Fine Scale Baleen Whale Behavior Observed via Tagging Over Daily Time Scales
2012-09-30
right whales and sei whales) and the diel vertical migration behavior of their copepod prey. I hypothesize that (1) right whales track the diel...vertical migration of copepods by feeding near the bottom during the day and at the surface at night, and (2) sei whales are unable to feed on copepods at...depth during the day, and are therefore restricted to feeding on copepods at the surface only. Because copepod diel vertical migration is variable
Fine Scale Baleen Whale Behavior Observed via Tagging Over Daily Time Scales
2013-09-30
sei whales) and the diel vertical migration behavior of their copepod prey. I hypothesize that (1) right whales track the diel vertical migration of... copepods by feeding near the bottom during the day and at the surface at night, and (2) sei whales are unable to feed on copepods at depth during the...day, and are therefore restricted to feeding on copepods at the surface only. Because copepod diel vertical migration is variable over time (days to
Cellular behavior controlled by bio-inspired and geometry-tunable nanohairs.
Heo, Chaejeong; Jeong, Chanho; Im, Hyeon Seong; Kim, Jong Uk; Woo, Juhyun; Lee, Ji Yeon; Park, Byeonghak; Suh, Minah; Kim, Tae-Il
2017-11-23
A cicada wing has a biocidal feature of rupturing the membrane of cells, while the cactus spine can transmit a water drop to the stem of the plant. Both of these properties have evolved from their respective unique structures. Here, we endeavor to develop geometry-controllable nanohairs that mimic the cicada's wing-like vertical hairs and the cactus spine-like stooped hairs, and to quantitatively characterize the cell migration behavior of the hairy structures. It was found that the neuroblastoma cells are highly sensitive to the variation of surfaces: flat, vertical, and stooped nanohairs (100 nm diameter and 900 nm height). The cells on the vertical hairs showed significantly decreased proliferation. It was found that the behavior of cells cultured on stooped nanohairs is strongly influenced by the direction of the stooped pattern of hairs when we quantitatively measured the migration of cells on flat, vertical, and stooped structures. However, the cells on the flat structures showed random movement and the cells on the vertical nanohairs restricted the nanohair movement. Cells on the stooped structure showed higher forward migration preference compared to that of the other structures. Furthermore, we found that these cellular behaviors on the different patterns of nanohairs were affected by intracellular actin flament change. Consistent with these results, the vertical and stooped structures can facilitate the control of cell viability and guide directional migration for biomedical applications such as organogenesis.
Observation method to predict meander migration and vertical degradation of rivers.
DOT National Transportation Integrated Search
2014-05-01
Meander migration and vertical degradation of river bed are processes that have been studied for years. : Different methods have been proposed to make predictions of the behavior of rivers with respect to these : processes. These two erosion controll...
Behavioral responses of Atlantic cod to sea temperature changes.
Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor
2015-05-01
Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30-80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species.
Behavioral responses of Atlantic cod to sea temperature changes
Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor
2015-01-01
Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30–80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species. PMID:26045957
Moonlight Drives Ocean-Scale Mass Vertical Migration of Zooplankton during the Arctic Winter.
Last, Kim S; Hobbs, Laura; Berge, Jørgen; Brierley, Andrew S; Cottier, Finlo
2016-01-25
In extreme high-latitude marine environments that are without solar illumination in winter, light-mediated patterns of biological migration have historically been considered non-existent [1]. However, diel vertical migration (DVM) of zooplankton has been shown to occur even during the darkest part of the polar night, when illumination levels are exceptionally low [2, 3]. This paradox is, as yet, unexplained. Here, we present evidence of an unexpected uniform behavior across the entire Arctic, in fjord, shelf, slope and open sea, where vertical migrations of zooplankton are driven by lunar illumination. A shift from solar-day (24-hr period) to lunar-day (24.8-hr period) vertical migration takes place in winter when the moon rises above the horizon. Further, mass sinking of zooplankton from the surface waters and accumulation at a depth of ∼50 m occurs every 29.5 days in winter, coincident with the periods of full moon. Moonlight may enable predation of zooplankton by carnivorous zooplankters, fish, and birds now known to feed during the polar night [4]. Although primary production is almost nil at this time, lunar vertical migration (LVM) may facilitate monthly pulses of carbon remineralization, as they occur continuously in illuminated mesopelagic systems [5], due to community respiration of carnivorous and detritivorous zooplankton. The extent of LVM during the winter suggests that the behavior is highly conserved and adaptive and therefore needs to be considered as "baseline" zooplankton activity in a changing Arctic ocean [6-9]. VIDEO ABSTRACT. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Measurements of fluid transport by controllable vertical migrations of plankton
NASA Astrophysics Data System (ADS)
Houghton, Isabel A.; Dabiri, John O.
2016-11-01
Diel vertical migration of zooplankton has been proposed to be a significant contributor to local and possibly large-scale fluid transport in the ocean. However, studies of this problem to date have been limited to order-of-magnitude estimates based on first principles and a small number of field observations. In this work, we leverage the phototactic behavior of zooplankton to stimulate controllable vertical migrations in the laboratory and to study the associated fluid transport and mixing. Building upon a previous prototype system, a laser guidance system induces vertical swimming of brine shrimp (Artemia salina) in a 2.1 meter tall, density-stratified water tank. The animal swimming speed and spacing during the controlled vertical migration is characterized with video analysis. A schlieren imaging system is utilized to visualize density perturbations to a stable stratification for quantification of fluid displacement length scales and restratification timescales. These experiments can add to our understanding of the dynamics of active particles in stratified flows. NSF and US-Israel Binational Science Foundation.
NASA Astrophysics Data System (ADS)
Durbin, Edward G.; Gilman, Sharon L.; Campbell, Robert G.; Durbin, Ann G.
Abundance, biomass, diel vertical migration and estimated in situ development in the copepod Calanus finmarchicus were investigated during late spring in 1988 and 1989 in the southern Gulf of Maine. This region is an important feeding ground for the planktivorous right whale, Eubalaena glacialis. The 1988 study took place during the declining spring bloom, with phytoplankton biomass variable, but relatively high. The 1989 study occurred after seasonal stratification, and phytoplankton biomass was low. During the 1988 cruise the dominant stage in C. finmarchicus shifted from C1-C2 to C4-C5. Stage durations during 1988 (4.0 days for C3 and 6.6 days for C4), estimated from the temporal change in stage distribution, were similar to maximal values observed in the laboratory. In contrast, during 1989 stages C4 and C5 were dominant throughout the study period and development rate was slow (estimated C4 stage duration about 24 days). Diel vertical migration patterns changed, from an absence of migration at the first two 1988 stations where younger stages predominated (C1-C3), to a very strong diel vertical migration at the later 1988 stations where stages C3-C3 predominated. This was not a simple ontogenetic change in migratory behavior since all copepodite stages at each station showed similar patterns. During 1989 dense aggregations of C. finmarchicus remained in the surface layer both day and night, and no diel vertical migration was observed. A small, nonmigratory population of late-stage C. finmarchicus was found at depth. Individual body size of these copepods was considerably greater than those found at the surface. Differences in development rate between years reflect differences in the food environment, brought about by seasonal hydrographic changes and the development of more intense stratification. Diel vertical migration patterns, however, did not show a simple relation with food availability, and it is suggested that predation may play an important role in regulating the behavior of the copepods.
NASA Astrophysics Data System (ADS)
Rodríguez-Cabello, Cristina; González-Pola, Cesar; Sánchez, Francisco
2016-09-01
A total of nine leafscale gulper sharks Centrophorus squamosus (Bonnaterre, 1788), were tagged with pop-up, satellite, archival, transmitting tags (PSAT) in the Marine Protected Area (MPA) of El Cachucho (Le Danois Bank) located in waters to the north of Spain, (NE Atlantic). Tags provided data on time, pressure and temperature that were used to examine movement patterns and diving behavior. Data collected from Argo floats in the study area have been used to devise a simple geolocation algorithm to infer the probable routes followed by this species. Tag release points revealed that C. squamosus moved both to the west (Galician waters) and to the north (Porcupine Bank) from the tagging area, suggesting well defined preferred pathways. The inferred trajectories indicated that sharks alternate periods constrained to specific geographical regions with quick and prompt movements covering large distances. Two sharks made conspicuous diurnal vertical migrations being at shallower depths around midnight and at maximum depths at midday, while other sharks did not make vertical migrations. Vertical movements were done smoothly and independently of the fish swimming long-distances or resting in the area. Overall results confirm that this species is highly migratory, supporting speeds of 20 nautical miles.day-1 and well capable to swim and make vertical migrations well above the abyssal plain.
IDENTIFYING AND PREDICTING DIVING PLUME BEHAVIOR AT GROUNDWATER SITES CONTAMINATED WITH MTBE: PART 2
As contaminant ground water flows downgradient from a release point, its movement is dictated by site geological conditions and hydraulics that may result in significant perpendicular contamination migration. This vertical migration pattern has been termed 'plume diving'. Under ...
Shark predation on migrating adult American eels (Anguilla rostrata) in the Gulf of St. Lawrence.
Béguer-Pon, Mélanie; Benchetrit, José; Castonguay, Martin; Aarestrup, Kim; Campana, Steven E; Stokesbury, Michael J W; Dodson, Julian J
2012-01-01
In an attempt to document the migratory pathways and the environmental conditions encountered by American eels during their oceanic migration to the Sargasso Sea, we tagged eight silver eels with miniature satellite pop-up tags during their migration from the St. Lawrence River in Québec, Canada. Surprisingly, of the seven tags that successfully transmitted archived data, six were ingested by warm-gutted predators, as observed by a sudden increase in water temperature. Gut temperatures were in the range of 20 to 25°C-too cold for marine mammals but within the range of endothermic fish. In order to identify the eel predators, we compared their vertical migratory behavior with those of satellite-tagged porbeagle shark and bluefin tuna, the only endothermic fishes occurring non-marginally in the Gulf of St. Lawrence. We accurately distinguished between tuna and shark by using the behavioral criteria generated by comparing the diving behavior of these two species with those of our unknown predators. Depth profile characteristics of most eel predators more closely resembled those of sharks than those of tuna. During the first days following tagging, all eels remained in surface waters and did not exhibit diel vertical migrations. Three eels were eaten at this time. Two eels exhibited inverse diel vertical migrations (at surface during the day) during several days prior to predation. Four eels were eaten during daytime, whereas the two night-predation events occurred at full moon. Although tagging itself may contribute to increasing the eel's susceptibility to predation, we discuss evidence suggesting that predation of silver-stage American eels by porbeagle sharks may represent a significant source of mortality inside the Gulf of St. Lawrence and raises the possibility that eels may represent a reliable, predictable food resource for porbeagle sharks.
Morgan, Steven G.; Anastasia, Jean R.
2008-01-01
The ability of microscopic larvae to control their fate and replenish populations in dynamic marine environments has been a long-running topic of debate of central importance to understanding the ecology and evolution of life in the sea and managing resources in a changing global environment. After decades of research documenting behaviors that keep larvae close to natal populations, it is becoming apparent that larval behaviors in a broader spectrum of species promote long-distance migrations to offshore nursery grounds. Larvae must exert considerable control over their movements. We now show that larval emigration from estuaries is favored even over minimizing visibility to predators. An endogenous tidal vertical migration that would expedite seaward migration of Uca pugilator larvae was maintained experimentally across two tidal regimes. The periodicity of the rhythm doubled to match the local tidal regime, but larvae ascended to the surface during the daytime rather than at night. This process would conserve larval emigration but increase the visibility to predators across part of the species range. The periodicity of tidal vertical migration by Sesarma cinereum larvae failed to double and was inappropriately timed relative to both environmental cycles in the absence of a diel cycle. The timing system regulating tidally timed behaviors in these two species of crabs evidently differed. Phenotypic plasticity can conserve larval transport of both species when tidal and diel cycles are present. It may be widespread in the sea where diverse habitats are encountered across extensive species ranges. PMID:18172217
Morgan, Steven G; Anastasia, Jean R
2008-01-08
The ability of microscopic larvae to control their fate and replenish populations in dynamic marine environments has been a long-running topic of debate of central importance to understanding the ecology and evolution of life in the sea and managing resources in a changing global environment. After decades of research documenting behaviors that keep larvae close to natal populations, it is becoming apparent that larval behaviors in a broader spectrum of species promote long-distance migrations to offshore nursery grounds. Larvae must exert considerable control over their movements. We now show that larval emigration from estuaries is favored even over minimizing visibility to predators. An endogenous tidal vertical migration that would expedite seaward migration of Uca pugilator larvae was maintained experimentally across two tidal regimes. The periodicity of the rhythm doubled to match the local tidal regime, but larvae ascended to the surface during the daytime rather than at night. This process would conserve larval emigration but increase the visibility to predators across part of the species range. The periodicity of tidal vertical migration by Sesarma cinereum larvae failed to double and was inappropriately timed relative to both environmental cycles in the absence of a diel cycle. The timing system regulating tidally timed behaviors in these two species of crabs evidently differed. Phenotypic plasticity can conserve larval transport of both species when tidal and diel cycles are present. It may be widespread in the sea where diverse habitats are encountered across extensive species ranges.
Armstrong, Jonathan B.; Schindler, Daniel E.; Ruff, Casey P.; Brooks, Gabriel T.; Bentley, Kale E.; Torgersen, Christian E.
2013-01-01
Vertical heterogeneity in the physical characteristics of lakes and oceans is ecologically salient and exploited by a wide range of taxa through diel vertical migration to enhance their growth and survival. Whether analogous behaviors exploit horizontal habitat heterogeneity in streams is largely unknown. We investigated fish movement behavior at daily timescales to explore how individuals integrated across spatial variation in food abundance and water temperature. Juvenile coho salmon made feeding forays into cold habitats with abundant food, and then moved long distances (350–1300 m) to warmer habitats that accelerated their metabolism and increased their assimilative capacity. This behavioral thermoregulation enabled fish to mitigate trade-offs between trophic and thermal resources by exploiting thermal heterogeneity. Fish that exploited thermal heterogeneity grew at substantially faster rates than did individuals that assumed other behaviors. Our results provide empirical support for the importance of thermal diversity in lotic systems, and emphasize the importance of considering interactions between animal behavior and habitat heterogeneity when managing and restoring ecosystems.
