2010-02-26
bottom waveguide. The lower contour plot demonstrates that this method, unlike other parabolic equations, can treat seismic sources. 20100308162...solitons. One illustration in Figure 8 shows depth-averaged data at the Naval Research Laboratory vertical line array (VLA) [dashed blue curves...vertical line array about 15 km from the source. The right panel [blue curves] compares corresponding simulations from a three-dimensional adiabatic mode
Bottom Interaction in Ocean Acoustic Propagation
2014-09-30
deep seafloor (greater than the critical depth). What is the relationship between the seismic (ground motion) noise on the seafloor and the acoustic...ocean bottom seismometers (OBSs), but were very weak on the deep vertical line array (Deep VLA), located above 750 m from the seafloor. Stephen et al...was carried out in April-May 2011 near the location of the PhilSea10 Distributed Vertical Line Array (DVLA) (Stephen et al., 2011). The second
Bottom Interaction in Ocean Acoustic Propagation
2015-09-30
the deep seafloor (greater than the critical depth). What is the relationship between the seismic (ground motion) noise on the seafloor and the...ocean bottom seismometers (OBSs), but were very weak on the deep vertical line array (Deep VLA), located above 750 m from the seafloor. Stephen et...carried out in April-May 2011 near the location of the PhilSea10 Distributed Vertical Line Array (DVLA) (Stephen et al., 2011). The second experiment
Bottom Interaction in Long Range Acoustic Propagation
2006-09-30
Pacific Ocean utilizing controlled sources and vertical and horizontal receiver arrays . Broadband sources are considered with typical center...The LOAPEX (Long-range Ocean Acoustic Propagation Experiment) vertical line arrays (VLA) are described on page 1 of the LOAPEX cruise report: " The...hydrophone arrays on the two combined VLAs covered most of the 5-km water column. We refer to one of the VLAs as the deep VLA (DVLA), located at
Pitch variable liquid lens array using electrowetting
NASA Astrophysics Data System (ADS)
Kim, YooKwang; Lee, Jin Su; Kim, Junoh; Won, Yong Hyub
2017-02-01
These days micro lens array is used in various fields such as fiber coupling, laser collimation, imaging and sensor system and beam homogenizer, etc. One of important thing in using micro lens array is, choice of its pitch. Especially imaging systems like integral imaging or light-field camera, pitch of micro lens array defines the system property and thus it could limit the variability of the system. There are already researches about lens array using liquid, and droplet control by electrowetting. This paper reports the result of combining them, the liquid lens array that could vary its pitch by electrowetting. Since lens array is a repeated system, realization of a small part of lens array is enough to show its property. The lens array is composed of nine (3 by 3) liquid droplets on flat surface. On substrate, 11 line electrodes are patterned along vertical and horizontal direction respectively. The width of line electrodes is 300um and interval is 200um. Each droplet is positioned to contain three electrode lines for both of vertical and horizontal direction. So there is one remaining electrode line in each of outermost side for both direction. In original state the voltage is applied to inner electrodes. When voltage of outermost electrodes are turned on, eight outermost droplets move to outer side, thereby increasing pitch of lens array. The original pitch was 1.5mm and it increased to 2.5mm after electrodes of voltage applied is changed.
Passive bottom reflection-loss estimation using ship noise and a vertical line array.
Muzi, Lanfranco; Siderius, Martin; Verlinden, Christopher M
2017-06-01
An existing technique for passive bottom-loss estimation from natural marine surface noise (generated by waves and wind) is adapted to use noise generated by ships. The original approach-based on beamforming of the noise field recorded by a vertical line array of hydrophones-is retained; however, additional processing is needed in order for the field generated by a passing ship to show features that are similar to those of the natural surface-noise field. A necessary requisite is that the ship position, relative to the array, varies over as wide a range of steering angles as possible, ideally passing directly over the array to ensure coverage of the steepest angles. The methodology is illustrated through simulation and applied to data from a field experiment conducted offshore of San Diego, CA in 2009.
A Decade of Ocean Acoustic Measurements from R/P FLIP
NASA Astrophysics Data System (ADS)
D'Spain, G. L.
2002-12-01
Studies of the properties of low frequency acoustic fields in the ocean continue to benefit from the use of manned, stable offshore platforms such as R/P FLIP. A major benefit is providing the at-sea stability required for deployment of extremely large aperture line arrays, line arrays composed of both acoustic motion and acoustic pressure sensors, and arrays that provide measurements in all 3 spatial dimensions. In addition, FLIP provides a high-profile (25 m) observation post with 360 deg coverage for simultaneous visual observations of marine mammals. A few examples of the scientific results that have been achieved over this past decade with ocean acoustic data collected on FLIP are presented. These results include the normal mode decomposition of earthquake T phases to study their generation and water/land coupling characteristics using a 3000 m vertical aperture hydrophone array, simultaneous vertical and horizontal directional information on the underwater sound field from line arrays of hydrophones and geophones, the strange nightime chorusing behavior of fish measured by 3D array aperture, the mirage effect caused by bathymetry changes in inversions for source location in shallow water, and the diving behavior of blue whales determined from 1D recordings of their vocalizations. Presently, FLIP serves as the central data recording platform in ocean acoustic studies using AUV's.
Acoustic tracking of sperm whales in the Gulf of Alaska using a two-element vertical array and tags.
Mathias, Delphine; Thode, Aaron M; Straley, Jan; Andrews, Russel D
2013-09-01
Between 15 and 17 August 2010, a simple two-element vertical array was deployed off the continental slope of Southeast Alaska in 1200 m water depth. The array was attached to a vertical buoy line used to mark each end of a longline fishing set, at 300 m depth, close to the sound-speed minimum of the deep-water profile. The buoy line also served as a depredation decoy, attracting seven sperm whales to the area. One animal was tagged with both a LIMPET dive depth-transmitting satellite and bioacoustic "B-probe" tag. Both tag datasets were used as an independent check of various passive acoustic schemes for tracking the whale in depth and range, which exploited the elevation angles and relative arrival times of multiple ray paths recorded on the array. Analytical tracking formulas were viable up to 2 km range, but only numerical propagation models yielded accurate locations up to at least 35 km range at Beaufort sea state 3. Neither localization approach required knowledge of the local bottom bathymetry. The tracking system was successfully used to estimate the source level of an individual sperm whale's "clicks" and "creaks" and predict the maximum detection range of the signals as a function of sea state.
Hemispheric differences in visual search of simple line arrays.
Polich, J; DeFrancesco, D P; Garon, J F; Cohen, W
1990-01-01
The effects of perceptual organization on hemispheric visual-information processing were assessed with stimulus arrays composed of short lines arranged in columns. A visual-search task was employed in which subjects judged whether all the lines were vertical (same) or whether a single horizontal line was present (different). Stimulus-display organization was manipulated in two experiments by variation of line density, linear organization, and array size. In general, left-visual-field/right-hemisphere presentations demonstrated more rapid and accurate responses when the display was perceived as a whole. Right-visual-field/left-hemisphere superiorities were observed when the display organization coerced assessment of individual array elements because the physical qualities of the stimulus did not effect a gestalt whole. Response times increased somewhat with increases in array size, although these effects interacted with other stimulus variables. Error rates tended to follow the reaction-time patterns. The results suggest that laterality differences in visual search are governed by stimulus properties which contribute to, or inhibit, the perception of a display as a gestalt. The implications of these findings for theoretical interpretations of hemispheric specialization are discussed.
Choi, Mun-Ki; Kim, Gil-Sung; Jeong, Jin-Tak; Lim, Jung-Taek; Lee, Won-Yong; Umar, Ahmad; Lee, Sang-Kwon
2017-11-02
The detection of cancer biomarkers has recently attracted significant attention as a means of determining the correct course of treatment with targeted therapeutics. However, because the concentration of these biomarkers in blood is usually relatively low, highly sensitive biosensors for fluorescence imaging and precise detection are needed. In this study, we have successfully developed vertical GaN micropillar (MP) based biosensors for fluorescence sensing and quantitative measurement of CA15-3 antigens. The highly ordered vertical GaN MP arrays result in the successful immobilization of CA15-3 antigens on each feature of the arrays, thereby allowing the detection of an individual fluorescence signal from the top surface of the arrays owing to the high regularity of fluorophore-tagged MP spots and relatively low background signal. Therefore, our fluorescence-labeled and CA15-3 functionalized vertical GaN-MP-based biosensor is suitable for the selective quantitative analysis of secreted CA15-3 antigens from MCF-7 cell lines, and helps in the early diagnosis and prognosis of serious diseases as well as the monitoring of the therapeutic response of breast cancer patients.
NASA Astrophysics Data System (ADS)
Kim, Minsoo; Park, Jae-Hyoung; Jeon, Jin-A.; Yoo, Byung-Wook; Park, I. H.; Kim, Yong-Kweon
2009-03-01
We present a two-axis micromirror array with high fill-factor, using a new fabrication procedure on the full wafer scale. The micromirror comprises a self-aligned vertical comb drive actuator with a mirror plate mounted on it and electrical lines on a bottom substrate. A high-aspect-ratio vertical comb drive was built using a bulk micromachining technique on a silicon-on-insulator (SOI) wafer. The thickness of the torsion spring was adjusted using multiple silicon etching steps to enhance the static angular deflection of the mirrors. To address the array, electrical lines were fabricated on a glass substrate and combined with the comb actuators using an anodic bonding process. The silicon mirror plate was fabricated together with the actuator using a wafer bonding process and segmented at the final release step. The actuator and addressing lines were hidden behind the mirror plate, resulting in a high fill-factor of 84% in an 8 × 8 array of micromirrors, each 340 µm × 340 µm. The fabricated mirror plate has a high-quality optical surface with an average surface roughness (Ra) of 4 nm and a curvature radius of 0.9 m. The static and dynamic responses of the micromirror were characterized by comparing the measured results with the calculated values. The maximum static optical deflection for the outer axis is 4.32° at 60 V, and the maximum inner axis tilting angle is 2.82° at 96 V bias. The torsion resonance frequencies along the outer and inner axes were 1.94 kHz and 0.95 kHz, respectively.
Joint Estimation of Source Range and Depth Using a Bottom-Deployed Vertical Line Array in Deep Water
Li, Hui; Yang, Kunde; Duan, Rui; Lei, Zhixiong
2017-01-01
This paper presents a joint estimation method of source range and depth using a bottom-deployed vertical line array (VLA). The method utilizes the information on the arrival angle of direct (D) path in space domain and the interference characteristic of D and surface-reflected (SR) paths in frequency domain. The former is related to a ray tracing technique to backpropagate the rays and produces an ambiguity surface of source range. The latter utilizes Lloyd’s mirror principle to obtain an ambiguity surface of source depth. The acoustic transmission duct is the well-known reliable acoustic path (RAP). The ambiguity surface of the combined estimation is a dimensionless ad hoc function. Numerical efficiency and experimental verification show that the proposed method is a good candidate for initial coarse estimation of source position. PMID:28590442
Intensity modulation of HF heater-induced plasma lines
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Lee, M. C.
1990-01-01
The Arecibo HF heater is normally composed of two separate sets of antenna array, transmitting waves vertically at the same frequency and polarization. However, when these two sets of antenna array radiate at slightly different frequencies, the intensities of HF heater-induced plasma lines (HFPLs) can be drastically modulated. In recent Duncan et al.'s (1989) experiments the 100 percent intensity modulation of HFPLs was seen to persist even when the secondary set of antenna array radiated at a few percent of the power transmitted by the primary set of antenna array. An explanation is offered, and it is shown that there exists a minimum power, Pmin, and if the secondary set of antenna array radiates at a power lower than Pmin, the 100-percent intensity modulation of HFPLs will not be observed. The functional dependence of Pmin on the difference frequency of the two sets of antenna array is also predicted for future experiments to corroborate.
High resolution beamforming on large aperture vertical line arrays: Processing synthetic data
NASA Astrophysics Data System (ADS)
Tran, Jean-Marie Q.; Hodgkiss, William S.
1990-09-01
This technical memorandum studies the beamforming of large aperture line arrays deployed vertically in the water column. The work concentrates on the use of high resolution techniques. Two processing strategies are envisioned: (1) full aperture coherent processing which offers in theory the best processing gain; and (2) subaperture processing which consists in extracting subapertures from the array and recombining the angular spectra estimated from these subarrays. The conventional beamformer, the minimum variance distortionless response (MVDR) processor, the multiple signal classification (MUSIC) algorithm and the minimum norm method are used in this study. To validate the various processing techniques, the ATLAS normal mode program is used to generate synthetic data which constitute a realistic signals environment. A deep-water, range-independent sound velocity profile environment, characteristic of the North-East Pacific, is being studied for two different 128 sensor arrays: a very long one cut for 30 Hz and operating at 20 Hz; and a shorter one cut for 107 Hz and operating at 100 Hz. The simulated sound source is 5 m deep. The full aperture and subaperture processing are being implemented with curved and plane wavefront replica vectors. The beamforming results are examined and compared to the ray-theory results produced by the generic sonar model.
An investigation of underwater sound propagation from pile driving.
DOT National Transportation Integrated Search
2011-12-01
The underwater noise from impact pile driving was studied by using a finite element model for the sound generation and a parabolic equation model for propagation. Results were compared with measurements taken with a vertical line array deployed durin...
NASA Astrophysics Data System (ADS)
Robertson, R.; Bowman, T.; Eagle, J. L.; Fisher, L.; Mankowski, K.; McGrady, N.; Schrecongost, N.; Voll, H.; Zulfiqar, A.; Herman, R. B.
2016-12-01
Several small geophysical surveys were conducted on the Chukchi Sea ice just offshore from the Naval Arctic Research Laboratory near Barrow, Alaska, in March, 2016. The goal was to investigate a possible correlation between the surface temperature and the thickness of the sea ice, as well as to test a potential new method for more accurately determining ice thickness. Surveys were conducted using a capacitively coupled resistivity array, a custom built thermal sensor array sled, ground penetrating radar (GPR), and an ice drill. The thermal sensor array was based on an Arduino microcontroller. It used an infrared (IR) sensor to determine surface temperature, and thermistor-based sensors to determine vertical air temperatures at 6 evenly spaced heights up to a maximum of 1.5 meters. Surface temperature (IR) data show possible correlations with ice drill, resistivity, and GPR data. The vertical air sensors showed almost no variation for any survey line which we postulate is due to the constant wind during each survey. Ice drill data show ice thickness along one 200 meter line varied from 79-95 cm, with an average of 87 cm. The thickness appears to be inversely correlated to surface temperatures. Resistivity and IR data both showed abrupt changes when crossing from the shore to the sea ice along a 400 meter line. GPR and IR data showed similar changes along a separate 900 meter line, suggesting that surface temperature and subsurface composition are related. Resistivity data were obtained in two locations by using the array in an expanding dipole-dipole configuration with 2.5 meter dipoles. The depth to the ice/water boundary was calculated using a "cumulative resistivity" plot and matched the depths obtained via the ice drill to within 2%. This has initiated work to develop a microcontroller-based resistivity array specialized for thickness measurements of thin ice.
NASA Astrophysics Data System (ADS)
Hino, R.; Kinoshita, M.; Araki, E.; Byrne, T. B.; McNeill, L. C.; Saffer, D. M.; Eguchi, N. O.; Takahashi, K.; Toczko, S.
2009-12-01
A series of scientific drilling expeditions is in operation in the Nankai Trough to reveal the faulting mechanism of the magathrust earthquakes, through clarifying composition, fine structure, mechanical behavior, and environmental variables of the seismogenic faults. In the studied area, extensive seismic surveys for site characterization have been made to image detailed geometry of the fault complex in the accretionary prism as well as Vp distribution around the faults. Although these previous surveys provided invaluable information for understanding seismotectonic processes in this subduction zone, more complete knowledge is needed to be acquired to predict dynamic behavior of the faults, such as geometrical irregularities in short wavelength, Vs and seismic attenuation which are sensitive to fluid distribution in and around fault zones. It is expected that estimation of these parameters would be improved considerably by a seismic exploration using a vertical array of seismographs installed in a deep borehole (VSP: vertical seismic profiling). In July 2009, we made a VSP at one of the drilling sites located just above the rupture area of the 1994 Tonankai Earthquake (M 8.1), during the IODP Exp.319. The well site of our VSP was made by the riser drilling of D/V Chikyu. The seismic array, lowered from Chikyu into the hole, was composed of a three-component accelerometer and vertical separation of the array elements was 15.12 m. The VSP was composed of offset VSP and zero-offset VSP. In the offset VSP, a tuned airgun array towed by R/V Kairei was shot along one straight line (walk-away VSP) and another circular line (walk-around VSP) and seismic signals were recorded by an array consisting of 16 elements installed from 907 to 1,135 m in depth from seafloor. The object of the walk-away VSP is to obtain fine image of the faults using reflection arrivals with less attenuation. It is also expected to obtain spatial variation of Vs from arrival time tomography of refracted S waves. For this purpose, we preferred extraordinarily longer (~ 30 km) offset shooting than usual industrial VSPs. Shot spacing was 60 m along the same line as the previous 3D reflection and OBS wide angle surveys. The radius of circle of the walk-around VSP was 3.5 km to detect azimuthal anisotropy of downgoing P and S waves, correlated to stress state around the site. In zero-offset VSP, shots just above the hole were recorded by the 8 element array moving from 0 to 1,135 mbsf along the hole so that seismic structure with comparable vertical resolution as core-log information would be obtained. In the records of the walk-away VSP, clear first arrivals as well as several evident later arrivals were clearly identified. The later phases contain the reflection from the megasplay fault and the refracted S wave through the accretional prism, on both of which we have significant interest. The walk-around VSP also provided us with high S/N records but detailed data reduction, such as velocity analysis using vertical array, are required to derive anisotropic nature of the formation around the hole.
Hajizadeh-Safar, M; Ghorbani, M; Khoshkharam, S; Ashrafi, Z
2014-07-01
Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc(99_m) activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using semiconductor P-N detectors such as P-NiO:Li, N-SnO2 :F for gamma detection could be possibly applicable for design of a one dimension array configuration with suitable spatial resolution of 2.7 mm for nuclear medicine imaging.
Dahl, Peter H; Plant, William J; Dall'Osto, David R
2013-09-01
Results of an experiment to measure vertical spatial coherence from acoustic paths interacting once with the sea surface but at perpendicular azimuth angles are presented. The measurements were part of the Shallow Water 2006 program that took place off the coast of New Jersey in August 2006. An acoustic source, frequency range 6-20 kHz, was deployed at depth 40 m, and signals were recorded on a 1.4 m long vertical line array centered at depth 25 m and positioned at range 200 m. The vertical array consisted of four omni-directional hydrophones and vertical coherences were computed between pairs of these hydrophones. Measurements were made over four source-receiver bearing angles separated by 90°, during which sea surface conditions remained stable and characterized by a root-mean-square wave height of 0.17 m and a mixture of swell and wind waves. Vertical coherences show a statistically significant difference depending on source-receiver bearing when the acoustic frequency is less than about 12 kHz, with results tending to fade at higher frequencies. This paper presents field observations and comparisons of these observations with two modeling approaches, one based on bistatic forward scattering and the other on a rough surface parabolic wave equation utilizing synthetic sea surfaces.
Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.
Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N
2016-06-01
The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920 ps) together with a compact footprint (4.15 mm2) and optical loss <27 dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.
Hershberger, W A; Stewart, M R; Laughlin, N K
1976-05-01
Motion projections (pictures) simulating a horizontal array of vertical lines rotating in depth about its central vertical line were observed by 24 college students who rotated a crank handle in the direction of apparent rotation. All displays incorporated contradictory motion perspective: Whereas the perspective transformation in the vertical (y) dimension stimulated one direction of rotation, the transformation in the horizontal (x) dimension simulated the opposite direction. The amount of perspective in each dimension was varied independently of the other by varying the projection ratio used for each dimension. We used the same five ratios for each dimension, combining them factorially to generate the 25 displays. Analysis of variance of the duration of crank turning which agreed with y-axis information yielded main effects of both x and y projection ratios but no interaction, revealing that x- and y-axis motion perspectives mediate kinetic depth effects which are functionally independent.
Parallel and series FED microstrip array with high efficiency and low cross polarization
NASA Technical Reports Server (NTRS)
Huang, John (Inventor)
1995-01-01
A microstrip array antenna for vertically polarized fan beam (approximately 2 deg x 50 deg) for C-band SAR applications with a physical area of 1.7 m by 0.17 m comprises two rows of patch elements and employs a parallel feed to left- and right-half sections of the rows. Each section is divided into two segments that are fed in parallel with the elements in each segment fed in series through matched transmission lines for high efficiency. The inboard section has half the number of patch elements of the outboard section, and the outboard sections, which have tapered distribution with identical transmission line sections, terminated with half wavelength long open-circuit stubs so that the remaining energy is reflected and radiated in phase. The elements of the two inboard segments of the two left- and right-half sections are provided with tapered transmission lines from element to element for uniform power distribution over the central third of the entire array antenna. The two rows of array elements are excited at opposite patch feed locations with opposite (180 deg difference) phases for reduced cross-polarization.
Rhesus monkeys (Macaca mulatta) map number onto space
Drucker, Caroline B.; Brannon, Elizabeth M.
2014-01-01
Humans map number onto space. However, the origins of this association, and particularly the degree to which it depends upon cultural experience, are not fully understood. Here we provide the first demonstration of a number-space mapping in a non-human primate. We trained four adult male rhesus macaques (Macaca mulatta) to select the fourth position from the bottom of a five-element vertical array. Monkeys maintained a preference to choose the fourth position through changes in the appearance, location, and spacing of the vertical array. We next asked whether monkeys show a spatially-oriented number mapping by testing their responses to the same five-element stimulus array rotated ninety degrees into a horizontal line. In these horizontal probe trials, monkeys preferentially selected the fourth position from the left, but not the fourth position from the right. Our results indicate that rhesus macaques map number onto space, suggesting that the association between number and space in human cognition is not purely a result of cultural experience and instead has deep evolutionary roots. PMID:24762923
Vertical flows of supergranular and mesogranular scale observed on the sun with OSO 8
NASA Technical Reports Server (NTRS)
November, L. J.; Toomre, J.; Gebbie, K. B.; Simon, G. W.
1982-01-01
A program of observations was carried out in order to study the penetration of supergranular flows over a broad range of heights in the solar atmosphere. Steady Doppler velocities are determined from observations of a Si II spectral line using the Ultraviolet Spectrometer on the Orbiting Solar Observatory 8 (OSO 8) satellite and Fe I and Mg I lines with the diode-array instrument on the vacuum telescope at Sacramento Peak Observatory (SPO). The heights of formation of these spectral lines span about 1400 km or nearly 11 density scale heights from the photosphere to the middle chromosphere. Steady vertical flows on spatial scales typical of supergranulation and mesogranulation have been detected in the middle chromosphere with OSO 8. The patterns of intensity and steady velocity of granular scale are reproducible in successive data sets. The patterns appear to evolve slowly over the 9 hr period spanned by six orbits.
Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics
2014-01-01
Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°). PMID:25435833
Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics.
Kayes, Md Imrul; Leu, Paul W
2014-01-01
Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).
Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites
Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN
2010-07-27
Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.
Experimental research on femto-second laser damaging array CCD cameras
NASA Astrophysics Data System (ADS)
Shao, Junfeng; Guo, Jin; Wang, Ting-feng; Wang, Ming
2013-05-01
Charged Coupled Devices (CCD) are widely used in military and security applications, such as airborne and ship based surveillance, satellite reconnaissance and so on. Homeland security requires effective means to negate these advanced overseeing systems. Researches show that CCD based EO systems can be significantly dazzled or even damaged by high-repetition rate pulsed lasers. Here, we report femto - second laser interaction with CCD camera, which is probable of great importance in future. Femto - second laser is quite fresh new lasers, which has unique characteristics, such as extremely short pulse width (1 fs = 10-15 s), extremely high peak power (1 TW = 1012W), and especially its unique features when interacting with matters. Researches in femto second laser interaction with materials (metals, dielectrics) clearly indicate non-thermal effect dominates the process, which is of vast difference from that of long pulses interaction with matters. Firstly, the damage threshold test are performed with femto second laser acting on the CCD camera. An 800nm, 500μJ, 100fs laser pulse is used to irradiate interline CCD solid-state image sensor in the experiment. In order to focus laser energy onto tiny CCD active cells, an optical system of F/5.6 is used. A Sony production CCDs are chose as typical targets. The damage threshold is evaluated with multiple test data. Point damage, line damage and full array damage were observed when the irradiated pulse energy continuously increase during the experiment. The point damage threshold is found 151.2 mJ/cm2.The line damage threshold is found 508.2 mJ/cm2.The full-array damage threshold is found to be 5.91 J/cm2. Although the phenomenon is almost the same as that of nano laser interaction with CCD, these damage thresholds are substantially lower than that of data obtained from nano second laser interaction with CCD. Then at the same time, the electric features after different degrees of damage are tested with electronic multi meter. The resistance values between clock signal lines are measured. Contrasting the resistance values of the CCD before and after damage, it is found that the resistances decrease significantly between the vertical transfer clock signal lines values. The same results are found between the vertical transfer clock signal line and the earth electrode (ground).At last, the damage position and the damage mechanism were analyzed with above results and SEM morphological experiments. The point damage results in the laser destroying material, which shows no macro electro influence. The line damage is quite different from that of point damage, which shows deeper material corroding effect. More importantly, short circuits are found between vertical clock lines. The full array damage is even more severe than that of line damage starring with SEM, while no obvious different electrical features than that of line damage are found. Further researches are anticipated in femto second laser caused CCD damage mechanism with more advanced tools. This research is valuable in EO countermeasure and/or laser shielding applications.
Rhesus monkeys (Macaca mulatta) map number onto space.
Drucker, Caroline B; Brannon, Elizabeth M
2014-07-01
Humans map number onto space. However, the origins of this association, and particularly the degree to which it depends upon cultural experience, are not fully understood. Here we provide the first demonstration of a number-space mapping in a non-human primate. We trained four adult male rhesus macaques (Macaca mulatta) to select the fourth position from the bottom of a five-element vertical array. Monkeys maintained a preference to choose the fourth position through changes in the appearance, location, and spacing of the vertical array. We next asked whether monkeys show a spatially-oriented number mapping by testing their responses to the same five-element stimulus array rotated ninety degrees into a horizontal line. In these horizontal probe trials, monkeys preferentially selected the fourth position from the left, but not the fourth position from the right. Our results indicate that rhesus macaques map number onto space, suggesting that the association between number and space in human cognition is not purely a result of cultural experience and instead has deep evolutionary roots. Copyright © 2014 Elsevier B.V. All rights reserved.
The graphics and data acquisition software package
NASA Technical Reports Server (NTRS)
Crosier, W. G.
1981-01-01
A software package was developed for use with micro and minicomputers, particularly the LSI-11/DPD-11 series. The package has a number of Fortran-callable subroutines which perform a variety of frequently needed tasks for biomedical applications. All routines are well documented, flexible, easy to use and modify, and require minimal programmer knowledge of peripheral hardware. The package is also economical of memory and CPU time. A single subroutine call can perform any one of the following functions: (1) plot an array of integer values from sampled A/D data, (2) plot an array of Y values versus an array of X values; (3) draw horizontal and/or vertical grid lines of selectable type; (4) annotate grid lines with user units; (5) get coordinates of user controlled crosshairs from the terminal for interactive graphics; (6) sample any analog channel with program selectable gain; (7) wait a specified time interval, and (8) perform random access I/O of one or more blocks of a sequential disk file. Several miscellaneous functions are also provided.
NASA Astrophysics Data System (ADS)
Minami, K.; Yamamoto, M.; Nishimura, T.; Nakahara, H.; Shiomi, K.
2013-12-01
Seismic interferometry using vertical borehole arrays is a powerful tool to estimate the shallow subsurface structure and its time lapse changes. However, the wave fields surrounding borehole arrays are non-isotropic due to the existence of ground surface and non-uniform distribution of sources, and do not meet the requirements of the seismic interferometry in a strict sense. In this study, to examine differences between wave fields of coda waves and ambient noise, and to estimate their effects on the results of seismic interferometry, we conducted a temporal seismic experiment using zero-offset and offset vertical arrays. We installed two 3-components seismometers (hereafter called Surface1 and Surface2) at the ground surface in the vicinity of NIED Iwanuma site (Miyagi Pref., Japan). Surface1 is placed just above the Hi-net downhole seismometer whose depth is 101 m, and Surface2 is placed 70 m away from Surface1. To extract the wave propagation between these 3 seismometers, we compute the cross-correlation functions (CCFs) of coda-wave and ambient noise for each pair of the zero-offset vertical (Hi-net-Surface1), finite-offset vertical (Hi-net-Surface2), and horizontal (Surface1-Surface2) arrays. We use the frequency bands of 4-8, 8-16 Hz in the CCF computation. The characteristics of obtained CCFs are summarized as follows; (1) in all frequency bands, the peak lag times of CCFs from coda waves are almost the same between the vertical and offset-vertical arrays irrespective of different inter-station distance, and those for the horizontal array are around 0 s. (2) the peak lag times of CCFs from ambient noise show slight differences, that is, those obtained from the vertical array are earlier than those from the offset-vertical array, and those from the horizontal array are around 0.05 s. (3) the peak lag times of CCFs for the vertical array obtained from ambient noise analyses are earlier than those from the coda-wave analyses. These results indicate that wave fields of coda-wave are mainly composed of vertically propagating waves, while those of ambient noise are composed of both vertically and horizontally propagating waves. To explain these characteristics of the CCFs obtained from different wave fields, we conducted a numerical simulation of interferometry based on the concept of stationary phase. Here, we assume isotropic upward incidence of SV-wave into a homogeneous half-space, and compute CCFs for the zero-offset and finite-offset vertical arrays by taking into account the reflection and conversion of P-SV waves at the free surface. Due to the effectively non-isotropic wave field, the simulated CCF for the zero-offset vertical array shows slight delay in peak lag time and its amplitudes decrease in the acausal part. On the other hand, the simulated CCF for finite-offset vertical array shows amplitude decrease and no peak lag time shift. These results are consistent with the difference in peak lag times obtained from coda-wave and ambient noise analyses. Our observations and theoretical consideration suggest that the careful consideration of wave fields is important in the application of seismic interferometry to borehole array data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovell, Jack, E-mail: jack.lovell@durham.ac.uk; Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB; Naylor, Graham
A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of themore » JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.« less
640x480 PtSi Stirling-cooled camera system
NASA Astrophysics Data System (ADS)
Villani, Thomas S.; Esposito, Benjamin J.; Davis, Timothy J.; Coyle, Peter J.; Feder, Howard L.; Gilmartin, Harvey R.; Levine, Peter A.; Sauer, Donald J.; Shallcross, Frank V.; Demers, P. L.; Smalser, P. J.; Tower, John R.
1992-09-01
A Stirling cooled 3 - 5 micron camera system has been developed. The camera employs a monolithic 640 X 480 PtSi-MOS focal plane array. The camera system achieves an NEDT equals 0.10 K at 30 Hz frame rate with f/1.5 optics (300 K background). At a spatial frequency of 0.02 cycles/mRAD the vertical and horizontal Minimum Resolvable Temperature are in the range of MRT equals 0.03 K (f/1.5 optics, 300 K background). The MOS focal plane array achieves a resolution of 480 TV lines per picture height independent of background level and position within the frame.
Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei; ...
2017-05-11
As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei
As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.
High-resolution bottom-loss estimation using the ambient-noise vertical coherence function.
Muzi, Lanfranco; Siderius, Martin; Quijano, Jorge E; Dosso, Stan E
2015-01-01
The seabed reflection loss (shortly "bottom loss") is an important quantity for predicting transmission loss in the ocean. A recent passive technique for estimating the bottom loss as a function of frequency and grazing angle exploits marine ambient noise (originating at the surface from breaking waves, wind, and rain) as an acoustic source. Conventional beamforming of the noise field at a vertical line array of hydrophones is a fundamental step in this technique, and the beamformer resolution in grazing angle affects the quality of the estimated bottom loss. Implementation of this technique with short arrays can be hindered by their inherently poor angular resolution. This paper presents a derivation of the bottom reflection coefficient from the ambient-noise spatial coherence function, and a technique based on this derivation for obtaining higher angular resolution bottom-loss estimates. The technique, which exploits the (approximate) spatial stationarity of the ambient-noise spatial coherence function, is demonstrated on both simulated and experimental data.
An FPGA-based bolometer for the MAST-U Super-X divertor.
Lovell, Jack; Naylor, Graham; Field, Anthony; Drewelow, Peter; Sharples, Ray
2016-11-01
A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.
Vertical directivities of seismic arrays on the ground surface
NASA Astrophysics Data System (ADS)
Shiraishi, H.; Asanuma, H.
2012-12-01
Microtremor survey method (MSM) is a technique to estimate subsurface velocity structures by inverting phase velocities of the surface waves in the microtremors. We can explorer the S-wave velocity structures at significantly lower expenses by the MSM than the conventional geophysical techniques because of its passive nature. Coherent waves across an array are identified in the MSM, and, therefore, all the existing velocity inversion methods have been deduced under an implicit assumption of horizontal velocity structure. However, it is expected that the development of the 3D inversion theory would drastically enhance applicability and reliability of the MSM. We, hence, investigated the characteristics of vertical directivities of the arrays deployed on the ground surface as an initial step for deriving the 3D MSM. We have firstly examined the response of an elemental two sensor array to which plane waves propagates from the deep crust with a certain angle of incident, and then examined the characteristics of several types of arrays, including triangular and circular arrays to clarify the characteristics of practical arrays. Real part of the complex coherence function, which has been derived to evaluate coherence of the Rayleigh wave between sensors for plane waves (Shiraishi et al., 2006), has been applied for this investigation. Our results showed that the directivity varies according to a parameter kr ( k : wave number, r : separation of the sensors ). A vertical directivity of two sensor array at kr = π shows a rotationally-symmetrical shape (Figure (a)). In contrast, an equilateral triangle array has a conspicuous directivity toward the vertical direction (cf. Figure (b)). This divergence suggests that the shape of the vertical directivity significantly depend on the geometry, and a sharp directivity toward just beneath the array can be realized by designing the vertical directivity. We concluded from this study that 3D MSM is feasible and further study to investigate measurement and processing theories will be made by the authors. An example of the vertical directivity at kr=π. Red circles represent the sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y., E-mail: liu.yang@nifs.ac.jp; Zhang, H. M.; Morita, S.
Two space-resolved extreme ultraviolet spectrometers working in wavelength ranges of 10-130 Å and 30-500 Å have been utilized to observe the full vertical profile of tungsten line emissions by simultaneously measuring upper- and lower-half plasmas of LHD, respectively. The radial profile of local emissivity is reconstructed from the measured vertical profile in the overlapped wavelength range of 30-130 Å and the up-down asymmetry is examined against the local emissivity profiles of WXXVIII in the unresolved transition array spectrum. The result shows a nearly symmetric profile, suggesting a good availability in the present diagnostic method for the impurity asymmetry study.
Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Matthew T., E-mail: matthew.johnson.9@us.af.mil; Siriani, Dominic F.; Peun Tan, Meng
2013-11-11
Coherently coupled vertical-cavity surface-emitting laser arrays offer unique advantages for nonmechanical beam steering applications. We have applied dynamic coupled mode theory to show that the observed temporal phase shift between vertical-cavity surface-emitting array elements is caused by the detuning of their resonant wavelengths. Hence, a complete theoretical connection between the differential current injection into array elements and the beam steering direction has been established. It is found to be a fundamentally unique beam-steering mechanism with distinct advantages in efficiency, compactness, speed, and phase-sensitivity to current.
NASA Astrophysics Data System (ADS)
Ogasawara, Ryosuke; Endoh, Tetsuo
2018-04-01
In this study, with the aim to achieve a wide noise margin and an excellent power delay product (PDP), a vertical body channel (BC)-MOSFET-based six-transistor (6T) static random access memory (SRAM) array is evaluated by changing the number of pillars in each part of a SRAM cell, that is, by changing the cell ratio in the SRAM cell. This 60 nm vertical BC-MOSFET-based 6T SRAM array realizes 0.84 V operation under the best PDP and up to 31% improvement of PDP compared with the 6T SRAM array based on a 90 nm planar MOSFET whose gate length and channel width are the same as those of the 60 nm vertical BC-MOSFET. Additionally, the vertical BC-MOSFET-based 6T SRAM array achieves an 8.8% wider read static noise margin (RSNM), a 16% wider write margin (WM), and an 89% smaller leakage. Moreover, it is shown that changing the cell ratio brings larger improvements of RSNM, WM, and write time in the vertical BC-MOSFET-based 6T SRAM array.
Ranging bowhead whale calls in a shallow-water dispersive waveguide.
Abadi, Shima H; Thode, Aaron M; Blackwell, Susanna B; Dowling, David R
2014-07-01
This paper presents the performance of three methods for estimating the range of broadband (50-500 Hz) bowhead whale calls in a nominally 55-m-deep waveguide: Conventional mode filtering (CMF), synthetic time reversal (STR), and triangulation. The first two methods use a linear vertical array to exploit dispersive propagation effects in the underwater sound channel. The triangulation technique used here, while requiring no knowledge about the propagation environment, relies on a distributed array of directional autonomous seafloor acoustics recorders (DASARs) arranged in triangular grid with 7 km spacing. This study uses simulations and acoustic data collected in 2010 from coastal waters near Kaktovik, Alaska. At that time, a 12-element vertical array, spanning the bottom 63% of the water column, was deployed alongside a distributed array of seven DASARs. The estimated call location-to-array ranges determined from CMF and STR are compared with DASAR triangulation results for 19 whale calls. The vertical-array ranging results are generally within ±10% of the DASAR results with the STR results providing slightly better agreement. The results also indicate that the vertical array can range calls over larger ranges and with greater precision than the particular distributed array discussed here, whenever the call locations are beyond the distributed array boundaries.
Method to improve near-field nonlinearity of a high-power diode laser array on a microchannel cooler
NASA Astrophysics Data System (ADS)
Zhang, Hongyou; Jia, Yangtao; Cai, Wanshao; Tao, Chunhua; Zah, Chung-en; Liu, Xingsheng
2018-03-01
Due to thermal stress, each emitter in a semiconductor laser bar or array is vertically displaced along the p-n junction; the result is that each emitter is not in a line, called near-field nonlinearity. Near-field nonlinearity along a laser bar (also known as "SMILE" effect) degrades the laser beam brightness, which causes an adverse effect on optical coupling and beam shaping. A large SMILE value causes a large divergence angle after collimation and a wider line after collimation and focusing. We simulate the factors affecting the SMILE value of a high-power diode laser array on a microchannel cooler (MCC). According to the simulation results, we have fabricated a series of laser bars bonded on MCCs with lower SMILE value. After simulation and experiment analysis, we found the key factor to affect SMILE is the deformation of the thin MCC because of the distribution of strain and stress in it. We also decreased the SMILE value of 1-cm-wide full bar AuSn bonded on MCCs from 12 to 1 μm by balancing force on MCC to minimize the deformation.
Liu, D.; Heidbrink, W. W.; Tritz, K.; ...
2016-07-29
A compact and multi-view solid state neutral particle analyzer (SSNPA) diagnostic based on silicon photodiode arrays has been successfully tested on the National Spherical Torus Experiment-Upgrade. The SSNPA diagnostic provides spatially, temporally, and pitch-angle resolved measurements of fast-ion distribution by detecting fast neutral flux resulting from the charge exchange (CX) reactions. The system consists of three 16-channel subsystems: t-SSNPA viewing the plasma mid-radius and neutral beam (NB) line #2 tangentially, r-SSNPA viewing the plasma core and NB line #1 radially, and p-SSNPA with no intersection with any NB lines. Due to the setup geometry, the active CX signals of t-SSNPAmore » and r-SSNPA are mainly sensitive to passing and trapped particles, respectively. Additionally, both t-SSNPA and r-SSNPA utilize three vertically stacked arrays with different filter thicknesses to obtain coarse energy information. The experimental data show that all channels are operational. The signal to noise ratio is typically larger than 10, and the main noise is x-ray induced signal. The active and passive CX signals are clearly observed on t-SSNPA and r-SSNPA during NB modulation. The SSNPA data also indicate significant losses of passing particles during sawteeth, while trapped particles are weakly affected. Fluctuations up to 120 kHz have been observed on SSNPA, and they are strongly correlated with magnetohydrodynamics instabilities.« less
NASA Astrophysics Data System (ADS)
Kuang, A. Q.; Brunner, D.; LaBombard, B.; Leccacorvi, R.; Vieira, R.
2018-04-01
An array of flush-mounted and toroidally elongated Langmuir probes (henceforth called rail probes) have been specifically designed for the Alcator C-Mod's vertical target plate divertor and operated over multiple campaigns. The "flush" geometry enables the tungsten electrodes to survive high heat flux conditions in which traditional "proud" tungsten electrodes suffer damage from melting. The toroidally elongated rail-like geometry reduces the influence of sheath expansion, which is an important effect to consider in the design and interpretation of flush-mounted Langmuir probes. The new rail probes successfully operated during C-Mod's FY2015 and FY2016 experimental campaigns with no evidence of damage, despite being regularly subjected to heat flux densities parallel to the magnetic field exceeding ˜1 GW m-2 for short periods of time. A comparison between rail and proud probe data indicates that sheath expansion effects were successfully mitigated by the rail design, extending the use of these Langmuir probes to incident magnetic field line angles as low as 0.5°.
A multilayer microdevice for cell-based high-throughput drug screening
NASA Astrophysics Data System (ADS)
Liu, Chong; Wang, Lei; Xu, Zheng; Li, Jingmin; Ding, Xiping; Wang, Qi; Chunyu, Li
2012-06-01
A multilayer polydimethylsiloxane microdevice for cell-based high-throughput drug screening is described in this paper. This established microdevice was based on a modularization method and it integrated a drug/medium concentration gradient generator (CGG), pneumatic microvalves and a cell culture microchamber array. The CGG was able to generate five steps of linear concentrations with the same outlet flow rate. The medium/drug flowed through CGG and then into the pear-shaped cell culture microchambers vertically. This vertical perfusion mode was used to reduce the impact of the shear stress on the physiology of cells induced by the fluid flow in the microchambers. Pear-shaped microchambers with two arrays of miropillars at each outlet were adopted in this microdevice, which were beneficial to cell distribution. The chemotherapeutics Cisplatin (DDP)-induced Cisplatin-resistant cell line A549/DDP apoptotic experiments were performed well on this platform. The results showed that this novel microdevice could not only provide well-defined and stable conditions for cell culture, but was also useful for cell-based high-throughput drug screening with less reagents and time consumption.
Quadruples in the Four-Number Game with Large Termination Times
ERIC Educational Resources Information Center
Yueh, Wen-Chyuan; Cheng, Sui Sun
2002-01-01
The discrete dynamical system of absolute differences defined by the map [psi]( x[subscript 1] , x[subscript 2] , x[subscript 3] , x[subscript 4] ) = ([vertical line] x[subscript 2] - x[subscript 1] [vertical line], [vertical line] x[subscript 3] - x[subscript 2] [vertical line], [vertical line] x[subscript 4] - x[subscript 3] [vertical line],…
Cruise Report: Long-Range Ocean Acoustic Propagation EXperiment (LOAPEX)
2005-04-01
starboard side was used. Both ends of the slip line shown ran through the crane hook to keep them vertical; a strip of masking tape was put around the...2150-3550 m nominal) with a 20-element, 700-in long array (3570- 4270 m nominal) to span the lower caustics in the acoustic arrival pattern with a...during the cruise. The critical equipment belonging to the ship included the stem A-frame, starboard A-frame, both of the ship’s cranes , CTD/rosette
Hybrid indirect/direct contactor for thermal management of counter-current processes
Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel
2018-03-20
The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.
Mariano, Marina; Rodríguez, Francisco J.; Romero-Gomez, Pablo; Kozyreff, Gregory; Martorell, Jordi
2014-01-01
We propose the use of whispering gallery mode coupling in a novel configuration based on implementing a thin film cell on the backside of an array of parallel fibers. We performed numerical calculations using the parameters of a thin film organic cell which demonstrate that light coupling becomes more effective as the angle for the incident light relative to the fiber array normal increases up to an optimal angle close to 55 deg. At this angle the power conversion efficiency of the fiber array solar cell we propose becomes 30% times larger than the one from an equivalent planar cell configuration. We demonstrate that the micro fiber array solar cell we propose may perform an effective partial tracking of the sun movement for over 100 degrees without any mechanical help. In addition, in the event that such fiber array cell would be installed with the adequate orientation on a vertical façade, an optimal photon-to-charge conversion would be reached for sunlight incident at 55 deg with respect to the horizon line, very close to the yearly average position for the sun at Latitude of 40 deg.
Ground Motion Analysis of Co-Located DAS and Seismometer Sensors
NASA Astrophysics Data System (ADS)
Wang, H. F.; Fratta, D.; Lord, N. E.; Lancelle, C.; Thurber, C. H.; Zeng, X.; Parker, L.; Chalari, A.; Miller, D.; Feigl, K. L.; Team, P.
2016-12-01
The PoroTomo research team deployed 8700-meters of Distributed Acoustic Sensing (DAS) cable in a shallow trench and 400-meters in a borehole at Brady Hot Springs, Nevada in March 2016 together with an array of 246, three-component geophones. The seismic sensors occupied a natural laboratory 1500 x 500 x 400 meters overlying the Brady geothermal field. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100-meters in length and geophones were spaced at approximately 50-m intervals. In several line segments, geophones were co-located within one meter of the DAS cable. Both DAS and the conventional geophones recorded continuously over 15 days. A large Vibroseis truck (T-Rex) provided the seismic source at approximately 250 locations outside and within the array. The Vibroseis protocol called for excitation in one vertical and two orthogonal horizontal directions at each location. For each mode, three, 5-to-80-Hz upsweeps were made over 20 seconds. In addition, a moderate-sized earthquake with a local magnitude of 4.3 was recorded on March 21, 2016. Its epicenter was approximately 150-km away. Several DAS line segments with co-located geophone stations were used to test relationships between the strain rate recorded by DAS and ground velocity recorded by the geophones.
Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability
NASA Astrophysics Data System (ADS)
Wang, Ya-Qiao; Lyu, Shu-Shen; Luo, Jia-Li; Luo, Zhi-Yong; Fu, Yuan-Xiang; Heng, Yi; Zhang, Jian-Hui; Mo, Dong-Chuan
2017-11-01
Micro pin fin arrays have been widely used in electronic cooling, micro reactors, catalyst support, and wettability modification and so on, and a facile way to produce better micro pin fin arrays is demanded. Herein, a simple electrochemical method has been developed to fabricate copper vertical micro dendrite fin arrays (Cu-VMDFA) with controllable shapes, number density and height. High copper sulphate concentration is one key point to make the dendrite stand vertically. Besides, the applied current should rise at an appropriate rate to ensure the copper dendrite can grow vertically on its own. The Cu-VMDFA can significantly enhance the heat transfer coefficient by approximately twice compared to the plain copper surface. The Cu-VMDFA may be widely used in boiling heat transfer areas such as nuclear power plants, electronic cooling, heat exchangers, and so on.
Plasmonic Properties of Vertically Aligned Nanowire Arrays
2012-01-01
scattering (SERS) applications. In this investigation, two types of vertical NW arrays were studied; those of ZnO NWs grown on nanosphere lithography...plasmonic nanowires to investigate this SERS effect. Here we used two types of vertical NWs, ZnO NWs, and Si NWs, respectively, to investigate SERS...successfully grow vertically aligned ZnO nanowires by the well-known VLS process. In this way, the ZnO NWs can be arranged in a repeatable hexagonal pattern
NASA Astrophysics Data System (ADS)
An, Nam Hyun; Ryu, Sang Hoon; Chun, Ho Hwan; Lee, Inwon
2014-03-01
In this study, an experimental investigation has been made of the applicability of outer-layer vertical blades to real ship model. After first devised by Hutchins and Choi (2003), the outer-layer vertical blades demonstrated its effectiveness in reducing total drag of flat plate (Park et al., 2011) with maximum drag reduction of 9.6%. With a view to assessing the effect in the flow around a ship, the arrays of outer-layer vertical blades have been installed onto the side bottom and flat bottom of a 300k KVLCC model. A series of towing tank test has been carried out to investigate resistance (CTM) reduction efficiency and improvement of stern wake distribution with varying geometric parameters of the blades array. The installation of vertical blades led to the CTM reduction of 2.15~2.76% near the service speed. The nominal wake fraction was affected marginally by the blades array and the axial velocity distribution tended to be more uniform by the blades array.
NASA Technical Reports Server (NTRS)
Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.
2002-01-01
The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. Attached to the canister are the red umbilical lines that maintain the controlled environment inside. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
2000-11-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. Attached to the canister are the red umbilical lines that maintain the controlled environment inside. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST
Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J
2013-02-28
This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.
Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.
Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe
2017-03-01
Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyan; Tang, Dan; Huang, Kangrong; Hu, Die; Zhang, Fengyuan; Gao, Xingsen; Lu, Xubing; Zhou, Guofu; Zhang, Zhang; Liu, Junming
2016-04-01
In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 1010 cm-2) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices.
Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer
NASA Astrophysics Data System (ADS)
Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles
2012-11-01
For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).
Improving green enrichment of virgin olive oil by oregano. Effects on antioxidants.
Peñalvo, Gregorio Castañeda; Robledo, Virginia Rodríguez; Callado, Carolina Sánchez-Carnerero; Santander-Ortega, M J; Castro-Vázquez, L; Lozano, M Victoria; Arroyo-Jiménez, M M
2016-04-15
This work is about improvement of a maceration method in order to achieve a green process for the enrichment of virgin olive oil (VOO) with natural antioxidants, specifically from oregano leaves. This goal was accomplished after evaluating different mechanical methods, i.e. magnetic stirring, sonication, vertical stirring and sonication in combination with vertical stirring, for promoting the extraction of the antioxidants from oregano. The results obtained indicated that the best extraction procedure was vertical stirring at 1000 r.p.m. for 3 h. Therefore, these conditions were selected to enrich VOO with phenolic acids (mainly rosmarinic acid) and endogenous antioxidants (o-coumaric and vanillic acids), and further determine their stability at room temperature or under temperature stress (50°C) during 45 days. Quantitative analysis of rosmarinic, o-coumaric and vanillic acids was carried out by an off-line, solid phase extraction, capillary zone, electrophoresis method combined with diode-array detector (SPE-CE-DAD). Copyright © 2015 Elsevier Ltd. All rights reserved.
Wavelength shift in vertical cavity laser arrays on a patterned substrate
NASA Astrophysics Data System (ADS)
Eng, L. E.; Bacher, K.; Yuen, W.; Larson, M.; Ding, G.; Harris, J. S., Jr.; Chang-Hasnain, C. J.
1995-03-01
The authors demonstrate a spatially chirped emission wavelength in vertical cavity surface emitting laser (VCSEL) arrays grown by molecular beam epitaxy. The wavelength shift is due to a lateral thickness variation in the Al(0.2)Ga(0.8)As cavity, which is induced by a substrate temperature profile during growth. A 20 nm shift in lasing wavelength is obtained in a VCSEL array.
The Urbana coherent-scatter radar: Synthesis and first results
NASA Technical Reports Server (NTRS)
Gibbs, K. P.; Bowhill, S. A.
1979-01-01
A coherent scatter radar system was synthesized and several hundred hours of echo power and line of sight velocity data obtained. The coherent scatter radar utilizes a diode array and components from meteor radar. The receiving system permits a time resolution of one minute in the data. Echo power from the D region shows a high degree of variability from day to day. Examples of changes in power level at shorter time scales are observed. Velocity data show the existence of gravity waves and occasionally exhibit vertical standing wave characteristics.
NASA Astrophysics Data System (ADS)
Gui, Zhou; Wang, Xian; Liu, Jian; Yan, Shanshan; Ding, Yanyan; Wang, Zhengzhou; Hu, Yuan
2006-07-01
On the basis of the highly oriented ZnO nanoparticle nanoribbons as the growth seed layer (GSL) and solution growth technique, we have synthesized vertical ZnO nanorod arrays with high density over a large area and multi-teeth brush nanostructure, respectively, according to the density degree of the arrangement of nanoparticle nanoribbons GSL on the glass substrate. This controllable and convenient technique opens the possibility of creating nanostructured film for industrial fabrication and may represent a facile way to get similar structures of other compounds by using highly oriented GSL to promote the vertical arrays growth. The growth mechanism of the formation of the ordered nanorod arrays is also discussed. The second-order nonlinear optical coefficient d31 of the vertical ZnO nanorod arrays measured by the Maker fringes technique is 11.3 times as large as that of d36 KH 2PO 4 (KDP).
NASA Astrophysics Data System (ADS)
Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin
2015-03-01
Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.
Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin
2015-01-01
Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.
Multi-band infrared camera systems
NASA Astrophysics Data System (ADS)
Davis, Tim; Lang, Frank; Sinneger, Joe; Stabile, Paul; Tower, John
1994-12-01
The program resulted in an IR camera system that utilizes a unique MOS addressable focal plane array (FPA) with full TV resolution, electronic control capability, and windowing capability. Two systems were delivered, each with two different camera heads: a Stirling-cooled 3-5 micron band head and a liquid nitrogen-cooled, filter-wheel-based, 1.5-5 micron band head. Signal processing features include averaging up to 16 frames, flexible compensation modes, gain and offset control, and real-time dither. The primary digital interface is a Hewlett-Packard standard GPID (IEEE-488) port that is used to upload and download data. The FPA employs an X-Y addressed PtSi photodiode array, CMOS horizontal and vertical scan registers, horizontal signal line (HSL) buffers followed by a high-gain preamplifier and a depletion NMOS output amplifier. The 640 x 480 MOS X-Y addressed FPA has a high degree of flexibility in operational modes. By changing the digital data pattern applied to the vertical scan register, the FPA can be operated in either an interlaced or noninterlaced format. The thermal sensitivity performance of the second system's Stirling-cooled head was the best of the systems produced.
