Roger; Van Lunen, Bonnie L; Ringleb, Stacie I; Oñate, James A

    2015-01-01

    Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. To determine if functional performance tests are valid indicators of hip and thigh strength. Descriptive laboratory study. Research laboratory. Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r (2). We used Pearson correlations to evaluate the associations between functional performance and strength. In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r(2) = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r(2) = 38, P ≤ .01) and hip-flexor (r(2) = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r(2) = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r(2) = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r(2) = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups.

  5. Improving neuromuscular performance in young basketball players: plyometric vs. technique training.

    PubMed

    Attene, G; Iuliano, E; Di Cagno, A; Calcagno, G; Moalla, W; Aquino, G; Padulo, J

    2015-01-01

    The aim of this study was to compare the effects of plyometric training versus basketball technique training on improving neuro-muscular performance. Thirty-six (age 14.9±0.9 years, body height 164.0±7.6 cm, body weight 54.0±8.7 kg, BMI 20.1±2.4 kg·m-2) basketball players girls were randomly allocated to 2 groups: Basketball Plyometric Training (BPT, N.=18) and Basketball Technique Training (BTT, N.=18). The players were tested by two specific tests: counter movement jump (CMJ) and squat jump (SJ) before and after 6 training weeks. The jump height, as dependent variable, showed a different trend as an effect of the different training protocols, in contrast with the current knowledge. Manova did not show significant interactions between the two groups for the height of jumps, while significant differences were found for interaction time × training (P<0.05) and for main effect × time (P<0.001). After training, the BPT group increased significantly CMJ performance by 11.3% (P<0.05), whereas the BTT group increased by 4.6%. Likewise, the BPT group demonstrated a significant greater improvement of jump height than BTT group (an increase of 15.4% vs. 7.5%, P<0.01; respectively). These results suggest that both training protocols proposed in this study improved vertical jump performance. However, a combination of the two protocols, plyometric training and sport-specific-exercises, could be useful to optimize performance by an easy transition from controlled a-specific to sport-specific performance requirements. In conclusion, BPT is a safe and effective method of achieving a favourable neuro-muscular performance than BTT in female basketball players.

  6. Reliability of Fitness Tests Using Methods and Time Periods Common in Sport and Occupational Management

    PubMed Central

    Burnstein, Bryan D.; Steele, Russell J.; Shrier, Ian

    2011-01-01

    Context: Fitness testing is used frequently in many areas of physical activity, but the reliability of these measurements under real-world, practical conditions is unknown. Objective: To evaluate the reliability of specific fitness tests using the methods and time periods used in the context of real-world sport and occupational management. Design: Cohort study. Setting: Eighteen different Cirque du Soleil shows. Patients or Other Participants: Cirque du Soleil physical performers who completed 4 consecutive tests (6-month intervals) and were free of injury or illness at each session (n = 238 of 701 physical performers). Intervention(s): Performers completed 6 fitness tests on each assessment date: dynamic balance, Harvard step test, handgrip, vertical jump, pull-ups, and 60-second jump test. Main Outcome Measure(s): We calculated the intraclass coefficient (ICC) and limits of agreement between baseline and each time point and the ICC over all 4 time points combined. Results: Reliability was acceptable (ICC > 0.6) over an 18-month time period for all pairwise comparisons and all time points together for the handgrip, vertical jump, and pull-up assessments. The Harvard step test and 60-second jump test had poor reliability (ICC < 0.6) between baseline and other time points. When we excluded the baseline data and calculated the ICC for 6-month, 12-month, and 18-month time points, both the Harvard step test and 60-second jump test demonstrated acceptable reliability. Dynamic balance was unreliable in all contexts. Limit-of-agreement analysis demonstrated considerable intraindividual variability for some tests and a learning effect by administrators on others. Conclusions: Five of the 6 tests in this battery had acceptable reliability over an 18-month time frame, but the values for certain individuals may vary considerably from time to time for some tests. Specific tests may require a learning period for administrators. PMID:22488138

  7. Combined individual scrummaging kinetics and muscular power predict competitive team scrum success.

    PubMed

    Green, Andrew; Dafkin, Chloe; Kerr, Samantha; McKinon, Warrick

    2017-09-01

    Scrummaging is a major component of Rugby Union gameplay. Successful scrummaging is dependent on the coordination of the forward players and the strength of the eight individuals. The study aim was to determine whether individual scrummaging kinetics and other candidate factors associated with scrummaging performance discriminate team scrum performances. Sixteen club-level forwards (stature: 1.80 ± 0.1 m; mass: 99.0 ± 18.2 kg) were initially divided into two scrummaging packs. A total of 10 various scrum permutations were tested, where players were randomly swapped between the two packs. Winning scrums were determined by two observers on opposite sides of the scrum. Fatigue (100 mm visual analogue scale (VAS)) and scrummaging effort (6-20 rating of perceived exertion (RPE)) were assessed following each scrum contest. Individual scrummaging kinetics were acquired through an instrumented scrum ergometer and muscular power indicated through vertical jump heights. Student's t-tests were used to differentiate between winning and losing scrum packs. VAS and RPE were assessed using repeated measures ANOVAs. Winning scrum packs had significantly larger combined force magnitudes (p < .002), regardless of the player contribution calculations. Additionally, winning packs had less individual movement (p = .033) and higher combined vertical jump heights (p < .001) but were not significantly heavier (p = .759) than losing scrum packs. While perceived VAS and RPE values progressively increased (p < .001), no differences in the individual scrum magnitudes were observed between the 1st and 10th scrum (p = .418). The results indicated that the combination of individual forces, variation in movement and factors related to scrummaging performance, such as vertical jump height, were associated with team scrummaging success.

  8. Relationships between maximal strength of lower limb, anthropometric characteristics and fundamental explosive performance in handball players.

    PubMed

    Hermassi, Souhail; Chelly, Mohamed Souhaiel; Wagner, Herbert; Fieseler, Georg; Schulze, Stephan; Delank, Karl-Stefan; Shephard, Roy J; Schwesig, René

    2018-02-14

     The purpose of this study was to examine relationships between lower body muscular strength, anthropometric characteristics and several measures of explosive performance in elite team-handball players.  22 male elite team-handball players (age: 19.1 ± 1.7 years) were studied during the competitive season. Standard anthropometric and body composition measures included body mass index, lower limb and thigh muscle volume, and body fat percentage. Maximal leg strength was determined by a one-repetition maximum (1-RM) half back-squat. Vertical jump performance was assessed using a squat jump (SJ) and a counter movement jump (CMJ). Repeated shuttle-sprint ability (RSA) was tested by 6 (2 × 15 m) shuttle sprints with 20 s of active recovery intervals. The best time in a single shuttle sprint (30m; RSA best ), fastest total time (RSA TT ) and RSA test performance decrement (RSA dec ) were recorded. Agility was measured using a modified T-half test (MAT). Throwing velocities of jump shooting and 3-step throwing were recorded by digital video camera.  The explained variance of 1-RM half-back-squats ranged from 0.2 % (RSA% Fatigue Index) to 70.1 % (CMJ). Four out of 8 variables (RSA Best Time, CMJ, SJ, throwing velocity of jump shoot) demonstrated an r 2  > 0.5. Jump performances seemed closely related to 1-RM half-back-squats. Furthermore, 1-RM half-back-squats were positively correlated with leg and thigh muscle volumes (r = 0.652, r = 0.768).  The anthropometric characteristics and some physical performance tests are closely related to the maximal strength performance of handball players. Coaches should focus on maximal strength training programs for the lower limbs when seeking improvements in the throwing velocity and jump performance of handball players. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Kinetic Compensations due to Chronic Ankle Instability during Landing and Jumping.

    PubMed

    Kim, Hyunsoo; Son, S Jun; Seeley, Matthew K; Hopkins, J Ty

    2018-02-01

    Skeletal muscles absorb and transfer kinetic energy during landing and jumping, which are common requirements of various forms of physical activity. Chronic ankle instability (CAI) is associated with impaired neuromuscular control and dynamic stability of the lower extremity. Little is known regarding an intralimb, lower-extremity joint coordination of kinetics during landing and jumping for CAI patients. We investigated the effect of CAI on lower-extremity joint stiffness and kinetic and energetic patterns across the ground contact phase of landing and jumping. One hundred CAI patients and 100 matched able-bodied controls performed five trials of a landing and jumping task (a maximal vertical forward jump, landing on a force plate with the test leg only, and immediate lateral jump toward the contralateral side). Functional analyses of variance and independent t-tests were used to evaluate between-group differences for lower-extremity net internal joint moment, power, and stiffness throughout the entire ground contact phase of landing and jumping. Relative to the control group, the CAI group revealed (i) reduced plantarflexion and knee extension and increased hip extension moments; (ii) reduced ankle and knee eccentric and concentric power, and increased hip eccentric and concentric power, and (iii) reduced ankle and knee joint stiffness and increased hip joint stiffness during the task. CAI patients seemed to use a hip-dominant strategy by increasing the hip extension moment, stiffness, and eccentric and concentric power during landing and jumping. This apparent compensation may be due to decreased capabilities to produce sufficient joint moment, stiffness, and power at the ankle and knee. These differences might have injury risk and performance implications.

  10. Effect of a Brazilian Jiu-jitsu-simulated tournament on strength parameters and perceptual responses.

    PubMed

    Detanico, Daniele; Dellagrana, Rodolfo André; Athayde, Marina Saldanha da Silva; Kons, Rafael Lima; Góes, Angel

    2017-03-01

    This study aimed to analyse the effects of a simulated Brazilian jiu-jitsu (BJJ) tournament on vertical jump performance, grip strength test and perceived effort responses. 22 male BJJ athletes participated in a simulated tournament consisting of three 7 min matches separated by 14 min of rest. Kimono grip strength test (KGST), counter movement jump (CMJ) and rate of perceived exertion (RPE) were measured before and after each match, while RPE of specific areas was assessed after three matches. ANOVA for repeated measures was used to compare strength parameters after each match with the level of significance set at 5%. The key results showed a significant decrease of jump height (p = 0.001) and net vertical impulse in the CMJ (p = 0.031), as well as a reduction of the number of reps in the KGST (p < 0.001). A significant increase of RPE was found throughout the matches (p < 0.001). Considering the RPE in specific areas, no differences were observed between the upper and lower body (p = 0.743). We conclude that the BJJ simulated tournament generated a decrease of performance in both upper and lower limbs and provoked a progressive increase in the effort perception over the matches.

  11. EFFECTS OF TWO TYPES OF TRUNK EXERCISES ON BALANCE AND ATHLETIC PERFORMANCE IN YOUTH SOCCER PLAYERS

    PubMed Central

    Kaneoka, Koji; Okubo, Yu; Shiraki, Hitoshi

    2014-01-01

    Purpose/Background: Many athletes perform trunk stabilization exercises (SE) and conventional trunk exercises (CE) to enhance trunk stability and strength. However, evidence regarding the specific training effects of SE and CE is lacking and there have been no studies for youth athletes. Therefore, the purpose of this study was to investigate the training effects of SE and CE on balance and athletic performance in youth soccer players. Methods: Twenty‐seven male youth soccer players were assigned randomly to either an SE group (n = 13) or CE group (n = 14). Data from nineteen players who completed all training sessions were used for statistical analyses (SE, n = 10; CE, n = 9). Before and after the 12‐week intervention program, pre‐ and post‐testing comprised of a static balance test, Star Excursion Balance Test (SEBT), Cooper’s test, sprint, the Step 50, vertical jump, and rebound jump were performed. After pre‐testing, players performed the SE or CE program three times per week for 12 weeks. A two‐way repeated‐measures ANOVA was used to assess the changes over time, and differences between the groups. Within‐group changes from pre‐testing to post‐testing were determined using paired t‐tests. Statistical significance was inferred from p < 0.05. Results: There were significant group‐by‐time interactions for posterolateral (p = 0.022) and posteromedial (p < 0.001) directions of the SEBT. Paired t‐tests revealed significant improvements of the posterolateral and posteromedial directions in the SE group. Although other measurements did not find group‐by‐time interactions, within‐group changes were detected indicating significant improvements in the static balance test, Cooper’s test, and rebound jump in the only SE group (p < 0.05). Vertical jump and sprint were improved significantly in both groups (p < 0.05), but the Step 50 was not improved in either group (p > 0.05). Conclusions: Results suggested that the SE has specific training effects that enhance static and dynamic balance, Cooper’s test, and rebound jump. Level of Evidence: 3b PMID:24567855

  12. Association between laboratory capacities and world-cup performance in Nordic combined

    PubMed Central

    Fudel, Ronny; Kocbach, Jan; Moen, Frode; Ettema, Gertjan; Sandbakk, Øyvind

    2017-01-01

    Background Nordic combined (NC) is an Olympic winter-sport performed as a ski jumping (SJ) event followed by a cross-country (XC) pursuit race employing the skating style. Purpose To elucidate the associations between sport-specific laboratory capacities and SJ, XC skiing, and overall NC performance in a world-cup NC event. Methods Twelve international world-cup NC athletes from 8 nations performed laboratory testing one day prior to participating in a world-cup NC event. Squat jumps and SJ imitations (IMIT) were performed on a three-dimensional force plate, whereas XC skiing-specific physiological characteristics were obtained from roller ski skating tests on a treadmill and an all-out double poling (DP) test. Finally, body composition was measured. Laboratory capacities were correlated against performance in SJ, 10-km XC skiing, and overall NC in the world-cup event. Multiple regression analysis was used to determine the best suited laboratory variables for predicting performance. Results Vertical IMIT velocity together with body-mass provided the best prediction for SJ performance (r2 = 0.70, p<0.01), while body-mass-normalized V˙O2peak and DP power provided the best prediction for XC performance (r2 = 0.68, p<0.05). Body-mass-normalized V˙O2peak was the only significant correlate with overall NC performance (r2 = 0.43, p<0.05) in this competition. Conclusion Overall, the concurrent development of V˙O2peak, upper-body power, and SJ-specific vertical jump capacity while minimizing body-mass within the BMI limit set by FIS should be considered in the seasonal training of NC athletes. PMID:28662163

  13. Effects of combined electromyostimulation and gymnastics training in prepubertal girls.

    PubMed

    Deley, Gaëlle; Cometti, Carole; Fatnassi, Anaïs; Paizis, Christos; Babault, Nicolas

    2011-02-01

    This study investigated the effects of a 6-week combined electromyostimulation (EMS) and gymnastic training program on muscle strength and vertical jump performance of prepubertal gymnasts. Sixteen young women gymnasts (age 12.4 ± 1.2 yrs) participated in this study, with 8 in the EMS group and the remaining 8 as controls. EMS was conducted on knee extensor muscles for 20 minutes 3 times a week during the first 3 weeks and once a week during the last 3 weeks. Gymnasts from both groups underwent similar gymnastics training 5-6 times a week. Isokinetic torque of the knee extensors was determined at different eccentric and concentric angular velocities ranging from -60 to +240° per second. Jumping ability was evaluated using squat jump (SJ), counter movement jump (CMJ), reactivity test, and 3 gymnastic-specific jumps. After the first 3 weeks of EMS, maximal voluntary torque was increased (+40.0 ± 10.0%, +35.3 ± 11.8%, and +50.6 ± 7.7% for -60, +60, and +240°s⁻¹, respectively; p < 0.05), as well as SJ, reactivity test and specific jump performances (+20.9 ± 8.3%, +20.4 ± 26.2% and +14.9 ± 17.2% respectively; p < 0.05). Six weeks of EMS were necessary to improve the CMJ (+10.1 ± 10.0%, p < 0.05). Improvements in jump ability were still maintained 1 month after the end of the EMS training program. To conclude, these results first demonstrate that in prepubertal gymnasts, a 6-week EMS program, combined with the daily gymnastic training, induced significant increases both in knee extensor muscle strength and nonspecific and some specific jump performances.

  14. Changes in anthropometry and performance, and their interrelationships, across three seasons in elite youth rugby league players.

    PubMed

    Waldron, Mark; Worsfold, Paul; Twist, Craig; Lamb, Kevin

    2014-11-01

    This study investigated the changes in anthropometry and performance, and their interrelationships, across 3 consecutive seasons (under-15 to under-17 age groups) in elite youth rugby league players. Each player participated in annual anthropometrical and performance assessments, comprising measurements of stature; body mass; limb lengths and circumference; skinfolds; predicted muscle cross-sectional area (CSA); 20-m speed, countermovement jump height, vertical power, and aerobic power. Lean body mass percentage changed (p ≤ 0.05) between the under-15 (70.9 ± 5.9%), under-16 (72.0 ± 5.8%), and the under-17 age groups (74.1 ± 5.7%). Likewise, predicted quadriceps muscle CSA also changed (p ≤ 0.05) between each age group (under-15 = 120.9 ± 37.8 cm; under-16 = 133.2 ± 36.0 cm; under-17 = 154.8 ± 28.3 cm). Concomitant changes between the under-15 and under-16 groups were found for 20-m speed (3.5 ± 0.1 cf. 3.4 ± 0.2 seconds; p = 0.008) and predicted jumping power (3,611.3 ± 327.3 W cf. 4,081.5 ± 453.9 W; p = 0.003). Both lean body mass and quadriceps muscle CSA consistently, related to both 20-m sprint time and jumping power, with r values ranging between -0.39 and -0.63 (20-m sprint time) and 0.55 to 0.75 (jumping power). Our findings demonstrate the importance of gains in lean body mass across later adolescence that support the ability to generate horizontal speed and predicted vertical power. This information informs the expectations and subsequent training programs of elite rugby league practitioners.

  15. Assessment of power output in jump tests for applicants to a sports sciences degree.

    PubMed

    Lara, A J; Abián, J; Alegre, L M; Jiménez, L; Aguado, X

    2006-09-01

    Our study aimed: 1) to describe the jump performance in a population of male applicants to a Faculty of Sports Sciences, 2) to apply different power equations from the literature to assess their accuracy, and 3) to develop a new regression equation from this population. The push off phases of the counter-movement jumps (CMJ) on a force platform of 161 applicants (age: 19+/-2.9 years; weight: 70.4+/-8.3 kg) to a Spanish Faculty of Sports Sciences were recorded and subsequently analyzed. Their hands had to be placed on the hips and the knee angle during the counter movement was not controlled. Each subject had 2 trials to reach a minimum of 29 cm of jump height, and when 2 jumps were performed the best trial was analyzed. Multiple regression analysis was performed to develop a new regression equation. Mean jump height was 34.6+/-4.3 cm, peak vertical force 1 663.9+/-291.1 N and peak power 3524.4+/-562 W. All the equations underestimated power, from 74% (Lewis) to 8% (Sayers). However, there were high and significant correlations between peak power measured on the force platform, and those assessed by the equations. The results of the present study support the development of power equations for specific populations, to achieve more accurate assessments. The power equation from this study [Power = (62.5 x jump height (cm)) + (50.3 x body mass (kg)) 2184.7] can be used accurately in populations of male physical education students.

  16. Who jumps the highest? Anthropometric and physiological correlations of vertical jump in youth elite female volleyball players.

    PubMed

    Nikolaidis, Pantelis T; Gkoudas, Konstantinos; Afonso, José; Clemente-Suarez, Vicente J; Knechtle, Beat; Kasabalis, Stavros; Kasabalis, Athanasios; Douda, Helen; Tokmakidis, Savvas; Torres-Luque, Gema

    2017-06-01

    The aim of the present study was to examine the relationship of vertical jump (Abalakov jump [AJ]) with anthropometric and physiological parameters in youth elite female volleyball players. Seventy-two selected volleyball players from the region of Athens (age 13.3±0.7 years, body mass 62.0±7.2 kg, height 171.5±5.7 cm, body fat 21.2±4.5%), classified into quartiles according to AJ performance (group A, 21.4-26.5 cm; group B, 26.8-29.9 cm; group C, 30.5-33.7 cm; group D, 33.8-45.9 cm), performed a series of physical fitness tests. AJ was correlated with anthropometric (age at peak height velocity [APHV]: r=0.38, P<0.001; body mass: r=-0.43, P<0.001; Body Mass Index [BMI]: r=-0.37, P<0.001; body fat percentage [BF]: r=-0.64, P<0.001) and physiological parameters (isometric strength: r=0.50, P<0.001; squat jump [SJ]: r=0.92, P<0.001; countermovement jump [CMJ]: r=0.95, P<0.001, Bosco Test: r=0.70, P<0.001; mean power [Pmean]: r=0.61, P<0.001; Fatigue Index: r=-0.33, P=0.005) in the Wingate Anaerobic Test (WAnT). A one-way analysis of variance showed significant differences in APHV, chronological age, body mass, BMI, BF, aerobic capacity (step test and physical working capacity at heart rate 170 bpm), Pmean in the WAnT, isometric strength, SJ, CMJ and 30-s Bosco Test (P<0.05). A Bonferroni post-hoc analysis revealed that group D had older APHV and lower BMI, better aerobic capacity, isometric strength, SJ, CMJ, performance in the Bosco Test, and Pmean in the WAnT, was older and lighter than groups A, B, and C (P<0.05). Both the findings of the comparison among groups differing for AJ and the correlation analysis highlighted the negative role of excess body mass and fat, and the positive role of muscle strength and power on AJ. Also, there was indication that volleyball players that jumped the highest were those who matured later than others.

  17. Effect of Static and Dynamic Stretching on the Diurnal Variations of Jump Performance in Soccer Players

    PubMed Central

    Chtourou, Hamdi; Aloui, Asma; Hammouda, Omar; Chaouachi, Anis; Chamari, Karim; Souissi, Nizar

    2013-01-01

    Purpose The present study addressed the lack of data on the effect of different types of stretching on diurnal variations in vertical jump height - i.e., squat-jump (SJ) and countermovement-jump (CMJ). We hypothesized that dynamic stretching could affect the diurnal variations of jump height by producing a greater increase in short-term maximal performance in the morning than the evening through increasing core temperature at this time-of-day. Methods Twenty male soccer players (age, 18.6±1.3 yrs; height, 174.6±3.8 cm; body-mass, 71.1±8.6 kg; mean ± SD) completed the SJ and CMJ tests either after static stretching, dynamic stretching or no-stretching protocols at two times of day, 07:00 h and 17:00 h, with a minimum of 48 hours between testing sessions. One minute after warming-up for 5 minutes by light jogging and performing one of the three stretching protocols (i.e., static stretching, dynamic stretching or no-stretching) for 8 minutes, each subject completed the SJ and CMJ tests. Jumping heights were recorded and analyzed using a two-way analysis of variance with repeated measures (3 [stretching]×2 [time-of-day]). Results The SJ and CMJ heights were significantly higher at 17:00 than 07:00 h (p<0.01) after the no-stretching protocol. These daily variations disappeared (i.e., the diurnal gain decreased from 4.2±2.81% (p<0.01) to 1.81±4.39% (not-significant) for SJ and from 3.99±3.43% (p<0.01) to 1.51±3.83% (not-significant) for CMJ) after dynamic stretching due to greater increases in SJ and CMJ heights in the morning than the evening (8.4±6.36% vs. 4.4±2.64%, p<0.05 for SJ and 10.61±5.49% vs. 6.03±3.14%, p<0.05 for CMJ). However, no significant effect of static stretching on the diurnal variations of SJ and CMJ heights was observed. Conclusion Dynamic stretching affects the typical diurnal variations of SJ and CMJ and helps to counteract the lower morning values in vertical jump height. PMID:23940589

  18. Acute Effects of Pre-Event Lower Limb Massage on Explosive and High Speed Motor Capacities and Flexibility

    PubMed Central

    Arabaci, Ramiz

    2008-01-01

    The aim of this study was to examine the acute effects of pre- performance lower limb massage after warm-up on explosive and high-speed motor capacities and flexibility. Twenty-four physically active healthy Caucasian male subjects volunteered to participate in this study. All subjects were from a Physical Education and Sport Department in a large university in Turkey. The study had a counterbalanced crossover design. Each of the subjects applied the following intervention protocols in a randomised order; (a) massage, (b) stretching, and (c) rest. Before (pre) and after (post) each of the interventions, the 10 meter acceleration (AS), flying start 20 meter sprint (FS), 30 meter sprint from standing position (TS), leg reaction time (LR), vertical jump (VJ) and sit & reach (SR) tests were performed. A Wilcoxon’s signed rank test was used to compare before and after test values within the three interventions (massage, stretching and rest). The data showed a significant worsening, after massage and stretching interventions, in the VJ, LR (only in stretching intervention), AS and TS tests (p < 0.05), and significant improvement in the SR test (p < 0.05). In contrast, the rest intervention led only to a significant decrement in TS performance (p < 0.05). In conclusion, the present findings suggest that performing 10 minute posterior and 5 minute anterior lower limb Swedish massage has an adverse effect on vertical jump, speed, and reaction time, and a positive effect on sit and reach test results. Key pointsPerforming 10 minute posterior and 5 minute anterior lower limb Swedish massages has an adverse affect on vertical jump, speed, and reaction time and a positive effect on sit and reach test results.According to the present results, long duration massage should not be recommended for warm-ups.Larger subject pools are needed to verify these events. PMID:24149965

  19. Improving Vertical Jump Profiles Through Prescribed Movement Plans.

    PubMed

    Mayberry, John K; Patterson, Bryce; Wagner, Phil

    2018-06-01

    Mayberry, JK, Patterson, B, and Wagner, P. Improving vertical jump profiles through prescribed movement plans. J Strength Cond Res 32(6): 1619-1626, 2018-Developing practical, reliable, and valid methods for monitoring athlete wellness and injury risk is an important goal for trainers, athletes, and coaches. Previous studies have shown that the countermovement vertical jump (CMJ) test is both a reliable and valid metric for evaluating an athlete's condition. This study examines the effectiveness of prescribed workouts on improving the quality of movement during CMJ. The data set consists of 2,425 pairs of CMJ scans for high school, college, and professional athletes training at a privately owned facility. During each scan, a force plate recorded 3 ground reaction force (GRF) measurements known to impact CMJ performance: eccentric rate of force development (ERFD), average vertical concentric force (AVCF), and concentric vertical impulse (CVI). After an initial scan, coaches either assigned the athlete a specific 1- or 2-strength movement plan (treatment group) or instructed the athlete to choose their own workouts (control group) before returning for a follow-up scan. A multivariate analysis of covariance (MANCOVA) revealed significant differences in changes to GRF measurements between athletes in the 2 groups after adjusting for the covariates sex, sport, time between scans, and rounds of workout completed. A principal component analysis of GRF measurements further identified 4 primary groups of athlete needs and the results provide recommendations for effective workout plans targeting each group. In particular, split squats increase CVI and decrease ERFD/AVCF; deadlifts increase AVCF and decrease CVI; alternating squats/split squats increase ERFD/CVI and decrease AVCF; and alternating squats/deadlifts increase ERFD/AVCF and decrease CVI.

  20. Muscular adaptations to depth jump plyometric training: Comparison of sand vs. land surface

    PubMed Central

    Arazi, Hamid; Mohammadi, Mahdi

    2014-01-01

    The purpose of this study was to compare the effects of plyometric training on sand vs. land surface on muscular performance adaptations in men. Fourteen healthy men were randomly assigned to two training groups: a) Sand Depth Jump (SDJ; N = 7) and b) Land Depth Jump (LDJ; N = 7). Training was performed for 6 weeks and consisted of 5 × 20 repetitions of DJ training on 20-cm dry sand or 3-cm hard court surface twice weekly. Vertical Jump Test (VJT), Standing Long Jump Test (SLJT), 20-m and 40-m sprint, T-test (TT) and one repetition maximum leg press (1RMLP) were performed before and after training. Significant improvements in VJT [4 (ES = 0.63) vs. 5.4 (ES = 0.85) cm], SLJT [8.3 (ES = 0.3) vs. 12.7 (ES = 0.57) cm], and 1RMLP [23.5 (ES = 0.56) vs. 15.3 (ES = 0.49) kg] were seen for both the groups. Likewise, significant decreases were observed for both SDJ and LDJ groups in 20-m [0.3 (ES = 0.72) vs. 0.4 (ES = 1.98) s] and 40-m sprint times [0.2 (ES = 0.4) vs. 0.5 (ES = 0.71) s], and TT [0.5 (ES = 0.62) vs. 0.9 (ES = 0.57) s]. With regard to ES, it can be recommended that athletes used LDJ training for enhancing sprint and jump and SDJ training for improving agility and strength. PMID:25243078

  1. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height.

    PubMed

    Mandic, Radivoj; Knezevic, Olivera M; Mirkov, Dragan M; Jaric, Slobodan

    2016-09-01

    The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  2. Factor Analysis of Various Anaerobic Power Tests.

    ERIC Educational Resources Information Center

    Manning, James M.; And Others

    A study investigated the relationship between selected anthropometric variables and of numerous anaerobic power tests with measures obtained on an isokinetic dynamometer. Thirty-one male college students performed several anaerobic power tests, including: the vertical jump using the Lewis formula; the Margaria-Kalamen stair climb test; the Wingate…

  3. Reliability and Validity of the Standing Heel-Rise Test

    ERIC Educational Resources Information Center

    Yocum, Allison; McCoy, Sarah Westcott; Bjornson, Kristie F.; Mullens, Pamela; Burton, Gay Naganuma

    2010-01-01

    A standardized protocol for a pediatric heel-rise test was developed and reliability and validity are reported. Fifty-seven children developing typically (CDT) and 34 children with plantar flexion weakness performed three tests: unilateral heel rise, vertical jump, and force measurement using handheld dynamometry. Intraclass correlation…

  4. Comparison and analysis of three different methods to evaluate vertical jump height.

    PubMed

    Bui, Hung Tien; Farinas, Marie-Isabelle; Fortin, Anne-Marie; Comtois, Alain-Steve; Leone, Mario

    2015-05-01

    The purpose of this study was to compare three methods to assess vertical jump height, to determine their limitations and to propose solutions to mitigate their effects. The chosen methods were the contact mat, the optical system and the Sargent jump. The testing environment was designed such that all three systems simultaneously measured the vertical jump height. A total of 41 kinesiology students (18 women, 23 men, mean age 23·2 ± 4·5 years) participated in this study. Data show that the contact mat and the optical system essentially provide similar results (P = 0·912) and that the correlation coefficient between the two systems was 0·972 (r(2)  = 0·944). However, it was found that the Sargent jump has a tendency to overestimate the height, providing a measurement that is significantly different from the other two methods as the jumps are higher than 30·64 cm (P = 0·044). Through the design of the experiment, several sources of errors were identified and mathematically modelled. These sources include optical sensor placement, flat-footed landing and hip/knee bend. Whenever possible, the errors were quantified and solutions were proposed. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  5. Determination of Vertical Jump as a Measure of Neuromuscular Readiness and Fatigue.

    PubMed

    Watkins, Casey M; Barillas, Saldiam R; Wong, Megan A; Archer, David C; Dobbs, Ian J; Lockie, Robert G; Coburn, Jared W; Tran, Tai T; Brown, Lee E

    2017-12-01

    Watkins, CM, Barillas, SR, Wong, MA, Archer, DC, Dobbs, IJ, Lockie, RG, Coburn, JW, Tran, TT, and Brown, LE. Determination of vertical jump as a measure of neuromuscular readiness and fatigue. J Strength Cond Res 31(12): 3305-3310, 2017-Coaches closely monitor training loads and periodize sessions throughout the season to create optimal adaptations at the proper time. However, only monitoring training loads ignores the innate physiological stress each athlete feels individually. Vertical jump (VJ) is widely used as a measure of lower-body power, and has been used in postmatch studies to demonstrate fatigue levels. However, no pretraining monitoring by VJ performance has been previously studied. Therefore, the purpose of this study was to determine the sensitivity of VJ as a measure of readiness and fatigue on a daily sessional basis. Ten healthy resistance-trained males (mass = 91.60 ± 13.24 kg; height = 179.70 ± 9.23 cm; age = 25.40 ± 1.51 years) and 7 females (mass = 65.36 ± 12.29 kg; height = 162.36 ± 5.75 cm; age = 25.00 ± 2.71 years) volunteered to participate. Vertical jump and BRUNEL Mood Assessment (BAM) were measured 4 times: pre-workout 1, post-workout 1, pre-workout 2, and post-workout 2. Workout intensity was identical for both workouts, consisting of 4 sets of 5 repetitions for hang cleans, and 4 sets of 6 repetitions for push presses at 85% 1 repetition maximum (1RM), followed by 4 sets to failure of back squats (BSs), Romanian deadlift, and leg press at 80% 1RM. The major finding was that VJ height decrement (-8.05 ± 9.65 cm) at pre-workout 2 was correlated (r = 0.648) with BS volume decrement (-27.56 ± 24.56%) between workouts. This is important for coaches to proactively understand the current fatigue levels of their athletes and their readiness to resistance training.

  6. Comparison of 3D Joint Angles Measured With the Kinect 2.0 Skeletal Tracker Versus a Marker-Based Motion Capture System.

    PubMed

    Guess, Trent M; Razu, Swithin; Jahandar, Amirhossein; Skubic, Marjorie; Huo, Zhiyu

    2017-04-01

    The Microsoft Kinect is becoming a widely used tool for inexpensive, portable measurement of human motion, with the potential to support clinical assessments of performance and function. In this study, the relative osteokinematic Cardan joint angles of the hip and knee were calculated using the Kinect 2.0 skeletal tracker. The pelvis segments of the default skeletal model were reoriented and 3-dimensional joint angles were compared with a marker-based system during a drop vertical jump and a hip abduction motion. Good agreement between the Kinect and marker-based system were found for knee (correlation coefficient = 0.96, cycle RMS error = 11°, peak flexion difference = 3°) and hip (correlation coefficient = 0.97, cycle RMS = 12°, peak flexion difference = 12°) flexion during the landing phase of the drop vertical jump and for hip abduction/adduction (correlation coefficient = 0.99, cycle RMS error = 7°, peak flexion difference = 8°) during isolated hip motion. Nonsagittal hip and knee angles did not correlate well for the drop vertical jump. When limited to activities in the optimal capture volume and with simple modifications to the skeletal model, the Kinect 2.0 skeletal tracker can provide limited 3-dimensional kinematic information of the lower limbs that may be useful for functional movement assessment.

  7. Changes in stature following plyometric drop-jump and pendulum exercises.

    PubMed

    Fowler, N E; Lees, A; Reilly, T

    1997-12-01

    The aim of this study was to compare the changes in stature following the performance of plyometric exercises using drop-jumps and a pendulum swing. Eight male participants aged 21.7 +/- 1.8 years with experience of plyometric training gave their informed consent to act as participants. Participants undertook two exercise regimens and a 15-min standing test in a random order. The exercises entailed the performance of 50 drop-jumps from a height of 0.28 m or 50 pendulum rebounds. Participants were instructed to perform maximal jumps or rebounds using a 'bounce' style. Measurements of stature were performed after a 20-min period of standing (pre-exercise), 2-min after exercise (post-exercise) and after a 20-min standing recovery (recovery). Back pain and muscle soreness were assessed using an analogue-visual scale, at each of the above times and also 24 and 36 h after the test. Peak torque during isokinetic knee extension at 1.04 rads-1 was measured immediately before and after the exercise bouts, to assess the degree of muscular fatigue. Ground/wall reaction force data were recorded using a Kistler force platform mounted in the floor for drop-jumps and vertically on the rebound wall for pendulum exercises. Drop-jumps resulted in the greatest (p < 0.05) change in stature (-2.71 +/- 0.8 mm), compared to pendulum exercises (-1.77 +/- 0.7 mm) and standing (-0.39 +/- 0.2 mm). Both exercise regimens resulted in a significant (p < 0.01) decrease in stature when compared to the standing condition. Drop-jumps resulted in significantly greater peak impact forces (p < 0.05) than pendulum exercises (drop-jumps = 3.2 +/- 0.5 x body weight, pendulum = 2.6 +/- 0.5 x body weight). The two exercise conditions both invoked a small degree of muscle soreness but there were no significant differences between conditions. Both exercise regimens resulted in a non-significant decrease in peak torque indicating a similar degree of muscular fatigue. Based on the lower shrinkage resulted and lower peak forces, it can be concluded that pendulum exercises pose a lower injury potential to the lower back than drop-jumps performed from a height of 28 cm.

  8. Biomechanical differences of arm swing countermovement jumps on sand and rigid surface performed by elite beach volleyball players.