NASA Astrophysics Data System (ADS)
Solberg, Ingrid; Kaartvedt, Stein
2017-02-01
We addressed the behavioral patterns and DVM dynamics of sprat overwintering in a Norwegian fjord (150 m) with increasing hypoxia by depth. An upward-facing echosounder deployed at the bottom and cabled to shore provided 4 months of continuous acoustic data. This enabled detailed studies of individual behavior, specifically allowing assessment of individual vertical migrations at dusk and dawn in relation to light, analysis of so-called rise-and-sink swimming, and investigation of the sprat' swimming activity and behavior in severely hypoxic waters. Field campaigns supplemented the acoustic studies. The acoustic records showed that the main habitat for sprat was the upper ∼65 m where oxygen concentrations were ⩾0.7 mL O2 L-1. The sprat schooled at ∼50 m during daytime and initiated an upward migration about 1 h prior to sunset. While some sprat migrated to surface waters, other individuals interrupted the ascent when at ∼20-30 m, and returned to deeper waters ∼20-50 min after sunset. Sprat at depth was on average larger, yet individuals made excursions to- and from upper layers. Sprat were swimming in a "rise and sink" pattern at depth, likely related to negative buoyancy. Short-term dives into waters with less than 0.45 mL O2 L-1 were interpreted as feeding forays for abundant overwintering Calanus spp. The deep group of sprat initiated a dawn ascent less than 1 h before sunrise, ending at 20-30 m where they formed schools. They subsequently returned to deeper waters about ∼20 min prior to sunrise. Measurements of surface light intensities indicated that the sprat experienced lower light levels in upper waters at dawn than at dusk. The vertical swimming speed varied significantly between the behavioral tasks. The mixed DVM patterns and dynamic nocturnal behavior of sprat persisted throughout winter, likely shaped by individual strategies involving optimized feeding and predator avoidance, as well as relating to temperature, hypoxia and negative buoyancy.
Hu, Chuanmin; Barnes, Brian B; Qi, Lin; Lembke, Chad; English, David
2016-09-01
The toxic marine dinoflagellate, Karenia brevis (the species responsible for most of red tides or harmful algal blooms in the Gulf of Mexico), is known to be able to swim vertically to adapt to the light and nutrient environments, nearly all such observations have been made through controlled experiments using cultures. Here, using continuous 3-dimensional measurements by an ocean glider across a K. brevis bloom in the northeastern Gulf of Mexico between 1 and 8 August 2014, we show the vertical migration behavior of K. brevis. Within the bloom where K. brevis concentration is between 100,000 and 1,000,000cellsL -1 , the stratified water shows a two-layer system with the depth of pycnocline ranging between 14-20m and salinity and temperature in the surface layer being <34.8 and >28°C, respectively. The bottom layer shows the salinity of >36 and temperature of <26°C. The low salinity is apparently due to coastal runoff, as the top layer also shows high amount of colored dissolved organic matter (CDOM). Within the top layer, chlorophyll-a fluorescence shows clear diel changes in the vertical structure, an indication of K. brevis vertical migration at a mean speed of 0.5-1mh -1 . The upward migration appears to start at sunrise at a depth of 8-10m, while the downward migration appears to start at sunset (or when surface light approaches 0) at a depth of ∼2m. These vertical migrations are believed to be a result of the need of K. brevis cells for light and nutrients in a stable, stratified, and CDOM-rich environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Criales, Maria M.; Browder, Joan A.; Mooers, C.N.K.; Robblee, M.B.; Cardenas, H.; Jackson, Thomas L.
2007-01-01
Transport and behavior of pink shrimp Farfantepenaeus duorarum larvae were investigated on the southwestern Florida (SWF) shelf of the Gulf of Mexico between the Dry Tortugas spawning grounds and Florida Bay nursery grounds. Stratified plankton samples and hydrographic data were collected at 2 h intervals at 3 stations located on a cross-shelf transect. At the Marquesas station, midway between Dry Tortugas and Florida Bay, internal tides were recognized by anomalously cool water, a shallow thermocline with strong density gradients, strong current shear, and a high concentration of pink shrimp larvae at the shallow thermocline. Low Richardson numbers occurred at the pycnocline depth, indicating vertical shear instability and possible turbulent transport from the lower to the upper layer where myses and postlarvae were concentrated. Analysis of vertically stratified plankton suggested that larvae perform vertical migrations and the specific behavior changes ontogenetically; protozoeae were found deeper than myses, and myses deeper than postlarvae. Relative concentrations of protozoea in the upper, middle and bottom layers were consistent with a diel vertical migration, whereas that of postlarvae and myses were consistent with the semidiurnal tides in phase with the flood tide. Postlarvae, the shallowest dwellers that migrate with a semidiurnal periodicity, experienced the largest net onshore flux and larval concentrations were highly correlated with the cross-shelf current. These results provide the first evidence of an onshore tidal transport (a type of selective tidal stream transport, STST), in decapod larvae migrating in continental shelf waters offshore, ca. 100 km from the coast and at a depth of 20 m, while approaching the coastal nursery grounds. Longer time series would be necessary to establish whether internal tides play any role in the larval onshore transport of this species and determine if the STST is the dominant onshore transport mechanism.
NASA Astrophysics Data System (ADS)
Medel, Carolina; Parada, Carolina; Morales, Carmen E.; Pizarro, Oscar; Ernst, Billy; Conejero, Carlos
2018-03-01
The Juan Fernández Ridge (JFR) is a chain of topographical elevations in the eastern South Pacific (∼33-35°S, 76-81.5°W). Rich in endemic marine species, this ridge is frequently affected by the arrival of mesoscale eddies originating in the coastal upwelling zone off central-southern Chile. The impacts of these interactions on the structure and dynamics of the JFR pelagic system have, however, not been addressed yet. The present model-based study is focused on the coupled influence of mesoscale-submesoscale processes and biological behavior (i.e., diel vertical migration) on the horizontal distribution of planktonic larvae of the spiny lobster (Jasus frontalis) around the JFR waters. Two case studies were selected from a hydrodynamic Regional Ocean Modeling System to characterize mesoscale and submesoscale structures and an Individual-based model (IBM) to simulate diel vertical migration (DVM) and its impact on the horizontal distribution and the patchiness level. DVM behavior of these larvae has not been clearly characterized, therefore, three types of vertical mechanisms were assessed on the IBM: (1) no migration (LG), (2) a short migration (0-50 m depth, DVM1), and (3) a long migration (10-200 m depth, DVM2). The influence of physical properties (eddy kinetic energy, stretching deformation and divergence) on larval aggregation within meso and submesoscale features was quantified. The patchiness index assessed for mesoscale and submesoscale structures showed higher values in the mesoscale than in the submesoscale. However, submesoscale structures revealed a higher accumulation of particles by unit of area. Both vertical migration mechanisms produced larger patchiness indices compared to the no migration experiment. DVM2 was the one that showed by far the largest aggregation of almost all the aggregation zones. Larval concentrations were highest in the submesoscale structures; these zones were characterized by low eddy kinetic energy, negative stretching deformation, and slight convergence. Stretching deformation flow appeared to be triggered by the eddy-eddy interactions and the Robinson Island barrier effect, and it likely promotes the aggregation of the spiny lobster larvae in the Juan Fernández system. These results highlighted the importance of the coupled effect of physical (mesoscale and submesoscale oceanographic features) and biological processes (DVM) in the generation of larval patchiness and concentration of spiny lobster larvae around the JFR, which could be key for their survival and retention in those waters.
Influence of marine current on vertical migration of Pb in marine bay
NASA Astrophysics Data System (ADS)
Yu, Chen; Hong, Ai; Danfeng, Yang; Huijuan, Zhao; Dongfang, Yang
2018-02-01
This paper analyzed that vertical migration of Pb contents waters in Jiaozhou Bay, and revealed the influence of marine current on vertical migration process. Results showed that Pb contents in bottom waters of Jiaozhou Bay in April and July 1988 were 1.49-18.53 μg L-1 and 12.68/-27.64 μg L-1, respectively. The pollution level of Pb in bottom waters was moderate to heavy, and were showing temporal variations and spatial heterogeneity. The vertical migration process of Pb in April 1988 included a drifting process from the southwest to the north by means of the marine current was rapid in this region. The vertical migration process of Pb in July 1988 in the open waters included no drifting process since the flow rate of marine current was relative low in this region. The vertical migration process of Pb was jointly determined by vertical water’s effect, source input and water exchange, and the influence of marine current on the vertical migration of Pb in marine bay was significant.
An underwater robo-leader for collective motion studies
NASA Astrophysics Data System (ADS)
Sanchez, Yair; Wilhelmus, Monica M.
2016-11-01
A wide range of aquatic species, from bacteria to large tuna, exhibits collective behavior. It has long been hypothesized that the formation of complex configurations brings an energetic advantage to the members of a group as well as protection against larger predators or harmful agents. Lately, however, laboratory experiments have suggested that both the physics and the behavioral aspects of collective motion yield more complexity than previously attributed. With the goal to understand the fluid mechanical implications behind collective motion in a laboratory setting, we have developed a new device to induce this behavior on demand. Following recent studies of lab-induced vertical migration of Artemia salina, we have designed and constructed a remotely controlled underwater robotic swimmer that acts as a leader for groups of phototactic organisms. Preliminary quantitative flow visualizations done during vertical migration of brine shrimp show that this new instrument does induce collective motion in the laboratory. With this setup, we can address the hydrodynamic effect of having different swarm configurations, a variable that so far has been challenging to study in a controllable and reproducible manner.
Ober, Gordon T; Thornber, Carol; Grear, Jason; Kolbe, Jason J
2017-02-01
Temperature strongly affects performance in ectotherms. As ocean warming continues, performance of marine species will be impacted. Many studies have focused on how warming will impact physiology, life history, and behavior, but few studies have investigated how ecological and behavioral traits of organisms will affect their response to changing thermal environments. Here, we assessed the thermal tolerances and thermal sensitivity of swimming performance of two sympatric mysid shrimp species of the Northwest Atlantic. Neomysis americana and Heteromysis formosa overlap in habitat and many aspects of their ecological niche, but only N. americana exhibits vertical migration. In temperate coastal ecosystems, temperature stratification of the water column exposes vertical migrators to a wider range of temperatures on a daily basis. We found that N. americana had a significantly lower critical thermal minimum (CT min ) and critical thermal maximum (CT max ). However, both mysid species had a buffer of at least 4°C between their CT max and the 100-year projection for mean summer water temperatures of 28°C. Swimming performance of the vertically migrating species was more sensitive to temperature variation, and this species exhibited faster burst swimming speeds. The generalist performance curve of H. formosa and specialist curve of N. americana are consistent with predictions based on the exposure of each species to temperature variation such that higher within-generation variability promotes specialization. However, these species violate the assumption of the specialist-generalist tradeoff in that the area under their performance curves is not constant. Our results highlight the importance of incorporating species-specific responses to temperature based on the ecology and behavior of organisms into climate change prediction models. Copyright © 2016. Published by Elsevier Ltd.
Environmental Influences on Diel Calling Behavior in Baleen Whales
2012-09-30
small copepods (e.g., Oithona spp.) to large euphausiids (e.g., Meganyctiphanes norvegica). Sampling will occur during both day and night to assess...vocalization rates and the vertical migration of their copepod prey observed from ocean gliders. Limnology and Oceanography 53:2197-2209
Blocking and guiding adult sea lamprey with pulsed direct current from vertical electrodes
Johnson, Nicholas S.; Thompson, Henry T.; Holbrook, Christopher M.; Tix, John A.
2014-01-01
Controlling the invasion front of aquatic nuisance species is of high importance to resource managers. We tested the hypothesis that adult sea lamprey (Petromyzon marinus), a destructive invasive species in the Laurentian Great Lakes, would exhibit behavioral avoidance to dual-frequency pulsed direct current generated by vertical electrodes and that the electric field would not injure or kill sea lamprey or non-target fish. Laboratory and in-stream experiments demonstrated that the electric field blocked sea lamprey migration and directed sea lamprey into traps. Rainbow trout (Oncorhynchus mykiss) and white sucker (Catostomus commersoni), species that migrate sympatrically with sea lamprey, avoided the electric field and had minimal injuries when subjected to it. Vertical electrodes are advantageous for fish guidance because (1) the electric field produced varies minimally with depth, (2) the electric field is not grounded, reducing power consumption to where portable and remote deployments powered by solar, wind, hydro, or a small generator are feasible, and (3) vertical electrodes can be quickly deployed without significant stream modification allowing rapid responses to new invasions. Similar dual-frequency pulsed direct current fields produced from vertical electrodes may be advantageous for blocking or trapping other invasive fish or for guiding valued fish around dams.
Pressure as a limit to bloater (Coregonus hoyi) vertical migration
TeWinkel, Leslie M.; Fleischer, Guy W.
1998-01-01
Observations of bloater vertical migration showed a limit to the vertical depth changes that bloater experience. In this paper, we conducted an analysis of maximum differences in pressure encountered by bloater during vertical migration. Throughout the bottom depths studied, bloater experienced maximum reductions in swim bladder volume equal to approximately 50-60% of the volume in midwater. The analysis indicated that the limit in vertical depth change may be related to a maximum level of positive or negative buoyancy for which bloater can compensate using alternative mechanisms such as hydrodynamic lift. Bloater may be limited in the extent of migration by either their depth of neutral buoyancy or the distance above the depth of neutral buoyancy at which they can still maintain their position in the water column. Although a migration limit for the bloater population was evident, individual distances of migration varied at each site. These variations in migration distances may indicate differences in depths of neutral buoyancy within the population. However, in spite of these variations, the strong correlation between shallowest depths of migration and swim bladder volume reduction across depths provides evidence that hydrostatic pressure limits the extent of daily vertical movement in bloater.