Highly uniform and vertically aligned SnO2 nanochannel arrays for photovoltaic applications
NASA Astrophysics Data System (ADS)
Kim, Jae-Yup; Kang, Jin Soo; Shin, Junyoung; Kim, Jin; Han, Seung-Joo; Park, Jongwoo; Min, Yo-Sep; Ko, Min Jae; Sung, Yung-Eun
2015-04-01
Nanostructured electrodes with vertical alignment have been considered ideal structures for electron transport and interfacial contact with redox electrolytes in photovoltaic devices. Here, we report large-scale vertically aligned SnO2 nanochannel arrays with uniform structures, without lateral cracks fabricated by a modified anodic oxidation process. In the modified process, ultrasonication is utilized to avoid formation of partial compact layers and lateral cracks in the SnO2 nanochannel arrays. Building on this breakthrough, we first demonstrate the photovoltaic application of these vertically aligned SnO2 nanochannel arrays. These vertically aligned arrays were directly and successfully applied in quasi-solid state dye-sensitized solar cells (DSSCs) as photoanodes, yielding reasonable conversion efficiency under back-side illumination. In addition, a significantly short process time (330 s) for achieving the optimal thickness (7.0 μm) and direct utilization of the anodized electrodes enable a simple, rapid and low-cost fabrication process. Furthermore, a TiO2 shell layer was coated on the SnO2 nanochannel arrays by the atomic layer deposition (ALD) process for enhancement of dye-loading and prolonging the electron lifetime in the DSSC. Owing to the presence of the ALD TiO2 layer, the short-circuit photocurrent density (Jsc) and conversion efficiency were increased by 20% and 19%, respectively, compared to those of the DSSC without the ALD TiO2 layer. This study provides valuable insight into the development of efficient SnO2-based photoanodes for photovoltaic application by a simple and rapid fabrication process.Nanostructured electrodes with vertical alignment have been considered ideal structures for electron transport and interfacial contact with redox electrolytes in photovoltaic devices. Here, we report large-scale vertically aligned SnO2 nanochannel arrays with uniform structures, without lateral cracks fabricated by a modified anodic oxidation process. In the modified process, ultrasonication is utilized to avoid formation of partial compact layers and lateral cracks in the SnO2 nanochannel arrays. Building on this breakthrough, we first demonstrate the photovoltaic application of these vertically aligned SnO2 nanochannel arrays. These vertically aligned arrays were directly and successfully applied in quasi-solid state dye-sensitized solar cells (DSSCs) as photoanodes, yielding reasonable conversion efficiency under back-side illumination. In addition, a significantly short process time (330 s) for achieving the optimal thickness (7.0 μm) and direct utilization of the anodized electrodes enable a simple, rapid and low-cost fabrication process. Furthermore, a TiO2 shell layer was coated on the SnO2 nanochannel arrays by the atomic layer deposition (ALD) process for enhancement of dye-loading and prolonging the electron lifetime in the DSSC. Owing to the presence of the ALD TiO2 layer, the short-circuit photocurrent density (Jsc) and conversion efficiency were increased by 20% and 19%, respectively, compared to those of the DSSC without the ALD TiO2 layer. This study provides valuable insight into the development of efficient SnO2-based photoanodes for photovoltaic application by a simple and rapid fabrication process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00202h
Study of Running Stability in Side-Suspended HTS-PMG Maglev Circular Line System
NASA Astrophysics Data System (ADS)
Zhou, Dajin; Zhao, Lifeng; Li, Linbo; Cui, Chenyu; Hsieh, Chang-Chun; Zhang, Yong; Guo, Jianqiang; Zhao, Yong
2017-07-01
A research on stability of the side-suspended HTS-PMG maglev circular line system is carried out through simulation experiment. The results show that the maglev vehicle will gradually get close to the track surface during acceleration under the action of centrifugal force, leading to decay of guidance force and occurrence of vertical eccentric motion. In case of linear array of YBa2Cu3O7-x (YBCO) bulks, the guidance force will be changed with the decreasing of the levitation gap. It can be suppressed through the complex arrangement of YBCO bulks. Fortunately, triangle array of YBCO bulks can effectively keep the guidance force constant and realize stable running during accelerating process of the prototype vehicle. Based on the research on stability of side-suspended maglev vehicle, a side-suspended PMG circular test track with diameter of 6.5 m and circumference of 20.4 m is successfully designed and established, enabling the prototype vehicle to run stably at up to 82.5 km/h under open atmosphere (9.6 × 104 Pa).
Offshore killer whale tracking using multiple hydrophone arrays.
Gassmann, Martin; Henderson, E Elizabeth; Wiggins, Sean M; Roch, Marie A; Hildebrand, John A
2013-11-01
To study delphinid near surface movements and behavior, two L-shaped hydrophone arrays and one vertical hydrophone line array were deployed at shallow depths (<125 m) from the floating instrument platform R/P FLIP, moored northwest of San Clemente Island in the Southern California Bight. A three-dimensional propagation-model based passive acoustic tracking method was developed and used to track a group of five offshore killer whales (Orcinus orca) using their emitted clicks. In addition, killer whale pulsed calls and high-frequency modulated (HFM) signals were localized using other standard techniques. Based on these tracks sound source levels for the killer whales were estimated. The peak to peak source levels for echolocation clicks vary between 170-205 dB re 1 μPa @ 1 m, for HFM calls between 185-193 dB re 1 μPa @ 1 m, and for pulsed calls between 146-158 dB re 1 μPa @ 1 m.
NASA Astrophysics Data System (ADS)
Wang, H. F.; Lord, N. E.; Zeng, X.; Fratta, D.; Feigl, K. L.; Team, P.
2016-12-01
The Porotomo research team deployed 8700-meters of Distributed Acoustic Sensing (DAS) cable in a shallow trench on the surface and 400 meters down a borehole at Brady Hot Springs, Nevada in March 2016. The goal of the experiment was to detect changes in geophysical properties associated with hydrologic changes. The DAS cable occupied a natural laboratory of 1500-by-500-by-400-meters overlying a commercial, geothermal field operated by Ormat Technologies. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 120-meters in length. A large Vibroseis truck (T-Rex) provided the seismic source with a sweep frequency between 5 and 80 Hz over 20 seconds. Over the 15 days of the experiment, the Vibroseis truck re-occupied approximately 250 locations outside and within the array days while changes were made in water reinjection from the power plant into wells in the field. At each source location, one vertical and two orthogonal horizontal modes were excited. Dispersion curves were constructed using MASW and a Vibroseis source location approximately in line with each DAS cable segment or from ambient noise correlation functions. Representative fence diagrams of S-wave profiles were constructed by inverting the dispersion curves obtained for several different line segments.
NASA Astrophysics Data System (ADS)
Wagner, A. M.; Lindsey, N.; Ajo Franklin, J. B.; Gelvin, A.; Saari, S.; Ekblaw, I.; Ulrich, C.; Dou, S.; James, S. R.; Martin, E. R.; Freifeld, B. M.; Bjella, K.; Daley, T. M.
2016-12-01
We present preliminary results from an experimental study targeting the use of passive fiber-optic distributed temperature sensing (DTS) in a variety of geometries to estimate moisture content evolution in a dynamic permafrost system. A 4 km continuous 2D array of multi-component fiber optic cable (6 SM/6 MM) was buried at the Fairbanks Permafrost Experiment Station to investigate the possibility of using fiber optic distributed sensing as an early detection system for permafrost thaw. A heating experiment using 120 60 Watt heaters was conducted in a 140 m2 area to artificially thaw the topmost section of permafrost. The soils at the site are primarily silt but some disturbed areas include backfilled gravel to depths of approximately 1.0 m. Where permafrost exists, the depth to permafrost ranges from 1.5 to approximately 5 m. The experiment was also used to spatially estimate soil water content distribution throughout the fiber optic array. The horizontal fiber optic cable was buried at depths between 10 and 20 cm. Soil temperatures were monitored with a DTS system at 25 cm increments along the length of the fiber. At five locations, soil water content time-domain reflectometer (TDR) probes were also installed at two depths, in line with the fiber optic cable and 15 to 25 cm below the cable. The moisture content along the fiber optic array was estimated using diurnal effects from the dual depth temperature measurements. In addition to the horizontally installed fiber optic cable, vertical lines of fiber optic cable were also installed inside and outside the heater plot to a depth of 10 m in small diameter (2 cm) boreholes. These arrays were installed in conjunction with thermistor strings and are used to monitor the thawing process and to cross correlate with soil temperatures at the depth of the TDR probes. Results will be presented from the initiation of the artificial thawing through subsequent freeze-up. A comparison of the DTS measured temperatures and thermistors in vertically installed PVC pipes will also be shown. Initial results from a thermal model of the artificial heating experiment and the model's correlation to the actual soil temperature measurements will also be presented. These results show the possibility of using fiber optic cable to measure moisture contents along a longer array with only limited control points.
Vertically aligned carbon nanotubes for microelectrode arrays applications.
Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric
2012-09-01
In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.
Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching
NASA Astrophysics Data System (ADS)
Chun, Dong Won; Kim, Tae Kyoung; Choi, Duyoung; Caldwell, Elizabeth; Kim, Young Jin; Paik, Jae Cheol; Jin, Sungho; Chen, Renkun
2016-11-01
In this work, vertically aligned Si nanowire arrays were fabricated by magnetically guided metal-assisted directional chemical etching. Using an anodized aluminum oxide template as a shadow mask, nanoscale Ni dot arrays were fabricated on an Si wafer to serve as a mask to protect the Si during the etching. For the magnetically guided chemical etching, we deposited a tri-layer metal catalyst (Au/Fe/Au) in a Swiss-cheese configuration and etched the sample under the magnetic field to improve the directionality of the Si nanowire etching and increase the etching rate along the vertical direction. After the etching, the nanowires were dried with minimal surface-tension-induced aggregation by utilizing a supercritical CO2 drying procedure. High-resolution transmission electron microscopy (HR-TEM) analysis confirmed the formation of single-crystal Si nanowires. The method developed here for producing vertically aligned Si nanowire arrays could find a wide range of applications in electrochemical and electronic devices.
Chen, Bingan; Zhong, Guofang; Oppenheimer, Pola Goldberg; Zhang, Can; Tornatzky, Hans; Esconjauregui, Santiago; Hofmann, Stephan; Robertson, John
2015-02-18
We have systematically studied the macroscopic adhesive properties of vertically aligned nanotube arrays with various packing density and roughness. Using a tensile setup in shear and normal adhesion, we find that there exists a maximum packing density for nanotube arrays to have adhesive properties. Too highly packed tubes do not offer intertube space for tube bending and side-wall contact to surfaces, thus exhibiting no adhesive properties. Likewise, we also show that the surface roughness of the arrays strongly influences the adhesion properties and the reusability of the tubes. Increasing the surface roughness of the array strengthens the adhesion in the normal direction, but weakens it in the shear direction. Altogether, these results allow progress toward mimicking the gecko's vertical mobility.
Zhang, Xiaoyan; Tang, Dan; Huang, Kangrong; Hu, Die; Zhang, Fengyuan; Gao, Xingsen; Lu, Xubing; Zhou, Guofu; Zhang, Zhang; Liu, Junming
2016-12-01
In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 10(10) cm(-2)) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices.
Simulating wind and marine hydrokinetic turbines with actuator lines in RANS and LES
NASA Astrophysics Data System (ADS)
Bachant, Peter; Wosnik, Martin
2015-11-01
As wind and marine hydrokinetic (MHK) turbine designs mature, focus is shifting towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow or horizontal-axis turbines, or taking advantage of constructive wake interaction for cross-flow or vertical-axis turbines. Towards this goal, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An additional sub-model is considered for injecting turbulence model scalar quantities based on actuator line element loading. Results are presented for the simulation of performance and wake dynamics of axial- and cross-flow turbines and compared with moderate Reynolds number experiments and body-fitted mesh, blade-resolving CFD. Work supported by NSF-CBET grant 1150797.
Fiber Bragg Grating Array as a Quasi Distributed Temperature Sensor for Furnace Boiler Applications
NASA Astrophysics Data System (ADS)
Reddy, P. Saidi; Prasad, R. L. N. Sai; Sengupta, D.; Shankar, M. Sai; Srimannarayana, K.; Kishore, P.; Rao, P. Vengal
2011-10-01
This paper presents the experimental work on distributed temperature sensing making use of Fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of temperature profile in high temperature boilers. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λB1 = 1547.28 nm, λB2 = 1555.72 nm, λB3 = 1550.84 nm, λB4 = 1545.92 nm) written in hydrogen loaded fiber in line with a spacing of 15 cm between them. All the FBGs are encapsulated inside a stainless steel tube for avoiding micro cracks using rigid probe technique. The spatial distribution of temperature profile inside a prototype boiler has been measured experimentally both in horizontal and vertical directions employing the above sensor and the results are presented.
First results of the Colombia Lightning Mapping Array
NASA Astrophysics Data System (ADS)
López, Jesus; Montanyà, Joan; van der Velde, Oscar; Romero, David; Fabró, Ferran; Taborda, John; Aranguren, Daniel; Torres, Horacio
2016-04-01
In April 2015 the 3D Lightning Mapping Array (COLMA) network was installed on Santa Marta area (north of Colombia). The COLMA maps VHF radio emissions of lightning leaders in three dimensions by the time-of-arrival technique (Rison et al., 1999). This array has six sensors with base lines between 5 km to 20 km. The COLMA is the first VHF 3D network operating in the tropics and it has been installed in the frame of ASIM (Atmosphere-Space Interactions Monitor) ESA's mission in order to investigate the electrical characteristics of tropical thunderstorms favorable for the production of Terrestrial Gamma ray Flashes (TGF). In this paper we present COLMA data of several storms. We discuss lightning activity, lightning leader altitudes and thunderstorm charge structures compared to data form our ELMA (Ebro Lightning Mapping Array) at the north-east coast of Spain. The data confirm what we expected, lightning leaders can propagate at higher altitudes compared to mid latitude thunderstorms because the higher vertical development of tropical thunderstorms. A simple inspection of a ten minute period of the 16th of November of 2015 storm shows a tripolar electric charge structure. In that case, the midlevel negative charge region was located between 7 to 9 km. The structure presented a lower positive charge below the midlevel negative and centred at 6.5 km and an upper positive charge region extending from 9 km to slightly more than 15 km. This vertical extension of the upper positive charge where negative leaders evolve is significantly larger compared to the storms at the ELMA area in Spain. COLMA has shown frequent activity of negative leaders reaching altitudes of more than 15 km.
Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Yoo, Kwan-Hee; Baasantseren, Ganbat; Park, Jae-Hyeung; Kim, Eun-Soo; Kim, Nam
2014-04-15
We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.
Hou, Hong Q.; Coltrin, Michael E.; Choquette, Kent D.
2001-01-01
A process for forming an array of vertical cavity optical resonant structures wherein the structures in the array have different detection or emission wavelengths. The process uses selective area growth (SAG) in conjunction with annular masks of differing dimensions to control the thickness and chemical composition of the materials in the optical cavities in conjunction with a metalorganic vapor phase epitaxy (MOVPE) process to build these arrays.
Venus mesospheric winds and the carbon monoxide bulge
NASA Technical Reports Server (NTRS)
Gurwell, Mark A.; Muhleman, Duane O.; Shah, Kathryn Pierce
1992-01-01
Recently, our group mapped the CO absorption lines on the disk of Venus in 1988 using the synthetic aperture array at the Owens Valley Radio Observatory. Observations were make in the (0-1) rotational transition of CO at 115 GHz, or a wavelength of 2.6 mm. Systematic variations in the Doppler shifts of the lines (particularly near the limbs) enable the group to directly map the wind field at 100 plus or minus 10 km, the peak altitude for the experimental weighting functions used. These measurements show that the winds are indeed of the order of a 100 m/s at this altitude. Previously, many had assumed that the vertical wind profile would quickly fall to zero above the cloud tops, due to cyclostrophic breakdown. This work is reviewed.
Study of phase-locked diode laser array and DFB/DBR surface emitting laser diode
NASA Astrophysics Data System (ADS)
Hsin, Wei
New types of phased-array and surface-emitting lasers are designed. The importance and approaches (or structures) of different phased array and surface emitting laser diodes are reviewed. The following are described: (1) a large optical cavity channel substrate planar laser array with layer thickness chirping; (2) a vertical cavity surface emitter with distributed feedback (DFB) optical cavity and a transverse junction buried heterostructure; (3) a microcavity distributed Bragg reflector (DBR) surface emitter; and (4) two surface emitting laser structures which utilized lateral current injection schemes to overcome the problems occurring in the vertical injection scheme.
Fabrication of flexible and vertical silicon nanowire electronics.
Weisse, Jeffrey M; Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin
2012-06-13
Vertical silicon nanowire (SiNW) array devices directly connected on both sides to metallic contacts were fabricated on various non-Si-based substrates (e.g., glass, plastics, and metal foils) in order to fully exploit the nanomaterial properties for final applications. The devices were realized with uniform length Ag-assisted electroless etched SiNW arrays that were detached from their fabrication substrate, typically Si wafers, reattached to arbitrary substrates, and formed with metallic contacts on both sides of the NW array. Electrical characterization of the SiNW array devices exhibits good current-voltage characteristics consistent with the SiNW morphology.
Matrix addressable vertical cavity surface emitting laser array
NASA Astrophysics Data System (ADS)
Orenstein, M.; von Lehmen, A. C.; Chang-Hasnain, C.; Stoffel, N. G.; Harbison, J. P.
1991-02-01
The design, fabrication and characterization of 1024-element matrix-addressable vertical-cavity surface-emitting laser (VCSEL) arrays are described. A strained InGaAs quantum-well VCSEL structure was grown by MBE, and an array of 32 x 32 lasers was defined using a proton implantation process. A matrix addressing architecture was employed, which enables the individual addressing of each of the 1024 lasers using only 64 electrical contacts. All the lasers in the array, measured after the laser definition step, were operating with fairly homogeneous characteristics; threshold current of 6.8 mA and output quantum differential efficiency of about 8 percent.
NASA Astrophysics Data System (ADS)
Bargsten, Clayton; Hollinger, Reed; Shlyaptsev, Vyacheslav; Pukhov, Alexander; Keiss, David; Townsend, Amanda; Wang, Yong; Wang, Shoujun; Prieto, Amy; Rocca, Jorge
2014-10-01
We have demonstrated the volumetric heating of near-solid density plasmas to keV temperatures by ultra-high contrast femtosecond laser irradiation of arrays of vertically aligned nanowires with an average density up to 30% solid density. X-ray spectra show that irradiation of Ni and Au nanowire arrays with laser pulses of relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52 +) stages respectively. The penetration depth of the heat into the nanowire array was measured monitoring He-like Co lines from irradiated arrays in which the nanowires are composed of a Co segment buried under a selected length of Ni. The measurement shows the ionization reaches He-like Co for depth of up to 5 μm within the target. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. Scaling to higher laser intensities promises to create plasmas with temperatures and pressures approaching those in the center of the sun. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.
STS-97 P6 truss payload canister is lifted into payload changeout room
NASA Technical Reports Server (NTRS)
2000-01-01
On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. Attached to the canister are the red umbilical lines that maintain the controlled environment inside. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST.
Wu, Ren-Guei; Yang, Chung-Shi; Wang, Pen-Cheng; Tseng, Fan-Gang
2009-06-01
We present a micro-CEC chip carrying out a highly efficient separation of dsDNA fragments through vertically aligned multi-wall carbon nanotubes (MWCNTs) in a microchannel. The vertically aligned MWCNTs were grown directly in the microchannel to form straight nanopillar arrays as ordered and directional chromatographic supports. 1-Pyrenedodecanoic acid was employed for the surface modification of the MWCNTs' stationary phase to adsorb analytes by hydrophobic interactions. This device was used for separating dsDNA fragments of three different lengths (254, 360, and 572 bp), and fluorescence detection was employed to verify the electrokinetic transport in the MWCNT array. The micro-CEC separation of the three compounds was achieved in less than 300 s at a field strength of 66 V/cm due to superior laminar flow patterns and a lower flow resistance resulting from the vertically aligned MWCNTs being used as the stationary phase medium. In addition, a fivefold reduction of band broadening was obtained when the analyte was separated by the chromatographic MWCNT array channel instead of the CE channel. From all of the results, we suggest that an in situ grown and directional MWCNT array can potentially be useful for preparing more diversified forms of stationary phases for vertically efficient chip-based electrochromatography.
In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P
2012-09-25
We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.
Growth of Vertically Aligned ZnO Nanowire Arrays Using Bilayered Metal Catalysts
2012-01-01
12] J. P. Liu, C. X. Guo, C. M. Li et al., “Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and...cited. Vertically aligned, high-density ZnO nanowires (NWs) were grown for the first time on c-plane sapphire using binary alloys of Ni/Au or Cu/Au as...deleterious to the ZnO NW array growth. Significant improvement of the Au adhesion on the substrate was noted, opening the potential for direct
Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics.
Lin, Chenxi; Povinelli, Michelle L
2011-09-12
We design a partially aperiodic, vertically-aligned silicon nanowire array that maximizes photovoltaic absorption. The optimal structure is obtained using a random walk algorithm with transfer matrix method based electromagnetic forward solver. The optimal, aperiodic structure exhibits a 2.35 times enhancement in ultimate efficiency compared to its periodic counterpart. The spectral behavior mimics that of a periodic array with larger lattice constant. For our system, we find that randomly-selected, aperiodic structures invariably outperform the periodic array.
Resolution of Port/Starboard Ambiguity Using a Linear Array of Triplets and a Twin-Line Planar Array
2016-06-01
STARBOARD AMBIGUITY USING A LINEAR ARRAY OF TRIPLETS AND A TWIN- LINE PLANAR ARRAY by Stilson Veras Cardoso June 2016 Thesis Advisor...OF TRIPLETS AND A TWIN-LINE PLANAR ARRAY 5. FUNDING NUMBERS 6. AUTHOR(S) Stilson Veras Cardoso 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...A LINEAR ARRAY OF TRIPLETS AND A TWIN-LINE PLANAR ARRAY Stilson Veras Cardoso Civilian, Brazilian Navy B.S., University of Brasília, 1993
2014-01-01
Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy layer over hydrothermally synthesized vertical ZnO nanorod array by controlled pulsed current electropolymerization of pyrrole monomer under surfactant action. The vertical PPy nanotube arrays of different tube diameter are created by selective etching of the ZnO nanorod core in ammonia solution for different periods. Cyclic voltammetry studies show high areal-specific capacitance approximately 240 mF.cm-2 for open pore and approximately 180 mF.cm-2 for narrow 30-to-36-nm diameter PPy nanotube arrays attributed to intensive faradic processes arising from enhanced access of electrolyte ions through nanotube interior and exterior. Impedance spectroscopy studies show that capacitive response extends over larger frequency domain in electrodes with PPy nanotube structure. Simulation of Nyquist plots by electrical equivalent circuit modeling establishes that 3-D nanostructure is better represented by constant phase element which accounts for the inhomogeneous electrochemical redox processes. Charge-discharge studies at different current densities establish that kinetics of the redox process in PPy nanotube electrode is due to the limitation on electron transport rather than the diffusive process of electrolyte ions. The PPy nanotube electrodes show deep discharge capability with high coulomb efficiency and long-term charge-discharge cyclic studies show nondegrading performance of the specific areal capacitance tested for 5,000 cycles. PMID:25246867
Currents in the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Azari, A.; Eidietis, N. W.
2012-10-01
Loss of vertical control of an elongated tokamak plasma results in a vertical displacement event (VDE) which can induce large currents on open field lines and exert high JxB forces on in-vessel components. An array of first-wall tile current monitors on DIII-D provides direct measurement of the poloidal halo currents. These measurements are analyzed to create a database of halo current magnitude and asymmetry, which are found to lie within the ranges seen by numerous other tokamaks in the ITPA Disruption Database. In addition, an analysis of halo asymmetry rotation is presented, as rotation at the resonance frequencies of in-vessel components could lead to significant amplification of the halo forces. Halo current rotation is found to be far more prevalent in old (1997-2002) DIII-D halo current data than recent data (2009), perhaps due to a change in divertor geometry over that time.
Fabrication and gas sensing properties of vertically aligned Si nanowires
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Kang, Sung Yong; Choi, Sun-Woo; Kwon, Yong Jung; Choi, Myung Sik; Bang, Jae Hoon; Kim, Sang Sub; Kim, Hyoun Woo
2018-01-01
In this study, a peculiar configuration for a gas sensor consisting of vertically aligned silicon nanowires (VA-Si NWs) synthesized by metal-assisted chemical etching (MACE) is reported. Si NWs were prepared via a facile MACE method and subsequent thermal annealing. Etching was performed by generation of silver nanoparticles (Ag NPs) and subsequent etching in HF/H2O2 aqueous solution; the growth conditions were optimized by changing the process parameters. Highly vertically oriented arrays of Si NWs with a straight-line morphology were obtained, and a top-top electrode configuration was applied. The VA-Si NW gas sensor showed good sensing performance, and the VA-Si NWs exhibited a remarkable response (Rg/Ra = 11.5 ∼ 17.1) to H2 gas (10-50 ppm) at 100 °C which was the optimal working temperature. The formation mechanism and gas sensing mechanism of VA-Si NWs are described. The obtained results can suggest new approaches to making inexpensive, versatile, and portable sensors based on Si NWs having a novel top-top electrode structure that are fully compatible with well-developed Si technologies.
Number Prompts Left-to-Right Spatial Mapping in Toddlerhood
ERIC Educational Resources Information Center
McCrink, Koleen; Perez, Jasmin; Baruch, Erica
2017-01-01
Toddlers performed a spatial mapping task in which they were required to learn the location of a hidden object in a vertical array and then transpose this location information 90° to a horizontal array. During the vertical training, they were given (a) no labels, (b) alphabetical labels, or (c) numerical labels for each potential spatial location.…
2007-02-12
KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister is lifted up to the payload changeout room on the rotating service structure (RSS) on Launch Pad 39A The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. Once inside the PCR, the S3/S4 arrays will be transferred into Space Shuttle Atlantis' payload bay after the vehicle has rolled out to the pad. The changeout room is the enclosed, environmentally controlled portion of the RSS that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett
2007-02-12
KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister is lifted up to the payload changeout room on the rotating service structure (RSS) on Launch Pad 39A The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. Once inside the PCR, the S3/S4 arrays will be transferred into Space Shuttle Atlantis' payload bay after the vehicle has rolled out to the pad. The changeout room is the enclosed, environmentally controlled portion of the RSS that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett
2007-02-12
KENNEDY SPACE CENTER, FLA. -- With umbilical lines still attached, the payload canister is lifted up to the payload changeout room on the rotating service structure (RSS) on Launch Pad 39A The canister contains the S3/S4 integrated truss for mission STS-117 to the International Space Station aboard Space Shuttle Atlantis. Once inside the PCR, the S3/S4 arrays will be transferred into Space Shuttle Atlantis' payload bay after the vehicle has rolled out to the pad. The changeout room is the enclosed, environmentally controlled portion of the RSS that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Kim Shiflett
Growth and applicability of radiation-responsive silica nanowires
NASA Astrophysics Data System (ADS)
Bettge, Martin
Surface energetics play an important role in processes on the nanoscale. Nanowire growth via vapor-liquid-solid (VLS) mechanism is no exception in this regard. Interfacial and line energies are found to impose some fundamental limits during three-phase nanowire growth and lead to formation of stranded nanowires with fascinating characteristics such as high responsiveness towards ion irradiation. By using two materials with a relatively low surface energy (indium and silicon oxide) this is experimentally and theoretically demonstrated in this doctoral thesis. The augmentation of VLS nanowire growth with ion bombardment enables fabrication of vertically aligned silica nanowires over large areas. Synthesis of their arrays begins with a thin indium film deposited on a Si or SiO 2 surface. At temperatures below 200ºC, the indium film becomes a self-organized seed layer of molten droplets, receiving a flux of atomic silicon by DC magnetron sputtering. Simultaneous vigorous ion bombardment through substrate biasing aligns the growing nanowires vertically and expedites mixing of oxygen and silicon into the indium. The vertical growth rate can reach up to 1000 nm-min-1 in an environment containing only argon and traces of water vapor. Silicon oxide precipitates from each indium seed in the form of multiple thin strands having diameters less than 9 nm and practically independent of droplet size. The strands form a single loose bundle, eventually consolidating to form one vertically aligned nanowire. These observations are in stark contrast to conventional VLS growth in which one liquid droplet precipitates a single solid nanowire and in which the precipitated wire diameter is directly proportional to the droplet diameter. The origin of these differences is revealed through a detailed force balance analysis, analogous to Young's relation, at the three-phase line. The liquid-solid interfacial energy of indium/silica is found to be the largest energy contribution at the three-phase line with 670-850 mJ-m-2. Our analysis further reveals the existence of an additional force at this line that behaves as a negative line tension (or line energy). Its contribution is relatively small, but important for stable and small nanowire growth. The value of the line tension lies in the range of -0.1 to -1.0 nJ-m-1. Spontaneous alignment of these stranded, free-standing wires toward a source of directional ion irradiation is proposed to be driven by local surface area minimization. An intuitive model for this is provided and experimentally verified through post-growth reorientation of nanowire patterns over a wide range of angles with standard focused ion beam instrumentation. Ion-induced orientation control and modification of nanowire arrays might prove to be a powerful method for nanoscale surface engineering, potentially leading to surfaces with well-organized anisotropic topographies. Another potential application of aligned silica nanowires as templates for highly textured electrodes in lithium-ion batteries is also discussed. As textured thin films are expected to provide better cycle life and enhanced charge transport, their electrochemical performance is compared to planar thin films of equal mass using two secondary materials (amorphous silicon and lithium manganese oxide). Both materials are applied directly onto the wire arrays by conventional deposition tools and galvanostatically cycled against metallic lithium. Textured silicon films, for use as negative materials, show improved capacity retention compared to planar thin films. Capacity fade is found to be relatively constant at about 0.8% per cycle over 30 cycles. Significant charge trapping occurred due to massive formation of a solid-electrolyteinterface. Electrochemical cycling and impedance spectroscopy further demonstrate that kinetic and electrochemical behavior of the electrode is qualitatively similar for planar and for highly textured silicon thin films. Textured films of lithium manganese oxide (LiMn2O4), for use as positive materials, retain their unique texture after 30 cycles, as verified by scanning and transmission electron microscopy. Some accelerated capacity fade is however observed and attributed to chemical dissolution of the oxide material. Frequency-dependent impedances of textured oxide films are lower than those for planar films. These findings suggest that thin film texturing can indeed enhance some of the material's electrochemical performance characteristics and can be applied to a wide range of materials through use of appropriate nanostructured templates. In summary, this dissertation outlines physical and chemical factors leading to the formation of free-standing and uniquely stranded nanowires. It also provides an outlook on how ion-induced nanowire bending and alignment could be exploited. Key technological advantages of the developed process are refractory nanowire growth at low substrate temperatures and the ability to form radiation-responsive nanowire arrays without the use of lithography or templates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, D., E-mail: deyongl@uci.edu; Heidbrink, W. W.; Hao, G. Z.
A compact and multi-view solid state neutral particle analyzer (SSNPA) diagnostic based on silicon photodiode arrays has been successfully tested on the National Spherical Torus Experiment-Upgrade. The SSNPA diagnostic provides spatially, temporally, and pitch-angle resolved measurements of fast-ion distribution by detecting fast neutral flux resulting from the charge exchange (CX) reactions. The system consists of three 16-channel subsystems: t-SSNPA viewing the plasma mid-radius and neutral beam (NB) line #2 tangentially, r-SSNPA viewing the plasma core and NB line #1 radially, and p-SSNPA with no intersection with any NB lines. Due to the setup geometry, the active CX signals of t-SSNPAmore » and r-SSNPA are mainly sensitive to passing and trapped particles, respectively. In addition, both t-SSNPA and r-SSNPA utilize three vertically stacked arrays with different filter thicknesses to obtain coarse energy information. The experimental data show that all channels are operational. The signal to noise ratio is typically larger than 10, and the main noise is x-ray induced signal. The active and passive CX signals are clearly observed on t-SSNPA and r-SSNPA during NB modulation. The SSNPA data also indicate significant losses of passing particles during sawteeth, while trapped particles are weakly affected. Fluctuations up to 120 kHz have been observed on SSNPA, and they are strongly correlated with magnetohydrodynamics instabilities.« less
Design and performance of a horizontal mooring for upper-ocean research
Grosenbaugh, Mark; Anderson, Steven; Trask, Richard; Gobat, Jason; Paul, Walter; Butman, Bradford; Weller, Robert
2002-01-01
This paper describes the design and performance of a two-dimensional moored array for sampling horizontal variability in the upper ocean. The mooring was deployed in Massachusetts Bay in a water depth of 84 m for the purpose of measuring the horizontal structure of internal waves. The mooring was instrumented with three acoustic current meters (ACMs) spaced along a 170-m horizontal cable that was stretched between two subsurface buoys 20 m below the sea surface. Five 25-m-long vertical instrument strings were suspended from the horizontal cable. A bottom-mounted acoustic Doppler current profiler (ADCP) was deployed nearby to measure the current velocity throughout the water column. Pressure sensors mounted on the subsurface buoys and the vertical instrument strings were used to measure the vertical displacements of the array in response to the currents. Measurements from the ACMs and the ADCP were used to construct time-dependent, two-dimensional current fields. The current fields were used as input to a numerical model that calculated the deformation of the array with respect to the nominal zero-current configuration. Comparison of the calculated vertical offsets of the downstream subsurface buoy and downstream vertical instrument string with the pressure measurements were used to verify the numerical code. These results were then used to estimate total deformation of the array due to the passage of the internal waves. Based on the analysis of the three internal wave events with the highest measured vertical offsets, it is concluded that the geometry of the main structure (horizontal cable and anchor legs) was kept to within ±2.0 m, and the geometry of the vertical instrument strings was kept to within ±4.0 m except for one instance when the current velocity reached 0.88 m s−1.
NASA Astrophysics Data System (ADS)
Matthews, Scott T.
1991-12-01
The natural convection heat transfer characteristics of a 3 x 3 array of vertically oriented heated protrusions, immersed in a dielectric liquid, were investigated. Aluminum blocks, 24 x 8 x 6 mm, were used to simulate 20 pin dual in-line packages. Surface temperature measurements of the components were made by imbedding copper-constantan thermocouples below the surface of each component face. A constant heat flux was provided to each component using an Inconel foil heating element. Power supplied to each component varied from 0.115 to 2.90 W. The aluminum blocks were mounted on a plexiglass substrate to form a 3 x 3 array of simulated electronic components. The circuit board containing the components was placed in a rectangular, plexiglass enclosure with inner dimensions: L = 203.2 mm H = 152.0 mm W = 82.6 mm, and a wall thickness of 25.4 mm. The upper boundary was maintained at 10 C, while all other exterior surfaces were insulated. The chamber width, measured from the surface of the circuit board to the opposite, inner wall of the enclosure, was varied from 42 to 7 mm by inserting plexiglass spacers into the enclosure. Two dielectric liquids, FC-75 and FC-43, were used as working fluids. Nondimensional data from this study was combined with the data obtained for a horizontal component orientation, to develop an empirical correlation which predicts the Nusselt number as a function of Rayleigh number, Prandtl number, component orientation, and chamber width.
NASA Astrophysics Data System (ADS)
Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin
2018-05-01
Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0 nM and 50 mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids.
High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning.
Plissard, S; Larrieu, G; Wallart, X; Caroff, P
2011-07-08
We report and detail a method to achieve growth of vertical self-catalyzed GaAs nanowires directly on Si(111) with a near-perfect vertical yield, using electron-beam-defined arrays of holes in a dielectric layer and molecular beam epitaxy. In our conditions, GaAs nanowires are grown along a vapor-liquid-solid mechanism, using in situ self-forming Ga droplets. The focus of this paper is to understand the role of the substrate preparation and of the pre-growth conditioning. Without changing temperature or the V/III ratio, the yield of vertical nanowires is increased incrementally up to 95%. The possibility to achieve very dense arrays, with center-to-center inter-wire distances less than 100 nm, is demonstrated.
Van Uffelen, Lora J; Worcester, Peter F; Dzieciuch, Matthew A; Rudnick, Daniel L; Colosi, John A
2010-04-01
Deep acoustic shadow-zone arrivals observed in the late 1990s in the North Pacific Ocean reveal significant acoustic energy penetrating the geometric shadow. Comparisons of acoustic data obtained from vertical line arrays deployed in conjunction with 250-Hz acoustic sources at ranges of 500 and 1000 km from June to November 2004 in the North Pacific, with simulations incorporating scattering consistent with the Garrett-Munk internal-wave spectrum, are able to describe both the energy contained in and vertical extent of deep shadow-zone arrivals. Incoherent monthly averages of acoustic timefronts indicate that lower cusps associated with acoustic rays with shallow upper turning points (UTPs), where sound-speed structure is most variable and seasonally dependent, deepen from June to October as the summer thermocline develops. Surface-reflected rays, or those with near-surface UTPs, exhibit less scattering due to internal waves than in later months when the UTP deepens. Data collected in November exhibit dramatically more vertical extension than previous months. The depth to which timefronts extend is a complex combination of deterministic changes in the depths of the lower cusps as the range-average profiles evolve with seasonal change and of the amount of scattering, which depends on the mean vertical gradients at the depths of the UTPs.
Deformations and Rotational Ground Motions Inferred from Downhole Vertical Array Observations
NASA Astrophysics Data System (ADS)
Graizer, V.
2017-12-01
Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole vertical arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole vertical arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was observed at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was observed at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from vertical array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of vertical ground velocity is similar to the scaled tilt spectrum. Amplitudes of rotations at the site depend upon the size of the base and usually decrease with depth. They are also amplified by soft material. Earthquake data used in this study were downloaded from the Center for Engineering Strong Motion Data at http://www.strongmotioncenter.org/.
Field emission from in situ-grown vertically aligned SnO2 nanowire arrays
2012-01-01
Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters. PMID:22330800
Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.
Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming
2016-08-25
Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.
NASA Astrophysics Data System (ADS)
Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael
This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.
Air-bridged Ohmic contact on vertically aligned si nanowire arrays: application to molecule sensors.
Han, Hee; Kim, Jungkil; Shin, Ho Sun; Song, Jae Yong; Lee, Woo
2012-05-02
A simple, cost-effective, and highly reliable method for constructing an air-bridged electrical contact on large arrays of vertically aligned nanowires was developed. The present method may open up new opportunities for developing advanced nanowire-based devices for energy harvest and storage, power generation, and sensing applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Does gravity influence the visual line bisection task?
Drakul, A; Bockisch, C J; Tarnutzer, A A
2016-08-01
The visual line bisection task (LBT) is sensitive to perceptual biases of visuospatial attention, showing slight leftward (for horizontal lines) and upward (for vertical lines) errors in healthy subjects. It may be solved in an egocentric or allocentric reference frame, and there is no obvious need for graviceptive input. However, for other visual line adjustments, such as the subjective visual vertical, otolith input is integrated. We hypothesized that graviceptive input is incorporated when performing the LBT and predicted reduced accuracy and precision when roll-tilted. Twenty healthy right-handed subjects repetitively bisected Earth-horizontal and body-horizontal lines in darkness. Recordings were obtained before, during, and after roll-tilt (±45°, ±90°) for 5 min each. Additionally, bisections of Earth-vertical and oblique lines were obtained in 17 subjects. When roll-tilted ±90° ear-down, bisections of Earth-horizontal (i.e., body-vertical) lines were shifted toward the direction of the head (P < 0.001). However, after correction for vertical line-bisection errors when upright, shifts disappeared. Bisecting body-horizontal lines while roll-tilted did not cause any shifts. The precision of Earth-horizontal line bisections decreased (P ≤ 0.006) when roll-tilted, while no such changes were observed for body-horizontal lines. Regardless of the trial condition and paradigm, the scanning direction of the bisecting cursor (leftward vs. rightward) significantly (P ≤ 0.021) affected line bisections. Our findings reject our hypothesis and suggest that gravity does not modulate the LBT. Roll-tilt-dependent shifts are instead explained by the headward bias when bisecting lines oriented along a body-vertical axis. Increased variability when roll-tilted likely reflects larger variability when bisecting body-vertical than body-horizontal lines. Copyright © 2016 the American Physiological Society.
Head wave correlations in ambient noise.
Gebbie, John; Siderius, Martin
2016-07-01
Ambient ocean noise is processed with a vertical line array to reveal coherent time-separated arrivals suggesting the presence of head wave multipath propagation. Head waves, which are critically propagating water waves created by seabed waves traveling parallel to the water-sediment interface, can propagate faster than water-only waves. Such eigenrays are much weaker than water-only eigenrays, and are often completely overshadowed by them. Surface-generated noise is different whereby it amplifies the coherence between head waves and critically propagating water-only waves, which is measured by cross-correlating critically steered beams. This phenomenon is demonstrated both experimentally and with a full wave simulation.
Cross-flow turbines: physical and numerical model studies towards improved array simulations
NASA Astrophysics Data System (ADS)
Wosnik, M.; Bachant, P.
2015-12-01
Cross-flow, or vertical-axis turbines, show potential in marine hydrokinetic (MHK) and wind energy applications. As turbine designs mature, the research focus is shifting from individual devices towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow turbines, or taking advantage of constructive wake interaction for cross-flow turbines. Numerical simulations are generally better suited to explore the turbine array design parameter space, as physical model studies of large arrays at large model scale would be expensive. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries, the turbines' interaction with the energy resource needs to be parameterized, or modeled. Most models in use today, e.g. actuator disk, are not able to predict the unique wake structure generated by cross-flow turbines. Experiments were carried out using a high-resolution turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier--Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An additional sub-model is considered for injecting turbulence model scalar quantities based on actuator line element loading. Results are presented for the simulation of performance and wake dynamics of axial- and cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET grant 1150797.
Diameter modulation of vertically aligned single-walled carbon nanotubes.
Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo
2012-08-28
We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.
Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin
2018-05-05
Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0nM and 50mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Bargiel, Sylwester; Lullin, Justine; Lemoal, Patrice; Perrin, Stéphane; Passilly, Nicolas; Albero, Jorge; Froehly, Luc; Lardet-Vieudrin, Franck; Gorecki, Christophe
2016-04-01
In this paper, we present construction, fabrication and characterization of an electrostatic MOEMS vertical microscanner for generation of an optical phase shift in array-type interferometric microsystems. The microscanner employs asymmetric comb-drives for a vertical displacement of a large 4x4 array of reference micromirrors and for in-situ position sensing. The device is designed to be fully compatible with Mirau configuration and with vertical integration strategy. This enables further integration of the device within an "active" multi-channel Mirau micro-interferometer and implementation of the phase shifting interferometry (PSI) technique for imaging applications. The combination of micro-interferometer and PSI is particularly interesting in the swept-source optical coherence tomography, since it allows not only strong size reduction of a system but also improvement of its performance (sensitivity, removal of the image artefacts). The technology of device is based on double-side DRIE of SOI wafer and vapor HF releasing of the suspended platform. In the static mode, the device provides vertical displacement of micromirrors up to 2.8μm (0 - 40V), whereas at resonance (fo=500 Hz), it reaches 0.7 μm for only 1VDC+1VAC. In both operation modes, the measured displacement is much more than required for PSI implementation (352nm peak-to-peak). The presented device is a key component of array-type Mirau micro-interferometer that enables the construction of portable, low-cost interferometric systems, e.g. for in vivo medical diagnostics.
Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays
2011-01-01
Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices. PMID:27502660
NASA Astrophysics Data System (ADS)
Saito, Hideaki; Ogura, Ichiro; Sugimoto, Yoshimasa; Kasahara, Kenichi
1995-05-01
The monolithic incorporation and performance of vertical-cavity surface-emitting lasers (VCSELs) emitting at two distinct wavelengths, which were suited for application to wavelength division multiplexing (WDM) systems were reported. The monolithic integration of two-wavelength VCSEL arrays was achieved by using mask molecular beam epitaxy. This method can generate arrays that have the desired integration area size and wavelength separation.
A dimensional comparison between embedded 3D-printed and silicon microchannels
NASA Astrophysics Data System (ADS)
O'Connor, J.; Punch, J.; Jeffers, N.; Stafford, J.
2014-07-01
The subject of this paper is the dimensional characterization of embedded microchannel arrays created using contemporary 3D-printing fabrication techniques. Conventional microchannel arrays, fabricated using deep reactive ion etching techniques (DRIE) and wet-etching (KOH), are used as a benchmark for comparison. Rectangular and trapezoidal cross-sectional shapes were investigated. The channel arrays were 3D-printed in vertical and horizontal directions, to examine the influence of print orientation on channel characteristics. The 3D-printed channels were benchmarked against Silicon channels in terms of the following dimensional characteristics: cross-sectional area (CSA), perimeter, and surface profiles. The 3D-printed microchannel arrays demonstrated variances in CSA of 6.6-20% with the vertical printing approach yielding greater dimensional conformity than the horizontal approach. The measured CSA and perimeter of the vertical channels were smaller than the nominal dimensions, while the horizontal channels were larger in both CSA and perimeter due to additional side-wall roughness present throughout the channel length. This side-wall roughness caused significant shape distortion. Surface profile measurements revealed that the base wall roughness was approximately the resolution of current 3D-printers. A spatial periodicity was found along the channel length which appeared at different frequencies for each channel array. This paper concludes that vertical 3D-printing is superior to the horizontal printing approach, in terms of both dimensional fidelity and shape conformity and can be applied in microfluidic device applications.
Not Available
1981-10-27
An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.
Drost, M. Kevin
1983-01-01
An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.
High-Isolation Low Cross-Polarization Phased-Array Antenna for MPAR Application
NASA Astrophysics Data System (ADS)
Saeidi-Manesh, Hadi; Karimkashi, Shaya; Zhang, Guifu; Doviak, Richard J.
2017-12-01
The design and analysis of 12 × 12-element planar array of a dual-polarized aperture-coupled microstrip patch antenna operating in the frequency band of 2.7 GHz to 3.0 GHz for multifunction applications are presented. High-isolation between horizontal and vertical polarization ports and low cross-polarization are achieved through an aperture-coupled feed. The reflection coefficient and the isolation of horizontal and vertical ports at different scan angles are examined. The array antenna is fabricated and its radiation patterns are measured in the far-field and near-field chambers. The embedded element pattern of designed element is measured in the near-field chamber and is used for calculating the array scanning radiation pattern.
NASA Technical Reports Server (NTRS)
Ackerman, Thomas P.
1994-01-01
The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.
Extended field observations of cirrus clouds using a ground-based cloud observing system
NASA Technical Reports Server (NTRS)
Ackerman, Thomas P.
1994-01-01
The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.
Two-dimensional fluid droplet arrays generated using a single nozzle
Lee, Eric R.; Perl, Martin L.
1999-11-02
Amplitudes of drive pulses received by a horizontally-placed dropper determine the horizontal displacements of droplets relative to an ejection aperture of the dropper. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.
Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells
Hanson, Lindsey; Zhao, Wenting; Lou, Hsin-Ya; Lin, Ziliang Carter; Lee, Seok Woo; Chowdary, Praveen; Cui, Yi; Cui, Bianxiao
2016-01-01
The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells. PMID:25984833
Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.
Han, Zhao Jun; Ostrikov, Kostya
2012-04-04
Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.
Stano, Kelly L; Carroll, Murphy; Padbury, Richard; McCord, Marian; Jur, Jesse S; Bradford, Philip D
2014-11-12
Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.
Madaria, Anuj R; Yao, Maoqing; Chi, Chunyung; Huang, Ningfeng; Lin, Chenxi; Li, Ruijuan; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu
2012-06-13
Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.
Coherent acoustic communication in a tidal estuary with busy shipping traffic.
van Walree, Paul A; Neasham, Jeffrey A; Schrijver, Marco C
2007-12-01
High-rate acoustic communication experiments were conducted in a dynamic estuarine environment. Two current profilers deployed in a shipping lane were interfaced with acoustic modems, which modulated and transmitted the sensor readings every 200 s over a period of four days. QPSK modulation was employed at a raw data rate of 8 kbits on a 12-kHz carrier. Two 16-element hydrophone arrays, one horizontal and one vertical, were deployed near the shore. A multichannel decision-feedback equalizer was used to demodulate the modem signals received on both arrays. Long-term statistical analysis reveals the effects of the tidal cycle, subsea unit location, attenuation by the wake of passing vessels, and high levels of ship-generated noise on the fidelity of the communication links. The use of receiver arrays enables vast improvement in the overall reliability of data delivery compared with a single-receiver system, with performance depending strongly on array orientation. The vertical array offers the best performance overall, although the horizontal array proves more robust against shipping noise. Spatial coherence estimates, variation of array aperture, and inspection of array angular responses point to adaptive beamforming and coherent combining as the chief mechanisms of array gain.
Wang, Miao; Chen, Hong-Yuan; Xing, Ya-Juan; Wei, Han-Xing; Li, Qiang; Chen, Ming-Hai; Li, Qing-Wen; Xuan, Yi-Min
2015-04-01
Vertically aligned carbon nanotube (VACNT) array/polymer composite has already been recognized as a promising candidate for advanced thermal pad in thermal management of high-power electronic devices. However, the thermal conductive performance of this composite was limited by the quality of CNTs arrays. In this study, pre-annealing treatment was used to purify CNT arrays and improve thermal conductive performance of VACNT arrays/silicone composite. The thermal conductivity of the composite was enhanced by 34.52% and the thermal interface resistance was also reduced by 65.94% at a pre-annealing temperature of 490 °C for 5 min. The annealing process could remove some amorphous carbon and open the tips of CNTs. As a result, the interfacial compatibility in composite between carbon nanotube and polymer matrix was improved. The cyclic compression and tension performance of VACNT/S160 composite was investigated for further application.
NASA Astrophysics Data System (ADS)
Ramaneti, R.; Sankaran, K. J.; Korneychuk, S.; Yeh, C. J.; Degutis, G.; Leou, K. C.; Verbeeck, J.; Van Bael, M. K.; Lin, I. N.; Haenen, K.
2017-06-01
A "patterned-seeding technique" in combination with a "nanodiamond masked reactive ion etching process" is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of the DGH nanorods, which contain sp2-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices.
RETRACTED ARTICLE: Quasi-distributed fiber bragg grating array sensor for furnace applications
NASA Astrophysics Data System (ADS)
Reddy, P. Saidi; Sai Prasad, R. L. N.; Sen Gupta, D.; Sai Shankar, M.; Srimannarayana, K.; Ravinder Reddy, P.
2012-05-01
An experimental work on distributed temperature sensing making use of the fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of the temperature profile in high temperature boilers is presented. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λ B1 =1545.8 nm, λ B2 =1547 nm, λ B3 =1550.8 nm, λ B4 =1555.5 nm at 30 °C) written in the hydrogen-loaded fiber in line. All the FBGs are encapsulated inside a stainless steel tube using the rigid probe technique for avoiding micro cracks. The spatial distribution of the temperature profile inside a prototype boiler was measured experimentally both in horizontal and vertical directions employing the above sensor, and the results are presented. Further, the finite element simulation has been carried out by using ANSYS R11 software to predict temperature contours in the boiler, and the experimental and predicted results were found to be closely matching.
Electrically-Tunable Group Delays Using Quantum Wells in a Distributed Bragg Reflector
NASA Technical Reports Server (NTRS)
Nelson, Thomas R., Jr.; Loehr, John P.; Fork, Richard L.; Cole, Spencer; Jones, Darryl K.; Keys, Andrew
1999-01-01
There is a growing interest in the fabrication of semiconductor optical group delay lines for the development of phased arrays of Vertical-Cavity Surface-Emitting Lasers (VCSELs). We present a novel structure incorporating In(x)GA(1-x)As quantum wells in the GaAs quarter-wave layers of a GaAs/AlAs distributed Bragg reflector (DBR). Application of an electric field across the quantum wells leads to red shifting and peak broadening of the el-hhl exciton peak via the quantum-confined Stark effect. Resultant changes in the index of refraction thereby provide a means for altering the group delay of an incident laser pulse. We discuss the tradeoffs between the maximum amount of change in group delay versus absorption losses for such a device. We also compare a simple theoretical model to experimental results, and discuss both angle and position tuning of the BDR band edge resonance relative to the exciton absorption peak. The advantages of such monolithically grown devices for phased-array VCSEL applications will be detailed.
NASA Astrophysics Data System (ADS)
Szadkowski, Zbigniew; Wiedeński, Michał
2017-06-01
We present first results from a trigger based on the discrete cosine transform (DCT) operating in new front-end boards with a Cyclone V E field-programmable gate array (FPGA) deployed in seven test surface detectors in the Pierre Auger Test Array. The patterns of the ADC traces generated by very inclined showers (arriving at 70° to 90° from the vertical) were obtained from the Auger database and from the CORSIKA simulation package supported by the Auger OffLine event reconstruction platform that gives predicted digitized signal profiles. Simulations for many values of the initial cosmic ray angle of arrival, the shower initialization depth in the atmosphere, the type of particle, and its initial energy gave a boundary on the DCT coefficients used for the online pattern recognition in the FPGA. Preliminary results validated the approach used. We recorded several showers triggered by the DCT for 120 Msamples/s and 160 Msamples/s.
Half-State Readout In Vertical-Bloch-Line Memory
NASA Technical Reports Server (NTRS)
Katti, Romney R.; Wu, Jiin-Chuan; Stadler, Henry L.
1994-01-01
Potentially narrow margins of chirality-based chopping of magnetic stripes avoided. Half-state readout is experimental method of readout in Vertical-Bloch-Line (VBL) memory. Based on differential deflections of magnetic stripe domains in which data bits stored. To give meaning to explanation of half-state readout, see "Vertical-Bloch-Line Memory" (NPO-18467).
Using the in-line component for fixed-wing EM 1D inversion
NASA Astrophysics Data System (ADS)
Smiarowski, Adam
2015-09-01
Numerous authors have discussed the utility of multicomponent measurements. Generally speaking, for a vertical-oriented dipole source, the measured vertical component couples to horizontal planar bodies while the horizontal in-line component couples best to vertical planar targets. For layered-earth cases, helicopter EM systems have little or no in-line component response and as a result much of the in-line signal is due to receiver coil rotation and appears as noise. In contrast to this, the in-line component of a fixed-wing airborne electromagnetic (AEM) system with large transmitter-receiver offset can be substantial, exceeding the vertical component in conductive areas. This paper compares the in-line and vertical response of a fixed-wing airborne electromagnetic (AEM) system using a half-space model and calculates sensitivity functions. The a posteriori inversion model parameter uncertainty matrix is calculated for a bathymetry model (conductive layer over more resistive half-space) for two inversion cases; use of vertical component alone is compared to joint inversion of vertical and in-line components. The joint inversion is able to better resolve model parameters. An example is then provided using field data from a bathymetry survey to compare the joint inversion to vertical component only inversion. For each inversion set, the difference between the inverted water depth and ship-measured bathymetry is calculated. The result is in general agreement with that expected from the a posteriori inversion model parameter uncertainty calculation.
Large-scale synthesis of arrays of high-aspect-ratio rigid vertically aligned carbon nanofibres
NASA Astrophysics Data System (ADS)
Melechko, A. V.; McKnight, T. E.; Hensley, D. K.; Guillorn, M. A.; Borisevich, A. Y.; Merkulov, V. I.; Lowndes, D. H.; Simpson, M. L.
2003-09-01
We report on techniques for catalytic synthesis of rigid, high-aspect-ratio, vertically aligned carbon nanofibres by dc plasma enhanced chemical vapour deposition that are tailored for applications that require arrays of individual fibres that feature long fibre lengths (up to 20 µm) such as scanning probe microscopy, penetrant cell and tissue probing arrays and mechanical insertion approaches for gene delivery to cell cultures. We demonstrate that the definition of catalyst nanoparticles is the critical step that enables growth of individual, long-length fibres and discuss methods for catalyst particle preparation that allow the growth of individual isolated nanofibres from catalyst dots with diameters as large as 500 nm. This development enables photolithographic definition of catalyst and therefore the inexpensive, large-scale production of such arrays.
NASA Astrophysics Data System (ADS)
Kang, Seokkoo; Yang, Xiaolei; Sotiropoulos, Fotis
2012-11-01
While a considerable amount of work has focused on studying the effects and performance of wind farms, very little is known about the performance of hydrokinetic turbine arrays in open channels. Unlike large wind farms, where the vertical fluxes of momentum and energy from the atmospheric boundary layer comprise the main transport mechanisms, the presence of free surface in hydrokinetic turbine arrays inhibits vertical transport. To explore this fundamental difference between wind and hydrokinetic turbine arrays, we carry out LES with the actuator disk model to systematically investigate various layouts of hydrokinetic turbine arrays mounted on the bed of a straight open channel with fully-developed turbulent flow fed at the channel inlet. Mean flow quantities and turbulence statistics within and downstream of the arrays will be analyzed and the effect of the turbine arrays as means for increasing the effective roughness of the channel bed will be extensively discussed. This work was supported by Initiative for Renewable Energy & the Environment (IREE) (Grant No. RO-0004-12), and computational resources were provided by Minnesota Supercomputing Institute.