    PubMed

    Giatsis, George; Panoutsakopoulos, Vassilios; Kollias, Iraklis A

    2018-05-01

    The purpose of this study was to investigate the possible arm swing effect on the biomechanical parameters of vertical counter movement jump due to differences of the compliance of the take-off surface. Fifteen elite male beach-volleyball players (26.2 ± 5.9 years; 1.87 ± 0.05 m; 83.4 ± 6.0 kg; mean ± standard deviation, respectively) performed counter movement jumps on sand and on a rigid surface with and without an arm swing. Results showed significant (p < .05) surface effects on the jump height, the ankle joint angle at the lowest height of the body center of mass and the ankle angular velocity. Also, significant arm swing effects were found on jump height, maximum power output, temporal parameters, range of motion and angular velocity of the hip. These findings could be attributed to the instability of the sand, which resulted in reduced peak power output due to the differences of body configuration at the lowest body position and lower limb joints' range of motion. The combined effect of the backward arm swing and the recoil of the sand that resulted in decreased resistance at ankle plantar flexion should be controlled at the preparation of selected jumping tasks in beach-volleyball.

  9. One leg lateral jumps - a new test for team players evaluation.

    PubMed

    Taboga, P; Sepulcri, L; Lazzer, S; De Conti, D; Di Prampero, P E

    2013-10-01

    We assessed the subject's capacity to accelerate himself laterally in monopodalic support, a crucial ability in several team sports, on 22 athletes, during series of 10 subsequent jumps, between two force platforms at predetermined distance. Vertical and horizontal accelerations of the Centre of Mass (CM), contact and flight times were measured by means of force platforms and the Optojump-System®. Individual mean horizontal and vertical powers and their sum (total power) ranged between 7 and 14.5 W/kg. "Push angle", i.e., the angle with the horizontal along which the vectorial sum of all forces is aligned, was calculated from the ratio between vertical and horizontal accelerations: it varied between 38.7 and 49.4 deg and was taken to express the subject technical ability. The horizontal acceleration of CM, indirectly estimated as a function of subject's mass, contact and flight times, was essentially equal to that obtained from force platforms data. Since the vertical displacement can be easily obtained from flight and contact times, this allowed us to assess the Push angle from Optojump data only. The power developed during a standard vertical jump was rather highly correlated with that developed during the lateral jumps for right (R=0.80, N.=12) and left limb (R=0.72, N.=12), but not with the push angle for right (R=0.31, N.=12) and left limb (R=-0.43, N.=12). Hence standard tests cannot be utilised to assess technical ability. Lateral jumps test allows the coach to evaluate separately maximal muscular power and technical ability of the athlete, thus appropriately directing the training program: the optimum, for a team-sport player being high power and low push-angle, that is: being "powerful" and "efficient".

  10. Fast Regulation of Vertical Squat Jump during Push-Off in Skilled Jumpers.

    PubMed

    Fargier, Patrick; Massarelli, Raphael; Rabahi, Tahar; Gemignani, Angelo; Fargier, Emile

    2016-01-01

    The height of a maximum Vertical Squat Jump (VSJ) reflects the useful power produced by a jumper during the push-off phase. In turn this partly depends on the coordination of the jumper's segmental rotations at each instant. The physical system constituted by the jumper has been shown to be very sensitive to perturbations and furthermore the movement is realized in a very short time (ca. 300 ms), compared to the timing of known feedback loops. However, the dynamics of the segmental coordination and its efficiency in relation to energetics at each instant of the push-off phase still remained to be clarified. Their study was the main purpose of the present research. Eight young adult volunteers (males) performed maximal VSJ. They were skilled in jumping according to their sport activities (track and field or volleyball). A video analysis on the kinematics of the jump determined the influence of the jumpers' segments rotation on the vertical velocity and acceleration of the body mass center (MC). The efficiency in the production of useful power at the jumpers' MC level, by the rotation of the segments, was measured in consequence. The results showed a great variability in the segmental movements of the eight jumpers, but homogeneity in the overall evolution of these movements with three consecutive types of coordination in the second part of the push-off (lasting roughly 0.16 s). Further analyses gave insights on the regulation of the push-off, suggesting that very fast regulation(s) of the VSJ may be supported by: (a) the adaptation of the motor cerebral programming to the jumper's physical characteristics; (b) the control of the initial posture; and (c) the jumper's perception of the position of his MC relative to the ground reaction force, during push-off, to reduce energetic losses.

  11. Is Vertical Jump Height an Indicator of Athletes' Power Output in Different Sport Modalities?

    PubMed

    Kons, Rafael L; Ache-Dias, Jonathan; Detanico, Daniele; Barth, Jonathan; Dal Pupo, Juliano

    2018-03-01

    Kons, RL, Ache-Dias, J, Detanico, D, Barth, J, and Dal Pupo, J. Is vertical jump height an indicator of athletes' power output in different sports modalities? J Strength Cond Res 32(3): 708-715, 2018-This study aimed to identify whether the ratio standard is adequate for the scaling of peak power output (PPO) for body mass (BM) in athletes of different sports and to verify classification agreement for athletes involved in different sports using PPO scaled for BM and jump height (JH). One hundred and twenty-four male athletes divided into 3 different groups-combat sports, team sports, and runners-participated in this study. Participants performed the countermovement jump on a force plate. Peak power output and JH were calculated from the vertical ground reaction force. We found different allometric exponents for each modality, allowing the use of the ratio standard for team sports. For combat sports and runners, the ratio standard was not considered adequate, and therefore, a specific allometric exponent for these 2 groups was found. Significant correlations between adjusted PPO for BM (PPOADJ) and JH were found for all modalities, but it was higher for runners (r = 0.81) than team and combat sports (r = 0.63 and 0.65, respectively). Moderate agreement generated by the PPOADJ and JH was verified in team sports (k = 0.47) and running (k = 0.55) and fair agreement in combat sports (k = 0.29). We conclude that the ratio standard seems to be suitable only for team sports; for runners and combat sports, an allometric model seems adequate. The use of JH as an indicator of power output may be considered reasonable only for runners.

  12. Computer simulation of the last support phase of the long jump.

    PubMed

    Chow, John W; Hay, James G

    2005-01-01

    The purpose was to examine the interacting roles played by the approach velocity, the explosive strength (represented by vertical ground reaction force [VGRF]), and the change in angular momentum about a transverse axis through the jumper's center of mass (deltaHzz) during the last support phase of the long jump, using a computer simulation technique. A two-dimensional inverted-pendulum-plus-foot segment model was developed to simulate the last support phase. Using a reference jump derived from a jump performance reported in the literature, the effects of varying individual parameters were studied using sensitivity analyses. In each sensitivity analysis, the kinematic characteristics of the longest jumps with the deltaHzz considered and not considered when the parameter of interest was altered were noted. A sensitivity analysis examining the influence of altering both approach velocity and VGRF at the same time was also conducted. The major findings were that 1) the jump distance was more sensitive to changes in approach velocity (e.g., a 10% increase yielded a 10.0% increase in jump distance) than to changes in the VGRF (e.g., a 10% increase yielded a 7.2% increase in jump distance); 2) the relatively large change in jump distance when both the approach velocity and VGRF were altered (e.g., a 10% increase in both parameters yielded a 20.4% increase in jump distance), suggesting that these two parameters are not independent factors in determining the jump distance; and 3) the jump distance was overestimated if the deltaHzz was not considered in the analysis.

  13. Acute effects of warm-up stretch protocols on balance, vertical jump height, and range of motion in dancers.

    PubMed

    Morrin, Niamh; Redding, Emma

    2013-01-01

    The aim of this study was to examine the acute effects of static stretching (SS), dynamic stretching (DS), and a combined (static and dynamic) stretch protocol on vertical jump (VJ) height, balance, and range of motion (ROM) in dancers. A no-stretch (NS) intervention acted as the control condition. It was hypothesized that the DS and combination stretch protocols would have more positive effects on performance indicators than SS and NS, and SS would have negative effects as compared to the NS condition. Ten trained female dancers (27 ± 5 years of age) were tested on four occasions. Each session began with initial measurements of hamstring ROM on the dominant leg. The participants subsequently carried out a cardiovascular (CV) warm-up, which was followed by one of the four randomly selected stretch conditions. Immediately after the stretch intervention the participants were tested on VJ performance, hamstring ROM, and balance. The data showed that DS (p < 0.05) and the combination stretch (p < .05) produced significantly greater VJ height scores as compared to SS, and the combination stretch demonstrated significantly enhanced balance performance as compared to SS (p < 0.05). With regard to ROM, a one-way ANOVA indicated that SS and the combination stretch displayed significantly greater changes in ROM than DS (p < 0.05). From comparison of the stretch protocols used in the current study, it can be concluded that SS does not appear to be detrimental to a dancer's performance, and DS has some benefits but not in all three key area's tested, namely lower body power (VJ height), balance, and range of motion. However, combination stretching showed significantly enhanced balance and vertical jump height scores and significantly improved pre-stretch and post-stretch ROM values. It is therefore suggested that a combined warm-up protocol consisting of SS and DS should be promoted as an effective warm-up for dancers.

  14. Body armour: the effect of load, exercise and distraction on landing forces.

    PubMed

    Dempsey, Paddy C; Handcock, Phil J; Rehrer, Nancy J

    2014-01-01

    We investigated the effect of added load and intense exercise on jump and landing performance and ground reaction force (GRF) during landings where attentional demand was varied. Fifty-two males (37 ± 9.2 years, 180.7 ± 6.1 cm, 90.2 ± 11.6 kg, maximal aerobic fitness (VO(₂max)) 50 ± 8.5 ml (.) kg(-1 .) min(-1), BMI 27.6 ± 3.1, mean ± s) completed a VO(₂max) test. Experimental sessions were completed (≥4 days in between) in a randomised counterbalanced order, one while wearing body armour and appointments (loaded) and one without load (unloaded). A vertical jump, a drop landing concentrating on safe touchdown, a drop jump and a drop landing with an attentional distraction were performed. These were repeated 1 min after a 5-min treadmill run. Mean jump height decreased by 12% (P < 0.001) with loading and a further by 6% following the running task. Peak GRFs were increased by 13-19% with loading (P < 0.001) depending on the landing task demands and a further by 4-9% following intense exercise. The distracted drop landing had significantly higher GRFs compared to all other landings. Results demonstrate that added load impacts on jumping and landing performance, an effect that is amplified by prior intense exercise, and distraction during landing. Such increases in GRF apply to police officer performance in their duties and may increase the risk of injury.

  15. Identification af explosive power factors as predictors of player quality in young female volleyball players.

    PubMed

    Grgantov, Zoran; Milić, Mirjana; Katić, Ratko

    2013-05-01

    With the purpose of determining the factor structure of explosive power, as well as the influence of each factor on situational efficiency, 56 young female volleyball players were tested using 14 tests for assessing nonspecific and specific explosive power. By factor analysis, 4 significant factors were isolated which explained the total of over 80% of the common variability in young female volleyball players. The first factor was defined as volleyball-specific jumping, the second factor as nonspecific jumping and sprinting, the third factor as throwing explosive power, while the fourth factor was interpreted as volleyball-specific throwing and spiking speed from the ground. Results obtained by regression analysis in the latent space of explosive power indicate that the identified factors are good predictors of player quality in young female volleyball players. The fourth factor defined as throwing and spiking speed from the ground had the largest influence on player quality, followed by volleyball-specific jumping and nonspecific jumping and sprinting, and to a much lesser extent, by throwing explosive power The results obtained in this age group bring to the fore the ability of spiking and serving a ball of high speed, which hinders the opponents from playing those balls in serve reception and field defence. This ability, combined with a high standing vertical jump reach and spike approach vertical jump reach (which is the basis of the 1st varimax factor) enables successful performance of all volleyball elements by which points are won in complex 1 (spike) and complex 2 (serve and block). Even though the 2nd factor (nonspecific jumping and sprinting) has a slightly smaller impact on situational efficiency in young players, this ability provides preconditions i.e. preparation for successful realisation of all volleyball elements, so greater attention must be paid to perfecting it in young female volleyball players.

  16. Effects of horizontal plyometric training volume on soccer players' performance.

    PubMed

    Yanci, Javier; Los Arcos, Asier; Camara, Jesús; Castillo, Daniel; García, Alberto; Castagna, Carlo

    2016-01-01

    The aim of this study was to examine the dose response effect of strength and conditioning programmes, involving horizontally oriented plyometric exercises, on relevant soccer performance variables. Sixteen soccer players were randomly allocated to two 6-week plyometric training groups (G1 and G2) differing by imposed (twice a week) training volume. Post-training G1 (4.13%; d = 0.43) and G2 (2.45%; d = 0.53) moderately improved their horizontal countermovement jump performance. Significant between-group differences (p < 0.01) in the vertical countermovement jump for force production time (T2) were detected post-training. No significant and practical (p > 0.05, d = trivial or small) post-training improvements in sprint, change of direction ability (CODA) and horizontal arm swing countermovement jump were reported in either group. Horizontal plyometric training was effective in promoting improvement in injury prevention variables. Doubling the volume of a horizontal plyometric training protocol was shown to have no additional effect over functional aspects of soccer players' performance.

  17. Comparison of integrated and isolated training on performance measures and neuromuscular control.

    PubMed

    Distefano, Lindsay J; Distefano, Michael J; Frank, Barnett S; Clark, Micheal A; Padua, Darin A

    2013-04-01

    Traditional weight training programs use an exercise prescription strategy that emphasizes improving muscle strength through resistance exercises. Other factors, such as stability, endurance, movement quality, power, flexibility, speed, and agility are also essential elements to improving overall functional performance. Therefore, exercises that incorporate these additional elements may be beneficial additions to traditional resistance training programs. The purpose of the study was to compare the effects of an isolated resistance training program (ISO) and an integrated training program (INT) on movement quality, vertical jump height, agility, muscle strength and endurance, and flexibility. The ISO program consisted of primarily upper and lower extremity progressive resistance exercises. The INT program involved progressive resistance exercises, and core stability, power, and agility exercises. Thirty subjects were cluster randomized to either the ISO (n = 15) or INT (n = 15) training program. Each training group performed their respective programs 2 times per week for 8 weeks. The subjects were assessed before (pretest) and after (posttest) the intervention period using the following assessments: a jump-landing task graded using the Landing Error Scoring System (LESS), vertical jump height, T-test time, push-up and sit-up performance, and the sit-and-reach test. The INT group performed better on the LESS test (pretest: 3.90 ± 1.02, posttest: 3.03 ± 1.02; p = 0.02), faster on the T-test (pretest: 10.35 ± 1.20 seconds, posttest: 9.58 ± 1.02 seconds; p = 0.01), and completed more sit-ups (pretest: 40.20 ± 15.01, posttest: 46.73 ± 14.03; p = 0.045) and push-ups (pretest: 40.67 ± 13.85, posttest: 48.93 ± 15.17; p = 0.05) at posttest compared with pretest, and compared with the ISO group at posttest. Both groups performed more push-ups (p = 0.002), jumped higher (p < 0.001), and reached further (p = 0.008) at posttest compared with that at pretest. Performance enhancement programs should use an integrated approach to exercise selection to optimize performance and movement technique benefits.

  18. Reliability of bounce drop jump parameters within elite male rugby players.

    PubMed

    Costley, Lisa; Wallace, Eric; Johnston, Michael; Kennedy, Rodney

    2017-07-25

    The aims of the study were to investigate the number of familiarisation sessions required to establish reliability of the bounce drop jump (BDJ) and subsequent reliability once familiarisation is achieved. Seventeen trained male athletes completed 4 BDJs in 4 separate testing sessions. Force-time data from a 20 cm BDJ was obtained using two force plates (ensuring ground contact < 250 ms). Subjects were instructed to 'jump for maximal height and minimal contact time' while the best and average of four jumps were compared. A series of performance variables were assessed in both eccentric and concentric phases including jump height, contact time, flight time, reactive strength index (RSI), peak power, rate of force development (RFD) and actual dropping height (ADH). Reliability was assessed using the intraclass correlation coefficient (ICC) and coefficient of variation (CV) while familiarisation was assessed using a repeated measures analysis of variance (ANOVA). The majority of DJ parameters exhibited excellent reliability with no systematic bias evident, while the average of 4 trials provided greater reliability. With the exception of vertical stiffness (CV: 12.0 %) and RFD (CV: 16.2 %) all variables demonstrated low within subject variation (CV range: 3.1 - 8.9 %). Relative reliability was very poor for ADH, with heights ranging from 14.87 - 29.85 cm. High levels of reliability can be obtained from the BDJ with the exception of vertical stiffness and RFD, however, extreme caution must be taken when comparing DJ results between individuals and squads due to large discrepancies between actual drop height and platform height.

  19. Jumping performance differences among elite professional handball players with or without previous ACL reconstruction.

    PubMed

    Setuain, I; Millor, N; Alfaro, J; Gorostiaga, E; Izquierdo, M

    2015-10-01

    Handball is one of the most challenging sports for the knee joint. Persistent strength and jumping capacity alterations may be observed among athletes who have suffered anterior cruciate ligament (ACL) injury. The aim of this study was to examine unilateral and bilateral jumping ability differences between previously ACL-reconstructed rehabilitated elite handball athletes and sex, age and uninjured sport activity level-pairs of control players. It was a Cross-sectional study with one factor: previous ACL injury. We recruited 22 male (6 ACL-reconstructed and 16 uninjured control players) and 21 female (6 ACL-reconstructed and 15 uninjured control players) elite handball players who were evaluated 6.2±3.4 years after surgical ACL reconstruction. A battery of jump tests, including both bilateral and unilateral maneuvers, was performed. Two-tailed unpaired (intergroup comparison) and paired (intragroup comparison) t-tests were performed for mean comparisons. The P-value cut-off for significance was set at <0.05. The previously ACL-reconstructed female athletes showed a lower bilateral drop jump contact time (0.429±179.9 vs. 0.349±151 s, P<0.05) and less distance reached (3.820±0.54 vs. 4.428±0.44 m, P<0.05) in the unilateral triple hop for distance (UTHD) on their reconstructed leg compared with the dominant legs of the uninjured control athletes. No significant differences were observed for any other recorded variable. Among the male athletes, no significant differences between groups were found for the studied jumping variables. Previously ACL-reconstructed elite female handball athletes demonstrated both lower vertical bilateral drop jump (VBDJ) contact times and lower UTHD scores for the injured leg several years after injury. These deficits could contribute to an increase in ACL re-injury risk.

  20. Specific Changes in Young Soccer Player's Fitness After Traditional Bilateral vs. Unilateral Combined Strength and Plyometric Training

    PubMed Central

    Ramirez-Campillo, Rodrigo; Sanchez-Sanchez, Javier; Gonzalo-Skok, Oliver; Rodríguez-Fernandez, Alejandro; Carretero, Manuel; Nakamura, Fabio Y.

    2018-01-01

    The aim of this study was to compare changes in young soccer player's fitness after traditional bilateral vs. unilateral combined plyometric and strength training. Male athletes were randomly divided in two groups; both received the same training, including strength training for knee extensors and flexors, in addition to horizontal plyometric training drills. The only difference between groups was the mode of drills technique: unilateral (UG; n = 9; age, 17.3 ± 1.1 years) vs. bilateral (TG; n = 9; age, 17.6 ± 0.5 years). One repetition maximum bilateral strength of knee muscle extensors (1RM_KE) and flexors (1RM_KF), change of direction ability (COD), horizontal and vertical jump ability with one (unilateral) and two (bilateral) legs, and limb symmetry index were measured before and after an 8-week in-season intervention period. Some regular soccer drills were replaced by combination of plyometric and strength training drills. Magnitude-based inference statistics were used for between-group and within-group comparisons. Beneficial effects (p < 0.05) in 1RM_KE, COD, and several test of jumping performance were found in both groups in comparison to pre-test values. The limb symmetry index was not affected in either group. The beneficial changes in 1RM_KE (8.1%; p = 0.074) and 1RM_KF (6.7%; p = 0.004), COD (3.1%; p = 0.149), and bilateral jump performance (from 2.7% [p = 0.535] to 10.5% [p = 0.002]) were possible to most likely beneficial in the TG than in the UG. However, unilateral jump performance measures achieved likely to most likely beneficial changes in the UG compared to the TG (from 4.5% [p = 0.090] to 8.6% [p = 0.018]). The improvements in jumping ability were specific to the type of jump performed, with greater improvements in unilateral jump performance in the UG and bilateral jump performance in the TG. Therefore, bilateral strength and plyometric training should be complemented with unilateral drills, in order to maximize adaptations. PMID:29623049

  1. Specific Changes in Young Soccer Player's Fitness After Traditional Bilateral vs. Unilateral Combined Strength and Plyometric Training.

    PubMed

    Ramirez-Campillo, Rodrigo; Sanchez-Sanchez, Javier; Gonzalo-Skok, Oliver; Rodríguez-Fernandez, Alejandro; Carretero, Manuel; Nakamura, Fabio Y

    2018-01-01

    The aim of this study was to compare changes in young soccer player's fitness after traditional bilateral vs. unilateral combined plyometric and strength training. Male athletes were randomly divided in two groups; both received the same training, including strength training for knee extensors and flexors, in addition to horizontal plyometric training drills. The only difference between groups was the mode of drills technique: unilateral (UG; n = 9; age, 17.3 ± 1.1 years) vs. bilateral (TG; n = 9; age, 17.6 ± 0.5 years). One repetition maximum bilateral strength of knee muscle extensors (1RM_KE) and flexors (1RM_KF), change of direction ability (COD), horizontal and vertical jump ability with one (unilateral) and two (bilateral) legs, and limb symmetry index were measured before and after an 8-week in-season intervention period. Some regular soccer drills were replaced by combination of plyometric and strength training drills. Magnitude-based inference statistics were used for between-group and within-group comparisons. Beneficial effects ( p < 0.05) in 1RM_KE, COD, and several test of jumping performance were found in both groups in comparison to pre-test values. The limb symmetry index was not affected in either group. The beneficial changes in 1RM_KE (8.1%; p = 0.074) and 1RM_KF (6.7%; p = 0.004), COD (3.1%; p = 0.149), and bilateral jump performance (from 2.7% [ p = 0.535] to 10.5% [ p = 0.002]) were possible to most likely beneficial in the TG than in the UG. However, unilateral jump performance measures achieved likely to most likely beneficial changes in the UG compared to the TG (from 4.5% [ p = 0.090] to 8.6% [ p = 0.018]). The improvements in jumping ability were specific to the type of jump performed, with greater improvements in unilateral jump performance in the UG and bilateral jump performance in the TG. Therefore, bilateral strength and plyometric training should be complemented with unilateral drills, in order to maximize adaptations.

  2. Landing Technique and Performance in Youth Athletes After a Single Injury-Prevention Program Session

    PubMed Central

    Root, Hayley; Trojian, Thomas; Martinez, Jessica; Kraemer, William; DiStefano, Lindsay J.

    2015-01-01

    Context Injury-prevention programs (IPPs) performed as season-long warm-ups improve injury rates, performance outcomes, and jump-landing technique. However, concerns regarding program adoption exist. Identifying the acute benefits of using an IPP compared with other warm-ups may encourage IPP adoption. Objective To examine the immediate effects of 3 warm-up protocols (IPP, static warm-up [SWU], or dynamic warm-up [DWU]) on jump-landing technique and performance measures in youth athletes. Design Randomized controlled clinical trial. Setting Gymnasiums. Patients or Other Participants Sixty male and 29 female athletes (age = 13 ± 2 years, height = 162.8 ± 12.6 cm, mass = 37.1 ± 13.5 kg) volunteered to participate in a single session. Intervention(s) Participants were stratified by age, sex, and sport and then were randomized into 1 protocol: IPP, SWU, or DWU. The IPP consisted of dynamic flexibility, strengthening, plyometric, and balance exercises and emphasized proper technique. The SWU consisted of jogging and lower extremity static stretching. The DWU consisted of dynamic lower extremity flexibility exercises. Participants were assessed for landing technique and performance measures immediately before (PRE) and after (POST) completing their warm-ups. Main Outcome Measure(s) One rater graded each jump-landing trial using the Landing Error Scoring System. Participants performed a vertical jump, long jump, shuttle run, and jump-landing task in randomized order. The averages of all jump-landing trials and performance variables were used to calculate 1 composite score for each variable at PRE and POST. Change scores were calculated (POST − PRE) for all measures. Separate 1-way (group) analyses of variance were conducted for each dependent variable (α < .05). Results No differences were observed among groups for any performance measures (P > .05). The Landing Error Scoring System scores improved after the IPP (change = −0.40 ± 1.24 errors) compared with the DWU (0.27 ± 1.09 errors) and SWU (0.43 ± 1.35 errors; P = .04). Conclusions An IPP did not impair sport performance and may have reduced injury risk, which supports the use of these programs before sport activity. PMID:26523663

  3. Effect of different rest intervals after whole-body vibration on vertical jump performance.

    PubMed

    Dabbs, Nicole C; Muñoz, Colleen X; Tran, Tai T; Brown, Lee E; Bottaro, Martim

    2011-03-01

    Whole-body vibration (WBV) may potentiate vertical jump (VJ) performance via augmented muscular strength and motor function. The purpose of this study was to evaluate the effect of different rest intervals after WBV on VJ performance. Thirty recreationally trained subjects (15 men and 15 women) volunteered to participate in 4 testing visits separated by 24 hours. Visit 1 acted as a familiarization visit where subjects were introduced to the VJ and WBV protocols. Visits 2-4 contained 2 randomized conditions per visit with a 10-minute rest period between conditions. The WBV was administered on a pivotal platform with a frequency of 30 Hz and an amplitude of 6.5 mm in 4 bouts of 30 seconds for a total of 2 minutes with 30 seconds of rest between bouts. During WBV, subjects performed a quarter squat every 5 seconds, simulating a countermovement jump (CMJ). Whole-body vibration was followed by 3 CMJs with 5 different rest intervals: immediate, 30 seconds, 1 minute, 2 minutes, or 4 minutes. For a control condition, subjects performed squats with no WBV. There were no significant (p > 0.05) differences in peak velocity or relative ground reaction force after WBV rest intervals. However, results of VJ height revealed that maximum values, regardless of rest interval (56.93 ± 13.98 cm), were significantly (p < 0.05) greater than the control condition (54.44 ± 13.74 cm). Therefore, subjects' VJ height potentiated at different times after WBV suggesting strong individual differences in optimal rest interval. Coaches may use WBV to enhance acute VJ performance but should first identify each individual's optimal rest time to maximize the potentiating effects.

  4. Effects of jumping skill training on walking balance for children with mental retardation and Down's syndrome.

    PubMed

    Wang, W Y; Chang, J J

    1997-08-01

    In the present study, we hypothesized that the enhancements obtained from the practice of jumping activity could be transferred to improve the walking balance in children with mental retardation (MR) and Down's syndrome (DS). Fourteen children with the diagnosis of MR or DS, aged 3 to 6 years, were recruited from a day care institution. They were ambulant but without jumping ability. Sixty-one non-handicapped children was used to serve as a normative comparison group. Before the training program, the performances of walking balance, jump skills and jumping distances were assessed individually by one physical therapist. The balance sub-test in the Bruininks Oseretsky Test of Motor Proficiency (BOTMP) was administered to assess the walking balance. Motor Skill Inventory (MSI) was used to assess the qualitative levels of jumping skills. A jumping skill training lesson that included horizontal jumps and vertical jumps was designed and integrated into the educational program. The recruited children received 3 sessions of training per-week for 6 weeks. A post-training test and a follow-up test were administered to the handicapped children. In BOTMP scores, statistical differences exited between the pre-training and post-training tests in the tested items of floor walk and beam walk. However, no significant difference was found in the items of floor stand, beam stand and floor heel-toe walk. MSI scales revealed there were significant differences between pre-training and post-training tests. There was no significant difference between the scores of post-training test and the follow-up test. The results implicated that the jumping activity might effectively evoke the automatic and dynamic postural control. Moreover, the significant improvements of the floor walk and beam walk performances might be due to the transferred effects via the practice of dynamic jumping activity. Furthermore, implications and suggestions are discussed.

  5. Technical strategy of triple jump: differences of inverted pendulum model between hop-dominated and balance techniques.

    PubMed

    Fujibayashi, Nobuaki; Otsuka, Mitsuo; Yoshioka, Shinsuke; Isaka, Tadao

    2017-10-24

    The present study aims to cross-sectionally clarify the characteristics of the motions of an inverted pendulum model, a stance leg, a swing leg and arms in different triple-jumping techniques to understand whether or not hop displacement is relatively longer rather than step and jump displacements. Eighteen male athletes performed the triple jump with a full run-up. Based on the technique of the jumpers, they were classified as hop-dominated (n = 10) or balance (n = 8) jumpers. The kinematic data were calculated using motion capture and compared between the two techniques using the inverted pendulum model. The hop-dominated jumpers had a significantly longer hop displacement and faster vertical centre-of-mass (COM) velocity of their whole body at hop take-off, which was generated by faster rotation behaviours of inverted pendulum model and faster swinging behaviours of arms. Conversely, balance jumpers had a significantly longer jump displacement and faster horizontal COM velocity of their whole body at take-off, which was generated by a stiffer inverted pendulum model and stance leg. The results demonstrate that hop-dominated and balance jumpers enhanced each dominated-jump displacement using different swing- and stance-leg motions. This information may help to enhance the actual displacement of triple jumpers using different jumping techniques.

  6. Kinetic Analysis of Horizontal Plyometric Exercise Intensity.

    PubMed

    Kossow, Andrew J; Ebben, William P

    2018-05-01

    Kossow, AJ, DeChiara, TG, Neahous, SM, and Ebben, WP. Kinetic analysis of horizontal plyometric exercise intensity. J Strength Cond Res 32(5): 1222-1229, 2018-Plyometric exercises are frequently performed as part of a strength and conditioning program. Most studies assessed the kinetics of plyometric exercises primarily performed in the vertical plane. The purpose of this study was to evaluate the multiplanar kinetic characteristics of a variety of plyometric exercises, which have a significant horizontal component. This study also sought to assess sex differences in the intensity progression of these exercises. Ten men and 10 women served as subjects. The subjects performed a variety of plyometric exercises including the double-leg hop, standing long jump, single-leg standing long jump, bounding, skipping, power skipping, cone hops, and 45.72-cm hurdle hops. Subjects also performed the countermovement jump for comparison. All plyometric exercises were evaluated using a force platform. Dependent variables included the landing rate of force development and landing ground reaction forces for each exercise in the vertical, frontal, and sagittal planes. A 2-way mixed analysis of variance with repeated-measures for plyometric exercise type demonstrated main effects for exercise type for all dependent variables (p ≤ 0.001). There was no significant interaction between plyometric exercise type and sex for any of the variable assessed. Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the dependent variables assessed (p ≤ 0.05). These findings should be used to guide practitioners in the progression of plyometric exercise intensity, and thus program design, for those who require significant horizontal power in their sport.

  7. Effects of plyometric training on soccer players

    PubMed Central

    Wang, Ying-Chun; Zhang, Na

    2016-01-01

    Plyometric training (PT) is a technique used to increase strength and explosiveness. It consists of physical exercises in which muscles exert maximum force at short intervals to increase dynamic performances. In such a training, muscles undergo a rapid elongation followed by an immediate shortening (stretch-shortening contraction), utilizing the elastic energy stored during the stretching phase. There is consensus on the fact that when used, PT contributes to improvement in vertical jump performance, acceleration, leg strength, muscular power, increase of joint awareness and overall sport-specific skills. Consequently, PT which was primarily used by martial artists, sprinters and high jumpers to improve performances has gained in popularity and has been used by athletes in all types of sports. However, although PT has been shown to increase performance variables in many sports, little scientific information is currently available to determine whether PT actually enhances skill performance in soccer players, considering that soccer is an extremely demanding sport. Soccer players require dynamic muscular performance for fighting at all levels of training status, including rapid movements such as acceleration and deceleration of the body, change of direction, vertical and horizontal jumps, endurance, speed as well as power for kicking and tackling. In this review we discussed the effects of PT on soccer players by considering gender and age categories. PMID:27446242

  8. Functional and Neuromuscular Changes in the Hamstrings After Drop Jumps and Leg Curls

    PubMed Central

    Sarabon, Nejc; Panjan, Andrej; Rosker, Jernej; Fonda, Borut

    2013-01-01

    The purpose of this study was to use a holistic approach to investigate changes in jumping performance, kinaesthesia, static balance, isometric strength and fast stepping on spot during a 5-day recovery period, following an acute bout of damaging exercise consisted of drop jumps and leg curls, where specific emphasis was given on the hamstring muscles. Eleven young healthy subjects completed a series of highly intensive damaging exercises for their hamstring muscles. Prior to the exercise, and during the 5-day recovery period, the subjects were tested for biochemical markers (creatine kinase, aspartate aminotransferase, and lactate dehydrogenase), perceived pain sensation, physical performance (squat jump, counter movement jump, maximal frequency leg stamping, maximal isometric torque production and maximally explosive isometric torque production), kinaesthesia (active torque tracking) and static balance. We observed significant decreases in maximal isometric knee flexion torque production, the rate of torque production, and majority of the parameters for vertical jump performance. No alterations were found in kinaesthesia, static balance and fast stepping on spot. The highest drop in performance and increase in perceived pain sensation generally occurred 24 or 48 hours after the exercise. Damaging exercise substantially alters the neuromuscular functions of the hamstring muscles, which is specifically relevant for sports and rehabilitation experts, as the hamstrings are often stretched to significant lengths, in particular when the knee is extended and hip flexed. These findings are practically important for recovery after high-intensity trainings for hamstring muscles. Key Points Hamstring function is significantly reduced following specifically damaging exercise. It fully recovers 120 hours after the exercise. Prevention of exercise-induced muscle damage is cruicial for maintaining normal training regime. PMID:24149148

  9. Using the reactive strength index modified to evaluate plyometric performance.

    PubMed

    Ebben, William P; Petushek, Erich J

    2010-08-01

    The ability to develop force quickly is a requisite ability in most sports. The reactive strength index (RSI) has been developed as a measure of explosive strength and is derived by evaluating jump height divided by ground contact time during the depth jump (DJ). At present, the RSI is typically used to evaluate DJ performance, because it is the only plyometric exercise with an identifiable ground contact time. The purpose of this study was to introduce a modification of the RSI (RSImod) that can be used to evaluate the explosive power of any vertical plyometric exercise. This study will also assess the reliability of the RSImod, evaluate the RSImod of a variety of plyometric exercises, and examine gender differences. Twenty-six men and 23 women served as subjects. Subjects performed 3 repetitions for each of 5 plyometric exercises including the countermovement jump (CMJ), tuck jump, single-leg jump, squat jump, and dumbbell CMJ. Data were analyzed using a 2-way analysis of variance to evaluate differences in RSImod between the plyometric exercise and the interaction between plyometric exercise RSImod and gender. The analysis of RSImod revealed significant main effects for plyometric exercise type (p 0.05). Results of pairwise comparisons indicate that the RSImod is statistically different between all plyometric exercises studied. Intraclass correlation coefficients indicate that RSImod is highly reliable for all of the exercises studied. The RSImod offers a highly reliable method of assessing the explosiveness developed during a variety of plyometric exercises.

  10. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury.

    PubMed

    Haddas, Ram; Hooper, Troy; James, C Roger; Sizer, Phillip S

    2016-12-01

    Volitional preemptive abdominal contraction (VPAC) during dynamic activities may alter trunk motion, but the role of the core musculature in positioning the trunk during landing tasks is unclear. To determine whether volitional core-muscle activation incorporated during a drop vertical jump alters lower extremity kinematics and kinetics, as well as trunk and lower extremity muscle activity at different landing heights. Controlled laboratory study. Clinical biomechanics laboratory. Thirty-two young healthy adults, consisting of 17 men (age = 25.24 ± 2.88 years, height = 1.85 ± 0.06 m, mass = 89.68 ± 16.80 kg) and 15 women (age = 23.93 ± 1.33 years, height = 1.67 ± 0.08 m, mass = 89.68 ± 5.28 kg). Core-muscle activation using VPAC. We collected 3-dimensional ankle, knee, and hip motions, moments, and powers; ground reaction forces; and trunk and lower extremity muscle activity during 0.30- and 0.50-m drop vertical-jump landings. During landing from a 0.30-m height, VPAC performance increased external oblique and semitendinosis activity, knee flexion, and knee internal rotation and decreased knee-abduction moment and knee-energy absorption. During the 0.50-m landing, the VPAC increased external oblique and semitendinosis activity, knee flexion, and hip flexion and decreased ankle inversion and hip-energy absorption. The VPAC performance during landing may protect the anterior cruciate ligament during different landing phases from different heights, creating a protective advantage just before ground contact and after the impact phase. Incorporating VPAC during high injury-risk activities may enhance pelvic stability, improve lower extremity positioning and sensorimotor control, and reduce anterior cruciate ligament injury risk while protecting the lumbar spine.