Vertical migration of municipal wastewater in deep injection well systems, South Florida, USA
NASA Astrophysics Data System (ADS)
Maliva, Robert G.; Guo, Weixing; Missimer, Thomas
2007-11-01
Deep well injection is widely used in South Florida, USA for wastewater disposal largely because of the presence of an injection zone (“boulder zone” of Floridan Aquifer System) that is capable of accepting very large quantities of fluids, in some wells over 75,000 m3/day. The greatest potential risk to public health associated with deep injection wells in South Florida is vertical migration of wastewater, containing pathogenic microorganisms and pollutants, into brackish-water aquifer zones that are being used for alternative water-supply projects such as aquifer storage and recovery. Upwards migration of municipal wastewater has occurred in a minority of South Florida injection systems. The results of solute-transport modeling using the SEAWAT program indicate that the measured vertical hydraulic conductivities of the rock matrix would allow for only minimal vertical migration. Fracturing at some sites increased the equivalent average vertical hydraulic conductivity of confining zone strata by approximately four orders of magnitude and allowed for vertical migration rates of up 80 m/year. Even where vertical migration was rapid, the documented transit times are likely long enough for the inactivation of pathogenic microorganisms.
NASA Astrophysics Data System (ADS)
Dean, Cayla; Soloviev, Alexander; Hirons, Amy; Frank, Tamara; Wood, Jon
2015-04-01
Recent studies suggest that diel vertical migrations of zooplankton may have an impact on ocean mixing, though details are not completely clear. A strong sound scattering layer of zooplankton undergoing diel vertical migrations was observed in Saanich Inlet, British Colombia, Canada by Kunze et al. (2006). In this study, a shipboard 200-kHz echosounder was used to track vertical motion of the sound scattering layer, and microstructure profiles were collected to observe turbulence. An increase of dissipation rate of turbulent kinetic energy by four to five orders of magnitude was measured during diel vertical migrations of zooplankton in one case (but not observed during other cases). A strong sound scattering layer undergoing diel vertical migration was also observed in the Straits of Florida via a bottom mounted acoustic Doppler current profiler at 244 m isobath. A 3-D non-hydrostatic computational fluid dynamics model with Lagrangian particle injections (a proxy for migrating zooplankton) via a discrete phase model was used to simulate the effect of diel vertical migrations on the turbulence for both Saanich Inlet and the Straits of Florida. The model was initialized with idealized (but based on observation) density and velocity profiles. Particles, with buoyancy adjusted to serve as a proxy for vertically swimming zooplankton, were injected to simulate diel vertical migration cycles. Results of models run with extreme concentrations of particles showed an increase in dissipation rate of turbulent kinetic energy of approximately five orders of magnitude over background turbulence during migration of particles in both Saanich Inlet and the Straits of Florida cases (though direct relation of the turbulence produced by buoyant particles and swimming organisms isn't straightforward). This increase was quantitatively consistent, with turbulence measurements by Kunze et al. (2006). When 10 times fewer particles were injected into the model, the effect on dissipation rate of turbulent kinetic energy was an order of magnitude smaller than that from the extreme concentration. At a concentration of particles 100 times smaller than the extreme concentration, there was no longer an observable effect. In the Straits of Florida, direct turbulence measurements were not available to make a quantitative comparison. However, a small, but statistically significant decrease in northward current velocity profiles during migration times were observed after averaging these profiles over 11 months. A small decrease of current velocity connected to the vertical migrations of particles was reproduced in the Straits of Florida model case. The deviations in the velocity profiles can be explained by the increase in turbulent mixing during vertical migration periods.
Diel Vertical Migration Thresholds of Karenia brevis (Dinophyceae).
Light and nutrient availability change throughout dinoflagellate diel vertical migration (DVM) and/or with subpopulation location in the water column along the west Florida shelf. Typically, the vertical depth of the shelf is greater than the distance a subpopulation can vertical...
NASA Astrophysics Data System (ADS)
Tamaki, Akio; Mandal, Sumit; Agata, Yoshihiro; Aoki, Ikumi; Suzuki, Toshikazu; Kanehara, Hisao; Aoshima, Takashi; Fukuda, Yasushi; Tsukamoto, Hideshi; Yanagi, Tetsuo
2010-01-01
The position of meroplanktonic larvae in the water column with depth-dependent current velocities determines horizontal transport trajectories. For those larvae occurring in inner shelf waters, little is known about how combined diel and tidally-synchronized vertical migration patterns shift ontogenetically. The vertical migration of larvae of Nihonotrypaea harmandi (Decapoda: Thalassinidea: Callianassidae) was investigated in mesotidal, inner shelf waters of western Kyushu, Japan in July-August 2006. The larval sampling at seven depth layers down to 60 m was conducted every 3 h for 36 h in a 68.5-m deep area 10 km off a major coastal adult habitat. Within a 61-65-m deep area 5-7.5 km off the adult habitat, water temperature, salinity, chlorophyll a concentration, and photon flux density were measured, and water currents there were characterized from harmonic analysis of current meter data collected in 2008. The water column was stratified, with pycnocline, chlorophyll a concentration maximum, and 2% of photon flux density at 2 m, recorded at around 22-24 m. The stratified residual currents were detected in their north component, directed offshore and onshore in the upper and lower mixed layers, respectively. More than 87% of larvae occurred between 20 m and 60 m, producing a net onshore transport of approximately 1.3 km d -1. At the sunset flooding tide, all zoeal-stage larvae ascended, which could further promote retention (1.4-km potential onshore transport in 3 h). The actual onshore transport of larvae was detected by observing their occurrence pattern in a shallow embayment area with the adult habitat for 24 h in October 1994. However, ontogenetic differences in the vertical migration pattern in inner shelf waters were also apparent, with the maximum mean positions of zoeae deepening with increasing stages. Zoeae I and II performed a reverse diel migration, with their minimum and maximum depths being reached around noon and midnight, respectively. Zoeae IV and V descended continuously. Zoeae III had behaviors that were intermediate to those of the earlier- and later-stage zoeae. Postlarvae underwent a normal diel migration (nocturnal ascent) regardless of tides, with the deepest position (below 60 m and/or on the bottom) during the day. These findings give a new perspective towards how complex vertical migration patterns in meroplanktonic larvae enable their retention in inner shelf waters before the final entry of postlarvae into their natal populations.
Larval biology of the crab Rhithropanopeus harrisii (Gould): a synthesis.
Forward, Richard B
2009-06-01
This synthesis reviews the physiological ecology and behavior of larvae of the benthic crab Rhithropanopeus harrisii, which occurs in low-salinity areas of estuaries. Larvae are released rhythmically around the time of high tide in tidal estuaries and in the 2-h interval after sunset in nontidal estuaries. As in most subtidal crustaceans, the timing of larval release is controlled by the developing embryos, which release peptide pheromones that stimulate larval release behavior by the female to synchronize the time of egg hatching. Larvae pass through four zoeal stages and a postlarval or megalopal stage that are planktonic before metamorphosis. They are retained near the adult population by means of an endogenous tidal rhythm in vertical migration. Larvae have several safeguards against predation: they undergo nocturnal diel vertical migration (DVM) and have a shadow response to avoid encountering predators, and they bear long spines as a deterrent. Photoresponses during DVM and the shadow response are enhanced by exposure to chemical cues from the mucus of predator fishes and ctenophores. The primary visual pigment has a spectral sensitivity maximum at about 500 nm, which is typical for zooplankton and matches the ambient spectrum at twilight. Larvae can detect vertical gradients in temperature, salinity, and hydrostatic pressure, which are used for depth regulation and avoidance of adverse environmental conditions. Characteristics that are related to the larval habitat and are common to other crab larval species are considered.
Kynard, B.; Zhuang, P.; Zhang, L.; Zhang, T.; Zhang, Z.
2002-01-01
We conducted laboratory experiments with Volga River Russian sturgeon, Acipenser gueldenstaedtii, to develop a conceptual model of early behavior. We daily observed fish from day-0 (embryos, first life interval after hatching) to day-29 feeding larvae for preference of bright habitat and cover, swimming distance above the bottom, up- and downstream movement, and diel activity. Hatchling embryos initiated a downstream migration, which suggests that predation risk of embryos at spawning sites is high. Migration peaked on days 0-5 and ceased on day 7 (8-day migration). Migrants preferred bright, open habitat and early migrants swam-up far above the bottom (maximum daily median, 140 cm) in a vertical swim tube. Post-migrant embryos did not prefer bright illumination but continued to prefer white substrate, increased use of cover habitat, and swam on the bottom. Larvae initiated feeding on day 10 after 170.6 cumulative temperature degree-days. Larvae did not migrate, weakly preferred bright illumination, preferred white substrate and open habitat, and swam near the bottom (daily median 5-78 cm). The lack of a strong preference by larvae for bright illumination suggests foraging relies more on olfaction than vision for locating prey. A short migration by embryos would disperse wild sturgeon from a spawning area, but larvae did not migrate, so a second later migration by juveniles disperses young sturgeon to the sea (2-step migration). Embryo and larva body color was light tan and tail color was black. The migration, behavior, and light body color of Russian sturgeon embryos was similar to species of Acipenser and Scaphirhynchus in North America and to Acipenser in Asia that migrate after hatching as embryos. The similarity in migration style and body color among species with diverse phylogenies likely reflects convergence for common adaptations across biogeographic regions. ?? 2002 Kluwer Academic Publishers.
NASA Astrophysics Data System (ADS)
Carr, Sarah D.; Tankersley, Richard A.; Hench, James L.; Forward, Richard B.; Luettich, Richard A.
2004-08-01
Female blue crabs ( Callinectes sapidus Rathbun) migrate from low salinity estuarine regions to high salinity regions near the ocean to release larvae. During this migration, ovigerous females use ebb-tide transport, a vertical migratory behavior in which they ascend into the water column during ebb tides, to move seaward to larval release areas. In order to determine the relationship of ebb-tide vertical migrations to local currents and the influence of these vertical migrations on the horizontal transport of blue crabs in the estuary, ovigerous females with mature embryos (˜1-3 days from hatching) were tracked near Beaufort Inlet, North Carolina (USA), in July and August 2001 and 2002. Crabs were tagged and tracked using ultrasonic telemetry, and currents near the crabs were measured simultaneously with a shipboard acoustic Doppler current profiler. During the two seasons, eight crabs were successfully tracked for periods ranging from 3.9-37.0 h and for distances ranging from 1.9-10.6 km. All crabs migrated seaward during the tracking periods. Crabs moved episodically during all tidal phases with periods of movement on the order of minutes to an hour. They moved with local currents in terms of both speed and direction during ebb tides, consistent with ebb-tide transport, and moved down-estuary (seaward) in opposition to local currents during flood tides. The percentage of time that crabs were active was higher during night ebb tides than during day ebb tides or flood tides and increased with increasing ebb-tide current speed. Mean migratory speeds were 0.11, 0.04, 0.08 and 0.02 m s -1 during night ebb, night flood, day ebb and day flood tides, respectively, and net migratory speeds were on the order of 5 km day -1. Due to the episodic nature of the crabs' movements, the total distances that crabs traveled during ebb tides ranged from 10-40% of the distances that passive particles could have traveled under the same conditions.
Boscarino, Brent T.; Halpin, Kathleen E.; Rudstam, Lars G.; Walsh, Maureen G.; Lantry, Brian F.
2012-01-01
We use a combination of spectral sensitivity analyses, laboratory behavioral observations and field distributions of a vertically migrating invertebrate, Hemimysis anomala (a recent invasive species to the Laurentian Great Lakes of North America), to determine if light preference and timing of emergence has an ontogenetic component. Juvenile Hemimysis (−3.4 and 10−2.4 mylux— a Hemimysis-specific unit of brightness derived from visual pigment analyses (wavelength of maximum absorbance = 500 nm; 1 mylux ~ 159 lx). These preferred light levels are equivalent to those present during nautical twilight on the Earth's surface and were several orders of magnitude brighter than those most preferred by adults (> 4.5 mm) in the laboratory (10−6.4 to 10−7.4 mylux). Both size classes completely avoided light levels of 10−0.4 mylux and greater, which are representative of daytime light levels at the Earth's surface. Net hauls taken at ~ 20-min intervals from sunset to the end of nautical twilight on two sampling occasions on Seneca Lake, New York (sampling depth = 2 m) revealed that juveniles emerged into the water column during civil twilight. Adult Hemimysis emerged later during nautical twilight when juveniles had already reached their maximum abundance in the water column. Laboratory-derived light preferences successfully predicted the timing of emergence and time of maximal abundance of both size classes on both sampling occasions. This study is one of the first to demonstrate that Hemimysis diel vertical migration has an ontogenetic component and to report the specific light levels likely to initiate and limit vertical movements.
Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans
Vidal-Gadea, Andrés; Ward, Kristi; Beron, Celia; Ghorashian, Navid; Gokce, Sertan; Russell, Joshua; Truong, Nicholas; Parikh, Adhishri; Gadea, Otilia; Ben-Yakar, Adela; Pierce-Shimomura, Jonathan
2015-01-01
Many organisms spanning from bacteria to mammals orient to the earth's magnetic field. For a few animals, central neurons responsive to earth-strength magnetic fields have been identified; however, magnetosensory neurons have yet to be identified in any animal. We show that the nematode Caenorhabditis elegans orients to the earth's magnetic field during vertical burrowing migrations. Well-fed worms migrated up, while starved worms migrated down. Populations isolated from around the world, migrated at angles to the magnetic vector that would optimize vertical translation in their native soil, with northern- and southern-hemisphere worms displaying opposite migratory preferences. Magnetic orientation and vertical migrations required the TAX-4 cyclic nucleotide-gated ion channel in the AFD sensory neuron pair. Calcium imaging showed that these neurons respond to magnetic fields even without synaptic input. C. elegans may have adapted magnetic orientation to simplify their vertical burrowing migration by reducing the orientation task from three dimensions to one. DOI: http://dx.doi.org/10.7554/eLife.07493.001 PMID:26083711
Sea level driven marsh expansion in a coupled model of marsh erosion and migration
Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel
2016-01-01
Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.
Vertical migration and nighttime distribution of adult bloaters in Lake Michigan
TeWinkel, Leslie M.; Fleischer, Guy W.