Jing, Bowen; Chigan, Pengju; Ge, Zhengtong; Wu, Liang; Wang, Supin; Wan, Mingxi
2017-01-01
For the purpose of noninvasively visualizing the dynamics of the contact between vibrating vocal fold medial surfaces, an ultrasonic imaging method which is referred to as array-based transmission ultrasonic glottography is proposed. An array of ultrasound transducers is used to detect the ultrasound wave transmitted from one side of the vocal folds to the other side through the small-sized contact between the vocal folds. A passive acoustic mapping method is employed to visualize and locate the contact. The results of the investigation using tissue-mimicking phantoms indicate that it is feasible to use the proposed method to visualize and locate the contact between soft tissues. Furthermore, the proposed method was used for investigating the movement of the contact between the vibrating vocal folds of excised canine larynges. The results indicate that the vertical movement of the contact can be visualized as a vertical movement of a high-intensity stripe in a series of images obtained by using the proposed method. Moreover, a visualization and analysis method, which is referred to as array-based ultrasonic kymography, is presented. The velocity of the vertical movement of the contact, which is estimated from the array-based ultrasonic kymogram, could reach 0.8 m/s during the vocal fold vibration. PMID:28599522
Penza, M; Rossi, R; Alvisi, M; Serra, E
2010-03-12
Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 degrees C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO(2), CH(4), H(2), NH(3), CO and NO(2) has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO(2) presence in the multicomponent mixture LFG. The NO(2) gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO(2) concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO(2) gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 degrees C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 microm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity by providing minimal sub-ppm level detection, e.g., download up to 100 ppb NO(2), at the sensor temperature of 150 degrees C. The gas sensitivity of the CNT sensor array depends on operating temperature, showing a lower optimal temperature of maximum sensitivity for the metal-decorated CNT sensors compared to unmodified CNT sensors. Results indicate that the recovery mechanisms in the CNT chemiresistors can be altered by a rapid heating pulse from room temperature to about 110 degrees C. A comparison of the NO(2) gas sensitivity for the chemiresistors based on disorderly networked CNTs and vertically aligned CNTs is also reported. Cross-sensitivity towards relative humidity of the CNT sensors array is investigated. Finally, the sensing properties of the metal-decorated and vertically aligned CNT sensor arrays are promising to monitor gas events in the LFG for practical applications with low power consumption and moderate sensor temperature.
'Where' and 'what' in visual search.
Atkinson, J; Braddick, O J
1989-01-01
A line segment target can be detected among distractors of a different orientation by a fast 'preattentive' process. One view is that this depends on detection of a 'feature gradient', which enables subjects to locate where the target is without necessarily identifying what it is. An alternative view is that a target can be identified as distinctive in a particular 'feature map' without subjects knowing where it is in that map. Experiments are reported in which briefly exposed arrays of line segments were followed by a pattern mask, and the threshold stimulus-mask interval determined for three tasks: 'what'--subjects reported whether the target was vertical or horizontal among oblique distractors; 'coarse where'--subjects reported whether the target was in the upper or lower half of the array; 'fine where'--subjects reported whether or not the target was in a set of four particular array positions. The threshold interval was significantly lower for the 'coarse where' than for the 'what' task, indicating that, even though localization in this task depends on the target's orientation difference, this localization is possible without absolute identification of target orientation. However, for the 'fine where' task, intervals as long as or longer than those for the 'what' task were required. It appears either that different localization processes work at different levels of resolution, or that a single localization process, independent of identification, can increase its resolution at the expense of processing speed. These possibilities are discussed in terms of distinct neural representations of the visual field and fixed or variable localization processes acting upon them.
49 CFR 581.7 - Test procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... is vertical and the impact line is horizontal at the specified height. (3) For impacts at a height... Figure 1 so that Plane A is vertical and the impact line is horizontal at the specified height. (3) For... that Plane A is vertical and the impact line is horizontal at a height within the range. (4) Align the...
Polymeric waveguide array with 45 degree slopes fabricated by bottom side tilted exposure
NASA Astrophysics Data System (ADS)
Lin, Xiaohui; Dou, Xinyuan; Wang, Alan X.; Chen, Ray T.
2011-01-01
This paper demonstrated a practical fabrication process of polymeric waveguide array (12 channels) with 50μm(W)×50μm(H)×23mm(L) dimension and mirror embedded 45° degree slopes for vertical coupling purpose. The entire process contained three main parts: a SU8 pre-mold with 45° slope, a PDMS mold and the final waveguide array device. The key step of fabricating the pre-mold included a bottom side tilted exposure of SU8 photo resist. By placing the sample upside down, tilting by 58.7° and immersing into DI water, the ultraviolet (UV) beam that shined vertically was directed to go through from the bottom of the glass substrate into top side SU8 resist with 45° angle to form the surface. This method was able to guarantee no-gap contact between the mask pattern and the photo resist when exposing. By comparing the process complexity and achieved structure of the top and bottom side exposure, the later was proved to be a promising method for making high quality tilted structure without any tailing effect. The reversed PDMS mold was then fabricated on the SU8 pre-mold. The PDMS mold was used to imprint the cladding layer of the waveguide array. After metal deposition, core filling and top cladding layer coating, the final polymeric waveguide array device was achieved. For performance evaluation, 850nm laser beam from VCSEL was modulated to 10Gbps signals and vertically coupled into the waveguide array. The eye diagrams revealed high Q factor when transmitting signals along these waveguide array.
Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication
Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke
2015-01-13
Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.
A simple uniformity test for ultrasound phased arrays.
Dudley, Nicholas J; Woolley, Darren J
2016-09-01
It is difficult to test phased array ultrasound transducers for non functioning elements. We aimed to modify a widely performed test to improve its ease and effectiveness for these arrays. A paperclip was slowly moved along the transducer array, with the scanner operating in M-mode, imaging at a fundamental frequency with automatic gain and grey scale adjustment disabled. Non-functioning elements are identified by a dark vertical line in the image. The test was repeated several times for each transducer, looking for consistency of results. 2 transducers, with faults already shown by electronic transducer testing, were used to validate the method. 23 transducers in clinical use were tested. The results of the modified test on the 2 faulty transducers agreed closely with electronic transducer testing results. The test indicated faults in 5 of the 23 transducers in clinical use: 3 with a single failed element and 2 with non-uniform sensitivity. 1 transducer with non-uniform sensitivity had undergone lens repair; the new lens was visibly non-uniform in thickness and further testing showed a reduction in depth of penetration and a loss of elevational focus in comparison with a new transducer. The modified test is capable of detecting non-functioning elements. Further work is required to provide a better understanding of more subtle faults. Copyright © 2016 Associazione Italiana di Fisica Medica. All rights reserved.
Novel Implementations of Wideband Tightly Coupled Dipole Arrays for Wide-Angle Scanning
NASA Astrophysics Data System (ADS)
Yetisir, Ersin
Ultra-wideband (UWB) antennas and arrays are essential for high data rate communications and for addressing spectrum congestion. Tightly coupled dipole arrays (TCDAs) are of particular interest due to their low-profile, bandwidth and scanning range. But existing UWB (>3:1 bandwidth) arrays still suffer from limited scanning, particularly at angles beyond 45° from broadside. Almost all previous wideband TCDAs have employed dielectric layers above the antenna aperture to improve scanning while maintaining impedance bandwidth. But even so, these UWB arrays have been limited to no more than 60° away from broadside. In this work, we propose to replace the dielectric superstrate with frequency selective surfaces (FSS). In effect, the FSS is used to create an effective dielectric layer placed over the antenna array. FSS also enables anisotropic responses and more design freedom than conventional isotropic dielectric substrates. Another important aspect of the FSS is its ease of fabrication and low weight, both critical for mobile platforms (e.g. unmanned air vehicles), especially at lower microwave frequencies. Specifically, it can be fabricated using standard printed circuit technology and integrated on a single board with active radiating elements and feed lines. In addition to the FSS superstrate, a modified version of the stripline-based folded Marchand balun is presented. As usual the balun serves to match the 50Ω coaxial cable to the high input impedance ( 200Ω) at the terminals of array elements. Doing so, earlier Wilkinson power dividers, which degrade efficiency during E-plane scanning, are eliminated. To verify the proposed array concept, 12x12 TCDA prototype was fabricated using the modified balun and the new FSS superstrate layer. The design and experimental data showed an impedance bandwidth of 6.1:1 with VSWR<3.2. The latter VSWR was achieved even when scanning down to +/-60° in the H-plane, +/-70° in the D-plane and +/-75° in the E-plane. All array components, including the FSS, radiating dipoles and the feed lines are placed on the same PCB, vertically oriented over the array ground plane, resulting in a low-cost and light-weight structure. The effects of finite aperture sizes in presence of FSS or dielectric superstrates are also considered. Specifically, we compare the performance of finite TCDAs with FSS or dielectric loading. The performance metric is beam pointing accuracy for moderate array sizes ( 30dBi gain) with various edge element terminations. It is shown that even terminating two unit cells at the array edges can provide effective suppression of edge-born waves and achieve excellent beam accuracy. This is the case when both the FSS elements and radiating dipoles are resistively loaded in the unit-cells along the aperture edges.
Zhou, Yixuan; E, Yiwen; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li
2016-12-14
Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.
NASA Astrophysics Data System (ADS)
Zhou, Yixuan; Yiwen, E.; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li
2016-12-01
Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.
Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices.
Zhou, Yu Sheng; Wang, Kai; Han, Weihua; Rai, Satish Chandra; Zhang, Yan; Ding, Yong; Pan, Caofeng; Zhang, Fang; Zhou, Weilie; Wang, Zhong Lin
2012-07-24
We demonstrated the energy harvesting potential and piezotronic effect in vertically aligned CdSe nanowire (NW) arrays for the first time. The CdSe NW arrays were grown on a mica substrate by the vapor-liquid-solid process using a CdSe thin film as seed layer and platinum as catalyst. High-resolution transmission electron microscopy image and selected area electron diffraction pattern indicate that the CdSe NWs have a wurtzite structure and growth direction along (0001). Using conductive atomic force microscopy (AFM), an average output voltage of 30.7 mV and maximum of 137 mV were obtained. To investigate the effect of strain on electron transport, the current-voltage characteristics of the NWs were studied by positioning an AFM tip on top of an individual NW. By applying normal force/stress on the NW, the Schottky barrier between the Pt and CdSe was found to be elevated due to the piezotronic effect. With the change of strain of 0.12%, a current decreased from 84 to 17 pA at 2 V bias. This paper shows that the vertical CdSe NW array is a potential candidate for future piezo-phototronic devices.
NASA Astrophysics Data System (ADS)
Ma, Yang; Wu, Congjun; Xu, Zhihao; Wang, Fei; Wang, Min
2018-05-01
Photoconductor arrays with both high responsivity and large ON/OFF ratios are of great importance for the application of image sensors. Herein, a ZnO vertical nanorod array based photoconductor with a light absorption layer separated from the device channel has been designed, in which the photo-generated carriers along the axial ZnO nanorods drive to the external electrodes through nanorod-nanorod junctions in the dense layer at the bottom. This design allows us to enhance the photocurrent with unchanged dark current by increasing the ratio between the ZnO nanorod length and the thickness of the dense layer to achieve both high responsivity and large ON/OFF ratios. As a result, the as-fabricated devices possess a high responsivity of 1.3 × 105 A/W, a high ON/OFF ratio of 790, a high detectivity of 1.3 × 1013 Jones, and a low detectable light intensity of 1 μW/cm2. More importantly, the developed approach enables the integration of ZnO vertical nanorod array based photodetectors as image sensors with uniform device-to-device performance.
GaN nanowire arrays with nonpolar sidewalls for vertically integrated field-effect transistors
NASA Astrophysics Data System (ADS)
Yu, Feng; Yao, Shengbo; Römer, Friedhard; Witzigmann, Bernd; Schimpke, Tilman; Strassburg, Martin; Bakin, Andrey; Schumacher, Hans Werner; Peiner, Erwin; Suryo Wasisto, Hutomo; Waag, Andreas
2017-03-01
Vertically aligned gallium nitride (GaN) nanowire (NW) arrays have attracted a lot of attention because of their potential for novel devices in the fields of optoelectronics and nanoelectronics. In this work, GaN NW arrays have been designed and fabricated by combining suitable nanomachining processes including dry and wet etching. After inductively coupled plasma dry reactive ion etching, the GaN NWs are subsequently treated in wet chemical etching using AZ400K developer (i.e., with an activation energy of 0.69 ± 0.02 eV and a Cr mask) to form hexagonal and smooth a-plane sidewalls. Etching experiments using potassium hydroxide (KOH) water solution reveal that the sidewall orientation preference depends on etchant concentration. A model concerning surface bonding configuration on crystallography facets has been proposed to understand the anisotropic wet etching mechanism. Finally, NW array-based vertical field-effect transistors with wrap-gated structure have been fabricated. A device composed of 99 NWs exhibits enhancement mode operation with a threshold voltage of 1.5 V, a superior electrostatic control, and a high current output of >10 mA, which prevail potential applications in next-generation power switches and high-temperature digital circuits.
GaN nanowire arrays with nonpolar sidewalls for vertically integrated field-effect transistors.
Yu, Feng; Yao, Shengbo; Römer, Friedhard; Witzigmann, Bernd; Schimpke, Tilman; Strassburg, Martin; Bakin, Andrey; Schumacher, Hans Werner; Peiner, Erwin; Wasisto, Hutomo Suryo; Waag, Andreas
2017-03-03
Vertically aligned gallium nitride (GaN) nanowire (NW) arrays have attracted a lot of attention because of their potential for novel devices in the fields of optoelectronics and nanoelectronics. In this work, GaN NW arrays have been designed and fabricated by combining suitable nanomachining processes including dry and wet etching. After inductively coupled plasma dry reactive ion etching, the GaN NWs are subsequently treated in wet chemical etching using AZ400K developer (i.e., with an activation energy of 0.69 ± 0.02 eV and a Cr mask) to form hexagonal and smooth a-plane sidewalls. Etching experiments using potassium hydroxide (KOH) water solution reveal that the sidewall orientation preference depends on etchant concentration. A model concerning surface bonding configuration on crystallography facets has been proposed to understand the anisotropic wet etching mechanism. Finally, NW array-based vertical field-effect transistors with wrap-gated structure have been fabricated. A device composed of 99 NWs exhibits enhancement mode operation with a threshold voltage of 1.5 V, a superior electrostatic control, and a high current output of >10 mA, which prevail potential applications in next-generation power switches and high-temperature digital circuits.
Large Aperture Acoustic Arrays in Support of Reverberation Studies
1990-04-01
Acoustic Reverberation Special Research Program (SRP). Approach We propose the development of several acoustic arrays in preparation for a FY92 experiment...hydrophone array to measure the directional spectrum of seafloor scattered wavefields. Approach As part of the ONT-sponsored, 1987 SVLA experiment, we...scattered energy. Approach Two methods will be described by which vertical and horizontal acoustic arrays can be deployed together for making bottom
NASA Astrophysics Data System (ADS)
Wu, Wu-Qiang; Rao, Hua-Shang; Feng, Hao-Lin; Guo, Xin-Dong; Su, Cheng-Yong; Kuang, Dai-Bin
2014-08-01
The present work establishes a facile process for one-step hydrothermal growth of vertically aligned anatase cactus-like branched TiO2 (CBT) arrays on a transparent conducting oxide (TCO) substrate. Various CBT morphologies are obtained by adjusting the potassium titanium oxide oxalate (PTO) reactant concentration (from 0.05 M to 0.15 M) and this yields a morphologically-controllable branched TiO2 arrays geometry. The CBT arrays consist of a vertically oriented nanowire (NW) or nanosheet (NS) stem and a host of short nanorod (NR) branches. The hierarchical CBT arrays demonstrate their excellent candidatures as photoanodes, which are capable of exhibiting high light-harvesting efficiency in dye-sensitized solar cells (DSSCs). Consequently, DSSCs based on 7 μm long optimized CBT arrays (0.05 M PTO), which are assembled with high density and high aspect-ratio NR branches, exhibit an impressive power conversion efficiency of 6.43% under AM 1.5G one sun illumination. The high performance can be attributed to the prominent light-harvesting efficiency, resulting from larger surface area and superior light-scattering capability.
Nanofork for single cells adhesion measurement via ESEM-nanomanipulator system.
Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Masaru; Kojima, Seiji; Homma, Michio; Fukuda, Toshio
2012-03-01
In this paper, single cells adhesion force was measured using a nanofork. The nanofork was used to pick up a single cell on a line array substrate inside an environmental scanning electron microscope (ESEM). The line array substrate was used to provide small gaps between the single cells and the substrate. Therefore, the nanofork could be inserted through these gaps in order to successfully pick up a single cell. Adhesion force was measured during the cell pick-up process from the deflection of the cantilever beam. The nanofork was fabricated using focused ion beam (FIB) etching process while the line array substrate was fabricated using nanoimprinting technology. As to investigate the effect of contact area on the strength of the adhesion force, two sizes of gap distance of line array substrate were used, i.e., 1 μm and 2 μm. Results showed that cells attached on the 1 μm gap line array substrate required more force to be released as compared to the cells attached on the 1 μm gap line array substrate.
Possible Non-volcanic Tremor Discovered in the Reelfoot Fault Zone, Northern Tennessee
NASA Astrophysics Data System (ADS)
Langston, C. A.; Williams, R. A.; Magnani, M.; Rieger, D. M.
2007-12-01
A swarm of ~80 microearthquakes was fortuitously detected in 20, 14 second-duration long-offset vibroseis shotgathers collected for a seismic reflection experiment near Mooring, TN, directly over the Reelfoot fault zone on the afternoon of 16 November 2006. These natural events show up in the shotgathers as near-vertically incident P waves with a dominant frequency of 10-15 Hz. The reflection line was 715m in length consisting of 144 channels with a sensor spacing of 5m, 8Hz vertical geophones, and recording using a Geometrics 24bit Geode seismograph. Small variations in event moveout across the linear array indicate that the seismicity was not confined to the same hypocenter and probably occurred at depths of approximately 10 km. The largest events in the series are estimated to have local magnitudes of ~-1 if at 10 km distance from the array. This is about 2.5 magnitude units lower than the threshold for local events detected and located by the CERI cooperative network in the area. The seismicity rate was ~1000 events per hour based on the total time duration of the shotgathers. The expected number of earthquakes of ML greater than or equal to -1 for the entire central United States is only 1 per hour. This detection of microseismic swarms in the Reelfoot fault zone indicates active physical processes that may be similar to non-volcanic tremor seen in the Cascadia and San Andreas fault zones and merits long-term monitoring to understand its source.
970-nm ridge waveguide diode laser bars for high power DWBC systems
NASA Astrophysics Data System (ADS)
Wilkens, Martin; Erbert, Götz; Wenzel, Hans; Knigge, Andrea; Crump, Paul; Maaßdorf, Andre; Fricke, Jörg; Ressel, Peter; Strohmaier, Stephan; Schmidt, Berthold; Tränkle, Günther
2018-02-01
de lasers are key components in material processing laser systems. While mostly used as pump sources for solid state or fiber lasers, direct diode laser systems using dense wavelength multiplexing have come on the market in recent years. These systems are realized with broad area lasers typically, resulting in beam quality inferior to disk or fiber lasers. We will present recent results of highly efficient ridge waveguide (RW) lasers, developed for dense-wavelength-beamcombining (DWBC) laser systems expecting beam qualities comparable to solid state laser systems and higher power conversion efficiencies (PCE). The newly developed RW lasers are based on vertical structures with an extreme double asymmetric large optical cavity. Besides a low vertical divergence these structures are suitable for RW-lasers with (10 μm) broad ridges, emitting in a single mode with a good beam quality. The large stripe width enables a lateral divergence below 10° (95 % power content) and a high PCE by a comparably low series resistance. We present results of single emitters and small test arrays under different external feedback conditions. Single emitters can be tuned from 950 nm to 975 nm and reach 1 W optical power with more than 55 % PCE and a beam quality of M2 < 2 over the full wavelength range. The spectral width is below 30 pm FWHM. 5 emitter arrays were stabilized using the same setup. Up to now we reached 3 W optical power, limited by power supply, with 5 narrow spectral lines.
Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong
2015-01-01
In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303
2013-01-01
In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702
Geometric Hitting Set for Segments of Few Orientations
Fekete, Sandor P.; Huang, Kan; Mitchell, Joseph S. B.; ...
2016-01-13
Here we study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the \\hitting points"). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. Lastly, we give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.
Abdolahad, M; Mohajerzadeh, S; Janmaleki, M; Taghinejad, H; Taghinejad, M
2013-03-01
Vertically aligned carbon nanotube (VACNT) arrays have been demonstrated as probes for rapid quantifying of cancer cell deformability with high resolution. Through entrapment of various cancer cells on CNT arrays, the deflections of the nanotubes during cell deformation were used to derive the lateral cell shear force using a large deflection mode method. It is observed that VACNT beams act as sensitive and flexible agents, which transfer the shear force of cells trapped on them by an observable deflection. The metastatic cancer cells have significant deformable structures leading to a further cell traction force (CTF) than primary cancerous one on CNT arrays. The elasticity of different cells could be compared by their CTF measurement on CNT arrays. This study presents a nanotube-based methodology for quantifying the single cell mechanical behavior, which could be useful for understanding the metastatic behavior of cells.
Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays
NASA Astrophysics Data System (ADS)
Chang-Hasnain, Connie
1994-04-01
Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. In this program, we concentrated on novel epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays.
Ping, Linquan; Hou, Peng-Xiang; Liu, Chang; Li, Jincheng; Zhao, Yang; Zhang, Feng; Ma, Chaoqun; Tai, Kaiping; Cong, Hongtao; Cheng, Hui-Ming
2017-06-22
A vertically aligned carbon nanotube (VACNT) array is a promising candidate for a high-performance thermal interface material in high-power microprocessors due to its excellent thermal transport property. However, its rough and entangled free tips always cause poor interfacial contact, which results in serious contact resistance dominating the total thermal resistance. Here, we employed a thin carbon cover to restrain the disorderly growth of the free tips of a VACNT array. As a result, all the free tips are seamlessly connected by this thin carbon cover and the top surface of the array is smoothed. This unique structure guarantees the participation of all the carbon nanotubes in the array in the heat transport. Consequently the VACNT array grown on a Cu substrate shows a record low thermal resistance of 0.8 mm 2 K W -1 including the two-sided contact resistances, which is 4 times lower than the best result previously reported. Remarkably, the VACNT array can be easily peeled away from the Cu substrate and act as a thermal pad with excellent flexibility, adhesive ability and heat transport capability. As a result the CNT array with a thin carbon cover shows great potential for use as a high-performance flexible thermal interface material.
Deployment/retraction ground testing of a large flexible solar array
NASA Technical Reports Server (NTRS)
Chung, D. T.
1982-01-01
The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions.
Hirabayashi, K; Yamamoto, T; Matsuo, S; Hino, S
1998-05-10
We propose free-space optical interconnections for a bookshelf-assembled terabit-per-second-class ATM switch. Thousands of arrayed optical beams, each having a rate of a few gigabits per second, propagate vertically to printed circuit boards, passing through some boards, and are connected to arbitrary transmitters and receivers on boards by polarization controllers and prism arrays. We describe a preliminary experiment using a 1-mm-pitch 2 x 2 beam-collimator array that uses vertical-cavity surface-emitting laser diodes. These optical interconnections can be made quite stable in terms of mechanical shock and temperature fluctuation by the attachment of reinforcing frames to the boards and use of an autoalignment system.
Methods for determining infrasound phase velocity direction with an array of line sensors.
Walker, Kristoffer T; Zumberge, Mark A; Hedlin, Michael A H; Shearer, Peter M
2008-10-01
Infrasound arrays typically consist of several microbarometers separated by distances that provide predictable signal time separations, forming the basis for processing techniques that estimate the phase velocity direction. The directional resolution depends on the noise level and is proportional to the number of these point sensors; additional sensors help attenuate noise and improve direction resolution. An alternative approach is to form an array of directional line sensors, each of which emulates a line of many microphones that instantaneously integrate pressure change. The instrument response is a function of the orientation of the line with respect to the signal wavefront. Real data recorded at the Piñon Flat Observatory in southern California and synthetic data show that this spectral property can be exploited with multiple line sensors to determine the phase velocity direction with a precision comparable to a larger aperture array of microbarometers. Three types of instrument-response-dependent beamforming and an array deconvolution technique are evaluated. The results imply that an array of five radial line sensors, with equal azimuthal separation and an aperture that depends on the frequency band of interest, provides directional resolution while requiring less space compared to an equally effective array of five microbarometers with rosette wind filters.
Coherent Detector Arrays for Continuum and Spectral Line Applications
NASA Technical Reports Server (NTRS)
Gaier, Todd C.
2006-01-01
This viewgraph presentation reviews the requirements for improved coherent detector arrays for use in continuum and spectral line applications. With detectors approaching fundamental limits, large arrays offer the only path to sensitivity improvement. Monolithic Microwave Integrated Circuit (MMIC) technology offers a straightforward path to massive focal plane millimeter wave arrays: The technology will readily support continuum imagers, polarimeters and spectral line receivers from 30-110 GHz. Science programs, particularly large field blind surveys will benefit from simultaneous observations of hundreds or thousands of pixels 1000 element array is competitive with a cost less than $2M.
Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2011-01-01
This work addresses the problem of excitation of a parallel plate waveguide by an array of rectangular waveguides that arises in applications such as the continuous transverse stub (CTS) antenna and dual-polarized parabolic cylindrical reflector antennas excited by a scanning line source. In order to design the junction region between the parallel plate waveguide and the linear array of rectangular waveguides, waveguide sizes have to be chosen so that the input match is adequate for the range of scan angles for both polarizations. Electromagnetic wave scattered by the junction of a parallel plate waveguide by an array of rectangular waveguides is analyzed by formulating coupled integral equations for the aperture electric field at the junction. The integral equations are solved by the method of moments. In order to make the computational process efficient and accurate, the method of weighted averaging was used to evaluate rapidly oscillating integrals encountered in the moment matrix. In addition, the real axis spectral integral is evaluated in a deformed contour for speed and accuracy. The MoM results for a large finite array have been validated by comparing its reflection coefficients with corresponding results for an infinite array generated by the commercial finite element code, HFSS. Once the aperture electric field is determined by MoM, the input reflection coefficients at each waveguide port, and coupling for each polarization over the range of useful scan angles, are easily obtained. Results for the input impedance and coupling characteristics for both the vertical and horizontal polarizations are presented over a range of scan angles. It is shown that the scan range is limited to about 35 for both polarizations and therefore the optimum waveguide is a square of size equal to about 0.62 free space wavelength.
Seafloor horizontal positioning from a continuously operating buoy-based GPS-acoustic array
NASA Astrophysics Data System (ADS)
Chadwell, C. D.; Brown, K. M.; Tryon, M. D.; Send, U.
2009-12-01
Seafloor horizontal positions in a global frame were estimated daily from an autonomous buoy operating continuously over several months. The buoy (GEOCE) was moored offshore San Diego in 100-m-deep waters above an array of 4 seafloor transponders. Dual-frequency GPS data were collected at 1-Hz at a main antenna on the buoy and at 3 shore stations to provide continuous 2-3 cm positions of the buoy main antenna. Two single-frequency antennas on the buoy along with the main antenna were used to estimate the buoy attitude and short-term velocity. At one minute intervals the two-way acoustic travel time was measured between the buoy and transponders. During this few second span when transmitting and receiving acoustic signals, 10-Hz attitude and velocity were collected to locate the position of the transducer mounted approximately 2 m below the water line. The GPS and acoustic data were recorded internally and transmitted to shore over a cell-phone link and/or a wireless Ethernet. GPS data were combined with the acoustic data to estimate the array location at 1 minute intervals. The 1-minute positions are combined to provide a daily estimate of the array position. The buoy is autonomous, solar-powered and in addition to the GPS and acoustic data collects air pressure, temperature, wind speed/direction as well as water level at the surface and conductivity and temperature along the mooring line from near the sea surface to just above the sea floor. Here we report results from the horizontal positioning effort from Phase I of the project in shallow waters. The project also includes a vertical deformation sensor and physical oceanographic monitoring. A deep water (nominally 1000 m) test is planned for 2010. This work is supported by NSF-OCE-0551363 of the Ocean Technology and Interdisciplinary Coordination Program.
Apparent velocity measurements for the lower mantle from a wide aperture array
NASA Astrophysics Data System (ADS)
Burdick, L. J.; Powell, Christine
1980-07-01
The California Institute of Technology (CIT) operates a dense network of short-period vertical seismometers which we have used as a large seismic array to measure the azimuth of approach ζ and ray parameter dT/dΔ of teleseismic P waves. Analysis of over 145 globally distributed events indicates that the ζ and dT/dΔ values measured by the array are in close agreement with the values predicted by the U.S. Geological Survey event locations. Most ζ anomalies (measured minus predicted values) do not exceed 1°. The small magnitude of the anomalies suggests that the measured dT/dΔ values can be used to construct a radial velocity model for the lower mantle. The curve of dT/dΔ versus Δ is in agreement with the curve determined for the Tonto Forest Seismological Observatory (TFSO) by Johnson (1969). The two curves differ in that there is no compelling evidence in the CIT data for first- or second-order discontinuities in the velocity gradient. It is shown that discontinuities in the dT/dΔ data proposed by Johnson near distances of 40.5, 49.5, 59.5, and 70.5° are due to a strong dependence upon azimuth to source. The same least squares straight line can be fit through the CIT and TFSO dT/dΔ values. Residuals from this straight line display the same azimuthal dependence at both arrays. A velocity-depth curve has been constructed by Wiechert-Herglotz inversion of the CIT dT/dΔ data. A current upper mantle model for western North America was used as the top of the velocity profile. It is also shown that if fine structure does exist in the lower mantle velocity profile, the best way to find it may be through a combined amplitude dT/dΔ study.
Apparent velocity measurements for the lower mantle from a wide aperture array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, L.J.; Powell, C.
1980-07-10
The California Institute of Technology (CIT) operates a dense network of short-period vertical seismometers which we have used as a large seismic array to measure the azimuth of approach zeta and ray parameter dT/d..delta.. of teleseismic P waves. analysis of over 145 globally distributed events indicates that the zeta and dT/d..delta.. values measured by the array are in close agreement with the values predicted by the U.S. Geological Survey event locations. Most zeta anomalies (measured minus predicted values) do not exceed 1 /sup 0/. The small magnitude of the anomalies suggests that the measured dT/d..delta.. values can be used tomore » construct a radial velocity model for the lower mantle. The curve of dT/d..delta.. versus ..delta.. is in agreement with the curve determined for the Tonto Forest Seismological (TFSO) by Johnson (1969). The two curves differ in that there is not compelling evidence in the CIT data for first- or second-order discontinuities in the velocity gradient. It is shown that discontinuities in the dT/d..delta.. data proposed by Johnson near distances of 40.5, 49.5, 59.5, and 70.5 /sup 0/ are due to a strong dependence upon azimuth to source. The same least squares straight line can be fit through the CIT and TESO dT/d..delta.. values. Residuals from this straight line display the same azimuthal dependence at both arrays. A velocity-depth curve has been constructed by Weichert-Herglotz inversion of the CIT dT/d..delta.. data. A current upper mantle model for western North America was used as the top of the velocity profile. It is also shown that if fine structure does exist in the lower mantle velocity profile, the best way to find it may be through a combined amplitude-dT/d..delta.. study.« less
Reconfigurable Wave Velocity Transmission Lines for Phased Arrays
NASA Technical Reports Server (NTRS)
Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix
2013-01-01
Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.
Thermal and solutal conditions at the tips of a directional dendritic growth front
NASA Technical Reports Server (NTRS)
Mccay, T. D.; Mccay, Mary H.; Hopkins, John A.
1991-01-01
The line-of-sight averaged, time-dependent dendrite tip concentrations for the diffusion dominated vertical directional solidification of a metal model (ammonium chloride and water) were obtained by extrapolating exponentially fit diffusion layer profiles measured using a laser interferometer. The tip concentrations were shown to increase linearly with time throughout the diffusion dominated growth process for an initially stagnant dendritic array. The process was terminated for the cases chosen by convective breakdown suffered when the conditionally stable diffusion layer exceeded the critical Rayleigh criteria. The transient tip concentrations were determined to significantly exceed the values predicted for steady state, thus producing much larger constitutional undercoolings. This has ramifications for growth speeds, arm spacings and the dendritic structure itself.
Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD
NASA Astrophysics Data System (ADS)
Koyama, F.; Mukaihara, T.; Hayashi, Y.; Ohnoki, N.; Hatori, N.; Iga, K.
1995-01-01
We present a novel approach of on-wafer wavelength control for vertical cavity surface-emitting lasers (VCSEL's) using nonplanar metalorganic chemical vapor deposition. The resonant wavelength of 980 nm VCSEL's grown on a patterned substrate can be controlled in the wavelength range over 45 nm by changing the size of circular patterns. A multi-wavelength VCSEL linear array was fabricated by using this technique. The proposed method will be useful for multi-wavelength VCSEL arrays as well as for the cancellation of wavelength nonuniformity over a wafer.
NASA Astrophysics Data System (ADS)
Wosnik, Martin; Bachant, Peter
2016-11-01
Cross-flow turbines show potential in marine hydrokinetic (MHK) applications. A research focus is on accurately predicting device performance and wake evolution to improve turbine array layouts for maximizing overall power output, i.e., minimizing wake interference, or taking advantage of constructive wake interaction. Experiments were carried with large laboratory-scale cross-flow turbines D O (1 m) using a turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. Several turbines of varying solidity were employed, including the UNH Reference Vertical Axis Turbine (RVAT) and a 1:6 scale model of the DOE-Sandia Reference Model 2 (RM2) turbine. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. Results are presented for the simulation of performance and wake dynamics of cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET Grant 1150797, Sandia National Laboratories.
Airframe Noise from a Hybrid Wing Body Aircraft Configuration
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.
2016-01-01
A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.
Multi-Angle Snowflake Camera Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkurko, Konstantin; Garrett, T.; Gaustad, K
The Multi-Angle Snowflake Camera (MASC) addresses a need for high-resolution multi-angle imaging of hydrometeors in freefall with simultaneous measurement of fallspeed. As illustrated in Figure 1, the MASC consists of three cameras, separated by 36°, each pointing at an identical focal point approximately 10 cm away. Located immediately above each camera, a light aims directly at the center of depth of field for its corresponding camera. The focal point at which the cameras are aimed lies within a ring through which hydrometeors fall. The ring houses a system of near-infrared emitter-detector pairs, arranged in two arrays separated vertically by 32more » mm. When hydrometeors pass through the lower array, they simultaneously trigger all cameras and lights. Fallspeed is calculated from the time it takes to traverse the distance between the upper and lower triggering arrays. The trigger electronics filter out ambient light fluctuations associated with varying sunlight and shadows. The microprocessor onboard the MASC controls the camera system and communicates with the personal computer (PC). The image data is sent via FireWire 800 line, and fallspeed (and camera control) is sent via a Universal Serial Bus (USB) line that relies on RS232-over-USB serial conversion. See Table 1 for specific details on the MASC located at the Oliktok Point Mobile Facility on the North Slope of Alaska. The value-added product (VAP) detailed in this documentation analyzes the raw data (Section 2.0) using Python: images rely on OpenCV image processing library and derived aggregated statistics rely on some clever averaging. See Sections 4.1 and 4.2 for more details on what variables are computed.« less
Kitahara, Hideaki; Tani, Masahiko; Hangyo, Masanori
2009-07-01
We developed a high-repetition-rate optical delay line based on a micromirror array and galvanometer mirror for terahertz time-domain spectroscopy. The micromirror array is fabricated by using the x-ray lithographic technology. The measurement of terahertz time-domain waveforms with the new optical delay line is demonstrated successfully up to 25 Hz.
Deep seafloor arrivals in long range ocean acoustic propagation.
Stephen, Ralph A; Bolmer, S Thompson; Udovydchenkov, Ilya A; Worcester, Peter F; Dzieciuch, Matthew A; Andrew, Rex K; Mercer, James A; Colosi, John A; Howe, Bruce M
2013-10-01
Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean acoustic propagation models. These "deep seafloor" arrivals are the largest amplitude arrivals on the vertical particle velocity channel for ranges from 500 to 3200 km. The travel times for six (of 16 observed) deep seafloor arrivals correspond to the sea surface reflection of an out-of-plane diffraction from a seamount that protrudes to about 4100 m depth and is about 18 km from the receivers. This out-of-plane bottom-diffracted surface-reflected energy is observed on the deep vertical line array about 35 dB below the peak amplitude arrivals and was previously misinterpreted as in-plane bottom-reflected surface-reflected energy. The structure of these arrivals from 500 to 3200 km range is remarkably robust. The bottom-diffracted surface-reflected mechanism provides a means for acoustic signals and noise from distant sources to appear with significant strength on the deep seafloor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjith, K. S.; Kumar, D. Ranjith; Kumar, R. T. Rajendra, E-mail: rtrkumar@buc.edu.in
2015-06-24
We demonstrated the development of coupled semiconductor in the form of hybrid heterostructures for significant advancement in catalytic functional materials. In this article, we report the preparation of vertically aligned core shell ZnO-EuS nanorod photocatalyst arrays by a simple chemical solution process followed by sulfudation process. The XRD pattern confirmed formation of the hexagonal wurtzite structure of ZnO and cubic nature of the EuS. Cross sectional FESEM images show vertical rod array structure, and the size of the nanorods ranges from 80 to 120 nm. UV-Vis DRS spectra showed that the optical absorption of ZnO was significantly enhanced to the visiblemore » region by modification with EuS surfaces. TEM study confirmed that the surface of ZnO was drastically improved by the modification with EuS nanoparticle. The catalytic activity of EuS−ZnO core shell nanorod arrays were evaluated by the photodegradation of Methylene Blue (MB) dye under visible irradiation. The results revealed that the photocatalytic activity of EuS−ZnO was much higher than that of ZnO under natural sunlight. EuS−ZnO was found to be stable and reusable without appreciable loss of catalytic activity up to four consecutive cycles.« less
Vertical Gravimeter Array Observations and Their Performance in Groundwater-Level Monitoring
NASA Astrophysics Data System (ADS)
Tanaka, T.; Honda, R.
2018-03-01
The gravitational effects of the atmosphere and subsurface water are significant obstacles to observing gravity variations on the sub-μGal (1 μGal = 10 nm/s2) scale. The goal of this study is to detect changes in gravity that are caused by mass redistributions deep underground related to seismological phenomena by reducing environmental gravity effects using multiple gravimeters belowground and aboveground, which we term a "vertical gravimeter array." Based on an evaluation of the responses to atmospheric effects and rainfall events identified in observations made with individual relative gravimeters, the vertical gravimeter array succeeds in stacking the target signals from deep underground and in reducing errors due to rainfall or free groundwater and atmospheric effects. To enable accurate interpretation, we introduce a physical approach that is based on attraction and loading deformation effects for atmospheric reduction using state-of-the-art gridded weather data products. Changes in the water levels of confined groundwater can be regarded as a signal from deep underground, and a response coefficient of approximately -15 μGal/m was obtained. In addition, the response coefficient of the free groundwater level was determined to be approximately 5 μGal/m. Such array observations are expected to contribute to monitoring crustal activity and hydrological studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jiangfeng; Tian, Yazhou; Yang, Ziyuan
The developments of electrode active materials provide the opportunities for next-generation energy storage devices. The arrangement of electrode materials on the substrate has recently emerged as a promising strategy for preparing high-performance supercapacitors. In this paper, we demonstrate a novel vertically aligned CuSe@Co(OH) 2 nanosheet arrays electrode for supercapacitor application. The materials are thoroughly characterized by structural and spectroscopic techniques. Electrochemical performance of CuSe@Co(OH) 2 nanosheet arrays are investigated in detail, which exhibit a specific capacitance as much as 1180 F g -1 at a current density of 1 A g -1. A flexible asymmetric all-solid-state supercapacitor is fabricated usingmore » CuSe@Co(OH) 2 nanosheet arrays as the positive electrode and activated carbon as the negative electrode. The device delivers a volumetric capacitance of 441.4 mF cm -3 with maximum energy density and maximum power density is 0.17 and 62.1 mW cm -3, as well as robust cycling stability (~80.4% capacitance retention after 10 000 cycles), excellent flexibility, and mechanical stability. Finally, the excellent electrochemical performance can be attributed to its unique vertically aligned configuration.« less
Gong, Jiangfeng; Tian, Yazhou; Yang, Ziyuan; ...
2018-01-04
The developments of electrode active materials provide the opportunities for next-generation energy storage devices. The arrangement of electrode materials on the substrate has recently emerged as a promising strategy for preparing high-performance supercapacitors. In this paper, we demonstrate a novel vertically aligned CuSe@Co(OH) 2 nanosheet arrays electrode for supercapacitor application. The materials are thoroughly characterized by structural and spectroscopic techniques. Electrochemical performance of CuSe@Co(OH) 2 nanosheet arrays are investigated in detail, which exhibit a specific capacitance as much as 1180 F g -1 at a current density of 1 A g -1. A flexible asymmetric all-solid-state supercapacitor is fabricated usingmore » CuSe@Co(OH) 2 nanosheet arrays as the positive electrode and activated carbon as the negative electrode. The device delivers a volumetric capacitance of 441.4 mF cm -3 with maximum energy density and maximum power density is 0.17 and 62.1 mW cm -3, as well as robust cycling stability (~80.4% capacitance retention after 10 000 cycles), excellent flexibility, and mechanical stability. Finally, the excellent electrochemical performance can be attributed to its unique vertically aligned configuration.« less
Integration of photoactive and electroactive components with vertical cavity surface emitting lasers
Bryan, R.P.; Esherick, P.; Jewell, J.L.; Lear, K.L.; Olbright, G.R.
1997-04-29
A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications. 9 figs.
Integration of photoactive and electroactive components with vertical cavity surface emitting lasers
Bryan, Robert P.; Esherick, Peter; Jewell, Jack L.; Lear, Kevin L.; Olbright, Gregory R.
1997-01-01
A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications.
Seismic Readings from the Deepest Borehole in the New Madrid Seismic Zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolery, Edward W; Wang, Zhenming; Sturchio, Neil C
2006-03-01
Since the 1980s, the research associated with the UK network has been primarily strong-motion seismology of engineering interest. Currently the University of Kentucky operates a strong-motion network of nine stations in the New Madrid Seismic Zone. A unique feature of the network is the inclusions of vertical strong-motion arrays, each with one or two downhole accelerometers. The deepest borehole array is 260 m below the surfaces at station VASA in Fulton County, Kentucky. A preliminary surface seismic refraction survey was conducted at the site before drilling the hole at VSAS (Woolery and Wang, 2002). The depth to the Paleozoic bedrockmore » at the site was estimated to be approximately 595 m, and the depth to the first very stiff layer (i.e. Porters Creek Clay) was found to be about 260 m. These depths and stratigraphic interpretation correlated well with a proprietary seismic reflection line and the Ken-Ten Oil Exploration No. 1 Sanger hole (Schwalb, 1969), as well as our experience in the area (Street et al., 1995; Woolery et al., 1999).« less
Optical bandgap modelling from the structural arrangement of carbon nanotubes.
Butler, Timothy P; Rashid, Ijaz; Montelongo, Yunuen; Amaratunga, Gehan A J; Butt, Haider
2018-06-14
The optical bandgap properties of vertically-aligned carbon nanotube (VACNT) arrays were probed through their interaction with white light, with the light reflected from the rotating arrays measured with a spectrometer. The precise deterministic control over the structure of vertically-aligned carbon nanotube arrays through electron beam lithography and well-controlled growth conditions brings with it the ability to produce exotic photonic crystals over a relatively large area. The characterisation of the behaviour of these materials in the presence of light is a necessary first step toward application. Relatively large area array structures of high-quality VACNTs were fabricated in square, hexagonal, circular and pseudorandom patterned arrays with length scales on the order of those of visible light for the purpose of investigating how they may be used to manipulate an impinging light beam. In order to investigate the optical properties of these arrays a set of measurement apparatus was designed which allowed the accurate measurement of their optical bandgap characteristics. The patterned samples were rotated under the illuminating white light beam, revealing interesting optical bandgap results caused by the changing patterns and relative positions of the scattering elements (VACNTs).
Modelling clustering of vertically aligned carbon nanotube arrays.
Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N
2015-08-06
Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.
Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H
2012-04-27
Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.
Scalar Fluxes Near a Tall Building in an Aligned Array of Rectangular Buildings
NASA Astrophysics Data System (ADS)
Fuka, Vladimír; Xie, Zheng-Tong; Castro, Ian P.; Hayden, Paul; Carpentieri, Matteo; Robins, Alan G.
2018-04-01
Scalar dispersion from ground-level sources in arrays of buildings is investigated using wind-tunnel measurements and large-eddy simulation (LES). An array of uniform-height buildings of equal dimensions and an array with an additional single tall building (wind tunnel) or a periodically repeated tall building (LES) are considered. The buildings in the array are aligned and form long streets. The sensitivity of the dispersion pattern to small changes in wind direction is demonstrated. Vertical scalar fluxes are decomposed into the advective and turbulent parts and the influences of wind direction and of the presence of the tall building on the scalar flux components are evaluated. In the uniform-height array turbulent scalar fluxes are dominant, whereas the tall building produces an increase of the magnitude of advective scalar fluxes that yields the largest component. The presence of the tall building causes either an increase or a decrease to the total vertical scalar flux depending on the position of the source with respect to the tall building. The results of the simulations can be used to develop parametrizations for street-canyon dispersion models and enhance their capabilities in areas with tall buildings.
Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.
Yin, Zhe; Wang, Huimin; Jian, Muqiang; Li, Yanshen; Xia, Kailun; Zhang, Mingchao; Wang, Chunya; Wang, Qi; Ma, Ming; Zheng, Quan-Shui; Zhang, Yingying
2017-08-30
The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.
NASA Astrophysics Data System (ADS)
Butler, S. L.
2017-08-01
It is instructive to consider the sensitivity function for a homogeneous half space for resistivity since it has a simple mathematical formula and it does not require a priori knowledge of the resistivity of the ground. Past analyses of this function have allowed visualization of the regions that contribute most to apparent resistivity measurements with given array configurations. The horizontally integrated form of this equation gives the sensitivity function for an infinitesimally thick horizontal slab with a small resistivity contrast and analysis of this function has admitted estimates of the depth of investigation for a given electrode array. Recently, it has been shown that the average of the vertical coordinate over this function yields a simple formula that can be used to estimate the depth of investigation. The sensitivity function for a vertical inline slab has also been previously calculated. In this contribution, I show that the sensitivity function for a homogeneous half-space can also be integrated so as to give sensitivity functions to semi-infinite vertical slabs that are perpendicular to the array axis. These horizontal sensitivity functions can, in turn, be integrated over the spatial coordinates to give the mean horizontal positions of the sensitivity functions. The mean horizontal positions give estimates for the centres of the regions that affect apparent resistivity measurements for arbitrary array configuration and can be used as horizontal positions when plotting pseudosections even for non-collinear arrays. The mean of the horizontal coordinate that is perpendicular to a collinear array also gives a simple formula for estimating the distance over which offline resistivity anomalies will have a significant effect. The root mean square (rms) widths of the sensitivity functions are also calculated in each of the coordinate directions as an estimate of the inverse of the resolution of a given array. For depth and in the direction perpendicular to the array, the rms thickness is shown to be very similar to the mean distance. For the direction parallel to the array, the rms thickness is shown to be proportional to the array length and similar to the array length divided by 2 for many arrays. I expect that these formulas will provide useful rules of thumb for estimating the centres and extents of regions influencing apparent resistivity measurements for survey planning and for education.
Vertically oriented metamaterial broadband linear polariser
Campione, Salvatore; Burckel, David Bruce
2018-03-14
Control and manipulation of polarization is an important topic for imaging and light matter interactions. In the infrared regime, the large wavelengths make wire grid polarizers a viable option, as it is possible to create periodic arrays of metallic wires at that scale. The recent advent of metamaterials has spurred an increase in non-traditional polarizer motifs centred around more complicated repeat units, which potentially provide more functionality. In this paper we explore the use of two-dimensional (2D) arrays of single and back-to-back vertically oriented cross dipoles arranged in a cubic in-plane silicon matrix. Here, we show that both single andmore » back-to-back versions have higher rejection ratios and larger bandwidths than either wire grid polarizers or 2D arrays of linear dipoles.« less
Multispectral InGaAs/GaAs/AlGaAs laser arrays by MBE growth on patterned substrates
NASA Astrophysics Data System (ADS)
Kamath, K.; Bhattacharya, P.; Singh, J.
1997-05-01
Multispectral semiconductor laser arrays on single chip is demonstrated by molecular beam epitaxial (MBE) growth of {In0.2Ga0.8As}/{GaAs} quantum well lasers on GaAs (1 0 0) substrates patterned by dry etching. No regrowth is needed for simple edge emitting lasers. It was observed that the laser characteristics are not degraded by the patterned growth. The shift in the emission wavelength obtained by this method can be controlled by varying the width of the pre-patterned ridges as well as by selecting the regions with different number of vertical sidewalls on both sides. We have also shown that multispectral vertical cavity surface emitting laser (VCSEL) arrays can be made by this technique with a single regrowth.
Ogura, Yusuke; Shirai, Nobuhiro; Tanida, Jun
2002-09-20
An optical levitation and translation method for a microscopic particle by use of the resultant force induced by multiple light beams is studied. We show dependence of the radiation pressure force on the illuminating distribution by numerical calculation, and we find that the strongest axial force is obtained by a specific spacing period of illuminating beams. Extending the optical manipulation technique by means of vertical-cavity surface-emitting laser (VCSEL) array sources [Appl. Opt. 40, 5430 (2001)], we are the first, to our knowledge, to demonstrate levitation of a particle and its translation while levitated by using a VCSEL array. The vertical position of the target particle can be controlled in a range of a few tens of micrometers with an accuracy of 2 microm or less. The analytical and experimental results suggest that use of multiple beams is an effective method to levitate a particle with low total illumination power. Some issues on the manipulation method that uses multiple beams are discussed.
NASA Astrophysics Data System (ADS)
Gobet, Mathilde; Bae, Hopil P.; Sarmiento, Tomas; Harris, James S.
2008-02-01
Multiple-wavelength laser arrays at 1.55 μm are key components of wavelength division multiplexing (WDM) systems for increased bandwidth. Vertical cavity surface-emitting lasers (VCSELs) grown on GaAs substrates outperform their InP counterparts in several points. We summarize the current challenges to realize continuous-wave (CW) GaInNAsSb VCSELs on GaAs with 1.55 μm emission wavelength and explain the work in progress to realize CW GaInNAsSb VCSELs. Finally, we detail two techniques to realize GaInNAsSb multiple-wavelength VCSEL arrays at 1.55 μm. The first technique involves the incorporation of a photonic crystal into the upper mirror. Simulation results for GaAs-based VCSEL arrays at 1.55 μm are shown. The second technique uses non-uniform molecular beam epitaxy (MBE). We have successfully demonstrated 1x6 resonant cavity light-emitting diode arrays at 850 nm using this technique, with wavelength spacing of 0.4 nm between devices and present these results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tojo, H.; Hatae, T.; Yatsuka, E.
2012-10-15
This paper focuses on a method for measuring the electron temperature (T{sub e}) without knowing the transmissivity using Thomson scattering diagnostic with a double-pass scattering system. Application of this method for measuring the anisotropic T{sub e}, i.e., the T{sub e} in the directions parallel (T{sub e Double-Vertical-Line Double-Vertical-Line }) and perpendicular (T{sub e Up-Tack }) to the magnetic field, is proposed. Simulations based on the designed parameters for a JT-60SA indicate the feasibility of the measurements except in certain T{sub e} ranges, e.g., T{sub e Double-Vertical-Line Double-Vertical-Line }{approx} 3.5T{sub e Up-Tack} at 120 Degree-Sign of the scattering angle.
A 400 KHz line rate 2048-pixel stitched SWIR linear array
NASA Astrophysics Data System (ADS)
Anchlia, Ankur; Vinella, Rosa M.; Gielen, Daphne; Wouters, Kristof; Vervenne, Vincent; Hooylaerts, Peter; Deroo, Pieter; Ruythooren, Wouter; De Gaspari, Danny; Das, Jo; Merken, Patrick
2016-05-01
Xenics has developed a family of stitched SWIR long linear arrays that operate up to 400 KHz of line rate. These arrays serve medical and industrial applications that require high line rates as well as space applications that require long linear arrays. The arrays are based on a modular ROIC design concept: modules of 512 pixels are stitched during fabrication to achieve 512, 1024 and 2048 pixel arrays. Each 512-pixel module has its own on-chip digital sequencer, analog readout chain and 4 output buffers. This modular concept enables a long array to run at a high line rates irrespective of the array length, which limits the line rate in a traditional linear array. The ROIC is flip-chipped with InGaAs detector arrays. The FPA has a pixel pitch of 12.5μm and has two pixel flavors: square (12.5μm) and rectangular (250μm). The frontend circuit is based on Capacitive Trans-impedance Amplifier (CTIA) to attain stable detector bias, and good linearity and signal integrity, especially at high speeds. The CTIA has an input auto-zero mechanism that allows to have low detector bias (<20mV). An on-chip Correlated Double Sample (CDS) facilitates removal of CTIA KTC and 1/f noise, and other offsets, achieving low noise performance. There are five gain modes in the FPA giving the full well range from 85Ke- to 40Me-. The measured input referred noise is 35e-rms in the highest gain mode. The FPA operates in Integrate While Read mode and, at a master clock rate of 60MHz and a minimum integration time of 1.4μs, achieves the highest line rate of 400 KHz. In this paper, design details and measurements results are presented in order to demonstrate the array performance.
Piezo-Phototronic Enhanced UV Sensing Based on a Nanowire Photodetector Array.
Han, Xun; Du, Weiming; Yu, Ruomeng; Pan, Caofeng; Wang, Zhong Lin
2015-12-22
A large array of Schottky UV photodetectors (PDs) based on vertical aligned ZnO nanowires is achieved. By introducing the piezo-phototronic effect, the performance of the PD array is enhanced up to seven times in photoreponsivity, six times in sensitivity, and 2.8 times in detection limit. The UV PD array may have applications in optoelectronic systems, adaptive optical computing, and communication. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Muradyan, P.; Coulter, R.; Kotamarthi, V. R.; Wang, J.; Ghate, V. P.