  11. Influence of a preventive training program on lower limb kinematics and vertical jump height of male volleyball athletes.

    PubMed

    Leporace, Gustavo; Praxedes, Jomilto; Pereira, Glauber Ribeiro; Pinto, Sérgio Medeiros; Chagas, Daniel; Metsavaht, Leonardo; Chame, Flávio; Batista, Luiz Alberto

    2013-02-01

    To examine the influence of a preventative training program (PTP) on sagittal plane kinematics during different landing tasks and vertical jump height (VJH) in males. Six weeks prospective exercise intervention. Fifteen male volleyball athletes (13 ± 0.7 years, 1.70 ± 0.12 m, 60 ± 12 kg). PTP consisting of plyometric, balance and core stability exercises three times per week for six weeks. Bilateral vertical jumps with double leg (DL) and single leg (SL) landings were performed to measure the effects of training. Kinematics of the knee and hip before and after training and VJH attained during both tasks after training. The hypothesis was that the PTP would produce improvements in VJH, but would not generate great changes in biomechanical behavior. The only change identified for the SL was the longest duration of landing, which represents the time spent from initial ground contact to maximum knee flexion, after training, while increased angular displacement of the knee was observed during DL. The training did not significantly alter the VJH in either the SL (difference: 2.7 cm) or the DL conditions (difference: 3.5 cm). Despite the PTP's effectiveness in inducing some changes in kinematics, the changes were specific for each task, which highlights the importance of the specificity and individuality in selecting prevention injury exercises. Despite the absence of significant increases in the VJH, the absolute differences after training showed increases corroborating with the findings of statistically powerful studies that compared the results with control groups. The results suggest that short-term PTPs in low risk young male volleyball athletes may enhance performance and induce changes in some kinematic parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Short-term effects on lower-body functional power development: weightlifting vs. vertical jump training programs.

    PubMed

    Tricoli, Valmor; Lamas, Leonardo; Carnevale, Roberto; Ugrinowitsch, Carlos

    2005-05-01

    Among sport conditioning coaches, there is considerable discussion regarding the efficiency of training methods that improve lower-body power. Heavy resistance training combined with vertical jump (VJ) training is a well-established training method; however, there is a lack of information about its combination with Olympic weightlifting (WL) exercises. Therefore, the purpose of this study was to compare the short-term effects of heavy resistance training combined with either the VJ or WL program. Thirty-two young men were assigned to 3 groups: WL = 12, VJ = 12, and control = 8. These 32 men participated in an 8-week training study. The WL training program consisted of 3 x 6RM high pull, 4 x 4RM power clean, and 4 x 4RM clean and jerk. The VJ training program consisted of 6 x 4 double-leg hurdle hops, 4 x 4 alternated single-leg hurdle hops, 4 x 4 single-leg hurdle hops, and 4 x 4 40-cm drop jumps. Additionally, both groups performed 4 x 6RM half-squat exercises. Training volume was increased after 4 weeks. Pretesting and posttesting consisted of squat jump (SJ) and countermovement jump (CMJ) tests, 10- and 30-m sprint speeds, an agility test, a half-squat 1RM, and a clean-and-jerk 1RM (only for WL). The WL program significantly increased the 10-m sprint speed (p < 0.05). Both groups, WL and VJ, increased CMJ (p < 0.05), but groups using the WL program increased more than those using the VJ program. On the other hand, the group using the VJ program increased its 1RM half-squat strength more than the WL group (47.8 and 43.7%, respectively). Only the WL group improved in the SJ (9.5%). There were no significant changes in the control group. In conclusion, Olympic WL exercises seemed to produce broader performance improvements than VJ exercises in physically active subjects.

  13. Lower limb alactic anaerobic power output assessed with different techniques in morbid obesity.

    PubMed

    Lafortuna, C L; Fumagalli, E; Vangeli, V; Sartorio, A

    2002-02-01

    Short-term alactic anaerobic performance in jumping (5 consecutive jumps with maximal effort), sprint running (8 m) and stair climbing (modified Margaria test) were measured in 75 obese subjects (BMI: 40.3+/-5.0 kg/m2) and in 36 lean control subjects (BMI: 22.4+/-3.2 kg/m2) of the same age and gender distribution. The results show that obese subjects attained a significantly lower specific (per unit body mass) power output both in jumping (W(spec,j); p<0.001) and stair climbing (W(spec,s); p<0.001) and run at a significantly lower average velocity (v; p<0.001) during sprinting. In spite of the different motor skillfulness required to accomplish the jumping and climbing tests, W(spec,s) (and hence the vertical velocity in climbing, v(v)) was closely correlated with W(spec,j) (R2=0.427, p<0.001). In jumping, although the average force during the positive work phase was significantly higher in obese subjects (p<0.001), no difference between the 2 groups was detected in absolute power. In stair climbing the absolute power output of obese resulted significantly higher (18%) than that of lean controls (p<0.001). In sprint running, the lower average horizontal velocity attained by obese subjects also entailed a different locomotion pattern with shorter step length (L(s); p<0.001), lower frequency (p<0.001) and longer foot contact time with ground (T(c,r); p<0.001). W(spec,j) seems to be a determinant of the poorer motor performance of obese, being significantly correlated with: I) the vertical displacement of the centre of gravity (R2=0.853, p<0.001) in jumping; II) with v(v) in stair climbing; and III) with T(c,r) (R2=0.492, p<0.001), L(s) (R2=0.266, p<0.001) and v (R2=0.454, p<0.001) in sprinting. The results suggest that obese individuals, although partially hampered in kinetic movements, largely rely on their effective specific power output to perform complex anaerobic tasks, and they suffer from the disproportionate excess of inert mass of fat. Furthermore, in view of the sedentary style of life and the consequent degree of muscle de-conditioning accompanying this condition, it may prove useful to implement rehabilitation programs for obesity with effective power training protocols.

  14. Effects of Gender, Load, and Backpack on Easy Standing and Vertical Jump Performance. Volume 2

    DTIC Science & Technology

    1982-03-01

    D BY RICHARD C. NELSON AND PHILIP E. MARTIN BIOMECHANICS LABORATORY THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PENNSYLVANIA MARCH...PERFORMING ORGANIZATION NAME AND ADDRESS Biomechanics Laboratory The Pennsylvania State University University Park. Pennsylvania 16802 10. PROGRAM...REFERENCES APPENDICES A. Clothing and Equipment Used in This Study B. ANOVA Summary Tables for Easy Standing C. ANOVA Summary Tables for

  15. Measures of Functional Performance and Their Association With Hip and Thigh Strength

    PubMed Central

    Kollock, Roger; Van Lunen, Bonnie L.; Ringleb, Stacie I.; Oñate, James A.

    2015-01-01

    Context: Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. Objective: To determine if functional performance tests are valid indicators of hip and thigh strength. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. Intervention(s): During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Main Outcome Measure(s): Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r 2. We used Pearson correlations to evaluate the associations between functional performance and strength. Results: In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r2 = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r2 = 38, P ≤ .01) and hip-flexor (r2 = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r2 = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r2 = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r2 = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Conclusions: Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups. PMID:25347236

  16. Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height.

    PubMed

    Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian

    2017-11-01

    Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Cross-sectional study; Level of evidence, 3. A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association ( r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association ( r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = -0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Initial analysis showed a strong association between isokinetic strength and jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research.

  17. Effects of Plyometric and Sprint Training on Physical and Technical Skill Performance in Adolescent Soccer Players.

    PubMed

    Sáez de Villarreal, Eduardo; Suarez-Arrones, Luis; Requena, Bernardo; Haff, Gregory G; Ferrete, Carlos

    2015-07-01

    To determine the influence of a short-term combined plyometric and sprint training (9 weeks) within regular soccer practice on explosive and technical actions of pubertal soccer players during the in-season. Twenty-six players were randomly assigned to 2 groups: control group (CG) (soccer training only) and combined group (CombG) (plyometric + acceleration + dribbling + shooting). All players trained soccer 4 times per week and the experimental groups supplemented the soccer training with a proposed plyometric-sprint training program for 40 minutes (2 days per weeks). Ten-meter sprint, 10-m agility with and without ball, CMJ and Abalakov vertical jump, ball-shooting speed, and Yo-Yo intermittent endurance test were measured before and after training. The experimental group followed a 9-week plyometric and sprint program (i.e., jumping, hurdling, bouncing, skipping, and footwork) implemented before the soccer training. Baseline-training results showed no significant differences between the groups in any of the variables tested. No improvement was found in the CG; however, meaningful improvement was found in all variables in the experimental group: CMJ (effect size [ES] = 0.9), Abalakov vertical jump (ES = 1.3), 10-m sprint (ES = 0.7-0.9), 10-m agility (ES = 0.8-1.2), and ball-shooting speed (ES = 0.7-0.8). A specific combined plyometric and sprint training within regular soccer practice improved explosive actions compared with conventional soccer training only. Therefore, the short-term combined program had a beneficial impact on explosive actions, such as sprinting, change of direction, jumping, and ball-shooting speed which are important determinants of match-winning actions in soccer performance. Therefore, we propose modifications to current training methodology for pubertal soccer players to include combined plyometric and speed training for athlete preparation in this sport.

  18. Vertical jump biomechanics after plyometric, weight lifting, and combined (weight lifting + plyometric) training.

    PubMed

    Arabatzi, Fotini; Kellis, Eleftherios; Saèz-Saez De Villarreal, Eduardo

    2010-09-01

    The purpose of this study was to compare the effects of an Olympic weight lifting (OL), a plyometric (PL), and combined weight lifting + plyometric (WP) training program on vertical jump (VJ) biomechanics. Thirty-six men were assigned randomly to 4 groups: PL group (n = 9), OL group (n = 9), WP group (), and control (C) group (n = 8). The experimental groups trained 3 d.wk, for 8 weeks. Sagital kinematics, VJ height, power, and electromyographic (EMG) activity from rectus femoris (RF) and medial gastrocnemius (GAS) were collected during squat jumping and countermovement jumping (CMJ) before and after training. The results showed that all experimental groups improved VJ height (p < 0.05). The OL training improved power and muscle activation during the concentric phase of the CMJ while the subjects used a technique with wider hip and knee angles after training (p < 0.05). The PL group subjects did not change their CMJ technique although there was an increase in RF activation and a decrease of GAS activity after training (p < 0.05). The WP group displayed a decline in maximal hip angle and a lower activation during the CMJ after training (p < 0.05). These results indicate that all training programs are adequate for improving VJ performance. However, the mechanisms for these improvements differ between the 3 training protocols. Olympic weight lifting training might be more appropriate to achieve changes in VJ performance and power in the precompetition period of the training season. Emphasis on the PL exercises should be given when the competition period approaches, whereas the combination of OL and PL exercises may be used in the transition phases from precompetition to the competition period.

  19. Jumping and hopping in elite and amateur orienteering athletes and correlations to sprinting and running.

    PubMed

    Hébert-Losier, Kim; Jensen, Kurt; Holmberg, Hans-Christer

    2014-11-01

    Jumping and hopping are used to measure lower-body muscle power, stiffness, and stretch-shortening-cycle utilization in sports, with several studies reporting correlations between such measures and sprinting and/or running abilities in athletes. Neither jumping and hopping nor correlations with sprinting and/or running have been examined in orienteering athletes. The authors investigated squat jump (SJ), countermovement jump (CMJ), standing long jump (SLJ), and hopping performed by 8 elite and 8 amateur male foot-orienteering athletes (29 ± 7 y, 183 ± 5 cm, 73 ± 7 kg) and possible correlations to road, path, and forest running and sprinting performance, as well as running economy, velocity at anaerobic threshold, and peak oxygen uptake (VO(2peak)) from treadmill assessments. During SJs and CMJs, elites demonstrated superior relative peak forces, times to peak force, and prestretch augmentation, albeit lower SJ heights and peak powers. Between-groups differences were unclear for CMJ heights, hopping stiffness, and most SLJ parameters. Large pairwise correlations were observed between relative peak and time to peak forces and sprinting velocities; time to peak forces and running velocities; and prestretch augmentation and forest-running velocities. Prestretch augmentation and time to peak forces were moderately correlated to VO(2peak). Correlations between running economy and jumping or hopping were small or trivial. Overall, the elites exhibited superior stretch-shortening-cycle utilization and rapid generation of high relative maximal forces, especially vertically. These functional measures were more closely related to sprinting and/or running abilities, indicating benefits of lower-body training in orienteering.

  20. Elite long jumpers with below the knee prostheses approach the board slower, but take-off more effectively than non-amputee athletes.

    PubMed

    Willwacher, Steffen; Funken, Johannes; Heinrich, Kai; Müller, Ralf; Hobara, Hiroaki; Grabowski, Alena M; Brüggemann, Gert-Peter; Potthast, Wolfgang

    2017-11-22

    The use of technological aids to improve sport performance ('techno doping') and inclusion of Paralympic athletes in Olympic events are matters of ongoing debate. Recently, a long jumper with a below the knee amputation (BKA) achieved jump distances similar to world-class athletes without amputations, using a carbon fibre running-specific prosthesis (RSP). We show that athletes with BKA utilize a different, more effective take-off technique in the long jump, which provided the best athlete with BKA a performance advantage of at least 0.13 m compared to non-amputee athletes. A maximum speed constraint imposed by the use of RSPs would indicate a performance disadvantage for the long jump. We found slower maximum sprinting speeds in athletes with BKA, but did not find a difference in the overall vertical force from both legs of athletes with BKA compared to non-amputees. Slower speeds might originate from intrinsically lower sprinting abilities of athletes with BKA or from more complex adaptions in sprinting mechanics due to the biomechanical and morphological differences induced by RSPs. Our results suggest that due to different movement strategies, athletes with and without BKA should likely compete in separate categories for the long jump.

  1. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players

    PubMed Central

    Kim, Yong-Youn; Park, Si-Eun

    2016-01-01

    [Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks of exercise. [Results] Measurements of isokinetic muscular strength revealed that the whole-body vibration exercise group showed significant increase after the exercise. However, the plyometric exercise group had no significant increase in lumbar flexion, extension, and knee flexion. Measurements of vertical jumping revealed that, the whole-body vibration exercise group had no significant increase after the exercise. However, the plyometric exercise group showed significant increase. Measurements of balance revealed that, the whole-body vibration exercise group showed significant increase. However, the plyometric exercise group showed no significant increase. [Conclusion] Although both whole-body vibration and plyometric exercises are effective intervention methods, the two methods have different effects on the improvement of isokinetic muscular strength, jumping performance, and balance of female volleyball players. PMID:27942136

  2. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players.

    PubMed

    Kim, Yong-Youn; Park, Si-Eun

    2016-11-01

    [Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks of exercise. [Results] Measurements of isokinetic muscular strength revealed that the whole-body vibration exercise group showed significant increase after the exercise. However, the plyometric exercise group had no significant increase in lumbar flexion, extension, and knee flexion. Measurements of vertical jumping revealed that, the whole-body vibration exercise group had no significant increase after the exercise. However, the plyometric exercise group showed significant increase. Measurements of balance revealed that, the whole-body vibration exercise group showed significant increase. However, the plyometric exercise group showed no significant increase. [Conclusion] Although both whole-body vibration and plyometric exercises are effective intervention methods, the two methods have different effects on the improvement of isokinetic muscular strength, jumping performance, and balance of female volleyball players.

  3. Validation and influence of anthropometric and kinematic models of obese teenagers in vertical jump performance and mechanical internal energy expenditure.

    PubMed

    Achard de Leluardière, F; Hajri, L N; Lacouture, P; Duboy, J; Frelut, M L; Peres, G

    2006-02-01

    There may be concerns about the validity of kinetic models when studying locomotion in obese subjects (OS). The aim of the present study was to improve and validate a relevant representation of obese subject from four kinetic models. Fourteen teenagers with severe primary obesity (BMI = 40 +/- 5.2 kg/m(2)), were studied during jumping. The jumps were filmed by six cameras (synchronized, 50 Hz), associated with a force-plate (1,000 Hz). All the tested models were valid; the linear mechanical analysis of the jumps gave similar results (p > 0.05); but there were significantly different segment inertias when considering the subjects' abdomen (p < 0.01), which was associated with a significantly higher mechanical internal energy expenditure (p < 0.01) than that estimated from Dempster's and Hanavan's model, by about 40 and 30%. The validation of a modelling specifically for obese subjects will enable a better understanding of their locomotion.

  4. Hang cleans and hang snatches produce similar improvements in female collegiate athletes

    PubMed Central

    Ayers, JL; DeBeliso, M; Sevene, TG

    2016-01-01

    Olympic weightlifting movements and their variations are believed to be among the most effective ways to improve power, strength, and speed in athletes. This study investigated the effects of two Olympic weightlifting variations (hang cleans and hang snatches), on power (vertical jump height), strength (1RM back squat), and speed (40-yard sprint) in female collegiate athletes. 23 NCAA Division I female athletes were randomly assigned to either a hang clean group or hang snatch group. Athletes participated in two workout sessions a week for six weeks, performing either hang cleans or hang snatches for five sets of three repetitions with a load of 80-85% 1RM, concurrent with their existing, season-specific, resistance training program. Vertical jump height, 1RM back squat, and 40-yard sprint all had a significant, positive improvement from pre-training to post-training in both groups (p≤0.01). However, when comparing the gain scores between groups, there was no significant difference between the hang clean and hang snatch groups for any of the three dependent variables (i.e., vertical jump height, p=0.46; 1RM back squat, p=0.20; and 40-yard sprint, p=0.46). Short-term training emphasizing hang cleans or hang snatches produced similar improvements in power, strength, and speed in female collegiate athletes. This provides strength and conditioning professionals with two viable programmatic options in athletic-based exercises to improve power, strength, and speed. PMID:27601779

  5. Hang cleans and hang snatches produce similar improvements in female collegiate athletes.

    PubMed

    Ayers, J L; DeBeliso, M; Sevene, T G; Adams, K J

    2016-09-01

    Olympic weightlifting movements and their variations are believed to be among the most effective ways to improve power, strength, and speed in athletes. This study investigated the effects of two Olympic weightlifting variations (hang cleans and hang snatches), on power (vertical jump height), strength (1RM back squat), and speed (40-yard sprint) in female collegiate athletes. 23 NCAA Division I female athletes were randomly assigned to either a hang clean group or hang snatch group. Athletes participated in two workout sessions a week for six weeks, performing either hang cleans or hang snatches for five sets of three repetitions with a load of 80-85% 1RM, concurrent with their existing, season-specific, resistance training program. Vertical jump height, 1RM back squat, and 40-yard sprint all had a significant, positive improvement from pre-training to post-training in both groups (p≤0.01). However, when comparing the gain scores between groups, there was no significant difference between the hang clean and hang snatch groups for any of the three dependent variables (i.e., vertical jump height, p=0.46; 1RM back squat, p=0.20; and 40-yard sprint, p=0.46). Short-term training emphasizing hang cleans or hang snatches produced similar improvements in power, strength, and speed in female collegiate athletes. This provides strength and conditioning professionals with two viable programmatic options in athletic-based exercises to improve power, strength, and speed.

  6. Effect of Passive, Active and Combined Warm up on Lower Limb Muscle Performance and Dynamic Stability in Recreational Sports Players.

    PubMed

    Gogte, Kedar; Srivastav, Prateek; Miyaru, Ganesh Balthillaya

    2017-03-01

    Warm up is an activity that is done before a sports activity. The warm up can be done actively and passively. The preferred mode is active warm up in athletes. There are inconclusive effects of passive warm up compared with an active warm up on short term muscle performance. The cumulative effect of passive and active warm up on muscle performance and dynamic stability is not known. To find out the effects of passive, active and combined warm up on lower limb muscle performance and dynamic stability in recreational sports players. A randomized crossover study was done on 19 recreational lower limb dominant sports players. Three different warm ups were included in the study passive, active and combined. Active warm up included series of activities like cycling, leg press, jump squats, squat jumps while passive warm up included application of moist heat for a period of 20 minutes on lower limb muscles. Combined warm up included both passive and active warm up. Six different sequences were made from these three warm ups. Subjects were screened and allotted into different groups based on the six warm up sequences after sequence randomization with 48 hours wash out period. After every warm up session Vertical Jump Test (VJT) and Star Excursion Balance Test (SEBT) was performed and results were recorded. Study duration was one year and six months. There was no difference noticed in both the outcome measures. Mean and SD values for passive, active and combined warm up are 47.62±9.64, 48.50±10.16 and 48.87±10.70 respectively in Vertical Jump Test (VJT) and 85.43±8.61, 85.17±8.60 and 85.17±8.38 respectively for SEBT. The p-value for mean difference between passive-active, active-combined, combined-passive are 0.67, 1.00, 0.51 respectively, for VJT and 1.00, 1.00, 1.00 respectively for SEBT. All warm ups are equally effective in short term sports performance.

  7. Effect of Passive, Active and Combined Warm up on Lower Limb Muscle Performance and Dynamic Stability in Recreational Sports Players

    PubMed Central

    Gogte, Kedar; Miyaru, Ganesh Balthillaya

    2017-01-01

    Introduction Warm up is an activity that is done before a sports activity. The warm up can be done actively and passively. The preferred mode is active warm up in athletes. There are inconclusive effects of passive warm up compared with an active warm up on short term muscle performance. The cumulative effect of passive and active warm up on muscle performance and dynamic stability is not known. Aim To find out the effects of passive, active and combined warm up on lower limb muscle performance and dynamic stability in recreational sports players. Materials and Methods A randomized crossover study was done on 19 recreational lower limb dominant sports players. Three different warm ups were included in the study passive, active and combined. Active warm up included series of activities like cycling, leg press, jump squats, squat jumps while passive warm up included application of moist heat for a period of 20 minutes on lower limb muscles. Combined warm up included both passive and active warm up. Six different sequences were made from these three warm ups. Subjects were screened and allotted into different groups based on the six warm up sequences after sequence randomization with 48 hours wash out period. After every warm up session Vertical Jump Test (VJT) and Star Excursion Balance Test (SEBT) was performed and results were recorded. Study duration was one year and six months. Results There was no difference noticed in both the outcome measures. Mean and SD values for passive, active and combined warm up are 47.62±9.64, 48.50±10.16 and 48.87±10.70 respectively in Vertical Jump Test (VJT) and 85.43±8.61, 85.17±8.60 and 85.17±8.38 respectively for SEBT. The p-value for mean difference between passive-active, active-combined, combined-passive are 0.67, 1.00, 0.51 respectively, for VJT and 1.00, 1.00, 1.00 respectively for SEBT. Conclusion All warm ups are equally effective in short term sports performance. PMID:28511496

  8. Gender variability in electromyographic activity, in vivo behaviour of the human gastrocnemius and mechanical capacity during the take-off phase of a countermovement jump.

    PubMed

    Rubio-Arias, Jacobo Ángel; Ramos-Campo, Domingo Jesús; Peña Amaro, José; Esteban, Paula; Mendizábal, Susana; Jiménez, José Fernando

    2017-11-01

    The purpose of this study was to analyse gender differences in neuromuscular behaviour of the gastrocnemius and vastus lateralis during the take-off phase of a countermovement jump (CMJ), using direct measures (ground reaction forces, muscle activity and dynamic ultrasound). Sixty-four young adults (aged 18-25 years) participated voluntarily in this study, 35 men and 29 women. The firing of the trigger allowed obtainment of data collection vertical ground reaction forces (GRF), surface electromyography activity (sEMG) and dynamic ultrasound gastrocnemius of both legs. Statistically significant gender differences were observed in the jump performance, which appear to be based on differences in muscle architecture and the electrical activation of the gastrocnemius muscles and vastus lateralis. So while men developed greater peak power, velocity take-offs and jump heights, jump kinetics compared to women, women also required a higher electrical activity to develop lower power values. Additionally, the men had higher values pennation angles and muscle thickness than women. Men show higher performance of the jump test than women, due to significant statistical differences in the values of muscle architecture (pennation angle and thickness muscle), lower Neural Efficiency Index and a higher amount of sEMG activity per second during the take-off phase of a CMJ. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  9. The influence of pelvic adjustment on vertical jump height in female university students with functional leg length inequality.

    PubMed

    Gong, Wontae

    2015-01-01

    [Purpose] This study aimed to investigate the effect of pelvic adjustment on vertical jump height (VJH) in female university students with functional leg length inequality (FLLI). [Subjects] Thirty female university students with FLLI were divided into a pelvic adjustment group (n = 15) and a stretching (control) group (n = 15). [Methods] VJH was measured using an OptoGait. [Results] After the intervention, jump height improved significantly compared with the pre-intervention height only in the pelvic adjustment group, while FLLI showed statistically significant improvement in both groups. [Conclusion] Pelvic adjustment as per the Gonstead method can be applied as a method of reducing FLLI and increasing VJH.

  10. Multiple Off-Ice Performance Variables Predict On-Ice Skating Performance in Male and Female Division III Ice Hockey Players.

    PubMed

    Janot, Jeffrey M; Beltz, Nicholas M; Dalleck, Lance D

    2015-09-01

    The purpose of this study was to determine if off-ice performance variables could predict on-ice skating performance in Division III collegiate hockey players. Both men (n = 15) and women (n = 11) hockey players (age = 20.5 ± 1.4 years) participated in the study. The skating tests were agility cornering S-turn, 6.10 m acceleration, 44.80 m speed, modified repeat skate, and 15.20 m full speed. Off-ice variables assessed were years of playing experience, height, weight and percent body fat and off-ice performance variables included vertical jump (VJ), 40-yd dash (36.58m), 1-RM squat, pro-agility, Wingate peak power and peak power percentage drop (% drop), and 1.5 mile (2.4km) run. Results indicated that 40-yd dash (36.58m), VJ, 1.5 mile (2.4km) run, and % drop were significant predictors of skating performance for repeat skate (slowest, fastest, and average time) and 44.80 m speed time, respectively. Four predictive equations were derived from multiple regression analyses: 1) slowest repeat skate time = 2.362 + (1.68 x 40-yd dash time) + (0.005 x 1.5 mile run), 2) fastest repeat skate time = 9.762 - (0.089 x VJ) - (0.998 x 40-yd dash time), 3) average repeat skate time = 7.770 + (1.041 x 40-yd dash time) - (0.63 x VJ) + (0.003 x 1.5 mile time), and 4) 47.85 m speed test = 7.707 - (0.050 x VJ) - (0.01 x % drop). It was concluded that selected off-ice tests could be used to predict on-ice performance regarding speed and recovery ability in Division III male and female hockey players. Key pointsThe 40-yd dash (36.58m) and vertical jump tests are significant predictors of on-ice skating performance specific to speed.In addition to 40-yd dash and vertical jump, the 1.5 mile (2.4km) run for time and percent power drop from the Wingate anaerobic power test were also significant predictors of skating performance that incorporates the aspect of recovery from skating activity.Due to the specificity of selected off-ice variables as predictors of on-ice performance, coaches can elect to assess player performance off-ice and focus on other uses of valuable ice time for their individual teams.

  11. The Effects of Plyometric Training on Change-of-Direction Ability: A Meta-Analysis.

    PubMed

    Asadi, Abbas; Arazi, Hamid; Young, Warren B; Sáez de Villarreal, Eduardo

    2016-07-01

    To show a clear picture about the possible variables of enhancements of change-of-direction (COD) ability using longitudinal plyometric-training (PT) studies and determine specific factors that influence the training effects. A computerized search was performed, and 24 articles with a total of 46 effect sizes (ESs) in an experimental group and 25 ESs in a control group were reviewed to analyze the role of various factors on the impact of PT on COD performance. The results showed that participants with good fitness levels obtained greater improvements in COD performance (P < .05), and basketball players gained more benefits of PT than other athletes. Also, men obtained COD results similar to those of women after PT. In relation to the variables of PT design, it appears that 7 wk (with 2 sessions/wk) using moderate intensity and 100 jumps per training session with a 72-h rest interval tends to improve COD ability. Performing PT with a combination of different types of plyometric exercises such as drop jumps + vertical jumps + standing long jumps is better than 1 form of exercise. It is apparent that PT can be effective at improving COD ability. The loading parameters are essential for exercise professionals, coaches, and strength and conditioning professionals with regard to the most appropriate dose-response trends to optimize plyometric-induced COD-ability gains.

  12. How Do World-Class Nordic Combined Athletes Differ From Specialized Cross-Country Skiers and Ski Jumpers in Sport-Specific Capacity and Training Characteristics?

    PubMed

    Sandbakk, Øyvind; Rasdal, Vegard; Bråten, Steinar; Moen, Frode; Ettema, Gertjan

    2016-10-01

    To compare sport-specific laboratory capacities and the annual training of world-class Nordic combined (NC) athletes with specialized ski jumpers (SJ) and cross-country (XC) skiers. Five world-class athletes from each sports discipline were compared. Ski jump imitations were performed on a 3-dimensional force plate in NC athletes and SJ, whereas XC skiing characteristics were obtained from submaximal and maximal roller ski skating on a treadmill in NC athletes and XC skiers. In addition, anthropometrics and annual training characteristics were determined. NC athletes demonstrated 9% higher body mass and showed 17% lower vertical speed in the ski jump imitation than SJ (all P < .05). NC athletes had 12% lower body mass and showed 10% lower peak treadmill speed and 12% lower body-mass-normalized peak oxygen uptake than XC skiers (all P < .05). NC athletes performed half the number of ski-jumping-specific sessions and outdoor ski jumps compared with SJ. NC athletes performed 31% less endurance training, mainly caused by lower amounts of low- and moderate-intensity training in the classical technique, whereas high-intensity strength and speed training and endurance training in the skating technique did not differ substantially from XC skiers. To simultaneously optimize endurance, explosive, and technical capacities in 2 different disciplines, world-class NC athletes train approximately two-thirds of the XC skier's endurance training volume and perform one-half of the ski-jump-specific training compared with SJ. Still, the various laboratory capacities differed only 10-17% compared with SJ and XC skiers.

  13. Effects of warm-up on vertical jump performance and muscle electrical activity using half-squats at low and moderate intensity.

    PubMed

    Sotiropoulos, Konstantinos; Smilios, Ilias; Christou, Marios; Barzouka, Karolina; Spaias, Angelos; Douda, Helen; Tokmakidis, Savvas P

    2010-01-01

    The purpose of this study was to determine the effects of a specific warm-up using half-squats at low and moderate intensity on vertical jump performance and electromyographic activity of the thigh muscles. The subjects were 26 men who were divided into a low intensity group (LIG; n = 13) and a moderate intensity group (MIG; n = 13). The LIG performed a specific warm-up protocol that included the explosive execution of half-squats with loads 25 and 35% of the one repetition maximum (1RM) and the MIG with loads 45 and 65% of the 1RM. The two groups performed a countermovement jump (CMJ) before and three minutes after the specific warm-up protocols. During the concentric phase of the CMJ a linear encoder connected to an A/D converter interfaced to a PC with a software for data acquisition and analysis allowed the calculation of average mechanical power. The electromyographic (EMG) activity of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) were recorded during the concentric phase of the jumps. The average quadriceps (Qc) activity (mean value of the VL, VM and RF) was also calculated. A two way ANOVA (protocols X time) with repeated measures on the second factor was used to analyze the data. Following the specific warm-up procedure both groups improved (p ≤ 0.05) CMJ performance and mechanical power by 3.5% and 6.3%, respectively, with no differences observed between the two groups. EMG activity of the Qc and VL increased (p ≤ 0.05) for both groups by 5.9% and 8.5%, respectively. It is concluded that the use of a specific warm-up that includes half-squats, performed explosively with low to moderate intensity, improves CMJ performance. This may be due to increased muscle activation as evaluated by the surface EMG. Key pointsThe inclusion of two sets of explosively performed half squats with low to moderate loads in the warm up procedure elicited an acute performance en-hancement.The performance was enhanced regardless of the load used in the warm-up.The performance enhancement is accompanied by a greater electromyographic activity of the knee extensors muscles.

  14. Effects of Warm-Up on Vertical Jump Performance and Muscle Electrical Activity Using Half-Squats at Low and Moderate Intensity

    PubMed Central

    Sotiropoulos, Konstantinos; Smilios, Ilias; Christou, Marios; Barzouka, Karolina; Spaias, Angelos; Douda, Helen; Tokmakidis, Savvas p.

    2010-01-01

    The purpose of this study was to determine the effects of a specific warm-up using half-squats at low and moderate intensity on vertical jump performance and electromyographic activity of the thigh muscles. The subjects were 26 men who were divided into a low intensity group (LIG; n = 13) and a moderate intensity group (MIG; n = 13). The LIG performed a specific warm-up protocol that included the explosive execution of half-squats with loads 25 and 35% of the one repetition maximum (1RM) and the MIG with loads 45 and 65% of the 1RM. The two groups performed a countermovement jump (CMJ) before and three minutes after the specific warm-up protocols. During the concentric phase of the CMJ a linear encoder connected to an A/D converter interfaced to a PC with a software for data acquisition and analysis allowed the calculation of average mechanical power. The electromyographic (EMG) activity of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) were recorded during the concentric phase of the jumps. The average quadriceps (Qc) activity (mean value of the VL, VM and RF) was also calculated. A two way ANOVA (protocols X time) with repeated measures on the second factor was used to analyze the data. Following the specific warm-up procedure both groups improved (p ≤ 0.05) CMJ performance and mechanical power by 3.5% and 6.3%, respectively, with no differences observed between the two groups. EMG activity of the Qc and VL increased (p ≤ 0.05) for both groups by 5.9% and 8.5%, respectively. It is concluded that the use of a specific warm-up that includes half-squats, performed explosively with low to moderate intensity, improves CMJ performance. This may be due to increased muscle activation as evaluated by the surface EMG. Key points The inclusion of two sets of explosively performed half squats with low to moderate loads in the warm up procedure elicited an acute performance en-hancement. The performance was enhanced regardless of the load used in the warm-up. The performance enhancement is accompanied by a greater electromyographic activity of the knee extensors muscles. PMID:24149703

  15. Validity of a Simple Method for Measuring Force-Velocity-Power Profile in Countermovement Jump.

    PubMed

    Jiménez-Reyes, Pedro; Samozino, Pierre; Pareja-Blanco, Fernando; Conceição, Filipe; Cuadrado-Peñafiel, Víctor; González-Badillo, Juan José; Morin, Jean-Benoît

    2017-01-01

    To analyze the reliability and validity of a simple computation method to evaluate force (F), velocity (v), and power (P) output during a countermovement jump (CMJ) suitable for use in field conditions and to verify the validity of this computation method to compute the CMJ force-velocity (F-v) profile (including unloaded and loaded jumps) in trained athletes. Sixteen high-level male sprinters and jumpers performed maximal CMJs under 6 different load conditions (0-87 kg). A force plate sampling at 1000 Hz was used to record vertical ground-reaction force and derive vertical-displacement data during CMJ trials. For each condition, mean F, v, and P of the push-off phase were determined from both force-plate data (reference method) and simple computation measures based on body mass, jump height (from flight time), and push-off distance and used to establish the linear F-v relationship for each individual. Mean absolute bias values were 0.9% (± 1.6%), 4.7% (± 6.2%), 3.7% (± 4.8%), and 5% (± 6.8%) for F, v, P, and slope of the F-v relationship (S Fv ), respectively. Both methods showed high correlations for F-v-profile-related variables (r = .985-.991). Finally, all variables computed from the simple method showed high reliability, with ICC >.980 and CV <1.0%. These results suggest that the simple method presented here is valid and reliable for computing CMJ force, velocity, power, and F-v profiles in athletes and could be used in practice under field conditions when body mass, push-off distance, and jump height are known.