1999-01-01
The vertical migration and nighttime vertical distribution of adult bloaters Coregonus hoyi were investigated during late summer in Lake Michigan using acoustics simultaneously with either midwater or bottom trawling. Bloaters remained on or near bottom during the day. At night, bloaters were distributed throughout 30-65 m of water, depending on bottom depth. Shallowest depths of migration were not related to water temperature or incident light. Maximum distances of migration increased with increasing bottom depth. Nighttime midwater densities ranged from 0.00 to 6.61 fish/1,000 mA? and decreased with increasing bottom depth. Comparisons of length distributions showed that migrating and nonmigrating bloaters did not differ in size. However, at most sites, daytime bottom catches collected a greater proportion of larger individuals compared with nighttime midwater or bottom catches. Mean target strengths by 5-m strata indicated that migrating bloaters did not stratify by size in the water column at night. Overall, patterns in frequency of empty stomachs and mean digestive state of prey indicated that a portion of the bloater population fed in the water column at night. Bloater diet composition indicated both midwater feeding and bottom feeding. In sum, although a portion of the bloater population fed in the water column at night, bloaters were not limited to feeding at this time. This research confirmed that bloaters are opportunistic feeders and did not fully support the previously proposed hypothesis that bloater vertical migration is driven by the vertically migrating macroinvertebrate the opossom shrimp Mysis relicta.
Loher, Timothy; Seitz, Andrew C.
2006-01-01
Pop-up archival transmitting (PAT) tags were used to study the fall migration of halibut in the Gulf of Alaska (GOA). We tagged 6 Pacific halibut Hippoglossus stenolepis on summer feeding grounds in the eastern GOA and another 6 in the western GOA from June 13 to August 6, 2002. The tags were programed to be released from the fish on January 15, 2003, at the height of the winter spawning season: 10 tags successfully detached, transmitted archived environmental data (depth and temperature), and generated accurate latitude–longitude coordinates shortly after pop-up; 2 tags deployed off SE Alaska were lost. The tags revealed that 6 fish had moved a considerable distance (>200 km) between tagging and pop-up, and all of these had moved northward to some extent. The longest of the observed migrations was from the southern Alaska Peninsula to Yakutat Bay, a linear displacement of 1153 km; 4 fish showed little evidence of geographic displacement, exhibiting migrations that ranged only from 30 to 69 km. Although 2 fish had moved inshore by the end of the tagging period, all other fish had moved offshore regardless of their overall migration distance. The precise timing of offshore movements varied, beginning as early as August and as late as January. These observations generally corroborate conventional tagging, indicating migration of halibut toward winter spawning grounds in the northern GOA, and movement of fish to deep water in fall. However, no single stereotypic migration behavior was apparent, and a variety of vertical movement patterns and temperature profiles were observed. Halibut spent most time in waters of 5 to 7°C, but experienced temperatures ranging from 2.6 to 11.6°C. Depth observations ranged from 0 to 736 m, with summertime activity concentrated in depths from 0 to 400 m, and halibut that exhibited offshore movement were typically observed at 300 to 700 m by mid-winter. Vertical movement (short-period changes in depth) varied among fish and over time, with some fish displaying little vertical activity, others displaying short periods of activity, and still others displaying considerable activity throughout their time at liberty.
Zhang, Yingqiu; Xu, Qiang; Alós, Josep; Liu, Hui; Xu, Qinzeng; Yang, Hongsheng
2015-01-01
The recent miniaturization of acoustic tracking devices has allowed fishery managers and scientists to collect spatial and temporal data for sustainable fishery management. The spatial and temporal dimensions of fish behavior (movement and/or vertical migrations) are particularly relevant for rockfishes (Sebastes spp.) because most rockfish species are long-lived and have high site fidelity, increasing their vulnerability to overexploitation. In this study, we describe the short-term (with a tracking period of up to 46 d) spatial behavior, as determined by acoustic tracking, of the black rockfish Sebastes schlegelii, a species subject to overexploitation in the Yellow Sea of China. The average residence index (the ratio of detected days to the total period from release to the last detection) in the study area was 0.92 ± 0.13, and most of the tagged fish were detected by only one region of the acoustic receiver array, suggesting relatively high site fidelity to the study area. Acoustic tracking also suggested that this species is more frequently detected during the day than at night in our study area. However, the diel detection periodicity (24 h) was only evident for certain periods of the tracking time, as revealed by a continuous wavelet transform. The habitat selection index of tagged S. schlegelii suggested that S. schlegelii preferred natural reefs, mixed sand/artificial reef bottoms and mixed bottoms of boulder, cobble, gravel and artificial reefs. The preference of this species for the artificial reefs that were recently deployed in the study area suggests that artificial seascapes may be effective management tools to attract individuals. The vertical movement of tagged S. schlegelii was mostly characterized by bottom dwelling behavior, and there was high individual variability in the vertical migration pattern. Our results have important implications for S. schlegelii catchability, the implementation of marine protected areas, and the identification of key species habitats, and our study provides novel information for future studies on the sustainability of this important marine resource in eastern China. PMID:26322604
Brosseau, Chase Julian; Cline, Timothy J.; Cole, Jonathan J.; Hodgson, James R.; Pace, Michael L.; Weidel, Brian C.
2012-01-01
Diel vertical migration of zooplankton is influenced by a variety of factors including predation, food, and temperature. Research has recently shifted from a focus on factors influencing migration to how migration affects nutrient cycling and habitat coupling. Here we evaluate the potential for Daphnia migrations to incorporate metalimnetic productivity in a well-studied northern Wisconsin lake. We use prior studies conducted between 1985 and 1990 and current diel migration data (2008) to compare day and night Daphnia vertical distributions with the depth of the metalimnion (between the thermocline and 1% light depth). Daphnia migrate from a daytime mean residence depth of between about 1.7 and 2.5 m to a nighttime mean residence depth of between 0 and 2.0 m. These migrations are consistent between the prior period and current measurements. Daytime residence depths of Daphnia are rarely deep enough to reach the metalimnion; hence, metalimnetic primary production is unlikely to be an important resource for Daphnia in this system.
Tidal and seasonal effects on transport of pink shrimp postlarvae
Criales, Maria M.; Wang, Jingyuan; Browder, Joan A.; Robblee, M.B.
2005-01-01
Transport simulations were conducted to investigate a large seasonal peak in postlarvae of the pink shrimp Farfantepenaeus duorarum that occurs every summer on the northwestern border of Florida Bay. Daily vertical migration, a known behavior in pink shrimp postlarvae, was assumed in all scenarios investigated. A Lagrangian trajectory model was developed using a current field derived from a 3 yr ADCP (Acoustic Doppler Current Profiler) time series. To fit the estimated planktonic development time of pink shrimp, the model simulated larvae traveling at night over a 30 d period. We investigated 2 types of effects: (1) the effect of mismatch periodicity between tidal constituents and daily migration, and (2) the effect of seasonal changes in night length. The maximum eastward displacement with the semidiurnal lunar tidal constituent (M2) was 4 km, with periods of enhanced transport in both summer and winter. In contrast, eastward displacement with the semidiurnal solar tidal constituent (S2) and the lunisolar diurnal K1 was 65 km and the period of maximum distance occurred in summer every year. Because the periods of S2 and K1 are so close to the 24 h vertical migration period, and the eastward current (flood) of these constituents matches the diel cycle over extended intervals, they can induce strong horizontal transport during summer. Thus, diel vertical migration can interact with the S2 and the K1 tidal constituents and with the annual cycle of night length to produce a distinct annual cycle that may enhance transport of pink shrimp and other coastal species during summer in shallow areas of the Gulf of Mexico. ?? Inter-Research 2005.
NASA Astrophysics Data System (ADS)
Aceves-Medina, Gerardo; Saldierna-Martínez, Ricardo; Hinojosa-Medina, Alejandro; Jiménez-Rosenberg, Sylvia P. A.; Hernández-Rivas, Martín E.; Morales-Ávila, Raúl
2008-03-01
The effect of environmental variables on the vertical structure of larval fish assemblages in a tropical coastal lagoon was analyzed. Ichthyoplankton samples were collected from the near-bottom and surface strata near the mouth of a subtropical lagoon during contrasting seasonal conditions of temperature, photoperiod, light intensity, and tidal heights. During summer, larval fish assemblages had high species richness ( R) and were dominated by tropical species. During winter, assemblages had lower R values and were dominated by subtropical and temperate species. Vertical distribution patterns of the taxa were determined by the interaction of environmental variables and behavior of each species to maintain their position in a stratum in the water column, or to achieve vertical migrations induced by environmental stimuli that, in this case, were thermal gradient, column water stratification, and intensity of light. Depth position and vertical migration of fish larvae, coupled with the flood and ebb tide conditions, played an important role in their retention and displacement toward the lagoon. Fish larvae with distribution restricted to the inner part of the inlet, such as Achirus mazatlanus, Etropus sp., and several gobies, were more abundant in the near-bottom stratum during the ebb tide, allowing them to avoid exportation, whereas those that could spawn outside, but depended on the inlet as a nursery area, were more abundant near the surface during flood tide, such as Abudefduf troschelii and Stegastes rectifraenum.
Reverse time migration in tilted transversely isotropic media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Linbing; Rector III, James W.; Hoversten, G. Michael
2004-07-01
This paper presents a reverse time migration (RTM) method for the migration of shot records in tilted transversely isotropic (TTI) media. It is based on the tilted TI acoustic wave equation that was derived from the dispersion relation. The RTM is a full depth migration allowing for velocity to vary laterally as well as vertically and has no dip limitations. The wave equation is solved by a tenth-order finite difference scheme. Using 2D numerical models, we demonstrate that ignoring the tilt angle will introduce both lateral and vertical shifts in imaging. The shifts can be larger than 0.5 wavelength inmore » the vertical direction and 1.5 wavelength in the lateral direction.« less
NASA Astrophysics Data System (ADS)
Ito, Shin-ichi; Yoshie, Naoki; Okunishi, Takeshi; Ono, Tsuneo; Okazaki, Yuji; Kuwata, Akira; Hashioka, Taketo; Rose, Kenneth A.; Megrey, Bernard A.; Kishi, Michio J.; Nakamachi, Miwa; Shimizu, Yugo; Kakehi, Shigeho; Saito, Hiroaki; Takahashi, Kazutaka; Tadokoro, Kazuaki; Kusaka, Akira; Kasai, Hiromi
2010-10-01
The Oyashio region in the western North Pacific supports high biological productivity and has been well monitored. We applied the NEMURO (North Pacific Ecosystem Model for Understanding Regional Oceanography) model to simulate the nutrients, phytoplankton, and zooplankton dynamics. Determination of parameters values is very important, yet ad hoc calibration methods are often used. We used the automatic calibration software PEST (model-independent Parameter ESTimation), which has been used previously with NEMURO but in a system without ontogenetic vertical migration of the large zooplankton functional group. Determining the performance of PEST with vertical migration, and obtaining a set of realistic parameter values for the Oyashio, will likely be useful in future applications of NEMURO. Five identical twin simulation experiments were performed with the one-box version of NEMURO. The experiments differed in whether monthly snapshot or averaged state variables were used, in whether state variables were model functional groups or were aggregated (total phytoplankton, small plus large zooplankton), and in whether vertical migration of large zooplankton was included or not. We then applied NEMURO to monthly climatological field data covering 1 year for the Oyashio, and compared model fits and parameter values between PEST-determined estimates and values used in previous applications to the Oyashio region that relied on ad hoc calibration. We substituted the PEST and ad hoc calibrated parameter values into a 3-D version of NEMURO for the western North Pacific, and compared the two sets of spatial maps of chlorophyll- a with satellite-derived data. The identical twin experiments demonstrated that PEST could recover the known model parameter values when vertical migration was included, and that over-fitting can occur as a result of slight differences in the values of the state variables. PEST recovered known parameter values when using monthly snapshots of aggregated state variables, but estimated a different set of parameters with monthly averaged values. Both sets of parameters resulted in good fits of the model to the simulated data. Disaggregating the variables provided to PEST into functional groups did not solve the over-fitting problem, and including vertical migration seemed to amplify the problem. When we used the climatological field data, simulated values with PEST-estimated parameters were closer to these field data than with the previously determined ad hoc set of parameter values. When these same PEST and ad hoc sets of parameter values were substituted into 3-D-NEMURO (without vertical migration), the PEST-estimated parameter values generated spatial maps that were similar to the satellite data for the Kuroshio Extension during January and March and for the subarctic ocean from May to November. With non-linear problems, such as vertical migration, PEST should be used with caution because parameter estimates can be sensitive to how the data are prepared and to the values used for the searching parameters of PEST. We recommend the usage of PEST, or other parameter optimization methods, to generate first-order parameter estimates for simulating specific systems and for insertion into 2-D and 3-D models. The parameter estimates that are generated are useful, and the inconsistencies between simulated values and the available field data provide valuable information on model behavior and the dynamics of the ecosystem.
Castro-Santos, Theodore R.; Haro, Alex
2015-01-01
This paper describes a series of experiments designed to measure the effect of exposure to a full-scale, vertical axis hydrokinetic turbine on downstream migrating juvenile Atlantic salmon (N=75) and upstream migrating adult American shad (N=208). Controlled studies were performed in a large-scale, open-channel flume, and all individuals approached the turbine under volitional control. No injuries were observed, and there was no measurable increase in mortality associated with turbine passage. Exposure to the turbine elicited behavioral responses from both species, however, with salmon passing primarily over the downrunning blades. Shad movement was impeded by the device, as indicated by fewer attempts of shorter duration and reduced distance of ascent up the flume. More work should be performed in both laboratory and field conditions to determine to what extent these effects are likely to influence free-swimming fish.
Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Stockwell, Jason D.; Yule, Daniel L.; Sass, Greg G.