2016-12-01
Large-scale mean vertical motion affects the atmospheric stability and is an important component in cloud formation. Thus, the analysis of temporal variations in the long-term averages of large-scale vertical motion would provide valuable insights into weather and climate patterns. 915-MHz radar wind profilers (RWP) provide virtually unattended and almost uninterrupted long-term wind speed measurements. We use five years of RWP wind data from the Atmospheric Boundary Layer Experiments (ABLE) located within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site from 1999 to 2004. Wind speed data from a triangular array of SGP A1, A2, and A5 ancillary sites are used to calculate the horizontal divergence field over the profiler network area using the line integral method. The distance between each vertex of this triangle is approximately 60km. Thus, the vertical motion profiles deduced from the divergence/convergence of horizontal winds over these spatial scales are of relevance to mesoscale dynamics. The wind data from RWPs are averaged over 1 hour time slice and divergence is calculated at each range gate from the lowest at 82 m to the highest at 2.3 km. An analysis of temporal variations in the long-term averages of the atmospheric divergence and vertical air motion for the months of August/September indicates an overall vertical velocity of -0.002 m/s with a standard deviation of 0.013 m/s, agreeing well with previous studies. Overall mean of the diurnal variation of vertical velocity for the study period from surface to 500 m height is 0.0018 m/s with a standard error of 0.00095 m/s. Seasonal mean daytime vertical winds suggest generally downward motion in Winter and upward motion in Summer. Validation of the derived divergence and vertical motion against a regional climate model (Weather Forecast and Research, WRF) at a spatial resolution of 12 km, as well as clear-sky vs. cloudy conditions comparisons will also be presented.
ALMA Measurements of the HNC and HC3N Distributions in Titan's Atmosphere
NASA Astrophysics Data System (ADS)
Cordiner, M. A.; Nixon, C. A.; Teanby, N. A.; Irwin, P. G. J.; Serigano, J.; Charnley, S. B.; Milam, S. N.; Mumma, M. J.; Lis, D. C.; Villanueva, G.; Paganini, L.; Kuan, Y.-J.; Remijan, A. J.
2014-11-01
We present spectrally and spatially resolved maps of HNC and HC3N emission from Titan's atmosphere, obtained using the Atacama Large Millimeter/submillimeter Array on 2013 November 17. These maps show anisotropic spatial distributions for both molecules, with resolved emission peaks in Titan's northern and southern hemispheres. The HC3N maps indicate enhanced concentrations of this molecule over the poles, consistent with previous studies of Titan's photochemistry and atmospheric circulation. Differences between the spectrally integrated flux distributions of HNC and HC3N show that these species are not co-spatial. The observed spectral line shapes are consistent with HNC being concentrated predominantly in the mesosphere and above (at altitudes z >~ 400 km), whereas HC3N is abundant at a broader range of altitudes (z ≈ 70-600 km). From spatial variations in the HC3N line profile, the locations of the HC3N emission peaks are shown to be variable as a function of altitude. The peaks in the integrated emission from HNC and the line core (upper atmosphere) component of HC3N (at z >~ 300 km) are found to be asymmetric with respect to Titan's polar axis, indicating that the mesosphere may be more longitudinally variable than previously thought. The spatially integrated HNC and HC3N spectra are modeled using the NEMESIS planetary atmosphere code and the resulting best-fitting disk-averaged vertical mixing ratio profiles are found to be in reasonable agreement with previous measurements for these species. Vertical column densities of the best-fitting gradient models for HNC and HC3N are 1.9 × 1013 cm-2 and 2.3 × 1014 cm-2, respectively.
Background distraction during vertical solid and character line bisections.
Rodriguez, Julio A; Lamb, Damon G; Salazar, Liliana; Correa, Lauren N; Mosquera, Diana M; Schwartz, Zared J; Cohen, Ronald A; Falchook, Adam D; Heilman, Kenneth M
2018-04-04
Background-objectives: When vertical lines are positioned above or below the center of the page, line bisection deviates toward the center of the page, suggesting that the edges of the page distract the allocation of attention to the line. A letter-character line (LCL) bisection requires both global and focal attention, to identify the target letter closest to the line's center. If more focal and less global attention is allocated to a LCL, more global attentional resources may be available and inadvertently allocated to the page. Alternatively, if the allocation of focal attention to a LCL inhibits global attentional processing, there may be less distraction by the page. Twenty-four healthy adults (12 older) bisected vertical solid and character lines centered, or positioned closer to the top or bottom of the page. There was no difference between bisection of solid and character lines centered on the page. Page-related deviations were greater with character lines than solid line bisections, and greater for lines positioned toward the top than the bottom of the page. With lines positioned toward the top, the older participants' attempted bisections were higher than those of the younger participants. These results suggest that the allocation of focal attention increases global attentional distractibility and that global-background attentional distraction is greater when the vertical lines are placed in the upper part of the page. Older participants appeared to be less distracted when lines were placed toward the top of the page, but the reason for this age difference requires further research.
Isotopic Ratios of Carbon and Oxygen in Titan’s CO using ALMA
NASA Astrophysics Data System (ADS)
Serigano, Joseph; Nixon, C. A.; Cordiner, M. A.; Irwin, P. G. J.; Teanby, N. A.; Charnley, S. B.; Lindberg, J. E.
2016-04-01
We report interferometric observations of carbon monoxide (CO) and its isotopologues in Titan’s atmosphere using the Atacama Large Millimeter/submillimeter Array (ALMA). The following transitions were detected: CO (J = 1-0, 2-1, 3-2, 6-5), 13CO (J = 2-1, 3-2, 6-5), C18O (J = 2-1, 3-2), and C17O (J = 3-2). Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code. We present the first spectroscopic detection of 17O in the outer solar system with C17O detected at >8σ confidence. The abundance of CO was determined to be 49.6 +/- 1.8 ppm, assumed to be constant with altitude, with isotopic ratios 12C/13C = 89.9 +/- 3.4, 16O/18O = 486 +/- 22, and 16O/17O = 2917 +/- 359. The measurements of 12C/13C and 16O/18O ratios are the most precise values obtained in Titan’s atmospheric CO to date. Our results are in good agreement with previous studies and suggest no significant deviations from standard terrestrial isotopic ratios.
Isotopic Ratios of Carbon and Oxygen in Titan's CO Using Alma
NASA Technical Reports Server (NTRS)
Serigano, Joseph; Nixon, C. A.; Cordiner, M. A.; Irwin, P. G. J.; Teanby, N. A.; Charnley, S. B.; Lindberg, J. E.
2016-01-01
We report interferometric observations of carbon monoxide (CO) and its isotopologues in Titan's atmosphere using the Atacama Large Millimeter/submillimeter Array (ALMA). The following transitions were detected: CO (J = 1-0, 2-1, 3-2, 6-5), C-13 O (J = 2-1, 3-2, 6-5), C-18 O (J = 2-1, 3-2), and C-17 O (J = 3-2). Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code. We present the first spectroscopic detection of O-17 in the outer solar system with C-17 O detected at greater than 8 sigma confidence. The abundance of CO was determined to be 49.6 +/- 1.8 ppm, assumed to be constant with altitude, with isotopic ratios C-12/C-13 = 89.9 +/- 3.4, O-16/O-18 = 486 +/- 22, and O-16/O-17 = 2917 +/- 359. The measurements of C-12/C-13 and O-16/O-18 ratios are the most precise values obtained in Titan's atmospheric CO to date. Our results are in good agreement with previous studies and suggest no significant deviations from standard terrestrial isotopic ratios.
Effects of fish with swim bladders on absorption and scintillation
NASA Astrophysics Data System (ADS)
Diachok, Orest
2004-10-01
Bioacoustic absorption spectroscopy (BAS) experiments, which were conducted in the Santa Barbara Channel in 2001 and 2002, were designed to investigate the effects of fish with swim bladders on absorption and scintillation. These experiments included a broadband source, which transmitted a sequence of 65-s-long tones between 0.25 and 10 kHz, and a vertical array which spanned most of the water column. The range was fixed. A fisheries echo sounder and trawls provided bio-acoustic parameters. Strongest absorption lines and highest values of the scintillation index were observed at night at about 1.1 kHz, the resonance frequency of 15 cm long sardines, when they were dispersed at an average depth of 13 m. Smaller absorption lines were correlated with other species. During the day sardines occupied a depth of about 50 m, where their extinction cross sections were diminished; some were dispersed and resonated at the frequency of individuals; others formed schools and resonated at collective frequencies. As a result of these phenomena, absorption lines due to sardines were much weaker, and the effect of this species on the scintillation index was not evident. [Work was supported by ONR.
Shallow water acoustic backscatter and reverberation measurements using a 68-kHz cylindrical array
NASA Astrophysics Data System (ADS)
Gallaudet, Timothy Cole
2001-10-01
The characterization of high frequency, shallow water acoustic backscatter and reverberation is important because acoustic systems are used in many scientific, commercial, and military applications. The approach taken is to use data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz multibeam sonar capable of 360° imaging in a vertical plane perpendicular to its direction of travel. With this unique capability, acoustic backscatter imagery of the seafloor, sea surface, and horizontal and vertical planes in the volume are constructed from data obtained in 200m deep waters in the Northeastern Gulf of Mexico when the TVSS was towed 78m below the surface, 735m astern of a towship. The processed imagery provide a quasi-synoptic characterization of the spatial and temporal structure of boundary and volume acoustic backscatter and reverberation. Diffraction, element patterns, and high sidelobe levels are shown to be the most serious problems affecting cylindrical arrays such as the TVSS, and an amplitude shading method is presented for reducing the peak sidelobe levels of irregular-line and non-coplanar arrays. Errors in the towfish's attitude and motion sensor, and irregularities in the TVSS's transmitted beampattern produce artifacts in the TVSS-derived bathymetry and seafloor acoustic backscatter imagery. Correction strategies for these problems are described, which are unique in that they use environmental information extracted from both ocean boundaries. Sea surface and volume acoustic backscatter imagery are used to explore and characterize the structure of near-surface bubble clouds, schooling fish, and zooplankton. The simultaneous horizontal and vertical coverage provided by the TVSS is shown to be a primary advantage, motivating further use of multibeam sonars in these applications. Whereas boundary backscatter fluctuations are well described by Weibull, K, and Rayleigh mixture probability distributions, those corresponding to volume backscatter are multi-modal, with the log-normal distribution providing the best fits to the centers of the distributions, and the Rayleigh mixture models providing the best fits to the tails of the distributions. The largest distribution tails result from resonant microbubbles and patchy aggregations of zooplankton. The Office of Naval Research funded this work under ONR-NRL Contract No. N00014-96-1-G9I3.
Ding, Ling; E, Yifeng; Fan, Louzhen; Yang, Shihe
2013-07-18
We report a unique strategy for efficiently exfoliating large size and high quality single-layer graphene directly from graphite into DMF dispersions by growing ZnO nanorod arrays between the graphene layers in graphite.
Cao, J R; Lee, Po-Tsung; Choi, Sang-Jun; O'Brien, John D; Dapkus, P Daniel
2002-01-01
Lithographic tuning of operating wavelengths in a photonic crystal laser array is demonstrated. The photonic crystal lattice constant is varied by 2 nm between elements of the array, and a wavelength spacing of approximately 4 nm is achieved.
Array invariant-based ranging of a source of opportunity.
Byun, Gihoon; Kim, J S; Cho, Chomgun; Song, H C; Byun, Sung-Hoon
2017-09-01
The feasibility of tracking a ship radiating random and anisotropic noise is investigated using ray-based blind deconvolution (RBD) and array invariant (AI) with a vertical array in shallow water. This work is motivated by a recent report [Byun, Verlinden, and Sabra, J. Acoust. Soc. Am. 141, 797-807 (2017)] that RBD can be applied to ships of opportunity to estimate the Green's function. Subsequently, the AI developed for robust source-range estimation in shallow water can be applied to the estimated Green's function via RBD, exploiting multipath arrivals separated in beam angle and travel time. In this letter, a combination of the RBD and AI is demonstrated to localize and track a ship of opportunity (200-900 Hz) to within a 5% standard deviation of the relative range error along a track at ranges of 1.8-3.4 km, using a 16-element, 56-m long vertical array in approximately 100-m deep shallow water.
NASA Technical Reports Server (NTRS)
Mauldin, L. E., III; Moore, A. S.; Stump, C. S.; Mayo, L. S.
1985-01-01
The optical and electronic design of the Halogen Occultation Experiment (HALOE) elevation sunsensor is described. This system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned, monolithic charge coupled device. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the HALOE science instantaneous-field-of-view (IFOV) across the vertical solar diameter during instrument calibration, and then maintain the science IFOV four arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 0.7 micrometer operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability. The HALOE instrument is a gas correlation radiometer that is now being developed by NASA Langley Research Center for the Upper Atmospheric Research Satellite.
Carbon Nanofiber Electrode Array for Neurochemical Monitoring
NASA Technical Reports Server (NTRS)
Koehne, Jessica E.
2017-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report using vertically aligned CNF as neurotransmitter recording electrodes for application in a smart deep brain stimulation (DBS) device. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.
The effects of DRIE operational parameters on vertically aligned micropillar arrays
NASA Astrophysics Data System (ADS)
Miller, Kane; Li, Mingxiao; Walsh, Kevin M.; Fu, Xiao-An
2013-03-01
Vertically aligned silicon micropillar arrays have been created by deep reactive ion etching (DRIE) and used for a number of microfabricated devices including microfluidic devices, micropreconcentrators and photovoltaic cells. This paper delineates an experimental design performed on the Bosch process of DRIE of micropillar arrays. The arrays are fabricated with direct-write optical lithography without photomask, and the effects of DRIE process parameters, including etch cycle time, passivation cycle time, platen power and coil power on profile angle, scallop depth and scallop peak-to-peak distance are studied by statistical design of experiments. Scanning electron microscope images are used for measuring the resultant profile angles and characterizing the scalloping effect on the pillar sidewalls. The experimental results indicate the effects of the determining factors, etch cycle time, passivation cycle time and platen power, on the micropillar profile angles and scallop depths. An optimized DRIE process recipe for creating nearly 90° and smooth surface (invisible scalloping) has been obtained as a result of the statistical design of experiments.
On measurement of acoustic pulse arrival angles using a vertical array
NASA Astrophysics Data System (ADS)
Makarov, D. V.
2017-11-01
We consider a recently developed method to analyze the angular structure of pulsed acoustic fields in an underwater sound channel. The method is based on the Husimi transform that allows us to approximately link a wave field with the corresponding ray arrivals. The advantage of the method lies in the possibility of its practical realization by a vertical hydrophone array crossing only a small part of the oceanic depth. The main aim of the present work is to find the optimal parameter values of the array that ensure good angular accuracy and sufficient reliability of the algorithm to calculate the arrival angles. Broadband pulses with central frequencies of 80 and 240 Hz are considered. It is shown that an array with a length of several hundred meters allows measuring the angular spectrum with an accuracy of up to 1 degree. The angular resolution is lowered with an increase of the sound wavelength due to the fundamental limitations imposed by the uncertainty relation.
Al-Haddad, Ahmed; Wang, Chengliang; Qi, Haoyuan; Grote, Fabian; Wen, Liaoyong; Bernhard, Jörg; Vellacheri, Ranjith; Tarish, Samar; Nabi, Ghulam; Kaiser, Ute; Lei, Yong
2016-09-07
Resistive switching random access memories (RRAM) have attracted great scientific and industrial attention for next generation data storage because of their advantages of nonvolatile properties, high density, low power consumption, fast writing/erasing speed, good endurance, and simple and small operation system. Here, by using a template-assisted technique, we demonstrate a three-dimensional highly ordered vertical RRAM device array with density as high as that of the nanopores of the template (10(8)-10(9) cm(-2)), which can also be fabricated in large area. The high crystallinity of the materials, the large contact area and the intimate semiconductor/electrode interface (3 nm interfacial layer) make the ultralow voltage operation (millivolt magnitude) and ultralow power consumption (picowatt) possible. Our procedure for fabrication of the nanodevice arrays in large area can be used for producing many other different materials and such three-dimensional electronic device arrays with the capability to adjust the device densities can be extended to other applications of the next generation nanodevice technology.
Chang, Wen-Chung; Su, Sheng-Chien; Wu, Chia-Ching
2016-06-30
Vertically aligned p-type silicon nanowire (SiNW) arrays were fabricated through metal-assisted chemical etching (MACE) of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW) heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and current-voltage (I-V) measurements. Nonlinear and rectifying I-V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions.
NASA Astrophysics Data System (ADS)
Pandey, Gaind P.; Klankowski, Steven A.; Liu, Tao; Wu, Judy; Li, Jun
2017-02-01
A novel solid-state battery-supercapacitor hybrid device is fabricated for high-performance electrical energy storage using a Si anode and a TiO2 cathode in conjunction with a flexible, solid-like gel polymer electrolyte film as the electrolyte and separator. The electrodes were fabricated as three-dimensional nanostructured vertical arrays by sputtering active materials as conformal shells on vertically aligned carbon nanofibers (VACNFs) which serve as the current collector and structural template. Such nanostructured vertical core-shell array-electrodes enable short Li-ion diffusion path and large pseudocapacitive contribution by fast surface reactions, leading to the hybrid features of batteries and supercapacitors that can provide high specific energy over a wide range of power rates. Due to the improved mechanical stability of the infiltrated composite structure, the hybrid cell shows excellent cycling stability and is able to retain more than 95% of the original capacity after 3500 cycles. More importantly, this solid-state device can stably operate in a temperature range from -20 to 60 °C with a very low self-discharge rate and an excellent shelf life. This solid-state architecture is promising for the development of highly stable thin-film hybrid energy storage devices for unconventional applications requiring largely varied power, wider operation temperature, long shelf-life and higher safety standards.
Propogation loss with frequency of ultrasound guided waves in a composite metal-honeycomb structure
NASA Astrophysics Data System (ADS)
Saxena, Indu F.; Baid, Harsh K.; Guzman, Narciso; Kempen, Lothar U.; Mal, Ajit
2009-05-01
Non-destructive testing of critical structural components is time consuming, while necessary for maintaining safe operation. Large aerospace structures, such as the vertical stabilizers of aircraft undergo inspection at regular intervals for damage diagnostics. However, conventional techniques for damage detection and identification before repair can be scheduled are conducted off-line and therefore can take weeks. The use of guided ultrasound waves is being investigated to expedite damage detection in composites. We measure the frequency dependent loss of ultrasonic guided waves for a structure comprising a boron-nitride composite skin sandwiching an aluminum honeycomb. A wide range of ultrasound frequencies propagate as measured using PZTs, with the lowest attenuation observed about 200-250 kHz. These measurements are confirmed using optical fiber Bragg grating arrays used as ultrasound transducers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruland, Robert
The Visible-Infrared SASE Amplifier (VISA) undulator consists of four 99cm long segments. Each undulator segment is set up on a pulsed-wire bench, to characterize the magnetic properties and to locate the magnetic axis of the FODO array. Subsequently, the location of the magnetic axis, as defined by the wire, is referenced to tooling balls on each magnet segment by means of a straightness interferometer. After installation in the vacuum chamber, the four magnet segments are aligned with respect to themselves and globally to the beam line reference laser. A specially designed alignment fixture is used to mount one straightness interferometermore » each in the horizontal and vertical plane of the beam. The goal of these procedures is to keep the combined rms trajectory error, due to magnetic and alignment errors, to 50{micro}m.« less
Poster 9: Isotopic Ratios of Carbon and Oxygen in Titan's CO using ALMA
NASA Astrophysics Data System (ADS)
Serigano, Joseph; Nixion, Conor A.; Cordiner, Martin A.; Irwin, Patrick G. J.; Teanby, Nick A.; Charnley, Steven B.; Lindberg, Johan E.
2016-06-01
The advent of the Atacama Large Millimeter/Submillimeter Array (ALMA) has provided a new and powerful facility for probing the atmospheres of solar system targets at long wavelengths (84-720 GHz) where the rotational lines of small, polar molecules are prominent. In the complex atmosphere of Titan, photochemical processes dissociate and ionize molecular nitrogen and methane in the upper atmosphere, creating a complex inventory of trace hydrocarbons and nitriles. Additionally, the existence of oxygen on Titan facilitates the synthesis of molecules of potential astrobiological importance. Utilization of ground-based submillimeter observations of Titan has proven to be a powerful tool to complement results from spacecraft observations. ALMA provides the ability to probe this region in greater detail with unprecedented spectral and spatial resolution at high sensitivity, allowing for the derivation of vertical mixing profiles, molecular detections, and observations of latitudinal and seasonal variations. Recent ALMA studies of Titan have presented spectrally and spatially-resolved maps of HNC and HC3N emission (Cordiner et al. 2014), as well as the first spectroscopic detection of ethyl cyanide (C2H5CN) in Titan's atmosphere (Cordiner et al. 2015). This poster will focus on ALMA observations of carbon monoxide (CO) and its isotopologues 13CO, C18O, and C 17O in Titan's atmosphere. Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code (Irwin et al. 2008). This study reports the first spectroscopic detection of 17O in the outer solar system with C17O detected at >8σ confidence. The abundances of these molecules and isotopic ratios of 12C/13C, 16O/18O, and 16O/17O will be presented. General implications for the history of Titan from these measurements will be discussed.
Tang, Y B; Chen, Z H; Song, H S; Lee, C S; Cong, H T; Cheng, H M; Zhang, W J; Bello, I; Lee, S T
2008-12-01
Vertically aligned Mg-doped GaN nanorods have been epitaxially grown on n-type Si substrate to form a heterostructure for fabricating p-n heterojunction photovoltaic cells. The p-type GaN nanorod/n-Si heterojunction cell shows a well-defined rectifying behavior with a rectification ratio larger than 10(4) in dark. The cell has a high short-circuit photocurrent density of 7.6 mAlcm2 and energy conversion efficiency of 2.73% under AM 1.5G illumination at 100 mW/cm2. Moreover, the nanorod array may be used as an antireflection coating for solar cell applications to effectively reduce light loss due to reflection. This study provides an experimental demonstration for integrating one-dimensional nanostructure arrays with the substrate to directly fabricate heterojunction photovoltaic cells.
Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo
2014-01-01
Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.
Guo, Zhen; Li, Haiwen; Zhou, Lianqun; Zhao, Dongxu; Wu, Yihui; Zhang, Zhiqiang; Zhang, Wei; Li, Chuanyu; Yao, Jia
2015-01-27
A novel method of fabricating large-scale horizontally aligned ZnO microrod arrays with controlled orientation and periodic distribution via combing technology is introduced. Horizontally aligned ZnO microrod arrays with uniform orientation and periodic distribution can be realized based on the conventional bottom-up method prepared vertically aligned ZnO microrod matrix via the combing method. When the combing parameters are changed, the orientation of horizontally aligned ZnO microrod arrays can be adjusted (θ = 90° or 45°) in a plane and a misalignment angle of the microrods (0.3° to 2.3°) with low-growth density can be obtained. To explore the potential applications based on the vertically and horizontally aligned ZnO microrods on p-GaN layer, piezo-phototronic devices such as heterojunction LEDs are built. Electroluminescence (EL) emission patterns can be adjusted for the vertically and horizontally aligned ZnO microrods/p-GaN heterojunction LEDs by applying forward bias. Moreover, the emission color from UV-blue to yellow-green can be tuned by investigating the piezoelectric properties of the materials. The EL emission mechanisms of the LEDs are discussed in terms of band diagrams of the heterojunctions and carrier recombination processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vertical displacement of Ips Latidens and Ips Pini
Daniel R. Miller
2000-01-01
The effect of semiochemical interruptants was examined for Ips latidens (LeConte) and Ips pini (Say) using artificial trees (tall-traps) consisting of an array of seven Lindgren multiple-funnel traps suspended vertically on a rope ladder. S-(+)- Ipsdienol reduced the numbers of I. latidens captured in (±)-ipsenol...
Diverse Seismic Imaging Created by the Seismic Explosion Experiment of the TAIGER Project
NASA Astrophysics Data System (ADS)
Wang, C.; Okaya, D.; Wu, F.; Yen, H.; Huang, B.; Liang, W.
2008-12-01
The TAIGER (TAiwan Integrated GEodynamics Research) project which examines the Taiwan orogeny includes five experiments: natural earthquake recording, man-made explosion recording, Magnetotelluic imaging, marine MCS and sea-land shooting, and deformation evolution modeling. During Feb-Mar 2008, the explosion experiment was carried out. Ten sources with 500~3000kg dynamite were detonated along two transects across northern and southern Taiwan. Over 600 PASSCAL Texans and 40 R-130 instruments record the signals over 100~300 km range. Additional arrays with 100 seismometers were deployed to collect north-south line and fan shoot data for 3D imaging. Furthermore, there are 9 ocean bottom seismometers (OBS) in the Taiwan Strait and two lines with 20 seismometers deployed on the mainland China side. A large volume of qualified data has been created. Except explosion signals, numerous local and regional earthquakes were also recorded even by the Texan instruments. The rich earthquake-explosion dataset now exists at the Institute of Earth Sciences, Academia Sinica operated by the Taiwan Earthquake Center (TEC). Preliminary examination of the data reveal crustal Pg, PmP, Pn and intermediate crustal reflection phases within the transect profiles and in the 3D cross-arrays. These data provide direct seismic imaging of the continental Moho under Taiwan and the sharp Moho root configuration associated with mountain building. Seismic tomography and raytrace methods reveal velocity structure consistent with convergence and vertical exhumation of the Central Ranges.
Analogue Hawking radiation in a dc-SQUID array transmission line.
Nation, P D; Blencowe, M P; Rimberg, A J; Buks, E
2009-08-21
We propose the use of a superconducting transmission line formed from an array of direct-current superconducting quantum interference devices for investigating analogue Hawking radiation. Biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. Being a fundamentally quantum mechanical device, this setup allows for investigations of quantum effects such as backreaction and analogue space-time fluctuations on the Hawking process.
NASA Astrophysics Data System (ADS)
Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da
2016-03-01
Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.
Vigolo, Paolo; Mutinelli, Sabrina; Biscaro, Leonello; Stellini, Edoardo
2015-12-01
Different types of tooth preparations influence the marginal precision of zirconium-oxide based ceramic single crowns. In this in vivo study, the marginal fits of zirconium-oxide based ceramic single crowns with vertical and horizontal finish lines were compared. Forty-six teeth were chosen in eight patients indicated for extraction for implant placement. CAD/CAM technology was used for the production of 46 zirconium-oxide-based ceramic single crowns: 23 teeth were prepared with vertical finishing lines, 23 with horizontal finishing lines. One operator accomplished all clinical procedures. The zirconia crowns were cemented with glass ionomer cement. The teeth were extracted 1 month later. Marginal gaps along vertical planes were measured for each crown, using a total of four landmarks for each tooth by means of a microscope at 50× magnification. On conclusion of microscopic assessment, ESEM evaluation was completed on all specimens. The comparison of the gap between the two types of preparation was performed with a nonparametric test (two-sample Wilcoxon rank-sum test) with a level of significance fixed at p < 0.05. All data were analyzed with STATA12. In the group with horizontal finish line preparations, the median value of the gap was 35.45 μm (Iqr, 0.33); for the vertical finish line group, the median value of the gap was 35.44 μm (Iqr, 0.40). The difference between the two groups was not statistically significant (two-sample Wilcoxon rank-sum test, p = 0.0872). Within the limitations of this study, the gaps of the zirconium-oxide-based ceramic CAD/CAM crowns with vertical and horizontal finish line preparations were not different. © 2015 by the American College of Prosthodontists.
Characterization of transformation related genes in oral cancer cells.
Chang, D D; Park, N H; Denny, C T; Nelson, S F; Pe, M
1998-04-16
A cDNA representational difference analysis (cDNA-RDA) and an arrayed filter technique were used to characterize transformation-related genes in oral cancer. From an initial comparison of normal oral epithelial cells and a human papilloma virus (HPV)-immortalized oral epithelial cell line, we obtained 384 differentially expressed gene fragments and arrayed them on a filter. Two hundred and twelve redundant clones were identified by three rounds of back hybridization. Sequence analysis of the remaining clones revealed 99 unique clones corresponding to 69 genes. The expression of these transformation related gene fragments in three nontumorigenic HPV-immortalized oral epithelial cell lines and three oral cancer cell lines were simultaneously monitored using a cDNA array hybridization. Although there was a considerable cell line-to-cell line variability in the expression of these clones, a reliable prediction of their expression could be made from the cDNA array hybridization. Our study demonstrates the utility of combining cDNA-RDA and arrayed filters in high-throughput gene expression difference analysis. The differentially expressed genes identified in this study should be informative in studying oral epithelial cell carcinogenesis.
Polarimetric Imaging System for Automatic Target Detection and Recognition
2000-03-01
technique shown in Figure 4(b) can also be used to integrate polarizer arrays with other types of imaging sensors, such as LWIR cameras and uncooled...vertical stripe pattern in this φ image is caused by nonuniformities in the particular polarizer array used. 2. CIRCULAR POLARIZATION IMAGING USING
A surface code quantum computer in silicon
Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.
2015-01-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310
A surface code quantum computer in silicon.
Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L
2015-10-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.
Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli
2018-01-23
Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones.
Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli
2018-01-01
Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones. PMID:29360793
Producibility of Vertically Integrated Photodiode (VIP)tm scanning focal plane arrays
NASA Astrophysics Data System (ADS)
Turner, Arthur M.; Teherani, Towfik; Ehmke, John C.; Pettitt, Cindy; Conlon, Peggy; Beck, Jeffrey D.; McCormack, Kent; Colombo, Luigi; Lahutsky, Tom; Murphy, Terry; Williams, Robert L.
1994-07-01
Vertically integrated photodiode, VIPTM, technology is now being used to produce second generation infrared focal plane arrays with high yields and performance. The VIPTM process employs planar, ion implanted, n on p diodes in HgCdTe which is epoxy hybridized directly to the read out integrated circuits on 100 mm Si wafers. The process parameters that are critical for high performance and yield include: HgCdTe dislocation density and thickness, backside passivation, frontside passivation, and junction formation. Producibility of infrared focal plane arrays (IRFPAs) is also significantly enhanced by read out integrated circuits (ROICs) which have the ability to deselect defective pixels. Cold probe screening before lab dewar assembly reduces costs and improves cycle times. The 240 X 1 and 240 X 2 scanning array formats are used to demonstrate the effect of process optimization, deselect, and cold probe screening on yield and cycle time. The versatility of the VIPTM technology and its extension to large area arrays is demonstrated using 240/288 X 4 and 480 X 5 TDI formats. Finally, the high performance of VIPTM IRFPAs is demonstrated by comparing data from a 480 X 5 to the SADA-II specification.
Multiple-wavelength vertical cavity laser arrays with wide wavelength span and high uniformity
NASA Astrophysics Data System (ADS)
Yuen, Wupen; Li, Gabriel S.; Chang-Hasnain, Connie J.
1996-12-01
Vertical-cavity surface-emitting lasers (VCSELs) are promising for numerous applications. In particular, due to their inherent single Fabry-Perot mode operation, VCSELs can be very useful for wavelength division multiplexing (WDM) systems allowing high bandwidth and high functionalities.1, 2 Multiple wavelength VCSEL arrays with wide channel spacings (>10 nm) provide an inexpensive solution to increasing the capacity of local area networks without using active wavelength controls.1 The lasing wavelength of a VCSEL is determined by the equivalent laser cavity thickness which can be varied by changing the thickness of either the l-spacer or the distributed Bragg reflector (DBR) layers. To make monolithic multiple-wavelength VCSEL arrays, the lasing wavelength, and therefore the cavity thickness, has to be varied at reasonable physical distances. For all practical applications, it is imperative for the fabrication technology to be controllable, cost-effective, and wafer-scale. Recently, we demonstrated a patterned-substrate molecular beam epitaxy (MBE) growth technique with in-situ laser reflectometry monitoring for fabricating multiple wavelength VCSEL arrays.3, 4 With this method, VCSEL arrays with very large and highly controllable lasing wavelength spans and excellent lasing characteristics have been achieved.
Chouinard, Philippe A.; Peel, Hayden J.; Landry, Oriane
2017-01-01
The closer a line extends toward a surrounding frame, the longer it appears. This is known as a framing effect. Over 70 years ago, Teodor Künnapas demonstrated that the shape of the visual field itself can act as a frame to influence the perceived length of lines in the vertical-horizontal illusion. This illusion is typically created by having a vertical line rise from the center of a horizontal line of the same length creating an inverted T figure. We aimed to determine if the degree to which one fixates on a spatial location where the two lines bisect could influence the strength of the illusion, assuming that the framing effect would be stronger when the retinal image is more stable. We performed two experiments: the visual-field and vertical-horizontal illusion experiments. The visual-field experiment demonstrated that the participants could discriminate a target more easily when it was presented along the horizontal vs. vertical meridian, confirming a framing influence on visual perception. The vertical-horizontal illusion experiment determined the effects of orientation, size and eye gaze on the strength of the illusion. As predicted, the illusion was strongest when the stimulus was presented in either its standard inverted T orientation or when it was rotated 180° compared to other orientations, and in conditions in which the retinal image was more stable, as indexed by eye tracking. Taken together, we conclude that the results provide support for Teodor Künnapas’ explanation of the vertical-horizontal illusion. PMID:28392764
Visuospatial biases in preschool children: Evidence from line bisection in three-dimensional space.
Patro, Katarzyna; Nuerk, Hans-Christoph; Brugger, Peter
2018-04-09
Spatial attention in adults is characterized by systematic asymmetries across all three spatial dimensions. These asymmetries are evident when participants bisect horizontal, vertical, or radial lines and misplace their midpoints to the left, the top, or far from the body, respectively. However, bisection errors are rarely examined during early childhood. In this study, we examined the development of spatial-attentional asymmetries in three-dimensional (3D) space by asking preschool children (aged 3-6 years) to bisect horizontal, vertical, and radial lines. Children erred to the left with horizontal lines and to the top with vertical lines, consistent with the pattern reported in adults. These biases got stronger with age and were absent in the youngest preschoolers. However, by controlling for a possible failure in hitting the line, we observed an additional unpredicted pattern: Children's pointing systematically deviated away from the line to an empty space on its left side (for vertical and radial lines) or above it (for horizontal lines). Notably, this task-irrelevant deviation was pronounced in children as young as 3 or 4 years. We conclude that asymmetries in spatial-attentional functions should be measured not only in task-relevant dimensions but also in task-irrelevant dimensions because the latter may reveal biases in very young children not typically observed in task-relevant measures. Copyright © 2018 Elsevier Inc. All rights reserved.
Chang, Wen-Chung; Su, Sheng-Chien; Wu, Chia-Ching
2016-01-01
Vertically aligned p-type silicon nanowire (SiNW) arrays were fabricated through metal-assisted chemical etching (MACE) of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW) heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and current−voltage (I−V) measurements. Nonlinear and rectifying I−V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions. PMID:28773656
Lin, Jinghuang; Jia, Henan; Liang, Haoyan; Chen, Shulin; Cai, Yifei; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Fei, Weidong; Feng, Jicai
2018-03-01
NiO is a promising electrode material for supercapacitors. Herein, the novel vertically standing nanosized NiO encapsulated in graphene layers (G@NiO) are rationally designed and synthesized as nanosheet arrays. This unique vertical standing structure of G@NiO nanosheet arrays can enlarge the accessible surface area with electrolytes, and has the benefits of short ion diffusion path and good charge transport. Further, an interconnected graphene conductive network acts as binder to encapsulate the nanosized NiO particles as core-shell structure, which can promote the charge transport and maintain the structural stability. Consequently, the optimized G@NiO hybrid electrodes exhibit a remarkably enhanced specific capacity up to 1073 C g -1 and excellent cycling stability. This study provides a facial strategy to design and construct high-performance metal oxides for energy storage.
Crustal Properties Across the Mid-Continent Rift via Transfer Function Analysis
NASA Astrophysics Data System (ADS)
Frederiksen, A. W.; Tyomkin, Y.; Campbell, R.; van der Lee, S.; Zhang, H.
2015-12-01
The Mid-Continent Rift (MCR), a failed Proterozoic rift structure in central North America, is a dominant feature of North American gravity maps. The rift underwent a combination of extension, magmatism, and later compression, and it is difficult to predict how these events affected the overall crustal thickness and bulk composition in the vicinity of the rift axis, though the associated gravity high indicates that large-volume mafic magmatism took place. The Superior Province Rifting Earthscope Experiment (SPREE) project instrumented the MCR with Flexible Array broadband seismographs from 2011 through 2013 in Minnesota and Wisconsin, along two lines crossing the rift axis as well as a line following the axis. We examine teleseismic P-coda data from SPREE and nearby Transportable Array instruments using a new technique: transfer-function analysis. In this approach, possible models of crustal structure are used to generate a predicted transfer function relating the radial and vertical components of the P coda at a particular site. The transfer function then allows generation of a misfit (between the true radial component and a synthetic radial component predicted from the vertical trace) without the need to perform receiver-function deconvolution, thus avoiding the deconvolution problems encountered with receiver functions in sedimentary basins. We use the transfer-function approach to perform a grid search over three crustal properties: crustal thickness, crustal P/S velocity ratio, and the thickness of an overlying sedimentary basin. Results for our SPREE/TA data set indicate that the crust is significantly thickened along the rift axis, with maximum thicknesses approaching 50 km; the crust is thinner (ca. 40 km) outside of the rift zone. The crustal thickness structure is particularly complex beneath southeastern Minnesota, where very strong Moho topography is present, as well as up to 2 km of sediment; further north, the Moho is smoother and the basin is not present. P/S ratio varies along the rift axis, suggesting a higher mafic component (higher ratio) in southern Minnesota. The complexity we see along the MCR is consistent with the results obtained by Zhang et al. (this conference) using receiver function analysis.
Focused shock spark discharge drill using multiple electrodes
Moeny, William M.; Small, James G.
1988-01-01
A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications
NASA Astrophysics Data System (ADS)
Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.
A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.
1986-01-01
A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.
Vertical pillar-superlattice array and graphene hybrid light emitting diodes.
Lee, Jung Min; Choung, Jae Woong; Yi, Jaeseok; Lee, Dong Hyun; Samal, Monica; Yi, Dong Kee; Lee, Chul-Ho; Yi, Gyu-Chul; Paik, Ungyu; Rogers, John A; Park, Won Il
2010-08-11
We report a type of device that combines vertical arrays of one-dimensional (1D) pillar-superlattice (PSL) structures with 2D graphene sheets to yield a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics. In this application, graphene sheets coated with very thin metal layers exhibit good mechanical and electrical properties and an ability to mount, in a freely suspended configuration, on the PSL arrays as a top window electrode. Optical characterization demonstrates that graphene exhibits excellent optical transparency even after deposition of the thin metal films. Thermal annealing of the graphene/metal (Gr/M) contact to the GaAs decreases the contact resistance, to provide enhanced carrier injection. The resulting PSL-Gr/M LEDs exhibit bright light emission over large areas. The result suggests the utility of graphene-based materials as electrodes in devices with unusual, nonplanar 3D architectures.
Digital solar edge tracker for the Halogen Occultation Experiment
NASA Technical Reports Server (NTRS)
Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.
1987-01-01
The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.
Pearce, Ryan C; Railsback, Justin G; Anderson, Bryan D; Sarac, Mehmet F; McKnight, Timothy E; Tracy, Joseph B; Melechko, Anatoli V
2013-02-01
Vertically aligned carbon nanofibers (VACNFs) are synthesized on Al 3003 alloy substrates by direct current plasma-enhanced chemical vapor deposition. Chemically synthesized Ni nanoparticles were used as the catalyst for growth. The Si-containing coating (SiN(x)) typically created when VACNFs are grown on silicon was produced by adding Si microparticles prior to growth. The fiber arrays were transferred to PDMS by spin coating a layer on the grown substrates, curing the PDMS, and etching away the Al in KOH. The fiber arrays contain many fibers over 15 μm (long enough to protrude from the PDMS film and penetrate cell membranes) and SiN(x) coatings as observed by SEM, EDX, and fluorescence microscopy. The free-standing array in PDMS was loaded with pVENUS-C1 plasmid and human brain microcapillary endothelial (HBMEC) cells and was successfully impalefected.
Production of vertical arrays of small diameter single-walled carbon nanotubes
Hauge, Robert H; Xu, Ya-Qiong
2013-08-13
A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.
Natural convection and radiation heat transfer from an array of inclined pin fins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alessio, M.E.; Kaminski, D.A.
1989-02-01
Natural convection and radiation from an air-cooled, highly populated pin-fin array were studied experimentally. the effects of pin density, pin length, and the angle of the pin to the horizontal were measured. Previous work by Sparrow and Vemuri treated the case of a vertical base plate with horizontal fins. recently, Sparrow and Vemuri (1986) extended their study to include results for vertical fins with a horizontal down-facing base plate, as well as vertical fins with a horizontal up-facing base plate. In this study, the base plate is maintained in a vertical position and the angle of the pins is variedmore » from the horizontal. The main intent of this study was to compare the performance of inclined pin fins with straight pin fins. In all cases studied, the straight, horizontal fins were superior to the inclined fins. It was possible to obtain a single general correlation of the test data. While this correlation is recommended within the range of parameters that were tested here, one significant parameter, the size of the base plate, was not varied.« less
NASA Astrophysics Data System (ADS)
Tran, Thang H.; Baba, Yoshihiro; Somu, Vijaya B.; Rakov, Vladimir A.
2017-12-01
The finite difference time domain (FDTD) method in the 2-D cylindrical coordinate system was used to compute the nearly full-frequency-bandwidth vertical electric field and azimuthal magnetic field waveforms produced on the ground surface by lightning return strokes. The lightning source was represented by the modified transmission-line model with linear current decay with height, which was implemented in the FDTD computations as an appropriate vertical phased-current-source array. The conductivity of atmosphere was assumed to increase exponentially with height, with different conductivity profiles being used for daytime and nighttime conditions. The fields were computed at distances ranging from 50 to 500 km. Sky waves (reflections from the ionosphere) were identified in computed waveforms and used for estimation of apparent ionospheric reflection heights. It was found that our model reproduces reasonably well the daytime electric field waveforms measured at different distances and simulated (using a more sophisticated propagation model) by Qin et al. (2017). Sensitivity of model predictions to changes in the parameters of atmospheric conductivity profile, as well as influences of the lightning source characteristics (current waveshape parameters, return-stroke speed, and channel length) and ground conductivity were examined.
Dosso, Stan E; Wilmut, Michael J; Nielsen, Peter L
2010-07-01
This paper applies Bayesian source tracking in an uncertain environment to Mediterranean Sea data, and investigates the resulting tracks and track uncertainties as a function of data information content (number of data time-segments, number of frequencies, and signal-to-noise ratio) and of prior information (environmental uncertainties and source-velocity constraints). To track low-level sources, acoustic data recorded for multiple time segments (corresponding to multiple source positions along the track) are inverted simultaneously. Environmental uncertainty is addressed by including unknown water-column and seabed properties as nuisance parameters in an augmented inversion. Two approaches are considered: Focalization-tracking maximizes the posterior probability density (PPD) over the unknown source and environmental parameters. Marginalization-tracking integrates the PPD over environmental parameters to obtain a sequence of joint marginal probability distributions over source coordinates, from which the most-probable track and track uncertainties can be extracted. Both approaches apply track constraints on the maximum allowable vertical and radial source velocity. The two approaches are applied for towed-source acoustic data recorded at a vertical line array at a shallow-water test site in the Mediterranean Sea where previous geoacoustic studies have been carried out.
Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs.
Hong, Sanghyun; Lundstrom, Troy; Ghosh, Ranajay; Abdi, Hamed; Hao, Ji; Jeoung, Sun Kyoung; Su, Paul; Suhr, Jonghwan; Vaziri, Ashkan; Jalili, Nader; Jung, Yung Joon
2016-12-14
We have created a multifunctional dry adhesive film with transferred vertically aligned carbon nanotubes (VA-CNTs). This unique VA-CNT film was fabricated by a multistep transfer process, converting the flat and uniform bottom of VA-CNTs grown on atomically flat silicon wafer substrates into the top surface of an adhesive layer. Unlike as-grown VA-CNTs, which have a nonuniform surface, randomly entangled CNT arrays, and a weak interface between the CNTs and substrates, this transferred VA-CNT film shows an extremely high coefficient of static friction (COF) of up to 60 and a shear adhesion force 30 times higher (12 N/cm 2 ) than that of the as-grown VA-CNTs under a very small preloading of 0.2 N/cm 2 . Moreover, a near-zero normal adhesion force was observed with 20 mN/cm 2 preloading and a maximum 100-μm displacement in a piezo scanner, demonstrating ideal properties for an artificial gecko foot. Using this unique structural feature and anisotropic adhesion properties, we also demonstrate effective removal and assembly of nanoparticles into organized micrometer-scale circular and line patterns by a single brushing of this flat and uniform VA-CNT film.
A world-to-chip socket for microfluidic prototype development.
Yang, Zhen; Maeda, Ryutaro
2002-10-01
We report a prototype for a standard connector between a microfluidic chip and the macroworld. This prototype is the first to demonstrate a fully functioning socket for a microchip to access the outside world by means of fluids, data, and energy supply, as well as providing process visibility. It has 20 channels for the input and output of liquids or gases, as well as compressed air or vacuum lines for pneumatic power lines. It also contains 42 pins for electrical signals and power. All these connections were designed in a planar configuration with linear orthogonal arrays. The vertical space was opened for optical measurement and evaluation. The die (29.1 mm x 27.5 mm x 0.9 mm) can be easily mounted and dismounted from the socket. No adhesives or solders are used at any contact points. The pressure limit for the connection of working fluids was 0.2 MPa and the current limit for the electrical connections was 1 A. This socket supports both serial and parallel processing applications. It exhibits great potential for developing microfluidic systems efficiently.
Behzadirad, Mahmoud; Nami, Mohsen; Wostbrock, Neal; Zamani Kouhpanji, Mohammad Reza; Feezell, Daniel F; Brueck, Steven R J; Busani, Tito
2018-03-27
GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical band gap. However, developing a precise, scalable, and cost-effective fabrication method with a high degree of controllability to obtain high-aspect-ratio nanowires with high optical properties and minimum crystal defects remains a challenge. Here, we present a scalable two-step top-down approach using interferometric lithography, for which parameters can be controlled precisely to achieve highly ordered arrays of nanowires with excellent quality and desired aspect ratios. The wet-etch mechanism is investigated, and the etch rates of m-planes {11̅00} (sidewalls) were measured to be 2.5 to 70 nm/h depending on the Si doping concentration. Using this method, uniform nanowire arrays were achieved over a large area (>10 5 μm 2 ) with an spect ratio as large as 50, a radius as small as 17 nm, and atomic-scale sidewall roughness (<1 nm). FDTD modeling demonstrated HE 11 is the dominant transverse mode in the nanowires with a radius of sub-100 nm, and single-mode lasing from vertical cavity nanowire arrays with different doping concentrations on a sapphire substrate was interestingly observed in photoluminescence measurements. High Q-factors of ∼1139-2443 were obtained in nanowire array lasers with a radius and length of 65 nm and 2 μm, respectively, corresponding to a line width of 0.32-0.15 nm (minimum threshold of 3.31 MW/cm 2 ). Our results show that fabrication of high-quality GaN nanowire arrays with adaptable aspect ratio and large-area uniformity is feasible through a top-down approach using interferometric lithography and is promising for fabrication of III-nitride-based nanophotonic devices (radial/axial) on the original substrate.
Kim, Kihong; Song, Giyoung; Park, Cheolmin; Yun, Kwang-Seok
2017-01-01
This paper presents a power-generating sensor array in a flexible and stretchable form. The proposed device is composed of resistive strain sensors, capacitive tactile sensors, and a triboelectric energy harvester in a single platform. The device is implemented in a woven textile structure by using proposed functional threads. A single functional thread is composed of a flexible hollow tube coated with silver nanowires on the outer surface and a conductive silver thread inside the tube. The total size of the device is 60 × 60 mm2 having a 5 × 5 array of sensor cell. The touch force in the vertical direction can be sensed by measuring the capacitance between the warp and weft functional threads. In addition, because silver nanowire layers provide piezoresistivity, the strain applied in the lateral direction can be detected by measuring the resistance of each thread. Last, with regard to the energy harvester, the maximum power and power density were measured as 201 μW and 0.48 W/m2, respectively, when the device was pushed in the vertical direction. PMID:29120363
Bao, Hua; Ruan, Xiulin; Fisher, Timothy S
2010-03-15
A finite-difference time-domain (FDTD) method is used to model thermal radiative properties of vertical arrays of multi-walled carbon nanotubes (MWCNT). Individual CNTs are treated as solid circular cylinders with an effective dielectric tensor. Consistent with experiments, the results confirm that CNT arrays are highly absorptive. Compared with the commonly used Maxwell-Garnett theory, the FDTD calculations generally predict larger reflectance and absorbance, and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, tube distance, and incident angle on radiative properties are investigated systematically. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorbance. For a fixed volume fraction and finite tube length, larger periodicity results in larger reflectance and absorbance. The angular dependence studies reveal an optimum incident angle at which the reflectance can be minimized. The results also suggest that an even darker material could be achieved by using CNTs with good alignment on the top surface.
NASA Astrophysics Data System (ADS)
Wang, Wei-Shan; Wiemer, Maik; Froemel, Joerg; Enderlein, Tom; Gessner, Thomas; Lullin, Justine; Bargiel, Sylwester; Passilly, Nicolas; Albero, Jorge; Gorecki, Christophe
2016-04-01
In this work, vertical integration of miniaturized array-type Mirau interferometers at wafer level by using multi-stack anodic bonding is presented. Mirau interferometer is suitable for MEMS metrology and for medical imaging according to its vertical-, lateral- resolutions and working distances. Miniaturized Mirau interferometer can be a promising candidate as a key component of an optical coherence tomography (OCT) system. The miniaturized array-type interferometer consists of a microlens doublet, a Si-based MEMS Z scanner, a spacer for focus-adjustment and a beam splitter. Therefore, bonding technologies which are suitable for heterogeneous substrates are of high interest and necessary for the integration of MEMS/MOEMS devices. Multi-stack anodic bonding, which meets the optical and mechanical requirements of the MOEMS device, is adopted to integrate the array-type interferometers. First, the spacer and the beam splitter are bonded, followed by bonding of the MEMS Z scanner. In the meanwhile, two microlenses, which are composed of Si and glass wafers, are anodically bonded to form a microlens doublet. Then, the microlens doublet is aligned and bonded with the scanner/spacer/beam splitter stack. The bonded array-type interferometer is a 7- wafer stack and the thickness is approximately 5mm. To separate such a thick wafer stack with various substrates, 2-step laser cutting is used to dice the bonded stack into Mirau chips. To simplify fabrication process of each component, electrical connections are created at the last step by mounting a Mirau chip onto a flip chip PCB instead of through wafer vias. Stability of Au/Ti films on the MEMS Z scanner after anodic bonding, laser cutting and flip chip bonding are discussed as well.
Göbel, Silke M
2015-01-01
Most adults and children in cultures where reading text progresses from left to right also count objects from the left to the right side of space. The reverse is found in cultures with a right-to-left reading direction. The current set of experiments investigated whether vertical counting in the horizontal plane is also influenced by reading direction. Participants were either from a left-to-right reading culture (UK) or from a mixed (left-to-right and top-to-bottom) reading culture (Hong Kong). In Experiment 1, native English-speaking children and adults and native Cantonese-speaking children and adults performed three object counting tasks. Objects were presented flat on a table in a horizontal, vertical, and square display. Independent of culture, the horizontal array was mostly counted from left to right. While the majority of English-speaking children counted the vertical display from bottom to top, the majority of the Cantonese-speaking children as well as both Cantonese- and English-speaking adults counted the vertical display from top to bottom. This pattern was replicated in the counting pattern for squares: all groups except the English-speaking children started counting with the top left coin. In Experiment 2, Cantonese-speaking adults counted a square array of objects after they read a text presented to them either in left-to-right or in top-to-bottom reading direction. Most Cantonese-speaking adults started counting the array by moving horizontally from left to right. However, significantly more Cantonese-speaking adults started counting with a top-to-bottom movement after reading the text presented in a top-to-bottom reading direction than in a left-to-right reading direction. Our results show clearly that vertical counting in the horizontal plane is influenced by longstanding as well as more recent experience of reading direction.
High Aspect Ratio Semiconductor Heterojunction Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redwing, Joan; Mallouk, Tom; Mayer, Theresa
2013-05-17
The project focused on the development of high aspect ratio silicon heterojunction (HARSH) solar cells. The solar cells developed in this study consisted of high density vertical arrays of radial junction silicon microwires/pillars formed on Si substrates. Prior studies have demonstrated that vertical Si wire/pillar arrays enable reduced reflectivity and improved light trapping characteristics compared to planar solar cells. In addition, the radial junction structure offers the possibility of increased carrier collection in solar cells fabricated using material with short carrier diffusion lengths. However, the high junction and surface area of radial junction Si wire/pillar array devices can be problematicmore » and lead to increased diode leakage and enhanced surface recombination. This study investigated the use of amorphous hydrogenated Si in the form of a heterojunction-intrinsic-thin layer (HIT) structure as a junction formation method for these devices. The HIT layer structure has widely been employed to reduce surface recombination in planar crystalline Si solar cells. Consequently, it was anticipated that it would also provide significant benefits to the performance of radial junction Si wire/pillar array devices. The overall goals of the project were to demonstrate a HARSH cell with a HIT-type structure in the radial junction Si wire/pillar array configuration and to develop potentially low cost pathways to fabricate these devices. Our studies demonstrated that the HIT structure lead to significant improvements in the open circuit voltage (V oc>0.5) of radial junction Si pillar array devices compared to devices fabricated using junctions formed by thermal diffusion or low pressure chemical vapor deposition (LPCVD). In addition, our work experimentally demonstrated that the radial junction structure lead to improvements in efficiency compared to comparable planar devices for devices fabricated using heavily doped Si that had reduced carrier diffusion lengths. Furthermore, we made significant advances in employing the bottom-up vapor-liquid-solid (VLS) growth technique for the fabrication of the Si wire arrays. Our work elucidated the effects of growth conditions and substrate pattern geometry on the growth of large area Si microwire arrays grown with SiCl4. In addition, we also developed a process to grow p-type Si nanowire arrays using aluminum as the catalyst metal instead of gold. Finally, our work demonstrated the feasibility of growing vertical arrays of Si wires on non-crystalline glass substrates using polycrystalline Si template layers. The accomplishments demonstrated in this project will pave the way for future advances in radial junction wire array solar cells.« less
Bao, Rong-Rong; Zhang, Cheng-Yi; Zhang, Xiu-Juan; Ou, Xue-Mei; Lee, Chun-Sing; Jie, Jian-Sheng; Zhang, Xiao-Hong
2013-06-26
The controlled growth and alignment of one-dimensional organic nanostructures at well-defined locations considerably hinders the integration of nanostructures for electronic and optoelectronic applications. Here, we demonstrate a simple process to achieve the growth, alignment, and hierarchical patterning of organic nanowires on substrates with controlled patterns of surface wettability. The first-level pattern is confined by the substrate patterns of wettability. Organic nanostructures are preferentially grown on solvent wettable regions. The second-level pattern is the patterning of aligned organic nanowires deposited by controlling the shape and movement of the solution contact lines during evaporation on the wettable regions. This process is controlled by the cover-hat-controlled method or vertical evaportation method. Therefore, various new patterns of organic nanostructures can be obtained by combing these two levels of patterns. This simple method proves to be a general approach that can be applied to other organic nanostructure systems. Using the as-prepared patterned nanowire arrays, an optoelectronic device (photodetector) is easily fabricated. Hence, the proposed simple, large-scale, low-cost method of preparing patterns of highly ordered organic nanostructures has high potential applications in various electronic and optoelectronic devices.