  16. Mechanical efficiency and force–time curve variation during repetitive jumping in trained and untrained jumpers.

    PubMed

    McBride, Jeffrey M; Snyder, James G

    2012-10-01

    Mechanical efficiency (ME), the ratio between work performed and energy expenditure, is a useful criterion in determining the roles of stored elastic energy and chemically deduced energy contributing to concentric performance in stretch-shortening cycle movements. Increased force production during the eccentric phase has been shown to relate to optimal muscle-tendon unit (MTU) length change and thus optimization of usage of stored elastic energy. This phenomenon, as previously reported, is reflected by higher jump heights and ME. The purpose of this investigation was to determine if ME may be different between trained and untrained jumpers and thus be accounted for by variation in force production in the eccentric phase as a reflection of usage of stored elastic energy during various jump types. This investigation involved 9 trained (age 20.7 ± 3.2 years, height 178.6 ± 5.3 cm, body mass 79.0 ± 5.5 kg) and 7 untrained (age 21.43 ± 2.37 years, height 176.17 ± 10.89 cm, body mass 78.8 ± 12.5 kg) male jumpers. Trained subjects were Division I track and field athletes who compete in the horizontal or vertical jumping or running events. Force-time and displacement-time curves were obtained during jumping to determine jump height and to calculate work performed and to observe possible differences in force production in the eccentric phase. Respiratory gases with a metabolic cart were obtained during jumping to calculate energy expenditure. ME was calculated as the ratio between work performed and energy expenditure. The subjects completed four sessions involving 20 repetitions of countermovement jumps (CMJ) and drop jumps from 40 cm (DJ40), 60 cm (DJ60) and 80 cm (DJ80). The trained jumpers jumped significantly higher in the CMJ, DJ40, DJ60 and DJ80 conditions than their untrained counterparts (p ≤ 0.05). ME was significantly higher in the trained in comparison to the untrained jumpers during DJ40. The amount of negative work during all jump types was significantly greater in the trained jumpers. There was a significant correlation between negative work and ME in the trained jumpers (r = 0.82) but not in the untrained jumpers (r = 0.54). The present study indicates that trained jumpers jump higher and have greater ME, possibly as a result of increased for production in the eccentric phase as a reflection of optimal MTU length change and thus increased usage of storage of elastic energy.

  17. Effect of Plyometric Training on Vertical Jump Performance in Female Athletes: A Systematic Review and Meta-Analysis.

    PubMed

    Stojanović, Emilija; Ristić, Vladimir; McMaster, Daniel Travis; Milanović, Zoran

    2017-05-01

    Plyometric training is an effective method to prevent knee injuries in female athletes; however, the effects of plyometric training on jump performance in female athletes is unclear. The aim of this systematic review and meta-analysis was to determine the effectiveness of plyometric training on vertical jump (VJ) performance of amateur, collegiate and elite female athletes. Six electronic databases were searched (PubMed, MEDLINE, ERIC, Google Scholar, SCIndex and ScienceDirect). The included studies were coded for the following criteria: training status, training modality and type of outcome measures. The methodological quality of each study was assessed using the physiotherapy evidence database (PEDro) scale. The effects of plyometric training on VJ performance were based on the following standardised pre-post testing effect size (ES) thresholds: trivial (<0.20), small (0.21-0.60), moderate (0.61-1.20), large (1.21-2.00), very large (2.01-4.00) and extremely large (>4.00). A total of 16 studies met the inclusion criteria. The meta-analysis revealed that plyometric training had a most likely moderate effect on countermovement jump (CMJ) height performance (ES = 1.09; 95 % confidence interval [CI] 0.57-1.61; I 2  = 75.60 %). Plyometric training interventions of less than 10 weeks in duration had a most likely small effect on CMJ height performance (ES = 0.58; 95 % CI 0.25-0.91). In contrast, plyometric training durations greater than 10 weeks had a most likely large effect on CMJ height (ES = 1.87; 95 % CI 0.73-3.01). The effect of plyometric training on concentric-only squat jump (SJ) height was likely small (ES = 0.44; 95 % CI -0.09 to 0.97). Similar effects were observed on SJ height after 6 weeks of plyometric training in amateur (ES = 0.35) and young (ES = 0.49) athletes, respectively. The effect of plyometric training on CMJ height with the arm swing was likely large (ES = 1.31; 95 % CI -0.04 to 2.65). The largest plyometric training effects were observed in drop jump (DJ) height performance (ES = 3.59; 95 % CI -3.04 to 10.23). Most likely extremely large plyometric training effects on DJ height performance (ES = 7.07; 95 % CI 4.71-9.43) were observed following 12 weeks of plyometric training. In contrast, a possibly small positive training effect (ES = 0.30; 95 % CI -0.63 to 1.23) was observed following 6 weeks of plyometric training. Plyometric training is an effective form of training to improve VJ performance (e.g. CMJ, SJ and DJ) in female athletes. The benefits of plyometric training on VJ performance are greater for interventions of longer duration (≥10 weeks).

  18. A Prospective Investigation of Biomechanical Risk Factors for Patellofemoral Pain Syndrome. The Joint Undertaking to Monitor and Prevent ACL Injury (JUMP-ACL) Cohort

    DTIC Science & Technology

    2009-09-24

    flexion angle, decreased vertical ground-reaction force , and increased hip internal rotation angle during the jump -landing task. Additionally, decreased...was to determine the biomechanical risk factors for PFPS. The specific factors examined were lower extremity kinematics and kinetics during a jump ...ACL Injury [ JUMP -ACL] study) in which baseline data are collected for participants at all 3 service academies (USNA, United States Air Force Academy

  19. Vertical Jump Height is more Strongly Associated with Velocity and Work Performed Prior to Take-off

    NASA Technical Reports Server (NTRS)

    Bentley, J. R.; Loehr, J. A.; DeWitt, J. K.; Lee, S. M. C.; English, K. L.; Nash, R. E.; Leach, M. A.; Hagan, R. D.

    2008-01-01

    Vertical jump (VJ) height is commonly used as a measure of athletic capability in strength and power sports. Although VJ has been shown to be a predictor of athletic performance, it is not clear which kinetic ground reaction force (GRF) variables, such as peak force (PF), peak power (PP), peak velocity (PV), total work (TW) or impulse (Imp) are the best correlates. To determine which kinetic variables (PF, PP, PV, TW, and Imp) best correlate with VJ height. Twenty subjects (14 males, 6 females) performed three maximal countermovement VJs on a force platform (Advanced Mechanical Technology, Inc., Watertown, MA, USA). VJ jump height was calculated as the difference between standing reach and the highest reach point measured using a Vertec. PF, PP, PV, TW, and Imp were calculated using the vertical GRF data sampled at 1000 Hz from the lowest point in the countermovement through the concentric portion until take-off. GRF data were normalized to body mass measured using a standard scale (Detecto, Webb City, MO, USA). Correlation coefficients were computed between each GRF variable and VJ height using a Pearson correlation. VJ height (43.4 plus or minus 9.1 cm) was significantly correlated (p less than 0.001) with PF (998 plus or minus 321 N; r=0.51), PP (1997 plus or minus 772 W; r=0.69), PV (2.66 plus or minus 0.40 m (raised dot) s(sup -1); r=0.85), TW (259 plus or minus 93.0 kJ; r=0.82), and Imp (204 plus or minus 51.1 N(raised dot)s; r=0.67). Although all variables were correlated to VJ height, PV and TW were more strongly correlated to VJ height than PF, PP, and Imp. Therefore, since TW is equal to force times displacement, the relative displacement of the center of mass along with the forces applied during the upward movement of the jump are critical determinants of VJ height. PV and TW are key determinants of VJ height, and therefore successful training programs to increase VJ height should focus on rapid movement (PV) and TW by increasing power over time rather than focusing on PF alone.

  20. Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain.

    PubMed

    Mueller, Steffen; Stoll, Josefine; Mueller, Juliane; Cassel, Michael; Mayer, Frank

    2017-01-01

    In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 ± 1.3 y; 176 ± 11 cm; 68 ± 11 kg; 12.4 ± 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 ± 1.3 y; 174 ± 7 cm; 67 ± 8 kg; 14.9 ± 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [%]) for all 12 single muscles were normalized to MIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP ( p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3-1.9-fold) for BP ( p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ ( p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral ( p = 0.031) and transverse muscles ( p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment.

  1. Jumping Mechanism of Self-Propelled Droplet

    NASA Astrophysics Data System (ADS)

    Lian, Yongsheng; Chen, Yan

    2017-11-01

    The self-propelled behavior of coalesced droplets can be utilized to enhance heat transfer performance of dropwise condensation. It has been recognized that the droplet self-propelling is the combined result of the conversion of surface energy to kinetic energy and the unsymmetrical boundary conditions imposed on the droplets. However, the roles of boundary conditions, which largely determine the conversion ratio of surface energy to the effective jumping kinetic energy, are not well understood. In this paper we use a numerical approach to investigate the boundary condition effect on the self-propelling behavior. A Navier-Stokes equation solver for multiphase flows is used to describe the flow field. The moment of fluid interface reconstruction technique is applied to resolute the interfaces. A direction splitting method is applied to advect the interface. And an approximate projection method is used to decouple the calculation of velocity and pressure. Comparisons are made with experimental results and show the simulation can accurately capture self-propelling behavior. Our simulation show the vertical flow velocity inside the coalesced droplet can increase the normalized jumping velocity but the contact area between droplets and substrate can decrease jumping velocity. High viscous dissipation is observed at the beginning of the coalescence which reduces jumping velocity.

  2. Comparison of dynamic postural stability scores between athletes with and without chronic ankle instability during lateral jump landing.

    PubMed

    Shiravi, Zeinab; Shadmehr, Azadeh; Moghadam, Saeed Talebian; Moghadam, Behrouz Attarbashi

    2017-01-01

    Many ankle injuries occur while participating in sports that require jumping and landing such as basketball, volleyball and soccer. Most recent studies have investigated dynamic postural stability of patients with chronic ankle instability after landing from a forward jump. The present study aimed to investigate the dynamic postural stability of the athletes who suffer from chronic ankle sprain while landing from a lateral jump. Twelve athletes with self-reported unilateral chronic ankle instability (4 females and 8 males) and 12 matched controls (3 females and 9 males) voluntarily participated in the study. Dynamic postural stability index and its directional indices were measured while performing lateral jump landing test. No differences were found between athletes with and without chronic ankle instability during our landing protocol by means of the dynamic postural stability index and its directional indices. Findings showed that in each group, medial/lateral stability index is significantly higher than anterior/posterior and vertical stability indexes. Findings showed that dynamic postural stability was not significantly different between the two groups. Future studies should examine chronic ankle instability patients with more severe disabilities and expose them to more challenging dynamic balance conditions to further explore postural stability. IIIa.

  3. The AGT Gene M235T Polymorphism and Response of Power-Related Variables to Aerobic Training.

    PubMed

    Aleksandra, Zarębska; Zbigniew, Jastrzębski; Waldemar, Moska; Agata, Leońska-Duniec; Mariusz, Kaczmarczyk; Marek, Sawczuk; Agnieszka, Maciejewska-Skrendo; Piotr, Żmijewski; Krzysztof, Ficek; Grzegorz, Trybek; Ewelina, Lulińska-Kuklik; Semenova, Ekaterina A; Ahmetov, Ildus I; Paweł, Cięszczyk

    2016-12-01

    The C allele of the M235T (rs699) polymorphism of the AGT gene correlates with higher levels of angiotensin II and has been associated with power and strength sport performance. The aim of the study was to investigate whether or not selected power-related variables and their response to a 12-week program of aerobic dance training are modulated by the AGT M235T genotype in healthy participants. Two hundred and one Polish Caucasian women aged 21 ± 1 years met the inclusion criteria and were included in the study. All women completed a 12-week program of low and high impact aerobics. Wingate peak power and total work capacity, 5 m, 10 m, and 30 m running times and jump height and jump power were determined before and after the training programme. All power-related variables improved significantly in response to aerobic dance training. We found a significant association between the M235T polymorphism and jump-based variables (squat jump (SJ) height, p = 0.005; SJ power, p = 0.015; countermovement jump height, p = 0.025; average of 10 countermovement jumps with arm swing (ACMJ) height, p = 0.001; ACMJ power, p = 0.035). Specifically, greater improvements were observed in the C allele carriers in comparison with TT homozygotes. In conclusion, aerobic dance, one of the most commonly practiced adult fitness activities in the world, provides sufficient training stimuli for augmenting the explosive strength necessary to increase vertical jump performance. The AGT gene M235T polymorphism seems to be not only a candidate gene variant for power/strength related phenotypes, but also a genetic marker for predicting response to training.

  4. Predictors of proximal tibia anterior shear force during a vertical stop-jump.

    PubMed

    Sell, Timothy C; Ferris, Cheryl M; Abt, John P; Tsai, Yung-Shen; Myers, Joseph B; Fu, Freddie H; Lephart, Scott M

    2007-12-01

    Anterior cruciate ligament (ACL) continues to be a significant medical issue for athletes participating in sports and recreational activities. Biomechanical analyses have determined that anterior shear force is the most direct loading mechanism of the ACL and a probable component of noncontact ACL injury. The purpose of this study was to examine the biomechanical predictors of proximal tibia anterior shear force during a stop-jump task. A biomechanical and electromyographic (EMG) analysis of the knee was conducted while subjects performed a vertical stop-jump task. The task was chosen to simulate an athletic maneuver that included a landing with a sharp deceleration and a change in direction. The final regression model indicated that posterior ground reaction force, external knee flexion moment, knee flexion angle, integrated EMG activity of the vastus lateralis, and sex (female) would significantly predict proximal tibia anterior shear force (p < 0.0001, R2 = 0.8609). Knee flexion moment had the greatest influence on proximal tibia anterior shear force. The mathematical relationships elucidated in the current study support previous clinical and basic science research examining noncontact ACL injuries. This data provides important evidence for clinicians who are examining the risk factors for these injuries and developing/validating training programs to reduce the incidence of injury. Copyright 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Is muscle coordination affected by loading condition in ballistic movements?

    PubMed

    Giroux, Caroline; Guilhem, Gaël; Couturier, Antoine; Chollet, Didier; Rabita, Giuseppe

    2015-02-01

    This study aimed to investigate the effect of loading on lower limb muscle coordination involved during ballistic squat jumps. Twenty athletes performed ballistic squat jumps on a force platform. Vertical force, velocity, power and electromyographic (EMG) activity of lower limb muscles were recorded during the push-off phase and compared between seven loading conditions (0-60% of the concentric-only maximal repetition). The increase in external load increased vertical force (from 1962 N to 2559 N; P=0.0001), while movement velocity decreased (from 2.5 to 1.6 ms(-1); P=0.0001). EMG activity of tibialis anterior first peaked at 5% of the push-off phase, followed by gluteus maximus (35%), vastus lateralis and soleus (45%), rectus femoris (55%), gastrocnemius lateralis (65%) and semitendinosus (75%). This sequence of activation (P=0.67) and the amplitude of muscle activity (P=0.41) of each muscle were not affected by loading condition. However, a main effect of muscle was observed on these parameters (peak value: P<0.001; peak occurrence: P=0.02) illustrating the specific role of each muscle during the push-off phase. Our findings suggest that muscle coordination is not influenced by external load during a ballistic squat jump. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effect of Footwear on Dynamic Stability during Single-leg Jump Landings.

    PubMed

    Bowser, Bradley J; Rose, William C; McGrath, Robert; Salerno, Jilian; Wallace, Joshua; Davis, Irene S

    2017-06-01

    Barefoot and minimal footwear running has led to greater interest in the biomechanical effects of different types of footwear. The effect of running footwear on dynamic stability is not well understood. The purpose of this study was to compare dynamic stability and impact loading across 3 footwear conditions; barefoot, minimal footwear and standard running shoes. 25 injury free runners (21 male, 4 female) completed 5 single-leg jump landings in each footwear condition. Dynamic stability was assessed using the dynamic postural stability index and its directional components (mediolateral, anteroposterior, vertical). Peak vertical ground reaction force and vertical loadrates were also compared across footwear conditions. Dynamic stability was dependent on footwear type for all stability indices (ANOVA, p<0.05). Post-hoc tests showed dynamic stability was greater when barefoot than in running shoes for each stability index (p<0.02) and greater than minimal footwear for the anteroposterior stability index (p<0.01). Peak vertical force and average loadrates were both dependent on footwear (p≤0.05). Dynamic stability, peak vertical force, and average loadrates during single-leg jump landings appear to be affected by footwear type. The results suggest greater dynamic stability and lower impact loading when landing barefoot or in minimal footwear. © Georg Thieme Verlag KG Stuttgart · New York.

  7. The effects of polyethylene glycosylated creatine supplementation on anaerobic performance measures and body composition.

    PubMed

    Camic, Clayton L; Housh, Terry J; Zuniga, Jorge M; Traylor, Daniel A; Bergstrom, Haley C; Schmidt, Richard J; Johnson, Glen O; Housh, Dona J

    2014-03-01

    The purpose of this study was to examine the effects of 28 days of polyethylene glycosylated creatine (PEG-creatine) supplementation (1.25 and 2.50 g·d) on anaerobic performance measures (vertical and broad jumps, 40-yard dash, 20-yard shuttle run, and 3-cone drill), upper- and lower-body muscular strength and endurance (bench press and leg extension), and body composition. This study used a randomized, double-blind, placebo-controlled parallel design. Seventy-seven adult men (mean age ± SD, 22.1 ± 2.5 years; body mass, 81.7 ± 10.8 kg) volunteered to participate and were randomly assigned to a placebo (n = 23), 1.25 g·d of PEG-creatine (n = 27), or 2.50 g·d of PEG-creatine (n = 27) group. The subjects performed anaerobic performance measures, muscular strength (one-repetition maximum [1RM]), and endurance (80% 1RM) tests for bench press and leg extension, and underwater weighing for the determination of body composition at day 0 (baseline), day 14, and day 28. The results indicated that there were improvements (p < 0.0167) in vertical jump, 20-yard shuttle run, 3-cone drill, muscular endurance for bench press, and body mass for at least one of the PEG-creatine groups without changes for the placebo group. Thus, the present results demonstrated that PEG-creatine supplementation at 1.25 or 2.50 g·d had an ergogenic effect on lower-body vertical power, agility, change-of-direction ability, upper-body muscular endurance, and body mass.

  8. The skeletal trauma resulting from a fatal B.A.S.E jump: A case study showing the impact of landing feet-first under extreme vertical deceleration.

    PubMed

    Rowbotham, Samantha K; Blau, Soren; Hislop-Jambrich, Jacqueline

    2018-05-01

    The term 'B.A.S.E jump' refers to jumping from a building, antenna, span (i.e., bridge) or earth (i.e., cliff) structure, and parachuting to the ground. There are numerous hazards associated with B.A.S.E jumps which often result in injury and, occasionally, fatality. This case report details the skeletal trauma resulting from a fatal B.A.S.E jump in Australia. In this case, the jumper impacted the ground from a fall of 439m in a feet-first landing position, as a result of a partially deployed parachute, under extreme vertical deceleration. Skeletal trauma was analyzed using full-body post mortem computed tomography (PMCT) and contextual information related to the circumstances of the jump as reported by the Coroner. Trauma to 61 skeletal elements indicates the primary impact was to the feet (i.e., feet-first landing), followed by an anterior impact to the body (i.e., fall forwards). Details of the individual fracture morphologies indicate the various forces and biomechanics involved in this fall event. This case presents the types of fractures that result from a B.A.S.E jump, and highlights the value of using PMCT and coronial data as tools to augment skeletal trauma interpretations. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  9. Fast Regulation of Vertical Squat Jump during Push-Off in Skilled Jumpers

    PubMed Central

    Fargier, Patrick; Massarelli, Raphael; Rabahi, Tahar; Gemignani, Angelo; Fargier, Emile

    2016-01-01

    The height of a maximum Vertical Squat Jump (VSJ) reflects the useful power produced by a jumper during the push-off phase. In turn this partly depends on the coordination of the jumper's segmental rotations at each instant. The physical system constituted by the jumper has been shown to be very sensitive to perturbations and furthermore the movement is realized in a very short time (ca. 300 ms), compared to the timing of known feedback loops. However, the dynamics of the segmental coordination and its efficiency in relation to energetics at each instant of the push-off phase still remained to be clarified. Their study was the main purpose of the present research. Eight young adult volunteers (males) performed maximal VSJ. They were skilled in jumping according to their sport activities (track and field or volleyball). A video analysis on the kinematics of the jump determined the influence of the jumpers' segments rotation on the vertical velocity and acceleration of the body mass center (MC). The efficiency in the production of useful power at the jumpers' MC level, by the rotation of the segments, was measured in consequence. The results showed a great variability in the segmental movements of the eight jumpers, but homogeneity in the overall evolution of these movements with three consecutive types of coordination in the second part of the push-off (lasting roughly 0.16 s). Further analyses gave insights on the regulation of the push-off, suggesting that very fast regulation(s) of the VSJ may be supported by: (a) the adaptation of the motor cerebral programming to the jumper's physical characteristics; (b) the control of the initial posture; and (c) the jumper's perception of the position of his MC relative to the ground reaction force, during push-off, to reduce energetic losses. PMID:27486404

  10. Effects of Different Combinations of Strength, Power, and Plyometric Training on the Physical Performance of Elite Young Soccer Players.

    PubMed

    Kobal, Ronaldo; Loturco, Irineu; Barroso, Renato; Gil, Saulo; Cuniyochi, Rogério; Ugrinowitsch, Carlos; Roschel, Hamilton; Tricoli, Valmor

    2017-06-01

    The combination of strength (ST) and plyometric training (PT) has been shown to be effective for improving sport-specific performance. However, there is no consensus about the most effective way to combine these methods in the same training session to produce greater improvements in neuromuscular performance of soccer players. Thus, the purpose of this study was to compare the effects of different combinations of ST and PT sequences on strength, jump, speed, and agility capacities of elite young soccer players. Twenty-seven soccer players (age: 18.9 ± 0.6 years) participated in an 8-week resistance training program and were divided into 3 groups: complex training (CP) (ST before PT), traditional training (TD) (PT before ST), and contrast training (CT) (ST and PT performed alternately, set by set). The experimental design took place during the competitive period of the season. The ST composed of half-squat exercises performed at 60-80% of 1 repetition maximum (1RM); the PT composed of drop jump exercises executed in a range from 30 to 45 cm. After the experimental period, the maximum dynamic strength (half-squat 1RM) and vertical jump ability (countermovement jump height) increased similarly and significantly in the CP, TD, and CT (48.6, 46.3, and 53% and 13, 14.2, and 14.7%, respectively). Importantly, whereas the TD group presented a significant decrease in sprinting speed in 10 (7%) and 20 m (6%), the other groups did not show this response. Furthermore, no significant alterations were observed in agility performance in any experimental group. In conclusion, in young soccer players, different combinations and sequences of ST and PT sets result in similar performance improvements in muscle strength and jump ability. However, it is suggested that the use of the CP and CT methods is more indicated to maintain/maximize the sprint performance of these athletes.

  11. Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height

    PubMed Central

    Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian

    2017-01-01

    Background: Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. Hypothesis: A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. Results: The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association (r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association (r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = –0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Conclusion: Initial analysis showed a strong association between isokinetic strength and jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research. PMID:29147670

  12. Physiological Characteristics of Incoming Freshmen Field Players in a Men’s Division I Collegiate Soccer Team

    PubMed Central

    Lockie, Robert G.; Davis, DeShaun L.; Birmingham-Babauta, Samantha A.; Beiley, Megan D.; Hurley, Jillian M.; Stage, Alyssa A.; Stokes, John J.; Tomita, Tricia M.; Torne, Ibett A.; Lazar, Adrina

    2016-01-01

    Freshmen college soccer players will have lower training ages than their experienced teammates (sophomores, juniors, seniors). How this is reflected in field test performance is not known. Freshmen (n = 7) and experienced (n = 10) male field soccer players from the same Division I school completed soccer-specific tests to identify potential differences in incoming freshmen. Testing included: vertical jump (VJ), standing broad jump, and triple hop (TH); 30-m sprint, (0–5, 5–10, 0–10, and 0–30 m intervals); 505 change-of-direction test; Yo-Yo Intermittent Recovery Test Level 2 (YYIRT2); and 6 × 30-m sprints to measure repeated-sprint ability. A MANOVA with Bonferroni post hoc was conducted on the performance test data, and effect sizes and z-scores were calculated from the results for magnitude-based inference. There were no significant between-group differences in the performance tests. There were moderate effects for the differences in VJ height, left-leg TH, 0–5, 0–10 and 0–30 m sprint intervals, and YYIRT2 (d = 0.63–1.18), with experienced players being superior. According to z-score data, freshmen had meaningful differences below the squad mean in the 30-m sprint, YYIRT2, and jump tests. Freshmen soccer players may need to develop linear speed, high-intensity running, and jump performance upon entering a collegiate program. PMID:29910282

  13. Anthropometric and performance comparisons in professional baseball players.

    PubMed

    Hoffman, Jay R; Vazquez, Jose; Pichardo, Napoleon; Tenenbaum, Gershon

    2009-11-01

    This study compared anthropometric and performance variables in professional baseball players and examined the relationship between these variables and baseball-specific performance (i.e., home runs, total bases, slugging percentage, and stolen bases). During a 2-year period, 343 professional baseball players were assessed for height, weight, body composition, grip strength, vertical jump power, 10-yard sprint speed, and agility. Subject population consisted of players on the rosters of one of the minor league affiliates (Rookie, A, AA, AAA) or major league team (MLB). All testing occurred at the beginning of spring training. Players in Rookie and A were significantly (p < 0.05) leaner than players in MLB and AAA. These same players had significantly lower lean body mass than seen in MLB, AAA, and AA players. Greater grip strength (p < 0.05) was seen in MLB and AAA than in Rookie and A. Players in MLB were also faster (p < 0.05) than players in AA, A, and Rookie. Vertical jump power measures were greater (p < 0.05) in MLB than AA, A, and Rookie. Regression analysis revealed that performance measures accounted for 25-31% of the variance in baseball-specific power performance. Anthropometric measures failed to add any additional explanation to the variance in these baseball-specific performance variables. Results indicated that both anthropometric and performance variables differed between players of different levels of competition in professional baseball. Agility, speed, and lower-body power appeared to provide the greatest predictive power of baseball-specific performance.

  14. Level of functional capacities following soccer-specific warm-up methods among elite collegiate soccer players.

    PubMed

    Vazini Taher, Amir; Parnow, Abdolhossein

    2017-05-01

    Different methods of warm-up may have implications in improving various aspects of soccer performance. The present study aimed to investigate acute effects of soccer specific warm-up protocols on functional performance tests. This study using randomized within-subject design, investigated the performance of 22 collegiate elite soccer player following soccer specific warm-ups using dynamic stretching, static stretching, and FIFA 11+ program. Post warm-up examinations consisted: 1) Illinois Agility Test; 2) vertical jump; 3) 30 meter sprint; 4) consecutive turns; 5) flexibility of knee. Vertical jump performance was significantly lower following static stretching, as compared to dynamic stretching (P=0.005). Sprint performance declined significantly following static stretching as compared to FIFA 11+ (P=0.023). Agility time was significantly faster following dynamic stretching as compared to FIFA 11+ (P=0.001) and static stretching (P=0.001). Knee flexibility scores were significantly improved following the static stretching as compared to dynamic stretching (P=016). No significant difference was observed for consecutive turns between three warm-up protocol. The present finding showed that a soccer specific warm-up protocol relied on dynamic stretching is preferable in enhancing performance as compared to protocols relying on static stretches and FIFA 11+ program. Investigators suggest that while different soccer specific warm-up protocols have varied types of effects on performance, acute effects of dynamic stretching on performance in elite soccer players are assured, however application of static stretching in reducing muscle stiffness is demonstrated.

  15. Prolonged use of Kinesiotaping does not enhance functional performance and joint proprioception in healthy young males: Randomized controlled trial

    PubMed Central

    Magalhães, Igor; Bottaro, Martim; Freitas, João R.; Carmo, Jake; Matheus, João P. C.; Carregaro, Rodrigo L.

    2016-01-01

    ABSTRACT Objectives The aim of this study was to investigate the effects of continuous (48-hour) use of Kinesiotaping (KT) on functional and proprioceptive performance in healthy, physically active men. Method Twenty-six healthy, physically active men (21.8±2.2 years old) were randomly allocated into two groups: 1) Kinesiotaping group (KG, tape applied with 40% tension for rectus femoris activation); 2) Control (CG, tape applied over rectus femoris without additional tension). Subjects attended the laboratory on five separate occasions: 1) familiarization; 2) baseline measurement without tape (BL); 3) immediately post-tape application (T0); 4) 24h (T24); and 5) 48h (T48) post-tape application. The outcomes were distance in the single (SHT) and triple hop tests (THT), vertical jump height (VJH), vertical jump power (VJP), and rate of force development (RFD). A mixed-model ANOVA was applied to verify differences between and within groups. Results No significant (p >0.05) differences were found in the SHT and THT between groups and moments. Likewise, the main effects for VJH, VJP, and RFD were not significant (p >0.05). Conclusion The present study demonstrated no significant immediate or prolonged (48h) effects of KT on functional and proprioceptive performance. PMID:27437712

  16. Prolonged use of Kinesiotaping does not enhance functional performance and joint proprioception in healthy young males: Randomized controlled trial.

    PubMed

    Magalhães, Igor; Bottaro, Martim; Freitas, João R; Carmo, Jake; Matheus, João P C; Carregaro, Rodrigo L

    2016-03-18

    The aim of this study was to investigate the effects of continuous (48-hour) use of Kinesiotaping (KT) on functional and proprioceptive performance in healthy, physically active men. Twenty-six healthy, physically active men (21.8±2.2 years old) were randomly allocated into two groups: 1) Kinesiotaping group (KG, tape applied with 40% tension for rectus femoris activation); 2) Control (CG, tape applied over rectus femoris without additional tension). Subjects attended the laboratory on five separate occasions: 1) familiarization; 2) baseline measurement without tape (BL); 3) immediately post-tape application (T0); 4) 24h (T24); and 5) 48h (T48) post-tape application. The outcomes were distance in the single (SHT) and triple hop tests (THT), vertical jump height (VJH), vertical jump power (VJP), and rate of force development (RFD). A mixed-model ANOVA was applied to verify differences between and within groups. No significant (p >0.05) differences were found in the SHT and THT between groups and moments. Likewise, the main effects for VJH, VJP, and RFD were not significant (p >0.05). The present study demonstrated no significant immediate or prolonged (48h) effects of KT on functional and proprioceptive performance.

  17. Mastery of fundamental movement skills among children in New South Wales: prevalence and sociodemographic distribution.

    PubMed

    Okely, A D; Booth, M L

    2004-09-01

    Fundamental movement skills form the foundation for many of the specific motor skills employed in popular sports and leisure activities. Little data exist on the prevalence and socioeconomic distribution of fundamental movement skill mastery among young children in Australia. This study process-assessed performance on six fundamental movement skills in a randomly selected sample of students from Years 1 through 3 in the Sydney metropolitan area of New South Wales. The prevalence and sociodemographic distribution of mastery and near mastery for each skill and each skill component is reported for boys and girls in each school year. The findings revealed that the prevalence of mastery and near mastery of each of fundamental movement skill was generally low. Boys performed significantly better than girls in the run and in the four object-control skills (throw, catch, kick, and strike) whilst girls performed better than boys in the skip. There was no consistent association between prevalence of skill mastery and socio-economic status (SES), with only the kick and vertical jump for boys and catch, dodge, and vertical jump for girls differing across SES tertiles. Based on these results, we recommend that adequate curriculum time, resources, and professional development continue to be devoted to fundamental movement skills in NSW primary schools.

  18. The addition of body armor diminishes dynamic postural stability in military soldiers.

    PubMed

    Sell, Timothy C; Pederson, Jonathan J; Abt, John P; Nagai, Takashi; Deluzio, Jennifer; Wirt, Michael D; McCord, Larry J; Lephart, Scott M

    2013-01-01

    Poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The additional weight of body armor carried by Soldiers alters static postural stability and may predispose Soldiers to lower extremity musculoskeletal injuries. However, static postural stability tasks poorly replicate the dynamic military environment, which places considerable stress on the postural control system during tactical training and combat. Therefore, the purpose of this study was to examine the effects of body armor on dynamic postural stability during single-leg jump landings. Thirty-six 101st Airborne Division (Air Assault) Soldiers performed single-leg jump landings in the anterior direction with and without wearing body armor. The dynamic postural stability index and the individual stability indices (medial-lateral stability index, anterior-posterior stability index, and vertical stability index) were calculated for each condition. Paired sample t-tests were performed to determine differences between conditions. Significant differences existed for the medial-lateral stability index, anterior-posterior stability index, vertical stability index, and dynamic postural stability index (p < 0.05). The addition of body armor resulted in diminished dynamic postural stability, which may result in increased lower extremity injuries. Training programs should address the altered dynamic postural stability while wearing body armor in attempts to promote adaptations that will result in safer performance during dynamic tasks.

  19. Fatigue influences lower extremity angular velocities during a single-leg drop vertical jump.

    PubMed

    Tamura, Akihiro; Akasaka, Kiyokazu; Otsudo, Takahiro; Shiozawa, Junya; Toda, Yuka; Yamada, Kaori

    2017-03-01

    [Purpose] Fatigue alters lower extremity landing strategies and decreases the ability to attenuate impact during landing. The purpose of this study was to reveal the influence of fatigue on dynamic alignment and joint angular velocities in the lower extremities during a single leg landing. [Subjects and Methods] The 34 female college students were randomly assigned to either the fatigue or control group. The fatigue group performed single-leg drop vertical jumps before, and after, the fatigue protocol, which was performed using a bike ergometer. Lower extremity kinematic data were acquired using a three-dimensional motion analysis system. The ratio of each variable (%), for the pre-fatigue to post-fatigue protocols, were calculated to compare differences between each group. [Results] Peak hip and knee flexion angular velocities increased significantly in the fatigue group compared with the control group. Furthermore, hip flexion angular velocity increased significantly between each group at 40 milliseconds after initial ground contact. [Conclusion] Fatigue reduced the ability to attenuate impact by increasing angular velocities in the direction of hip and knee flexion during landings. These findings indicate a requirement to evaluate movement quality over time by measuring hip and knee flexion angular velocities in landings during fatigue conditions.

  20. A brief review of strength and ballistic assessment methodologies in sport.

    PubMed

    McMaster, Daniel Travis; Gill, Nicholas; Cronin, John; McGuigan, Michael

    2014-05-01

    An athletic profile should encompass the physiological, biomechanical, anthropometric and performance measures pertinent to the athlete's sport and discipline. The measurement systems and procedures used to create these profiles are constantly evolving and becoming more precise and practical. This is a review of strength and ballistic assessment methodologies used in sport, a critique of current maximum strength [one-repetition maximum (1RM) and isometric strength] and ballistic performance (bench throw and jump capabilities) assessments for the purpose of informing practitioners and evolving current assessment methodologies. The reliability of the various maximum strength and ballistic assessment methodologies were reported in the form of intra-class correlation coefficients (ICC) and coefficient of variation (%CV). Mean percent differences (Mdiff = [/Xmethod1 - Xmethod2/ / (Xmethod1 + Xmethod2)] x 100) and effect size (ES = [Xmethod2 - Xmethod1] ÷ SDmethod1) calculations were used to assess the magnitude and spread of methodological differences for a given performance measure of the included studies. Studies were grouped and compared according to their respective performance measure and movement pattern. The various measurement systems (e.g., force plates, position transducers, accelerometers, jump mats, optical motion sensors and jump-and-reach apparatuses) and assessment procedures (i.e., warm-up strategies, loading schemes and rest periods) currently used to assess maximum isometric squat and mid-thigh pull strength (ICC > 0.95; CV < 2.0%), 1RM bench press, back squat and clean strength (ICC > 0.91; CV < 4.3%), and ballistic (vertical jump and bench throw) capabilities (ICC > 0.82; CV < 6.5%) were deemed highly reliable. The measurement systems and assessment procedures employed to assess maximum isometric strength [M(Diff) = 2-71%; effect size (ES) = 0.13-4.37], 1RM strength (M(Diff) = 1-58%; ES = 0.01-5.43), vertical jump capabilities (M(Diff) = 2-57%; ES = 0.02-4.67) and bench throw capabilities (M(Diff) = 7-27%; ES = 0.49-2.77) varied greatly, producing trivial to very large effects on these respective measures. Recreational to highly trained athletes produced maximum isometric squat and mid-thigh pull forces of 1,000-4,000 N; and 1RM bench press, back squat and power clean values of 80-180 kg, 100-260 kg and 70-140 kg, respectively. Mean and peak power production across the various loads (body mass to 60% 1RM) were between 300 and 1,500 W during the bench throw and between 1,500 and 9,000 W during the vertical jump. The large variations in maximum strength and power can be attributed to the wide range in physical characteristics between different sports and athletic disciplines, training and chronological age as well as the different measurement systems of the included studies. The reliability and validity outcomes suggest that a number of measurement systems and testing procedures can be implemented to accurately assess maximum strength and ballistic performance in recreational and elite athletes, alike. However, the reader needs to be cognisant of the inherent differences between measurement systems, as selection will inevitably affect the outcome measure. The strength and conditioning practitioner should also carefully consider the benefits and limitations of the different measurement systems, testing apparatuses, attachment sites, movement patterns (e.g., direction of movement, contraction type, depth), loading parameters (e.g., no load, single load, absolute load, relative load, incremental loading), warm-up strategies, inter-trial rest periods, dependent variables of interest (i.e., mean, peak and rate dependent variables) and data collection and processing techniques (i.e., sampling frequency, filtering and smoothing options).