2011-01-01
Diel vertical migrations are common among many aquatic species and are often associated with changing light levels. The underlying mechanisms are generally attributed to optimizing foraging efficiency or growth rates and avoiding predation risk (μ). The objectives of this study were to (1) assess seasonal and interannual changes in vertical migration patterns of three trophic levels in the Lake Superior pelagic food web and (2) examine the mechanisms underlying the observed variability by using models of foraging, growth, and μ. Our results suggest that the opossum shrimp Mysis diluviana, kiyi Coregonus kiyi, and siscowet lake trout Salvelinus namaycush migrate concurrently during each season, but spring migrations are less extensive than summer and fall migrations. In comparison with M. diluviana, kiyis, and siscowets, the migrations by ciscoes C. artedi were not as deep in the water column during the day, regardless of season. Foraging potential and μ probably drive the movement patterns of M. diluviana, while our modeling results indicate that movements by kiyis and ciscoes are related to foraging opportunity and growth potential and receive a lesser influence from μ. The siscowet is an abundant apex predator in the pelagia of Lake Superior and probably undertakes vertical migrations in the water column to optimize foraging efficiency and growth. The concurrent vertical movement patterns of most species are likely to facilitate nutrient transport in this exceedingly oligotrophic ecosystem, and they demonstrate strong linkages between predators and prey. Fishery management strategies should use an ecosystem approach and should consider how altering the densities of long-lived top predators produces cascading effects on the nutrient cycling and energy flow in lower trophic levels.
NASA Astrophysics Data System (ADS)
Darnell, M. Z.
2016-02-01
Female blue crabs undertake a critical spawning migration seaward, migrating from low-salinity mating habitat to high-salinity waters of the lower estuaries and coastal ocean, where larval survival is highest. This migration occurs primarily through ebb tide transport, driven by an endogenous circatidal rhythm in vertical swimming that is modulated by behavioral responses to environmental cues. Blue crabs are typically considered an estuarine species and fisheries are managed on a state-by-state basis. Yet recent evidence from state and regional fishery independent survey programs suggests that the spawning migration can take females substantial distances offshore (>150 km), and that offshore waters are important spawning grounds for female blue crabs in the Gulf of Mexico. This is especially true in areas where freshwater inflow is high, resulting in low estuarine and coastal salinities. In low-salinity, high-inflow areas (e.g., Louisiana), spawning occurs further offshore while in high-salinity, low-inflow areas (e.g., South Texas), spawning takes place primarily within the estuary. Regional patterns in spawning locations both inshore and offshore are driven by interactions between behavioral mechanisms and local oceanographic conditions during the spawning migration. These environmentally driven differences in spawning locations have implications for larval survival and population connectivity, and emphasize the need for interjurisdictional assessment and management of the blue crab spawning stock.
Diel Variation in Beaked Whale Diving Behavior
2008-01-01
While our results are only from a single study area and our sample size is small, diving patterns of these two species appear very stereotypic ...sharks of the genus Isistius (McSweeney et al. 2007). Cookie-cutter sharks are thought to exhibit diel vertical migrations, spending time near the...Mar. Mamm. Sci. 23: 666-687. 17 Mead, J.G. 1989. Beaked whales of the genus Mesoplodon. Pages 349-430 In S.H. Ridgway and R. Harrison
NASA Astrophysics Data System (ADS)
Sutton, T.; Cook, A.; Frank, T. M.; Boswell, K. M.; Vecchione, M.; Judkins, H.; Romero, I.
2016-02-01
Toothed whales, smaller cetaceans, seabirds, and epipelagic gamefishes rely on deep-pelagic (meso- and bathypelagic) nekton as primary or secondary prey. This trophic interaction is mediated by downward and upward vertical movements (e.g., sperm whale diving and lanternfishes migration, respectively). This interaction also links particle-feeding lower trophic levels with top predators in a manner that spans the gamut of depth domains. This is particularly important with respect to a whole-water column disturbance such as the Deepwater Horizon oil spill (DWHOS). Here we present highly resolved vertical distribution and migration data collected during a large-scale, NOAA-supported, deep-pelagic (0-1500 m) survey in 2011, along with data collected during ongoing GoMRI-supported DEEPEND consortium surveys. The deep-pelagic nekton community of the Gulf of Mexico is a complex mixture of migrating, non-migrating, and partially migrating assemblages that connect surface waters with depths in excess of 1000 m. Major patterns of vertical distribution for 400+ species of fishes, cephalopods, and macrocrustaceans, the primary prey of many important species of oceanic vertebrates living near-surface, will be summarized and quantified with the goal of highlighting potential vectors of anthropogenic contamination transfer in the deep-pelagial, the Gulf's largest ecosystem.
NASA Astrophysics Data System (ADS)
Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.
2012-12-01
During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of vertical CO2 migration at injection point, the reverse time migration yields better images than Kirchhoff migration does. On the other hand, Kirchhoff migration images horizontal CO2 migration clearer than the reverse time migration does. From these results, we can conclude that the reverse-time migration and Kirchhoff migration can complement with each other to describe the behavior of CO2 in the subsurface. Acknowledgement This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).
Vertical migration of motile phytoplankton chains through turbulence
NASA Astrophysics Data System (ADS)
Climent, Eric; Lovecchio, Salvatore; Durham, William; Stocker, Roman
2017-11-01
Daily, phytoplankton needs to migrate vertically from and towards the ocean surface to find nutrients such as dissolved oxygen. To travel through the water column they need to fight against gravity (by swimming) and fluid turbulence which can make their journey longer. It is often observed that cells migrate across the water column as chains. The first benefit to form chains is that micro-organisms sum up their thrust while reducing their drag. Therefore, upwards swimming is faster for chains in a quiescent fluid with steady vertical orientation. However, as chain length increases their tendency to periodically tumble in turbulent structures increases which reduces orientation stability and limits their capacity to swim upwards. The purpose of our study is to elaborate on this apparent contradiction. We carried out direct numerical simulations and physical analysis of the coupled system of homogeneous isotropic turbulence and chain trajectories through Lagrangian tracking. Formation of chains is indeed favorable for vertical migration through the upper layer of the ocean.
NASA Astrophysics Data System (ADS)
Ursella, Laura; Cardin, Vanessa; Batistić, Mirna
2017-04-01
The E2-M3A Station is deployed in the southern Adriatic Sea, at about 1200 m depth, in the center of the cyclonic gyre where deep convection process takes place, involving both the atmosphere and the ocean dynamics and forming new dense and oxygenated waters, thus triggering the solubility and the biological pump. In particular, the E2M3A is equipped with an upward looking 150 kHz RDI-Acoustic Doppler Current Profiler (ADCP) positioned between 265 and 320 m depth, with a vertical resolution of 5 m and a range of 250-300 m. The mooring line has been in water since November 2006, with an interruption from September 2010 until May 2011. ADCP backscattering signal is very useful in determining zooplankton distribution and variability at various time scales, including seasonal/annual behavior and diel vertical migration (DVM). From ADCP backscattering signal, backscattering strength (Sv) was calculated for the entire dataset. Sv permits to quantify qualitatively the scatters present in the water, i.e. the particulate and/or the phyto/zoo-plankton. Zooplankton distribution is dependent on phytoplankton presence and blooms, which on its own depend on nutrients availability (related to wind-induced vertical mixing), but also on sunlight. The variation in time of Sv together with vertical velocity allows for measuring DVM of zooplankton and its variability with seasons and years. Alternation of high and low values for Sv are present all year long with differences in intensities in particular in the surface layer. Quite high values for Sv are found in spring and summer; in spring they are found along a large part of the water column, while in summer they are detected prevalently in the upper part of the measurement range. This behavior is related to the conditions of the water column, i.e. mixing and nutrients availability, which influence phytoplankton blooms and therefore zooplankton growing and movements. Correlating Net Primary Production obtained from model and Mixed Layer Depth, a delay of two months in the bloom of phytoplankton with respect to deepest mixing is found. Power Spectra of Sv show a major peak at 24 h that corresponds to the classical nocturnal-diurnal migration, and a secondary important peak at the period of 12 hours that indicates a different type of DVM pattern, the twilight migration. The ultimate factor behind DVM seems to be the minimization of the risk of predation from fishes and other carnivorous groups. Calculating the monthly mean daily cycle of the Sv, it is evident that there is a decrease in Sv at sunrise, while it increases at sunset. The highest values in the derivative of Sv, as well as highest values in the vertical velocity (w), coincide in time with sunset and sunrise. In particular, w is negative (downward movement) at sunrise while it is positive (upward movement) at sunset, and in some cases absolute value of w (|w|) reaches 5 cm/s. The hour of occurrence of |w| greater than 4.5 cm/s follows the curves in time of the hours of sunset and sunrise, which are changing throughout the year.
Arctic complexity: a case study on diel vertical migration of zooplankton
Berge, Jørgen; Cottier, Finlo; Varpe, Øystein; Renaud, Paul E.; Falk-Petersen, Stig; Kwasniewski, Sawomir; Griffiths, Colin; Søreide, Janne E.; Johnsen, Geir; Aubert, Anais; Bjærke, Oda; Hovinen, Johanna; Jung-Madsen, Signe; Tveit, Martha; Majaneva, Sanna
2014-01-01
Diel vertical migration (DVM) of zooplankton is a global phenomenon, characteristic of both marine and limnic environments. At high latitudes, patterns of DVM have been documented, but rather little knowledge exists regarding which species perform this ecologically important behaviour. Also, in the Arctic, the vertically migrating components of the zooplankton community are usually regarded as a single sound scattering layer (SSL) performing synchronized patterns of migration directly controlled by ambient light. Here, we present evidence for hitherto unknown complexity of Arctic marine systems, where zooplankton form multiple aggregations through the water column seen via acoustics as distinct SSLs. We show that while the initiation of DVM during the autumnal equinox is light mediated, the vertical positioning of the migrants during day is linked more to the thermal characteristics of water masses than to irradiance. During night, phytoplankton biomass is shown to be the most important factor determining the vertical positioning of all migrating taxa. Further, we develop a novel way of representing acoustic data in the form of a Sound Image (SI) that enables a direct comparison of the relative importance of each potential scatterer based upon the theoretical contribution of their backscatter. Based on our comparison of locations with contrasting hydrography, we conclude that a continued warming of the Arctic is likely to result in more complex ecotones across the Arctic marine system. PMID:25221372
Fleischer, Guy W.; TeWinkel, Leslie M.
1998-01-01
Acoustic studies in Lake Michigan found that bloaters (Coregonus hoyi) were less reflective per size than the other major pelagic species. This difference in in situ acoustic backscattering could indicate that the deep-water bloaters have compressed swimbladders for much of their vertical range with related implications on buoyancy. To test this hypothesis, the buoyancy characteristics of bloaters were determined with fish placed in a cage that was lowered to bottom and monitored with an underwater camera. We found bloaters were positively buoyant near surface, neutrally buoyant at intermediate strata, and negatively buoyant near bottom. This pattern was consistent for the range of depths bloaters occur. The depth of neutral buoyancy (near the 50-n strata) corresponds with the maximum extent of vertical migration for bloaters observed in acoustic surveys. Fish below this depth would be negatively buoyant which supports our contention that bloaters deeper in the water column have compressed swimbladders. Understanding the buoyancy characteristics of pelagic fishes will help to predict the effects of vertical migration on target strength measurement and confirms the use of acoustics as a tool to identify and quantify the ecological phenomenon of vertical migration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Sankhabrata; Bhattacharya, Atanu, E-mail: atanub@ipc.iisc.ernet.in; Periyasamy, Ganga
2015-06-28
In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation- and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH{sub 2}, CF{sub 3}, and COOH substituents) molecules paired with NH{sub 3} (referred as ACl:NH{sub 3} complex): these complexes exhibit halogen bonds. To the best of our knowledge, this ismore » the first report on purely electron correlation- and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31 + G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl⋯NH{sub 3} complex, the hole is predicted to migrate from the NH{sub 3}-end to the ClCN-end of the NCCl⋯NH{sub 3} complex in approximately 0.5 fs on the D{sub 0} cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H{sub 2}NCl:NH{sub 3}, F{sub 3}CCl:NH{sub 3}, and HOOCCl:NH{sub 3}, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH{sub 3} and HOCl:NH{sub 3} complexes do not exhibit any charge migration following vertical ionization to the D{sub 0} cation state, pointing to interesting halogen bond strength-dependent charge migration.« less
The role of the US Great Plains low-level jet in nocturnal migrant behavior
NASA Astrophysics Data System (ADS)
Wainwright, Charlotte E.; Stepanian, Phillip M.; Horton, Kyle G.
2016-10-01
The movements of aerial animals are under the constant influence of atmospheric flows spanning a range of spatiotemporal scales. The Great Plains nocturnal low-level jet is a large-scale atmospheric phenomenon that provides frequent strong southerly winds through a shallow layer of the airspace. The jet can provide substantial tailwind assistance to spring migrants moving northward, while hindering southward migration during autumn. This atmospheric feature has been suspected to play a prominent role in defining migratory routes, but the flight strategies used with respect to these winds are yet to be examined. Using collocated vertically pointing radar and lidar, we investigate the altitudinal selection behavior of migrants over Oklahoma during two spring and two autumn migration seasons. In general, migrants choose to fly within the jet in spring, often concentrating in the favorable wind speed maximum. Autumn migrants typically fly below the jet, although some will rapidly climb to reach altitudes above the inhibiting winds. The intensity of migration was relatively constant throughout the spring due to the predominantly favorable southerly jet winds. Conversely, autumn migrants were more apt to delay departure to wait for the relatively infrequent northerly winds.
NASA Astrophysics Data System (ADS)
Spitz, Y. H.; Cervantes, B.
2016-02-01
The Columbia River estuary experiences extensive seasonal red-colored blooms caused by a mixotrophic ciliate of the genus Mesodinium. Although the blooms are non-toxic, they have a significant influence on the levels of nutrients, light and oxygen in the estuary. Mesodinium spp. displays very particular physiology that makes it one of few planktonic species able to thrive in a highly flushed system: a high growth rate due to its ability to photosynthesize using the photosynthetic organelles of its preys, and complex vertical migration patterns. Knowledge of the migration pattern is based on limited observations of Mesodinium behavior in culture and recent in-situ measurements collected in the Columbia River estuary. A more comprehensive understanding is needed of the mechanisms allowing Mesodinium spp. to be retained and experience rapid growth. To this end, we extended the finite element circulation model SELFE to include a 5-component behavioral model that simulates the relationships between nutrients, detritus, Mesodinium spp. and its cryptophyte prey. We then used the model to investigate various migration patterns and growth scenarios to determine their role in the formation and retention of the Mesodinium spp. bloom in the brackish water of the estuary.