Isotopic Ratios in Nitriles from Submillimeter Spectroscopy Using SMA and ALMA
NASA Astrophysics Data System (ADS)
Gurwell, Mark A.; Moreno, Raphael; Vinatier, Sandrine; Lellouch, Emmanuel; Butler, Bryan J.; Moullet, Arielle; Lara, Luisa; Hidayat, Taufiq
2016-10-01
We present submillimeter spectroscopic observations of Titan obtained using the Submillimeter Array (SMA) in 2011, and the Atacama Large Millimeter/Submillimeter Array (ALMA) in 2012, some of which have previously been presented but not fully analyzed (1, 2, 3). The SMA observations were obtained at low spatial resolution, providing disk average spectra, but the ALMA observations provide low resolution mapping of Titan (~0.4"-0.6" when Titan was 0.77" surface diameter). We will present detailed radiative transfer analysis of detected spectral lines to derive isotopic ratios in two nitriles: HCN (D/H, 13C/12C, 15N/14N) and HC3N (15N/14N). The analysis makes use of nearly concurrent CIRS temperature profiles as important constraints for the vertical profiles of these species, allowing high precision measurements of the ratios. Finally, we will highlight current and future ALMA observations that will allow monitoring of non-symmetric molecular species in Titan's upper atmosphere from Earth, beyond the end of the Cassini mission.(1) Gurwell et al (2011) EPSC-DPS Joint Meeting 2011, p270. (2) Moreno et al (2014) EPSC 2014 Abstracts, Vol. 9, id. EPSC2014-438. (3) Moreno etal (2014), DPS meeting #46, id.211.19
Poletti, Mark A; Betlehem, Terence; Abhayapala, Thushara D
2014-07-01
Higher order sound sources of Nth order can radiate sound with 2N + 1 orthogonal radiation patterns, which can be represented as phase modes or, equivalently, amplitude modes. This paper shows that each phase mode response produces a spiral wave front with a different spiral rate, and therefore a different direction of arrival of sound. Hence, for a given receiver position a higher order source is equivalent to a linear array of 2N + 1 monopole sources. This interpretation suggests performance similar to a circular array of higher order sources can be produced by an array of sources, each of which consists of a line array having monopoles at the apparent source locations of the corresponding phase modes. Simulations of higher order arrays and arrays of equivalent line sources are presented. It is shown that the interior fields produced by the two arrays are essentially the same, but that the exterior fields differ because the higher order sources produces different equivalent source locations for field positions outside the array. This work provides an explanation of the fact that an array of L Nth order sources can reproduce sound fields whose accuracy approaches the performance of (2N + 1)L monopoles.
Density controlled carbon nanotube array electrodes
Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA
2008-12-16
CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.
NASA Astrophysics Data System (ADS)
Behkami, Saber; Frounchi, Javad; Ghaderi Pakdel, Firouz; Stieglitz, Thomas
2017-11-01
Translational research in bioelectronics medicine and neural implants often relies on established material assemblies made of silicone rubber (polydimethylsiloxane-PDMS) and precious metals. Longevity of the compound is of utmost importance for implantable devices in therapeutic and rehabilitation applications. Therefore, secure mechanical fixation can be used in addition to chemical bonding mechanisms to interlock PDMS substrate and insulation layers with metal sheets for interconnection lines and electrodes. One of the best ways to fix metal lines and electrodes in PDMS is to design holes in electrode rims to allow for direct interconnection between top to bottom layer silicone. Hence, the best layouts and sizes of holes (up to 6) which provide sufficient stability against lateral and vertical forces have been investigated with a variety of numbers of hole in line electrodes, which are simulated and fabricated with different layouts, sizes and materials. Best stability was obtained with radii of 100, 72 and 62 µm, respectively, and a single central hole in aluminum, platinum and MP35N foil line electrodes of 400 × 500 µm2 size and of thickness 20 µm. The study showed that the best hole size which provides line electrode immobility (of thickness less than 30 µm) within a central hole is proportional to reverse value of Young’s Modulus of the material used. Thus, an array of line electrodes was designed and fabricated to study this effect. Experimental results were compared with simulation data. Subsequently, an approximation curve was generated as design rule to propose the best radius to fix line electrodes according to the material thickness between 10 and 200 µm using PDMS as substrate material.
Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.
Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E
2015-09-02
The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.
Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda. Felix, A.
2013-01-01
The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays.
NASA Astrophysics Data System (ADS)
Chen, Lie; Ju, Bin; Feng, Zhihua; Zhao, Yang
2018-07-01
The application and characterization of thermal interface material (TIM) for vibrational structures is investigated in this paper. The vibrating feature during the operation requires unique solution for its thermal management, since the connection between the device and heat dissipater should be able to conduct heat efficiently and impose minimum constraint onto the vibration simultaneously. As a typical vibrational device, piezoelectric transformers (PTs) are discussed in this paper. The PTs have urgent demands for thermal dissipation since their power conversion efficiency decrease rapidly with the rising temperature. A novel method by applying vertically aligned carbon nanotube (VACNT) arrays to the interface between PT and heat dissipater is presented to enhance the performance of piezoelectric transformers. VACNT arrays are one of the excellent TIMs. It can directly establish thermal contact between two surfaces by van der Waals’ forces. In addition, the unique anisotropic character of CNT arrays provides enough flexibility to accommodate the vibration during the operation. Different configurations of TIMs are compared with each other in this work, including CNT arrays, tape of polypropylene (PP) membrane and without heat transfer structure (HTS). The results indicate that the temperature rise is lowest and the efficiency is highest at the same power density while CNT arrays served as the TIM. Almost no significant fretting and wearing damage occurred on PT electrode surface with CNT arrays TIM even after working continuously for 120 days. Meanwhile, the thermo-physical properties of CNT arrays at contact interface are measured by optical transient thermo-reflectance technique.
An, Zhe; Lu, Shan; Zhao, Liwei; He, Jing
2011-10-18
In this work, ordered vertical arrays of layered double hydroxide (LDH) nanosheets have been developed to achieve electron transfer (eT) at biointerfaces in electrochemical devices. It is found that tailoring the gap size of LDH nanosheet arrays could significantly promote the eT rate. This research has successfully extended nanomaterials for efficient modifications of electrode surfaces from nanoparticles, nanowires, nanorods, and nanotubes to nanosheets. © 2011 American Chemical Society
Method and apparatus for two-dimensional spectroscopy
DeCamp, Matthew F.; Tokmakoff, Andrei
2010-10-12
Preferred embodiments of the invention provide for methods and systems of 2D spectroscopy using ultrafast, first light and second light beams and a CCD array detector. A cylindrically-focused second light beam interrogates a target that is optically interactive with a frequency-dispersed excitation (first light) pulse, whereupon the second light beam is frequency-dispersed at right angle orientation to its line of focus, so that the horizontal dimension encodes the spatial location of the second light pulse and the first light frequency, while the vertical dimension encodes the second light frequency. Differential spectra of the first and second light pulses result in a 2D frequency-frequency surface equivalent to double-resonance spectroscopy. Because the first light frequency is spatially encoded in the sample, an entire surface can be acquired in a single interaction of the first and second light pulses.
Ultrastructure of Lymphocystis Virus
Zwillenberg, Lutz O.; Wolf, Ken
1968-01-01
Lymphocystis virus obtained from bluegills (Lepomis macrochirus) was cultured in the permanent bluegill cell line BF-2 and examined by electron microscopy in ultrathin sections of cell cultures and in negative-contrast preparations from cells and from centrifuged culture medium. According to negative-contrast preparations, the icosahedral virions have an overall diameter close to but not exceeding 300 mμ. Delicate filaments seem to issue from the vertices. In collapsed virions, an ordered array of morphological units was seen. Positively contrasted virions in ultrathin sections show a shell with three dark (heavy metal-stained) layers alternating with and separated by two clear layers. The acquisition of an additional outer membrane during release from the cell, as found in African swine fever virus, was never seen. Morphologically, lymphocystis virus is considered to be closely related to Tipula iridescent virus. Images PMID:4986903
Scott, Jill R.; Tremblay, Paul L.
2008-08-19
A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.
An Update on Phased Array Results Obtained on the GE Counter-Rotating Open Rotor Model
NASA Technical Reports Server (NTRS)
Podboy, Gary; Horvath, Csaba; Envia, Edmane
2013-01-01
Beamform maps have been generated from 1) simulated data generated by the LINPROP code and 2) actual experimental phased array data obtained on the GE Counter-rotating open rotor model. The beamform maps show that many of the tones in the experimental data come from their corresponding Mach radius. If the phased array points to the Mach radius associated with a tone then it is likely that the tone is a result of the loading and thickness noise on the blades. In this case, the phased array correctly points to where the noise is coming from and indicates the axial location of the loudest source in the image but not necessarily the correct vertical location. If the phased array does not point to the Mach radius associated with a tone then some mechanism other than loading and thickness noise may control the amplitude of the tone. In this case, the phased array may or may not point to the actual source. If the source is not rotating it is likely that the phased array points to the source. If the source is rotating it is likely that the phased array indicates the axial location of the loudest source but not necessarily the correct vertical location. These results indicate that you have to be careful in how you interpret phased array data obtained on an open rotor since they may show the tones coming from a location other than the source location. With a subsonic tip speed open rotor the tones can come form locations outboard of the blade tips. This has implications regarding noise shielding.
Dawson, P; Duenas, J A; Boyle, M G; Doherty, M D; Bell, S E J; Kern, A M; Martin, O J F; Teh, A-S; Teo, K B K; Milne, W I
2011-02-09
The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multiwalled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.
Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing.
Yilmazoglu, O; Popp, A; Pavlidis, D; Schneider, J J; Garth, D; Schüttler, F; Battenberg, G
2012-03-02
We report a simple method for the micro-nano integration of flexible, vertically aligned multiwalled CNT arrays sandwiched between a top and bottom carbon layer via a porous alumina (Al(2)O(3)) template approach. The electromechanical properties of the flexible CNT arrays have been investigated under mechanical stress conditions. First experiments show highly sensitive piezoresistive sensors with a resistance decrease of up to ∼35% and a spatial resolution of <1 mm. The results indicate that these CNT structures can be utilized for tactile sensing components. They also confirm the feasibility of accessing and utilizing nanoscopic CNT bundles via lithographic processing. The method involves room-temperature processing steps and standard microfabrication techniques.
A top-down approach to fabrication of high quality vertical heterostructure nanowire arrays.
Wang, Hua; Sun, Minghua; Ding, Kang; Hill, Martin T; Ning, Cun-Zheng
2011-04-13
We demonstrate a novel top-down approach for fabricating nanowires with unprecedented complexity and optical quality by taking advantage of a nanoscale self-masking effect. We realized vertical arrays of nanowires of 20-40 nm in diameter with 16 segments of complex longitudinal InGaAsP/InP structures. The unprecedented high quality of etched wires is evidenced by the narrowest photoluminescence linewidth ever produced in similar wavelengths, indistinguishable from that of the corresponding wafer. This top-down, mask-free, large scale approach is compatible with the established device fabrication processes and could serve as an important alternative to the bottom-up approach, significantly expanding ranges and varieties of applications of nanowire technology.
A Unified Geodetic Vertical Velocity Field (UGVVF), Version 1.0
NASA Astrophysics Data System (ADS)
Schmalzle, G.; Wdowinski, S.
2014-12-01
Tectonic motion, volcanic inflation or deflation, as well as oil, gas and water pumping can induce vertical motion. In southern California these signals are inter-mingled. In tectonics, properly identifying regions that are contaminated by other signals can be important when estimating fault slip rates. Until recently vertical deformation rates determined by high precision Global Positioning Systems (GPS) had large uncertainties compared to horizontal components and were rarely used to constrain tectonic models of fault motion. However, many continuously occupied GPS stations have been operating for ten or more years, often delivering uncertainties of ~1 mm/yr or less, providing better constraints for tectonic modeling. Various processing centers produced GPS time series and estimated vertical velocity fields, each with their own set of processing techniques and assumptions. We compare vertical velocity solutions estimated by seven data processing groups as well as two combined solutions (Figure 1). These groups include: Central Washington University (CWU) and New Mexico Institute of Technology (NMT), and their combined solution provided by the Plate Boundary Observatory (PBO) through the UNAVCO website. Also compared are the Jet Propulsion Laboratory (JPL) and Scripps Orbit and Permanent Array Center (SOPAC) and their combined solution provided as part of the NASA MEaSUREs project. Smaller velocity fields included are from Amos et al., 2014, processed at the Nevada Geodetic Laboratory, Shen et al., 2011, processed by UCLA and called the Crustal Motion Map 4.0 (CMM4) dataset, and a new velocity field provided by the University of Miami (UM). Our analysis includes estimating and correcting for systematic vertical velocity and uncertainty differences between groups. Our final product is a unified velocity field that contains the median values of the adjusted velocity fields and their uncertainties. This product will be periodically updated when new velocity fields become available. A database and scripts to access the database will be available through the University of Miami (http://www.geodesy.miami.edu) website. Figure 1. Vertical velocity comparisons between processing groups (blue dots). Red line indicates equal velocities. Weighted Root Mean Square (WRMS) is shown.
Han, Sang-Pil; Ko, Hyunsung; Kim, Namje; Lee, Won-Hui; Moon, Kiwon; Lee, Il-Min; Lee, Eui Su; Lee, Dong Hun; Lee, Wangjoo; Han, Seong-Tae; Choi, Sung-Wook; Park, Kyung Hyun
2014-11-17
We demonstrate real-time continuous-wave terahertz (THz) line-scanned imaging based on a 1 × 240 InGaAs Schottky barrier diode (SBD) array detector with a scan velocity of 25 cm/s, a scan line length of 12 cm, and a pixel size of 0.5 × 0.5 mm². Foreign substances, such as a paper clip with a spatial resolution of approximately 1 mm that is hidden under a cracker, are clearly detected by this THz line-scanning system. The system consists of the SBD array detector, a 200-GHz gyrotron source, a conveyor system, and several optical components such as a high-density polyethylene cylindrical lens, metal cylindrical mirror, and THz wire-grid polarizer. Using the THz polarizer, the signal-to-noise ratio of the SBD array detector improves because the quality of the source beam is enhanced.
Computer-Aided Design and Manufacturing for Closed-Die Forging of Track Shoes and Links
1976-07-01
file. VII-39 CALL RESTRI(TAG) Restores a blanked item. CALL SCROLG( NLINES ,IYTOP) To adjust scroller parameters. Graphics Monitor must be in use... NLINES : Number of lines to be displayed. IYTOP: Y-coordinate of the top line. Each line is 25 units vertical. CALL TRACK To enable the tracking...5. NLINES - The number of lines reserved for the text scroller area when text is displayed along with graphic images. 6. AL - The vertical
Experimental Investigation on Heat Transfer Characteristics of Different Metallic Fin Arrays
NASA Astrophysics Data System (ADS)
Sangewar, Ravi Kumar
2018-04-01
The reliability of electronic equipment depends on the reliability of the system. For small applications natural convection cooling is sufficient, but for the electronic equipment having number of heat generating components, forced convection cooling is essential. In number of cases, pin fin arrangement is preferred for augmentation of heat transfer. Here, the performance of pin fin array of copper and aluminum material with in-line, as well as staggered arrangement over a flat plate is studied. Constant heat input was given to the inline, staggered arrangement of copper as well as aluminium pin fin arrays. In the present experimental study, heat input and airflow rates are the variables. It was found that the heat transfer coefficient for staggered array is 15% more than that of the in-line array, at the same time pressure drop across the staggered array is more by 10% than the in-line array. The pressure drop was observed to be increasing with increase in flow rate as expected. Endeavor of the present work is to find the optimum spacing between the fins in an array for maximum heat transfer rate, by investigating the heat transfer characteristics.
Metamaterial-inspired reconfigurable series-fed arrays
NASA Astrophysics Data System (ADS)
Ijaz, Bilal
One of the biggest challenges in modern day wireless communication systems is to attain agility and provide more degrees of freedom in parameters such as frequency, radiation pattern and polarization. Existing phased array antenna technology has limitations in frequency bandwidth and scan angle. So it is important to design frequency reconfigurable antenna arrays which can provide two different frequency bandwidths with a broadside radiation pattern having a lower sidelobe and reduced frequency scanning. The reconfigurable antenna array inspired by the properties of metamaterials presented here provides a solution to attain frequency agility in a wireless communication system. The adaptive change in operating frequency is attained by using RF p-i-n diodes on the antenna array. The artificially made materials having properties of negative permeability and negative permittivity have antiparallel group and phase velocities, and, in consequence of that, they support backward wave propagation. The key idea of this work is to demonstrate that the properties of metamaterial non-radiating phase shifting transmission lines can be utilized to design a series-fed antenna array to operate at two different frequency bands with a broadside radiation pattern in both configurations. In this research, first, a design of a series-fed microstrip array with composite right/left-handed transmission lines (CRLH-TLs) is proposed. To ensure that each element in the array is driven with the same voltage phase, dual-band CRLH-TLs are adopted instead of meander-line microstrip lines to provide a compact interconnect with a zero phase-constant at the frequency of operation. Next, the work is extended to design a reconfigurable series-fed antenna array with reconfigurable metamaterial interconnects, and the expressions for array factor are derived for both switching bands.
NASA Astrophysics Data System (ADS)
Dusek, J.; Kottapalli, A. G. P.; Woo, M. E.; Asadnia, M.; Miao, J.; Lang, J. H.; Triantafyllou, M. S.
2013-01-01
The lateral line found on most species of fish is a sensory organ without analog in humans. Using sensory feedback from the lateral line, fish are able to track prey, school, avoid obstacles, and detect vortical flow structures. Composed of both a superficial component, and a component contained within canals beneath the fish’s skin, the lateral line acts in a similar fashion to an array of differential pressure sensors. In an effort to enhance the situational and environmental awareness of marine vehicles, lateral-line-inspired pressure sensor arrays were developed to mimic the enhanced sensory capabilities observed in fish. Three flexible and waterproof pressure sensor arrays were fabricated for use as a surface-mounted ‘smart skin’ on marine vehicles. Two of the sensor arrays were based around the use of commercially available piezoresistive sensor dies, with innovative packaging schemes to allow for flexibility and underwater operation. The sensor arrays employed liquid crystal polymer and flexible printed circuit board substrates with metallic circuits and silicone encapsulation. The third sensor array employed a novel nanocomposite material set that allowed for the fabrication of a completely flexible sensor array. All three sensors were surface mounted on the curved hull of an autonomous kayak vehicle, and tested in both pool and reservoir environments. Results demonstrated that all three sensors were operational while deployed on the autonomous vehicle, and provided an accurate means for monitoring the vehicle dynamics.
Koehne, Jessica E; Chen, Hua; Cassell, Alan; Liu, Gang-yu; Li, Jun; Meyyappan, M
2009-01-01
Arrays of Carbon nanofibers (CNFs) harness the advantages of individual CNF as well the collective property of assemblies, which made them promising materials in biosensing and tissue engineering or implantation. Here, we report two studies to explore the applications of vertically aligned CNFs. First, a nanoelectrode array (NEA) based on vertically aligned CNFs embedded in SiO(2) is used for ultrasensitive DNA detection. Oligonucleotide probes are selectively functionalized at the open ends of the CNFs and specifically hybridized with oligonucleotide targets. The guanine groups are employed as the signal moieties in the electrochemical measurements. Ru(bpy)(3)(2+) mediator is used to further amplify the guanine oxidation signal. The hybridization of less than approximately 1000 molecules of PCR amplified DNA targets are detected electrochemically by combining the CNF nanoelectrode array with the Ru(bpy)(3)(2+) amplification mechanism. Second, the SiO(2) matrix was etched back to produce needle-like protruding nanoelectrode arrays to be used as cell interfacing fibers for investigating gene transfection, electrical stimulation and detection of cellular processes. Our goal is to take advantage of the nanostructure of CNFs for unconventional biomolecular studies requiring ultrahigh sensitivity, high-degree of miniaturization and selective biofunctionalization.
Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property
NASA Astrophysics Data System (ADS)
Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong
Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.
A New Concept in Helicopter Communications Antennas
NASA Technical Reports Server (NTRS)
Pogorzelski, R. J.
1995-01-01
We consider a five blade rotor and envision an array with one element mounted on each rotor blade. These elements may be dipoles or horizontal slots depending upon the desired polarization characteristics. For example, slots would provide vertical polarization on horizontal paths. The array is excited through a novel type of rotary joint located on the rotor shaft.
NASA Astrophysics Data System (ADS)
Kohagura, J.; Yoshikawa, M.; Wang, X.; Kuwahara, D.; Ito, N.; Nagayama, Y.; Shima, Y.; Nojiri, K.; Sakamoto, M.; Nakashima, Y.; Mase, A.
2016-11-01
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohagura, J., E-mail: kohagura@prc.tsukuba.ac.jp; Yoshikawa, M.; Shima, Y.
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensivemore » 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.« less
Kohagura, J; Yoshikawa, M; Wang, X; Kuwahara, D; Ito, N; Nagayama, Y; Shima, Y; Nojiri, K; Sakamoto, M; Nakashima, Y; Mase, A
2016-11-01
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.
Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays.
Anttu, Nicklas
2013-03-01
Semiconductor nanowire arrays have shown promise for next-generation photovoltaics and photodetection, but enhanced understanding of the light-nanowire interaction is still needed. Here, we study theoretically the absorption of light in an array of vertical InP nanowires by moving continuously, first from the electrostatic limit to the nanophotonic regime and then to the geometrical optics limit. We show how the absorption per volume of semiconductor material in the array can be varied by a factor of 200, ranging from 10 times weaker to 20 times stronger than in a bulk semiconductor sample.
Passive magnetic bearing for a horizontal shaft
Post, Richard F.
2003-12-02
A passive magnetic bearing is composed of a levitation element and a restorative element. The levitation element is composed of a pair of stationary arcuate ferromagnetic segments located within an annular radial-field magnet array. The magnet array is attached to the inner circumference of a hollow shaft end. An attractive force between the arcuate segments and the magnet array acts vertically to levitate the shaft, and also in a horizontal transverse direction to center the shaft. The restorative element is comprised of an annular Halbach array of magnets and a stationary annular circuit array located within the Halbach array. The Halbach array is attached to the inner circumference of the hollow shaft end. A repulsive force between the Halbach array and the circuit array increases inversely to the radial space between them, and thus acts to restore the shaft to its equilibrium axis of rotation when it is displaced therefrom.
In situ SEM Observation of Column-like and Foam-like CNT Array Nanoindentation
2011-03-02
frompyrolization of iron(II) phthalocyanine , producing vertically aligned CNTs with a nominal outer diameter of 50 nm.11,12 The array was indented using a 40 40 μm...www.acsami.org In situ SEM Observation of Column-like and Foam-like CNT Array Nanoindentation Matthew R. Maschmann,†,‡Qiuhong Zhang,†,§ Robert Wheeler...multiple length scales. Their behavior is expected to rely heavily on the properties of individual constituent CNTs , interactions and load distribution
Basic principles and recent observations of rotationally sampled wind
NASA Technical Reports Server (NTRS)
Connell, James R.
1995-01-01
The concept of rotationally sampled wind speed is described. The unusual wind characteristics that result from rotationally sampling the wind are shown first for early measurements made using an 8-point ring of anemometers on a vertical plane array of meteorological towers. Quantitative characterization of the rotationally sampled wind is made in terms of the power spectral density function of the wind speed. Verification of the importance of the new concept is demonstrated with spectral analyses of the response of the MOD-OA blade flapwise root bending moment and the corresponding rotational analysis of the wind measured immediately upwind of the MOD-OA using a 12-point ring of anemometers on a 7-tower vertical plane array. The Pacific Northwest Laboratory (PNL) theory of the rotationally sampled wind speed power spectral density function is tested successfully against the wind spectrum measured at the MOD-OA vertical plane array. A single-tower empirical model of the rotationally sampled wind speed is also successfully tested against the measurements from the full vertical plane array. Rotational measurements of the wind velocity with hotfilm anemometers attached to rotating blades are shown to be accurate and practical for research on winds at the blades of wind turbines. Some measurements at the rotor blade of a MOD-2 turbine using the hotfilm technique in a pilot research program are shown. They are compared and contrasted to the expectations based upon application of the PNL theory of rotationally sampled wind to the MOD-2 size and rotation rate but without teeter, blade bending, or rotor induction accounted for. Finally, the importance of temperature layering and of wind modifications due to flow over complex terrain is demonstrated by the use of hotfilm anemometer data, and meteorological tower and acoustic doppler sounder data from the MOD-2 site at Goodnoe Hills, Washington.
Viability of Using Diamond Field Emitter Array Cathodes in Free Electron Lasers
2010-06-01
essential component of a field emitter array is the shape of the electric field lines and equipotential lines at the surface of the array. The...BARRIER AND QUANTUM TUNNELING ...........25 B. FIELD ENHANCEMENT AND SURFACE PROTRUSIONS .........26 C. ELECTRIC FIELDS AND ELECTRON TRAVEL...26 Figure 4. Diagram of a protrusion (triangular in shape) from the surface of a cathode. The protrusion is of height h, with a
Does language shape thought? Mandarin and English speakers' conceptions of time.
Boroditsky, L
2001-08-01
Does the language you speak affect how you think about the world? This question is taken up in three experiments. English and Mandarin talk about time differently--English predominantly talks about time as if it were horizontal, while Mandarin also commonly describes time as vertical. This difference between the two languages is reflected in the way their speakers think about time. In one study, Mandarin speakers tended to think about time vertically even when they were thinking for English (Mandarin speakers were faster to confirm that March comes earlier than April if they had just seen a vertical array of objects than if they had just seen a horizontal array, and the reverse was true for English speakers). Another study showed that the extent to which Mandarin-English bilinguals think about time vertically is related to how old they were when they first began to learn English. In another experiment native English speakers were taught to talk about time using vertical spatial terms in a way similar to Mandarin. On a subsequent test, this group of English speakers showed the same bias to think about time vertically as was observed with Mandarin speakers. It is concluded that (1) language is a powerful tool in shaping thought about abstract domains and (2) one's native language plays an important role in shaping habitual thought (e.g., how one tends to think about time) but does not entirely determine one's thinking in the strong Whorfian sense. Copyright 2001 Academic Press.
Vertical-cavity surface-emitting lasers - Design, growth, fabrication, characterization
NASA Astrophysics Data System (ADS)
Jewell, Jack L.; Lee, Y. H.; Harbison, J. P.; Scherer, A.; Florez, L. T.
1991-06-01
The authors have designed, fabricated, and tested vertical-cavity surface-emitting lasers (VCSEL) with diameters ranging from 0.5 microns to above 50 microns. Design issues, molecular beam epitaxial growth, fabrication, and lasing characteristics are discussed. The topics considered in fabrication of VCSELs are microlaser geometries; ion implementation and masks; ion beam etching; packaging and arrays; and ultrasmall devices.
Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun
2015-11-01
We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.
Vertically aligned N-doped CNTs growth using Taguchi experimental design
NASA Astrophysics Data System (ADS)
Silva, Ricardo M.; Fernandes, António J. S.; Ferro, Marta C.; Pinna, Nicola; Silva, Rui F.
2015-07-01
The Taguchi method with a parameter design L9 orthogonal array was implemented for optimizing the nitrogen incorporation in the structure of vertically aligned N-doped CNTs grown by thermal chemical deposition (TCVD). The maximization of the ID/IG ratio of the Raman spectra was selected as the target value. As a result, the optimal deposition configuration was NH3 = 90 sccm, growth temperature = 825 °C and catalyst pretreatment time of 2 min, the first parameter having the main effect on nitrogen incorporation. A confirmation experiment with these values was performed, ratifying the predicted ID/IG ratio of 1.42. Scanning electron microscopy (SEM) characterization revealed a uniform completely vertically aligned array of multiwalled CNTs which individually exhibit a bamboo-like structure, consisting of periodically curved graphitic layers, as depicted by high resolution transmission electron microscopy (HRTEM). The X-ray photoelectron spectroscopy (XPS) results indicated a 2.00 at.% of N incorporation in the CNTs in pyridine-like and graphite-like, as the predominant species.
Flexible symmetric supercapacitors based on vertical TiO2 and carbon nanotubes
NASA Astrophysics Data System (ADS)
Chien, C. J.; Chang, Pai-Chun; Lu, Jia G.
2010-03-01
Highly conducting and porous carbon nanotubes are widely used as electrodes in double-layer-effect supercapacitors. In this presentation, vertical TiO2 nanotube array is fabricated by anodization process and used as supercapacitor electrode utilizing its compact density, high surface area and porous structure. By spin coating carbon nanotube networks on vertical TiO2 nanotube array as electrodes with 1M H2SO4 electrolyte in between, the specific capacitance can be enhanced by 30% compared to using pure carbon nanotube network alone because of the combination of double layer effect and redox reaction from metal oxide materials. Based on cyclic voltammetry and galvanostatic charge-discharge measurements, this type of hybrid electrode has proven to be suitable for high performance supercapacitor application and maintain desirable cycling stability. The electrochemical impedance spectroscopy technique shows that the electrode has good electrical conductivity. Furthermore, we will discuss the prospect of extending this energy storage approach in flexible electronics.
Read margin analysis of crossbar arrays using the cell-variability-aware simulation method
NASA Astrophysics Data System (ADS)
Sun, Wookyung; Choi, Sujin; Shin, Hyungsoon
2018-02-01
This paper proposes a new concept of read margin analysis of crossbar arrays using cell-variability-aware simulation. The size of the crossbar array should be considered to predict the read margin characteristic of the crossbar array because the read margin depends on the number of word lines and bit lines. However, an excessively high-CPU time is required to simulate large arrays using a commercial circuit simulator. A variability-aware MATLAB simulator that considers independent variability sources is developed to analyze the characteristics of the read margin according to the array size. The developed MATLAB simulator provides an effective method for reducing the simulation time while maintaining the accuracy of the read margin estimation in the crossbar array. The simulation is also highly efficient in analyzing the characteristic of the crossbar memory array considering the statistical variations in the cell characteristics.
2013-01-01
Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed. PMID:24004518
Labunov, Vladimir; Prudnikava, Alena; Bushuk, Serguei; Filatov, Serguei; Shulitski, Boris; Tay, Beng Kang; Shaman, Yury; Basaev, Alexander
2013-09-03
Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed.
NASA Astrophysics Data System (ADS)
Leon, Alejandro
2012-02-01
In this work we study the dynamical properties of a finite array of nanomagnets in artificial kagome spin ice at room temperature. The dynamic response of the array of nanomagnets is studied by implementing a ``frustrated celular aut'omata'' (FCA), based in the charge model. In this model, each dipole is replaced by a dumbbell of two opposite charges, which are situated at the neighbouring vertices of the honeycomb lattice. The FCA simulations, allow us to study in real-time and deterministic way, the dynamic of the system, with minimal computational resource. The update function is defined according to the coordination number of vertices in the system. Our results show that for a set geometric parameters of the array of nanomagnets, the system exhibits high density of Dirac strings and high density emergent magnetic monopoles. A study of the effect of disorder in the arrangement of nanomagnets is incorporated in this work.
Fish schooling as a basis for vertical axis wind turbine farm design.
Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O
2010-09-01
Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.
Dye-sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers.
Cai, Xin; Wu, Hongwei; Hou, Shaocong; Peng, Ming; Yu, Xiao; Zou, Dechun
2014-02-01
One-dimensional semiconductor TiO2 nanowires (TNWs) have received widespread attention from solar cell and related optoelectronics scientists. The controllable synthesis of ordered TNW arrays on arbitrary substrates would benefit both fundamental research and practical applications. Herein, vertically aligned TNW arrays in situ grown on carbon fiber (CF) substrates through a facile, controllable, and seed-assisted thermal process is presented. Also, hierarchical TiO2 -nanoparticle/TNW arrays were prepared that favor both the dye loading and depressed charge recombination of the CF/TNW photoanode. An impressive conversion efficiency of 2.48 % (under air mass 1.5 global illumination) and an apparent efficiency of 4.18 % (with a diffuse board) due to the 3D light harvesting of the wire solar cell were achieved. Moreover, efficient and inexpensive wire solar cells made from all-CF electrodes and completely flexible CF-based wire solar cells were demonstrated, taking into account actual application requirements. This work may provide an intriguing avenue for the pursuit of lightweight, cost-effective, and high-performance flexible/wearable solar cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas.
Klinghammer, Stephanie; Uhlig, Tino; Patrovsky, Fabian; Böhm, Matthias; Schütt, Julian; Pütz, Nils; Baraban, Larysa; Eng, Lukas M; Cuniberti, Gianaurelio
2018-06-25
Implementing large arrays of gold nanowires as functional elements of a plasmonic biosensor is an important task for future medical diagnostic applications. Here we present a microfluidic-channel-integrated sensor for the label-free detection of biomolecules, relying on localized surface plasmon resonances. Large arrays (∼1 cm 2 ) of vertically aligned and densely packed gold nanorods to receive, locally confine, and amplify the external optical signal are used to allow for reliable biosensing. We accomplish this by monitoring the change of the optical nanostructure resonance in the presence of biomolecules within the tight focus area above the nanoantennas, combined with a surface treatment of the nanowires for a specific binding of the target molecules. As a first application, we detect the binding kinetics of two distinct DNA strands as well as the following hybridization of two complementary strands (cDNA) with different lengths (25 and 100 bp). Upon immobilization, a redshift of 1 nm was detected; further backfilling and hybridization led to a peak shift of additional 2 and 5 nm for 25 and 100 bp, respectively. We believe that this work gives deeper insight into the functional understanding and technical implementation of a large array of gold nanowires for future medical applications.
Composite Li metal anode with vertical graphene host for high performance Li-S batteries
NASA Astrophysics Data System (ADS)
Zhang, Y. J.; Liu, S. F.; Wang, X. L.; Zhong, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.
2018-01-01
Efficient and stable operation of a lithium metal anode has become the enabling factor for next-generation high energy density storage system. Here, vertical graphene (VG) arrays are used as the scaffold structure for high performance Li metal batteries. The melt infusion method is employed to encapsulate Li inside the VG scaffold structure, and the lithiophilic Si layer is coated onto the array surface by magnetron sputtering to assist this melt-infusion process. The porous scaffold structure can control the volume expansion and inhibit the formation of dendritic lithium significantly, leading to the excellent electrochemical performance of the Li composite anode. In addition, the Li-S full batteries with the composite anode display enhanced cycling reversibility.
NASA Astrophysics Data System (ADS)
Mizutani, Akio; Eto, Yohei; Kikuta, Hisao
2017-12-01
A grating coupler with a trapezoidal hole array was designed and fabricated for perfectly vertical light coupling between a single-mode optical fiber and a silicon waveguide on a silicon-on-insulator (SOI) substrate. The grating coupler with an efficiency of 53% was computationally designed at a 1.1-µm-thick buried oxide (BOX) layer. The grating coupler and silicon waveguide were fabricated on the SOI substrate with a 3.0-µm-thick BOX layer by a single full-etch process. The measured coupling efficiency was 24% for TE-polarized light at 1528 nm wavelength, which was 0.69 times of the calculated coupling efficiency for the 3.0-µm-thick BOX layer.
Vertically aligned carbon nanofiber electrode arrays for nucleic acid detection
NASA Astrophysics Data System (ADS)
Arumugam, Prabhu U.; Yu, Edmond; Riviere, Roger; Meyyappan, M.
2010-10-01
We present electrochemical detection of DNA targets that corresponds to Escherichia coli O157:H7 16S rRNA gene using a nanoelectrode array consisting of vertically aligned carbon nanofiber (VACNF) electrodes. Parylene C is used as gap filling 'matrix' material to avoid high temperature processing in electrode construction. This easy to deposit film of several micron heights provides a conformal coating between the high aspect ratio VACNFs with negligible pin-holes. The low background currents show the potential of this approach for ultra-sensitive detection. Consistent and reproducible electrochemical-signals are achieved using a simple electrode preparation. This simple, reliable and low-cost approach is a forward step in developing practical sensors for applications like pathogen detection, early cancer diagnosis and environmental monitoring.
Improved Reading Gate For Vertical-Bloch-Line Memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.
1994-01-01
Improved design for reading gate of vertical-Bloch-line magnetic-bubble memory increases reliability of discrimination between binary ones and zeros. Magnetic bubbles that signify binary "1" and "0" produced by applying sufficiently large chopping currents to memory stripes. Bubbles then propagated differentially in bubble sorter. Method of discriminating between ones and zeros more reliable.
ERIC Educational Resources Information Center
De Armas, Jose R.
1970-01-01
Interprets Salinas' use of geometric figures for depicting concepts of time and infinity, and for portraying idealism and realism (the vertical line is idealism, perfection; the circle stands for reality and imperfection). (DS)
NASA Astrophysics Data System (ADS)
Kirby, David J.
This dissertation explores the fundamental interparticle and particle-substrate forces that contribute to nanowire assembly. Nanowires have a large aspect ratio which has made them favorable materials for applications in energy and sensing technologies. However, this anisotropy means that nanowires must be positioned and oriented during an assembly process. Within this work, the roles of gravity, van der Waals (VDW) attractions, and electrostatic repulsions are explored when different nanowire assemblies are created. Particles were synthesized by the template electrodeposition process so that stripes of different materials and therefore different VDW interactions could be patterned along the particle length. Electrostatic repulsions were provided by a small molecule coating or a porous silica shell to prevent aggregation during the assembly process. Chapters 2, 3, 5, 6, and 8 all used particles whose asymmetry was further adjusted by removal of a sacrificial segment to leave a partially etched nanowire (PEN), a rigid silica shell partially filled with a metal core. For these particles, the role of gravity was amplified due to the drastic density differences between the two segments. Topographic and high VDW surface interactions were patterned onto assembly substrates using photolithographic processing. These forces served as a passive template to direct nanowire assembly. The segment anisotropy of PENs allowed gravity to drive their sedimentation with the long axis perpendicular to the surface. The density difference between the two ends allowed them to convert between the horizontal and vertical orientation as they diffused on the substrate. Vertical arrays formed as particle concentrations increased while VDW attractions from neighboring PENs or the physical barrier of a microwell wall supported this structure. While vertical arrays were typically PENs, microwell walls were also able to enforce a vertical orientation on solid Au nanowires. These particles typically formed horizontal arrays on planar surfaces, but careful design of the microwell and nanowire dimensions enabled these particles to take on the vertical orientation. Solid nanowires and PENs with greater segment symmetry aligned parallel to the surface as gravity did not allow a conversion to the vertical orientation. When concentrated, these particles formed smectic row arrangements which were previously shown to originate from a balance of VDW attractions and electrostatic repulsions. Within rows of segmented particles, a preference was observed for like orientation of nearest neighbor particles (Chapter 6). With the aid of Monte Carlo simulations, it was determined that this observation was the result of small differences in VDW attractions between the two nanowire ends. Differences in VDW attraction were also applied to patterned surfaces (Chapter 7). Stripes of high VDW material (Au) were placed on a silica surface (a low VDW material). When relatively low surface concentrations were used, the high VDW regions collected Au nanowires and organized them into rows that were reminiscent of those observed on un-patterned surfaces at high particle concentrations. VDW and the gravitational force were explored as they combined to influence array orientation in binary PEN mixtures. Depending on the geometries of the particles combined, the contributions of gravity and interparticle interactions exhibited different balance in creating the final array. VDW and gravitational forces could also act as a force for reconfigurable nanowire assembly. In chapter 8, fluid flow was used to concentrate PENs and force them into horizontal arrangements. When fluid flow was stopped, van der Waals forces and gravity were responsible for a reorientation of the assembled particles into a standing array. These studies represent early steps into the future of nanowire assembly methods. I conclude this dissertation by discussing the implications of my work and providing perspective on their importance to the scientific community. I also offer suggestions for future work in nanowire assembly. These areas focus on the development of assembled nanowire devices, mixed nanowire assembly techniques, and potential stimuli responsive reconfigurable assemblies.
Modified electrical survey for effective leakage detection at concrete hydraulic facilities
NASA Astrophysics Data System (ADS)
Lee, Bomi; Oh, Seokhoon
2018-02-01
Three original electrode arrays for the effective leakage detection of concrete hydraulic facilities through electrical resistivity surveys are proposed: 'cross-potential', 'direct-potential' and modified tomography-like arrays. The main differences with respect to the commonly used arrays are that the current line-sources are separated from potential pole lines and floated upon the water. The potential pole lines are located directly next to the facility in order to obtain intuitive data and useful interpretations of the internal conditions of the hydraulic facility. This modified configuration of the array clearly displays the horizontal variation of the electrical field around the damaged zones of the concrete hydraulic facility, and any anomalous regions that might be found between potential poles placed across the facilities. In order to facilitate the interpretation of these modified electrical surveys, a new and creative way of presenting the measurements is also proposed and an inversion approach is provided for the modified tomography-like array. A numerical modeling and two field tests were performed to verify these new arrays and interpretation methods. The cross and direct potential array implied an ability to detect small variations of the potential field near the measurement poles. The proposed array showed the overall potential distribution across the hydraulic facility which may be used to assist in the search of trouble zones within the structure, in combination with the traditional electrical resistivity array.
Observations of CO in Titan's Atmosphere Using ALMA
NASA Astrophysics Data System (ADS)
Serigano, Joseph; Nixon, Conor A.; Cordiner, Martin; Irwin, Patrick G. J.; Teanby, Nicholas; Charnley, Steven B.; Lindberg, Johan E.; Remijan, Anthony J.
2015-11-01
The advent of the Atacama Large Millimeter/submillimeter Array (ALMA) has provided a powerful facility for probing the atmospheres of solar system targets at long wavelengths (84-720 GHz) where the rotational lines of small, polar molecules are prominent. In the dense, nitrogen-dominated atmosphere of Titan, photodissociation of molecular nitrogen and methane leads to a wealth of complex hydrocarbons and nitriles in small abundances. Past millimeter/submillimeter observations, including ground-based observations as well as those by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft, have proven the significance of this wavelength region for the derivation of vertical mixing profiles, latitudinal and seasonal variations, and molecular detections. Previous ALMA studies of Titan have presented mapping and vertical column densities of hydrogen isocyanide (HNC) and cyanoacetylene (HC3N) (Cordiner et al. 2014) as well as the first spectroscopic detection of ethyl cyanide (C2H5CN) in Titan’s atmosphere (Cordiner et al. 2015).Here, we report several submillimetric observations of carbon monoxide (CO) and its isotopologues 13CO, C18O, and C17O in Titan’s atmosphere obtained with flux calibration data from the ALMA Science Archive. We employ NEMESIS, a line-by-line radiative transfer code, to determine the stratospheric abundances of these molecules. The abundance of CO in Titan's atmosphere is determined to be approximately 50±1 ppm, constant with altitude, and isotopic ratios are determined to be approximately 12C/13C = 90, 16O/18O = 470, and 16O/17O = 2800. This report presents the first spectroscopic detection of C17O in the outer solar system, detected at >11σ confidence. This talk will focus on isotopic ratios in CO in Titan's atmosphere and will compare our results to previously measured values for Titan and other bodies in the Solar System. General implications for the history of Titan from measurements of CO and its isotopologues will be discussed.
ALMA MEASUREMENTS OF THE HNC AND HC{sub 3}N DISTRIBUTIONS IN TITAN'S ATMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordiner, M. A.; Nixon, C. A.; Serigano, J.
2014-11-10
We present spectrally and spatially resolved maps of HNC and HC{sub 3}N emission from Titan's atmosphere, obtained using the Atacama Large Millimeter/submillimeter Array on 2013 November 17. These maps show anisotropic spatial distributions for both molecules, with resolved emission peaks in Titan's northern and southern hemispheres. The HC{sub 3}N maps indicate enhanced concentrations of this molecule over the poles, consistent with previous studies of Titan's photochemistry and atmospheric circulation. Differences between the spectrally integrated flux distributions of HNC and HC{sub 3}N show that these species are not co-spatial. The observed spectral line shapes are consistent with HNC being concentrated predominantlymore » in the mesosphere and above (at altitudes z ≳ 400 km), whereas HC{sub 3}N is abundant at a broader range of altitudes (z ≈ 70-600 km). From spatial variations in the HC{sub 3}N line profile, the locations of the HC{sub 3}N emission peaks are shown to be variable as a function of altitude. The peaks in the integrated emission from HNC and the line core (upper atmosphere) component of HC{sub 3}N (at z ≳ 300 km) are found to be asymmetric with respect to Titan's polar axis, indicating that the mesosphere may be more longitudinally variable than previously thought. The spatially integrated HNC and HC{sub 3}N spectra are modeled using the NEMESIS planetary atmosphere code and the resulting best-fitting disk-averaged vertical mixing ratio profiles are found to be in reasonable agreement with previous measurements for these species. Vertical column densities of the best-fitting gradient models for HNC and HC{sub 3}N are 1.9 × 10{sup 13} cm{sup –2} and 2.3 × 10{sup 14} cm{sup –2}, respectively.« less
Best Practices for Fuel System Contamination Detection and Remediation
2015-12-14
Valve Fyre Ring GR DBB Style Plug Valve Gasket SS graphite Spiral DBB Style Plug Valve O- rings & slip seals VI DBB Style Plug Valve Packing gland...Pumps Impeller Key SS Vertical Turbine Pumps Impeller Retaining Ring SS Vertical Turbine Pumps Impellers (Electroless Nickel Plating) DI Vertical... Turbine Pumps Line Shaft SS Vertical Turbine Pumps Lineshaft Bearing CA Vertical Turbine Pumps Mating Ring Si-C Vertical Turbine Pumps Mechanical
Best Practices for Fuel System Contamination Detection and Remediation
2016-01-15
Valve Fyre Ring GR DBB Style Plug Valve Gasket SS graphite Spiral DBB Style Plug Valve O- rings & slip seals VI DBB Style Plug Valve Packing gland...Pumps Impeller Key SS Vertical Turbine Pumps Impeller Retaining Ring SS Vertical Turbine Pumps Impellers (Electroless Nickel Plating) DI Vertical... Turbine Pumps Line Shaft SS Vertical Turbine Pumps Lineshaft Bearing CA Vertical Turbine Pumps Mating Ring Si-C Vertical Turbine Pumps Mechanical
A new high-resolution electromagnetic method for subsurface imaging
NASA Astrophysics Data System (ADS)
Feng, Wanjie
For most electromagnetic (EM) geophysical systems, the contamination of primary fields on secondary fields ultimately limits the capability of the controlled-source EM methods. Null coupling techniques were proposed to solve this problem. However, the small orientation errors in the null coupling systems greatly restrict the applications of these systems. Another problem encountered by most EM systems is the surface interference and geologic noise, which sometimes make the geophysical survey impossible to carry out. In order to solve these problems, the alternating target antenna coupling (ATAC) method was introduced, which greatly removed the influence of the primary field and reduced the surface interference. But this system has limitations on the maximum transmitter moment that can be used. The differential target antenna coupling (DTAC) method was proposed to allow much larger transmitter moments and at the same time maintain the advantages of the ATAC method. In this dissertation, first, the theoretical DTAC calculations were derived mathematically using Born and Wolf's complex magnetic vector. 1D layered and 2D blocked earth models were used to demonstrate that the DTAC method has no responses for 1D and 2D structures. Analytical studies of the plate model influenced by conductive and resistive backgrounds were presented to explain the physical phenomenology behind the DTAC method, which is the magnetic fields of the subsurface targets are required to be frequency dependent. Then, the advantages of the DTAC method, e.g., high-resolution, reducing the geologic noise and insensitive to surface interference, were analyzed using surface and subsurface numerical examples in the EMGIMA software. Next, the theoretical advantages, such as high resolution and insensitive to surface interference, were verified by designing and developing a low-power (moment of 50 Am 2) vertical-array DTAC system and testing it on controlled targets and scaled target coils. At last, a high-power (moment of about 6800 Am2) vertical-array DTAC system was designed, developed and tested on controlled buried targets and surface interference to illustrate that the DTAC system was insensitive to surface interference even with a high-power transmitter and having higher resolution by using the large-moment transmitter. From the theoretical and practical analysis and tests, several characteristics of the DTAC method were found: (1) The DTAC method can null out the effect of 1D layered and 2D structures, because magnetic fields are orientation independent which lead to no difference among the null vector directions. This characteristic allows for the measurements of smaller subsurface targets; (2) The DTAC method is insensitive to the orientation errors. It is a robust EM null coupling method. Even large orientation errors do not affect the measured target responses, when a reference frequency and one or more data frequencies are used; (3) The vertical-array DTAC method is effective in reducing the geologic noise and insensitive to the surface interference, e.g., fences, vehicles, power line and buildings; (4) The DTAC method is a high-resolution EM sounding method. It can distinguish the depth and orientation of subsurface targets; (5) The vertical-array DTAC method can be adapted to a variety of rapidly moving survey applications. The transmitter moment can be scaled for effective study of near-surface targets (civil engineering, water resource, and environmental restoration) as well as deep targets (mining and other natural-resource exploration).
Vertical and horizontal control dilemmas in public hospitals.
Pettersen, Inger Johanne; Solstad, Elsa
2015-01-01
The hospital sector in Norway has been continuously reorganized since 2002 and the reforms have created organizations that are functionally/vertically controlled, whereas the production lines are coordinated on a process or a lateral basis. The purpose of this paper is to focus on both the perceived functional vertical control and horizontal controls within and between the local hospitals and the regional administrative levels. A national survey study, complemented with interviews of some key informants and document studies. The study shows that the functional and vertical lines of management control are perceived to be operating according to the traditional views of management control. The study indicates that the horizontal tasks are not very well implemented, and we did not find interactive and lateral uses of management control systems for managerial purposes. New control problems arise when services are to be coordinated between autonomous units. The paper focuses on the control problems found within the horizontal, flat relationship between production units in hospitals; new organizational structures have emerged where lateral relations are important, but traditional control practices follow functional, vertical lines.
Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates
NASA Astrophysics Data System (ADS)
Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P.
2000-12-01
We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 × 1011 wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.
Grounding line processes on the Totten Glacier
NASA Astrophysics Data System (ADS)
Cook, S.; Watson, C. S.; Galton-Fenzi, B.; Peters, L. E.; Coleman, R.
2017-12-01
The Totten Glacier has been an area of recent interest due to its large drainage basin, much of which is grounded below sea level and has a history of large scale grounding line movement. Reports that warm water reaches the sub-ice shelf cavity have led to speculation that it could be vulnerable to future grounding line retreat. Over the Antarctic summer 2016/17 an array of 6 GPS and autonomous phase-sensitive radar (ApRES) units were deployed in the grounding zone of the Totten Glacier. These instruments measure changes in ice velocity and thickness which can be used to investigate both ice dynamics across the grounding line, and the interaction between ice and ocean in the subglacial cavity. Basal melt rates calculated from the ApRES units on floating ice range from 1 to 17 m/a. These values are significantly lower than previous estimates of basal melt rate produced by ocean modelling of the subglacial cavity. Meanwhile, GPS-derived velocity and elevation on the surface of the ice show a strong tidal signal, as does the vertical strain rate within the ice derived from internal layering from the ApRES instruments. These results demonstrate the significance of the complex grounding pattern of the Totten Glacier. The presence of re-grounding points has significant implications for the dynamics of the glacier and the ocean circulation within the subglacial cavity. We discuss what can be learned from our in situ measurements, and how they can be used to improve models of the glacier's future behaviour.
Quintas, Adriana Ferreira; Oliveira, Fabiano; Bottino, Marco Antonio
2004-09-01
Prosthetic restorations that fit poorly may affect periodontal health and occlusion. Studies that have evaluated the accuracy of fit of ceramic restorations before and after cementation assessed primarily intracoronal restorations. This in vitro study evaluated the effect of different finish lines, ceramic manufacturing techniques, and luting agents on the vertical discrepancy of ceramic copings. Two stainless steel molars were prepared for complete crowns with 2 different finish lines (heavy chamfer and rounded shoulder); each molar was duplicated to fabricate 90 copings. A total of 180 copings generated 18 groups (n=10 for each finish line-coping material-luting agent combination). Luting agents tested included zinc phosphate, resin-modified glass ionomer (Fuji Plus), and resin composite cements (Panavia F). A metal frame was developed on which to screw the stainless steel model and a ceramic coping; the distance (microm) between 2 predetermined points was measured before and after cementation by a profile projector under a torquing force. A 4-way ANOVA with repeated measurements was performed to assess the influence of each factor in the vertical marginal discrepancy: 3 between-coping factors (finish line-coping material-luting agent) and 1 within-coping factor (before and after cementation) (alpha=.05). Procera copings presented the lowest mean values ( P <.05) of vertical marginal discrepancy before and after cementation (25/44 microm) when compared to Empress 2 (68/110 microm) and InCeram Alumina copings (57/117 microm), regardless of any combinations among all finish lines and luting agents tested. Considering each factor separately, the ceramic manufacturing technique appeared to be the most important factor tested for the definitive vertical discrepancy of all-ceramic copings, with lower mean values for Procera copings.
Characterization of Nonlinear Effects in Optically Pumped Vertical Cavity Surface Emitting Lasers
1993-12-01
Vertical Cavity Surface Emitting Lasers ( VCSELs ) are an exciting...lines A-3 X AFIT/GEOiENP/93 D-01 Abstract The nonlinear characteristics of optically pumped Vertical Cavity Surface Emitting Lasers ( VCSELs ) are...uniformity of the VCSEL fabrication. xi Characterization of Nonlinear Effects in Optically Pumped Vertical Cavity Surface Emitting Lasers
Modal processing for acoustic communications in shallow water experiment.
Morozov, Andrey K; Preisig, James C; Papp, Joseph
2008-09-01
Acoustical array data from the Shallow Water Acoustics experiment was processed to show the feasibility of broadband mode decomposition as a preprocessing method to reduce the effective channel delay spread and concentrate received signal energy in a small number of independent channels. The data were collected by a vertical array designed at the Woods Hole Oceanographic Institution. Phase-shift Keying (PSK) m-sequence modulated signals with different carrier frequencies were transmitted at a distance 19.2 km from the array. Even during a strong internal waves activity a low bit error rate was achieved.
Kim, Kuk-Hwan; Gaba, Siddharth; Wheeler, Dana; Cruz-Albrecht, Jose M; Hussain, Tahir; Srinivasa, Narayan; Lu, Wei
2012-01-11
Crossbar arrays based on two-terminal resistive switches have been proposed as a leading candidate for future memory and logic applications. Here we demonstrate a high-density, fully operational hybrid crossbar/CMOS system composed of a transistor- and diode-less memristor crossbar array vertically integrated on top of a CMOS chip by taking advantage of the intrinsic nonlinear characteristics of the memristor element. The hybrid crossbar/CMOS system can reliably store complex binary and multilevel 1600 pixel bitmap images using a new programming scheme. © 2011 American Chemical Society
Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams
2012-03-21
A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.
Optical Phased Array Antennas using Coupled Vertical Cavity Surface Emitting Lasers
NASA Technical Reports Server (NTRS)
Mueller, Carl H.; Rojas, Roberto A.; Nessel, James A.; Miranda, Felix A.
2007-01-01
High data rate communication links are needed to meet the needs of NASA as well as other organizations to develop space-based optical communication systems. These systems must be robust to high radiation environments, reliable, and operate over a wide temperature range. Highly desirable features include beam steering capability, reconfigurability, low power consumption, and small aperture size. Optical communication links, using coupled vertical cavity surface emitting laser radiating elements are promising candidates for the transmit portion of these communication links. In this talk we describe a mission scenario, and how the antenna requirements are derived from the mission needs. We describe a potential architecture for this type of antenna, and outline the advantages and drawbacks of this approach relative to competing technologies. The technology we are proposing used coupled arrays of 1550 nm vertical cavity surface emitting lasers for transmission. The feasibility of coupling these arrays together, to form coherent high-power beams that can be modulated at data rates exceeding 1 Gbps, will be explored. We will propose an architecture that enables electronic beam steering, thus mitigating the need for ancillary acquisition, tracking and beam pointing equipment such as needed for current optical communicatin systems. The beam-steering capability we are proposing also opens the possibility of using this technology for inter-satellite communicatin links, and satellite-to-surface links.