  1. Effect of a prehop on the muscle-tendon interaction during vertical jumps.

    PubMed

    Aeles, Jeroen; Lichtwark, Glen; Peeters, Dries; Delecluse, Christophe; Jonkers, Ilse; Vanwanseele, Benedicte

    2018-05-01

    Many movements use stretch-shortening cycles of a muscle-tendon unit (MTU) for storing and releasing elastic energy. The required stretching of medial gastrocnemius (MG) tendinous tissue during jumps, however, requires large length changes of the muscle fascicles because of the lack of MTU length changes. This has a negative impact on the force-generating capacity of the muscle fascicles. The purpose of this study was to induce a MG MTU stretch before shortening by adding a prehop to the squat jump. Eleven well-trained athletes specialized in jumping performed a prehop squat jump (PHSJ) and a standard squat jump (SSJ). Kinematic data were collected using a 3D motion capture system and were used in a musculoskeletal model to calculate MTU lengths. B-mode ultrasonography of the MG was used to measure fascicle length and pennation angle during the jumps. By combining the muscle-tendon unit lengths, fascicle lengths, and pennation angles, the stretch and recoil of the series elastic element of MG were calculated using a simple geometric muscle-tendon model. Our results show less length changes of the muscle fascicles during the upward motion and lower maximal shortening velocities, increasing the moment-generating capacity of the plantar flexors, reflected in the higher ankle joint moment in the PHSJ compared with the SSJ. Although muscle-tendon interaction during the PHSJ was more optimal, athletes were not able to increase their jump height compared with the SSJ. NEW & NOTEWORTHY This is the first study that aimed to improve the muscle-tendon interaction in squat jumping. We effectively introduced a stretch to the medial gastrocnemius muscle-tendon unit resulting in lower maximal shortening velocities and thus an increase in the plantar flexor force-generating capacity, reflected in the higher ankle joint moment in the prehop squat jump compared with the standard squat jump. Here, we demonstrate an effective method for mechanical optimization of the muscle-tendon interaction in the medial gastrocnemius during squat jumping.

  2. Effects of Plyometric Training on Muscle-Activation Strategies and Performance in Female Athletes

    PubMed Central

    Swanik, Kathleen A.; Swanik, C. Buz; Straub, Stephen J.

    2004-01-01

    Objective: To evaluate the effects of plyometric training on muscle-activation strategies and performance of the lower extremity during jumping exercises. Subjects: Twenty healthy National Collegiate Athletic Association Division I female athletes. Design and Setting: A pretest and posttest control group design was used. Experimental subjects performed plyometric exercises 2 times per week for 6 weeks. Measurements: We used surface electromyography to assess preparatory and reactive activity of the vastus medialis and vastus lateralis, medial and lateral hamstrings, and hip abductors and adductors. Vertical jump height and sprint speed were assessed with the VERTEC and infrared timing devices, respectively. Results: Multivariate analyses of variance revealed significant (P < .05) increases in firing of adductor muscles during the preparatory phase, with significant interactions for area, mean, and peak. A Tukey honestly significant difference post hoc analysis revealed significant increases in preparatory adductor area, mean, and peak for experimental group. A significant (P = .037) increase in preparatory adductor-to-abductor muscle coactivation in the experimental group was identified, as well as a trend (P = .053) toward reactive quadriceps-to- hamstring muscle coactivation in the experimental group. Pearson correlation coefficients revealed significant between-groups adaptations in muscle activity patterns pretest to posttest. Although not significant, experimental and control subjects had average increases of 5.8% and 2.0% in vertical jump height, respectively. Conclusions: The increased preparatory adductor activity and abductor-to-adductor coactivation represent preprogrammed motor strategies learned during the plyometric training. These data strongly support the role of hip-musculature activation strategies for dynamic restraint and control of lower extremity alignment at ground contact. Plyometric exercises should be incorporated into the training regimens of female athletes and may reduce the risk of injury by enhancing functional joint stability in the lower extremity. PMID:15085208

  3. Physiological consequences of military high-speed boat transits.

    PubMed

    Myers, Stephen D; Dobbins, Trevor D; King, Stuart; Hall, Benjamin; Ayling, Ruth M; Holmes, Sharon R; Gunston, Tom; Dyson, Rosemary

    2011-09-01

    The purpose of this study was to investigate the consequences of a high-speed boat transit on physical performance. Twenty-four Royal Marines were randomly assigned to a control (CON) or transit (TRAN) group. The CON group sat onshore for 3 h whilst the TRAN group completed a 3-h transit in open-boats running side-by-side, at 40 knots in moderate-to-rough seas, with boat deck and seat-pan acceleration recorded. Performance tests (exhaustive shuttle-run, handgrip, vertical-jump, push-up) were completed pre- and immediately post-transit/sit, with peak heart rate (HRpeak) and rating of perceived exertion (RPE) recorded. Serial blood samples (pre, 24, 36, 48, 72 h) were analyzed for creatine kinase (CK) activity. The transit was typified by frequent high shock impacts, but moderate mean heart rates (<45% HRpeak). The TRAN group post-transit run distance (-219 m, P < 0.01) and vertical-jump height (5%, P < 0.05) were reduced, the CON group showed no change. The TRAN group post-transit test RPE increased (P < 0.05), however, HRpeak was similar for each group (98%). Post-transit CK activity increased in the TRAN group up to 72 h (P < 0.01) and also, but less markedly, in the CON group (24 and 48 h, P < 0.05). Post-transit run and jump performances were reduced despite mean transit heart rates indicating low energy expenditure. The greater TRAN CK activity suggests muscle damage may have been a contributory factor. These findings have operational implications for Special Forces/naval/police/rescue services carrying out demanding, high-risk physical tasks during and immediately after high-speed boat transits.

  4. Six weeks of multi-station program on the knee proprioception and performance of futsal players.

    PubMed

    Pérez-Silvestre, Ángel; Albert-Lucena, Daniel; Gómez-Chiguano, Guido F; Plaza-Manzano, Gustavo; Pecos-Martín, Daniel; Gallego-Izquierdo, Tomás; Martín-Casas, Patricia; Romero-Franco, Natalia

    2018-03-27

    Proprioception and vertical jump are important parameters in the performance and prevention of injuries in futsal. However, very few studies have analyzed the role of multi-station exercises to improve these variables. The purpose of this study was to assess the effects of a six-week multi-station exercise program on knee joint position sense (JPS) and countermovement jump (CMJ) of futsal players. Thirty-four male futsal players randomly classified into experimental (n = 17) or control group (n = 17). The experimental group included a multi-station exercise protocol to their training routines (2 times/week - 6 weeks); the control group continued their training routines. All the players completed similar training routines outside of the multi-station exercises. Before (baseline), just after the intervention (Post6Wk) and four weeks later (Post10Wk), CMJ and knee JPS (absolute, relative and variable angular error: AAE, RAE and VAE, respectively) were evaluated. ANOVA showed that the experimental group significantly decreased VAE at Post10Wk compared to baseline, suggestive of greater proprioceptive precision, while the control group significantly increased AAE, RAE and VAE at Post10Wk compared to baseline. The experimental group exhibited lower and thus, better AAE and VAE than the control group at Post10Wk, although no significant differences were found at Post6Wk. No significant differences was found in the CMJ. A six weeks of multi-station program may help improve proprioceptive precision of futsal players, even one month after finishing the 6-wk multi-station training program. However, this is not long enough to improve proprioceptive acuity and maximum vertical jump. Therefore, the meaningful of these results in term of performance are unclear.

  5. Effectiveness of an Individualized Training Based on Force-Velocity Profiling during Jumping

    PubMed Central

    Jiménez-Reyes, Pedro; Samozino, Pierre; Brughelli, Matt; Morin, Jean-Benoît

    2017-01-01

    Ballistic performances are determined by both the maximal lower limb power output (Pmax) and their individual force-velocity (F-v) mechanical profile, especially the F-v imbalance (FVimb): difference between the athlete's actual and optimal profile. An optimized training should aim to increase Pmax and/or reduce FVimb. The aim of this study was to test whether an individualized training program based on the individual F-v profile would decrease subjects' individual FVimb and in turn improve vertical jump performance. FVimb was used as the reference to assign participants to different training intervention groups. Eighty four subjects were assigned to three groups: an “optimized” group divided into velocity-deficit, force-deficit, and well-balanced sub-groups based on subjects' FVimb, a “non-optimized” group for which the training program was not specifically based on FVimb and a control group. All subjects underwent a 9-week specific resistance training program. The programs were designed to reduce FVimb for the optimized groups (with specific programs for sub-groups based on individual FVimb values), while the non-optimized group followed a classical program exactly similar for all subjects. All subjects in the three optimized training sub-groups (velocity-deficit, force-deficit, and well-balanced) increased their jumping performance (12.7 ± 5.7% ES = 0.93 ± 0.09, 14.2 ± 7.3% ES = 1.00 ± 0.17, and 7.2 ± 4.5% ES = 0.70 ± 0.36, respectively) with jump height improvement for all subjects, whereas the results were much more variable and unclear in the non-optimized group. This greater change in jump height was associated with a markedly reduced FVimb for both force-deficit (57.9 ± 34.7% decrease in FVimb) and velocity-deficit (20.1 ± 4.3%) subjects, and unclear or small changes in Pmax (−0.40 ± 8.4% and +10.5 ± 5.2%, respectively). An individualized training program specifically based on FVimb (gap between the actual and optimal F-v profiles of each individual) was more efficient at improving jumping performance (i.e., unloaded squat jump height) than a traditional resistance training common to all subjects regardless of their FVimb. Although improving both FVimb and Pmax has to be considered to improve ballistic performance, the present results showed that reducing FVimb without even increasing Pmax lead to clearly beneficial jump performance changes. Thus, FVimb could be considered as a potentially useful variable for prescribing optimal resistance training to improve ballistic performance. PMID:28119624

  6. Apparent and Actual Use of Observational Frameworks by Experienced Teachers.

    ERIC Educational Resources Information Center

    Satern, Miriam N.

    This study investigated observational strategies that were used by six experienced physical education teachers when viewing a videotape of motor skills (standing vertical jump, overarm throw, tennis serve, basketball jump shot and dance sequence). Four observational frameworks were proposed as being representative of subdisciplinary knowledge…

  7. Elastic Bands as a Component of Periodized Resistance Training.

    PubMed

    Joy, Jordan M; Lowery, Ryan P; Oliveira de Souza, Eduardo; Wilson, Jacob M

    2016-08-01

    Joy, JM, Lowery, RP, Oliveira de Souza, E, and Wilson, JM. Elastic bands as a component of periodized resistance training. J Strength Cond Res 30(8): 2100-2106, 2016-Variable resistance training (VRT) has recently become a component of strength and conditioning programs. Prior research has demonstrated increases in power and/or strength using low loads of variable resistance. However, no study has examined using high loads of variable resistance as a part of a periodized training protocol to examine VRT within the context of a periodized training program and to examine a greater load of variable resistance than has been examined in prior research. Fourteen National Collegiate Athletic Association division II male basketball players were recruited for this study. Athletes were divided equally into either a variable resistance or control group. The variable resistance group added 30% of their 1 repetition maximum (1RM) as band tension to their prescribed weight 1 session per week. Rate of power development (RPD), peak power, strength, body composition, and vertical jump height were measured pretreatment and posttreatment. No baseline differences were observed between groups for any measurement of strength, power, or body composition. A significant group by time interaction was observed for RPD, in which RPD was greater in VRT posttraining than in the control group. Significant time effects were observed for all other variables including squat 1RM, bench press 1RM, deadlift 1RM, clean 3RM, vertical jump, and lean mass. Although there were no significant group ×-time interactions, the VRT group's percent changes and effect sizes indicate a larger treatment effect in the squat and bench press 1RM values and the vertical jump performed on the force plate and vertec. These results suggest that when using variable resistance as a component of a periodized training program, power and strength can be enhanced. Therefore, athletes who add variable resistance to 1 training session per week may enhance their athletic performance.

  8. Multiple Off-Ice Performance Variables Predict On-Ice Skating Performance in Male and Female Division III Ice Hockey Players

    PubMed Central

    Janot, Jeffrey M.; Beltz, Nicholas M.; Dalleck, Lance D.

    2015-01-01

    The purpose of this study was to determine if off-ice performance variables could predict on-ice skating performance in Division III collegiate hockey players. Both men (n = 15) and women (n = 11) hockey players (age = 20.5 ± 1.4 years) participated in the study. The skating tests were agility cornering S-turn, 6.10 m acceleration, 44.80 m speed, modified repeat skate, and 15.20 m full speed. Off-ice variables assessed were years of playing experience, height, weight and percent body fat and off-ice performance variables included vertical jump (VJ), 40-yd dash (36.58m), 1-RM squat, pro-agility, Wingate peak power and peak power percentage drop (% drop), and 1.5 mile (2.4km) run. Results indicated that 40-yd dash (36.58m), VJ, 1.5 mile (2.4km) run, and % drop were significant predictors of skating performance for repeat skate (slowest, fastest, and average time) and 44.80 m speed time, respectively. Four predictive equations were derived from multiple regression analyses: 1) slowest repeat skate time = 2.362 + (1.68 x 40-yd dash time) + (0.005 x 1.5 mile run), 2) fastest repeat skate time = 9.762 - (0.089 x VJ) - (0.998 x 40-yd dash time), 3) average repeat skate time = 7.770 + (1.041 x 40-yd dash time) - (0.63 x VJ) + (0.003 x 1.5 mile time), and 4) 47.85 m speed test = 7.707 - (0.050 x VJ) - (0.01 x % drop). It was concluded that selected off-ice tests could be used to predict on-ice performance regarding speed and recovery ability in Division III male and female hockey players. Key points The 40-yd dash (36.58m) and vertical jump tests are significant predictors of on-ice skating performance specific to speed. In addition to 40-yd dash and vertical jump, the 1.5 mile (2.4km) run for time and percent power drop from the Wingate anaerobic power test were also significant predictors of skating performance that incorporates the aspect of recovery from skating activity. Due to the specificity of selected off-ice variables as predictors of on-ice performance, coaches can elect to assess player performance off-ice and focus on other uses of valuable ice time for their individual teams. PMID:26336338

  9. EFFECT OF ATHLETIC TAPING AND KINESIOTAPING® ON MEASUREMENTS OF FUNCTIONAL PERFORMANCE IN BASKETBALL PLAYERS WITH CHRONIC INVERSION ANKLE SPRAINS

    PubMed Central

    Karatas, Nihan; Baltaci, Gul

    2012-01-01

    Background: Chronic inversion ankle sprains are common in basketball players. The effect of taping on functional performance is disputed in the literature. Kinesiotaping® (KT®) is a new method that is being used as both a therapeutic and performance enhancement tool. To date, it appears that no study has investigated the effect of ankle KT® on functional performance. Purpose: To investigate the effects of different types of taping (KT® using Kinesio Tex®, athletic taping) on functional performance in athletes with chronic inversion sprains of the ankle. Study Design: Crossover Study Design Methods: Fifteen male basketball players with chronic inversion ankle sprains between the ages of 18 and 22 participated in this study. Functional performance tests (Hopping test by Amanda et al, Single Limb Hurdle Test, Standing Heel Rise test, Vertical Jump Test, The Star Excursion Balance Test [SEBT] and Kinesthetic Ability Trainer [KAT] Test) were used to quantify agility, endurance, balance, and coordination. These tests were conducted four times at one week intervals using varied conditions: placebo tape, without tape, standard athletic tape, and KT®. One-way ANOVA tests were used to examine difference in measurements between conditions. Bonferroni correction was applied to correct for repeated testing. Results: There were no significant differences among the results obtained using the four conditions for SEBT (anterior p=0.0699; anteromedial p=0.126; medial p=0.550; posteromedial p=0.587; posterior p=0.754; posterolateral p=0.907; lateral p=0.124; anterolateral p=0.963) and the KAT dynamic measurement (p=0.388). Faster performance times were measured with KT® and athletic tape in single limb hurdle test when compared to placebo and non-taped conditions (Athletic taping- placebo taping: p=0.03; athletic taping- non tape p=0.016;KT®- Placebo taping p=0.042; KT®-Non tape p=0.016). In standing heel rise test and vertical jump test, athletic taping led to decreased performance. (Standing heel rise test: Athletic taping- placebo taping p=0.035; athletic taping- non tape p=0.043; athletic tape- KT® p<0.001) (Vertical jump test: Athletic taping- placebo taping p=0.002: athletic taping- non tape p=0.002; KT®- athletic tape p<0.001) Conclusion: Kinesiotaping® had no negative effects on a battery of functional performance tests and improvements were seen in some functional performance tests. Clinical Relevance: Ankle taping using Kinesio Tex® Tape did not inhibit functional performance. PMID:22530190

  10. Effect of athletic taping and kinesiotaping® on measurements of functional performance in basketball players with chronic inversion ankle sprains.

    PubMed

    Bicici, Seda; Karatas, Nihan; Baltaci, Gul

    2012-04-01

    Chronic inversion ankle sprains are common in basketball players. The effect of taping on functional performance is disputed in the literature. Kinesiotaping® (KT®) is a new method that is being used as both a therapeutic and performance enhancement tool. To date, it appears that no study has investigated the effect of ankle KT® on functional performance. To investigate the effects of different types of taping (KT® using Kinesio Tex®, athletic taping) on functional performance in athletes with chronic inversion sprains of the ankle. Crossover Study Design Fifteen male basketball players with chronic inversion ankle sprains between the ages of 18 and 22 participated in this study. Functional performance tests (Hopping test by Amanda et al, Single Limb Hurdle Test, Standing Heel Rise test, Vertical Jump Test, The Star Excursion Balance Test [SEBT] and Kinesthetic Ability Trainer [KAT] Test) were used to quantify agility, endurance, balance, and coordination. These tests were conducted four times at one week intervals using varied conditions: placebo tape, without tape, standard athletic tape, and KT®. One-way ANOVA tests were used to examine difference in measurements between conditions. Bonferroni correction was applied to correct for repeated testing. There were no significant differences among the results obtained using the four conditions for SEBT (anterior p=0.0699; anteromedial p=0.126; medial p=0.550; posteromedial p=0.587; posterior p=0.754; posterolateral p=0.907; lateral p=0.124; anterolateral p=0.963) and the KAT dynamic measurement (p=0.388). Faster performance times were measured with KT® and athletic tape in single limb hurdle test when compared to placebo and non-taped conditions (Athletic taping- placebo taping: p=0.03; athletic taping- non tape p=0.016;KT®- Placebo taping p=0.042; KT®-Non tape p=0.016). In standing heel rise test and vertical jump test, athletic taping led to decreased performance. (Standing heel rise test: Athletic taping- placebo taping p=0.035; athletic taping- non tape p=0.043; athletic tape- KT® p<0.001) (Vertical jump test: Athletic taping- placebo taping p=0.002: athletic taping- non tape p=0.002; KT®- athletic tape p<0.001) Kinesiotaping® had no negative effects on a battery of functional performance tests and improvements were seen in some functional performance tests. Ankle taping using Kinesio Tex® Tape did not inhibit functional performance.

  11. Functional Performance Among Active Female Soccer Players After Unilateral Primary Anterior Cruciate Ligament Reconstruction Compared With Knee-Healthy Controls.

    PubMed

    Fältström, Anne; Hägglund, Martin; Kvist, Joanna

    2017-02-01

    Good functional performance with limb symmetry is believed to be important to minimize the risk of injury after a return to pivoting and contact sports after anterior cruciate ligament reconstruction (ACLR). This study aimed to investigate any side-to-side limb differences in functional performance and movement asymmetries in female soccer players with a primary unilateral anterior cruciate ligament (ACL)-reconstructed knee and to compare these players with knee-healthy controls from the same soccer teams. Cross-sectional study; Level of evidence, 3. This study included 77 active female soccer players at a median of 18 months after ACLR (interquartile range [IQR], 14.5 months; range, 7-39 months) and 77 knee-healthy female soccer players. The mean age was 20.1 ± 2.3 years for players with an ACL-reconstructed knee and 19.5 ± 2.2 years for controls. We used a battery of tests to assess postural control (Star Excursion Balance Test) and hop performance (1-legged hop for distance, 5-jump test, and side hop). Movement asymmetries in the lower limbs and trunk were assessed with the drop vertical jump and the tuck jump using 2-dimensional analyses. The reconstructed and uninvolved limbs did not differ in any of the tests. In the 5-jump test, players with an ACL-reconstructed knee performed worse than controls (mean 8.75 ± 1.05 m vs 9.09 ± 0.89 m; P = .034). On the drop vertical jump test, the ACL-reconstructed limb had significantly less knee valgus motion in the frontal plane (median 0.028 m [IQR, 0.049 m] vs 0.045 m [IQR, 0.043 m]; P = .004) and a lower probability of a high knee abduction moment (pKAM) (median 69.2% [IQR, 44.4%] vs 79.8% [IQR, 44.8%]; P = .043) compared with the control players' matched limb (for leg dominance). Results showed that 9% to 49% of players in both groups performed outside recommended guidelines on the different tests. Only 14 players with an ACL-reconstructed knee (18%) and 15 controls (19%) had results that met the recommended guidelines for all 5 tests ( P = .837). The reconstructed and uninvolved limbs did not differ, and players with an ACL-reconstructed knee and controls differed only minimally on the functional performance tests, indicating similar function. It is worth noting that many players with an ACL-reconstructed knee and controls had movement asymmetries and a high pKAM pattern, which have previously been associated with an increased risk for both primary and secondary ACL injury in female athletes.

  12. The Jump Training Program. In Season Conditioning for Women's Basketball.

    ERIC Educational Resources Information Center

    Hannam, Sue; And Others

    1988-01-01

    Women athletes have been successful in maintaining and/or increasing their conditioning and vertical jump levels when they participate in the in-season circuit training program described in this article. An exercise guide, sample individual score card, and photos of women practicing the exercises are included. (IAH)

  13. Impact attenuation properties of jazz shoes alter lower limb joint stiffness during jump landings.

    PubMed

    Fong Yan, Alycia; Smith, Richard M; Hiller, Claire E; Sinclair, Peter J

    2017-05-01

    To quantify the impact attenuation properties of the jazz shoes, and to investigate the in-vivo effect of four jazz shoe designs on lower limb joint stiffness during a dance-specific jump. Repeated measures. A custom-built mechanical shoe tester similar to that used by athletic shoe companies was used to vertically impact the forefoot and heel region of four different jazz shoe designs. Additionally, dancers performed eight sautés in second position in bare feet and the shoe conditions. Force platforms and 3D-motion capture were used to analyse the joint stiffness of the midfoot, ankle, knee and hip during the jump landings. Mechanical testing of the jazz shoes revealed significant differences in impact attenuation characteristics among each of the jazz shoe designs. Gross knee and midfoot joint stiffness were significantly affected by the jazz shoe designs in the dancers' jump landings. The tested jazz shoe designs altered the impact attenuating capacity of jump landing technique in dancers. The cushioned jazz shoes are recommended particularly for injured dancers to reduce impact on the lower limb. Jazz shoe design should consider the impact attenuation properties of the forefoot region, due to the toe-strike landing technique in dance movement. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Is the technical performance of young soccer players influenced by hormonal status, sexual maturity, anthropometric profile, and physical performance?

    PubMed

    Moreira, Alexandre; Massa, Marcelo; Thiengo, Carlos R; Rodrigues Lopes, Rafael Alan; Lima, Marcelo R; Vaeyens, Roel; Barbosa, Wesley P; Aoki, Marcelo S

    2017-12-01

    The aim of this study was to examine the influence of hormonal status, anthropometric profile, sexual maturity level, and physical performance on the technical abilities of 40 young male soccer players during small-sided games (SSGs). Anthropometric profiling, saliva sampling, sexual maturity assessment (Tanner scale), and physical performance tests (Yo-Yo and vertical jumps) were conducted two weeks prior to the SSGs. Salivary testosterone was determined by the enzyme-linked immunosorbent assay method. Technical performance was determined by the frequency of actions during SSGs. Principal component analyses identified four technical actions of importance: total number of passes, effectiveness, goal attempts, and total tackles. A multivariate canonical correlation analysis was then employed to verify the prediction of a multiple dependent variables set (composed of four technical actions) from an independent set of variables, composed of testosterone concentration, stage of pubic hair and genitalia development, vertical jumps and Yo-Yo performance. A moderate-to-large relationship between the technical performance set and the independent set was observed. The canonical correlation was 0.75 with a canonical R 2 of 0.45. The highest structure coefficient in the technical performance set was observed for tackles (0.77), while testosterone presented the highest structure coefficient (0.75) for the variables of the independent set. The current data suggest that the selected independent set of variables might be useful in predicting SSG performance in young soccer players. Coaches should be aware that physical development plays a key role in technical performance to avoid decision-making mistakes during the selection of young players.

  15. Performance enhancement effects of Fédération Internationale de Football Association's "The 11+" injury prevention training program in youth futsal players.

    PubMed

    Reis, Ivan; Rebelo, António; Krustrup, Peter; Brito, João

    2013-07-01

    To evaluate if Fédération Internationale de Football Association's "The 11+" injury prevention program improves physical fitness and technical performance in youth futsal players. Randomized cohort study. Futsal club. Thirty-six futsal players (17.3 ± 0.7 years). Players were randomized to an intervention group (n = 18) or a control group (n = 18). Intervention group performed "The 11+" twice per week for 12 weeks. Isokinetic testing to access maximal quadriceps (Q) and hamstring (H) strength, vertical jump (squat jump, SJ; countermovement jump, CMJ), 5-m and 30-m sprint, agility, slalom, and balance performances were also measured. Intervention group increased (P < 0.05) quadriceps concentric (14.7%-27.3%) and hamstrings concentric (9.3%-13.3%) and eccentric (12.7%) peak torque. Intervention group improved functional H:Q ratio by 1.8% to 8.5% (P < 0.05). Intervention group improved (P < 0.05) SJ (13.8%) and CMJ (9.9%) and 5-m and 30-m sprint (8.9% and 3.3%, respectively), agility (4.7%), and slalom (4.8%) performances. Intervention group also improved balance, by decreasing the number of falls by 30% in the nondominant limb. No changes were observed in control group. The results suggest that 'The 11+' can be used as an effective conditioning means for improving physical fitness and technical performance of youth futsal players.

  16. Analysis of the Vertical Ground Reaction Forces and Temporal Factors in the Landing Phase of a Countermovement Jump

    PubMed Central

    Ortega, Daniel Rojano; Rodríguez Bíes, Elisabeth C.; Berral de la Rosa, Francisco J.

    2010-01-01

    In most common bilateral landings of vertical jumps, there are two peak forces (F1 and F2) in the force-time curve. The combination of these peak forces and the high frequency of jumps during sports produce a large amount of stress in the joints of the lower limbs which can be determinant of injury. The aim of this study was to find possible relationships between the jump height and F1 and F2, between F1 and F2 themselves, and between F1, F2, the time they appear (T1 and T2, respectively) and the length of the impact absorption phase (T). Thirty semi-professional football players made five countermovement jumps and the highest jump of each player was analyzed. They were instructed to perform the jumps with maximum effort and to land first with the balls of their feet and then with their heels. All the data were collected using a Kistler Quattro Jump force plate with a sample rate of 500 Hz. Quattro Jump Software, v.1.0.9.0., was used. There was neither significant correlation between T1 and F1 nor between T1 and F2. There was a significant positive correlation between flight height (FH) and F1 (r = 0.584, p = 0.01) but no significant correlation between FH and F2. A significant positive correlation between F1 and T2 (r = 0.418, p < 0.05) and a significant negative correlation between F2 and T2 (r = -0.406, p < 0.05) were also found. There is a significant negative correlation between T2 and T (r = -0. 443, p < 0.05). T1 has a little effect in the impact absorption process. F1 increases with increasing T2 but F2 decreases with increasing T2. Besides, increasing T2, with the objective of decreasing F2, makes the whole impact absorption shorter and the jump landing faster. Key points In the landing phase of a jump there are always sev-eral peak forces. The combination of these peaks forces and the high frequency of jumps during sports produces a large amount of stress in the joints of the lower limbs which can be determinant of injury. In the most common two-footed landings usually appear two peak forces (F1 and F2) in the force-time curve and the second one is usually related to injury’s risk. In this article it is shown that increasing the time F2 appears decrease F2. Increasing landing times could be counterproductive with respect to the goals of the sport. In this article it is shown that increasing the time F2 appears makes, however, the whole impact absorption shorter in du-ration. PMID:24149697

  17. Half-squat or jump squat training under optimum power load conditions to counteract power and speed decrements in Brazilian elite soccer players during the preseason.

    PubMed

    Loturco, Irineu; Pereira, Lucas A; Kobal, Ronaldo; Zanetti, Vinicius; Gil, Saulo; Kitamura, Katia; Abad, Cesar Cavinato Cal; Nakamura, Fabio Y

    2015-01-01

    The purpose of this study was to test which specific type of exercise (i.e., jump squat (JS) or half-squat (HS)) is more effective at maintaining speed and power abilities throughout a preseason in soccer players. Twenty-three male soccer players were randomly allocated into two groups: JS and HS. The mean propulsive power, vertical jumping ability, and sprinting performance were evaluated before and after 4 weeks of a preseason period. The optimum power loads for the JS and HS exercises were assessed and were used as load-references. The soccer players performed 10 power oriented training sessions in total. Both JS and HS maintained power in JS and speed abilities (P > 0.05, for main effects and interaction effect) as indicated by ANCOVA. Both groups demonstrated reduced power during HS (ES = -0.76 vs. -0.78, for JS and HS, respectively); both groups improved acceleration (ACC) from 5 to 10 m (ES = 0.52). JS was more effective at reducing the ACC decrements over 0-5 m (ES = -0.38 vs. -0.58, for JS and HS, respectively). The HS group increased squat jump height (ES = 0.76 vs. 0.11, for HS and JS, respectively). In summary, JS is more effective in reducing the ACC capacity over very short sprints while HS is more effective in improving squat jump performance. Both strategies improve ACC over longer distances. New training strategies should be implemented/developed to avoid concurrent training effects between power and endurance adaptations during professional soccer preseasons.

  18. Relationship between ACTN3 R577X polymorphism and maximal power output in elite Polish athletes.

    PubMed

    Orysiak, Joanna; Busko, Krzysztof; Michalski, Radoslaw; Mazur-Różycka, Joanna; Gajewski, Jan; Malczewska-Lenczowska, Jadwiga; Sitkowski, Dariusz; Pokrywka, Andrzej

    2014-01-01

    The main purpose of this study was to examine the association between ACTN3 R577X polymorphism and the ability to produce peak power in young male athletes from various sports. Our hypothesis was that the ACTN3 R577X polymorphism is associated with jumping performance and athletes with RR genotype have better scores in tests than athletes with XX or RX genotype independently of the sport discipline. Two hundred young Polish male participants representing different disciplines were recruited for this study. Genotyping for ACTN3 gene was performed using polymerase chain reaction. The power output of lower extremities and the height of rise of the body mass center during vertical jumps were measured on a force plate. The genotype distribution of the ACTN3 gene did not differ significantly between groups of athletes. The significant difference in height of counter-movement jump was found between athletes with RR and XX genotype (0.446±0.049m vs. 0.421±0.036m, respectively, P=0.026). The ACTN3 RR genotype was associated with greater muscle power and height of jump in young male athletes. These results suggest that the ACTN3 gene may play a significant role in determining muscle phenotypes. However, this gene is only one of many factors which could contribute to athletes' performance and muscle phenotypes. Copyright © 2014 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. The effect of gender and fatigue on the biomechanics of bilateral landings from a jump: peak values.

    PubMed

    Pappas, Evangelos; Sheikhzadeh, Ali; Hagins, Marshall; Nordin, Margareta

    2007-01-01

    Female athletes are substantially more susceptible than males to suffer acute non-contact anterior cruciate ligament injury. A limited number of studies have identified possible biomechanical risk factors that differ between genders. The effect of fatigue on the biomechanics of landing has also been inadequately investigated. The objective of the study was to examine the effect of gender and fatigue on peak values of biomechanical variables during landing from a jump. Thirty-two recreational athletes performed bilateral drop jump landings from a 40 cm platform. Kinetic, kinematic and electromyographic data were collected before and after a functional fatigue protocol. Females landed with 9° greater peak knee valgus (p = 0.001) and 140% greater maximum vertical ground reaction forces (p = 0.003) normalized to body weight compared to males. Fatigue increased peak foot abduction by 1.7° (p = 0.042), peak rectus femoris activity by 27% (p = 0.018), and peak vertical ground reaction force (p = 0.038) by 20%. The results of the study suggest that landing with increased peak knee valgus and vertical ground reaction force may contribute to increased risk for knee injury in females. Fatigue caused significant but small changes on some biomechanical variables. Anterior cruciate ligament injury prevention programs should focus on implementing strategies to effectively teach females to control knee valgus and ground reaction force. Key pointsFemale athletes landed with increased knee valgus and VGRF which may predispose them to ACL injury.Fatigue elicited a similar response in male and female athletes.The effectiveness of sports injury prevention programs may improve by focusing on teaching females to land softer and with less knee valgus.

  20. The Effect of Gender and Fatigue on the Biomechanics of Bilateral Landings from a Jump: Peak Values

    PubMed Central

    Pappas, Evangelos; Sheikhzadeh, Ali; Hagins, Marshall; Nordin, Margareta

    2007-01-01

    Female athletes are substantially more susceptible than males to suffer acute non-contact anterior cruciate ligament injury. A limited number of studies have identified possible biomechanical risk factors that differ between genders. The effect of fatigue on the biomechanics of landing has also been inadequately investigated. The objective of the study was to examine the effect of gender and fatigue on peak values of biomechanical variables during landing from a jump. Thirty-two recreational athletes performed bilateral drop jump landings from a 40 cm platform. Kinetic, kinematic and electromyographic data were collected before and after a functional fatigue protocol. Females landed with 9° greater peak knee valgus (p = 0.001) and 140% greater maximum vertical ground reaction forces (p = 0.003) normalized to body weight compared to males. Fatigue increased peak foot abduction by 1.7° (p = 0.042), peak rectus femoris activity by 27% (p = 0.018), and peak vertical ground reaction force (p = 0.038) by 20%. The results of the study suggest that landing with increased peak knee valgus and vertical ground reaction force may contribute to increased risk for knee injury in females. Fatigue caused significant but small changes on some biomechanical variables. Anterior cruciate ligament injury prevention programs should focus on implementing strategies to effectively teach females to control knee valgus and ground reaction force. Key pointsFemale athletes landed with increased knee valgus and VGRF which may predispose them to ACL injury.Fatigue elicited a similar response in male and female athletes.The effectiveness of sports injury prevention programs may improve by focusing on teaching females to land softer and with less knee valgus. PMID:24149228

  1. Hip Kinematics During a Stop-Jump Task in Patients With Chronic Ankle Instability

    PubMed Central

    Brown, Cathleen N.; Padua, Darin A.; Marshall, Stephen W.; Guskiewicz, Kevin M.