Seasonal changes in partial, reverse diel vertical migrations of cisco Coregonus artedi.
Ahrenstorff, T D; Hrabik, T R
2016-09-01
The objectives of this study were to (1) document changes in partial, reverse diel vertical migrations (DVM) patterns of cisco Coregonus artedi in Ten Mile Lake, MN, U.S.A., throughout the year and (2) evaluate the mechanisms that may cause shifts in migration behaviour. Results indicated that C. artedi vertical distributions remained deep in the water column during the day and night of the spring and autumn, which was related to a low risk, low reward strategy. During summer, a partial migration occurred where a portion of the population remained deeper according to the low risk, low reward strategy, while the other portion performed a more extensive high risk, high reward reverse DVM. In winter, C. artedi did not migrate because there were only low risk, low reward conditions present at all depths. The extensive partial, reverse DVM during summer probably increased the growth potential of C. artedi, helping individuals survive in a lake with low zooplankton prey resources. © 2016 The Fisheries Society of the British Isles.
At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull
Cruz, Sebastian M.; Hooten, Mevin; Huyvaert, Kathryn P.; Proaño, Carolina B.; Anderson, David J.; Afanasyev, Vsevolod; Wikelski, Martin
2013-01-01
Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.
At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull.
Cruz, Sebastian M; Hooten, Mevin; Huyvaert, Kathryn P; Proaño, Carolina B; Anderson, David J; Afanasyev, Vsevolod; Wikelski, Martin
2013-01-01
Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.
NASA Astrophysics Data System (ADS)
Durbin, Edward G.; Campbell, Robert G.; Gilman, Sharon L.; Durbin, Ann G.
In situ feeding was measured on late stage Calanus finmarchicus in the southern Gulf of Maine during late spring 1988 and 1989. The region is a spring feeding ground for the planktivorous right whale, Eubalaena glacialis. Measurements in 1988 were made during the declining spring bloom, when phytoplankton showed considerable spatial variability. 1989 observations were made after summer stratification had become established, when phytoplankton biomass was low and dominated by the <7 μm size fraction. In situ ingestion rates of C. finmarchicus reflected these differences in food, and ranged from 30.2% body C day -1 at a spring bloom station to 0.6% body C day -1 after stratification. These values compare with a maximum ingestion rate of 44.3% body C day -1 measured in a shipboard grazing experiment using cultured algae as food, and indicate that C. finmarchicus became food limited in the southern Gulf of Maine after stratification. Calanus finmarchicus diet feeding behavior and diet vertical migration patterns changed during the seasonal progression from spring bloom to summer stratification. Diet feeding rhythms and vertical migration were absent during the bloom, but developed as the bloom declined. During the post-bloom stratified conditions, diet feeding rhythms continued but vertical migration ceased. Most of the C. finmarchicus population remained near the surface, while a small population of nonmigratory individuals resided at depth and appeared to be feeding upon sedimented spring bloom diatoms. At the spring bloom station C. finmarchicus ingested only a small proportion of the phytoplankton standing stock in the > 7 μm size fraction (2.9% day -1), reflecting the high biomass of phytoplankton and the stage composition of the C. finmarchicus population, dominated by early copepodite stages with low biomass. In contrast, at the post-bloom stations in 1989, the dense surface aggregations of C. finmarchicus populations were dominated by late copepodite stages whose total biomass was comparable to that of the phytoplankton, and C. finmarchicus consumed a significantly larger fraction of the > 7 μm phytoplankton standing crop (up to 62.5% day -1.
Twenty-year follow-up study of radiocesium migration in soil.
Clouvas, A; Xanthos, S; Takoudis, G; Antonopoulos-Domis, M; Zinoviadis, G; Vidmar, T; Likar, A
2007-01-01
The profile of (137)Cs present in undisturbed soil due to the Chernobyl accident was measured repeatedly for approximately 20 y. The vertical migration of (137)Cs in soil is a very slow process. The mean vertical migration velocity is estimated at approximately 0.1-0.2 cm y(-1). A method based on in situ gamma spectrometry measurements and Monte Carlo computations, aimed at estimating the profile of (137)Cs without performing any soil sampling, is investigated.
Food resource effects on diel movements and body size of cisco in north-temperate lakes.
Ahrenstorff, Tyler D; Hrabik, Thomas R; Jacobson, Peter C; Pereira, Donald L
2013-12-01
The movement patterns and body size of fishes are influenced by a host of physical and biological conditions, including temperature and oxygen, prey densities and foraging potential, growth optimization, and predation risk. Our objectives were to (1) investigate variability in vertical movement patterns of cisco (Coregonus artedi) in a variety of inland lakes using hydroacoustics, (2) explore the causal mechanisms influencing movements through the use of temperature/oxygen, foraging, growth, and predation risk models, and (3) examine factors that may contribute to variations in cisco body size by considering all available information. Our results show that cisco vertical movements vary substantially, with different populations performing normal diel vertical migrations (DVM), no DVM, and reverse DVM in lakes throughout Minnesota and northern Wisconsin, USA. Cisco populations with the smallest body size were found in lakes with lower zooplankton densities. These smaller fish showed movements to areas of highest foraging or growth potential during the day and night, despite moving out of preferred temperature and oxygen conditions and into areas of highest predation risk. In lakes with higher zooplankton densities, cisco grew larger and had movements more consistent with behavioral thermoregulation and predator avoidance, while remaining in areas with less than maximum foraging and growth potential. Furthermore, the composition of potential prey items present in each lake was also important. Cisco that performed reverse DVM consumed mostly copepods and cladocerans, while cisco that exhibited normal DVM or no migration consumed proportionally more macro-zooplankton species. Overall, our results show previously undocumented variation in migration patterns of a fish species, the mechanisms underlying those movements, and the potential impact on their growth potential.
VIIRS captures phytoplankton vertical migration in the NE Gulf of Mexico.
Qi, Lin; Hu, Chuanmin; Barnes, Brian B; Lee, Zhongping
2017-06-01
In summer 2014, a toxic Karenia brevis bloom (red tide) occurred in the NE Gulf of Mexico, during which vertical migration of K. brevis has been observed from glider measurements. The current study shows that satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) can capture changes in surface reflectance and chlorophyll concentration occurring within 2h, which may be attributed this K. brevis vertical migration. The argument is supported by earlier glider measurements in the same bloom, by the dramatic changes in the VIIRS-derived surface chlorophyll, and by the consistency between the short-term reflectance changes and those reported earlier from field-measured K. brevis vertical migration. Estimates using the quasi-analytical algorithm also indicate significant increases in both total absorption coefficient and backscattering coefficient in two hours. The two observations in a day from a single polar-orbiting satellite sensor are thus shown to be able to infer phytoplankton vertical movement within a short timeframe, a phenomenon difficult to capture with other sensors as each sensor can provide at most one observation per day, and cross-sensor inconsistency may make interpretation of merged-sensor data difficult. These findings strongly support geostationary satellite missions to study short-term bloom dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.
Lateral migration of a microdroplet under optical forces in a uniform flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Hyunjun; Chang, Cheong Bong; Jung, Jin Ho
2014-12-15
The behavior of a microdroplet in a uniform flow and subjected to a vertical optical force applied by a loosely focused Gaussian laser beam was studied numerically. The lattice Boltzmann method was applied to obtain the two-phase flow field, and the dynamic ray tracing method was adopted to calculate the optical force. The optical forces acting on the spherical droplets agreed well with the analytical values. The numerically predicted droplet migration distances agreed well with the experimentally obtained values. Simulations of the various flow and optical parameters showed that the droplet migration distance nondimensionalized by the droplet radius is proportionalmore » to the S number (z{sub d}/r{sub p} = 0.377S), which is the ratio of the optical force to the viscous drag. The effect of the surface tension was also examined. These results indicated that the surface tension influenced the droplet migration distance to a lesser degree than the flow and optical parameters. The results of the present work hold for the refractive indices of the mean fluid and the droplet being 1.33 and 1.59, respectively.« less
NASA Astrophysics Data System (ADS)
Savina, Marie; Lacroix, Geneviève; Ruddick, Kevin
2010-04-01
In the present work we used a particle-tracking model coupled to a 3D hydrodynamic model to study the combined effect of hydrodynamic variability and active vertical movements on the transport of sole larvae in the southern North Sea. Larval transport from the 6 main spawning grounds was simulated during 40 day periods starting on 2 plausible spawning dates, the 15/04 and the 01/05, during 2 years, 1995 and 1996. In addition to a "passive" behaviour, 3 types of active vertical movements inspired from previous studies have been tested: (1) Eggs and early larvae float in the surface waters, late larvae migrate toward the bottom and stay there until the end of the simulation; (2 and 3) Eggs float in the surface waters, early larvae perform diel vertical migrations in the surface waters, and (2) Late larvae perform diel vertical migrations in the bottom waters until the end of the simulation; or (3) Late larvae perform tidally synchronised vertical migrations in the bottom waters until the end of the simulation. These behaviours have been implemented in the model with vertical migration rates, positive or negative, which can account for buoyancy or real swimming activity. Variations in larval transport were analysed in terms of mean trajectories, final larvae distribution, larval retention above nurseries, and connectivity. Results suggest that the variations in larval retention above nurseries due to the varying hydrodynamic conditions are not consistent in space i.e. not the same for all the spawning sites. The effect of active vertical movements on larval transport is also not consistent in space: Effects of active vertical movements include decreased retention above nurseries, decreased transport and/or decreased horizontal dispersion of larvae through reduced vertical shear (depending on the zone). The variability in larval retention due to hydrodynamic variability is higher than variability due to differences in the behaviour of larvae. In terms of connectivity, exchanges of larvae between the 6 areas considered are moderate: 10 connections happened out of the 30 possible, and the amount of larvae exchanged is much lower than the amount of larvae retained except in a few cases. This is not incompatible with the possible existence of subpopulations of sole in the Eastern Channel and southern North Sea.
At–Sea Behavior Varies with Lunar Phase in a Nocturnal Pelagic Seabird, the Swallow-Tailed Gull
Cruz, Sebastian M.; Hooten, Mevin; Huyvaert, Kathryn P.; Proaño, Carolina B.; Anderson, David J.; Afanasyev, Vsevolod; Wikelski, Martin
2013-01-01
Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase. PMID:23468889
Vertical distributions and diel migrations of Euthecosomata in the northwest Sargasso Sea
NASA Astrophysics Data System (ADS)
Wormuth, John H.
1981-12-01
Vertical distributions and seasonal variations in abundance of nine abundant or frequent pteropod species or subspecies in the northwest Sargasso Sea are described. Factor analyses yielded two groups, diel migrators and non-migrators. In terms of water column abundances, tows taken in August and November are similar, as are tows in December and April. Most species show significant within-species agreement in depth distribution over the year but high variability in abundance. Regression analyses using environmental parameters as independent variables show significant correlations of species abundances with temperature.
Madeleine Eckmann; Jason Dunham; Edward J. Connor; Carmen A. Welch
2016-01-01
Many species living in deeper lentic ecosystems exhibit daily movements that cycle through the water column, generally referred to as diel vertical migration (DVM). In this study, we applied bioenergetics modelling to evaluate growth as a hypothesis to explain DVM by bull trout (Salvelinus confluentus) in a thermally stratified reservoir (Ross Lake...
NASA Astrophysics Data System (ADS)
Antezana, Tarsicio
2009-12-01
A series of stratified bongo net samples taken over a 2 day period at ca. 18°S, about 20 nm off the coast of Peru, South America, suggest species-specific patterns of diel vertical migration into the Oxygen Minimum Zone (OMZ) of the Humboldt Current Ecosystem (HCE). The OMZ was the most dramatic feature of the water column and seemed to determine the extent of migration: Stylocheiron affine migrated only to the shallow oxycline; whereas Euphausia mucronata, Euphausia eximia, Euphausia distinguenda and Euphausia tenera migrated to the core of the OMZ; and Nematoscelis gracilis to beneath the core of the OMZ. Some differences were also found in the timing and duration of the ascent and descent, and residence times in shallow and deep layers. E. mucronata, N. gracilis and E. distinguenda displayed a normal descent during sunrise, and ascent during sunset. E. eximia and E. tenera also descended during sunrise but seemed to begin their ascent earlier in the afternoon and consequently shortened their deep residence times. S. affine showed the most extended residence times at the shallow layer and the shortest vertical displacement. Day and night vertical stratification and differences in the timing of migration into and out of the OMZ of the HCE suggest a community structure based on habitat partitioning whereby species avoided co-occurrence in time and space. Species-specific patterns of vertical stratification and migratory chronology are examined with regard to body and gill sizes, feeding adaptations of euphausiids, and potential food resources at the OMZ.
Olfactory-mediated stream-finding behavior of migratory adult sea lamprey (Petromyzon marinus)
Vrieze, L.A.; Bergstedt, R.A.; Sorensen, P.W.
2011-01-01
Stream-finding behavior of adult sea lamprey (Petromyzon marinus), an anadromous fish that relies on pheromones to locate spawning streams, was documented in the vicinity of an important spawning river in the Great Lakes. Untreated and anosmic migrating sea lampreys were implanted with acoustic transmitters and then released outside the Ocqueoc River. Lampreys swam only at night and then actively. When outside of the river plume, lampreys pursued relatively straight bearings parallel to the shoreline while making frequent vertical excursions. In contrast, when within the plume, lampreys made large turns and exhibited a weak bias towards the river mouth, which one-third of them entered. The behavior of anosmic lampreys resembled that of untreated lampreys outside of the plume, except they pursued a more northerly compass bearing. To locate streams, sea lampreys appear to employ a three-phase odor-mediated strategy that involves an initial search along shorelines while casting vertically, followed by river-water-induced turning that brings them close to the river's mouth, which they then enter using rheotaxis. This novel strategy differs from that of salmonids and appears to offer this poor swimmer adaptive flexibility and suggests ways that pheromonal odors might be used to manage this invasive species.