Sun, Zhelin; Wang, Deli; Xiang, Jie
2014-11-25
Spontaneous attractions between free-standing nanostructures have often caused adhesion or stiction that affects a wide range of nanoscale devices, particularly nano/microelectromechanical systems. Previous understandings of the attraction mechanisms have included capillary force, van der Waals/Casimir forces, and surface polar charges. However, none of these mechanisms universally applies to simple semiconductor structures such as silicon nanowire arrays that often exhibit bunching or adhesions. Here we propose a simple capacitive force model to quantitatively study the universal spontaneous attraction that often causes stiction among semiconductor or metallic nanostructures such as vertical nanowire arrays with inevitably nonuniform size variations due to fabrication. When nanostructures are uniform in size, they share the same substrate potential. The presence of slight size differences will break the symmetry in the capacitive network formed between the nanowires, substrate, and their environment, giving rise to electrostatic attraction forces due to the relative potential difference between neighboring wires. Our model is experimentally verified using arrays of vertical silicon nanowire pairs with varied spacing, diameter, and size differences. Threshold nanowire spacing, diameter, or size difference between the nearest neighbors has been identified beyond which the nanowires start to exhibit spontaneous attraction that leads to bridging when electrostatic forces overcome elastic restoration forces. This work illustrates a universal understanding of spontaneous attraction that will impact the design, fabrication, and reliable operation of nanoscale devices and systems.
NASA Technical Reports Server (NTRS)
Bruning, Eric C.; Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Carey, Larry D.; Koshak, William; Peterson, Harold; MacGorman, Donald R.
2013-01-01
We will use VHF Lightning Mapping Array data to estimate NOx per flash and per unit channel length, including the vertical distribution of channel length. What s the best way to find channel length from VHF sources? This paper presents the rationale for the fractal method, which is closely related to the box-covering method.
Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E
2013-10-01
A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.
Flow-driven alignment of carbon nanotubes during floating evaporative self assembly
NASA Astrophysics Data System (ADS)
Berson, Arganthael; Jinkins, Katherine; Chan, Jason; Brady, Gerald; Gronski, Kjerstin; Gopalan, Padma; Evensen, Harold; Arnold, Michael
2017-11-01
Individual semi-conducting single-wall carbon nanotubes (s-SWCNTs) exhibit exceptional electronic properties, which makes them promising candidates for the next generation of semi-conductor electronics. In practice, field-effect transistors (FETs) are fabricated from arrays of s-SWCNTs deposited onto a substrate. In order to achieve high electronic performance, the s-SWCNTs in these arrays must be densely packed and well aligned. Floating Evaporative Self Assembly (FESA) is a new deposition technique developed at the UW-Madison that can achieve such high-quality s-SWCNT alignment. For example, it was used to fabricate the first s-SWCNT-based FETs to outperform gallium arsenide and silicon FETs. In FESA, a droplet of ink containing the s-SWCNTs is deposited onto a pool of water. The ink spreads on the water surface towards a substrate that is vertically pulled out of the water. A band of aligned s-SWCNTs is deposited with each drop of ink. High-speed imaging is combined with cross-polarized microscopy to elucidate the mechanisms behind the exceptional alignment of s-SWCNTs. Two key mechanisms are 1) the collection of s-SWCNTs at the ink-water interface and 2) the depinning of the air-ink-substrate contact line. Avenues for scaling up FESA will be presented.
Microtremor exploration for shallow S-wave velocity structure in Bandung Basin, Indonesia
NASA Astrophysics Data System (ADS)
Pramatadie, Andi Muhamad; Yamanaka, Hiroaki; Chimoto, Kosuke; Afnimar Collaboration; Koketsu, Kazuki; Sakaue, Minoru; Miyake, Hiroe; Sengara, I. Wayan; Sadisun, Imam A.
2017-05-01
We have conducted a microtremor survey for shallow S-wave velocity profiles to be used for seismic hazard evaluation in the Bandung Basin, Indonesia. In the survey, two arrays were deployed temporarily at each of 29 sites, by installing seven vertical sensors in triangular configurations with side lengths from 1 to 16 m. Records of vertical microtremors from each array were used to estimate Rayleigh wave phase velocity spectra using the spatial autocorrelation method, as well as the horizontal-to-vertical spectral ratio obtained at the centre of the arrays. Phase velocities at sites on the basin margin exhibit higher values than those obtained in the central part of the basin, in a frequency range of 7 to 30 Hz. The phase velocity data were used to deduce S-wave velocity profiles of shallow soil using a hybrid heuristic inversion method. We validated our inversion models by comparing observed horizontal-to-vertical spectral ratios with ellipticities of the fundamental mode of Rayleigh waves, calculated for the inversion models. The S-wave velocity profiles in the area can be characterised by two soft layers over a firm engineering basement that has an S-wave velocity of 500 m/s. The S-wave velocities of the two layers are 120 and 280 m/s on average. The distribution of the averaged S-wave velocity in the top 30 m clearly indicates low values in the eastern central part and high values in the edge of the basin. The amplification is large in the areas with low velocity layers. In addition, we have proposed an empirical relation between the amplification factor and the topographical slope in the area.
Design of diffractive microlens array integration with focal plane arrays
NASA Astrophysics Data System (ADS)
Chen, Sihai; Yi, Xinjian; Li, Yi; He, Miao; Chen, Sixiang; Kong, Lingbin
2000-10-01
The IR spectrum from 3 to 5micrometers has numerous applications in both military and civil industries. High performance at high operating temperature is often important in these applications. Conventional Focal Plane Arrays (FPAs) without integration with concentrator such as microlens have poor sensitivity and low signal-to-noise ratio because of their lower fill factor. The binary optics microlens arrays reported in this paper are designed for integration with FPAs. Thus, the FPAs' fill factor, sensitivity, and signal- to-noise ratio can be improved while retaining a given image resolution and optical collection area. In the paper, we discussed the 256(Horizontal)x290(Vertical) microlens arrays designed for a center wavelength of 4micrometers , with 50micrometers (Horizontalx33micrometers (Vertical) quadrate pixel dimension and a speed (F number) of F/1.96. PtSi FPAs were fabricated on the front side of a 400-micrometers -thick Si substrate. The designed diffractive microlens arrays will be etched on the back side of the same wafer in a register fashion and it will be reported in other paper. Considering the diffraction efficiency, 8-phase-level approximation is enough. For the diffraction efficiency of 8-phase-level diffractive microlens reaches 95%. The process only need three mask-level, so we designed and fabricated three masks with the same dimension 4'x4'. Also, a set of fine verniers was designed and fabricated on each mask to allow accurate alignment during the fabrication process. Through a computer simulation, the microlens arrays are nearly diffraction limited, with the diffraction efficiency of 93%, a bit lower than the theoretical value of 95%. Introduction of microlens arrays has the ability to increase the FPAs' fill factor to 100%, while it is only about 21.6% without microlens. To our knowledge, this is the first trial of integration large area microlens arrays with FPAs at home.
NASA Astrophysics Data System (ADS)
Catchmark, Jeffrey Michael
1995-01-01
The following describes extensive experimental and theoretical research concerning the optical, electrical and thermal characteristics of GaAs/AlGaAs vertical cavity surface emitting lasers (VCSELs) and coherently coupled two dimensional VCSEL arrays grown by molecular beam epitaxy. The temperature and wavelength performance of VCSELs containing various epitaxial designs is discussed in detail. By employing a high barrier confinement spacer region and by blue shifting the optical gain with respect to the Fabry Perot transmission wavelength, greater than 150^circ rm C continuous wave operation was obtained. This is accomplished while maintaining a variation in the threshold current of only +/-0.93mA over a temperature range of 150^circrm C. This exceptional performance is achieved while attaining a minimum threshold current of approximately 4.3mA at 75^circrm C. In addition, the optical characteristics of multi-transverse mode VCSEL arrays are examined experimentally. A total of nine transverse modes have been identified and are found to couple coherently into distinct array modes. While operating in higher order transverse modes, a record 1.4W (pulsed) of optical power is obtained from a 15 x 15 VCSEL array. Array mode formation in coherently coupled VCSEL arrays is also examined theoretically. A numerical model is developed to describe the formation of supermodes in reflectivity modulated VCSEL arrays. Using this model, the effects of depth of reflectivity modulation, cavity length, window size and grid size on mode formation are explored. The array modes predicted by this model are in agreement with those observed experimentally. Analytic models will also be presented describing the effects of thermally induced waveguiding on the optical characteristics of VCSELs operating in the fundamental transverse mode. A thermal waveguide is found to have a significant effect on the spot size and radius of curvature of the phase of the fundamental optical mode. In addition, an analytic model is developed to predict the higher order transverse modes of a VCSEL exhibiting a cruciform type geometry.
Integrated focal plane arrays for millimeter-wave astronomy
NASA Astrophysics Data System (ADS)
Bock, James J.; Goldin, Alexey; Hunt, Cynthia; Lange, Andrew E.; Leduc, Henry G.; Day, Peter K.; Vayonakis, Anastasios; Zmuidzinas, Jonas
2002-02-01
We are developing focal plane arrays of bolometric detectors for sub-millimeter and millimeter-wave astrophysics. We propose a flexible array architecture using arrays of slot antennae coupled via low-loss superconducting Nb transmission line to microstrip filters and antenna-coupled bolometers. By combining imaging and filtering functions with transmission line, we are able to realize unique structures such as a multi-band polarimeter and a planar, dispersive spectrometer. Micro-strip bolometers have significantly smaller active volume than standard detectors with extended absorbers, and can realize higher sensitivity and speed of response. The integrated array has natural immunity to stray radiation or spectral leaks, and minimizes the suspended mass operating at 0.1-0.3 K. We also discuss future space-borne spectroscopy and polarimetry applications. .
NASA Technical Reports Server (NTRS)
Yang, T. L.; Dixon, M. W.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
1999-01-01
In six experiments we demonstrate that the vertical-horizontal illusion that is evoked when viewing photographs and line drawings is relatively small, whereas the magnitude of this illusion when large objects are viewed is at least twice as great. Furthermore, we show that the illusion is due more to vertical overestimation than horizontal underestimation. The lack of a difference in vertical overestimation between pictures and line drawings suggests that vertical overestimation in pictures depends solely on the perceived physical size of the projection on the picture surface, rather than on what is apparent about an object's represented size. The vertical-horizontal illusion is influenced by perceived physical size. It is greater when viewing large objects than small pictures of these same objects, even when visual angles are equated.
The NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory
NASA Technical Reports Server (NTRS)
Tung, L. S.; Post, R. F.; Cook, E.; Martinez-Frias, J.
2000-01-01
The Inductrack magnetic levitation system, developed at the Lawrence Livermore National Laboratory, is being studied for its possible use for launching rockets. Under NASA sponsorship, a small model system is being constructed at the Laboratory to pursue key technical aspects of this proposed application. The Inductrack is a passive magnetic levitation system employing special arrays of high-field permanent magnets (Halbach arrays) on the levitating carrier, moving above a "track" consisting of a close-packed array of shorted coils with which are interleaved with special drive coils. Halbach arrays produce a strong spatially periodic magnetic field on the front surface of the arrays, while canceling the field on their back surface. Relative motion between the Halbach arrays and the track coils induces currents in those coils. These currents levitate the carrier cart by interacting with the horizontal component of the magnetic field. Pulsed currents in the drive coils, synchronized with the motion of the carrier, interact with the vertical component of the magnetic field to provide acceleration forces. Motional stability, including resistance to both vertical and lateral aerodynamic forces, is provided by having Halbach arrays that interact with both the upper and the lower sides of the track coils. In its completed form the model system that is under construction will have a track approximately 100 meters in length along which the carrier cart will be propelled up to peak speeds of Mach 0.4 to 0.5 before being decelerated. Preliminary studies of the parameters of a full-scale system have also been made. These studies address the problems of scale-up, including means to simplify the track construction and to reduce the cost of the pulsed-power systems needed for propulsion.
Programmable Aperture with MEMS Microshutter Arrays
NASA Technical Reports Server (NTRS)
Moseley, Samuel; Li, Mary; Kutyrev, Alexander; Kletetschka, Gunther; Fettig, Rainer
2011-01-01
A microshutter array (MSA) has been developed for use as an aperture array for multi-object selections in James Webb Space Telescope (JWST) technology. Light shields, molybdenum nitride (MoN) coating on shutters, and aluminum/aluminum oxide coatings on interior walls are put on each shutter for light leak prevention, and to enhance optical contrast. Individual shutters are patterned with a torsion flexure that permits shutters to open 90 deg. with a minimized mechanical stress concentration. The shutters are actuated magnetically, latched, and addressed electrostatically. Also, micromechanical features are tailored onto individual shutters to prevent stiction. An individual shutter consists of a torsion hinge, a shutter blade, a front electrode that is coated on the shutter blade, a backside electrode that is coated on the interior walls, and a magnetic cobalt-iron coating. The magnetic coating is patterned into stripes on microshutters so that shutters can respond to an external magnetic field for the magnetic actuation. A set of column electrodes is placed on top of shutters, and a set of row electrodes on sidewalls is underneath the shutters so that they can be electrostatically latched open. A linear permanent magnet is aligned with the shutter rows and is positioned above a flipped upside-down array, and sweeps across the array in a direction parallel to shutter columns. As the magnet sweeps across the array, sequential rows of shutters are rotated from their natural horizontal orientation to a vertical open position, where they approach vertical electrodes on the sidewalls. When the electrodes are biased with a sufficient electrostatic force to overcome the mechanical restoring force of torsion bars, shutters remain latched to vertical electrodes in their open state. When the bias is removed, or is insufficient, the shutters return to their horizontal, closed positions. To release a shutter, both the electrode on the shutter and the one on the back wall where the shutter sits are grounded. The shutters with one or both ungrounded electrodes are held open. Sub-micron bumps underneath light shields and silicon ribs on back walls are the two features to prevent stiction. These features ensure that the microshutter array functions properly in mechanical motions. The MSA technology can be used primarily in multi-object imaging and spectroscopy, photomask generation, light switches, and in the stepper equipment used to make integrated circuits and MEMS (microelectromechanical systems) devices.
Ros, Ivo G; Bhagavatula, Partha S; Lin, Huai-Ti; Biewener, Andrew A
2017-02-06
Flying animals must successfully contend with obstacles in their natural environments. Inspired by the robust manoeuvring abilities of flying animals, unmanned aerial systems are being developed and tested to improve flight control through cluttered environments. We previously examined steering strategies that pigeons adopt to fly through an array of vertical obstacles (VOs). Modelling VO flight guidance revealed that pigeons steer towards larger visual gaps when making fast steering decisions. In the present experiments, we recorded three-dimensional flight kinematics of pigeons as they flew through randomized arrays of horizontal obstacles (HOs). We found that pigeons still decelerated upon approach but flew faster through a denser array of HOs compared with the VO array previously tested. Pigeons exhibited limited steering and chose gaps between obstacles most aligned to their immediate flight direction, in contrast to VO navigation that favoured widest gap steering. In addition, pigeons navigated past the HOs with more variable and decreased wing stroke span and adjusted their wing stroke plane to reduce contact with the obstacles. Variability in wing extension, stroke plane and wing stroke path was greater during HO flight. Pigeons also exhibited pronounced head movements when negotiating HOs, which potentially serve a visual function. These head-bobbing-like movements were most pronounced in the horizontal (flight direction) and vertical directions, consistent with engaging motion vision mechanisms for obstacle detection. These results show that pigeons exhibit a keen kinesthetic sense of their body and wings in relation to obstacles. Together with aerodynamic flapping flight mechanics that favours vertical manoeuvring, pigeons are able to navigate HOs using simple rules, with remarkable success.
Ros, Ivo G.; Bhagavatula, Partha S.; Lin, Huai-Ti
2017-01-01
Flying animals must successfully contend with obstacles in their natural environments. Inspired by the robust manoeuvring abilities of flying animals, unmanned aerial systems are being developed and tested to improve flight control through cluttered environments. We previously examined steering strategies that pigeons adopt to fly through an array of vertical obstacles (VOs). Modelling VO flight guidance revealed that pigeons steer towards larger visual gaps when making fast steering decisions. In the present experiments, we recorded three-dimensional flight kinematics of pigeons as they flew through randomized arrays of horizontal obstacles (HOs). We found that pigeons still decelerated upon approach but flew faster through a denser array of HOs compared with the VO array previously tested. Pigeons exhibited limited steering and chose gaps between obstacles most aligned to their immediate flight direction, in contrast to VO navigation that favoured widest gap steering. In addition, pigeons navigated past the HOs with more variable and decreased wing stroke span and adjusted their wing stroke plane to reduce contact with the obstacles. Variability in wing extension, stroke plane and wing stroke path was greater during HO flight. Pigeons also exhibited pronounced head movements when negotiating HOs, which potentially serve a visual function. These head-bobbing-like movements were most pronounced in the horizontal (flight direction) and vertical directions, consistent with engaging motion vision mechanisms for obstacle detection. These results show that pigeons exhibit a keen kinesthetic sense of their body and wings in relation to obstacles. Together with aerodynamic flapping flight mechanics that favours vertical manoeuvring, pigeons are able to navigate HOs using simple rules, with remarkable success. PMID:28163883
NASA Astrophysics Data System (ADS)
Thiel, Erik; Kreutzbruck, Marc; Studemund, Taarna; Ziegler, Mathias
2018-04-01
Among the photothermal methods, full-field thermal imaging is used to characterize materials, to determine thicknesses of layers, or to find inhomogeneities such as voids or cracks. The use of classical light sources such as flash lamps (impulse heating) or halogen lamps (modulated heating) led to a variety of nondestructive testing methods, in particular, lock-in and flash-thermography. In vertical-cavity surface-emitting lasers (VCSELs), laser light is emitted perpendicularly to the surface with a symmetrical beam profile. Due to the vertical structure, they can be arranged in large arrays of many thousands of individual lasers, which allows power scaling into the kilowatt range. Recently, a high-power yet very compact version of such a VCSEL-array became available that offers both the fast timing behavior of a laser as well as the large illumination area of a lamp. Moreover, it allows a spatial and temporal control of the heating because individual parts of the array can be controlled arbitrarily in frequency, amplitude, and phase. In conjunction with a fast infrared camera, such structured heating opens up a field of novel thermal imaging and testing methods. As a first demonstration of this approach, we chose a testing problem very challenging to conventional thermal infrared testing: The detection of very thin subsurface defects perpendicularly oriented to the surface of metallic samples. First, we generate destructively interfering thermal wave fields, which are then affected by the presence of defects within their reach. It turned out that this technique allows highly sensitive detection of subsurface defects down to depths in excess of the usual thermographic rule of thumb, with no need for a reference or surface preparation.
NASA Technical Reports Server (NTRS)
Katti, R.; Wu, J.; Stadler, H.
1990-01-01
Vertical Bloch Line (VBL) memory is a recently conceived, integrated, solid-state, block-access, VLSI memory which offers the potential of 1Gbit/sq cm real storage density, gigabit per second data rates, and sub-millisecond average access times simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBL's are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of VBL pairs are used to store binary information. At present, efforts are being directed at developing a single-chip memory using 25Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. This paper describes the current design architecture, functional elements, and supercomputer simulation results which are used to assist the design process. The current design architecture uses three metal layers, two ion implantation steps for modulating the thickness of the magnetic layer, one ion implantation step for assisting propagation in the major line track, one NiFe soft magnetic layer, one CoPt hard magnetic layer, and one reflective Cr layer for facilitating magneto-optic observation of magnetic structure. Data are stored in a series of elongated magnetic domains, called stripes, which serve as storage sites for arrays of VBL pairs. The ends of these stripes are placed near conductors which serve as VBL read/write gates. A major line track is present to provide a source and propagation path for magnetic bubbles. Writing and reading, respectively, are achieved by converting magnetic bubbles to VBL's and vice versa. The output function is effected by stretching a magnetic bubble and detecting it magnetoresistively. Experimental results from the past design cycle created four design goals for the current design cycle. First, the bias field ranges for the stripes and the major line needed to be matched. Second, the magnetic field barrier between the stripe and the read/write gates needed to be reduced. Third, current conductor routing needed to be improved to reduce occurrences of open-circuiting, short-circuiting, and eddy-current shielding. Fourth, a modified Co-alloy was needed with an increased coercivity and controlled magnetization to allow VBL stabilization to occur without affecting stripe stability.
NASA Astrophysics Data System (ADS)
Jang, Ki-Seok; Joo, Jiho; Kim, Taeyong; Kim, Sanghoon; Oh, Jin Hyuk; Kim, In Gyoo; Kim, Sun Ae; Kim, Gyungock
2015-03-01
We report a 40 Gb/s photoreceiver based on vertical-illumination type Ge-on-Si photodetectors and a silica-based AWG demultiplexer by employing 4-channel CWDM. The 60um-diameter Ge-on-Si photodetector arrays, grown on a bulk silicon wafer by RPCVD and fabricated with CMOS-compatible process, have ~0.9 A/W responsivity with 13 GHz bandwidth at λ ~ 1330nm. Ge-on-Si photodetector arrays are hybrid-integrated with TIA/LAs and directly-coupled to the AWG. The low-cost FPCB-package based photoreceiver module shows 10.3 Gb/s × 4-channel interconnection with -11 ~ -12.2 dBm sensitivity at a BER = 10-12.
Near-field effect in the infrared range through periodic Germanium subwavelength arrays.
Dong, Wei; Hirohata, Toru; Nakajima, Kazutoshi; Wang, Xiaoping
2013-11-04
Using finite-difference-time-domain simulation, we have studied the near-field effect of Germanium (Ge) subwavelength arrays designed in-plane with a normal incidence. Spectra of vertical electric field component normal to the surface show pronounced resonance peaks in an infrared range, which can be applied in a quantum well infrared photodetector. Unlike the near-field optics in metallic systems that are commonly related to surface plasmons, the intense vertical field along the surface of the Ge film can be interpreted as a combination of diffraction and waveguide theory. The existence of the enhanced field is confirmed by measuring the Fourier transform infrared spectra of fabricated samples. The positions of the resonant peaks obtained in experiment are in good agreement with our simulations.
Elastogranular Mechanics: Buckling, Jamming, and Structure Formation.
Schunter, David J; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P
2018-02-16
Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.
Elastogranular Mechanics: Buckling, Jamming, and Structure Formation
NASA Astrophysics Data System (ADS)
Schunter, David J.; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P.
2018-02-01
Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.
The calibration of an HF radar used for ionospheric research
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
1984-02-01
The HF radar on Bribie Island, Australia, uses crossed-fan beams produced by crossed linear transmitter and receiver arrays of 10 elements each to simulate a pencil beam. The beam points vertically when all the array elements are in phase, and is steerable by up to 20 deg off vertical at the central one of the three operating frequencies. Phase and gain changes within the transmitters and receivers are compensated for by an automatic system of adjustment. The 10 transmitting antennas are, as nearly as possible, physically identical as are the 10 receiving antennas. Antenna calibration using high flying aircraft or satellites is not possible. A method is described for using the ionospheric reflections to measure the polar diagram and also to correct for errors in the direction of pointing.
NASA Astrophysics Data System (ADS)
Tomas, J. M.; Eisma, H. E.; Pourquie, M. J. B. M.; Elsinga, G. E.; Jonker, H. J. J.; Westerweel, J.
2017-05-01
Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban roughness was characterized by an array of rectangular obstacles in an in-line arrangement. The streamwise length scale of the roughness was kept constant, while the spanwise length scale was varied by varying the obstacle aspect ratio l / h between 1 and 8, where l is the spanwise dimension of the obstacles and h is the height of the obstacles. Additionally, the case of two-dimensional roughness (riblets) was considered in LES. A smooth-wall turbulent boundary layer of depth 10 h was used as the approaching flow, and a line source of passive tracer was placed 2 h upstream of the urban canopy. The experimental and numerical results show good agreement, while minor discrepancies are readily explained. It is found that for l/h=2 the drag induced by the urban canopy is largest of all considered cases, and is caused by a large-scale secondary flow. In addition, due to the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identified that is responsible for street-canyon ventilation for the sixth street and onwards. Moreover, it is shown that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the canopy, while the streamwise length scale does not show a similar trend.
Cancer cell lines are major model systems for mechanistic investigation and drug development. However, protein expression data linked to high-quality DNA, RNA, and drug-screening data have not been available across a large number of cancer cell lines. Using reverse-phase protein arrays, we measured expression levels of ∼230 key cancer-related proteins in >650 independent cell lines, many of which have publically available genomic, transcriptomic, and drug-screening data.
NASA Astrophysics Data System (ADS)
Jannati, Mojtaba; Valadan Zoej, Mohammad Javad; Mokhtarzade, Mehdi
2018-03-01
This paper presents a novel approach to epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model (OPM). The backbone of the proposed method relies on modification of attitude parameters of linear array stereo imagery in such a way to parallelize the approximate conjugate epipolar lines (ACELs) with the instantaneous base line (IBL) of the conjugate image points (CIPs). Afterward, a complementary rotation is applied in order to parallelize all the ACELs throughout the stereo imagery. The new estimated attitude parameters are evaluated based on the direction of the IBL and the ACELs. Due to the spatial and temporal variability of the IBL (respectively changes in column and row numbers of the CIPs) and nonparallel nature of the epipolar lines in the stereo linear images, some polynomials in the both column and row numbers of the CIPs are used to model new attitude parameters. As the instantaneous position of sensors remains fix, the digital elevation model (DEM) of the area of interest is not required in the resampling process. According to the experimental results obtained from two pairs of SPOT and RapidEye stereo imagery with a high elevation relief, the average absolute values of remained vertical parallaxes of CIPs in the normalized images were obtained 0.19 and 0.28 pixels respectively, which confirm the high accuracy and applicability of the proposed method.
Novel Phased Array Scanning Employing A Single Feed Without Using Individual Phase Shifters
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2012-01-01
Phased arrays afford many advantages over mechanically steered systems. However, they are also more complex, heavy, and most of all costly. The high cost mainly originates from the complex feeding structure. This paper proposes a novel feeding scheme to eliminate all phase shifters and achieve scanning via one-dimensional motion. Beam scanning is achieved via a series fed array incorporating feeding transmission lines whose wave velocity can be mechanically adjusted. Along with the line design, ideal element impedances to be used in conjunction with the line are derived. Practical designs are shown which achieve scanning to +/-30deg from boresight. Finally, a prototype is fabricated and measured, demonstrating the concept.
Control of Heat and Charge Transport in Nanostructured Hybrid Materials
2015-07-21
measurements in our groups have yielded device ZT values of 0.4 on thermoelectric modules consisting of vertically oriented silicon nanowires . This is... nanowires with aspect ratio’s exceeding 10,000. Temperature differences as high as 800 °C are achievable for both types. The bulk nanostructured...thermal conductivity of the silicon nanostructures. Specifically, experiments on an array of 20 nm diameter vertically oriented silicon nanowires have
NASA Technical Reports Server (NTRS)
Bailey, Gary C.
1987-01-01
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument uses four separate focal plane assemblies consisting of line array detectors that are multiplexed to a common J-FET preamp using a FET switch multiplexing (MUX) technique. A 32-element silicon line array covers the spectral range from 0.41 to 0.70 microns. Three additional 64-element indium antimonide (InSb) line arrays cover the spectral range from 0.68 to 2.45 microns. The spectral sampling interval per detector element is nominally 9.8 nm, giving a total of 224 spectral channels. All focal planes operate at liquid nitrogen temperature and are housed in separate dewars. Electrical performance characteristics include a read noise of less than 1000 e(-) in all channels, response and dark nonuniformity of 5 percent peak to peak, and quantum efficiency of greater than 60 percent.
New simple A{sub 4} neutrino model for nonzero {theta}{sub 13} and large {delta}{sub CP}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishimori, Hajime
In a new simple application of the non-Abelian discrete symmetry A{sub 4} to charged-lepton and neutrino mass matrices, we show that for the current experimental central value of sin{sup 2} 2{theta}{sub 13} Asymptotically-Equal-To 0.1, leptonic CP violation is necessarily large, i.e. Double-Vertical-Line tan{delta}{sub CP} Double-Vertical-Line > 1.3. We also consider T{sub 7} model with one parameter to be complex, thus allowing for one Dirac CP phase {delta}{sub CP} and two Majorana CP phases {alpha}{sub 1,2}. We find a slight modification to this correlation as a function of {delta}{sub CP}. For a given set of input values of {Delta}m{sup 2}{sub 21},more » {Delta}m{sup 2}{sub 32}, {theta}{sub 12}, and {theta}{sub 13}, we obtain sin{sup 2} 2{theta}{sub 23} and m{sub ee} (the effective Majorana neutrino mass in neutrinoless double beta decay) as functions of tan {delta}{sub CP}. We find that the structure of this model always yields small Double-Vertical-Line tan {delta}{sub CP} Double-Vertical-Line .« less
Disposable sensor based on enzyme-free Ni nanowire array electrode to detect glutamate.
Jamal, Mamun; Hasan, Maksudul; Mathewson, Alan; Razeeb, Kafil M
2013-02-15
Enzyme free electrochemical sensor platform based on a vertically aligned nickel nanowire array (NiNAE) and Pt coated nickel nanowire array (Pt/NiNAE) have been developed to detect glutamate. Morphological characterisation of Ni electrodes was carried out using scanning and transmission electron microscopy combined with energy dispersive X-ray (SEM-EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and amperometry were used to evaluate the catalytic activity of the NiNAE and the Pt/NiNAE for glutamate. It has been found that both NiNAE and Pt/NiNAE electrodes showed remarkably enhanced electrocatalytic activity towards glutamate compared to planar Ni electrodes, and showed higher catalytic activity when compared to other metallic nanostructure electrodes such as gold nanowire array electrodes (AuNAE) and Pt coated gold nanowire array electrode (Pt/AuNAE). The sensitivity of NiNAE and Pt/NiNAE has been found to be 65 and 96 μA mM(-1) cm(-2), respectively, which is approximately 6 to 9 times higher than the state of the art glutamate sensor. Under optimal detection conditions, the as prepared sensors exhibited linear behaviour for glutamate detection in the concentration up to 8mM for both NiNAE and Pt/NiNAE with a limit of detection of 68 and 83 μM, respectively. Experimental results show that the vertically aligned ordered nickel nanowire array electrode (NiNAE) has significant promise for fabricating cost effective, enzyme-less, sensitive, stable and selective sensor platform. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wosnik, M.; Bachant, P.
2014-12-01
Cross-flow turbines, often referred to as vertical-axis turbines, show potential for success in marine hydrokinetic (MHK) and wind energy applications, ranging from small- to utility-scale installations in tidal/ocean currents and offshore wind. As turbine designs mature, the research focus is shifting from individual devices to the optimization of turbine arrays. It would be expensive and time-consuming to conduct physical model studies of large arrays at large model scales (to achieve sufficiently high Reynolds numbers), and hence numerical techniques are generally better suited to explore the array design parameter space. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries (e.g., grid resolution into the viscous sublayer on turbine blades), the turbines' interaction with the energy resource (water current or wind) needs to be parameterized, or modeled. Models used today--a common model is the actuator disk concept--are not able to predict the unique wake structure generated by cross-flow turbines. This wake structure has been shown to create "constructive" interference in some cases, improving turbine performance in array configurations, in contrast with axial-flow, or horizontal axis devices. Towards a more accurate parameterization of cross-flow turbines, an extensive experimental study was carried out using a high-resolution turbine test bed with wake measurement capability in a large cross-section tow tank. The experimental results were then "interpolated" using high-fidelity Navier--Stokes simulations, to gain insight into the turbine's near-wake. The study was designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. The end product of this work will be a cross-flow turbine actuator line model to be used as an extension to the OpenFOAM computational fluid dynamics (CFD) software framework, which will likely require modifications to commonly-used dynamic stall models, in consideration of the turbines' high angle of attack excursions during normal operation.
Monolithic microwave integrated circuit devices for active array antennas
NASA Technical Reports Server (NTRS)
Mittra, R.
1984-01-01
Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.
NASA Astrophysics Data System (ADS)
Hirn, A.; Singh, S.; Charvis, P.; Géli, L.; Laigle, M.; Lépine, J.-C.; de Voogd, B.; Saatcilar, R.; Taymaz, T.; Ozalaybey, S.; Shimamura, H.; Selvi, O.; Karabulut, H.; Murai, Y.; Nishimura, Y.; Yamada, A.; Vigner, A.; Bazin, S.; Tan, O.; Yolsal, S.; Aktar, M.; Galvé, A.; Sapin, M.; Marthelot, J.-M.; Imren, C.; Ergin, M.; Tapirdamaz, C.; Koçaoglu, A.; Tarancioglu, A.; Diaz, J.; Verhille, J.; Auffret, Y.; Cetin, S.; Oçakoglu, N.; Karakoç, F.; Klien, E.; Ricolleau, A.; Selvigen, V.; Demirbag, E.; Hakyemez, Y.; Sarikawak, K.
SEISMARMARA is a Turkish-French survey carried out in July-October 2001 as a multi-method approach of seismic structure and activity of the Sea of Marmara. This is the segment of the North Anatolian Fault system that continues the one that produced the two destructive earthquakes in 1999 to the East, and is prone to future major earth- quakes as it has experienced in the past. Aims of the programme are to shed light on the regional tectonics and recent evolution at crustal scale, image faults by their structure and seismic activity, and provide a model and reference to improve loca- tion of earthquakes and focal mechanism studies. The programme bases on marine multichannel reflection seismics (MCS), ocean bottom seismometers (OBS) and land stations recording of wide-angle reflection-refraction from the same source, as well as recording of local earthquakes for tomography and stress/strain distribution. The French N/O Le Nadir acquired 4000 km of MCS profiles in the northern Sea of Mar- mara, using a 4.5 km long digital streamer with 360-channels and sources of 8100 cu. in., or 2900 cu. in., provided by a 12-airgun array in single-bubble mode. Navigation safety was provided by a vessel of the Turkish Coast Guards (Sahil Güvenlik), Leg 1 comprises 4 E-W lines and 30 cross-lines in the whole Marmara Trough, leg 2 has 1 been devoted to a very dense grid of lines in the Cinarcik basin and its margins, record- ing over 80 dip-lines at 0.6-0.9 km spacing At sea-bottom 38 OBS, with 3-component sensors and continuous recording over 1 to 2-month in order to also record natural earthquakes were deployed and collected by the Turkish ship MTA Sismik-1. On land the permanent array has been complemented by as many temporary stations, in par- ticular over 30 continuous recording 3-component 2 Hz stations. Refraction seismics from offshore to onshore was further implemented by short-duration deployments of vertical component lightweight instruments with short recording capacity. A teleseis- mic recording effort with temporary stations, tested in the previous year concentrated on a line through the NAF East of Izmit 2
Analysis of Vertical Weighting Functions for Lidar Measurements of Atmospheric CO2 and O2
NASA Astrophysics Data System (ADS)
Kooi, S.; Mao, J.; Abshire, J. B.; Browell, E. V.; Weaver, C. J.; Kawa, S. R.
2011-12-01
Several NASA groups have developed integrated path differential absorption (IPDA) lidar approaches to measure atmospheric CO2 concentrations from space as a candidates for NASA's ASCENDS space mission. For example, the Goddard CO2 Sounder approach uses two pulsed lasers to simultaneously measure both CO2 and O2 absorption in the vertical path to the surface at a number of wavelengths across a CO2 line near 1572 nm and an O2 line doublet near 764 nm. The measurements of CO2 and O2 absorption allow computing their vertically weighted number densities and then their ratios for estimating CO2 concentration relative to dry air. Since both the CO2 and O2 densities and their absorption line-width decrease with altitude, the absorption response (or weighting function) varies with both altitude and absorption wavelength. We have used some standard atmospheres and HITRAN 2008 spectroscopy to calculate the vertical weighting functions for two CO2 lines near 1571 nm and the O2 lines near 764.7 and 1260 nm for candidate online wavelength selections for ASCENDS. For CO2, the primary candidate on-line wavelengths are 10-12 pm away from line center with the weighting function peaking in the atmospheric boundary layer to measure CO2 sources and sinks at the surface. Using another on-line wavelength 3-5 pm away from line center allows the weighting function to peak in the mid- to upper troposphere, which is sensitive to CO2 transport in the free atmosphere. The Goddard CO2 sounder team developed an airborne precursor version of a space instrument. During the summers of 2009, 2010 and 2011 it has participated in airborne measurement campaigns over a variety of different sites in the US, flying with other NASA ASCENDS lidar candidates along with accurate in-situ atmospheric sensors. All flights used altitude patterns with measurements at steps in altitudes between 3 and 13 km, along with spirals from 13 km altitude to near the surface. Measurements from in-situ sensors allowed an accurate characterization of the CO2 and dry air vertical density profiles for each flight. Using this data, we have also computed some representative vertical weighting functions for CO2 lines near 1572 nm and the and O2 lines near 764 and 1270 nm and compared to the weighting functions of the NASA Langley's Continuous-Wave Laser Absorption Spectrometer for several flights in the ASCENDS airborne campaigns. The analysis provides guidance for measurement wavelength selection, retrieval algorithm development and ASCENDS mission simulation studies. Details of the methodology and computations for the airborne and future space measurements will be presented.
Equilibrium features and eruptive instabilities in laboratory magnetic flux rope plasmas
NASA Astrophysics Data System (ADS)
Myers, Clayton E; Yamada, Masaaki; Belova, Elena V; Ji, Hantao; Yoo, Jongsoo; Fox, William
2014-06-01
One avenue for connecting laboratory and solar plasma studies is to carry out laboratory plasma experiments that serve as a well-diagnosed model for specific solar phenomena. In this paper, we present the latest results from one such laboratory experiment that is designed to address ideal instabilities that drive flux rope eruptions in the solar corona. The experiment, which utilizes the existing Magnetic Reconnection Experiment (MRX) at Princeton Plasma Physics Laboratory, generates a quasi-statically driven line-tied magnetic flux rope in a solar-relevant potential field arcade. The parameters of the potential field arcade (e.g., its magnitude, orientation, and vertical profile) are systematically scanned in order to study their influence on the evolution and possible eruption of the line-tied flux rope. Each flux rope discharge is diagnosed using a combination of fast visible light cameras and an in situ 2D magnetic probe array that measures all three components of the magnetic field over a large cross-section of the plasma. In this paper, we present the first results obtained from this new 2D magnetic probe array. With regard to the flux rope equilibrium, non-potential features such as the formation of a characteristic sigmoid shape and the generation of core toroidal field within the flux rope are studied in detail. With regard to instabilities, the onset and evolution of two key eruptive instabilities—the kink and torus instabilities—are quantitatively assessed as a function of the potential field arcade parameters and the amount of magnetic energy stored in the flux rope.This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).
Liu, Xujun; Guan, Leilei; Fu, Xiaoniu; Zhao, Yu; Wu, Jiada; Xu, Ning
2014-03-21
Light-absorbing and electrically conductive binary CNx nanocone (CNNC) arrays have been fabricated using a glow discharge plasma-assisted reaction deposition method. The intact CNNCs with amorphous structure and central nickel-filled pipelines could be vertically and neatly grown on nickel-covered substrates according to the catalyst-leading mode. The morphologies and composition of the as-grown CNNC arrays can be well controlled by regulating the methane/nitrogen mixture inlet ratio, and their optical absorption and resistivity strongly depend on their morphologies and composition. Beside large specific surface area, the as-grown CNNC arrays demonstrate high wideband absorption, good conduction, and nice wettability to polymer absorbers.
Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates.
Thurn-Albrecht, T; Schotter, J; Kästle, G A; Emley, N; Shibauchi, T; Krusin-Elbaum, L; Guarini, K; Black, C T; Tuominen, M T; Russell, T P
2000-12-15
We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 x 10(11) wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.
NASA Technical Reports Server (NTRS)
Tulintseff, A. N.
1993-01-01
Printed dipole elements and their complement, linear slots, are elementary radiators that have found use in low-profile antenna arrays. Low-profile antenna arrays, in addition to their small size and low weight characteristics, offer the potential advantage of low-cost, high-volume production with easy integration with active integrated circuit components. The design of such arrays requires that the radiation and impedance characteristics of the radiating elements be known. The FDTD (Finite-Difference Time-Domain) method is a general, straight-forward implementation of Maxwell's equations and offers a relatively simple way of analyzing both printed dipole and slot elements. Investigated in this work is the application of the FDTD method to the analysis of printed dipole and slot elements transversely coupled to an infinite transmission line in a multilayered configuration. Such dipole and slot elements may be used in dipole and slot series-fed-type linear arrays, where element offsets and interelement line lengths are used to obtain the desired amplitude distribution and beam direction, respectively. The design of such arrays is achieved using transmission line theory with equivalent circuit models for the radiating elements. In an equivalent circuit model, the dipole represents a shunt impedance to the transmission line, where the impedance is a function of dipole offset, length, and width. Similarly, the slot represents a series impedance to the transmission line. The FDTD method is applied to single dipole and slot elements transversely coupled to an infinite microstrip line using a fixed rectangular grid with Mur's second order absorbing boundary conditions. Frequency-dependent circuit and scattering parameters are obtained by saving desired time-domain quantities and using the Fourier transform. A Gaussian pulse excitation is applied to the microstrip transmission line, where the resulting reflected signal due to the presence of the radiating element is used to determine the equivalent element impedance.
Large-scale fabrication of vertically aligned ZnO nanowire arrays
Wang, Zhong Lin; Hu, Youfan; Zhang, Yan; Xu, Chen; Zhu, Guang
2014-09-09
A generator includes a substrate, a first electrode layer, a dense plurality of vertically-aligned piezoelectric elongated nanostructures, an insulating layer and a second electrode layer. The substrate has a top surface and the first electrode layer is disposed on the top surface of the substrate. The dense plurality of vertically-aligned piezoelectric elongated nanostructures extends from the first electrode layer. Each of the nanostructures has a top end. The insulating layer is disposed on the top ends of the nanostructures. The second electrode layer is disposed on the non-conductive layer and is spaced apart from the nanostructures.
An, Zhe; He, Jing
2011-10-28
The electronic transfer (eT) at bio-interfaces has been achieved by orientating 2D inorganic slabs in a regular arrangement with the slab ab-planes vertical to the electrode substrate. The eT rate is effectively promoted by tuning the nano-micro scale structures of perpendicular LDH arrays. This journal is © The Royal Society of Chemistry 2011
Seasonality of P wave microseisms from NCF-based beamforming using ChinArray
NASA Astrophysics Data System (ADS)
Wang, Weitao; Gerstoft, Peter; Wang, Baoshan
2018-06-01
Teleseismic P wave microseisms produce interference signals with high apparent velocity in noise cross-correlation functions (NCFs). Sources of P wave microseisms can be located with NCFs from seismic arrays. Using the vertical-vertical component NCFs from a large-aperture array in southwestern China (ChinArray), we studied the P wave source locations and their seasonality of microseisms at two period bands (8-12 and 4-8 s) with an NCF-based beamforming method. The sources of P, PP and PKPbc waves are located. The ambiguity between P and PP source locations is analysed using averaged significant ocean wave height and sea surface pressure as constraints. The results indicate that the persistent P wave sources are mainly located in the deep oceans such as the North Atlantic, North Pacific and Southern Ocean, in agreement with previous studies. The Gulf of Alaska is found to generate P waves favouring the 8-12 s period band. The seasonality of P wave sources is consistent with the hemispheric storm pattern, which is stronger in local winter. Using the identified sources, arrival times of the interference signals are predicted and agree well with observations. The interference signals exhibit seasonal variation, indicating that body wave microseisms in southwestern China are from multiple seasonal sources.
Carbon Nanofiber Nanoelectrodes for Biosensing Applications
NASA Technical Reports Server (NTRS)
Koehne, Jessica Erin
2014-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.
Um, Han-Don; Kim, Namwoo; Lee, Kangmin; Hwang, Inchan; Hoon Seo, Ji; Yu, Young J.; Duane, Peter; Wober, Munib; Seo, Kwanyong
2015-01-01
A systematic study was conducted into the use of metal-assisted chemical etching (MacEtch) to fabricate vertical Si microwire arrays, with several models being studied for the efficient redox reaction of reactants with silicon through a metal catalyst by varying such parameters as the thickness and morphology of the metal film. By optimizing the MacEtch conditions, high-quality vertical Si microwires were successfully fabricated with lengths of up to 23.2 μm, which, when applied in a solar cell, achieved a conversion efficiency of up to 13.0%. These solar cells also exhibited an open-circuit voltage of 547.7 mV, a short-circuit current density of 33.2 mA/cm2, and a fill factor of 71.3% by virtue of the enhanced light absorption and effective carrier collection provided by the Si microwires. The use of MacEtch to fabricate high-quality Si microwires therefore presents a unique opportunity to develop cost-effective and highly efficient solar cells. PMID:26060095
Genescà, Meritxell; Svensson, U Peter; Taraldsen, Gunnar
2015-04-01
Ground reflections cause problems when estimating the direction of arrival of aircraft noise. In traditional methods, based on the time differences between the microphones of a compact array, they may cause a significant loss of accuracy in the vertical direction. This study evaluates the use of first-order directional microphones, instead of omnidirectional, with the aim of reducing the amplitude of the reflected sound. Such a modification allows the problem to be treated as in free field conditions. Although further tests are needed for a complete evaluation of the method, the experimental results presented here show that under the particular conditions tested the vertical angle error is reduced ∼10° for both jet and propeller aircraft by selecting an appropriate directivity pattern. It is also shown that the final level of error depends on the vertical angle of arrival of the sound, and that the estimates of the horizontal angle of arrival are not influenced by the directivity pattern of the microphones nor by the reflective properties of the ground.
Howle, J.F.; Langbein, J.O.; Farrar, C.D.; Wilkinson, S.K.
2003-01-01
Regional first-order leveling lines, which extend from Lee Vining, CA, to Tom's Place, CA, have been surveyed periodically since 1957 by the U.S. Geological Survey (USGS), the National Geodetic Survey (NGS), and Caltrans. Two of the regional survey lines, or leveling networks, intersect at the Casa Diablo geothermal well field. These leveling networks, referenced to a distant bench mark (C916) near Lee Vining, provide time-series vertical control data of land-surface deformation that began around 1980. These data are also useful for delineating localized subsidence at Casa Diablo related to reservoir pressure and temperature changes owing to geothermal development that began in 1985. A comparison of differences in bench-mark elevations for five time periods between 1983 and 1997 shows the development and expansion of a subsidence bowl at Casa Diablo. The subsidence coincides spatially with the geothermal well field and temporally with the increased production rates and the deepening of injection wells in 1991, which resulted in an increase in the rate of pressure decline. The subsidence, superimposed on a broad area of uplift, totaled about 310 mm by 1997. The USGS established orthogonal tilt arrays in 1983 to better monitor deformation across the caldera. One tilt array (DBR) was established near what would later become the Casa Diablo geothermal well field. This array responded to magmatic intrusions prior to geothermal development, tilting away from the well field. With the start of geothermal fluid extraction in 1985, tilt at the DBR array reversed direction and began tilting into the well field. In 1991, geothermal power production was increased by a factor of four, and reservoir pressures began a period of steep decline. These changes caused a temporary three-fold increase in the tilt rate. The tilt rate became stable in 1993 and was about 40% lower than that measured in 1991-1992, but still greater than the rates measured during 1985-1990. Data from the local leveling networks spanning the well field and the bounding graben were analyzed for several 2-year periods (1993-1995, 1995-1997, and 1997-1999). Annual rates of change across the normal faults bounding the graben have steadily decreased for each 2-year period between 1993 and 1999, reflecting the slowing decline in geothermal reservoir pressure. Horizontal control data from a two-color electronic distance meter (EDM) defined the lateral extent of subsidence at Casa Diablo. The EDM and leveling data elucidate the localized effect of the shallow source of subsidence and the broader effect of the deeper magmatic inflation source. Data from bench marks common to both the vertical and the horizontal control networks were used to assess the effect of subsidence on the EDM base station (CASA). Modeling of geodetic data collected during periods of little or no magmatic inflation indicated that the CASA two-color EDM station is being drawn toward the well field at a rate of 3-5 mm/yr. ?? 2003 Elsevier B.V. All rights reserved.
Plasmonic Ag nanostructures on thin substrates for enhanced energy harvesting
NASA Astrophysics Data System (ADS)
Osgood, R. M.; Giardini, S. A.; Carlson, J. B.; Gear, C.; Diest, K.; Rothschild, M.; Fernandes, G. E.; Xu, J.; Kooi, S.; Periasamy, P.; O'Hayre, R.; Parilla, P.; Berry, J.; Ginley, D.
2013-09-01
Nanoparticles and nanostructures with plasmonic resonances are currently being employed to enhance the efficiency of solar cells. Ag stripe arrays have been shown theoretically to enhance the short-circuit current of thin silicon layers. Such Ag stripes are combined with 200 nm long and 60 nm wide "teeth", which act as nanoantennas, and form vertical rectifying metal-insulator-metal (MIM) nanostructures on metallic substrates coated with thin oxides, such as Nb/NbOx films. We characterize experimentally and theoretically the visible and near-infrared spectra of these "stripeteeth" arrays, which act as microantenna arrays for energy harvesting and detection, on silicon substrates. Modeling the stripe-teeth arrays predicts a substantial net a.c. voltage across the MIM diode, even when the stripe-teeth microrectenna arrays are illuminated at normal incidence.
Microburst vertical wind estimation from horizontal wind measurements
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.
1994-01-01
The vertical wind or downdraft component of a microburst-generated wind shear can significantly degrade airplane performance. Doppler radar and lidar are two sensor technologies being tested to provide flight crews with early warning of the presence of hazardous wind shear. An inherent limitation of Doppler-based sensors is the inability to measure velocities perpendicular to the line of sight, which results in an underestimate of the total wind shear hazard. One solution to the line-of-sight limitation is to use a vertical wind model to estimate the vertical component from the horizontal wind measurement. The objective of this study was to assess the ability of simple vertical wind models to improve the hazard prediction capability of an airborne Doppler sensor in a realistic microburst environment. Both simulation and flight test measurements were used to test the vertical wind models. The results indicate that in the altitude region of interest (at or below 300 m), the simple vertical wind models improved the hazard estimate. The radar simulation study showed that the magnitude of the performance improvement was altitude dependent. The altitude of maximum performance improvement occurred at about 300 m.
Performance of an underwater acoustic volume array using time-reversal focusing.
Root, Joseph A; Rogers, Peter H
2002-11-01
Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3x3x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications.
Performance of an underwater acoustic volume array using time-reversal focusing
NASA Astrophysics Data System (ADS)
Root, Joseph A.; Rogers, Peter H.
2002-11-01
Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3 x3 x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications. copyright 2002 Acoustical Society of America.
A monolingual mind can have two time lines: Exploring space-time mappings in Mandarin monolinguals.
Yang, Wenxing; Sun, Ying
2016-06-01
Can a mind accommodate two time lines? Miles, Tan, Noble, Lumsden and Macrae (Psychonomic Bulletin & Review 18, 598-604, 2011) shows that Mandarin-English bilinguals have both a horizontal space-time mapping consistent with linguistic conventions within English and a vertical representation of time commensurate with Mandarin. However, the present study, via two experiments, demonstrates that Mandarin monolinguals possess two mental time lines, i.e., one horizontal and one vertical line. This study concludes that a Mandarin speaker has two mental time lines not because he/she has acquired L2 English, but because there are both horizontal and vertical expressions in Mandarin spatiotemporal metaphors. Specifically, this study highlights the fact that a horizontal time line does exist in a Mandarin speaker's cognition, even if he/she is a Mandarin monolingual instead of a ME bilingual. Taken together, the evidence in hand is far from sufficient to support Miles et al.'s (2011) conclusion that ME bilinguals' horizontal concept of time is manipulated by English. Implications for theoretical issues concerning the language-thought relationship in general and the effect of bilingualism on cognition in particular are discussed.
Wang, Jun; Liu, Shurong; Mu, Yannan; Liu, Li; A, Runa; Yang, Jiandong; Zhu, Guijie; Meng, Xianwei; Fu, Wuyou; Yang, Haibin
2017-11-01
Vertically aligned CdTe nanorods (NRs) arrays are successfully grown by a simple one-step and template-free electrodeposition method, and then embedded in the CdS window layer to form a novel three-dimensional (3D) heterostructure on flexible substrates. The parameters of electrodeposition such as deposition potential and pH of the solution are varied to analyze their important role in the formation of high quality CdTe NRs arrays. The photovoltaic conversion efficiency of the solar cell based on the 3D heterojunction structure is studied in detail. In comparison with the standard planar heterojunction solar cell, the 3D heterojunction solar cell exhibits better photovoltaic performance, which can be attributed to its enhanced optical absorption ability, increased heterojunction area and improved charge carrier transport. The better photoelectric property of the 3D heterojunction solar cell suggests great application potential in thin film solar cells, and the simple electrodeposition process represents a promising technique for large-scale fabrication of other nanostructured solar energy conversion devices. Copyright © 2017 Elsevier Inc. All rights reserved.
Vertically Aligned Carbon Nanotube Arrays as Efficient Supports for Faradaic Capacitive Electrodes
NASA Astrophysics Data System (ADS)
Oguntoye, Moses; Holleran, Mary-Kate; Roberts, Katherine; Pesika, Noshir
Supercapacitors are notable for their ability to deliver energy at higher power (compared to batteries) and store energy at higher density (compared to capacitors) as well as exhibit a long cycle life. In our efforts to further the development of supercapacitors, our focus is on using vertically aligned carbon nanotubes (VACNT) as supports for faradaic capacitive electrode materials. The objective is to develop electrodes functioning in an inexpensive aqueous environment with small potential windows, that store energy at a higher density than carbon materials alone. We describe the different approaches explored to overcome the challenges of non-uniform deposition, poor wetting and array collapse. Materials that are electrochemically anchored to VACNT supports include NiCo2O4, VOx, Fe2O3 and Co-Mn mixed oxides. In each case, the specific capacitance obtained using the VACNT arrays as supports is significantly more than that obtained by direct deposition onto current collectors or by using VACNT alone. The ease of VACNT growth and the degree of coating control achievable using electrodeposition means there is much potential in exploring them as supports for capacitive electrode materials.
NASA Astrophysics Data System (ADS)
Weinmann, M.; Müller, M. S.; Hillemann, M.; Reydel, N.; Hinz, S.; Jutzi, B.
2017-08-01
In this paper, we focus on UAV-borne laser scanning with the objective of densely sampling object surfaces in the local surrounding of the UAV. In this regard, using a line scanner which scans along the vertical direction and perpendicular to the flight direction results in a point cloud with low point density if the UAV moves fast. Using a line scanner which scans along the horizontal direction only delivers data corresponding to the altitude of the UAV and thus a low scene coverage. For these reasons, we present a concept and a system for UAV-borne laser scanning using multiple line scanners. Our system consists of a quadcopter equipped with horizontally and vertically oriented line scanners. We demonstrate the capabilities of our system by presenting first results obtained for a flight within an outdoor scene. Thereby, we use a downsampling of the original point cloud and different neighborhood types to extract fundamental geometric features which in turn can be used for scene interpretation with respect to linear, planar or volumetric structures.