    2011-01-01

    Context: Chronic ankle instability (CAI) commonly develops after lateral ankle sprain. Movement pattern differences at proximal joints may play a role in instability. Objective: To determine whether people with mechanical ankle instability (MAI) or functional ankle instability (FAI) exhibited different hip kinematics and kinetics during a stop-jump task compared with “copers.” Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Sixty-three recreational athletes, 21 (11 men, 10 women) per group, matched for sex, age, height, mass, and limb dominance. All participants reported a history of a moderate to severe ankle sprain. The participants with MAI and FAI reported 2 or more episodes of giving way at the ankle in the last year and decreased functional ability; copers did not. The MAI group demonstrated clinically positive anterior drawer and talar tilt tests, whereas the FAI group and copers did not. Intervention(s): Participants performed a maximum-speed approach run and a 2-legged stop jump followed by a maximum vertical jump. Main Outcome Measure(s): An electromagnetic tracking device synchronized with a force plate collected data during the stance phase of a 2-legged stop jump. Hip motion was measured from initial contact to takeoff into the vertical jump. Group differences in hip kinematics and kinetics were assessed. Results: The MAI group demonstrated greater hip flexion at initial contact and at maximum (P = .029 and P = .017, respectively) and greater hip external rotation at maximum (P = .035) than the coper group. The MAI group also demonstrated greater hip flexion displacement than both the FAI (P = .050) and coper groups (P = .006). No differences were noted between the FAI and coper groups in hip kinematic variables or among any of the groups in ground reaction force variables. Conclusions: The MAI group demonstrated different hip kinematics than the FAI and coper groups. Proximal joint motion may be affected by ankle joint function and laxity, and clinicians may need to assess proximal joints after repeated ankle sprains. PMID:22488131

  2. Effect of Jump Interval Training on Kinematics of the Lower Limbs and Running Economy.

    PubMed

    Ache-Dias, Jonathan; Pupo, Juliano Dal; Dellagrana, Rodolfo A; Teixeira, Anderson S; Mochizuki, Luis; Moro, Antônio R P

    2018-02-01

    Ache-Dias, J, Pupo, JD, Dellagrana, RA, Teixeira, AS, Mochizuki, L, and Moro, ARP. Effect of jump interval training on kinematics of the lower limbs and running economy. J Strength Cond Res 32(2): 416-422, 2017-This study analyzed the effects of the addition of jump interval training (JIT) to continuous endurance training (40-minute running at 70% of peak aerobic velocity, 3 times per week for 4 weeks) on kinematic variables and running economy (RE) during submaximal constant-load running. Eighteen recreational runners, randomized into control group (CG) or experimental group (EG) performed the endurance training. In addition, the EG performed the JIT twice per week, which consisted of 4-6 bouts of continuous vertical jumping (30 seconds) with 5-minute intervals. The oxygen consumption (V[Combining Dot Above]O2) during the submaximal test (performed at 9 km·h) was similar before (EG: 38.48 ± 2.75 ml·kg·min; CG: 36.45 ± 2.70 ml·kg·min) and after training (EG: 37.42 ± 2.54 ml·kg·min; CG: 35.81 ± 3.10 ml·kg·min). No effect of training, group, or interaction (p > 0.05) was found for RE. There was no interaction or group effect for the kinematic variables (p > 0.05). Most of the kinematic variables had a training effect for both groups (support time [p ≤ 0.05]; step rate [SR; p ≤ 0.05]; and step length [SL; p ≤ 0.05]). In addition, according to the practical significance analysis (percentage chances of a better/trivial/worse effect), important effects in leg stiffness (73/25/2), vertical stiffness (73/25/2), SR (71/27/2), and SL (64/33/3) were found for the EG. No significant relationship between RE and stiffness were found for EG and CG. In conclusion, the results suggest that JIT induces important changes in the kinematics of the lower limbs of recreational runners, but the changes do not affect RE.

  3. Different Modes of Feedback and Peak Vertical Ground Reaction Force During Jump Landing: A Systematic Review

    PubMed Central

    Ericksen, Hayley M.; Gribble, Phillip A.; Pfile, Kate R.; Pietrosimone, Brian G.

    2013-01-01

    Context: Excessive ground reaction force when landing from a jump may result in lower extremity injuries. It is important to better understand how feedback can influence ground reaction force (GRF) and potentially reduce injury risk. Objective: To determine the effect of expert-provided (EP), self-analysis (SA), and combination EP and SA (combo) feedback on reducing peak vertical GRF during a jump-landing task. Data Sources: We searched the Web of Science database on July 1, 2011; using the search terms ground reaction force, landing biomechanics, and feedback elicited 731 initial hits. Study Selection: Of the 731 initial hits, our final analysis included 7 studies that incorporated 32 separate data comparisons. Data Extraction: Standardized effect sizes and 95% confidence intervals (CIs) were calculated between pretest and posttest scores for each feedback condition. Data Synthesis: We found a homogeneous beneficial effect for combo feedback, indicating a reduction in GRF with no CIs crossing zero. We also found a homogeneous beneficial effect for EP feedback, but the CIs from 4 of the 10 data comparisons crossed zero. The SA feedback showed strong, definitive effects when the intervention included a videotape SA, with no CIs crossing zero. Conclusions: Of the 7 studies reviewed, combo feedback seemed to produce the greatest decrease in peak vertical GRF during a jump-landing task. PMID:24067153

  4. Bringing light into the dark: effects of compression clothing on performance and recovery.

    PubMed

    Born, Dennis-Peter; Sperlich, Billy; Holmberg, Hans-Christer

    2013-01-01

    To assess original research addressing the effect of the application of compression clothing on sport performance and recovery after exercise, a computer-based literature research was performed in July 2011 using the electronic databases PubMed, MEDLINE, SPORTDiscus, and Web of Science. Studies examining the effect of compression clothing on endurance, strength and power, motor control, and physiological, psychological, and biomechanical parameters during or after exercise were included, and means and measures of variability of the outcome measures were recorded to estimate the effect size (Hedges g) and associated 95% confidence intervals for comparisons of experimental (compression) and control trials (noncompression). The characteristics of the compression clothing, participants, and study design were also extracted. The original research from peer-reviewed journals was examined using the Physiotherapy Evidence Database (PEDro) Scale. Results indicated small effect sizes for the application of compression clothing during exercise for short-duration sprints (10-60 m), vertical-jump height, extending time to exhaustion (such as running at VO2max or during incremental tests), and time-trial performance (3-60 min). When compression clothing was applied for recovery purposes after exercise, small to moderate effect sizes were observed in recovery of maximal strength and power, especially vertical-jump exercise; reductions in muscle swelling and perceived muscle pain; blood lactate removal; and increases in body temperature. These results suggest that the application of compression clothing may assist athletic performance and recovery in given situations with consideration of the effects magnitude and practical relevance.

  5. The Influence of External Load on Quadriceps Muscle and Tendon Dynamics during Jumping.

    PubMed

    Earp, Jacob E; Newton, Robert U; Cormie, Prue; Blazevich, Anthony J

    2017-11-01

    Tendons possess both viscous (rate-dependent) and elastic (rate-independent) properties that determine tendon function. During high-speed movements external loading increases both the magnitude (FT) and rate (RFDT) of tendon loading. The influence of external loading on muscle and tendon dynamics during maximal vertical jumping was explored. Ten resistance-trained men performed parallel-depth, countermovement vertical jumps with and without additional load (0%, 30%, 60%, and 90% of maximum squat lift strength), while joint kinetics and kinematics, quadriceps tendon length (LT) and patellar tendon FT and RFDT were estimated using integrated ultrasound, motion analysis and force platform data and muscle tendon modelling. Estimated FT and RFDT, but not peak LT, increased with external loading. Temporal comparisons between 0% and 90% loads revealed that FT was greater with 90% loading throughout the majority of the movement (11%-81% and 87%-95% movement duration). However, RFDT was greater with 90% load only during the early movement initiation phase (8%-15% movement duration) but was greater in the 0% load condition later in the eccentric phase (27%-38% movement duration). LT was longer during the early movement (12%-23% movement duration) but shorter in the late eccentric and early concentric phases (48%-55% movement duration) with 90% load. External loading positively influenced peak FT and RFDT but tendon strain appeared unaffected, suggesting no additive effect of external loading on patellar tendon lengthening during human jumping. Temporal analysis revealed that external loading resulted in a large initial RFDT that may have caused dynamic stiffening of the tendon and attenuated tendon strain throughout the movement. These results suggest that external loading influences tendon lengthening in both a load- and movement-dependent manner.

  6. Motor Control of Landing from a Jump in Simulated Hypergravity.

    PubMed

    Gambelli, Clément N; Theisen, Daniel; Willems, Patrick A; Schepens, Bénédicte

    2015-01-01

    On Earth, when landing from a counter-movement jump, muscles contract before touchdown to anticipate imminent collision with the ground and place the limbs in a proper position. This study assesses how the control of landing is modified when gravity is increased above 1 g. Hypergravity was simulated in two different ways: (1) by generating centrifugal forces during turns of an aircraft (A300) and (2) by pulling the subject downwards in the laboratory with a Subject Loading System (SLS). Eight subjects were asked to perform counter-movement jumps at 1 g on Earth and at 3 hypergravity levels (1.2, 1.4 and 1.6 g) both in A300 and with SLS. External forces applied to the body, movements of the lower limb segments and muscular activity of 6 lower limb muscles were recorded. Our results show that both in A300 and with SLS, as in 1 g: (1) the anticipation phase is present; (2) during the loading phase (from touchdown until the peak of vertical ground reaction force), lower limb muscles act like a stiff spring, whereas during the second part (from the peak of vertical ground reaction force until the return to the standing position), they act like a compliant spring associated with a damper. (3) With increasing gravity, the preparatory adjustments and the loading phase are modified whereas the second part does not change drastically. (4) The modifications are similar in A300 and with SLS, however the effect of hypergravity is accentuated in A300, probably due to altered sensory inputs. This observation suggests that otolithic information plays an important role in the control of the landing from a jump.

  7. Effect of squeeze film damper land geometry on damper performance

    NASA Astrophysics Data System (ADS)

    Wang, Y. H.; Hahn, E. J.

    1994-04-01

    Variable axial land geometry dampers can significantly alter the unbalance response, and in particular, the likelihood of undesirable jump behavior, or circular orbit-type squeeze film dampers. Assuming end feed, the pressure distribution, the fluid film forces, and the stiffness and damping coefficients are obtained for such variable axial and geometry dampers, as well as the jump-up propensity for vertical squeeze film damped rigid rotors. It is shown that variable land geometry dampers can reduce the variation of stiffness and damping coefficients, thereby reducing the degree of damper force non-linearity, and presumably reducing the likelihood of undesirable bistable operation. However, it is also found that regardless of unbalance and regardless of the depth, width or shape of the profile, parallel land dampers are least likely to experience jump-up to undesirable operation modes. These conflicting conclusions may be accounted for by the reduction in damping. They will need to be qualified for practical dampers which normally have oil hole feed rather than end feed.

  8. Hydraulic/Shock-Jumps In Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Boley, A. C.; Durisen, R. H.

    2005-12-01

    Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the post-shock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic-jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hydraulic/shock-jump hybrids (hs-jumps) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that hs-jumps produce and discuss possible consequences of hs-jumps for disk mixing, turbulence, and evolution of solids. A. C. B. was supported in part by an Indiana Space Grant Consortium fellowship and a NASA Graduate Student Research Program fellowship; R. H. D. was supported in part by NASA grants NAGS-11964 and NNG05GN11G.

  9. Effects of the rider on the linear kinematics of jumping horses.

    PubMed

    Powers, Pippa; Harrison, Andrew

    2002-07-01

    This study examined the effects of the rider on the linear projectile kinematics of show-jumping horses. SVHS video recordings (50 Hz) of eight horses jumping a vertical fence 1 m high were used for the study. Horses jumped the fence under two conditions: loose (no rider or tack) and ridden. Recordings were digitised using Peak Motus. After digitising the sequences, each rider's digitised data were removed from the ridden horse data so that three conditions were examined: loose, ridden (including the rider's data) and riderless (rider's data removed). Repeated measures ANOVA revealed significant differences between ridden and loose conditions for CG height at take-off (p < 0.001), CG distance to the fence at take-off (p = 0.001), maximum CG during the suspension phase (p < 0.001), CG position over the centre of the fence (p < 0.001), CG height at landing (p < 0.001), and vertical velocity at take-off (p < 0.001). The results indicated that the rider's effect on jumping horses was primarily due to behavioural changes in the horses motion (resulting from the rider's instruction), rather than inertial effects (due to the positioning of the rider on the horse). These findings have implications for the coaching of riders and horses.

  10. Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: A case-control study

    PubMed Central

    Louw, Quinette; Grimmer, Karen; Vaughan, Christopher

    2006-01-01

    Background A common knee injury mechanism sustained during basketball is landing badly from a jump. Landing is a complex task and requires good coordination, dynamic muscle control and flexibility. For adolescents whose coordination and motor control has not fully matured, landing badly from a jump can present a significant risk for injury. There is currently limited biomechanical information regarding the lower limb kinetics of adolescents when jumping, specifically regarding jump kinematics comparing injured with uninjured adolescents. This study reports on an investigation of biomechanical differences in landing patterns of uninjured and injured adolescent basketball players. Methods A matched case-control study design was employed. Twenty-two basketball players aged 14–16 years participated in the study: eleven previously knee-injured and eleven uninjured players matched with cases for age, gender, weight, height and years of play, and playing for the same club. Six high-speed, three-dimensional Vicon 370 cameras (120 Hz), Vicon biomechanical software and SAS Version 8 software were employed to analyse landing patterns when subjects performed a "jump shot". Linear correlations determined functional relationships between the biomechanical performance of lower limb joints, and paired t-tests determined differences between the normalised peak biomechanical parameters. Results The average peak vertical ground reaction forces between the cases and controls were similar. The average peak ground reaction forces between the cases and controls were moderately correlated (r = -0.47). The control (uninjured) players had significantly greater hip and knee flexion angles and significantly greater eccentric activity on landing than the uninjured cases (p < 0.01). Conclusion The findings of the study indicate that players with a history of knee injuries had biomechanically compromised landing techniques when compared with uninjured players matched for gender, age and club. Descriptions (norms) of expected levels of knee control, proprioceptive acuity and eccentric strength relative to landing from a jump, at different ages and physical developmental stages, would assist clinicians and coaches to identify players with inappropriate knee performance comparable to their age or developmental stage. PMID:16522210

  11. Musculotendinous Stiffness of Triceps Surae, Maximal Rate of Force Development, and Vertical Jump Performance

    PubMed Central

    Driss, Tarak; Rouis, Majdi; Jaafar, Hamdi; Vandewalle, Henry

    2015-01-01

    The relationships between ankle plantar flexor musculotendinous stiffness (MTS) and performance in a countermovement vertical jump (CMJ) and maximal rate of torque development (MRTD) were studied in 27 active men. MTS was studied by means of quick releases at 20 (S 0.2), 40 (S 0.4), 60 (S 0.6), and 80% (S 0.8) of maximal voluntary torque (T MVC). CMJ was not correlated with strength indices but was positively correlated with MRTD/BM, S 0.4/BM. The slope α 2 and intercept β 2 of the torque-stiffness relationships from 40 to 80% T MVC were correlated negatively (α 2) and positively (β 2) with CMJ. The different stiffness indices were not correlated with MRTD. The prediction of CMJ was improved by the introduction of MRTD in multiple regressions between CMJ and stiffness. CMJ was also negatively correlated with indices of curvature of the torque-stiffness relationship. The subjects were subdivided in 3 groups in function of CMJ (groups H, M, and L for high, medium, and low performers, resp.). There was a downward curvature of the torque-stiffness relationship at high torques in group H or M and the torque-stiffness regression was linear in group L only. These results suggested that torque-stiffness relationships with a plateau at high torques are more frequent in the best jumpers. PMID:25710026

  12. Association Between Neuromuscular Tests and Kumite Performance on The Brazilian Karate National Team

    PubMed Central

    Roschel, Hamilton; Batista, Mauro; Monteiro, Rodrigo; Bertuzzi, Romulo C.; Barroso, Renato; Loturco, Irineu; Ugrinowitsch, Carlos; Tricoli, Valmor; Franchini, Emerson

    2009-01-01

    The aim of this study was to verify the relationship of strength and power with performance on an international level karate team during official kumite simulations. Fourteen male black belt karate athletes were submitted to anthropometric data collection and then performed the following tests on two different days: vertical jump test, bench press and squat maximum dynamic strength (1RM) tests. We also tested power production for both exercises at 30 and 60%1RM and performed a kumite match simulation. Blood samples were obtained at rest and immediately after the kumite matches to measure blood lactate concentration. Karate players were separated by performance (winners vs. defeated) on the kumite matches. We found no significant differences between winners and defeated for strength, vertical jump height, anthropometric data and blood lactate concentration. Interestingly, winners were more powerful in the bench press and squat exercises at 30% 1RM. Maximum strength was correlated with absolute (30% 1RM r = 0.92; 60% 1RM r = 0.63) and relative power (30% 1RM r = 0.74; 60% 1RM r = 0.11, p > 0.05) for the bench press exercise. We concluded that international level karate players’ kumite match performance are influenced by higher levels of upper and lower limbs power production. Key Points Muscle power at low workloads seems to be a reasonable predictor of karate performance. There are differences in neuromuscular characteristics between winners and defeated karate players among an international level karate team. Karate players rely more on muscle power, rather than on muscle strength. PMID:24474882

  13. Thirteen-year trends in child and adolescent fundamental movement skills: 1997-2010.

    PubMed

    Hardy, Louise L; Barnett, Lisa; Espinel, Paola; Okely, Anthony D

    2013-10-01

    The objective of this study is to describe 13-yr trends in children's fundamental movement skill (FMS) competency. Secondary analysis of representative, cross-sectional, Australian school-based surveys was conducted in 1997, 2004, and 2010 (n = 13,752 children age 9-15 yr). Five FMS (sprint run, vertical jump, catch, kick, and overarm throw) were assessed using process-oriented criteria at each survey and children's skills classified as competent or not competent. Covariates included sex, age, cardiorespiratory endurance (20-m shuttle run test), body mass index (kg·m), and socioeconomic status (residential postcode). At each survey, the children's FMS competency was low, with prevalence rarely above 50%. Between 1997 and 2004, there were significant increases in all students' competency in the sprint run, vertical jump, and catch. For boys, competency increased in the kick (primary) and the overarm throw (high school), but among high school girls, overarm throw competency decreased. Between 2004 and 2010, competency increased in the catch (all students), and in all girls, competency increased in the kick, whereas competency in the vertical jump decreased. Overall, students' FMS competency was low especially in the kick and overarm throw in girls. The observed increase in FMS competency in 2004 was attributed to changes in practice and policy to support the teaching of FMS in schools. In 2010, competency remained low, with improvements in only the catch (all) and kick (girls) and declines in vertical jump. Potentially, the current delivery of FMS programs requires stronger positioning within the school curriculum. Strategies to improve children's physical activity should consider ensuring children are taught FMS to competency level, to enjoy being physically active.

  14. Injury Prevention and Performance Enhancement in 101st Airborne Soldiers

    DTIC Science & Technology

    2009-10-01

    a prospective study that looked at injury risk factors in sub- elite rugby players , preseason tests of a vertical jump, 10- and 40-meter sprint, and...Croisier JL, Ganteaume S, Binet J, Genty M, Ferret JM. Strength imbalances and prevention of hamstring injury in professional soccer players : a prospective... nutritional characteristics. Based on the results of initial testing included 101st-specific task and demand analyses and biomechanical

  15. A Comparison of Military and Law Enforcement Body Armour.

    PubMed

    Orr, Robin; Schram, Ben; Pope, Rodney

    2018-02-14

    Law-enforcement officers increasingly wear body armour for protection; wearing body armour is common practice in military populations. Law-enforcement and military occupational demands are vastly different and military-styled body armour may not be suitable for law-enforcement. This study investigated differences between selected military body armour (MBA: 6.4 kg) and law-enforcement body armour (LEBA: 2.1 kg) in impacts on postural sway, vertical jump, agility, a functional movement screen (FMS), task simulations (vehicle exit; victim recovery), and subjective measures. Ten volunteer police officers (six females, four males) were randomly allocated to one of the designs on each of two days. Body armour type did not significantly affect postural sway, vertical jump, vehicle exit and 5 m sprint times, or victim recovery times. Both armour types increased sway velocity and sway-path length in the final five seconds compared to the first 5 s of a balance task. The MBA was associated with significantly slower times to complete the agility task, poorer FMS total scores, and poorer subjective ratings of performance and comfort. The LEBA was perceived as more comfortable and received more positive performance ratings during the agility test and task simulations. The impacts of MBA and LEBA differed significantly and they should not be considered interchangeable.

  16. A Comparison of Military and Law Enforcement Body Armour

    PubMed Central

    Pope, Rodney

    2018-01-01

    Law-enforcement officers increasingly wear body armour for protection; wearing body armour is common practice in military populations. Law-enforcement and military occupational demands are vastly different and military-styled body armour may not be suitable for law-enforcement. This study investigated differences between selected military body armour (MBA: 6.4 kg) and law-enforcement body armour (LEBA: 2.1 kg) in impacts on postural sway, vertical jump, agility, a functional movement screen (FMS), task simulations (vehicle exit; victim recovery), and subjective measures. Ten volunteer police officers (six females, four males) were randomly allocated to one of the designs on each of two days. Body armour type did not significantly affect postural sway, vertical jump, vehicle exit and 5 m sprint times, or victim recovery times. Both armour types increased sway velocity and sway-path length in the final five seconds compared to the first 5 s of a balance task. The MBA was associated with significantly slower times to complete the agility task, poorer FMS total scores, and poorer subjective ratings of performance and comfort. The LEBA was perceived as more comfortable and received more positive performance ratings during the agility test and task simulations. The impacts of MBA and LEBA differed significantly and they should not be considered interchangeable. PMID:29443905

  17. Prediction of Kinematic and Kinetic Performance in a Drop Vertical Jump with Individual Anthropometric Factors in Adolescent Female Athletes: Implications for Cadaveric Investigations

    PubMed Central

    Bates, Nathaniel A.; Myer, Gregory D.; Hewett, Timothy E.

    2014-01-01

    Anterior cruciate ligament injuries are common, expensive to repair, and often debilitate athletic careers. Robotic manipulators have evaluated knee ligament biomechanics in cadaveric specimens, but face limitations such as accounting for variation in bony geometry between specimens that may influence dynamic motion pathways. This study examined individual anthropometric measures for significant linear relationships with in vivo kinematic and kinetic performance and determined their implications for robotic studies. Anthropometrics and 3D motion during a 31 cm drop vertical jump task were collected in high school female basketball players. Anthropometric measures demonstrated differential statistical significance in linear regression models relative to kinematic variables (P-range < 0.01-0.95). However, none of the anthropometric relationships accounted for clinical variance or provided substantive univariate accuracy needed for clinical prediction algorithms (r2 < 0.20). Mass and BMI demonstrated models that were significant (P < 0.05) and predictive (r2 > 0.20) relative to peak flexion moment, peak adduction moment, flexion moment range, abduction moment range, and internal rotation moment range. The current findings indicate that anthropometric measures are less associated with kinematics than with kinetics. Relative to the robotic manipulation of cadaveric limbs, the results do not support the need to normalize kinematic rotations relative to specimen dimensions. PMID:25266933

  18. Reactive Strength Index: A Poor Indicator of Reactive Strength?

    PubMed

    Healy, Robin; Kenny, Ian; Harrison, Drew

    2017-11-28

    The primary aim was to assess the relationships between reactive strength measures and associated kinematic and kinetic performance variables achieved during drop jumps. A secondary aim was to highlight issues with the use of reactive strength measures as performance indicators. Twenty eight national and international level sprinters, consisting of fourteen men and women, participated in this cross-sectional analysis. Athletes performed drop jumps from a 0.3 m box onto a force platform with dependent variables contact time (CT), landing time (TLand), push-off time (TPush), flight time (FT), jump height (JH), reactive strength index (RSI, calculated as JH / CT), reactive strength ratio (RSR, calculated as FT / CT) and vertical leg spring stiffness (Kvert) recorded. Pearson's correlation test found very high to near perfect relationships between RSI and RSR (r = 0.91 to 0.97), with mixed relationships found between RSI, RSR and the key performance variables, (Men: r = -0.86 to -0.71 between RSI/RSR and CT, r = 0.80 to 0.92 between RSI/RSR and JH; Women: r = -0.85 to -0.56 between RSR and CT, r = 0.71 between RSI and JH). This study demonstrates that the method of assessing reactive strength (RSI versus RSR) may be influenced by the performance strategies adopted i.e. whether an athlete achieves their best reactive strength scores via low CTs, high JHs or a combination. Coaches are advised to limit the variability in performance strategies by implementing upper and / or lower CT thresholds to accurately compare performances between individuals.

  19. The Effects of a Maximal Power Training Cycle on the Strength, Maximum Power, Vertical Jump Height and Acceleration of High-Level 400-Meter Hurdlers

    PubMed Central

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos Mª; del Campo-Vecino, Juan; Alonso-Curiel, Dionisio

    2013-01-01

    The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=−2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=−1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=−1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=−1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers. PMID:23717361

  20. The effects of a maximal power training cycle on the strength, maximum power, vertical jump height and acceleration of high-level 400-meter hurdlers.

    PubMed

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos M; Del Campo-Vecino, Juan; Alonso-Curiel, Dionisio

    2013-03-01

    The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=-2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=-1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=-1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=-1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers.

  1. Effects of light-load maximal lifting velocity weight training vs. combined weight training and plyometrics on sprint, vertical jump and strength performance in adult soccer players.

    PubMed

    Rodríguez-Rosell, David; Torres-Torrelo, Julio; Franco-Márquez, Felipe; González-Suárez, José Manuel; González-Badillo, Juan José

    2017-07-01

    The purpose of this study was to compare the effects of combined light-load maximal lifting velocity weight training (WT) and plyometric training (PT) with WT alone on strength, jump and sprint performance in semiprofessional soccer players. Experimental, pre-post tests measures. Thirty adult soccer players were randomly assigned into three groups: WT alone (FSG, n=10), WT combined to jump and sprint exercises (COM, n=10) and control group (CG, n=10). WT consisted of full squat with low load (∼45-60% 1RM) and low volume (4-6 repetitions). Training program was performed twice a week for 6 weeks of competitive season in addition to 4 soccer sessions a week. Sprint time in 10 and 20m, jump height (CMJ), estimated one-repetition maximum (1RM est ) and velocity developed against different absolute loads in full squat were measured before and after training period. Both experimental groups showed significant improvements in 1RM est (17.4-13.4%; p<0.001), CMJ (7.1-5.2%; p<0.001), sprint time (3.6-0.7%; p<0.05-0.001) and force-velocity relationships (16.9-6.1%; p<0.05-0.001), whereas no significant gains were found in CG. No significant differences were found between FSG and COM. Despite FSG resulted of greater increases in strength variables than COM, this may not translate into superior improvements in the sport-related performance. In fact, COM showed higher efficacy of transfer of strength gains to sprint ability. Therefore, these findings suggest that a combined WT and PT program could represent a more efficient method for improving activities which involve acceleration, deceleration and jumps compared to WT alone. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Heat stress does not exacerbate tennis-induced alterations in physical performance

    PubMed Central

    Girard, Olivier; Christian, Ryan J; Racinais, Sébastien; Périard, Julien D

    2014-01-01

    Objectives To assess the time course of changes in physical performance in response to match-play tennis under heat stress. Methods Two matches consisting of 20 min of effective playing time (2×10 min segments) were played in COOL (∼102 min; ∼22°C and 70% relative humidity (RH)) and HOT (∼119 min; ∼36°C and 35% RH) environments. Repeated-sprint ability (3×15 m, 15 s rest), 15 m sprint time with a direction change (180°), vertical jump height (squat and countermovement jumps) and leg stiffness (multirebound jumps) were assessed in 12 competitive male players prematch, midmatch and postmatch, and 24 and 48 h after match completion. Results During the repeated-sprint ability test, initial (+2.3% and +3.1%) and cumulated sprint (+1.5% and +2.8%) times increased from prematch to midmatch and postmatch, respectively (p<0.001), while the sprint decrement score did not change. Match-play tennis induced a slowing (average of both conditions: +1.1% and +1.3% at midmatch and postmatch time points; p=0.05) of 15 m sprint time with direction change. Compared with prematch, leg stiffness (−6.4% and −6.5%; p<0.001) and squat jump height (−1.5% and −2.4%; p=0.05), but not countermovement jump height (−0.7% and −1.3%; p>0.05), decreased midmatch and postmatch, respectively, regardless of the condition. Complete recovery in all physical performance markers occurred within 24 h. Conclusions In tennis, match-related fatigue is characterised by impaired repeated-sprint ability, explosive power and leg stiffness at midmatch and postmatch, with values restored to prematch baseline 24 h into recovery. In addition, physical performance responses (match and recovery kinetics) are identical when competing in cool and hot environments. PMID:24668378

  3. The AGT Gene M235T Polymorphism and Response of Power-Related Variables to Aerobic Training

    PubMed Central

    Aleksandra, Zarębska; Zbigniew, Jastrzębski; Waldemar, Moska; Agata, Leońska-Duniec; Mariusz, Kaczmarczyk; Marek, Sawczuk; Agnieszka, Maciejewska-Skrendo; Piotr, Żmijewski; Krzysztof, Ficek; Grzegorz, Trybek; Ewelina, Lulińska-Kuklik; Semenova, Ekaterina A.; Ahmetov, Ildus I.; Paweł, Cięszczyk

    2016-01-01

    The C allele of the M235T (rs699) polymorphism of the AGT gene correlates with higher levels of angiotensin II and has been associated with power and strength sport performance. The aim of the study was to investigate whether or not selected power-related variables and their response to a 12-week program of aerobic dance training are modulated by the AGT M235T genotype in healthy participants. Two hundred and one Polish Caucasian women aged 21 ± 1 years met the inclusion criteria and were included in the study. All women completed a 12-week program of low and high impact aerobics. Wingate peak power and total work capacity, 5 m, 10 m, and 30 m running times and jump height and jump power were determined before and after the training programme. All power-related variables improved significantly in response to aerobic dance training. We found a significant association between the M235T polymorphism and jump-based variables (squat jump (SJ) height, p = 0.005; SJ power, p = 0.015; countermovement jump height, p = 0.025; average of 10 countermovement jumps with arm swing (ACMJ) height, p = 0.001; ACMJ power, p = 0.035). Specifically, greater improvements were observed in the C allele carriers in comparison with TT homozygotes. In conclusion, aerobic dance, one of the most commonly practiced adult fitness activities in the world, provides sufficient training stimuli for augmenting the explosive strength necessary to increase vertical jump performance. The AGT gene M235T polymorphism seems to be not only a candidate gene variant for power/strength related phenotypes, but also a genetic marker for predicting response to training. Key points Aerobic dance provides sufficient training stimuli for the improvement of explosive power. The AGT gene M235T polymorphism is associated with individual variation in the change of power-related phenotypes in response to aerobic dance training. The C allele carriers of the AGT gene M235T polymorphism show greater improvements of jump-based variables in comparison with TT homozygotes. PMID:27928207

  4. Improved Maximum Strength, Vertical Jump and Sprint Performance after 8 Weeks of Jump Squat Training with Individualized Loads

    PubMed Central

    Marián, Vanderka; Katarína, Longová; Dávid, Olasz; Matúš, Krčmár; Simon, Walker

    2016-01-01

    The purpose of the study was to determine the effects of 8 weeks of jump squat training on isometric half squat maximal force production (Fmax) and rate of force development over 100ms (RFD100), countermovement jump (CMJ) and squat jump (SJ) height, and 50 m sprint time in moderately trained men. Sixty eight subjects (~21 years, ~180 cm, ~75 kg) were divided into experimental (EXP; n = 36) and control (CON, n = 32) groups. Tests were completed pre-, mid- and post-training. EXP performed jump squat training 3 times per week using loads that allowed all repetitions to be performed with ≥90% of maximum average power output (13 sessions with 4 sets of 8 repetitions and 13 sessions with 8 sets of 4 repetitions). Subjects were given real-time feedback for every repetition during the training sessions. Significant improvements in Fmax from pre- to mid- (Δ ~14%, p<0.001), and from mid- to post-training (Δ ~4%, p < 0.001) in EXP were observed. In CON significantly enhanced Fmax from pre- to mid-training (Δ ~3.5%, p < 0.05) was recorded, but no other significant changes were observed in any other test. In RFD100 significant improvements from pre- to mid-training (Δ ~27%, p < 0.001), as well as from mid- to post-training (Δ ~17%, p < 0.01) were observed. CMJ and SJ height were significantly enhanced from pre- to mid-training (Δ ~10%, ~15%, respectively, p < 0.001) but no further changes occurred from mid- to post-training. Significant improvements in 50 m sprint time from pre- to mid-training (Δ -1%, p < 0.05), and from mid- to post-training (Δ -1.9%, p < 0.001) in EXP were observed. Furthermore, percent changes in EXP were greater than changes in CON during training. It appears that using jump squats with loads that allow repetitions to be performed ≥90% of maximum average power output can simultaneously improve several different athletic performance tasks in the short-term. Key points Jump squat exercise is one of many exercises to develop explosive strength that has been the focus of several researches, while the load used during the training seem to be an important factor that affects training outcomes. Experimental group improved performance in all assessed parameters, such as Fmax, RFD100, CMJ, SJ and 50 m sprint time. However, improvements in CMJ and SJ were recorded after the entire power training period and thereafter plateau occurred. The portable FitroDyne could serve as a valuable device to individualize the load that maximizes mean power output and visual feedback can be provided to athletes during the training. PMID:27803628

  5. Effects of Caffeine Supplementation on Performance in Ball Games.

    PubMed

    Chia, Jingyi Shannon; Barrett, Laura Ann; Chow, Jia Yi; Burns, Stephen Francis

    2017-12-01

    Although a large body of evidence exists documenting the ergogenic properties of caffeine, most studies have focused on endurance performance. However, findings from endurance sports cannot be generalized to performance in ball games where, apart from having a high level of endurance, successful athletic performances require a combination of physiological, technical and cognitive capabilities. The purpose of this review was to critically evaluate studies that have examined the effect of a single dose of caffeine in isolation on one or more of the following performance measures: total distance, sprint performance, agility, vertical jump performance and accuracy in ball games. Searches of three major databases resulted in 19 studies (invasion games: 13; net-barrier games: 6) that evaluated the acute effects of caffeine on human participants, provided the caffeine dose administered, and included a ball games specific task or simulated match. Improvements in sprint performance were observed in 8 of 10 studies (80%), and vertical jump in 7 of 8 studies (88%). Equivocal results were reported for distance covered, agility and accuracy. Minor side effects were reported in 4 of 19 studies reviewed. Pre-exercise caffeine ingestion between 3.0 and 6.0 mg/kg of body mass appears to be a safe ergogenic aid for athletes in ball games. However, the efficacy of caffeine varies depending on various factors, including, but not limited to, the nature of the game, physical status and caffeine habituation. More research is warranted to clarify the effects of caffeine on performance measures unique to ball games, such as agility and accuracy. It is essential that athletes, coaches and practitioners evaluate the risk-benefit ratio of caffeine ingestion strategies on an individual case-by-case basis.

  6. A biomechanical analysis of the long-jump technique of elite female amputee athletes.

    PubMed

    Nolan, Lee; Patritti, Benjamin L; Simpson, Kathy J

    2006-10-01

    The purpose of this study was to investigate whether female lower-limb amputees conform to the established long-jump model and to compare the kinematics of the approach and take-off phases for elite female transfemoral and transtibial amputee long jumpers. Eight female transfemoral and nine female transtibial amputee athletes were videotaped (sagittal plane movements at 50 Hz) from third-to-last step to take-off during the 2004 Paralympic Games long-jump finals. After digitizing and reconstruction of 2D coordinates, key variables were calculated at each stride and during contact with the take-off board. Additionally, approach speed during the run-up of each jump was recorded (100 Hz) using a laser Doppler device (LDM 300 C Sport, Jenoptik Laser, Jena, Germany). The transfemoral amputees had a consistently higher center of mass height on the last three steps before take-off than the transtibial amputees. However, at touch-down onto the take-off board, they lowered their center of mass excessively so that from touch-down to take-off, they were actually lower than the transtibial amputees. This resulted in a greater negative vertical velocity at touch-down and may have inversely affected their jump performance. Female transtibial athletes conformed to the long-jump model, although adaptations to this technique were displayed. Female transfemoral athletes, however, exhibited no relationship between take-off speed and distance jumped, which may be attributable to their excessive lowering of their center-of-mass height at touch-down onto the take-off board. It is recommended that coaches and athletes proceed with caution when trying to replicate techniques used by able-bodied athletes because adaptations to the constraints of a prosthesis should be considered.