Sterling, Jeremy T; Springer, Alan M.; Iverson, Sara J.; Johnson, Shawn P.; Pelland, Noel A.; Johnson, Devin S.; Lea, Mary-Anne; Bond, Nicholas A.
2014-01-01
Adult male and female northern fur seals (Callorhinus ursinus) are sexually segregated in different regions of the North Pacific Ocean and Bering Sea during their winter migration. Explanations for this involve interplay between physiology, predator-prey dynamics, and ecosystem characteristics, however possible mechanisms lack empirical support. To investigate factors influencing the winter ecology of both sexes, we deployed five satellite-linked conductivity, temperature, and depth data loggers on adult males, and six satellite-linked depth data loggers and four satellite transmitters on adult females from St. Paul Island (Bering Sea, Alaska, USA) in October 2009. Males and females migrated to different regions of the North Pacific Ocean: males wintered in the Bering Sea and northern North Pacific Ocean, while females migrated to the Gulf of Alaska and California Current. Horizontal and vertical movement behaviors of both sexes were influenced by wind speed, season, light (sun and moon), and the ecosystem they occupied, although the expression of the behaviors differed between sexes. Male dive depths were aligned with the depth of the mixed layer during daylight periods and we suspect this was the case for females upon their arrival to the California Current. We suggest that females, because of their smaller size and physiological limitations, must avoid severe winters typical of the northern North Pacific Ocean and Bering Sea and migrate long distances to areas of more benign environmental conditions and where prey is shallower and more accessible. In contrast, males can better tolerate often extreme winter ocean conditions and exploit prey at depth because of their greater size and physiological capabilities. We believe these contrasting winter behaviors 1) are a consequence of evolutionary selection for large size in males, important to the acquisition and defense of territories against rivals during the breeding season, and 2) ease environmental/physiological constraints imposed on smaller females. PMID:24722344
Sterling, Jeremy T; Springer, Alan M; Iverson, Sara J; Johnson, Shawn P; Pelland, Noel A; Johnson, Devin S; Lea, Mary-Anne; Bond, Nicholas A
2014-01-01
Adult male and female northern fur seals (Callorhinus ursinus) are sexually segregated in different regions of the North Pacific Ocean and Bering Sea during their winter migration. Explanations for this involve interplay between physiology, predator-prey dynamics, and ecosystem characteristics, however possible mechanisms lack empirical support. To investigate factors influencing the winter ecology of both sexes, we deployed five satellite-linked conductivity, temperature, and depth data loggers on adult males, and six satellite-linked depth data loggers and four satellite transmitters on adult females from St. Paul Island (Bering Sea, Alaska, USA) in October 2009. Males and females migrated to different regions of the North Pacific Ocean: males wintered in the Bering Sea and northern North Pacific Ocean, while females migrated to the Gulf of Alaska and California Current. Horizontal and vertical movement behaviors of both sexes were influenced by wind speed, season, light (sun and moon), and the ecosystem they occupied, although the expression of the behaviors differed between sexes. Male dive depths were aligned with the depth of the mixed layer during daylight periods and we suspect this was the case for females upon their arrival to the California Current. We suggest that females, because of their smaller size and physiological limitations, must avoid severe winters typical of the northern North Pacific Ocean and Bering Sea and migrate long distances to areas of more benign environmental conditions and where prey is shallower and more accessible. In contrast, males can better tolerate often extreme winter ocean conditions and exploit prey at depth because of their greater size and physiological capabilities. We believe these contrasting winter behaviors 1) are a consequence of evolutionary selection for large size in males, important to the acquisition and defense of territories against rivals during the breeding season, and 2) ease environmental/physiological constraints imposed on smaller females.
NASA Astrophysics Data System (ADS)
Botsford, L. W.; Moloney, C. L.; Hastings, A.; Largier, J. L.; Powell, T. M.; Higgins, K.; Quinn, J. F.
We synthesize the results of several modelling studies that address the influence of variability in larval transport and survival on the dynamics of marine metapopulations distributed along a coast. Two important benthic invertebrates in the California Current System (CCS), the Dungeness crab and the red sea urchin, are used as examples of the way in which physical oceanographic conditions can influence stability, synchrony and persistence of meroplanktonic metapopulations. We first explore population dynamics of subpopulations and metapopulations. Even without environmental forcing, isolated local subpopulations with density-dependence can vary on time scales roughly twice the generation time at high adult survival, shifting to annual time scales at low survivals. The high frequency behavior is not seen in models of the Dungeness crab, because of their high adult survival rates. Metapopulations with density-dependent recruitment and deterministic larval dispersal fluctuate in an asynchronous fashion. Along the coast, abundance varies on spatial scales which increase with dispersal distance. Coastwide, synchronous, random environmental variability tends to synchronize these metapopulations. Climate change could cause a long-term increase or decrease in mean larval survival, which in this model leads to greater synchrony or extinction respectively. Spatially managed metapopulations of red sea urchins go extinct when distances between harvest refugia become greater than the scale of larval dispersal. All assessments of population dynamics indicate that metapopulation behavior in general dependes critically on the temporal and spatial nature of larval dispersal, which is largely determined by physical oceanographic conditions. We therfore explore physical influences on larval dispersal patterns. Observed trends in temperature and salinity applied to laboratory-determined responses indicate that natural variability in temperature and salinity can lead to variability in larval development period on interannual (50%), intra-annual (20%) and latitudinal (200%) scales. Variability in development period significantly influences larval survival and, thus, net transport. Larval drifters that undertake diel vertical migration in a primitive equation model of coastal circulation (SPEM) demonstrate the importance of vertical migration in determining horizontal transport. Empirically derived estimates of the effects of wind forcing on larval transport of vertically migrating larvae (wind drift when near the surface and Ekman transport below the surface) match cross-shelf distributions in 4 years of existing larval data. We use a one-dimensional advection-diffusion model, which includes intra-annual timing of cross-shelf flows in the CCS, to explore the combined effects on settlement: (1) temperature- and salinity-dependent development and survival rates and (2) possible horizontal transport due to vertical migration of crab larvae. Natural variability in temperature, wind forcing, and the timing of the spring transition can cause the observed variability in recruitment. We conclude that understanding the dynamics of coastally distributed metapopulations in response to physically-induced variability in larval dispersal will be a critical step in assessing the effects of climate change on marine populations.
NASA Astrophysics Data System (ADS)
Miller, N. C.; Lizarralde, D.; McGuire, J.; Hole, J. A.
2006-12-01
We consider methodologies, including survey design and processing algorithms, which are best suited to imaging vertical reflectors in oceanic crust using marine seismic techniques. The ability to image the reflectivity structure of transform faults as a function of depth, for example, may provide new insights into what controls seismicity along these plate boundaries. Turning-wave migration has been used with success to image vertical faults on land. With synthetic datasets we find that this approach has unique difficulties in the deep ocean. The fault-reflected crustal refraction phase (Pg-r) typically used in pre-stack migrations is difficult to isolate in marine seismic data. An "imagable" Pg-r is only observed in a time window between the first arrivals and arrivals from the sediments and the thick, slow water layer at offsets beyond ~25 km. Ocean- bottom seismometers (OBSs), as opposed to a long surface streamer, must be used to acquire data suitable for crustal-scale vertical imaging. The critical distance for Moho reflections (PmP) in oceanic crust is also ~25 km, thus Pg-r and PmP-r are observed with very little separation, and the fault-reflected mantle refraction (Pn-r) arrives prior to Pg-r as the observation window opens with increased OBS-to-fault distance. This situation presents difficulties for "first-arrival" based Kirchoff migration approaches and suggests that wave- equation approaches, which in theory can image all three phases simultaneously, may be more suitable for vertical imaging in oceanic crust. We will present a comparison of these approaches as applied to a synthetic dataset generated from realistic, stochastic velocity models. We will assess their suitability, the migration artifacts unique to the deep ocean, and the ideal instrument layout for such an experiment.
Estuarine retention of larvae of the crab Rhithropanopeus harrisii
NASA Astrophysics Data System (ADS)
Cronin, Thomas W.
1982-08-01
Larvae of estuarine organisms continually face possible export from the parent estuary. Retention of larvae of the estuarine crab Rhithropanopeus harrisii was investigated in the upper Newport River estuary, North Carolina. All of the developmental stages occurred in the same area of the estuary with similar horizontal distributions, and the concentrations of intermediate and late stages were not greatly reduced from those of the first larval stage. This was strong evidence for the continuous retention of larvae in the upper estuary. To determine mechanisms by which retention might be effected, field studies of the vertical distributions and migrations of these larvae were made. The four zoeal stages had similar but complex vertical migration patterns, which varied from study to study. These migrations centered on the depth of no net flow, reducing longitudinal transport during development. Cross-spectral analysis of the larval migrations and the environmental cycles of light, salinity and current speed revealed that each of these external cycles affected larval depth. Megalopae of R. harrisii also migrated vertically, but they were present in much lower concentrations than the zoeal stages, an indication of a change to benthic existence in this final larval form.
Method of remediation of contaminants in porous media through minimization of bouyancy effects
Shook, G. Michael; Pope, Gary A.
1999-01-01
A method for controlling vertical migration of contaminants in an aquifer includes introduction of a solubilizing solution having a surfactant and an alcohol or other light co-solvent. The surfactant is selected to solubilize the contaminant. The alcohol or other solvent is selected to provide the microemulsion with a substantially neutral buoyancy with respect to groundwater. The neutral buoyancy of the microemulsion prevents the normal downward movement which is typical of the solubilized dense non-aqueous phase liquid in surfactant-enhanced aquifer remediation. Thus, the risk that any significant amount of the solubilized dense non-aqueous contaminants will migrate vertically can be controlled. The relative tendency for vertical migration may also be reduced by increasing the injection rate or injected fluid viscosity (by adding polymer), or by reducing the well spacing.
Masking of a circadian behavior in larval zebrafish involves the thalamo-habenula pathway.
Lin, Qian; Jesuthasan, Suresh
2017-06-22
Changes in illumination can rapidly influence behavior that is normally controlled by the circadian clock. This effect is termed masking. In mice, masking requires melanopsin-expressing retinal ganglion cells that detect blue light and project to the thalamus. It is not known whether masking is wavelength-dependent in other vertebrates, nor is it known whether the thalamus is also involved or how it influences masking. Here, we address these questions in zebrafish. We find that diel vertical migration, a circadian behavior in larval zebrafish, is effectively triggered by blue, but not by red light. Two-photon calcium imaging reveals that a thalamic nucleus and a downstream structure, the habenula, have a sustained response to blue but not to red light. Lesioning the habenula reduces light-evoked climbing. These data suggest that the thalamo-habenula pathway is involved in the ability of blue light to influence a circadian behavior.
Origin and migration of hydrocarbon gases and carbon dioxide, Bekes Basin, southeastern Hungary
Clayton, J.L.; Spencer, C.W.; Koncz, I.; Szalay, A.
1990-01-01
The Bekes Basin is a sub-basin within the Pannonian Basin, containing about 7000 m of post-Cretaceous sedimentary rocks. Natural gases are produced from reservoirs (Precambrian to Tertiary in age) located on structural highs around the margins of the basin. Gas composition and stable carbon isotopic data indicate that most of the flammable gases were derived from humic kerogen contained in source rocks located in the deep basin. The depth of gas generation and vertical migration distances were estimated using quantitative source rock maturity-carbon isotope relationships for methane compared to known Neogene source rock maturity-depth relationships in the basin. These calculations indicate that as much as 3500 m of vertical migration has occured in some cases. Isotopically heavy (> - 7 > 0) CO2 is the predominant species present in some shallow reservoirs located on basin-margin structural highs and has probably been derived via long-distance vertical and lateral migration from thermal decompositon of carbonate minerals in Mesozoic and older rocks in the deepest parts of the basin. A few shallow reservoirs (< 2000m) contain isotopically light (-50 to -60%0) methane with only minor amounts of C2+ homologs (< 3% v/v). This methane is probably mostly microbial in origin. Above-normal pressures, occuring at depths greater than 1800 m, are believed to be the principal driving force for lateral and vertical gas migration. These pressures are caused in part by active hydrocarbon generation, undercompaction, and thermal decomposition of carbonates.
Endogenous mitigation of H2S inside of the landfills.
Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang
2016-02-01
Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.
Carbon Tetrachloride Flow and Transport in the Subsurface of the 216-Z-9 Trench at the Hanford Site
NASA Astrophysics Data System (ADS)
Oostrom, M.; Rockhold, M.; Truex, M.; Thorne, P.; Last, G.; Rohay, V.
2006-12-01
Three-dimensional modeling was conducted with layered and heterogeneous models to enhance the conceptual model of CT distribution in the vertical and lateral direction beneath the 216-Z-9 trench and to investigate the effects of soil vapor extraction (SVE). This work supports the U.S. Department of Energy's (DOE's) efforts to characterize the nature and distribution of CT in the 200 West Area and subsequently select an appropriate final remedy. Simulations targeted migration of dense, nonaqueous phase liquid (DNAPL) consisting of CT and co-disposed organics in the subsurface beneath the 216-Z-9 trench as a function of the properties and distribution of subsurface sediments and of the properties and disposal history of the waste. Simulations of CT migration were conducted using the Subsurface Transport Over Multiple Phases (STOMP) simulator. Simulation results support a conceptual model for CT distribution where CT in the DNAPL phase is expected to have migrated primarily in a vertical direction below the disposal trench. Presence of small-scale heterogeneities tends to limit the extent of vertical migration of CT DNAPL due to enhanced retention of DNAPL compared to more homogeneous conditions, but migration is still predominantly in the vertical direction. Results also show that the Cold Creek units retain more CT DNAPL within the vadose zone than other hydrologic unit during SVE. A considerable amount of the disposed CT DNAPL may have partitioned to the vapor and subsequently water and sorbed phases. Presence of small-scale heterogeneities tends to increase the amount of volatilization. Any continued migration of CT from the vadose zone to the groundwater is likely through interaction of vapor phase CT with the groundwater and not through continued DNAPL migration. The results indicated that SVE appears to be an effective technology for vadose zone remediation, but additional effort is needed to improve simulation of the SVE process.