Loudspeaker line array educational demonstration.
Anderson, Brian E; Moser, Brad; Gee, Kent L
2012-03-01
This paper presents a physical demonstration of an audio-range line array used to teach interference of multiple sources in a classroom or laboratory exercise setting. Software has been developed that permits real-time control and steering of the array. The graphical interface permits a user to vary the frequency, the angular response by phase shading, and reduce sidelobes through amplitude shading. An inexpensive, eight-element loudspeaker array has been constructed to test the control program. Directivity measurements of this array in an anechoic chamber and in a large classroom are presented. These measurements have good agreement with theoretical directivity predictions, thereby allowing its use as a quantitative learning tool for advanced students as well as a qualitative demonstration of arrays in other settings. Portions of this paper are directed toward educators who may wish to implement a similar demonstration for their advanced undergraduate or graduate level course in acoustics. © 2012 Acoustical Society of America
Photoacoustic projection imaging using an all-optical detector array
NASA Astrophysics Data System (ADS)
Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.
2018-02-01
We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.
Rhodin, M; Roepstorff, L; French, A; Keegan, K G; Pfau, T; Egenvall, A
2016-05-01
Lungeing is commonly used as part of standard lameness examinations in horses. Knowledge of how lungeing influences motion symmetry in sound horses is needed. The aim of this study was to objectively evaluate the symmetry of vertical head and pelvic motion during lungeing in a large number of horses with symmetric motion during straight line evaluation. Cross-sectional prospective study. A pool of 201 riding horses, all functioning well and considered sound by their owners, were evaluated in trot on a straight line and during lungeing to the left and right. From this pool, horses with symmetric vertical head and pelvic movement during the straight line trot (n = 94) were retained for analysis. Vertical head and pelvic movements were measured with body mounted uniaxial accelerometers. Differences between vertical maximum and minimum head (HDmax, HDmin) and pelvic (PDmax, PDmin) heights between left and right forelimb and hindlimb stances were compared between straight line trot and lungeing in either direction. Vertical head and pelvic movements during lungeing were more asymmetric than during trot on a straight line. Common asymmetric patterns seen in the head were more upward movement during push-off of the outside forelimb and less downward movement during impact of the inside limb. Common asymmetric patterns seen in the pelvis were less upward movement during push-off of the outside hindlimb and less downward movement of the pelvis during impact of the inside hindlimb. Asymmetric patterns in one lunge direction were frequently not the same as in the opposite direction. Lungeing induces systematic asymmetries in vertical head and pelvic motion patterns in horses that may not be the same in both directions. These asymmetries may mask or mimic fore- or hindlimb lameness. © 2015 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.
A 32-channel lattice transmission line array for parallel transmit and receive MRI at 7 tesla.
Adriany, Gregor; Auerbach, Edward J; Snyder, Carl J; Gözübüyük, Ark; Moeller, Steen; Ritter, Johannes; Van de Moortele, Pierre-François; Vaughan, Tommy; Uğurbil, Kâmil
2010-06-01
Transmit and receive RF coil arrays have proven to be particularly beneficial for ultra-high-field MR. Transmit coil arrays enable such techniques as B(1) (+) shimming to substantially improve transmit B(1) homogeneity compared to conventional volume coil designs, and receive coil arrays offer enhanced parallel imaging performance and SNR. Concentric coil arrangements hold promise for developing transceiver arrays incorporating large numbers of coil elements. At magnetic field strengths of 7 tesla and higher where the Larmor frequencies of interest can exceed 300 MHz, the coil array design must also overcome the problem of the coil conductor length approaching the RF wavelength. In this study, a novel concentric arrangement of resonance elements built from capacitively-shortened half-wavelength transmission lines is presented. This approach was utilized to construct an array with whole-brain coverage using 16 transceiver elements and 16 receive-only elements, resulting in a coil with a total of 16 transmit and 32 receive channels. (c) 2010 Wiley-Liss, Inc.
Copper-encapsulated vertically aligned carbon nanotube arrays.
Stano, Kelly L; Chapla, Rachel; Carroll, Murphy; Nowak, Joshua; McCord, Marian; Bradford, Philip D
2013-11-13
A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.
Visible diffraction from quasi-crystalline arrays of carbon nanotubes
NASA Astrophysics Data System (ADS)
Butler, Timothy P.; Butt, Haider; Wilkinson, Timothy D.; Amaratunga, Gehan A. J.
2015-08-01
Large area arrays of vertically-aligned carbon nanotubes (VACNTs) are patterned in a quasi-crystalline Penrose tile arrangement through electron beam lithography definition of Ni catalyst dots and subsequent nanotube growth by plasma-enhanced chemical vapour deposition. When illuminated with a 532 nm laser beam high-quality and remarkable diffraction patterns are seen. The diffraction is well matched to theoretical calculations which assume apertures to be present at the location of the VACNTs for transmitted light. The results show that VACNTs act as diffractive elements in reflection and can be used as spatially phased arrays for producing tailored diffraction patterns.
Superaligned carbon nanotube arrays, films, and yarns: a road to applications.
Jiang, Kaili; Wang, Jiaping; Li, Qunqing; Liu, Liang; Li, Changhong; Fan, Shoushan
2011-03-04
A superaligned carbon nanotube (CNT) array is a special kind of vertically aligned CNT array with the capability of being converted into continuous fi lms and yarns. The as-produced CNT fi lms are transparent and highly conductive, with aligned CNTs parallel to the direction of drawing. After passing through volatile solutions or being twisted, CNT fi lms can be further condensed into shrunk yarns. These shrunk yarns possess high tensile strengths and Young’s moduli, and are good conductors. Many applications of CNT fi lms and shrunk yarns have been demonstrated, such as TEM grids, loudspeakers, touch screens, etc.
Earthquake source parameters determined using the SAFOD Pilot Hole vertical seismic array
NASA Astrophysics Data System (ADS)
Imanishi, K.; Ellsworth, W. L.; Prejean, S. G.
2003-12-01
We determined source parameters of microearthquakes occurring at Parkfield, CA, using the SAFOD Pilot Hole vertical seismic array. The array consists of 32 stations with 3-component 15 Hz geophones at 40 meter spacing (856 to 2096 m depth) The site is about 1.8 km southwest of a segment of the San Andreas fault characterized by a combination of aseismic creep and repeating microearthquakes. We analyzed seismograms recorded at sample rates of 1kHz or 2kHz. Spectra have high signal-to-noise ratios at frequencies up to 300-400 Hz, showing these data include information on source processes of microearthquakes. By comparing spectra and waveforms at different levels of the array, we observe how attenuation and scattering in the shallow crust affect high-frequency waves. We estimated spectral level (Ω 0), corner frequency (fc) and path-averaged attenuation (Q) at each level of the array by fitting an omega squared model to displacement spectra. While the spectral level changes smoothly with depth, there is significant scatter in fc and Q due to the strong trade-off between these parameters. Because we expect source parameters to vary systematically with depth, we impose a smoothness constraint on Q, Ω 0 and fc as a function of depth. For some of the nearby events, take-off angles to the different levels of the array span a significant part of the focal sphere. Therefore corner frequencies should also change with depth. We smooth measurements using a linear first-difference operator that links Q, Ω 0 and fc at one level to the levels above and below, and use Akaike_fs Bayesian Information Criterion (ABIC) to weight the smoothing operators. We applied this approach to events with high signal-to-noise ratios. For the results with the minimum ABIC, fc does not scatter and Q decreases with decreasing depth. Seismic moments were determined by the spectral level and range from 109 and 1012 Nm. Source radii were estimated from the corner frequency using the circular crack model of Sato and Hirasawa (1973). Estimated values of static stress drop were roughly 1 MPa and do not vary with seismic moment. Q values from all earthquakes were averaged at each level of the array. Average Qp and Qs range from 250 to 350 and from 300 to 400 between the top and bottom of the array, respectively. Increasing Q values as a function of depth explain well the observed decrease in high-frequency content as waves propagate toward the surface. Thus, by jointly analyzing the entire vertical array we can both accurately determine source parameters of microearthquakes and make reliable Q estimates while suppressing the trade-off between fc and Q.
Coaxial tube array space transmission line characterization
NASA Technical Reports Server (NTRS)
Switzer, Colleen A.; Bents, David J.
1987-01-01
The coaxial tube array tether/transmission line used to connect an SP-100 nuclear power system to the space station was characterized over the range of reactor-to-platform separation distances of 1 to 10 km. Characterization was done with respect to array performance, physical dimensions and masses. Using a fixed design procedure, a family of designs was generated for the same power level (300 kWe), power loss (1.5 percent), and meteoroid survival probability (99.5 percent over 10 yr). To differentiate between vacuum insulated and gas insulated lines, two different maximum values of the E field were considered: 20 kV/cm (appropriate to vacuum insulation) and 50 kV/cm (compressed SF6). Core conductor, tube, bumper, standoff, spacer and bumper support dimensions, and masses were also calculated. The results of the characterization show mainly how transmission line size and mass scale with reactor-to-platform separation distance.
Coaxial tube array space transmission line characterization
NASA Astrophysics Data System (ADS)
Switzer, Colleen A.; Bents, David J.
The coaxial tube array tether/transmission line used to connect an SP-100 nuclear power system to the space station was characterized over the range of reactor-to-platform separation distances of 1 to 10 km. Characterization was done with respect to array performance, physical dimensions and masses. Using a fixed design procedure, a family of designs was generated for the same power level (300 kWe), power loss (1.5 percent), and meteoroid survival probability (99.5 percent over 10 yr). To differentiate between vacuum insulated and gas insulated lines, two different maximum values of the E field were considered: 20 kV/cm (appropriate to vacuum insulation) and 50 kV/cm (compressed SF6). Core conductor, tube, bumper, standoff, spacer and bumper support dimensions, and masses were also calculated. The results of the characterization show mainly how transmission line size and mass scale with reactor-to-platform separation distance.
Dip and anisotropy effects on flow using a vertically skewed model grid.
Hoaglund, John R; Pollard, David
2003-01-01
Darcy flow equations relating vertical and bedding-parallel flow to vertical and bedding-parallel gradient components are derived for a skewed Cartesian grid in a vertical plane, correcting for structural dip given the principal hydraulic conductivities in bedding-parallel and bedding-orthogonal directions. Incorrect-minus-correct flow error results are presented for ranges of structural dip (0 < or = theta < or = 90) and gradient directions (0 < or = phi < or = 360). The equations can be coded into ground water models (e.g., MODFLOW) that can use a skewed Cartesian coordinate system to simulate flow in structural terrain with deformed bedding planes. Models modified with these equations will require input arrays of strike and dip, and a solver that can handle off-diagonal hydraulic conductivity terms.
A method for the detection of trace levels of N,N-diethyl-m-toluamide (DEET) in water is discussed. The method utilizes an on-line preconcentration column in series with high performance liquid chromatography (HPLC) and UV photodiode array detection. DEET, a common insect repel...
RF Device for Acquiring Images of the Human Body
NASA Technical Reports Server (NTRS)
Gaier, Todd C.; McGrath, William R.
2010-01-01
A safe, non-invasive method for forming images through clothing of large groups of people, in order to search for concealed weapons either made of metal or not, has been developed. A millimeter wavelength scanner designed in a unique, ring-shaped configuration can obtain a full 360 image of the body with a resolution of less than a millimeter in only a few seconds. Millimeter waves readily penetrate normal clothing, but are highly reflected by the human body and concealed objects. Millimeter wave signals are nonionizing and are harmless to human tissues when used at low power levels. The imager (see figure) consists of a thin base that supports a small-diameter vertical post about 7 ft (=2.13 m) tall. Attached to the post is a square-shaped ring 2 in. (=5 cm) wide and 3 ft (=91 cm) on a side. The ring is oriented horizontally, and is supported halfway along one side by a connection to a linear bearing on the vertical post. A planar RF circuit board is mounted to the inside of each side of the ring. Each circuit board contains an array of 30 receivers, one transmitter, and digitization electronics. Each array element has a printed-circuit patch antenna coupled to a pair of mixers by a 90 coupler. The mixers receive a reference local oscillator signal to a subharmonic of the transmitter frequency. A single local oscillator line feeds all 30 receivers on the board. The resulting MHz IF signals are amplified and carried to the edge of the board where they are demodulated and digitized. The transmitted signal is derived from the local oscillator at a frequency offset determined by a crystal oscillator. One antenna centrally located on each side of the square ring provides the source illumination power. The total transmitted power is less than 100 mW, resulting in an exposure level that is completely safe to humans. The output signals from all four circuit boards are fed via serial connection to a data processing computer. The computer processes the approximately 1-MB data set into a three-dimensional image in a matter of seconds. The innovation is to configure the receiver array in a ring topology surrounding the scanned object. The ring is then scanned vertically to cover the necessary two-dimensional surface. This fabrication of the ring is made possible by using planar antenna and circuit technology. A planar circuit board serves as a medium for both antennas and signal processing components. Using this technique, parts counts are kept low, and the cost per element is a small fraction of a waveguide-based system.
Spatial displacement of numbers on a vertical number line in spatial neglect.
Mihulowicz, Urszula; Klein, Elise; Nuerk, Hans-Christoph; Willmes, Klaus; Karnath, Hans-Otto
2015-01-01
Previous studies that investigated the association of numbers and space in humans came to contradictory conclusions about the spatial character of the mental number magnitude representation and about how it may be influenced by unilateral spatial neglect. The present study aimed to disentangle the debated influence of perceptual vs. representational aspects via explicit mapping of numbers onto space by applying the number line estimation paradigm with vertical orientation of stimulus lines. Thirty-five acute right-brain damaged stroke patients (6 with neglect) were asked to place two-digit numbers on vertically oriented lines with 0 marked at the bottom and 100 at the top. In contrast to the expected, nearly linear mapping in the control patient group, patients with spatial neglect overestimated the position of numbers in the lower middle range. The results corroborate spatial characteristics of the number magnitude representation. In neglect patients, this representation seems to be biased towards the ipsilesional side, independent of the physical orientation of the task stimuli.
The Self- and Directed Assembly of Nanowires
NASA Astrophysics Data System (ADS)
Smith, Benjamin David
This thesis explores the self- and directed assembly of nanowires. Specifically, we examine the driving forces behind nanowire self-assembly and the macro-structures that are formed. Particle-dense, oriented nanowire structures show promise in the fields of photonics, energy, sensing, catalysis, and electronics. Arrays of spherical particles have already found uses in electronic inks, sensing arrays, and many other commercial applications; but, it is a challenge to create specific arrays of morphologically and/or compositionally anisotropic particles. The following chapters illuminate the interactions that drive the assembly of anisotropic particles in high density solutions in the absence of applied fields or solution drying. Special emphasis is placed on the structures that are formed. The properties of micro- and nanoparticles and their assembly are introduced in Chapter 1. In particular, the properties of shape and material anisotropic particles are highlighted, while challenges in producing desired arrays are discussed. In this thesis, metallic nanowires of increasing complexity were used to examine the self-assembly behavior of both shape and material anisotropic particles. Nanowires were synthesized through templated electrodeposition. In this process, porous alumina membranes served as a template in which metal salts were reduced to form particles. Upon template dissolution, billions of nominally identical particles were released. We specifically focused on segmented, metallic nanowires 2-13 mum in length and 180 to 350 nm in diameter. Since these particles have strong van der Waals (VDWs) attractions, an electrostatically repulsive coating was necessary to prevent aggregation; we used small molecule, DNA, or amorphous silica coatings. Nanowires and their coatings were characterized by electron microscopy. In order to study self-assembly behavior, particle-dense aqueous suspensions were placed within an assembly chamber defined by a silicone spacer. The nanowires rapidly sedimented due to gravity onto a glass cover slip to concentrate and form a dense film. Particles and assemblies were imaged using inverted optical microscopy. We quantitatively analyzed the images and movies captured in order to track and classify particles and classify the overall arrays formed. We then correlated how particle characteristics, e.g., materials, size, segmentation, etc. changed the ordering and alignment observed. With that knowledge, we hope to be able to form new and interesting structures. We began our studies by examining the assembly of single component nanowires. Chapter 2 describes this work, in which solid Au nanowires measuring 2-7 mum in length and 290 nm in diameter self-assembled into smectic rows. By both experiment and theory, we determined that these rows formed due to a balance of electrostatic repulsions and van der Waals attractions. Final assemblies were stable for at least several days. Monte Carlo methods were used to simulate assemblies and showed structures that mirrored those experimentally observed. Simulations indicated that the smectic phase was preferred over others, i.e., nematic, when an additional small charge was added to the ends of the nanowires. Our particles have rough tips, which might create these additional electrostatic repulsions. To increase the particle and array complexity, two-component, metallic nanowire assembly was explored in Chapter 3. We examined numerous types of nanowires by changing the segment length, ratio, and material, the nanowire length, the surface coating, and the presence of small third segments. These segmented nanowires were generally Au-Ag and also ordered into smectic rows. Segmented wires arranged in rows, however, can be aligned in two possible ways with respect to a neighboring particle. The Au segments on neighboring particles can be oriented in the same direction or opposed to each other. Orientation was quantified in terms of an order parameter that took into account alignment with respect to nearest neighbor particles. All experiments showed order parameters indicating a slight preference for orientational ordering that was relatively insensitive to segment size, nanowire size, and nanowire coating. Monte Carlo simulations pointed towards this alignment as a consequence of small differences in the van der Waals attractions between the segments. Experimentally, ordering might to be limited by the large size of the nanowires, which results in kinetically trapped structures. In an attempt to obtain better ordering within rows, silica coated nanowires with partial Au cores were made. The synthesis involved silica-coating the nanowires and selectively etching a Ag segment. These particles have extremely different VDWs attractions between their segments, as the Au cores are much more attractive than the solvent-filled etched ends. The assembly of these partially etched nanowires (PENs) is detailed in Chapters 4, 5, and 6. When allowed to self-assemble, we observed the formation of either vertically or horizontally oriented arrays depending on PEN composition. The formation of vertically oriented arrays of anisotropic particles is important, since not many methods to produce these structures are currently available for particles of this size. We examined the effects of PEN length, PEN diameter, and the size, number, and location of the core segments. Our findings showed a large etched segment at one end (which resulted in a large offset in the center of mass and concentrated the VDWs attractions to one end of the particle) resulted in the best columnar assemblies. These vertically orientated arrays formed in a two part process. First, after PENs sedimented, they fell flat and oriented parallel to the surface. These PENs then sampled many orientations, including rotating out of the surface plane. When higher surface concentrations of particles built as more PENs fell to the surface of the cover slip, neighboring particles stabilized vertical orientations. Second, particles fell oriented vertically and when the surface concentrations were high, they retained this orientation upon reaching the substrate. Since vertically aligned PENs supported each other, assembly into vertical arrays was highly dependent on the surface concentration. But, oriented arrays could be easily formed on larger or smaller substrates, provided a particle concentration scaled to the substrate were used. The mixing of these particles to form heterogeneous arrays was examined. The overall array structure favored that of particles which sedimented more quickly and/or were present in higher amounts. The semi-automated counting of PENs in images by software is used heavily in Chapters 4 and 5. Appendix A describes the use, development, and validation of macros within Image-Pro. The structure, syntax, and use are specifically examined for three nanowire counting macros. The counting results; including: number of particles in an image, number of horizontally vs. vertically oriented PENs, and PENs in microwells; are compared with manual hand counts. Chapter 7 examines the overall conclusions and future directions for this research. By combining our assembly techniques with known directing forces (e.g., electric or magnetic fields) more specific alignment and/or positioning could be achieved. We have also begun to explore directing assembly through lithographic microwells. Further work needs to explore the integration of arrays into devices and the use of functional materials. Then, high density, oriented arrays could be created for photonic, energy, sensing, catalytic, and electronic applications.
Long Range In-Plane Order of Oriented Diblock Copolymer Thin Films by Graphoepitaxy
NASA Astrophysics Data System (ADS)
Fontana, Scott; Dadmun, Mark; Lowndes, Douglas
2003-03-01
Previous work by Russell and coworkers has demonstrated that controlling the interfacial energies and wetting behavior of an asymmetric diblock copolymer enables the control of the orientation of its microphases. In particular the cylindrical phase can be readily aligned perpendicular to a substrate when it is placed on a surface that is neutral to both components of the copolymer. The minor phase, PMMA may then be removed using UV radiation leaving a nanoporous template. In this work, we will report long range, in-plane ordering of the hexagonally packed nanopores that is achieved using graphoepitaxy. The long range ordered and vertically aligned diblock copolymer film can be used to produce arrays of catalytic nickel dots, which grow vertically aligned carbon nano-fibers (VACNF), resulting in a well ordered array of VACNFs.
Granero, Luis; Zalevsky, Zeev; Micó, Vicente
2011-04-01
We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.
Mutha, Heena K; Lu, Yuan; Stein, Itai; Cho, H Jeremy; Suss, Matthew; Laoui, Tahar; Thompson, Carl; Wardle, Brian; Wang, Evelyn
2016-12-13
Vertically aligned one-dimensional nanostructure arrays are promising in many applications such as electrochemical systems, solar cells, and electronics, taking advantage of high surface area per unit volume, nanometer length scale packing, and alignment leading to high conductivity. However, many devices need to optimize arrays for device performance by selecting an appropriate morphology. Developing a simple, non-invasive tool for understanding the role of pore volume distribution and interspacing would aid in the optimization of nanostructure morphologies in electrodes. In this work, we combined electrochemical impedance spectroscopy (EIS) with capacitance measurements and porous electrode theory to conduct in situ porosimetry of vertically-aligned carbon nanotubes (VA-CNTs) non-destructively. We utilized the EIS measurements with a pore size distribution model to quantify the average and dispersion of inter-CNT spacing (Γ), stochastically, in carpets that were mechanically densified from 1.7 × 1010 tubes/cm2 to 4.5 × 1011 tubes/cm2. Our analysis predicts that the inter-CNT spacing ranges from over 100 ± 50 nm in sparse carpets to sub 10 ± 5 nm in packed carpets. Our results suggest that waviness of CNTs leads to variations in the inter-CNT spacing, which can be significant in sparse carpets. This methodology can be used to predict the performance of many nanostructured devices, including supercapacitors, batteries, solar cells, and semiconductor electronics. Copyright 2016 IOP Publishing Ltd.
Zheng, Shuanghao; Li, Zhilin; Wu, Zhong-Shuai; Dong, Yanfeng; Zhou, Feng; Wang, Sen; Fu, Qiang; Sun, Chenglin; Guo, Liwei; Bao, Xinhe
2017-04-25
Interfacial integration of a shape-engineered electrode with a strongly bonded current collector is the key for minimizing both ionic and electronic resistance and then developing high-power supercapacitors. Herein, we demonstrated the construction of high-power micro-supercapacitors (VG-MSCs) based on high-density unidirectional arrays of vertically aligned graphene (VG) nanosheets, derived from a thermally decomposed SiC substrate. The as-grown VG arrays showed a standing basal plane orientation grown on a (0001̅) SiC substrate, tailored thickness (3.5-28 μm), high-density structurally ordering alignment of graphene consisting of 1-5 layers, vertically oriented edges, open intersheet channels, high electrical conductivity (192 S cm -1 ), and strong bonding of the VG edges to the SiC substrate. As a result, the demonstrated VG-MSCs displayed a high areal capacitance of ∼7.3 mF cm -2 and a fast frequency response with a short time constant of 9 ms. Furthermore, VG-MSCs in both an aqueous polymer gel electrolyte and nonaqueous ionic liquid of 1-ethyl-3-methylimidazolium tetrafluoroborate operated well at high scan rates of up to 200 V s -1 . More importantly, VG-MSCs offered a high power density of ∼15 W cm -3 in gel electrolyte and ∼61 W cm -3 in ionic liquid. Therefore, this strategy of producing high-density unidirectional VG nanosheets directly bonded on a SiC current collector demonstrated the feasibility of manufacturing high-power compact supercapacitors.
Solid oxide fuel cell matrix and modules
Riley, Brian
1990-01-01
Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). Each of the blocks includes a square center channel which forms a vertical shaft when the blocks are arranged in a stacked array. Positioned within the channel is a SOFC unit cell such that a plurality of such SOFC units disposed within a vertical shaft form a string of SOFC units coupled in series. A first pair of facing inner walls of each of the blocks each include an interconnecting channel hole cut horizontally and vertically into the block walls to form gas exit channels. A second pair of facing lateral walls of each block further include a pair of inner half circular grooves which form sleeves to accommodate anode fuel and cathode air tubes. The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardage, Bob A.; DeAngelo, Michael V.; Ermolaeva, Elena
The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sedimentmore » were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.« less
2012-10-29
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, workers continue construction of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM, system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers are placing the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and preparing the site for the operations command center facility. Photo credit: NASA/Ben Smegelski
2012-10-29
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, workers continue construction of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM, system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers are placing the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and preparing the site for the operations command center facility. Photo credit: NASA/Ben Smegelski
S-wave velocity measurements along levees in New Orleans using passive surface wave methods
NASA Astrophysics Data System (ADS)
Hayashi, K.; Lorenzo, J. M.; Craig, M. S.; Gostic, A.
2017-12-01
In order to develop non-invasive methods for levee inspection, geophysical investigations were carried out at four sites along levees in the New Orleans area: 17th Street Canal, London Avenue Canal, Marrero Levee, and Industrial Canal. Three of the four sites sustained damage from Hurricane Katrina in 2005 and have since been rebuilt. The geophysical methods used include active and passive surface wave methods, and capacitively coupled resistivity. This paper summarizes the acquisition and analysis of the 1D and 2D passive surface wave data. Twelve wireless seismic data acquisition units with 2 Hz vertical component geophones were used to record data. Each unit includes a GPS receiver so that all units can be synchronized over any distance without cables. The 1D passive method used L shaped arrays of three different sizes with geophone spacing ranging from 5 to 340 m. Ten minutes to one hour of ambient noise was recorded with each array, and total data acquisition took approximately two hours at each site. The 2D method used a linear array with a geophone spacing of 5m. Four geophones were moved forward every 10 minutes along 400 1000 m length lines. Data acquisition took several hours for each line. Recorded ambient noise was processed using the spatial autocorrelation method and clear dispersion curves were obtained at all sites (Figure 1a). Minimum frequencies ranged from 0.4 to 0.7 Hz and maximum frequencies ranged from 10 to 30 Hz depending on the site. Non-linear inversion was performed and 1D and 2D S-wave velocity models were obtained. The 1D method penetrated to depths ranging from 200 to 500 m depending on the site (Figure 1b). The 2D method penetrated to a depth of 40 60 m and provided 400 1000 m cross sections along the levees (Figure 2). The interpretation focused on identifying zones beneath the levees or canal walls having low S-wave velocities corresponding to saturated, unconsolidated sands, or low-rigidity clays. Resultant S-wave velocity profiles are generally consistent with existing drilling logs and the results of laboratory tests.
Current status of the IOTA interferometer
NASA Astrophysics Data System (ADS)
Carleton, Nathaniel P.; Traub, Wesley A.; Lacasse, Marc G.; Nisenson, Peter; Pearlman, Michael R.; Reasenberg, Robert D.; Xu, Xinqi; Coldwell, Charles M.; Panasyuk, Alexander; Benson, James A.; Papaliolios, Costas; Predmore, Read; Schloerb, F. P.; Dyck, H. M.; Gibson, David M.
1994-06-01
The first two telescopes of the Infrared-Optical Telescope Array (IOTA) project are now in place and yielding data at the Smithsonian Institution's F. L. Whipple Observatory on Mt. Hopkins, near Tucson, Arizona. The IOTA collectors are 45 cm in diameter, and may be moved to various stations in an L-shaped configuration with a maximum baseline of 38 m. A third collector will be added as soon as funding permits. Each light-collector assembly consists of a siderostat feeding a stationary afocal Cassegrain telescope that produces a 10-X reduced parallel beam, which is in turn directed vertically downward by a piezo-driven active mirror that stabilizes the ultimate image position. The reduced beams enter an evacuated envelope and proceed to the corner of the array, where they are turned back along one arm for path compensation. The delay line, in one beam, consists of two parts: one dihedral reflector positioned in a slew-and-clamp mode to give the major part of the desired delay; and a second dihedral mounted on an air-bearing carriage to provide the variable delay that is needed. After delay, the beams exit from the vacuum and are directed by dichroic mirrors into the infrared beam-combination and detection system. The visible light passes on to another area, to the image-tracker detectors and the visible-light combination and detection system. The beams are combined in pupil-plane mode on beam splitters. The combined IR beams are conveyed to two cooled single-element InSb detectors. The combined visible-light beams are focussed by lenslet arrays onto multimode optical fibers that lead to the slit of a specially-designed prism spectrometer. For the visible mode, the delay line is run at several wavelengths on one side of the zero- path point, so that several cycles of interference occur across the spectrum. First results were obtained with the IR system, giving visibilities for several K and M stars, using 2.2 micrometers radiation on a N-S baseline of 21.2 m. From these measurements we obtained preliminary estimates of effective stellar diameters in the K band.
NASA Technical Reports Server (NTRS)
Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-chuan (Inventor)
1995-01-01
A new read gate design for the vertical Bloch line (VBL) memory is disclosed which offers larger operating margin than the existing read gate designs. In the existing read gate designs, a current is applied to all the stripes. The stripes that contain a VBL pair are chopped, while the stripes that do not contain a VBL pair are not chopped. The information is then detected by inspecting the presence or absence of the bubble. The margin of the chopping current amplitude is very small, and sometimes non-existent. A new method of reading Vertical Bloch Line memory is also disclosed. Instead of using the wall chirality to separate the two binary states, the spatial deflection of the stripe head is used. Also disclosed herein is a compact memory which uses vertical Bloch line (VBL) memory technology for providing data storage. A three-dimensional arrangement in the form of stacks of VBL memory layers is used to achieve high volumetric storage density. High data transfer rate is achieved by operating all the layers in parallel. Using Hall effect sensing, and optical sensing via the Faraday effect to access the data from within the three-dimensional packages, an even higher data transfer rate can be achieved due to parallel operation within each layer.
Nanoengineered thermal materials based on carbon nanotube array composites
NASA Technical Reports Server (NTRS)
Li, Jun (Inventor); Meyyappan, Meyya (Inventor); Dangelo, Carlos (Inventor)
2010-01-01
A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.
Nanoengineered thermal materials based on carbon nanotube array composites
NASA Technical Reports Server (NTRS)
Li, Jun (Inventor); Meyyappan, Meyya (Inventor)
2007-01-01
A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.
NASA Astrophysics Data System (ADS)
Avrorin, A. D.; Avrorin, A. V.; Aynutdinov, V. M.; Bannash, R.; Belolaptikov, I. A.; Brudanin, V. B.; Budnev, N. M.; Danilchenko, I. A.; Demidov, S. V.; Domogatsky, G. V.; Doroshenko, A. A.; Dvornicky, R.; Dyachok, A. N.; Dzhilkibaev, Zh.-A. M.; Fajt, L.; Fialkovsky, S. V.; Gafarov, A. R.; Gaponenko, O. N.; Golubkov, K. V.; Gress, T. I.; Honz, Z.; Kebkal, K. G.; Kebkal, O. G.; Konischev, K. V.; Korobchenko, A. V.; Koshechkin, A. P.; Koshel, F. K.; Kozhin, A. V.; Kulepov, V. F.; Kuleshov, D. A.; Milenin, M. B.; Mirgazov, R. A.; Osipova, E. R.; Panfilov, A. I.; Pan'kov, L. V.; Pliskovsky, E. N.; Rozanov, M. I.; Rjabov, E. V.; Shamakhov, F. A.; Shaybonov, B. A.; Sheifler, A. A.; Shelepov, M. D.; Simkovic, F.; Skurihin, A. V.; Smagina, A. A.; Stekl, I.; Suvorova, O. V.; Tabolenko, V. A.; Tarashansky, B. A.; Yakovlev, S. A.; Zagorodnikov, A. V.; Zurbanov, V. L.
2017-03-01
We present the status of the Gigaton Volume Detector in Lake Baikal (Baikal-GVD) designed for the detection of high energy neutrinos of astrophysical origin. The telescope consists of functionally independent clusters, sub-arrays of optical modules (OMs), which are connected to shore by individual electro-optical cables. During 2015 the GVD demonstration cluster, comprising 192 OMs, has been successfully operated in Lake Baikal. In 2016 this array was upgraded to baseline configuration of GVD cluster with 288 OMs arranged on eight vertical strings. Thus the instrumented water volume has been increased up to about 5.9 Mtons. The array was commissioned in early April 2016 and takes data since then. We describe the configuration and design of the 2016 array. Preliminary results obtained with data recorded in 2015 are also discussed.
Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites
NASA Technical Reports Server (NTRS)
Li, Jun (Inventor); Meyyappan, Meyya (Inventor)
2007-01-01
A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.
NASA Astrophysics Data System (ADS)
Chen, Cheng; Ding, Taotao; Qi, Zhiqiang; Zhang, Wei; Zhang, Jun; Xu, Juan; Chen, Jingwen; Dai, Jiangnan; Chen, Changqing
2018-04-01
The periodically ordered ZnO nanorod (NR) arrays have been successfully synthesized via a hydrothermal approach on the silicon substrates by templating of the TiO2 ring deriving from the polystyrene (PS) nanosphere monolayer colloidal crystals (MCC). With the inverted MCC mask, sol-gel-derived ZnO seeds could serve as the periodic nucleation positions for the site-specific growth of ZnO NRs. The large-scale patterned arrays of single ZnO NR with good side-orientation can be readily produced. According to the experimental results, the as-integrated ZnO NR arrays showed an excellent crystal quality and optical property, very suitable for optoelectronic applications such as stimulated emitters and ZnO photonic crystal devices.
Carbon Nanotube Electrode Arrays For Enhanced Chemical and Biological Sensing
NASA Technical Reports Server (NTRS)
Han, Jie
2003-01-01
Applications of carbon nanotubes for ultra-sensitive electrical sensing of chemical and biological species have been a major focus in NASA Ames Center for Nanotechnology. Great progress has been made toward controlled growth and chemical functionalization of vertically aligned carbon nanotube arrays and integration into micro-fabricated chip devices. Carbon nanotube electrode arrays devices have been used for sub-attomole detection of DNA molecules. Interdigitated carbon nanotubes arrays devices have been applied to sub ppb (part per billion) level chemical sensing for many molecules at room temperature. Stability and reliability have also been addressed in our device development. These results show order of magnitude improvement in device performance, size and power consumption as compared to micro devices, promising applications of carbon nanotube electrode arrays for clinical molecular diagnostics, personal medical testing and monitoring, and environmental monitoring.
Plasmonic nanohole arrays on Si-Ge heterostructures: an approach for integrated biosensors
NASA Astrophysics Data System (ADS)
Augel, L.; Fischer, I. A.; Dunbar, L. A.; Bechler, S.; Berrier, A.; Etezadi, D.; Hornung, F.; Kostecki, K.; Ozdemir, C. I.; Soler, M.; Altug, H.; Schulze, J.
2016-03-01
Nanohole array surface plasmon resonance (SPR) sensors offer a promising platform for high-throughput label-free biosensing. Integrating nanohole arrays with group-IV semiconductor photodetectors could enable low-cost and disposable biosensors compatible to Si-based complementary metal oxide semiconductor (CMOS) technology that can be combined with integrated circuitry for continuous monitoring of biosamples and fast sensor data processing. Such an integrated biosensor could be realized by structuring a nanohole array in the contact metal layer of a photodetector. We used Fouriertransform infrared spectroscopy to investigate nanohole arrays in a 100 nm Al film deposited on top of a vertical Si-Ge photodiode structure grown by molecular beam epitaxy (MBE). We find that the presence of a protein bilayer, constitute of protein AG and Immunoglobulin G (IgG), leads to a wavelength-dependent absorptance enhancement of ~ 8 %.
Growth of GaN micro/nanolaser arrays by chemical vapor deposition.
Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng
2016-09-02
Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm(-2). The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.
Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results
NASA Astrophysics Data System (ADS)
Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael
2015-03-01
Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.
High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.
Guzmán de Villoria, R; Figueredo, S L; Hart, A J; Steiner, S A; Slocum, A H; Wardle, B L
2009-10-07
Vertically aligned carbon nanotube (CNT) arrays are grown on a moving substrate, demonstrating continuous growth of nanoscale materials with long-range order. A cold-wall chamber with an oscillating moving platform is used to locally heat a silicon growth substrate coated with an Fe/Al2O3 catalyst film for CNT growth via chemical vapor deposition. The reactant gases are introduced over the substrate through a directed nozzle to attain high-yield CNT growth. Aligned multi-wall carbon nanotube arrays (or 'forests') with heights of approximately 1 mm are achieved at substrate speeds up to 2.4 mm s(-1). Arrays grown on moving substrates at different velocities are studied in order to identify potential physical limitations of repeatable and fast growth on a continuous basis. No significant differences are noted between static and moving growth as characterized by scanning electron microscopy and Raman spectroscopy, although overall growth height is marginally reduced at the highest substrate velocity. CNT arrays produced on moving substrates are also found to be comparable to those produced through well-characterized batch processes consistent with a base-growth mechanism. Growth parameters required for the moving furnace are found to differ only slightly from those used in a comparable batch process; thermal uniformity appears to be the critical parameter for achieving large-area uniform array growth. If the continuous-growth technology is combined with a reaction zone isolation scheme common in other types of processing (e.g., in the manufacture of carbon fibers), large-scale dense and aligned CNT arrays may be efficiently grown and harvested for numerous applications including providing interlayers for advanced composite reinforcement and improved electrical and thermal transport.
Imaging system design for improved information capacity
NASA Technical Reports Server (NTRS)
Fales, C. L.; Huck, F. O.; Samms, R. W.
1984-01-01
Shannon's theory of information for communication channels is used to assess the performance of line-scan and sensor-array imaging systems and to optimize the design trade-offs involving sensitivity, spatial response, and sampling intervals. Formulations and computational evaluations account for spatial responses typical of line-scan and sensor-array mechanisms, lens diffraction and transmittance shading, defocus blur, and square and hexagonal sampling lattices.
Castle, Robert O.; Gilmore, Thomas D.; Walker, James P.; Castle, Susan A.
2005-01-01
Comparisons among repeated levelings along selected lines through the Death Valley region of California and adjacent parts of Nevada have disclosed surprisingly large vertical displacements. The vertical control data in this lightly populated area is sparse; moreover, as much as a third of the recovered data is so thoroughly contaminated by systematic error and survey blunders that no attempt was made to correct these data and they were simply discarded. In spite of these limitations, generally episodic, commonly large vertical displacements are disclosed along a number of lines. Displacements in excess of 0.4 m, with respect to our selected control point at Beatty, Nevada, and differential displacements of about 0.7 m apparently occurred during the earlier years of the 20th century and continued episodically through at least 1943. While this area contains abundant evidence of continuing tectonic activity through latest Quaternary time, it is virtually devoid of historic seismicity. We have detected no clear connection between the described vertical displacements and fault zones reportedly active during Holocene time, although we sense some association with several more broadly defined tectonic features.
NASA Technical Reports Server (NTRS)
Fortenbaugh, R. L.
1980-01-01
A mathematical model of a high performance airplane capable of vertical attitude takeoff and landing (VATOL) was developed. An off line digital simulation program incorporating this model was developed to provide trim conditions and dynamic check runs for the piloted simulation studies and support dynamic analyses of proposed VATOL configuration and flight control concepts. Development details for the various simulation component models and the application of the off line simulation program, Vertical Attitude Take-Off and Landing Simulation (VATLAS), to develop a baseline control system for the Vought SF-121 VATOL airplane concept are described.
NASA Astrophysics Data System (ADS)
Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.
2016-02-01
This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.
Vertically Aligned Carbon Nanotubes at Different Temperatures by Spray Pyrolysis Techniques
NASA Astrophysics Data System (ADS)
Afre, Rakesh A.; Soga, T.; Jimbo, T.; Kumar, Mukul; Ando, Y.; Sharon, M.
Vertically aligned arrays of multi-walled carbon nanotubes (VACNTs) were grown by spray pyrolysis of turpentine oil and ferrocene mixture at temperatures higher than 700°C. Using this simple method, we report the successful growth of vertically aligned nanotubes of ~300μm length and diameter in the range of ?20-80nm on Si(100) substrate. The ferrocene acts as an in situ Fe catalyst precursor, forming the nano-sized metallic iron particles for formation of VACNTs on the Si substrate. The morphological characteristics of VACNTs are confirmed by SEM, TEM and Raman spectroscopy and growth mechanism is discussed in short.
Vertical epitaxial wire-on-wire growth of Ge/Si on Si(100) substrate.
Shimizu, Tomohiro; Zhang, Zhang; Shingubara, Shoso; Senz, Stephan; Gösele, Ulrich
2009-04-01
Vertically aligned epitaxial Ge/Si heterostructure nanowire arrays on Si(100) substrates were prepared by a two-step chemical vapor deposition method in anodic aluminum oxide templates. n-Butylgermane vapor was employed as new safer precursor for Ge nanowire growth instead of germane. First a Si nanowire was grown by the vapor liquid solid growth mechanism using Au as catalyst and silane. The second step was the growth of Ge nanowires on top of the Si nanowires. The method presented will allow preparing epitaxially grown vertical heterostructure nanowires consisting of multiple materials on an arbitrary substrate avoiding undesired lateral growth.
Direct-current vertical electrical-resistivity soundings in the Lower Peninsula of Michigan
Westjohn, D.B.; Carter, P.J.
1989-01-01
Ninety-three direct-current vertical electrical-resistivity soundings were conducted in the Lower Peninsula of Michigan from June through October 1987. These soundings were made to assist in mapping the depth to brine in areas where borehole resistivity logs and water-quality data are sparse or lacking. The Schlumberger array for placement of current and potential electrodes was used for each sounding. Vertical electrical-resistivity sounding field data, shifted and smoothed sounding data, and electric layers calculated using inverse modeling techniques are presented. Also included is a summary of the near-surface conditions and depths to conductors and resistors for each sounding location.
Multichip imager with improved optical performance near the butt region
NASA Technical Reports Server (NTRS)
Kinnard, Kenneth P. (Inventor); Strong, Jr., Richard T. (Inventor); Goldfarb, Samuel (Inventor); Tower, John R. (Inventor)
1991-01-01
A compound imager consists of two or more individual chips, each with at least one line array of sensors thereupon. Each chip has a glass support plate attached to the side from which light reaches the line arrays. The chips are butted together end-to-end to make large line arrays of sensors. Because of imperfections in cutting, the butted surfaces define a gap. Light entering in the region of the gap is either lost or falls on an individual imager other than the one for which it is intended. This results in vignetting and/or crosstalk near the butted region. The gap is filled with an epoxy resin or other similar material which, when hardened, has an index of referaction near that of the glass support plate.
Redundant array of independent disks: practical on-line archiving of nuclear medicine image data.
Lear, J L; Pratt, J P; Trujillo, N
1996-02-01
While various methods for long-term archiving of nuclear medicine image data exist, none support rapid on-line search and retrieval of information. We assembled a 90-Gbyte redundant array of independent disks (RAID) system using 10-, 9-Gbyte disk drives. The system was connected to a personal computer and software was used to partition the array into 4-Gbyte sections. All studies (50,000) acquired over a 7-year period were archived in the system. Based on patient name/number and study date, information could be located within 20 seconds and retrieved for display and analysis in less than 5 seconds. RAID offers a practical, redundant method for long-term archiving of nuclear medicine studies that supports rapid on-line retrieval.
Online performance evaluation of RAID 5 using CPU utilization
NASA Astrophysics Data System (ADS)
Jin, Hai; Yang, Hua; Zhang, Jiangling
1998-09-01
Redundant arrays of independent disks (RAID) technology is the efficient way to solve the bottleneck problem between CPU processing ability and I/O subsystem. For the system point of view, the most important metric of on line performance is the utilization of CPU. This paper first employs the way to calculate the CPU utilization of system connected with RAID level 5 using statistic average method. From the simulation results of CPU utilization of system connected with RAID level 5 subsystem can we see that using multiple disks as an array to access data in parallel is the efficient way to enhance the on-line performance of disk storage system. USing high-end disk drivers to compose the disk array is the key to enhance the on-line performance of system.
Southern Ocean Eddy Heat Flux and Eddy-Mean Flow Interactions in Drake Passage
NASA Astrophysics Data System (ADS)
Foppert, Annie
The Antarctic Circumpolar Current (ACC) is a complex current system composed of multiple jets that is both unique to the world's oceans and relatively under observed compared with other current systems. Observations taken by current- and pressure-recording inverted echo sounders (CPIES) over four years, from November 2007 to November 2011, quantify the mean structure of one of the main jets of the ACC - the Polar Front - in a composite-mean sense. While the array of CPIES deployed in Drake Passage included a 3 x 7 local dynamics array, analysis of the Polar Front makes use of the line of CPIES that spanned the width of Drake Passage (C-Line). The Polar Front tends to prefer one of two locations, separated along the C-Line by 1° of latitude, with the core of the jet centered on corresponding geopotential height contours (with a 17 cm dierence between the northern and southern jets). Potential vorticity fields suggest that the Polar Front is susceptible to baroclinic instability, regardless of whether it is found upstream (farther south along the C-Line) or downstream (farther north along the C-Line) of the Shackleton Fracture Zone (SFZ), yet the core of the jet remains a barrier to smaller-scale mixing, as inferred from estimated mixing lengths. Within the local dynamics array of CPIES, the observed offset between eddy heat flux (EHF) and eddy kinetic energy (EKE) and the alignment of EHF with sea surface height (SSH) standard deviation motivates a proxy for depth-integrated EHF that can be estimated from available satellite SSH data. An eddy-resolving numerical model develops the statistics of a logarithmic fit between SSH standard deviation and cross-frontal EHF that is applied to the ACC in a circumglobal sense. We find 1.06 PW enters the ACC from the north and 0.02 PW exits towards Antarctica. The magnitude of the estimated EHF, along with contemporaneous estimates of the mean heat flux, suggests that the air-sea heat flux south of the PF is an overestimate. Long-term trends in EHF are calculated from January 1992 to December 2014 and reveal varying trends at the eight ACC EHF hot spots, with only three having statistically significant temporal trends of strengthening cross-frontal EHF. The dynamics of an oceanic storm track are investigated using CPIES observations in the local dynamics array to better understand the processes responsible for the spatial oset between EHF and EKE. Wave activity flux ( W), calculated from the total geostrophic stream-function, is used to diagnose eddy-mean flow interactions in the eddy-rich region immediately downstream of the SFZ. In the full four-year mean and in a composite of eddy events, elevated values of eddy potential energy (EPE) are aligned with the vertical component of W. This is indicative of a conversion of mean available potential energy to EPE through EHF associated with baroclinic instability. Emanating from this region, horizontal W vectors point towards the adjacent region of elevated EKE. A case study of an eddy event, lasting from 15 to 23 July 2010, is presented and highlights the capability of W to illustrate the evolution of the storm track in a snap-shot sense. While baroclinic processes initially dominate the event, the alignment of elevated values of EKE with the convergence of the horizontal W vectors indicates the importance of barotropic processes in transporting EKE away from the ACC's interaction with the SFZ.
Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped
NASA Astrophysics Data System (ADS)
Yan, Boxia; Qi, Yan; Wang, Yanwei
2016-10-01
Compact, high power, and low-cost green laser light sources are needed in projection-related applications such as digital cinema, rear-projection television, simulators, and command and control stations. We report a LD array directly pumped intracavity SHG Nd:YVO4/PPMgLN laser without lens or waveguide in this letter. A compact 3.12 W green laser was demonstrated by intra-cavity frequency doubled using a PPMgLN bulk crystal by a 19-emitter LD array pumped(single bar), the conversion efficiency from input LD array was 9.2%. A line-beam output suitable for laser projectors was generated, which has the potential to be scalable to small volumes and low costs for laser projection displays.
Vertical Accuracy Assessment of ZY-3 Digital Surface Model Using Icesat/glas Laser Altimeter Data
NASA Astrophysics Data System (ADS)
Li, G.; Tang, X.; Yuan, X.; Zhou, P.; Hu, F.
2017-05-01
The Ziyuan-3 (ZY-3) satellite, as the first civilian high resolution surveying and mapping satellite in China, has a very important role in national 1 : 50,000 stereo mapping project. High accuracy digital surface Model (DSMs) can be generated from the three line-array images of ZY-3, and ZY-3 DSMs of China can be produced without using any ground control points (GCPs) by selecting SRTM (Shuttle Radar Topography Mission) and ICESat/GLAS (Ice, Cloud, and land Elevation Satellite, Geo-science Laser Altimeter System) as the datum reference in the Satellite Surveying and Mapping Application Center, which is the key institute that manages and distributes ZY-3 products. To conduct the vertical accuracy evaluation of ZY-3 DSMs of China, three representative regions were chosen and the results were compared to ICESat/GLAS data. The experimental results demonstrated that the root mean square error (RMSE) elevation accuracy of the ZY-3 DSMs was better than 5.0 m, and it even reached to less than 2.5 m in the second region of eastern China. While this work presents preliminary results, it is an important reference for expanding the application of ZY-3 satellite imagery to widespread regions. And the satellite laser altimetry data can be used as referenced data for wide-area DSM evaluation.
Acoustic wave propagation and intensity fluctuations in shallow water 2006 experiment
NASA Astrophysics Data System (ADS)
Luo, Jing
Fluctuations of low frequency sound propagation in the presence of nonlinear internal waves during the Shallow Water 2006 experiment are analyzed. Acoustic waves and environmental data including on-board ship radar images were collected simultaneously before, during, and after a strong internal solitary wave packet passed through a source-receiver acoustic track. Analysis of the acoustic wave signals shows temporal intensity fluctuations. These fluctuations are affected by the passing internal wave and agrees well with the theory of the horizontal refraction of acoustic wave propagation in shallow water. The intensity focusing and defocusing that occurs in a fixed source-receiver configuration while internal wave packet approaches and passes the acoustic track is addressed in this thesis. Acoustic ray-mode theory is used to explain the modal evolution of broadband acoustic waves propagating in a shallow water waveguide in the presence of internal waves. Acoustic modal behavior is obtained from the data through modal decomposition algorithms applied to data collected by a vertical line array of hydrophones. Strong interference patterns are observed in the acoustic data, whose main cause is identified as the horizontal refraction referred to as the horizontal Lloyd mirror effect. To analyze this interference pattern, combined Parabolic Equation model and Vertical-mode horizontal-ray model are utilized. A semi-analytic formula for estimating the horizontal Lloyd mirror effect is developed.
An Expedient but Fascinating Geophysical Chimera: The Pinyon Flat Seismic Strain Point Array
NASA Astrophysics Data System (ADS)
Langston, C. A.
2016-12-01
The combination of a borehole Gladwin Tensor Strain Meter (GTSM) and a co-located three component broadband seismometer (BB) can theoretically be used to determine the propagation attributes of P-SV waves in vertically inhomogeneous media such as horizontal phase velocity and azimuth of propagation through application of wave gradiometry. A major requirement for this to be successful is to have well-calibrated strain and seismic sensors to be able to rely on using absolute wave amplitude from both systems. A "point" seismic array is constructed using the PBO GTSM station B084 and co-located BB seismic stations from an open array experiment deployed by UCSD as well as PFO station at the Pinyon Flat facility. Site amplitude statics for all three ground motion components are found for the 14-element (13 PY stations + PFO), small aperture seismic array using data from 47 teleseisms recorded from 2014 until present. Precision of amplitude measurement at each site is better than 0.2% for vertical components, 0.5% for EW components, and 1% for NS components. Relative amplitudes among sites of the array are often better than 1% attesting to the high quality of the instrumentation and installation. The wavefield and related horizontal strains are computed for the location of B084 using a second order Taylor's expansion of observed waveforms from moderate ( M4) regional events. The computed seismic array areal, differential, and shear strains show excellent correlation in both phase and amplitude with those recorded by B084 when using the calibration matrix previously determined using teleseismic strains from the entire ANZA seismic network. Use of the GTSM-BB "point" array significantly extends the bandwidth of gradiometry calculations over the small-aperture seismic array by nearly two orders of magnitude from 0.5 Hz to 0.01 Hz. In principle, a seismic strain point array could be constructed from every PBO GTSM with a co-located seismometer to help serve earthquake early warning for large regional events on North America's west coast.
2012-09-20
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, groundbreaking will begin for the construction of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM, system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers will begin construction on the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and prepare the site for the operations command center facility. Photo credit: NASA/Charisse Nahser
2012-10-29
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, concrete has been poured at the site of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, Ka-BOOM system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers are placing the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and preparing the site for the operations command center facility. Photo credit: NASA/Ben Smegelski
2012-10-29
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a worker continues construction of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM, system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers are placing the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and preparing the site for the operations command center facility. Photo credit: NASA/Ben Smegelski
Catalyst-free, III-V nanowire photovoltaics
NASA Astrophysics Data System (ADS)
Davies, D. G.; Lambert, N.; Fry, P. W.; Foster, A.; Krysa, A. B.; Wilson, L. R.
2014-05-01
We report on room temperature, photovoltaic operation of catalyst-free GaAs p-i-n junction nanowire arrays. Growth studies were first performed to determine the optimum conditions for controlling the vertical and lateral growth of the nanowires. Following this, devices consisting of axial p-i-n junctions were fabricated by planarising the nanowire arrays with a hard baked polymer. We discuss the photovoltaic properties of this proof-of-concept device, and significant improvements to be made during the growth.
Tuneable photonic device including an array of metamaterial resonators
Brener, Igal; Wanke, Michael; Benz, Alexander
2017-03-14
A photonic apparatus includes a metamaterial resonator array overlying and electromagnetically coupled to a vertically stacked plurality of quantum wells defined in a semiconductor body. An arrangement of electrical contact layers is provided for facilitating the application of a bias voltage across the quantum well stack. Those portions of the semiconductor body that lie between the electrical contact layers are conformed to provide an electrically conductive path between the contact layers and through the quantum well stack.
Persson, Henrik; Li, Zhen; Tegenfeldt, Jonas O.; Oredsson, Stina; Prinz, Christelle N.
2015-01-01
The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a ”bed-of-nails” regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the “bed-of-nails” regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm−2) and medium (1 μm−2) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm−2). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing. PMID:26691936
NASA Technical Reports Server (NTRS)
Koehne, Jessica E.
2016-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.
NASA Technical Reports Server (NTRS)
Koehne, Jessica E.
2016-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.
Computed narrow-band azimuthal time-reversing array retrofocusing in shallow water.
Dungan, M R; Dowling, D R
2001-10-01
The process of acoustic time reversal sends sound waves back to their point of origin in reciprocal acoustic environments even when the acoustic environment is unknown. The properties of the time-reversed field commonly depend on the frequency of the original signal, the characteristics of the acoustic environment, and the configuration of the time-reversing transducer array (TRA). In particular, vertical TRAs are predicted to produce horizontally confined foci in environments containing random volume refraction. This article validates and extends this prediction to shallow water environments via monochromatic Monte Carlo propagation simulations (based on parabolic equation computations using RAM). The computational results determine the azimuthal extent of a TRA's retrofocus in shallow-water sound channels either having random bottom roughness or containing random internal-wave-induced sound speed fluctuations. In both cases, randomness in the environment may reduce the predicted azimuthal angular width of the vertical TRA retrofocus to as little as several degrees (compared to 360 degrees for uniform environments) for source-array ranges from 5 to 20 km at frequencies from 500 Hz to 2 kHz. For both types of randomness, power law scalings are found to collapse the calculated azimuthal retrofocus widths for shallow sources over a variety of acoustic frequencies, source-array ranges, water column depths, and random fluctuation amplitudes and correlation scales. Comparisons are made between retrofocusing on shallow and deep sources, and in strongly and mildly absorbing environments.