  7. Recent Advancements in Lightning Jump Algorithm Work

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  8. Determinant Factors of the Squat Jump in Sprinting and Jumping Athletes

    PubMed Central

    González-Badillo, Juan José; Jiménez-Reyes, Pedro; Ramírez-Lechuga, Jorge

    2017-01-01

    Abstract The aim of this study was to assess the relationship between strength variables and maximum velocity (Vmax) in the squat jump (SJ) in sprinting and jumping athletes. Thirty-two sprinting and jumping athletes of national level (25.4 ± 4.5 years; 79.4 ± 6.9 kg and 180.4 ± 6.0 cm) participated in the study. Vmax in the SJ showed significant relationships with peak force 1 (PF1) (r = 0.82, p ≤ 0.001), peak force 2 (PF2) (r = 0.68, p ≤ 0.001), PF2 by controlling for PF1 (r = 0.30, non-significant), the maximum rate of force development at peak force 1 (RFDmax1) (r = 0.62, p ≤ 0.001), mean RFD 1 (RFDmean1) (r = 0.48, p ≤ 0.01), mean RFD 2 (RFDmean2) (r = 0.70, p ≤ 0.001), force at RFDmax1 (r = 0.36, p ≤ 0.05), force at RFDmax2 (r = 0.83, p ≤ 0.001) and force at RFDmax2 by controlling for PF1 (r = 0.40, p ≤ 0.05). However, Vmax in the SJ was associated negatively with the ratio PF2/PF1 (r = -0.54, p ≤ 0.01), time at peak force 2 (Tp2) (r = -0.64, p ≤ 0.001) and maximum rate of force development at peak force 2 (RFDmax2) (r = -0.71, p ≤ 0.001). These findings indicate that the peak force achieved at the beginning of the movement (PF1) is the main predictor of performance in jumping, although the RFDmax values and the ratio PF2/PF1 are also variables to be taken into account when analyzing the determinant factors of vertical jumping. PMID:28828074

  9. Conditioning exercises in ski jumping: biomechanical relationship of squat jumps, imitation jumps, and hill jumps.

    PubMed

    Lorenzetti, Silvio; Ammann, Fabian; Windmüller, Sabrina; Häberle, Ramona; Müller, Sören; Gross, Micah; Plüss, Michael; Plüss, Stefan; Schödler, Berni; Hübner, Klaus

    2017-11-22

    As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force-time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.

  10. Impact differences in ground reaction force and center of mass between the first and second landing phases of a drop vertical jump and their implications for injury risk assessment.

    PubMed

    Bates, Nathaniel A; Ford, Kevin R; Myer, Gregory D; Hewett, Timothy E

    2013-04-26

    The drop vertical jump (DVJ) task is commonly used to assess biomechanical performance measures that are associated with ACL injury risk in athletes. Previous investigations have solely assessed the first landing phase. We examined the first and second landings of a DVJ for differences in the magnitude of vertical ground reaction force (vGRF) and position of center of mass (CoM). A cohort of 239 adolescent female basketball athletes completed a series of DVJ tasks from an initial box height of 31 cm. Dual force platforms and a three dimensional motion capture system recorded force and positional data for each trial. There was no difference in peak vGRF between landings (p=0.445), but side-to-side differences increased from the first to second landing (p=0.007). Participants demonstrated a lower minimum CoM during stance in the first landing than the second landing (p<0.001). The results have important implications for the future assessment of ACL injury risk behaviors in adolescent female athletes. Greater side-to-side asymmetry in vGRF and higher CoM during impact indicate the second landing of a DVJ may exhibit greater perturbation and better represent in-game mechanics associated with ACL injury risk. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Evidence of behavioral co-option from context-dependent variation in mandible use in trap-jaw ants ( Odontomachus spp.)

    NASA Astrophysics Data System (ADS)

    Spagna, Joseph C.; Schelkopf, Adam; Carrillo, Tiana; Suarez, Andrew V.

    2009-02-01

    Evolutionary co-option of existing structures for new functions is a powerful yet understudied mechanism for generating novelty. Trap-jaw ants of the predatory genus Odontomachus are capable of some of the fastest self-propelled appendage movements ever recorded; their devastating strikes are not only used to disable and capture prey, but produce enough force to launch the ants into the air. We tested four Odontomachus species in a variety of behavioral contexts to examine if their mandibles have been co-opted for an escape mechanism through ballistic propulsion. We found that nest proximity makes no difference in interactions with prey, but that prey size has a strong influence on the suite of behaviors employed by the ants. In trials involving a potential threat (another trap-jaw ant species), vertical jumps were significantly more common in ants acting as intruders than in residents (i.e. a dangerous context), while horizontal jumps occurred at the same rate in both contexts. Additionally, horizontal jump trajectories were heavily influenced by the angle at which the substrate was struck and appear to be under little control by the ant. We conclude that while horizontal jumps may be accidental side-effects of strikes against hard surfaces, vertical escape jumps are likely intentional defensive behaviors that have been co-opted from the original prey-gathering and food-processing functions of Odontomachus jaws.

  12. Mobility and muscle strength in male former elite endurance and power athletes aged 66-91 years.

    PubMed

    Manderoos, S; Wasenius, N; Laine, M K; Kujala, U M; Mälkiä, E; Kaprio, J; Sarna, S; Bäckmand, H M; Kettunen, J A; Heinonen, O J; Jula, A M; Aunola, S; Eriksson, J G

    2017-11-01

    The aim of this cross-sectional study was to compare mobility and muscle strength in male former elite endurance and power athletes aged 66-91 years (n = 150; 50 men in both former elite athlete groups and in their control group). Agility, dynamic balance, walking speed, chair stand, self-rated balance confidence (ABC-scale), jumping height, and handgrip strength were assessed. Former elite power athletes had better agility performance time than the controls (age- and body mass index, BMI-adjusted mean difference -3.6 s; 95% CI -6.3, -0.8). Adjustment for current leisure time physical activity (LTPA) and prevalence of diseases made this difference non-significant (P = 0.214). The subjects in the power sports group jumped higher than the men in the control group (age- and BMI-adjusted mean differences for vertical squat jump, VSJ 4.4 cm; 95% CI 2.0, 6.8; for countermovement jump, CMJ 4.0 cm; 95% CI 1.7, 6.4). Taking current LTPA and chronic diseases for adjusting process did not improve explorative power of the model. No significant differences between the groups were found in the performances evaluating dynamic balance, walking speed, chair stand, ABC-scale, or handgrip strength. In conclusion, power athletes among the aged former elite sportsmen had greater explosive force production in their lower extremities than the men in the control group. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Relationship Between Change of Direction, Speed and Power in Male and Female National Olympic Team Handball Athletes.

    PubMed

    Pereira, Lucas A; Nimphius, Sophia; Kobal, Ronaldo; Kitamura, Katia; Turisco, Luiz A L; Orsi, Rita C; Cal Abad, César Cs; Loturco, Irineu

    2018-02-22

    The aims of this study were to (1) assess the relationship between selected speed-power related abilities (determined by 20-m sprint, unloaded countermovement and squat jumps [CMJ and SJ] and loaded jump squat [JS]) and performance in two distinct change of direction (COD) protocols (Zigzag and T-Test), and (2) determine the magnitude of difference between female and male Brazilian National Olympic Team handball athletes. Fifteen male and twenty-three female elite handball athletes volunteered to perform the following assessments: SJ and CMJ; Zigzag and T-Test; 20-m sprint with 5-, 10-, and 20-m splits, and mean propulsive power (MPP) in JS. Pearson product moment correlation (P< 0.05) was performed to determine the relationship between the COD tests (Zigzag and T-test) and speed-power measures (sprint, SJ, CMJ and JS). The differences between male and female performances were determined using the magnitude-based inference. Moderate to very large significant correlations were observed between both COD tests and the speed-power abilities. Further, male athletes demonstrated likely to almost certainly higher performances than female athletes in all assessed variables. The results of the current study suggest that different speed-power qualities are strongly correlated to the performance obtained in various COD assessments (r values varying from 0.38 to 0.84 and from 0.34 to 0.84 for correlations between speed and power tests with Zigzag and T-Test, respectively). However, the level of these associations can vary greatly, according to the mechanical demands of each respective COD task. Whilst COD tests may be difficult to implement during competitive seasons, due to the strong correlations presented herein, the regular use of vertical jump tests with these athletes seems to be an effective and applied alternative. Furthermore, it might be inferred that the proper development of loaded and unloaded jump abilities has potential for improving the physical qualities related to COD performance in handball athletes.

  14. Experimental Assessment of the Effects of Temperature and Food Availability on Particle Mixing by the Bivalve Abra alba Using New Image Analysis Techniques

    PubMed Central

    Bernard, Guillaume; Duchêne, Jean-Claude; Romero-Ramirez, Alicia; Lecroart, Pascal; Maire, Olivier; Ciutat, Aurélie; Deflandre, Bruno; Grémare, Antoine

    2016-01-01

    The effects of temperature and food addition on particle mixing in the deposit-feeding bivalve Abra alba were assessed using an experimental approach allowing for the tracking of individual fluorescent particle (luminophore) displacements. This allowed for the computations of vertical profiles of a set of parameters describing particle mixing. The frequency of luminophore displacements (jumps) was assessed through the measurement of both waiting times (i.e., the time lapses between two consecutive jumps of the same luminophore) and normalized numbers of jumps (i.e., the numbers of jumps detected in a given area divided by the number of luminophores in this area). Jump characteristics included the direction, duration and length of each jump. Particle tracking biodiffusion coefficients (Db) were also computed. Data originated from 32 experiments carried out under 4 combinations of 2 temperature (Te) and 2 food addition (Fo) levels. For each of these treatments, parameters were computed for 5 experimental durations (Ed). The effects of Se, Fo and Ed were assessed using PERmutational Multivariate ANalyses Of VAriance (PERMANOVAs) carried out on vertical depth profiles of each particle mixing parameter. Inversed waiting times significantly decreased with Ed whereas the normalized number of jumps did not, thereby suggesting that it constitutes a better proxy of jump frequency when assessing particle mixing based on the measure of individual particle displacements. Particle mixing was low during autumn temperature experiments and not affected by Fo, which was attributed to the dominant effect of low temperature. Conversely, particle mixing was high during summer temperature experiments and transitory inhibited by food addition. This last result is coherent with the functional responses (both in terms of activity and particle mixing) already measured for individual of the closely related clam A. ovata originating from temperate populations. It also partly resulted from a transitory switch between deposit- and suspension-feeding caused by the high concentration of suspended particulate organic matter immediately following food addition. PMID:27115148

  15. Experimental Assessment of the Effects of Temperature and Food Availability on Particle Mixing by the Bivalve Abra alba Using New Image Analysis Techniques.

    PubMed

    Bernard, Guillaume; Duchêne, Jean-Claude; Romero-Ramirez, Alicia; Lecroart, Pascal; Maire, Olivier; Ciutat, Aurélie; Deflandre, Bruno; Grémare, Antoine

    2016-01-01

    The effects of temperature and food addition on particle mixing in the deposit-feeding bivalve Abra alba were assessed using an experimental approach allowing for the tracking of individual fluorescent particle (luminophore) displacements. This allowed for the computations of vertical profiles of a set of parameters describing particle mixing. The frequency of luminophore displacements (jumps) was assessed through the measurement of both waiting times (i.e., the time lapses between two consecutive jumps of the same luminophore) and normalized numbers of jumps (i.e., the numbers of jumps detected in a given area divided by the number of luminophores in this area). Jump characteristics included the direction, duration and length of each jump. Particle tracking biodiffusion coefficients (Db) were also computed. Data originated from 32 experiments carried out under 4 combinations of 2 temperature (Te) and 2 food addition (Fo) levels. For each of these treatments, parameters were computed for 5 experimental durations (Ed). The effects of Se, Fo and Ed were assessed using PERmutational Multivariate ANalyses Of VAriance (PERMANOVAs) carried out on vertical depth profiles of each particle mixing parameter. Inversed waiting times significantly decreased with Ed whereas the normalized number of jumps did not, thereby suggesting that it constitutes a better proxy of jump frequency when assessing particle mixing based on the measure of individual particle displacements. Particle mixing was low during autumn temperature experiments and not affected by Fo, which was attributed to the dominant effect of low temperature. Conversely, particle mixing was high during summer temperature experiments and transitory inhibited by food addition. This last result is coherent with the functional responses (both in terms of activity and particle mixing) already measured for individual of the closely related clam A. ovata originating from temperate populations. It also partly resulted from a transitory switch between deposit- and suspension-feeding caused by the high concentration of suspended particulate organic matter immediately following food addition.

  16. Multi-segment foot landing kinematics in subjects with chronic ankle instability.

    PubMed

    De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark A; Palmans, Tanneke; Roosen, Philip

    2015-07-01

    Chronic ankle instability has been associated with altered joint kinematics at the ankle, knee and hip. However, no studies have investigated possible kinematic deviations at more distal segments of the foot. The purpose of this study was to evaluate if subjects with ankle instability and copers show altered foot and ankle kinematics and altered kinetics during a landing task when compared to controls. Ninety-six subjects (38 subjects with chronic ankle instability, 28 copers and 30 controls) performed a vertical drop and side jump task. Foot kinematics were obtained using the Ghent Foot Model and a single-segment foot model. Group differences were evaluated using statistical parametric mapping and analysis of variance. Subjects with ankle instability had a more inverted midfoot position in relation to the rearfoot when compared to controls during the side jump. They also had a greater midfoot inversion/eversion range of motion than copers during the vertical drop. Copers exhibited less plantar flexion/dorsiflexion range of motion in the lateral and medial forefoot. Furthermore, the ankle instability and coper group exhibited less ankle plantar flexion at touchdown. Additionally, the ankle instability group demonstrated a decreased plantar flexion/dorsiflexion range of motion at the ankle compared to the control group. Analysis of ground reaction forces showed a higher vertical peak and loading rate during the vertical drop in subjects with ankle instability. Subjects with chronic ankle instability displayed an altered, stiffer kinematic landing strategy and related alterations in landing kinetics, which might predispose them for episodes of giving way and actual ankle sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Altered astronaut lower limb and mass center kinematics in downward jumping following space flight

    NASA Technical Reports Server (NTRS)

    Newman, D. J.; Jackson, D. K.; Bloomberg, J. J.

    1997-01-01

    Astronauts exposed to the microgravity conditions encountered during space flight exhibit postural and gait instabilities upon return to earth that could impair critical postflight performance. The aim of the present study was to determine the effects of microgravity exposure on astronauts' performance of two-footed jump landings. Nine astronauts from several Space Shuttle missions were tested both preflight and postflight with a series of voluntary, two-footed downward hops from a 30-cm-high step. A video-based, three-dimensional motion-analysis system permitted calculation of body segment positions and joint angular displacements. Phase-plane plots of knee, hip, and ankle angular velocities compared with the corresponding joint angles were used to describe the lower limb kinematics during jump landings. The position of the whole-body center of mass (COM) was also estimated in the sagittal plane using an eight-segment body model. Four of nine subjects exhibited expanded phase-plane portraits postflight, with significant increases in peak joint flexion angles and flexion rates following space flight. In contrast, two subjects showed significant contractions of their phase-plane portraits postflight and three subjects showed insignificant overall changes after space flight. Analysis of the vertical COM motion generally supported the joint angle results. Subjects with expanded joint angle phase-plane portraits postflight exhibited larger downward deviations of the COM and longer times from impact to peak deflection, as well as lower upward recovery velocities. Subjects with postflight joint angle phase-plane contraction demonstrated opposite effects in the COM motion. The joint kinematics results indicated the existence of two contrasting response modes due to microgravity exposure. Most subjects exhibited "compliant" impact absorption postflight, consistent with decreased limb stiffness and damping, and a reduction in the bandwidth of the postural control system. Fewer subjects showed "stiff" behavior after space flight, where contractions in the phase-plane portraits pointed to an increase in control bandwidth. The changes appeared to result from adaptive modifications in the control of lower limb impedance. A simple 2nd-order model of the vertical COM motion indicated that changes in the effective vertical stiffness of the legs can predict key features of the postflight performance. Compliant responses may reflect inflight adaptation due to altered demands on the postural control system in microgravity, while stiff behavior may result from overcompensation postflight for the presumed reduction in limb stiffness inflight.

  18. Physiological, biochemical, and psychological responses to environmental survival training in the Royal Australian Air Force.

    PubMed

    Chester, Annalise L; Edwards, Andrew M; Crowe, Melissa; Quirk, Frances

    2013-07-01

    Military environmental survival training (EST) is designed and considered to evoke significant stressors to military personnel in preparation for combat-like scenarios. The aim of this study was to observe and report selected physiological, biochemical, psychological, and performance responses to this intense 15-day program of Royal Australian Air Force (RAAF) EST. Fourteen RAAF participants undertook the EST course. Physiological and psychological responses were collected across the 15 days across outcomes: (1) biochemical markers (blood lactate, interlukin-6, and creatine kinase), (2) performance and anthropometric indices (vertical jump, body mass), and (3) psychological questionnaires profile of mood states, depression anxiety stress scale, Kessler-10 etc.). Creatine kinase concentration increased significantly from baseline to day 5 (p < 0.05) and thereafter remained elevated for the remaining 10 days of EST (128%; p < 0.01). Vertical jump (-10%; p < 0.01) and body mass (-8%; p < 0.01) both decreased across 15 days of EST, while there were no significant change in interlukin-6. Negative psychological responses were observed for mood (p < 0.01), depression (p < 0.05), anxiety (p < 0.01), and stress (p < 0.01) following the EST course. This case study showed the RAAF EST course imposed significant physiological and psychological stress as observed from markers of muscle damage, deterioration in physical performance, substantial weight loss, negative mood, and psychological distress. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  19. Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial.

    PubMed

    Filippi, Guido M; Brunetti, Orazio; Botti, Fabio M; Panichi, Roberto; Roscini, Mauro; Camerota, Filippo; Cesari, Matteo; Pettorossi, Vito E

    2009-12-01

    Filippi GM, Brunetti O, Botti FM, Panichi R, Roscini M, Camerota F, Cesari M, Pettorossi VE. Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial. To determine the effect of a particular protocol of mechanical vibration, applied focally and repeatedly (repeated muscle vibration [rMV]) on the quadriceps muscles, on stance and lower-extremity muscle power of young-elderly women. Double-blind randomized controlled trial; 3-month follow-up after intervention. Human Physiology Laboratories, University of Perugia, Italy. Sedentary women volunteers (N=60), randomized in 3 groups (mean age +/- SD, 65.3+/-4.2y; range, 60-72). rMV (100Hz, 300-500microm, in three 10-minute sessions a day for 3 consecutive days) was applied to voluntary contracted quadriceps (vibrated and contracted group) and relaxed quadriceps (vibrated and relaxed group). A third group received placebo stimulation (nonvibrated group). Area of sway of the center of pressure, vertical jump height, and leg power. Twenty-four hours after the end of the complete series of applications, the area of sway of the center of pressure decreased significantly by approximately 20%, vertical jump increased by approximately 55%, and leg power increased by approximately 35%. These effects were maintained for at least 90 days after treatment. rMV is a short-lasting and noninvasive protocol that can significantly and persistently improve muscle performance in sedentary young-elderly women.

  20. The association between fundamental athletic movements and physical fitness in elite junior Australian footballers.

    PubMed

    Woods, Carl T; McKeown, Ian; Keogh, Justin; Robertson, Sam

    2018-02-01

    This study investigated the associations between fundamental athletic movement and physical fitness in junior Australian football (AF). Forty-four under 18 players performed a fundamental athletic movement assessment consisting of an overhead squat, double lunge, single leg Romanian deadlift and a push up. Movements were scored on three assessment criterions using a three-point scale. Additionally, participants performed five physical fitness tests commonly used for talent identification in AF. A Spearman's nonparametric correlation matrix was built, with correlation coefficients being visualised using a circularly rendered correlogram. Score on the overhead squat was moderately positively associated with dynamic vertical jump height on left (r s  = 0.40; P ≤ 0.05) and right (r s  = 0.30; P ≤ 0.05) leg take-off, stationary vertical jump (r s  = 0.32; P ≤ 0.05) and negatively associated with 20-m sprint time (r s  = -0.35; P ≤ 0.05). Score on the double lunge (left/right side) was moderately positively associated with the same physical fitness tests as well as score on the multistage fitness test. Results suggest that improvements in physical fitness qualities may occur through concurrent increases in fundamental athletic movement skill, namely the overhead squat and double lunge movements. These findings may assist with the identification and development of talent.

  1. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.

    PubMed

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-02-01

    The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.

  2. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests

    PubMed Central

    Zivkovic, Milena Z.; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-01-01

    Abstract The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force–velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles. PMID:28469742

  3. Impact kinetics associated with four common bilateral plyometric exercises.

    PubMed

    Stewart, Ethan; Kernozek, Thomas; Peng, Hsien-Te; Wallace, Brian

    2018-04-20

    This study quantified the peak vertical ground reaction force (VGRF), impulse, and average and instantaneous loading rates developed during bilateral plyometric exercises. Fourteen collegiate male athletes performed four different bilateral plyometric exercises within a single testing session. Depth jumps from thirty, sixty and ninety centimeter heights (DJ30, DJ60, and DJ90, respectively), and a two consecutive jump exercise (2CJ), were randomly performed. The subjects landed on and propelled themselves off two force platforms embedded into the floor. The stance phase of each plyometric movement was analyzed for vertical force characteristics. The dependent variables were normalized to body weight. One-way repeated-measures ANOVA revealed significant differences between exercises (p ≤ 0.05). For VGRF, only the DJ60 and 2CJ exercises were not different from each other. The impulses between DJ60 and DJ90, and DJ30 and 2CJ, were not different. All exercises were different from each other in regards to average and instantaneous loading rate except for DJ30 vs. DJ60, and DJ90 vs. 2CJ. The DJ90 condition reported the highest peak VGRF by approaching five times body weight. The 2CJ condition had similar impulse and loading rates as the DJ90 condition. A proper progression and detailed program planning should be utilized when implementing plyometric exercises due to their different impact kinetics and how they might influence the body upon ground contact.

  4. The influence of winter vitamin D supplementation on muscle function and injury occurrence in elite ballet dancers: a controlled study.

    PubMed

    Wyon, Matthew A; Koutedakis, Yiannis; Wolman, Roger; Nevill, Alan M; Allen, Nick

    2014-01-01

    Athletes who train indoors during the winter months exhibit low serum 25-hydroxyvitamin D [25(OH)D] concentrations due to a lack of sunlight exposure. This has been linked to impaired exercise performance. The purpose of this study was to assess the effects of oral vitamin D₃ supplementation on selected physical fitness and injury parameters in elite ballet dancers. Controlled prospective study. 24 elite classical ballet dancers (intervention n=17; control n=7) participated in a controlled 4-month oral supplementation of vitamin D₃ (2000 IU per day). Isometric muscular strength and vertical jump height were measured pre and post intervention. Injury occurrence during the intervention period was also recorded by the in-house medical team. Repeated measures ANOVA and Mann-Whitney-U statistical tests were used and significance was set at p ≤ 0.05. Significant increases were noted for the intervention group for isometric strength (18.7%, p<0.01) and vertical jump (7.1%, p<0.01). The intervention group also sustained significantly less injuries than the controls during the study period (p<0.01). Oral supplementation of vitamin D₃ during the winter months has beneficial effects on muscular performance and injury occurrence in elite ballet dancers. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Effects of Electrostimulation and Plyometric Training Program Combination on Jump Height in Teenage Athletes

    PubMed Central

    Martínez-López, Emilio J.; Benito-Martínez, Elisa; Hita-Contreras, Fidel; Lara-Sánchez, Amador; Martínez-Amat, Antonio

    2012-01-01

    The purpose of this study was to examine the effects of eight-week (2 days/week) training periods of plyometric exercises (PT) and neuromuscular electrostimulation (EMS) on jump height in young athletes. Squat jump (SJ), counter movement jump (CMJ) and drop jump (DJ) were performed to assess the effects of the training protocols 98 athletes (100 & 200m and 100m & 110m hurdles) voluntarily took part in this study, 51 males (52%) and 47 females (48%), 17.91 ± 1.42 years old, and 5.16 ± 2.56 years of training experience. The participants were randomly assigned to four different groups according to the frequency and the timing of the stimulation. Analysis of covariance was used to analyze the effects of every training program on jump height. Our findings suggest that compared to control (Plyometrics (PT) only), the combination of 150Hz EMS + PT simultaneously combined in an 8 week (2days/week) training program, we could observe significant jump height improvements in the different types of strength: explosive, explosive-elastic, and explosive-elastic-reactive. The combination of PT after ≤ 85 Hz EMS did not show any jump height significant increase in sprinters. In conclusion, an eight week training program (with just two days per week) of EMS combined with plyometric exercises has proven useful for the improvement of every kind of vertical jump ability required for sprint and hurdles disciplines in teenage athletes. Key points The combined use of high frequency electromyostimulation and plyometric training 2 days/week in an 8 week training program produce significant improvements in jump height in teenage athletes. A high-frequency (≥ 150 Hz) EMS and its simultaneous application with PT can significantly contribute to the improvement of the three different types of strength manifestations (explosive, explosive-elastic and explosive-elastic-reactive strength). An alternate training with different stimulation frequencies [85Hz EMS/ PT combination and 150Hz EMS + PT simultaneous combination] only has significant improvement effects in SJ. The combination of PT after ≤ 85 Hz EMS did not show any jump height significant increase in teenage athletes. The timing of EMS and PT application during training must be taken into account according to the type of jump. PMID:24150085

  6. Real-time biofeedback to target risk of anterior cruciate ligament injury: a technical report for injury prevention and rehabilitation.

    PubMed

    Ford, Kevin R; DiCesare, Christopher A; Myer, Gregory D; Hewett, Timothy E

    2015-05-20

    Biofeedback training enables an athlete to alter biomechanical and physiological function by receiving biomechanical and physiological data concurrent with or immediately after a task. To compare the effects of 2 different modes of real-time biofeedback focused on reducing risk factors related to anterior cruciate ligament injury. Randomized crossover study design. Biomechanics laboratory and sports medicine center. Female high school soccer players (age 14.8 ± 1.0 y, height 162.6 ± 6.8 cm, mass 55.9 ± 7.0 kg; n = 4). A battery of kinetic- or kinematic-based real-time biofeedback during repetitive double-leg squats. Baseline and posttraining drop vertical jumps were collected to determine if either feedback method improved high injury risk landing mechanics. Maximum knee abduction moment and angle during the landing was significantly decreased after kinetic-focused biofeedback (P = .04). The reduced knee abduction moment during the drop vertical jumps after kinematic-focused biofeedback was not different (P = .2). Maximum knee abduction angle was significantly decreased after kinetic biofeedback (P < .01) but only showed a trend toward reduction after kinematic biofeedback (P = .08). The innovative biofeedback employed in the current study reduced knee abduction load and posture from baseline to posttraining during a drop vertical jump.

  7. The Yo-Yo IR2 test: physiological response, reliability, and application to elite soccer.

    PubMed

    Oberacker, Lisa M; Davis, Shala E; Haff, G Gregory; Witmer, Chad A; Moir, Gavin L

    2012-10-01

    The purpose of this study was to compare the effects of resistance training performed on either a stable or unstable surface on performance tests in female soccer players. Nineteen National Collegiate Athletic Association Division II female soccer players were assigned to either an unstable training group (UST: 19.0 ± 0.47 years; 1.69 ± 6.4 m; 67.8 ± 7.7 kg) or a stable training group (ST: 19.6 ± 0.49 years; 1.64 ± 3.2 m; 62.7 ± 6.27 kg). Player positions were distributed evenly between the groups. Both the groups followed a 5-week periodized resistance training program designed to develop maximum muscular strength. The groups performed the same exercises during each workout, with the UST performing 2 of the exercises in each session on an unstable surface. Pretraining and posttraining measures of straight-line sprint speed, planned and reactive agility, aerobic capacity, and countermovement vertical jump (CMJ) were taken. Significant main effects for time were reported for straight-line sprint speed, planned agility, and reactive agility with both groups demonstrating improvements during the posttraining testing session. The ST demonstrated a significant increase in CMJ during the posttraining session (change in mean: 0.04 m) in contrast to the decline demonstrated by the UST (change in mean: -0.01 m). Performing resistance training exercises on an unstable surface confers no advantage over traditional resistance training exercises for improving the speed, agility, and aerobic capacity of female soccer players. Furthermore, the use of an unstable surface may inhibit the effects of resistance training on vertical jump height, an important variable in soccer performance.

  8. Physical qualities and activity profiles of sub-elite and recreational Australian football players.

    PubMed

    Stein, Josh G; Gabbett, Tim J; Townshend, Andrew D; Dawson, Brian T

    2015-11-01

    To investigate the relationship between physical qualities and match activity profiles of recreational Australian football players. Prospective cohort study. Forty players from three recreational Australian football teams (Division One, Two and Three) underwent a battery of fitness tests (vertical jump, 10 and 40 m sprint, 6 m × 30 m repeated sprint test, Yo-Yo intermittent recovery level Two and 2-km time trial). The activity profiles of competitive match-play were quantified using 10-Hz Global Positioning System units. Division One players possessed greater maximum velocity, Yo-Yo level Two and 2-km time trial performances than Division Two and Three players. In addition, Division One players covered greater relative distance, and relative distances at moderate- and high-intensities during match-play than Division Two and Three players. Division Two players had better 2-km time trial performances than Division Three players. Positive associations (P < 0.05) were found between 10 m acceleration, maximum velocity, Yo-Yo level Two and 2-km time trial performances and relative distance, and relative distances covered at moderate- and high-intensities during match-play. Moderate relationships were found between vertical jump and relative distance and high-intensity running. Sub-elite Australian football players competing at a higher level exhibit greater physical qualities and match-play activity profiles than lesser-skilled recreational players. Acceleration and maximum velocity, 2-km time trial and Yo-Yo level Two performances discriminate between players of different playing levels, and are related to physical match performance in recreational Australian football. The development of these qualities is likely to contribute to improved match performance in recreational Australian football players. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Recovery after high-intensity intermittent exercise in elite soccer players using VEINOPLUS sport technology for blood-flow stimulation.

    PubMed

    Bieuzen, François; Pournot, Hervé; Roulland, Rémy; Hausswirth, Christophe

    2012-01-01

    Electric muscle stimulation has been suggested to enhance recovery after exhaustive exercise by inducing an increase in blood flow to the stimulated area. Previous studies have failed to support this hypothesis. We hypothesized that the lack of effect shown in previous studies could be attributed to the technique or device used. To investigate the effectiveness of a recovery intervention using an electric blood-flow stimulator on anaerobic performance and muscle damage in professional soccer players after intermittent, exhaustive exercise. Randomized controlled clinical trial. National Institute of Sport, Expertise, and Performance (INSEP). Twenty-six healthy professional male soccer players. The athletes performed an intermittent fatiguing exercise followed by a 1-hour recovery period, either passive or using an electric blood-flow stimulator (VEINOPLUS). Participants were randomly assigned to a group before the experiment started. Performances during a 30-second all-out exercise test, maximal vertical countermovement jump, and maximal voluntary contraction of the knee extensor muscles were measured at rest, immediately after the exercise, and 1 hour and 24 hours later. Muscle enzymes indicating muscle damage (creatine kinase, lactate dehydrogenase) and hematologic profiles were analyzed before and 1 hour and 24 hours after the intermittent fatigue exercise. The electric-stimulation group had better 30-second all-out performances at 1 hour after exercise (P = .03) in comparison with the passive-recovery group. However, no differences were observed in muscle damage markers, maximal vertical countermovement jump, or maximal voluntary contraction between groups (P > .05). Compared with passive recovery, electric stimulation using this blood-flow stimulator improved anaerobic performance at 1 hour postintervention. No changes in muscle damage markers or maximal voluntary contraction were detected. These responses may be considered beneficial for athletes engaged in sports with successive rounds interspersed with short, passive recovery periods.

  10. Performance and anthropometric characteristics of prospective elite junior Australian footballers: a case study in one junior team.

    PubMed

    Veale, James P; Pearce, Alan J; Koehn, Stefan; Carlson, John S

    2008-04-01

    The aim of the study was to compare anthropometric and physical performance data of players who were selected for a Victorian elite junior U18 Australian rules football squad. Prior to the selection of the final training squad, 54 players were assessed using a battery of standard anthropometric and physical performance tests. Multivariate analysis (MANOVA) showed significant (p<0.05) differences between selected and non-selected players when height, mass, 20-m sprint, agility and vertical jump height were considered collectively. Univariate analysis revealed that the vertical jump was the only significant (p<0.05) individual test and a near significant trend (p=0.07) for height differentiating between selected and non-selected players with medium effect sizes for all other tests except endurance. In this elite junior football squad, physical characteristics can be observed that discriminate between players selected and non-selected, and demonstrates the value of physical fitness testing within the talent identification process of junior (16-18 years) players for squad and/or team selection. Based on MANOVA results, the findings from this study suggest team selection appeared to be related to a generally higher performance across the range of tests. Further, age was not a confounding variable as players selected tended to be younger than those non-selected. These findings reflect the general consensus that, in state-based junior competition, there is evidence of promoting overall player development, selecting those who are generally able to fulfil a range of positions and selecting players on their potential.

  11. Effects of a Short-Term Plyometric and Resistance Training Program on Fitness Performance in Boys Age 12 to 15 Years

    PubMed Central

    Faigenbaum, Avery D.; McFarland, James E.; Keiper, Fred B.; Tevlin, William; Ratamess, Nicholas A.; Kang, Jie; Hoffman, Jay R.

    2007-01-01

    The purpose of this study was to compare the effects of a six week training period of combined plyometric and resistance training (PRT, n = 13) or resistance training alone (RT, n = 14) on fitness performance in boys (12-15 yr). The RT group performed static stretching exercises followed by resistance training whereas the PRT group performed plyometric exercises followed by the same resistance training program. The training duration per session for both groups was 90 min. At baseline and after training all participants were tested on the vertical jump, long jump, medicine ball toss, 9.1 m sprint, pro agility shuttle run and flexibility. The PRT group made significantly (p < 0.05) greater improvements than RT in long jump (10.8 cm vs. 2.2 cm), medicine ball toss (39.1 cm vs. 17.7 cm) and pro agility shuttle run time (-0.23 sec vs. -0.02 sec) following training. These findings suggest that the addition of plyometric training to a resistance training program may be more beneficial than resistance training and static stretching for enhancing selected measures of upper and lower body power in boys. Key pointsYouth conditioning programs which include different types of training and different loading schemes (e.g., high velocity plyometrics and resistance training) may be most effective for enhancing power performance.The effects of resistance training and plyometric training may be synergistic in children, with their combined effects being greater that each program performed alone. PMID:24149486

  12. Effects of compression clothing on speed-power performance of elite Paralympic sprinters: a pilot study.

    PubMed

    Loturco, Irineu; Winckler, Ciro; Lourenço, Thiago F; Veríssimo, Amaury; Kobal, Ronaldo; Kitamura, Katia; Pereira, Lucas A; Nakamura, Fábio Y

    2016-01-01

    Compression garments are thought to aid performance in some selected speed-power activities owing to improved sensory feedback and proprioception. The aim of this study was to test the effects of using compression garments on speed and power-related performances in elite sprinters with visual impairment, who rely more on proprioception to perform than their Olympic peers. Eight top-level Paralympic sprinters competing in 100- and 200-m races performed, in the following order: unloaded squat jump (SJ), loaded jump squat (JS) and sprint tests over 20- and 70-m distances; using or not the compression garment. The maximum mean propulsive power value obtained during the JS attempts (starting at 40 % of their body mass, after which a load of 10 % of body mass was progressively added) was considered for data analysis purposes. The athletes executed the SJ and JS attempts without any help from their guides. Magnitude-based inference was used to analyze the results. The unloaded SJ was possibly higher in the compression than the placebo condition (41.19 ± 5.09 vs. 39.49 ± 5.75 cm). Performance differences in the loaded JS and sprint tests were all rated as unclear. It was concluded that the acute enhancement in vertical jump ability should be explored in the preparation of Paralympic sprinters during power-related training sessions. However, chronic effects in Paralympic athletes wearing compression garments need to be further tested, in order to support its use as a specific training aid.

  13. The influence of musical cadence into aquatic jumping jacks kinematics.

    PubMed

    Costa, Mário J; Oliveira, Cristiana; Teixeira, Genoveva; Marinho, Daniel A; Silva, António J; Barbosa, Tiago M

    2011-01-01

    The aim of this study was to analyze the relationships between the head-out aquatic exercise "Jumping jacks" kinematics and the musical cadence in healthy and fit subjects. Five young women, with at least one year of experience conducting head- out aquatic programs were videotaped in the frontal plane, with a pair of cameras providing a double projection (above and below the water surface). Subjects performed an incremental protocol of five bouts (120 b·min(-1), 135 b·min(-1), 150 b·min(-1), 165 b·min(-1) and 180 b·min(-1)) with 16 full cycles of the "Jumping jacks" exercise. Data processing and calculation of upper limbs' (i.e. hands), lower limbs' (i.e. feet) and center of mass' 2D linear velocity and displacement were computed with the software Ariel Performance Analysis System and applying the 2D-DLT algorithm. Subjects decreased the cycle period during the incremental protocol. Significant and negative relationships with the musical cadence were verified for the center of mass and upper limbs vertical displacement. On the other hand, for the lower limbs lateral velocity, a significant and positive relationship was observed. It is concluded that expert and fit subjects increase the lower limb's velocity to maintain the range of motion, while the upper limb's displacement is reduced to coupe the music cadence. Key pointsWhile performing the Jumping Jacks, expert and fit subjects increase their lower limbs segmental velocity to maintain the range of motion.The upper limbs displacement is reduced to maintain the music cadence.Expert and fit subjects present similar response for alternating or simultaneously head-out aquatic exercises when increasing the music cadence.

  14. The Effect of Plyometric Training Volume on Athletic Performance in Prepubertal Male Soccer Players.

    PubMed

    Chaabene, Helmi; Negra, Yassine

    2017-10-01

    To assess and compare the effects of 8 wk of in-season (2 sessions/wk) low- and high-volume plyometric training (PT) on measures of physical fitness in prepubertal male soccer players. A total of 25 soccer players were randomly assigned to a low-volume PT group (LPT; n = 13, age 12.68 ± 0.23 y, age at peak height velocity [APHV] 14.25 ± 0.29 y, maturity offset -1.57 ± 0.29 y) or a high-volume PT group (HPT; n = 12, age 12.72 ± 0.27 y, APHV 14.33 ± 0.77 y, maturity offset -1.61 ± 0.76 y). A linear-sprint test (5-m, 10-m, 20-m, and 30-m), change-of-direction (CoD) test, and vertical- (squat-jump [SJ]), countermovement- (CMJ), and horizontal-jump (standing long jump [SLJ]) test were carried out before and after 8 wk of PT. There was a significant main effect of time for sprint outcomes (5-m, P = .005, ES = 0.86; 10-m, P = .006, ES = 0.85; 20-m, P = .03, ES = 0.64, and 30-m, P = .05, ES = 0.57), CoD (P = .002, ES = 0.96), SJ (P = .008, ES = 0.81; CMJ, P = .01, ES = 0.73), and SLJ ability (P = .007, ES = 0.83). There were no significant training group × time interactions in any measured outcomes. After 8 wk of training, results showed similar performance improvement on measures of sprint time, CoD, and jumping ability between LPT and HPT groups. From a time-efficiency perspective, it is recommended to use LPT in prepubertal male soccer players to improve their proxies of athletic performance.

  15. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness.

    PubMed

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  16. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness

    NASA Astrophysics Data System (ADS)

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  17. Accuracy of Jump-Mat Systems for Measuring Jump Height.

    PubMed

    Pueo, Basilio; Lipinska, Patrycja; Jiménez-Olmedo, José M; Zmijewski, Piotr; Hopkins, Will G

    2017-08-01

    Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose. To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height. Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference. The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm). The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.

  18. Hip and knee joint loading during vertical jumping and push jerking

    PubMed Central

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony MJ

    2014-01-01

    Background The internal joint contact forces experienced at the lower limb have been frequently studied in activities of daily living and rehabilitation activities. In contrast, the forces experienced during more dynamic activities are not well understood, and those studies that do exist suggest very high degrees of joint loading. Methods In this study a biomechanical model of the right lower limb was used to calculate the internal joint forces experienced by the lower limb during vertical jumping, landing and push jerking (an explosive exercise derived from the sport of Olympic weightlifting), with a particular emphasis on the forces experienced by the knee. Findings The knee experienced mean peak loadings of 2.4-4.6 × body weight at the patellofemoral joint, 6.9-9.0 × body weight at the tibiofemoral joint, 0.3-1.4 × body weight anterior tibial shear and 1.0-3.1 × body weight posterior tibial shear. The hip experienced a mean peak loading of 5.5-8.4 × body weight and the ankle 8.9-10.0 × body weight. Interpretation The magnitudes of the total (resultant) joint contact forces at the patellofemoral joint, tibiofemoral joint and hip are greater than those reported in activities of daily living and less dynamic rehabilitation exercises. The information in this study is of importance for medical professionals, coaches and biomedical researchers in improving the understanding of acute and chronic injuries, understanding the performance of prosthetic implants and materials, evaluating the appropriateness of jumping and weightlifting for patient populations and informing the training programmes of healthy populations. PMID:23146164

  19. Hip and knee joint loading during vertical jumping and push jerking.

    PubMed

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony M J

    2013-01-01

    The internal joint contact forces experienced at the lower limb have been frequently studied in activities of daily living and rehabilitation activities. In contrast, the forces experienced during more dynamic activities are not well understood, and those studies that do exist suggest very high degrees of joint loading. In this study a biomechanical model of the right lower limb was used to calculate the internal joint forces experienced by the lower limb during vertical jumping, landing and push jerking (an explosive exercise derived from the sport of Olympic weightlifting), with a particular emphasis on the forces experienced by the knee. The knee experienced mean peak loadings of 2.4-4.6×body weight at the patellofemoral joint, 6.9-9.0×body weight at the tibiofemoral joint, 0.3-1.4×body weight anterior tibial shear and 1.0-3.1×body weight posterior tibial shear. The hip experienced a mean peak loading of 5.5-8.4×body weight and the ankle 8.9-10.0×body weight. The magnitudes of the total (resultant) joint contact forces at the patellofemoral joint, tibiofemoral joint and hip are greater than those reported in activities of daily living and less dynamic rehabilitation exercises. The information in this study is of importance for medical professionals, coaches and biomedical researchers in improving the understanding of acute and chronic injuries, understanding the performance of prosthetic implants and materials, evaluating the appropriateness of jumping and weightlifting for patient populations and informing the training programmes of healthy populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Performance analysis of jump-gliding locomotion for miniature robotics.

    PubMed

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  1. Effect of Kınesıotapıng and Knee Brace on Functıonal Performance in Recreatıonal Athletes

    PubMed Central

    Ulusoy, Burak; İldiz, Bülent; Tunay, Volga Bayrakçı

    2014-01-01

    Objectives: Kinesiotaping is a popular taping method that is used for both therapeutic and performance enchancement purposes. Knee braces are widely used for prevention in sport injuries but their performance effectiveness is still controversial. The aim of this study was to determine whether kinesiotape or brace was more effective on functional performance. Methods: A total twenty male recreational football players (Mean±Standart Deviation (SD) age: 22.5±0.68 years, height: 175.15±3.37 cm, body weight: 74.52±12.41 kg), voluntarily participated in this study. Participants were tested with kinesiotape, with brace and without kinesiotape and brace. Tests were applied one day after patellar kinesiotaping (correction technique). Balance property measured with Modified Y balance Test (dynamic test), agility measured by T test, muscle strength and anaerobic power assessed by vertical jump and triple hop tests. Wilcoxon signed rank test was employed for determining the statistical significance of tests with kinesiotape, with brace and without kinesiotape and brace. Results: In analysis; There were statistically significant differences found in Triple hop test with kinesiotaping and without kinesiotaping and brace, in T test with bracing and kinesiotaping, in vertical jump with kinesiotaping and without kinesiotaping and brace (p<0.001) (in the favour of kinesiotaping in all tests) No statistically significant difference was found in modified Y balance test all groups (p> 0.05). Conclusion: Consequently, kinesiotaping had positive effects on agility and muscle strength but had no effects on balance in football players. On the other hand, brace had no effects on functional performance tests.

  2. Physiological monitoring and analysis of a manned stratospheric balloon test program.

    PubMed

    Garbino, Alejandro; Blue, Rebecca S; Pattarini, James M; Law, Jennifer; Clark, Jonathan B

    2014-02-01

    The Red Bull Stratos Project consisted of incremental high altitude parachute jumps [maximum altitude 127,852 ft (38,969 m)] from a pressurized capsule suspended from a stratospheric helium-filled balloon. A physiological monitoring system was worn by the parachutist to provide operational medical and acceleration data and to record a unique set of data in a supersonic environment. Various physiological parameters, including heart rate (HR), respiratory rate (RR), skin temperature, and triaxial acceleration, were collected during the ascent, high altitude float, free fall, and parachute opening and descent stages of multiple low- and high altitude jumps. Physiologic data were synchronized with global positioning system (GPS) and audiovisual data for a comprehensive understanding of the environmental stressors experienced. HR reached maximum during capsule egress and remained elevated throughout free fall and landing. RR reached its maximum during free fall. Temperature data were unreliable and did not provide useful results. The highest accelerations parameters were recorded during parachute opening and during landing. During each high altitude jump, immediately after capsule egress, the parachutist experienced a few seconds of microgravity during which some instability occurred. Control was regained as the parachutist entered denser atmosphere. The high altitude environment resulted in extremely high vertical speeds due to little air resistance in comparison to lower altitude jumps with similar equipment. The risk for tumbling was highest at initial step-off. Physiological responses included elevated HR and RR throughout critical phases of free fall. The monitoring unit performed well despite the austere environment and extreme human performance activities.

  3. Chasing maximal performance: a cautionary tale from the celebrated jumping frogs of Calaveras County.

    PubMed

    Astley, H C; Abbott, E M; Azizi, E; Marsh, R L; Roberts, T J

    2013-11-01

    Maximal performance is an essential metric for understanding many aspects of an organism's biology, but it can be difficult to determine because a measured maximum may reflect only a peak level of effort, not a physiological limit. We used a unique opportunity provided by a frog jumping contest to evaluate the validity of existing laboratory estimates of maximum jumping performance in bullfrogs (Rana catesbeiana). We recorded video of 3124 bullfrog jumps over the course of the 4-day contest at the Calaveras County Jumping Frog Jubilee, and determined jump distance from these images and a calibration of the jump arena. Frogs were divided into two groups: 'rental' frogs collected by fair organizers and jumped by the general public, and frogs collected and jumped by experienced, 'professional' teams. A total of 58% of recorded jumps surpassed the maximum jump distance in the literature (1.295 m), and the longest jump was 2.2 m. Compared with rental frogs, professionally jumped frogs jumped farther, and the distribution of jump distances for this group was skewed towards long jumps. Calculated muscular work, historical records and the skewed distribution of jump distances all suggest that the longest jumps represent the true performance limit for this species. Using resampling, we estimated the probability of observing a given jump distance for various sample sizes, showing that large sample sizes are required to detect rare maximal jumps. These results show the importance of sample size, animal motivation and physiological conditions for accurate maximal performance estimates.

  4. Asymmetry between the Dominant and Non-Dominant Legs in the Kinematics of the Lower Extremities during a Running Single Leg Jump in Collegiate Basketball Players.

    PubMed

    Sugiyama, Takashi; Kameda, Mai; Kageyama, Masahiro; Kiba, Kazufusa; Kanehisa, Hiroaki; Maeda, Akira

    2014-12-01

    The present study aimed to clarify the asymmetry between the dominant (DL) and non-dominant takeoff legs (NDL) in terms of lower limb behavior during running single leg jumps (RSJ) in collegiate male basketball players in relation to that of the jump height. Twenty-seven players performed maximal RSJ with a 6 m approach. Three-dimensional kinematics data during RSJ was collected using a 12 Raptor camera infrared motion analysis system (MAC 3D system) at a sampling frequency of 500 Hz. The symmetry index in the jump heights and the kinematics variables were calculated as {2 × (DL - NDL) / (DL + NDL)} × 100. The run-up velocity was similar between the two legs, but the jump height was significantly higher in the DL than in the NDL. During the takeoff phase, the joint angles of the ankle and knee were significantly larger in the DL than the NDL. In addition, the contact time for the DL was significantly shorter than that for the NDL. The symmetry index of the kinematics for the ankle joint was positively correlated with that of jump height, but that for the knee joint was not. The current results indicate that, for collegiate basketball players, the asymmetry in the height of a RSJ can be attributed to that in the joint kinematics of the ankle during the takeoff phase, which may be associated with the ability to effectively transmit run-up velocity to jump height. Key pointsAsymmetry of height during running single leg jump between two legs is due to the behavior of the ankle joint (i.e. stiffer the ankle joint and explosive bounding).The dominant leg can transmit run-up velocity into the vertical velocity at takeoff phase to jump high compared with the non-dominant leg.Basketball players who have a greater asymmetry of the RSJ at the collegiate level could be assessed as non-regulars judging by the magnitude of asymmetry.

  5. Influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on three athletic movements.

    PubMed

    Worobets, Jay; Wannop, John William

    2015-09-01

    Prior research has shown that footwear can enhance athletic performance. However, public information is not available on what basketball shoe properties should be selected to maximise movement performance. Therefore, the purpose of the study was to investigate the influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on sprinting, jumping, and cutting performance. Each of these three basketball shoe properties was systematically varied by ± 20% to produce three shoe conditions of varying mass, three conditions of varying traction, and three conditions of varying bending stiffness. Each shoe was tested by 20 recreational basketball players completing maximal effort sprints, vertical jumps, and a cutting drill. Outsole traction had the largest influence on performance, as the participants performed significantly worse in all tests when traction was decreased by 20% (p < 0.001), and performed significantly better in the cutting drill when traction was increased by 20% (p = 0.005). Forefoot bending stiffness had a moderate effect on sprint and cutting performance (p = 0.013 and p = 0.016 respectively) and shoe mass was found to have no effect on performance. Therefore, choosing a shoe with relatively high outsole traction and forefoot bending stiffness should be prioritised, and less concern should be focused on selecting the lightest shoe.

  6. The effects of a high dosage of creatine and caffeine supplementation on the lean body mass composition of rats submitted to vertical jumping training.

    PubMed

    Franco, Frederico Sc; Costa, Neuza Mb; Ferreira, Susana A; Carneiro-Junior, Miguel A; Natali, Antônio J

    2011-03-01

    The influences of creatine and caffeine supplementation associated with power exercise on lean body mass (LBM) composition are not clear. The purpose of this research was to determine whether supplementation with high doses of creatine and caffeine, either solely or combined, affects the LBM composition of rats submitted to vertical jumping training. Male Wistar rats were randomly divided into 8 groups: Sedentary (S) or Exercised (E) [placebo (Pl), creatine (Cr), caffeine (Caf) or creatine plus caffeine (CrCaf)]. The supplemented groups received creatine [load: 0.430 g/kg of body weight (BW) for 7 days; and maintenance: 0.143 g/kg of BW for 35 days], caffeine (15 mg/kg of BW for 42 days) or creatine plus caffeine. The exercised groups underwent a vertical jump training regime (load: 20 - 50% of BW, 4 sets of 10 jumps interspersed with 1 min resting intervals), 5 days/wk, for 6 weeks. LBM composition was evaluated by portions of water, protein and fat in the rat carcass. Data were submitted to ANOVA followed by the Tukey post hoc test and Student's t test. Exercised animals presented a lower carcass weight (10.9%; P = 0.01), as compared to sedentary animals. However, no effect of supplementation was observed on carcass weight (P > 0.05). There were no significant differences among the groups (P > 0.05) for percentage of water in the carcass. The percentage of fat in the group SCr was higher than in the groups SCaf and ECr (P < 0.05). A higher percentage of protein was observed in the groups EPl and ECaf when compared to the groups SPl and SCaf (P < 0.001). The percentage of fat in the carcass decreased (P < 0.001), while those of water and protein increased (P < 0.05) in exercised animals, compared to sedentary animals. Caffeine groups presented reduced percentage of fat when compared to creatine supplemented groups (P < 0.05). High combined doses of creatine and caffeine does not affect the LBM composition of either sedentary or exercised rats, however, caffeine supplementation alone reduces the percentage of fat. Vertical jumping training increases the percentages of water and protein and reduces the fat percentage in rats.

  7. Hydraulic/Shock Jumps in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Boley, A. C.; Durisen, R. H.

    2006-04-01

    In this paper, we describe the nonlinear outcome of spiral shocks in protoplanetary disks. Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the postshock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hybrids between shocks and hydraulic jumps (shock bores) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that shock bores produce and discuss possible consequences for disk mixing, turbulence, and evolution of solids.

  8. The effect of dropping height on jumping performance in trained and untrained prepubertal boys and girls.

    PubMed

    Bassa, Eleni I; Patikas, Dimitrios A; Panagiotidou, Aikaterini I; Papadopoulou, Sophia D; Pylianidis, Theofilos C; Kotzamanidis, Christos M

    2012-08-01

    Plyometric training in children, including different types of jumps, has become common practice during the last few years in different sports, although there is limited information about the adaptability of children with respect to different loads and the differences in performance between various jump types. The purpose of this study was to examine the effect of gender and training background on the optimal drop jump height of 9- to 11-year-old children. Sixty prepubertal (untrained and track and field athletes, boys and girls, equally distributed in each group [n = 15]), performed the following in random order: 3 squat jumps, 3 countermovement jumps (CMJs) and 3 drop jumps from heights of 10, 20, 30, 40, and 50 cm. The trial with the best performance in jump height of each test was used for further analysis. The jump type significantly affected the jump height. The jump height during the CMJ was the highest among all other jump types, resulting in advanced performance for both trained and untrained prepubertal boys and girls. However, increasing the dropping height did not change the jumping height or contact time during the drop jump. This possibly indicates an inability of prepubertal children to use their stored elastic energy to increase jumping height during drop jumps, irrespective of their gender or training status. This indicates that children, independent of gender and training status, have no performance gain during drop jumps from heights up to 50 cm, and therefore, it is recommended that only low drop jump heights be included in plyometric training to limit the probability of sustaining injuries.

  9. THE EFFECTS OF INSTRUMENT ASSISTED SOFT TISSUE MOBILIZATION ON LOWER EXTREMITY MUSCLE PERFORMANCE: A RANDOMIZED CONTROLLED TRIAL.

    PubMed

    MacDonald, Nicole; Baker, Russell; Cheatham, Scott W

    2016-12-01

    Instrument-Assisted Soft Tissue Mobilization (IASTM) is a non-invasive therapeutic technique used to theoretically aid in scar tissue breakdown and absorption, fascial mobilization, and improved tissue healing. Researchers have hypothesized that utilizing IASTM will improve muscular efficiency and performance; yet previous Investigations has been focused on treating injury. The purpose of this investigation was to explore the effects of IASTM on muscle performance to assess if typical treatment application affected measures of muscular performance. A pretest-posttest randomized control design. A convenience sample of 48 physically active adults (mean age 24 ± 4 years), randomly assigned to one of three groups: quadriceps treatment group, triceps surae treatment group, or control group. Participants performed a five-minute warm-up on a Monark bicycle ergometer before performing three countermovement vertical jumps (CMJ). Immediately after, the IASTM treatment was applied by one researcher for three minutes on each leg at the specified site (e.g., quadriceps) for those assigned to the treatment groups, while the control group rested for six minutes. Immediately following treatment, participants performed three additional CMJs. Pre- and post-testing included measures of vertical jump height (JH), peak power (PP) and peak velocity (PV). There were no statistically significant differences found between treatment groups in JH, PP, or PV or across pre- and post-test trials. These preliminary findings suggest that standard treatment times of IASTM do not produce an immediate effect in muscular performance in healthy participants. This may help clinicians determine the optimal sequencing of IASTM when it is part of a pre-performance warm-up program. Future research should be conducted to determine the muscle performance effects of IASTM in individuals with known myofascial restriction and to determine optimal treatment parameters, such as instrument type, amount of pressure, and treatment time necessary to affect muscular performance. 1b.

  10. Patellar tendon properties distinguish elite from non-elite soccer players and are related to peak horizontal but not vertical power.

    PubMed

    Murtagh, Conall F; Stubbs, Michael; Vanrenterghem, Jos; O'Boyle, Andrew; Morgans, Ryland; Drust, Barry; Erskine, Robert M

    2018-06-02

    To investigate potential differences in patellar tendon properties between elite and non-elite soccer players, and to establish whether tendon properties were related to power assessed during unilateral jumps performed in different directions. Elite (n = 16; age 18.1 ± 1.0 years) and non-elite (n = 13; age 22.3 ± 2.7 years) soccer players performed vertical, horizontal-forward and medial unilateral countermovement jumps (CMJs) on a force plate. Patellar tendon (PT) cross-sectional area, elongation, strain, stiffness, and Young's modulus (measured at the highest common force interval) were assessed with ultrasonography and isokinetic dynamometry. Elite demonstrated greater PT elongation (6.83 ± 1.87 vs. 4.92 ± 1.88 mm, P = 0.011) and strain (11.73 ± 3.25 vs. 8.38 ± 3.06%, P = 0.009) than non-elite soccer players. Projectile range and peak horizontal power during horizontal-forward CMJ correlated positively with tendon elongation (r = 0.657 and 0.693, P < 0.001) but inversely with Young's modulus (r = - 0.376 and - 0.402; P = 0.044 and 0.031). Peak medial power during medial CMJ correlated positively with tendon elongation (r = 0.658, P < 0.001) but inversely with tendon stiffness (r = - 0.368, P = 0.050). Not only does a more compliant patellar tendon appear to be an indicator of elite soccer playing status but it may also facilitate unilateral horizontal-forward and medial, but not vertical CMJ performance. These findings should be considered when prescribing talent selection and development protocols related to direction-specific power in elite soccer players.

  11. Changes in biomechanical properties during drop jumps of incremental height.

    PubMed

    Peng, Hsien-Te

    2011-09-01

    The purpose of this study was to investigate changing biomechanical properties with increasing drop jump height. Sixteen physically active college students participated in this study and performed drop jumps from heights of 20, 30, 40, 50, and 60 cm (DJ20-DJ60). Kinematic and kinetic data were collected using 11 Eagle cameras and 2 force platforms. Data pertaining to the dominant leg for each of 3 trials for each drop height were recorded and analyzed. Statistical comparisons of vertical ground reaction force (vGRF), impulse, moment, power, work, and stiffness were made between different drop jump heights. The peak vGRF of the dominant leg exceeded 3 times the body weight during DJ50 and DJ60; these values were significantly greater than those for DJ20, DJ30, and DJ40 (all p < 0.004). The height jumped during DJ60 was significantly less than that during DJ20 and DJ30 (both p = 0.010). Both the landing impulse and total impulse during the contact phase were significantly different between each drop height (all p < 0.036) and significantly increased with drop height. There were no significant differences in the takeoff impulse. Peak and mean power absorption and negative work at the knee and ankle joints during DJ40, DJ50, and DJ60 were significantly greater than those during DJ20 and DJ30 (all p < 0.049). Leg, knee, and ankle stiffness during DJ60 were significantly less than during DJ20, DJ30, and DJ40 (all p < 0.037). The results demonstrated that drop jumps from heights >40 cm offered no advantages in terms of mechanical efficiency (SSC power output) and stiffness. Drop jumps from heights in excess of 60 cm are not recommended because of the lack of biomechanical efficiency and the potentially increased risk of injury.

  12. Jumping on water

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Young

    2016-11-01

    Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.

  13. Explosive lower limb extension mechanics: An on-land vs. in-water exploratory comparison.

    PubMed

    Guignard, Brice; Lauer, Jessy; Samozino, Pierre; Mourão, Luis; Vilas-Boas, João Paulo; Rouard, Annie Hélène

    2017-12-08

    During a horizontal underwater push-off, performance is strongly limited by the presence of water, inducing resistances due to its dense and viscous nature. At the same time, aquatic environments offer a support to the swimmer with the hydrostatic buoyancy counteracting the effects of gravity. Squat jump is a vertical terrestrial push-off with a maximal lower limb extension limited by the gravity force, which attracts the body to the ground. Following this observation, we characterized the effects of environment (water vs. air) on the mechanical characteristics of the leg push-off. Underwater horizontal wall push-off and vertical on-land squat jumps of two local swimmers were evaluated with force plates, synchronized with a lateral camera. To better understand the resistances of the aquatic movement, a quasi-steady Computational Fluid Dynamics (CFD) analysis was performed. The force-, velocity- and power-time curves presented similarities in both environments corresponding to a proximo-distal joints organization. In water, swimmers developed a three-step explosive rise of force, which the first one mainly related to the initiation of body movement. Drag increase, which was observed from the beginning to the end of the push-off, related to the continuous increase of body velocity with high values of drag coefficient (C D ) and frontal areas before take-off. Specifically, with velocity, frontal area was the main drag component to explain inter-individual differences, suggesting that the streamlined position of the lower limbs is decisive to perform an efficient push-off. This study motivates future CFD simulations under more ecological, unsteady conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Use of the mouse jumping test for estimating antagonistic potencies of morphine antagonists.

    PubMed

    Cowan, A

    1976-03-01

    The potencies of 19 reference morphine antagonists have been compared in a modified version of the mouse jumping test. Mice were each implanted subcutaneously with one 75 mg pellet of morphine. Antagonist challenge took place 72 h later and the incidence of repetitive vertical-jumping was monitored over 1 h. A high Pearson correlation coefficient (r = 0.997) was found between quantitative assays based on the total number of jumps per mouse and quantal assays based on mice jumping at least 6 times. A comparison of relative potencies obtained with the mouse test and with non-withdrawn morphine-dependent monkeys gave a Spearman rank order coefficient of 0.91 while a similar comparison with values obtained with the guinea-pig isolated ileum preparation also gave a high correlation coefficient (r= 0.92). Whereas it is difficult to assess the antagonistic component of buprenorphine and cyclorphan with the ileum preparation, both compounds can be satisfactorily assayed in the mouse jumping test. The reported antagonistic properties of ketocyclazocine and profadol could not be confirmed in the mouse model.

  15. The effect of local cryotherapy on subjective and objective recovery characteristics following an exhaustive jump protocol

    PubMed Central

    Hohenauer, Erich; Clarys, Peter; Baeyens, Jean-Pierre; Clijsen, Ron

    2016-01-01

    The purpose of this controlled trial was to investigate the effects of a single local cryotherapy session on the recovery characteristics over a period of 72 hours. Twenty-two young and healthy female (n=17; mean age: 21.9±1.1 years) and male (n=5;mean age: 25.4±2.8 years) adults participated in this study. Following an exhaustive jump protocol (3×30 countermovement jumps), half of the participants received either a single local cryotherapy application (+8°C) or a single local thermoneutral application (+32°C) of 20-minute duration using two thigh cuffs. Subjective measures of recovery (delayed-onset muscle soreness and ratings of perceived exertion) and objective measures of recovery (vertical jump performance and peak power output) were assessed immediately following the postexercise applications (0 hours) and at 24 hours, 48 hours, and 72 hours after the jump protocol. Local cryotherapy failed to significantly affect any subjective recovery variable during the 72-hour recovery period (P>0.05). After 72 hours, the ratings of perceived exertion were significantly lower in the thermoneutral group compared to that in the cryotherapy group (P=0.002). No significant differences were observed between the cryotherapy and the thermoneutral groups with respect to any of the objective recovery variables. In this experimental study, a 20-minute cryotherapy cuff application failed to demonstrate a positive effect on any objective measures of recovery. The effects of local thermoneutral application on subjective recovery characteristics were superior when compared to the effects of local cryotherapy application at 72 hours postapplication. PMID:27579000

  16. The effect of local cryotherapy on subjective and objective recovery characteristics following an exhaustive jump protocol.

    PubMed

    Hohenauer, Erich; Clarys, Peter; Baeyens, Jean-Pierre; Clijsen, Ron

    2016-01-01

    The purpose of this controlled trial was to investigate the effects of a single local cryotherapy session on the recovery characteristics over a period of 72 hours. Twenty-two young and healthy female (n=17; mean age: 21.9±1.1 years) and male (n=5;mean age: 25.4±2.8 years) adults participated in this study. Following an exhaustive jump protocol (3×30 countermovement jumps), half of the participants received either a single local cryotherapy application (+8°C) or a single local thermoneutral application (+32°C) of 20-minute duration using two thigh cuffs. Subjective measures of recovery (delayed-onset muscle soreness and ratings of perceived exertion) and objective measures of recovery (vertical jump performance and peak power output) were assessed immediately following the postexercise applications (0 hours) and at 24 hours, 48 hours, and 72 hours after the jump protocol. Local cryotherapy failed to significantly affect any subjective recovery variable during the 72-hour recovery period (P>0.05). After 72 hours, the ratings of perceived exertion were significantly lower in the thermoneutral group compared to that in the cryotherapy group (P=0.002). No significant differences were observed between the cryotherapy and the thermoneutral groups with respect to any of the objective recovery variables. In this experimental study, a 20-minute cryotherapy cuff application failed to demonstrate a positive effect on any objective measures of recovery. The effects of local thermoneutral application on subjective recovery characteristics were superior when compared to the effects of local cryotherapy application at 72 hours postapplication.

  17. The effect of videotape augmented feedback on drop jump landing strategy: Implications for anterior cruciate ligament and patellofemoral joint injury prevention.

    PubMed

    Munro, Allan; Herrington, Lee

    2014-10-01

    Modification of high-risk movement strategies such as dynamic knee valgus is key to the reduction of anterior cruciate ligament (ACL) and patellofemoral joint (PFJ) injuries. Augmented feedback, which includes video and verbal feedback, could offer a quick, simple and effective alternative to training programs for altering high-risk movement patterns. It is not clear whether feedback can reduce dynamic knee valgus measured using frontal plane projection angle (FPPA). Vertical ground reaction force (vGRF), two-dimensional FPPA of the knee, contact time and jump height of 20 recreationally active university students were measured during a drop jump task pre- and post- an augmented feedback intervention. A control group of eight recreationally active university students were also studied at baseline and repeat test. There was a significant reduction in vGRF (p=0.033), FPPA (p<0.001) and jump height (p<0.001) and an increase in contact time (p<0.001) post feedback in the intervention group. No changes were evident in the control group. Augmented feedback leads to significant decreases in vGRF, FPPA and contact time which may help to reduce ACL and PFJ injury risk. However, these changes may result in decreased performance. Augmented feedback reduces dynamic knee valgus, as measured via FPPA, and forces experienced during the drop jump task and therefore could be used as a tool for helping decrease ACL and PFJ injury risk prior to, or as part of, the implementation of injury prevention training programs. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Vertical exploration and dimensional modularity in mice

    PubMed Central

    Benjamini, Yoav; Golani, Ilan

    2018-01-01

    Exploration is a central component of animal behaviour studied extensively in rodents. Previous tests of free exploration limited vertical movement to rearing and jumping. Here, we attach a wire mesh to the arena wall, allowing vertical exploration. This provides an opportunity to study the morphogenesis of behaviour along the vertical dimension, and examine the context in which it is performed. In the current set-up, the mice first use the doorway as a point reference for establishing a borderline linear path along the circumference of the arena floor, and then use this path as a linear reference for performing horizontal forays towards the centre (incursions) and vertical forays on the wire mesh (ascents). Vertical movement starts with rearing on the wall, and commences with straight vertical ascents that increase in extent and complexity. The mice first reach the top of the wall, then mill about within circumscribed horizontal sections, and then progress horizontally for increasingly longer distances on the upper edge of the wire mesh. Examination of the sequence of borderline segments, incursions and ascents reveals dimensional modularity: an initial series (bout) of borderline segments precedes alternating bouts of incursions and bouts of ascents, thus exhibiting sustained attention to each dimension separately. The exhibited separate growth in extent and in complexity of movement and the sustained attention to each of the three dimensions disclose the mice's modular perception of this environment and validate all three as natural kinds. PMID:29657827

  19. Effects on Chilean Vertical Reference Frame due to the Maule Earthquake co-seismic and post-seismic effects

    NASA Astrophysics Data System (ADS)

    Montecino, Henry D.; de Freitas, Silvio R. C.; Báez, Juan C.; Ferreira, Vagner G.

    2017-12-01

    The Maule Earthquake (Mw = 8.8) of February 27, 2010 is among the strongest earthquakes that occurred in recent years throughout the world. The crustal deformation caused by this earthquake has been widely studied using GNSS, InSAR and gravity observations. However, there is currently no estimation of the possible vertical deformations produced by co-seismic and post-seismic effects in segments of the Chilean Vertical Reference Frame (CHVRF). In this paper, we present an estimation of co-seismic and post-seismic deformations on the CHVRF using an indirect approach based on GNSS and Gravity Recovery and Climate Experiment (GRACE) data as well as by applying a trajectory model. GNSS time series were used from 10 continuous GNSS stations in the period from 2007 to 2015, as well as 28 GNSS temporary stations realized before and after the earthquake, and 34 vertical deformation vectors in the region most affected by the earthquake. We considered a set of 147 monthly solutions of spherical harmonic gravity field that were expanded up to degree, as well as order 96 of the GRACE mission provided by Center for Space Research, University of Texas at Austin (UT-CSR) process center. The magnitude of vertical deformation was estimated in part of the Chilean vertical network due to the co-seismic and post-seismic effects. Once we evaluated the hydrological effect, natural and artificial jumps, and the effect of glacial isostatic adjustment in GNSS and GRACE time series, the maximum values associated to co- and post-seismic deformations on orthometric height were found to be ∼-34 cm and 5 cm, respectively. Overall, the deformation caused by the Maule earthquake in orthometric heights is almost entirely explained by the variation in the ellipsoidal heights (over 85% in co-seismic jump); however, coseismic jump in the geoid reached -3.3 mm, and could influence the maintenance of a modern vertical reference network in a medium to long term. We evaluated the consistency for a segment of the CHVRF after the earthquake and recommended precautions for using the CHVRF in the region.

  20. Salivary hormones, IgA, and performance during intense training and tapering in judo athletes.

    PubMed

    Papacosta, Elena; Gleeson, Michael; Nassis, George P

    2013-09-01

    The aims of this study were to identify the time course of change of salivary testosterone (sT), cortisol (sC), and IgA (SIgA); mood state; and performance capacity during a 2-week taper in judo athletes and to examine the diurnal variation in these salivary markers. Eleven male judo athletes completed 5 weeks of training: 1 week of normal training (NORM), 2 weeks of intensified training (INT), and 2 weeks of exponential tapering (TAPER). Once per week subjects completed vertical and horizontal countermovement jump tests, a grip strength test, a Special Judo Fitness Test, a multistage aerobic fitness test, a 3 × 300-m run test, and anthropometric measurement. Subjects also completed questionnaires to assess mood state and muscle soreness. Two daily saliva samples (at 0700 and 1900) were collected at the end of each week during NORM and INT and every day during TAPER. Increased morning sT, decreased evening sC, lower muscle soreness, and enhanced mood state (p < 0.05) were evident by the early phases of TAPER. A significant 7.0% improvement in 3 × 300-m performance time, a 6.9% improvement in the vertical jump (p < 0.05), and increased morning and evening SIgA secretion rate (p < 0.01) were observed during the middle-late phases of TAPER. The higher values of salivary variables were observed in the morning. This study indicates that salivary hormones display diurnal variation. Furthermore, changes in hormonal responses, mood state, and muscle soreness precede enhancements in performance and mucosal immunity, suggesting that judo athletes taper for at least a week before competition.

Top