A synchronous serial bus for multidimensional array acoustic logging tool
NASA Astrophysics Data System (ADS)
Men, Baiyong; Ju, Xiaodong; Lu, Junqiang; Qiao, Wenxiao
2016-12-01
In high-temperature and spatial borehole applications, a distributed structure is employed in a multidimensional array acoustic logging tool (MDALT) based on a phased array technique for electronic systems. However, new challenges, such as synchronous multichannel data acquisition, multinode real-time control and bulk data transmission in a limited interval, have emerged. To address these challenges, we developed a synchronous serial bus (SSB) in this study. SSB works in a half-duplex mode via a master-slave architecture. It also consists of a single master, several slaves, a differential clock line and a differential data line. The clock line is simplex, whereas the data line is half-duplex and synchronous to the clock line. A reliable communication between the master and the slaves with real-time adjustment of synchronisation is achieved by rationally designing the frame format and protocol of communication and by introducing a scramble code and a Hamming error-correcting code. The control logic of the master and the slaves is realized in field programmable gate array (FPGA) or complex programmable logic device (CPLD). The clock speed of SSB is 10 MHz, the effective data rate of the bulk data transmission is over 99%, and the synchronous errors amongst the slaves are less than 10 ns. Room-temperature test, high-temperature test (175 °C) and field test demonstrate that the proposed SSB is qualified for MDALT.
An after-market, five-port vertical beam line extension for the PETtrace
NASA Astrophysics Data System (ADS)
Barnhart, T. E.; Engle, J. W.; Severin, G. W.; Valdovinos, H. F.; Gagnon, K.; Nickles, R. J.
2012-12-01
Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port ♯2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.
Armored umbilical apparatus for towing a marine seismic air gun sub array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrage, E.C.
1985-06-25
An armored umbilical and termination housing is disclosed for towing a sub-array of seismic air guns used in marine seismic surveying comprising a single air hose for supplying all the high pressure air to the individual air guns surrounded by all the electrical control cables needed to operate the air guns in the sub-array. Protective coatings are applied around the electrical control cables and stress members for carrying the load of towing the sub-array are incorporated within the umbilical. A termination housing is provided on the end of the umbilical for terminating the single air hose and all the electricalmore » control lines to common connectors so that individual electrical control lines and air hoses can run from the termination housing to each individual air gun in the sub-array. Air shut off valves are provided so that the high pressure air can be shut off to the individual air guns within the sub-array remotely from the survey vessel.« less
NASA Astrophysics Data System (ADS)
Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.
2017-07-01
We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.
NASA Astrophysics Data System (ADS)
Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Narbudowicz, Adam
2017-01-01
A compact coplanar waveguide-fed multiple-input multiple-output antenna array based on the left-handed wire loaded spiral resonators (SR) is presented. The proposed antenna consists of a 2 × 2 wire SR with two symmetrical microstrip feed lines, each line exciting a 1 × 2 wire SR. Left-handed metamaterial unit cells are placed on its reverse side and arranged in a 2 × 3 array. A reflection coefficient of less than -16 dB and mutual coupling of less than -28 dB are achieved at 5.15 GHz WLAN band.
Building Bridges One Line at a Time
ERIC Educational Resources Information Center
Grigsby, Cathy Murray
2012-01-01
In this article, first-grade students were taught the different kinds of lines that were part of the construction of various bridges--the curved lines of the arches of stone bridges, straight lines connecting the cables of a suspension bridge, vertical lines, horizontal lines, and so on. They gained practice in drawing structures and in fine brush…
CMOS gate array characterization procedures
NASA Astrophysics Data System (ADS)
Spratt, James P.
1993-09-01
Present procedures are inadequate for characterizing the radiation hardness of gate array product lines prior to personalization because the selection of circuits to be used, from among all those available in the manufacturer's circuit library, is usually uncontrolled. (Some circuits are fundamentally more radiation resistant than others.) In such cases, differences in hardness can result between different designs of the same logic function. Hardness also varies because many gate arrays feature large custom-designed megacells (e.g., microprocessors and random access memories-MicroP's and RAM's). As a result, different product lines cannot be compared equally. A characterization strategy is needed, along with standardized test vehicle(s), methodology, and conditions, so that users can make informed judgments on which gate arrays are best suited for their needs. The program described developed preferred procedures for the radiation characterization of gate arrays, including a gate array evaluation test vehicle, featuring a canary circuit, designed to define the speed versus hardness envelope of the gate array. A multiplier was chosen for this role, and a baseline multiplier architecture is suggested that could be incorporated into an existing standard evaluation circuit chip.
Multi-wavelength VCSEL arrays using high-contrast gratings
NASA Astrophysics Data System (ADS)
Haglund, Erik; Gustavsson, Johan S.; Sorin, Wayne V.; Bengtsson, Jörgen; Fattal, David; Haglund, Àsa; Tan, Michael; Larsson, Anders
2017-02-01
The use of a high-contrast grating (HCG) as the top mirror in a vertical-cavity surface-emitting laser (VCSEL) allows for setting the resonance wavelength by the grating parameters in a post-epitaxial growth fabrication process. Using this technique, we demonstrate electrically driven multi-wavelength VCSEL arrays at 980 nm wavelength. The VCSELs are GaAs-based and the suspended GaAs HCGs were fabricated using electron-beam lithography, dry etching and selective removal of an InGaP sacrificial layer. The air-coupled cavity design enabled 4-channel arrays with 5 nm wavelength spacing and sub-mA threshold currents thanks to the high HCG reflectance.
Vertically-aligned BCN Nanotube Arrays with Superior Performance in Electrochemical capacitors
Zhou, Junshuang; Li, Na; Gao, Faming; Zhao, Yufeng; Hou, Li; Xu, Ziming
2014-01-01
Electrochemical capacitors (EC) have received tremendous interest due to their high potential to satisfy the urgent demand in many advanced applications. The development of new electrode materials is considered to be the most promising approach to enhance the EC performance substantially. Herein, we present a high-capacity capacitor material based on vertically-aligned BC2N nanotube arrays (VA-BC2NNTAs) synthesized by low temperature solvothermal route. The obtained VA-BC2NNTAs display the good aligned nonbuckled tubular structure, which could indeed advantageously enhance capacitor performance. VA-BC2NNTAs exhibit an extremely high specific capacitance, 547 Fg−1, which is about 2–6 times larger than that of the presently available carbon-based materials. Meanwhile, VA-BC2NNTAs maintain an excellent rate capability and high durability. All these characteristics endow VA-BC2NNTAs an alternative promising candidate for an efficient electrode material for electrochemical capacitors (EC). PMID:25124300
NASA Astrophysics Data System (ADS)
Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O.
2015-08-01
In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.
The rapid growth of vertically aligned carbon nanotubes using laser heating.
Park, J B; Jeong, S H; Jeong, M S; Lim, S C; Lee, I H; Lee, Y H
2009-05-06
Growth of densely packed vertically aligned carbon nanotubes (VA-CNTs) using laser-induced chemical vapor deposition with visible laser (lambda = 532 nm) irradiation at room temperature is reported. Using a multiple-catalyst layer (Fe/Al/Cr) on quartz as the substrate and an acetylene-hydrogen mixture as the precursor gas, VA-CNT pillars with 60 microm height and 4 microm diameter were grown at a high rate of around 1 microm s(-1) with good reproducibility. It is demonstrated that the fabrication of uniform pillar arrays of VA-CNTs can be achieved with a single irradiation for each pillar using LCVD with no annealing or preprocessing of the substrate. Here, laser fast heating is considered the primary mechanism facilitating the growth of VA-CNT pillars. Field emission characteristics of an array of VA-CNT pillars were then examined to investigate their potential application in vacuum electronic devices.
Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang
2014-01-01
A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.
Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O
2015-08-21
In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.
Few millimeter precision for baselines in the California Permanent GPS Geodetic Array
NASA Technical Reports Server (NTRS)
Lindqwister, Ulf J.; Zumberge, James F.; Webb, Frank H.; Blewitt, Geoffrey
1991-01-01
Geodetic measurements with Rogue GPS receivers from sites in the California Permanent GPS geodetic Array (PGGA) have been analyzed using the GIPSY orbit-determination and baseline-estimation software. Based on an unbiased selection of 23 daily measurements spanning 8 months, the LF contributions to the long-term repeatabilities of baseline measurements are approximately 5, 3, and 8 mm for the east, north, and vertical components. Short-term contributions to the long-term repeatabilities were evaluated by examining data from the week of October 21, 1990, which showed the lowest short-term scatter. For this week, daily repeatabilities of 2-3 mm in the horizontal and 4 mm in the vertical have been achieved for the 172-km JPL-Pinyon baseline, consistent with carrier phase date noise of about 6 mm. High quality (less than about 5 mm) repeatabilities have been achieved for all components of the other baselines as well.
Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran
2016-01-11
Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.
Location of aerodynamic noise sources from a 200 kW vertical-axis wind turbine
NASA Astrophysics Data System (ADS)
Ottermo, Fredric; Möllerström, Erik; Nordborg, Anders; Hylander, Jonny; Bernhoff, Hans
2017-07-01
Noise levels emitted from a 200 kW H-rotor vertical-axis wind turbine have been measured using a microphone array at four different positions, each at a hub-height distance from the tower. The microphone array, comprising 48 microphones in a spiral pattern, allows for directional mapping of the noise sources in the range of 500 Hz to 4 kHz. The produced images indicate that most of the noise is generated in a narrow azimuth-angle range, compatible with the location where increased turbulence is known to be present in the flow, as a result of the previous passage of a blade and its support arms. It is also shown that a semi-empirical model for inflow-turbulence noise seems to produce noise levels of the correct order of magnitude, based on the amount of turbulence that could be expected from power extraction considerations.
Evaluating focused ion beam patterning for position-controlled nanowire growth using computer vision
NASA Astrophysics Data System (ADS)
Mosberg, A. B.; Myklebost, S.; Ren, D.; Weman, H.; Fimland, B. O.; van Helvoort, A. T. J.
2017-09-01
To efficiently evaluate the novel approach of focused ion beam (FIB) direct patterning of substrates for nanowire growth, a reference matrix of hole arrays has been used to study the effect of ion fluence and hole diameter on nanowire growth. Self-catalyzed GaAsSb nanowires were grown using molecular beam epitaxy and studied by scanning electron microscopy (SEM). To ensure an objective analysis, SEM images were analyzed with computer vision to automatically identify nanowires and characterize each array. It is shown that FIB milling parameters can be used to control the nanowire growth. Lower ion fluence and smaller diameter holes result in a higher yield (up to 83%) of single vertical nanowires, while higher fluence and hole diameter exhibit a regime of multiple nanowires. The catalyst size distribution and placement uniformity of vertical nanowires is best for low-value parameter combinations, indicating how to improve the FIB parameters for positioned-controlled nanowire growth.
LASERS: Efficient chemical oxygen — iodine laser with a high total pressure of the active medium
NASA Astrophysics Data System (ADS)
Zagidullin, M. V.; Nikolaev, V. D.; Svistun, M. I.; Khvatov, N. A.; Heiger, G. D.; Madden, T. J.
2001-01-01
A new concept of obtaining a high total pressure of the active medium of a chemical oxygen — iodine laser (OIL) is proposed and verified. The nozzle unit of the laser consists of the alternating vertical arrays of cylindrical nozzles to produce high-pressure nitrogen jets, plane slotted nozzles for the flow of O2(1Δ) oxygen, and vertical arrays of cylindrical nozzles to inject the N2 — I2 mixture between the first two streams. For a molar chlorine flow rate of 39.2 mmol s-1, the output power was 700 W and the chemical efficiency was 19.7 %. The combined use of the ejector nozzle unit proposed to obtain the active medium and a super-sonic diffuser allows a significant simplification of the ejection system for the exhaust active medium of the OIL.
46 CFR 42.13-30 - Lines to be used with the load line mark.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) The following load lines shall be used: (1) The summer load line indicated by the upper edge of the... T. (5) The fresh water load line in summer indicated by the upper edge of a line marked F. The fresh water load line in summer is marked abaft the vertical line. The difference between the fresh water load...
46 CFR 42.13-30 - Lines to be used with the load line mark.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) The following load lines shall be used: (1) The summer load line indicated by the upper edge of the... T. (5) The fresh water load line in summer indicated by the upper edge of a line marked F. The fresh water load line in summer is marked abaft the vertical line. The difference between the fresh water load...
A Millimeter-wave Cavity-backed Suspended Substrate Stripline Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
1999-01-01
Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency hands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz) 4 x 4 planar array of cavity backed circular aperture antennas with suspended substrate stripline (SSS) corporate feed is presented.
Three dimensional metafilms with dual channel unit cells
Burckel, D. Bruce; Campione, Salvatore; Davids, Paul S.; ...
2017-04-04
Three-dimensional (3D) metafilms composed of periodic arrays of silicon unit cells containing single and multiple micrometer-scale vertical split ring resonators (SRRs) per unit cell were fabricated. In contrast to planar and stacked planar structures, these 3D metafilms have a thickness t ~λ d/4, allowing for classical thin film effects in the long wavelength limit. The infrared specular far-field scattering response was measured for metafilms containing one and two resonators per unit cell and compared to numerical simulations. Excellent agreement in the frequency region below the onset of diffractive scattering was obtained. For dense arrays of unit cells containing single SRRs,more » normally incident linearly polarized plane waves which do not excite a resonant response result in thin film interference fringes in the reflected spectra and are virtually indistinguishable from the scattering response of an undecorated array of unit cells. For the resonant linear polarization, the specular reflection for arrays is highly dependent on the SRR orientation on the vertical face for gap-up, gap-down, and gap-right orientations. For dense arrays of unit cells containing two SRRs per unit cell positioned on adjacent faces, the specular reflection spectra are slightly modified due to near-field coupling between the orthogonally oriented SRRs but otherwise exhibit reflection spectra largely representative of the corresponding single-SRR unit cell structures. Lastly, the ability to pack the unit cell with multiple inclusions which can be independently excited by choice of incident polarization suggests the construction of dual-channel films where the scattering response is selected by altering the incident polarization.« less
Lee, Han Eol; Choi, JeHyuk; Lee, Seung Hyun; Jeong, Minju; Shin, Jung Ho; Joe, Daniel J; Kim, DoHyun; Kim, Chang Wan; Park, Jung Hwan; Lee, Jae Hee; Kim, Daesoo; Shin, Chan-Soo; Lee, Keon Jae
2018-05-18
Flexible inorganic-based micro light-emitting diodes (µLEDs) are emerging as a significant technology for flexible displays, which is an important area for bilateral visual communication in the upcoming Internet of Things era. Conventional flexible lateral µLEDs have been investigated by several researchers, but still have significant issues of power consumption, thermal stability, lifetime, and light-extraction efficiency on plastics. Here, high-performance flexible vertical GaN light-emitting diodes (LEDs) are demonstrated by silver nanowire networks and monolithic fabrication. Transparent, ultrathin GaN LED arrays adhere to a human fingernail and stably glow without any mechanical deformation. Experimental studies provide outstanding characteristics of the flexible vertical μLEDs (f-VLEDs) with high optical power (30 mW mm -2 ), long lifetime (≈12 years), and good thermal/mechanical stability (100 000 bending/unbending cycles). The wireless light-emitting system on the human skin is successfully realized by transferring the electrical power f-VLED. Finally, the high-density GaN f-VLED arrays are inserted onto a living mouse cortex and operated without significant histological damage of brain. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vertically aligned carbon nanofiber as nano-neuron interface for monitoring neural function.
Yu, Zhe; McKnight, Timothy E; Ericson, M Nance; Melechko, Anatoli V; Simpson, Michael L; Morrison, Barclay
2012-05-01
Neural chips, which are capable of simultaneous multisite neural recording and stimulation, have been used to detect and modulate neural activity for almost thirty years. As neural interfaces, neural chips provide dynamic functional information for neural decoding and neural control. By improving sensitivity and spatial resolution, nano-scale electrodes may revolutionize neural detection and modulation at cellular and molecular levels as nano-neuron interfaces. We developed a carbon-nanofiber neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes and demonstrated its capability of both stimulating and monitoring electrophysiological signals from brain tissues in vitro and monitoring dynamic information of neuroplasticity. This novel nano-neuron interface may potentially serve as a precise, informative, biocompatible, and dual-mode neural interface for monitoring of both neuroelectrical and neurochemical activity at the single-cell level and even inside the cell. The authors demonstrate the utility of a neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes. The new device can be used to stimulate and/or monitor signals from brain tissue in vitro and for monitoring dynamic information of neuroplasticity both intracellularly and at the single cell level including neuroelectrical and neurochemical activities. Copyright © 2012 Elsevier Inc. All rights reserved.
In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features.
Bitar, Malak; Friederici, Vera; Imgrund, Philipp; Brose, Claudia; Bruinink, Arie
2012-05-04
Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM) process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additionally, the structured surfaces were characterised by the presence of submicrometre surface roughness resulting from metal grain boundary formation. Following cytocompatibility (cytotoxicity) evaluation using 3T3 mouse fibroblast cell line, the effect on primary human cell functionality was assessed focusing on cell attachment, shape and cytoskeleton conformation. In this respect, and by day 7 in culture, significant increase in focal adhesion size was associated with the microstructured surfaces compared to the planar control. The morphological conformation of the seeded cells, as revealed by fluorescence cytoskeleton labelling, also appeared to be guided in the vertical dimension between the hemisphere bodies. Quantitative evaluation of this guidance took place using live cytoplasm fluorescence labelling and image morphometry analysis utilising both, compactness and elongation shape descriptors. Significant increase in cell compactness was associated with the hemisphere arrays indicating collective increase in focused cell attachment to the hemisphere bodies across the entire cell population. Micrometre-scale hemisphere array patterns have therefore influenced cell attachment and conformation. Such influence may potentially aid in enhancing key cellular events such as, for example, neo-osteogenesis on implanted orthopaedic surfaces.
Memristor-based programmable logic array (PLA) and analysis as Memristive networks.
Lee, Kwan-Hee; Lee, Sang-Jin; Kim, Seok-Man; Cho, Kyoungrok
2013-05-01
A Memristor theorized by Chua in 1971 has the potential to dramatically influence the way electronic circuits are designed. It is a two terminal device whose resistance state is based on the history of charge flow brought about as the result of the voltage being applied across its terminals and hence can be thought of as a special case of a reconfigurable resistor. Nanoscale devices using dense and regular fabrics such as Memristor cross-bar is promising new architecture for System-on-Chip (SoC) implementations in terms of not only the integration density that the technology can offer but also both improved performance and reduced power dissipation. Memristor has the capacity to switch between high and low resistance states in a cross-bar circuit configuration. The cross-bars are formed from an array of vertical conductive nano-wires cross a second array of horizontal conductive wires. Memristors are realized at the intersection of the two wires in the array through appropriate processing technology such that any particular wire in the vertical array can be connected to a wire in the horizontal array by switching the resistance of a particular intersection to a low state while other cross-points remain in a high resistance state. However the approach introduces a number of challenges. The lack of voltage gain prevents logic being cascaded and voltage level degradation affects robustness of the operation. Moreover the cross-bars introduce sneak current paths when two or more cross points are connected through the switched Memristor. In this paper, we propose Memristor-based programmable logic array (PLA) architecture and develop an analytical model to analyze the logic level on the memristive networks. The proposed PLA architecture has 12 inputs maximum and can be cascaded for more input variables with R(off)/R(on) ratio in the range from 55 to 160 of Memristors.
Linearly tapered slot antenna circular array for mobile communications
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Kelly, Eron; Lee, Richard Q.; Taub, Susan R.
1993-01-01
The design, fabrication and testing of a conformal K-band circular array is presented. The array consists of sixteen linearly tapered slot antennas (LTSA). It is fed by a 1:16 microstrip line power splitter via electromagnetic coupling. The array has an omni-directional pattern in the azimuth plane. In the elevation plane the beam is displaced above the horizon.
NASA Astrophysics Data System (ADS)
Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han
2015-08-01
Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02384j
NASA Astrophysics Data System (ADS)
Datta, A.; Pokharel, R.; Toteva, T.
2007-12-01
Randolph College is located in Lynchburg, VA, in the eastern edge of the Blue Ridge Mountains. Lynchburg city lies in the James River Synclinorium and consists of metasedimentary and metaigneous rocks. As part of College's plan to expand, a new soccer field will be build. For that purpose, part of a hill has to be excavated. Information was needed on the depth to the bedrock at the site. We conducted a seismic refraction experiment as part of an eight week summer research program for undergraduate students. We used 24 vertical geophones, spaced at 1.5 m interval. Our recording device was a 12 channel Geometrics geode (ES 3000). The source was an 8 pound sledge hummer. Source positions were chosen to be at 5, 10, 15 and 20 m on both sides of the array. We collected data along a tree line (in two segments) and across a hockey field. The data collected from the hockey field had very low signal to noise ratio and clear refraction arrivals. The other two acquisition lines were much noisier and difficult to interpret. Our results are consistent with data from seven bore holes in close proximity to the field site. We interpreted depth to bedrock to be between 4 and 12 m. The bedrock velocities are consistent with weathered gneiss. To improve the interpretation of the tree line records, we conducted a GPR survey. The preliminary radar images are showing highly heterogeneous subsurface with multiple point reflectors.
Abundance and Temperature Variations in Titan's Atmosphere as Revealed by ALMA
NASA Astrophysics Data System (ADS)
Thelen, A. E.; Nixon, C. A.; Chanover, N.; Molter, E.; Cordiner, M. A.; Serigano, J., IV; Irwin, P. G.; Charnley, S. B.; Teanby, N. A.
2016-12-01
Photochemistry in Titan's atmosphere produces a wealth of organic molecular species through the dissociation of it's main constituents: N2 and CH4. Chemical species including hydrocarbons (CXHY) and nitriles (CXHY[CN]Z) exhibit latitudinal variations in abundance as observed by Cassini, attributed to atmospheric circulation and Titan's seasonal cycle. Flux calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) with beam sizes smaller than Titan's angular diameter ( 0.7'') allow for measurements of rotational transition lines in spatially resolved regions of Titan's disk. We present nitrile abundance profiles and temperature measurements derived from CO lines obtained by ALMA in 2014, as Titan transitioned into northern summer. Vertical profiles in Titan's lower/middle atmosphere were retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code. We present a comparison of the abundance variations of chemical species to measurements made using Cassini data. Temperature profiles derived from CO lines are compared to Cassini Composite Infrared Spectrometer temperature fields. The techniques presented here will allow us to determine temporal changes in Titan's atmospheric chemical composition after the end of the Cassini mission by utilizing high resolution ALMA data. Comparisons of chemical species with strong abundance enhancements over the poles will inform our knowledge of chemical lifetimes in Titan's atmosphere, and allow us to observe the important changes in production and circulation of numerous organic molecules which are attributed to Titan's seasons.
ETHYL CYANIDE ON TITAN: SPECTROSCOPIC DETECTION AND MAPPING USING ALMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordiner, M. A.; Palmer, M. Y.; Nixon, C. A.
2015-02-10
We report the first spectroscopic detection of ethyl cyanide (C{sub 2}H{sub 5}CN) in Titan’s atmosphere, obtained using spectrally and spatially resolved observations of multiple emission lines with the Atacama Large Millimeter/submillimeter Array (ALMA). The presence of C{sub 2}H{sub 5}CN in Titan’s ionosphere was previously inferred from Cassini ion mass spectrometry measurements of C{sub 2}H{sub 5}CNH{sup +}. Here we report the detection of 27 rotational lines from C{sub 2}H{sub 5}CN (in 19 separate emission features detected at >3σ confidence) in the frequency range 222–241 GHz. Simultaneous detections of multiple emission lines from HC{sub 3}N, CH{sub 3}CN, and CH{sub 3}CCH were alsomore » obtained. In contrast to HC{sub 3}N, CH{sub 3}CN, and CH{sub 3}CCH, which peak in Titan’s northern (spring) hemisphere, the emission from C{sub 2}H{sub 5}CN is found to be concentrated in the southern (autumn) hemisphere, suggesting a distinctly different chemistry for this species, consistent with a relatively short chemical lifetime for C{sub 2}H{sub 5}CN. Radiative transfer models show that C{sub 2}H{sub 5}CN is most concentrated at altitudes ≳200 km, suggesting production predominantly in the stratosphere and above. Vertical column densities are found to be in the range (1–5) × 10{sup 14} cm{sup −2}.« less
Novel Approaches for Mutual Coupling Reduction among Vertical and Planar Monopole Elements
NASA Astrophysics Data System (ADS)
Isaac, Ayman A.
Modern wireless systems such as 4G LTE-A, RFID, Wi-Fi, WiMAX, and GPS utilize miniaturized antenna array elements to improve performance and reliability through diversity and increase throughput using spatial multiplexing schemes of MIMO systems. One original contribution in this thesis is to significantly reduce the complexity of traditional design approaches targeting mutual coupling reductions such as metamaterials, defected ground plane structures, soft electromagnetic surfaces using novel design alternatives. A decoupling network is proposed, which consists of a rectangular metallic ring along with two tuning strips printed on a dielectric substrate, surrounding a two-element monopole antenna array fed by a coplanar waveguide or microstrip structure. The array design offers a reduction in mutual coupling level by around 20 dB at 2.4 GHz as compared to the same array in which the two monopoles share the same ground plane but without the decoupling network. The array achieves a -10 dB S11 bandwidth of 0.63 GHz, (2.12 GHz - 2.75 GHz), a 0.24 GHz (2.33 GHz - 2.57 GHz) bandwidth in which S21 is less than -20 dB, respectively. A total realized gain of 1.6 to 1.69 dB in the frequency range over which S11 and S21 is less than -10 dB and -20 dB respectively. The boresight of the radiation patterns of two vertical monopole wire antennas operating at 2.4 GHz and separated by 8 mm are shown to be orthogonal and inclined by 45° with respect to the horizon while maintaining the shape of the isolated single antenna element. Hence, we denote this design as the descattered and decoupled orthogonal MIMO antenna array, which is reported for the first time in this dissertation, providing the ideal far-field radiation characteristics as theoretically deemed for handheld MIMO devices. Moreover, two new approaches for the reduction of mutual coupling between two rectangular planar monopole antennas printed on a dielectric substrate with a partial ground plane are presented in this thesis. In the first design, two thin strips are attached to the adjacent corners of the radiating elements and extend to a certain distance above the partial ground plane. Results reveal a mutual coupling less than -20 dB over the frequency range from 2.16 GHz up to 2.74 GHz. while maintaining the -10 dB reflection coefficient bandwidth. Three implementations are presented which demonstrate an envelope correlation coefficient below 0.06 when the antenna elements are separated by 0.04lambda o, 0.048lambdao, 0.064lambdao, and 0.085lambda o with lambdao calculated at 1.5 GHz, 1.8 GHz, 2.4 GHz, and 3.2 GHz, respectively. The second design employs a decoupling structure consisting of planar or meander strip extending along the partial ground, the space between the two antenna elements, and beyond by a certain extent. The antennas provide a realized gain of 4.39 dB and 4.66 dB at 2.4 GHz using strip and meander lines, respectively, and bandwidth of (1.65 GHz- 4 GHz) and (1.43 GHz - 3.7 GHz), respectively. The two antenna arrays consisting of planar and meander strip achieve an envelope correlation coefficient of 0.05 and 0.06, respectively.
Synthesis and Investigation of Millimeter-Scale Vertically Aligned Boron Nitride Nanotube Arrays
NASA Astrophysics Data System (ADS)
Tay, Roland; Li, Hongling; Tsang, Siu Hon; Jing, Lin; Tan, Dunlin; Teo, Edwin Hang Tong
Boron nitride nanotubes (BNNTs) have shown potential in a wide range of applications due to their superior properties such as exceptionally high mechanical strength, excellent chemical and thermal stabilities. However, previously reported methods to date only produced BNNTs with limited length/density and insufficient yield at high temperatures. Here we present a facile and effective two-step synthesis route involving template-assisted chemical vapor deposition at a relatively low temperature of 900 degree C and subsequent annealing process to fabricate vertically aligned (VA) BN coated carbon nanotube (VA-BN/CNT) and VA-BNNT arrays. By using this method, we achieve the longest VA-BN/CNTs and VA-BNNTs to date with lengths of over millimeters (exceeding two orders of magnitude longer than the previously reported length of VA-BNNTs). In addition, the morphology, chemical composition and microstructure of the resulting products, as well as the mechanism of coating process are systematically investigated. This versatile BN coating technique and the synthesis of millimeter-scale BN/CNT and BNNT arrays pave a way for new applications especially where the aligned geometry of the NTs is essential such as for field-emission, interconnects and thermal management.
Design of LED fish lighting attractors using horizontal/vertical LIDC mapping method.
Shen, S C; Huang, H J
2012-11-19
This study employs a sub-module concept to develop high-brightness light-emitting diode (HB-LED) fishing light arrays to replace traditional fishing light attractors. The horizontal/vertical (H/V) plane light intensity distribution curve (LIDC) of a LED light source are mapped to assist in the design of a non-axisymmetric lens with a fish-attracting light pattern that illuminates sufficiently large areas and alternates between bright and dark. These LED fishing light attractors are capable of attracting schools of fish toward the perimeter of the luminous zone surrounding fishing boats. Three CT2 boats (10 to 20 ton capacity) were recruited to conduct a field test for 1 y on the sea off the southwestern coast of Taiwan. Field tests show that HB-LED fishing light array installed 5 m above the boat deck illuminated a sea surface of 5 × 12 m and achieved an illuminance of 2000 lx. The test results show that the HB-LED fishing light arrays increased the mean catch of the three boats by 5% to 27%. In addition, the experimental boats consumed 15% to 17% less fuel than their counterparts.
Antenna induced range smearing in MST radars
NASA Technical Reports Server (NTRS)
Watkins, B. J.; Johnston, P. E.
1984-01-01
There is considerable interest in developing stratosphere troposphere (ST) and mesosphere stratosphere troposphere (MST) radars for higher resolution to study small-scale turbulent structures and waves. At present most ST and MST radars have resolutions of 150 meters or larger, and are not able to distinguish the thin (40 - 100 m) turbulent layers that are known to occur in the troposphere and stratosphere, and possibly in the mesosphere. However the antenna beam width and sidelobe level become important considerations for radars with superior height resolution. The objective of this paper is to point out that for radars with range resolutions of about 150 meters or less, there may be significant range smearing of the signals from mesospheric altitudes due to the finite beam width of the radar antenna. At both stratospheric and mesospheric heights the antenna sidelobe level for lear equally spaced phased arrays may also produce range aliased signals. To illustrate this effect the range smearing functions for two vertically directed antennas have been calculated, (1) an array of 32 coaxial-collinear strings each with 48 elements that simulates the vertical beam of the Poker Flat, Glaska, MST radar; and (2) a similar, but smaller, array of 16 coaxial-collinear strings each with 24 elements.
NASA Astrophysics Data System (ADS)
Chaliyawala, Harsh A.; Purohit, Zeel; Khanna, Sakshum; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit
2018-05-01
We report an alternative approach to fabricate the vertically aligned aperiodic Si nanowire arrays by controlling the diameter of the Ag nanoparticles and tuneable ultrasonic removal. The process begins by sputtering the Ag thin film (t=5 nm) on the Si/SiO2 substrates. Followed by Ag thin film, annealed for various temperature (T=300°C, 400°C, 500°C and 600°C) to selectively achieve a high density, well-spaced and diameter controlled Ag nanoparticles (AgNPs) on the Si/SiO2 substrates. The sacrificial layer of AgNPs size indicates the controlled diameter of the Si nanowire arrays. Image J analysis for various annealed samples gives an indication of the high density, uniformity and equal distribution of closely packed AgNPs. Furthermore, the AgNPs covered with Au/Pd mesh (5 nm) as a template, was removed by ultrasonication in the etchant solution for several times in different intervals of preparation. The conventional and facile metal assisted electroless etching approach was finally employed to fabricate the vertically aperiodic sub-50 nm SiNWAs, can be applicable to various nanoscale opto-electronic applications.
NASA Astrophysics Data System (ADS)
Kasu, Makoto; Oshima, Takayoshi; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu
2017-09-01
A pixel array of vertical Schottky-barrier diodes (SBDs) was fabricated and measured on the surface of a (\\bar{2}01) β-Ga2O3 single crystal. Subsequently, etch pits and patterns were observed on the same surface. Three types of etch pits were discovered: (1) a line-shaped etch pattern originating from a void and extending toward the [010] direction, (2) an arrow-shaped etch pit whose arrow’s head faces toward the [102] direction and, (3) a gourd-shaped etch pit whose point head faces toward the [102] direction. Their average densities were estimated to be 5 × 102, 7 × 104, and 9 × 104 cm-2, respectively. We confirmed no clear relationship between the leakage current in SBDs and these crystalline defects. Such results are obtained because threading dislocations run mainly in the [010] growth direction and do not go through the (\\bar{2}01) sample plate.
A pepper-pot emittance meter for low-energy heavy-ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kremers, H. R.; Beijers, J. P. M.; Brandenburg, S.
2013-02-15
A novel emittance meter has been developed to measure the four-dimensional, transverse phase-space distribution of a low-energy ion beam using the pepper-pot technique. A characteristic feature of this instrument is that the pepper-pot plate, which has a linear array of holes in the vertical direction, is scanned horizontally through the ion beam. This has the advantage that the emittance can also be measured at locations along the beam line where the beam has a large horizontal divergence. A set of multi-channel plates, scintillation screen, and ccd camera is used as a position-sensitive ion detector allowing a large range of beammore » intensities that can be handled. This paper describes the design, construction, and operation of the instrument as well as the data analysis used to reconstruct the four-dimensional phase-space distribution of an ion beam. Measurements on a 15 keV He{sup +} beam are used as an example.« less
NASA Astrophysics Data System (ADS)
Heo, Joonseong; Kwon, Hyukjin J.; Jeon, Hyungkook; Kim, Bumjoo; Kim, Sung Jae; Lim, Geunbae
2014-07-01
Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation.Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00350k
NASA Technical Reports Server (NTRS)
1981-01-01
Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.
Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them
Kim, Myung Jong; Nicholas, Nolan Walker; Kittrell, W. Carter; Schmidt, Howard K.
2015-06-30
According to some embodiments, the present invention provides a system and method for supporting a carbon nanotube array that involve an entangled carbon nanotube mat integral with the array, where the mat is embedded in an embedding material. The embedding material may be depositable on a carbon nanotube. A depositable material may be metallic or nonmetallic. The embedding material may be an adhesive material. The adhesive material may optionally be mixed with a metal powder. The embedding material may be supported by a substrate or self-supportive. The embedding material may be conductive or nonconductive. The system and method provide superior mechanical and, when applicable, electrical, contact between the carbon nanotubes in the array and the embedding material. The optional use of a conductive material for the embedding material provides a mechanism useful for integration of carbon nanotube arrays into electronic devices.
Experimental observation of an extremely dark material made by a low-density nanotube array.
Yang, Zu-Po; Ci, Lijie; Bur, James A; Lin, Shawn-Yu; Ajayan, Pulickel M
2008-02-01
An ideal black material absorbs light perfectly at all angles and over all wavelengths. Here, we show that low-density vertically aligned carbon nanotube arrays can be engineered to have an extremely low index of refraction, as predicted recently by theory [Garcia-Vidal, F. J.; Pitarke, J. M.; Pendry, J. B. Phys. Rev. Lett. 1997, 78, 4289-4292] and, combined with the nanoscale surface roughness of the arrays, can produce a near-perfect optical absorption material. An ultralow diffused reflectance of 1 x 10(-7) measured from such arrays is an order-of-magnitude lower compared to commercial low-reflectance standard carbon. The corresponding integrated total reflectance of 0.045% from the nanotube arrays is three times lower than the lowest-ever reported values of optical reflectance from any material, making it the darkest man-made material ever.
A large-aperture low-cost hydrophone array for tracking whales from small boats.
Miller, B; Dawson, S
2009-11-01
A passive sonar array designed for tracking diving sperm whales in three dimensions from a single small vessel is presented, and the advantages and limitations of operating this array from a 6 m boat are described. The system consists of four free floating buoys, each with a hydrophone, built-in recorder, and global positioning system receiver (GPS), and one vertical stereo hydrophone array deployed from the boat. Array recordings are post-processed onshore to obtain diving profiles of vocalizing sperm whales. Recordings are synchronized using a GPS timing pulse recorded onto each track. Sensitivity analysis based on hyperbolic localization methods is used to obtain probability distributions for the whale's three-dimensional location for vocalizations received by at least four hydrophones. These localizations are compared to those obtained via isodiachronic sequential bound estimation. Results from deployment of the system around a sperm whale in the Kaikoura Canyon in New Zealand are shown.
NASA Astrophysics Data System (ADS)
Liu, Xianchao; Wang, Jun; Li, Ling; Gou, Jun; Zheng, Jie; Huang, Zehua; Pan, Rui
2018-05-01
Mie resonance sphere-lens-lithography has proved to be a good candidate for fabrication of large-area tunable surface nanopattern arrays. Different patterns on photoresist surface are obtained theoretically by adjusting optical coupling among neighboring spheres with different gap sizes. The effect of light reflection from the substrate on the pattern produced on the photoresist with a thin thickness is also discussed. Sub-micron hexagonal star-shaped and ring-shaped patterns arrays are achieved with close-packed spheres arrays and spheres arrays with big gaps, respectively. Changing of star-shaped vertices is induced by different polarization of illumination. Experimental results agree well with the simulation. By using smaller resonance spheres, sub-400 nm star-shaped and ring-shaped patterns can be realized. These tunable patterns are different from results of previous reports and have enriched pattern morphology fabricated by sphere-lens-lithography, which can find application in biosensor and optic devices.
Wettability control of micropore-array films by altering the surface nanostructures.
Chang, Chi-Jung; Hung, Shao-Tsu
2010-07-01
By controlling the surface nanostructure, the wettability of films with similar pore-array microstructure can be tuned from hydrophilic to nearly superhydrophobic without variation of the chemical composition. PA1 pore-array film consisting of the horizontal ZnO nanosheets was nearly superhydrophobic. PA2 pore-array film consisting of growth-hindered vertically-aligned ZnO nanorods was hydrophilic. The influences of the nanostructure shape, orientation and the micropore size on the contact angle of the PA1 films were studied. This study provides a new approach to control the wettability of films with similar pore-array structure at the micro-scale by changing their surface nanostructure. PA1 films exhibited irradiation induced reversible wettability transition. The feasibility of creating a wetted radial pattern by selective UV irradiation of PA1 film through a mask with radial pattern and water vapor condensation was also evaluated.
NASA Astrophysics Data System (ADS)
Chavarria, J. Andres; Malin, Peter E.; Shalev, Eylon
2004-05-01
In July 2002 we installed a vertical array of seismometers in the San Andreas Fault Observatory at Depth (SAFOD) Pilot Hole (PH). The bottom of this 32 level, 1240 m long array of 3- components is located at a depth of ~2100 m below ground. Surface-explosion and microearthquake seismograms recorded by the array give valuable insights into the structure of the SAFOD site. The ratios of P- and S-wave velocities (Vp/Vs) along the array suggest the presence of two faults intersecting the PH. The Vp/Vs ratios also depend on source location, with high values to the NW, and lower ones to the SE, correlating with high and low creep rates along the SAF, respectively. Since higher ratios can be produced by increasing fluid saturation, we suggest that this effect might account for both our observations and their correlation with the creep distribution.
Directed branch growth in aligned nanowire arrays.
Beaudry, Allan L; LaForge, Joshua M; Tucker, Ryan T; Sorge, Jason B; Adamski, Nicholas L; Li, Peng; Taschuk, Michael T; Brett, Michael J
2014-01-01
Branch growth is directed along two, three, or four in-plane directions in vertically aligned nanowire arrays using vapor-liquid-solid glancing angle deposition (VLS-GLAD) flux engineering. In this work, a dynamically controlled collimated vapor flux guides branch placement during the self-catalyzed epitaxial growth of branched indium tin oxide nanowire arrays. The flux is positioned to grow branches on select nanowire facets, enabling fabrication of aligned nanotree arrays with L-, T-, or X-branching. In addition, a flux motion algorithm is designed to selectively elongate branches along one in-plane axis. Nanotrees are found to be aligned across large areas by X-ray diffraction pole figure analysis and through branch length and orientation measurements collected over 140 μm(2) from scanning electron microscopy images for each array. The pathway to guided assembly of nanowire architectures with controlled interconnectivity in three-dimensions using VLS-GLAD is discussed.
NASA Astrophysics Data System (ADS)
Salauddin, M.; Park, J. Y.
2016-11-01
In this work, we have proposed and experimentally validated of hybrid electromagnetic and triboelectric energy harvester using dual Halbach magnets array excited by human handy motion. Hybrid electromagnetic (EM) and triboelectric (TE) generator that can deliver an output performance much higher than that of the individual energy-harvesting unit due to the combination operation of EM and TE mechanisms under the same mechanical movements. A Halbach array concentrates the magnetic flux lines on one side of the array while suppressing the flux lines on the other side. Dual Halbach array allows the concentrated magnetic flux lines to interact with the same coil in a way where maximum flux linkage occurs. When an external mechanical vibration is applied to the hybrid structure in the axial direction of the harvester, the suspended mass (two sided dual-Halbach-array frame) starts to oscillate within the magnetic springs and TEG part. Therefore, the TEG part, the Al film and microstructure PDMS film are collected into full contact with each other, generating triboelectric charges due to the various triboelectricities between them. A prototype of the hybrid harvester has been fabricated and tested. The EMG is capable of delivering maximum 11.5mW peak power at 32.5Ω matching load resistance and the TEG delivering 88μW peak power at 10MΩ load resistance.
Vertically aligned carbon nanofibers as sacrificial templates for nanofluidic structures
NASA Astrophysics Data System (ADS)
Melechko, A. V.; McKnight, T. E.; Guillorn, M. A.; Merkulov, V. I.; Ilic, B.; Doktycz, M. J.; Lowndes, D. H.; Simpson, M. L.
2003-02-01
We report a method to fabricate nanoscale pipes ("nanopipes") suitable for fluidic transport. Vertically aligned carbon nanofibers grown by plasma-enhanced chemical vapor deposition are used as sacrificial templates for nanopipes with internal diameters as small as 30 nm and lengths up to several micrometers that are oriented perpendicular to the substrate. This method provides a high level of control over the nanopipe location, number, length, and diameter, permitting them to be deterministically positioned on a substrate and arranged into arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iga, K.
1996-12-31
Vertical optical interconnects of LSI chips and circuit boards and multiple fiber systems may be the most interesting field related to SE lasers. From this point of view, the device should be small as possible. The future process technology for it including epitaxy and etching will drastically change the situation of SE lasers. Dome optical technologies are already introduced in various subsystems, but the arrayed microoptic technology would be very helpful for advanced systems.
Effects of Vertical Direction and Aperture Size on the Perception of Visual Acceleration.
Mueller, Alexandra S; González, Esther G; McNorgan, Chris; Steinbach, Martin J; Timney, Brian
2016-02-06
It is not well understood whether the distance over which moving stimuli are visible affects our sensitivity to the presence of acceleration or our ability to track such stimuli. It is also uncertain whether our experience with gravity creates anisotropies in how we detect vertical acceleration and deceleration. To address these questions, we varied the vertical extent of the aperture through which we presented vertically accelerating and decelerating random dot arrays. We hypothesized that observers would better detect and pursue accelerating and decelerating stimuli that extend over larger than smaller distances. In Experiment 1, we tested the effects of vertical direction and aperture size on acceleration and deceleration detection accuracy. Results indicated that detection is better for downward motion and for large apertures, but there is no difference between vertical acceleration and deceleration detection. A control experiment revealed that our manipulation of vertical aperture size affects the ability to track vertical motion. Smooth pursuit is better (i.e., with higher peak velocities) for large apertures than for small apertures. Our findings suggest that the ability to detect vertical acceleration and deceleration varies as a function of the direction and vertical extent over which an observer can track the moving stimulus. © The Author(s) 2016.
Iida, M.; Miyatake, T.; Shimazaki, K.
1990-01-01
We develop general rules for a strong-motion array layout on the basis of our method of applying a prediction analysis to a source inversion scheme. A systematic analysis is done to obtain a relationship between fault-array parameters and the accuracy of a source inversion. Our study of the effects of various physical waves indicates that surface waves at distant stations contribute significantly to the inversion accuracy for the inclined fault plane, whereas only far-field body waves at both small and large distances contribute to the inversion accuracy for the vertical fault, which produces more phase interference. These observations imply the adequacy of the half-space approximation used throughout our present study and suggest rules for actual array designs. -from Authors
NASA Astrophysics Data System (ADS)
Hiramatsu, Seiki; Kinoshita, Masao
2005-09-01
This paper describes the fabrication of novel surface-mountable waveguide connectors and presents test results for them. To ensure more highly integrated and low-cost fabrication, we propose new three-dimensional (3-D) waveguide arrays that feature two-dimensionally integrated optical inputs/outputs and optical path redirection. A wafer-level stack and lamination process was used to fabricate the waveguide arrays. Vertical-cavity surface-emitting lasers (VCSELs) and photodiodes were directly mounted on the arrays and combined with mechanical transferable ferrule using active alignment. With the help of a flip-chip bonder, the waveguide connectors were mounted on a printed circuit board by solder bumps. Using mechanical transferable connectors, which can easily plug into the waveguide connectors, we obtained multi-gigabits-per-second transmission performance.
Portable nuclear material detector and process
Hofstetter, Kenneth J [Aiken, SC; Fulghum, Charles K [Aiken, SC; Harpring, Lawrence J [North Augusta, SC; Huffman, Russell K [Augusta, GA; Varble, Donald L [Evans, GA
2008-04-01
A portable, hand held, multi-sensor radiation detector is disclosed. The detection apparatus has a plurality of spaced sensor locations which are contained within a flexible housing. The detection apparatus, when suspended from an elevation, will readily assume a substantially straight, vertical orientation and may be used to monitor radiation levels from shipping containers. The flexible detection array can also assume a variety of other orientations to facilitate any unique container shapes or to conform to various physical requirements with respect to deployment of the detection array. The output of each sensor within the array is processed by at least one CPU which provides information in a usable form to a user interface. The user interface is used to provide the power requirements and operating instructions to the operational components within the detection array.
Kateb, Babak; Ryan, M A; Homer, M L; Lara, L M; Yin, Yufang; Higa, Kerin; Chen, Mike Y
2009-08-01
A proof-of-concept study was done to determine whether an electronic nose developed for air quality monitoring at the Jet Propulsion Laboratory (JPL) could be used to distinguish between the odors of organ and tumor tissues, with an eye to using such a device as one of several modes in multi-modal imaging and tumor differentiation during surgery. We hypothesized that the JPL electronic nose (ENose) would be able to distinguish between the odors of various organ and tumor tissues. The odor signatures, or array response, of two organs, chicken heart and chicken liver, and cultured glioblastoma and melanoma tumor cell lines were recorded using the JPL Electronic Nose. The overall array responses were compared to determine whether they were sufficiently different to allow the organs and cell lines to be identified by their array responses. The ENose was able to distinguish between the two types of organ tissue and between the two types of tumor cell lines. The variation in array response for the organ tissues was 19% and between the two types of cultured cell lines was 22%. This study shows that it is possible to use an electronic nose to distinguish between two types of tumor cells and between two types of organ tissue. As we conducted the experiment with a sensor array built for air quality monitoring rather than for medical purposes, it may be possible to select an array that is optimized to distinguish between different types of cells and organ tissues. Further focused studies are needed to investigate the odor signatures of different cells as well as cellular proliferation, growth, differentiation and infiltration.
NASA Technical Reports Server (NTRS)
Fortenbaugh, R. L.
1980-01-01
Instructions for using Vertical Attitude Takeoff and Landing Aircraft Simulation (VATLAS), the digital simulation program for application to vertical attitude takeoff and landing (VATOL) aircraft developed for installation on the NASA Ames CDC 7600 computer system are described. The framework for VATLAS is the Off-Line Simulation (OLSIM) routine. The OLSIM routine provides a flexible framework and standardized modules which facilitate the development of off-line aircraft simulations. OLSIM runs under the control of VTOLTH, the main program, which calls the proper modules for executing user specified options. These options include trim, stability derivative calculation, time history generation, and various input-output options.
Development of a multiplexed readout with high position resolution for positron emission tomography
NASA Astrophysics Data System (ADS)
Lee, Sangwon; Choi, Yong; Kang, Jihoon; Jung, Jin Ho
2017-04-01
Detector signals for positron emission tomography (PET) are commonly multiplexed to reduce the number of digital processing channels so that the system can remain cost effective while also maintaining imaging performance. In this work, a multiplexed readout combining Anger position estimation algorithm and position decoder circuit (PDC) was developed to reduce the number of readout channels by a factor of 24, 96-to-4. The data acquisition module consisted of a TDC (50 ps resolution), 4-channel ADCs (12 bit, 105 MHz sampling rate), 2 GB SDRAM and USB3.0. The performance of the multiplexed readout was assessed with a high-resolution PET detector block composed of 2×3 detector modules, each consisting of an 8×8 array of 1.52×1.52×6 mm3 LYSO, a 4×4 array of 3×3 mm2 silicon photomultiplier (SiPM) and 13.4×13.4 mm2 light guide with 0.7 mm thickness. The acquired flood histogram showed that all 384 crystals could be resolved. The average energy resolution at 511 keV was 13.7±1.6% full-width-at-half-maximum (FWHM) and the peak-to-valley ratios of the flood histogram on the horizontal and vertical lines were 18.8±0.8 and 22.8±1.3, respectively. The coincidence resolving time of a pair of detector blocks was 6.2 ns FWHM. The reconstructed phantom image showed that rods down to a diameter of 1.6 mm could be resolved. The results of this study indicate that the multiplexed readout would be useful in developing a PET with a spatial resolution less than the pixel size of the photosensor, such as a SiPM array.
Wavenumber-domain separation of rail contribution to pass-by noise
NASA Astrophysics Data System (ADS)
Zea, Elias; Manzari, Luca; Squicciarini, Giacomo; Feng, Leping; Thompson, David; Arteaga, Ines Lopez
2017-11-01
In order to counteract the problem of railway noise and its environmental impact, passing trains in Europe must be tested in accordance to a noise legislation that demands the quantification of the noise generated by the vehicle alone. However, for frequencies between about 500 Hz and 1600 Hz, it has been found that a significant part of the measured noise is generated by the rail, which behaves like a distributed source and radiates plane waves as a result of the contact with the train's wheels. Thus the need arises for separating the rail contribution to the pass-by noise in that particular frequency range. To this end, the present paper introduces a wavenumber-domain filtering technique, referred to as wave signature extraction, which requires a line microphone array parallel to the rail, and two accelerometers on the rail in the vertical and lateral direction. The novel contributions of this research are: (i) the introduction and application of wavenumber (or plane-wave) filters to pass-by data measured with a microphone array located in the near-field of the rail, and (ii) the design of such filters without prior information of the structural properties of the rail. The latter is achieved by recording the array pressure, as well as the rail vibrations with the accelerometers, before and after the train pass-by. The performance of the proposed method is investigated with a set of pass-by measurements performed in Germany. The results seem to be promising when compared to reference data from TWINS, and the largest discrepancies occur above 1600 Hz and are attributed to plane waves radiated by the rail that so far have not been accounted for in the design of the filters.
Quiescent Prominence Structure and Dynamics: a new View From the Hinode/SOT
NASA Astrophysics Data System (ADS)
Berger, T.; Okamoto, J.; Slater, G.; Magara, T.; Tarbell, T.; Tsuneta, S.; Hurlburt, N.
2008-05-01
To date the Hinode/Solar Optical Telescope (SOT) has produced over a dozen sub-arcsecond, multi-hour movies of quiescent solar prominences in both the Ca II 396.8~nm H-line and the H-alpha 656.3~nm line. These datasets have revealed new details of the structure and dynamics of quiescent prominences including a new form of mass transport in the form of buoyant plume upflows from the chromosphere. We review the SOT prominence datasets to show that quiescent prominences appear in two major morphological categories: "vertically" and "horizontally" structured. The vertically structured prominences all show ubiquitous downflows in 400--700~km wide "streams" with velocities of approximately 10~km~s-1. Most of the vertically structured prominences also show episodic upflows in the form of dark turbulent plumes with typical velocities of 20~km~s-1. Large-scale oscillations are frequently seen in vertical prominences with periods on the order of 10 min and upward propagation speeds of approximately 10~km~s-1. In addition, "bubble" events in which large voids 10--30~Mm across inflate and then burst are seen in some of the vertical prominences. In contrast, the horizontally structured quiescent prominences exhibit only limited flows along the horizontal filaments. We speculate on the origin of the distinction between the vertically and horizontally structured prominences, taking into account viewing angle and the underlying photospheric magnetic flux density. We also discuss the nature of the mysterious dark plumes and bubble expansions and their implications for prominence mass balance in light of recent models of prominence magnetic structure that find vertical flows along some field lines.
An after-market, five-port vertical beam line extension for the PETtrace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnhart, T. E.; Engle, J. W.; Severin, G. W.
2012-12-19
Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port Music-Sharp-Sign 2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.
Observational signature of high spin at the Event Horizon Telescope
NASA Astrophysics Data System (ADS)
Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew
2018-04-01
We analytically compute the observational appearance of an isotropically emitting point source on a circular, equatorial orbit near the horizon of a rapidly spinning black hole. The primary image moves on a vertical line segment, in contrast to the primarily horizontal motion of the spinless case. Secondary images, also on the vertical line, display a rich caustic structure. If detected, this unique signature could serve as a `smoking gun' for a high spin black hole in nature.
Gestalt grouping via closure degrades suprathreshold depth percepts.
Deas, Lesley M; Wilcox, Laurie M
2014-08-19
It is well known that the perception of depth is susceptible to changes in configuration. For example, stereoscopic precision for a pair of vertical lines can be dramatically reduced when these lines are connected to form a closed object. Here, we extend this paradigm to suprathreshold estimates of perceived depth. Using a touch-sensor, observers made quantitative estimates of depth between a vertical line pair presented in isolation or as edges of a closed rectangular object with different figural interpretations. First, we show that the amount of depth estimated within a closed rectangular object is consistently reduced relative to the vertical edges presented in isolation or when they form the edges of two segmented objects. We then demonstrate that the reduction in perceived depth for closed objects is modulated by manipulations that influence perceived closure of the central figure. Depth percepts were most disrupted when the horizontal connectors and vertical lines matched in color. Perceived depth increased slightly when the connectors had opposite contrast polarity, but increased dramatically when flankers were added. Thus, as grouping cues were added to counter the interpretation of a closed object, the depth degradation effect was systematically eliminated. The configurations tested here rule out explanations based on early, local interactions such as inhibition or cue conflict; instead, our results provide strong evidence of the impact of Gestalt grouping, via closure, on depth magnitude percepts from stereopsis. © 2014 ARVO.