NASA Astrophysics Data System (ADS)
Coyle, Kenneth O.; Pinchuk, Alexei I.
2005-01-01
The cross-shelf distribution of major zooplankton species was examined on the northern Gulf of Alaska (GOA) shelf during the production season for four years, between October 1997 and October 2001. The zooplankton community on the northern GOA shelf consisted of oceanic and neritic species of the North Pacific subarctic species complex. Cross-shelf distribution of the major zooplankton species was influenced by their depth preferences, vertical migration behavior, salinity-temperature preferences, and by cross-shelf water-mass distribution and movement. The neritic community, dominated by Pseudocalanus spp., Metridia pacifica and Calanus marshallae, had highest abundances on the inner shelf, in the Alaska Coastal Current, and in the adjacent fjords in late spring and early summer. The oceanic community, which contained primarily Neocalanus cristatus and Eucalanus bungii, was observed in the Alaskan Stream and adjacent waters near the shelf break. A mid-shelf transition zone contained a mixture of oceanic and neritic species. Prince William Sound (PWS) contained a unique species complex of large mesopelagic copepods, amphipods and shrimp. Neocalanus flemingeri and Oithona similis were abundant in all four regions during spring and early summer. The transition zone commonly crossed much of the shelf between the shelf break and the ACC, but satellite images and CTD data indicate that occasionally a narrow shelf-break front can form, in which case distinct zooplankton species groups are observed on either side of the front. Satellite data also revealed numerous large and small eddies, which probably contribute to cross-shelf mixing in the transition zone.
Theories on migration processes of Cd in Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Li, Haixia; Wang, Qi; Ding, Jun; Zhang, Longlei
2018-03-01
Understanding the migration progress is essential to pollution control, while developing theories for the migration progress is the scientific basis. This paper further developed five key theories on migration processes of Cd including homogeneous theory, environmental dynamic theory, horizontal loss theory, migration trend theory and vertical migration theory, respectively. The performance and practical values of these theories were demonstrated in the application of these on analyzing the migration process of Cd in Jiaozhou Bay. Results these theory helpful to better understand the migration progress of pollutants in marine bay.
Huang, Yumei; Chen, Laiguo; Feng, Yongbin; Ye, Zhixiang; He, Qiusheng; Feng, Qianhua; Qing, Xian; Liu, Ming; Gao, Bo
2016-07-01
Short-chain chlorinated paraffins (SCCPs) are candidate persistent organic pollutants (POPs) that are under review by the Stockholm Convention. China is currently the largest producer and consumer of chlorinated paraffins (CPs). To study the environmental behavior and fate of SCCPs in the soils of urban and suburban regions, the SCCP concentrations in 88 topsoils and 15 soil columns from land of different use types (e.g., woodland, vegetable field, paddy field and greenbelt) from Guangzhou and Chengdu have been determined. The SCCP concentrations in topsoils from Guangzhou (range: 1.45-25.5ngg(-1) dry weight (dw), average: 10.3ngg(-1) dw) were much higher than those from Chengdu (range: 0.218-3.26ngg(-1) dw, average: 1.43ngg(-1) dw). When compared to previously reported SCCP levels for topsoils from other areas, the SCCP concentrations measured in the present work were quite low. Much higher SCCP concentrations were observed in the greenbelt topsoils from Chengdu relative to the values measured from woodlands and vegetable and paddy fields. The composition profiles suggest that C10Cl6-10 and C11-13Cl6-8 were the major groups of SCCPs in topsoils from the woodlands and vegetable and paddy fields in Guangzhou and Chengdu. Vertical variations of the SCCP concentrations in the soil columns suggest that less chlorinated SCCPs (Cl5-6-SCCPs) are more capable of migrating to the deeper-layer soils than more chlorinated ones (Cl9-10-SCCPs). The SCCP concentrations displayed little dependence on organic matter (OM) for most topsoils (p>0.05), indicating that OM is not the controlling factor in the distribution of SCCPs in the soils. This study analyzed the occurrence, homologue patterns and vertical migration of SCCPs in the topsoils of two Chinese cities with different industrial structures and climate conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Vertical ascending electrophoresis of cells with a minimal stabilizing medium
NASA Technical Reports Server (NTRS)
Omenyi, S. N.; Snyder, R. S.
1983-01-01
Vertical fractionation of a mixture of fixed horse and human red blood cells layered over a stabilizing support medium was done to give a valid comparison with proposed space experiments. In particular, the effects of sample thickness and concentration on zone migration rate were investigated. Electrophoretic mobilities of horse and human cells calculated from zone migration rates were compatible with those obtained by microelectrophoresis. Complete cell separation was observed when low power and effective cooling were employed.
Oxygen and Temperature Effects on Vertically Migrating Animals in Oxygen Minimum Zones
NASA Astrophysics Data System (ADS)
Seibel, B.
2016-02-01
Large populations of oceanic nekton and zooplankton undergo daily migrations from shallow water at night to depths greater than 200 m during the daytime. In some regions, these migrations cross extreme gradients of temperature, oxygen and carbon dioxide. Oxygen minimum zones (OMZs) are extensive and characterized by deep-water (100-800 m) oxygen partial pressures that would be lethal to most marine organisms, yet are tolerated by vertical migrators. Climate change is predicted to further deplete oxygen, and measurable reductions in oxygen have already been documented in some regions. Increases in shallow water temperature and carbon dioxide are occurring simultaneously. Oxygen levels and temperature are important drivers of biodiversity and distribution, and documented changes in community structure and function are reportedly associated with OMZ expansion and warming. Here I answer fundamental questions concerning zooplankton distributions, adaptations, and functions in oxygen minimum zones. In particular I report that metabolic suppression is a common strategy that facilitates diel occupancy of extreme hypoxia in many oceanic taxa. Anaerobic metabolic pathways play a minimal role in compensating for reduced aerobic ATP production. Numerous epigenetic mechanisms lead to reductions in energetically costly cellular processes, such as transcription and translation. Total metabolism is reduced by 50% or more during exposure to levels of hypoxia that characterize the daytime habitat for most vertically-migrating zooplankton. I further show that many migrators approach their upper thermal maximum in shallow water at night. Thus expanding OMZs and global warming may together compress the habitable depth range for many species.
Generalized migration in frequency-wavenumber domain (MGF-K) in anisotropic media
NASA Astrophysics Data System (ADS)
Kostecki, Andrzej; Półchłopek, Anna
2013-06-01
In this paper, the background of MGF-K migration in dual domain (wavenumber-frequency K-F and space-time) in anisotropic media is presented. Algorithms for poststack (zero-offset) and prestack migration are based on downward extrapolation of acoustic wavefield by shift-phase with correction filter for lateral variability of medium's parameters. In anisotropic media, the vertical wavenumber was determined from full elastic wavefield equations for two dimensional (2D) tilted transverse isotropy (TTI) model. The method was tested on a synthetic wavefield for TTI anticlinal model (zero-offset section) and on strongly inhomogeneous vertical transverse isotropy (VTI) Marmousi model. In both cases, the proper imaging of assumed media was obtained.
Preferred negative geotactic orientation in mobile cells: Tetrahymena results.
Noever, D A; Cronise, R; Matsos, H C
1994-01-01
For the protozoan species Tetrahymena a series of airplane experiments are reported, which varied gravity as an active laboratory parameter and tested for corresponding changes in geotaxic orientation of single cells. The airplane achieved alternating periods of low (0.01 g) and high (1.8 g; g = 980 cm/s) gravity by flying repeated Keplerian parabolas. The experimental design was undertaken to clearly distinguish gravity from competing aerodynamic and chemical gradients. In this way, each culture served as its own control, with gravity level alone determining the orientational changes. On average, 6.3% of the Tetrahymena oriented vertically in low gravity, while 27% oriented vertically in high-gravity phases. Simplified physical models are explored for describing these cell trajectories as a function of gravity, aerodynamic drag, and lift. The notable effect of gravity on turning behavior is emphasized as the biophysical cause of the observed negative geotaxis in Tetrahymena. A fundamental investigation of the biological gravity receptor (if it exists) and improved modeling for vertical migration in important types of ocean plankton motivate the present research. Images FIGURE 1 PMID:7858146
Preferred Negative Geotactic Orientation in Mobile Cells: Tetrahymena Results
NASA Technical Reports Server (NTRS)
Noever, David A.; Cronise, Raymond; Matsos, Helen C.
1994-01-01
For the protozoan species Tetrahymena a series of airplane experiments are reported, which varied gravity as an active laboratory parameter and tested for corresponding changes in geotaxic orientation of single cells. The airplane achieved altemating periods of low (0.01 g) and high (1.8 g, g = 980 cm/s) gravity by flying repeated Keplerian parabolas. The experimental design was undertaken to clearly distinguish gravity from competing aerodynamic and chemical gradients. In this way, each culture served as its own control, with gravity level alone determining the orientational changes. On average, 6.3% of the Tetrahymena oriented vertically in low gravity, while 27% oriented vertically in high-gravity phases. Simplified physical models are explored for describing these cell trajectores as a function of gravity, aerodynamic drag, and lift. The notable effect of gravity on turning behavior is emphasized as the biophysical cause of the observed negative geotaxis in Tetrahymena. A fundamental investigation of the biological gravity receptor (it it exists) and improved modeling for vertical migration in important types of ocean plankton motivate the present research.
Villareal, Tracy A; Pilskaln, Cynthia H; Montoya, Joseph P; Dennett, Mark
2014-01-01
In oceanic subtropical gyres, primary producers are numerically dominated by small (1-5 µm diameter) pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N) to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump) is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80-100 m) into the surface layer (∼0-40 m) to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (10(2)-10(3) µm diameter) phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations) in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia) mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia) can mediate time-averaged transport of N (235 µmol N m(-2) d(-1)) equivalent to eddy nitrate injections (242 µmol NO3 (-) m(-2) d(-1)). This upward biotic transport can close N budgets in the upper 250 m of the central Pacific Ocean and together with diazotrophy creates a surface zone where biological nutrient inputs rather than physical processes dominate the new N flux. In addition to these numerically rare large migrators, there is evidence in the literature of ascending behavior in small phytoplankton that could contribute to upward flux as well. Although passive downward movement has dominated models of phytoplankton flux, there is now sufficient evidence to require a rethinking of this paradigm. Quantifying these fluxes is a challenge for the future and requires a reexamination of individual phytoplankton sinking rates as well as methods for capturing and enumerating ascending phytoplankton in the sea.
Pilskaln, Cynthia H.; Montoya, Joseph P.; Dennett, Mark
2014-01-01
In oceanic subtropical gyres, primary producers are numerically dominated by small (1–5 µm diameter) pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N) to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump) is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80–100 m) into the surface layer (∼0–40 m) to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (102–103 µm diameter) phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations) in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia) mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia) can mediate time-averaged transport of N (235 µmol N m-2 d-1) equivalent to eddy nitrate injections (242 µmol NO3− m-2 d-1). This upward biotic transport can close N budgets in the upper 250 m of the central Pacific Ocean and together with diazotrophy creates a surface zone where biological nutrient inputs rather than physical processes dominate the new N flux. In addition to these numerically rare large migrators, there is evidence in the literature of ascending behavior in small phytoplankton that could contribute to upward flux as well. Although passive downward movement has dominated models of phytoplankton flux, there is now sufficient evidence to require a rethinking of this paradigm. Quantifying these fluxes is a challenge for the future and requires a reexamination of individual phytoplankton sinking rates as well as methods for capturing and enumerating ascending phytoplankton in the sea. PMID:24688877
Inventory and vertical migration of ¹³⁷Cs in Spanish mainland soils.
Legarda, F; Romero, L M; Herranz, M; Barrera, M; Idoeta, R; Valiño, F; Olondo, C; Caro, A
2011-06-01
In this study the total activity of (137)Cs deposited per unit area over the Spanish peninsular territory was analysed using a 150 × 150 km(2) mesh grid, with samples taken from 29 points. The deposited activities ranged between 251 and 6074 Bq/m(2). A linear relationship was obtained between these values and the mean annual rainfall at each sampling point which allowed a map to be drawn, using GIS software, which shows the distribution of total deposited (137)Cs activity across the Spanish mainland. At twelve of these sampling points the vertical migration profile of (137)Cs was obtained. These profiles are separated into two groups with different behaviour, one of which includes clay and loam soils and the other containing sandy soils. For both groups of profiles the parameters of the convective-diffusive model, which describes the vertical migration of (137)Cs in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) were calculated. Copyright © 2011 Elsevier Ltd. All rights reserved.
Serrano, X; Baums, I B; O'Reilly, K; Smith, T B; Jones, R J; Shearer, T L; Nunes, F L D; Baker, A C
2014-09-01
The deep reef refugia hypothesis proposes that deep reefs can act as local recruitment sources for shallow reefs following disturbance. To test this hypothesis, nine polymorphic DNA microsatellite loci were developed and used to assess vertical connectivity in 583 coral colonies of the Caribbean depth-generalist coral Montastraea cavernosa. Samples were collected from three depth zones (≤10, 15-20 and ≥25 m) at sites in Florida (within the Upper Keys, Lower Keys and Dry Tortugas), Bermuda, and the U.S. Virgin Islands. Migration rates were estimated to determine the probability of coral larval migration from shallow to deep and from deep to shallow. Finally, algal symbiont (Symbiodinium spp.) diversity and distribution were assessed in a subset of corals to test whether symbiont depth zonation might indicate limited vertical connectivity. Overall, analyses revealed significant genetic differentiation by depth in Florida, but not in Bermuda or the U.S. Virgin Islands, despite high levels of horizontal connectivity between these geographic locations at shallow depths. Within Florida, greater vertical connectivity was observed in the Dry Tortugas compared to the Lower or Upper Keys. However, at all sites, and regardless of the extent of vertical connectivity, migration occurred asymmetrically, with greater likelihood of migration from shallow to intermediate/deep habitats. Finally, most colonies hosted a single Symbiodinium type (C3), ruling out symbiont depth zonation of the dominant symbiont type as a structuring factor. Together, these findings suggest that the potential for shallow reefs to recover from deep-water refugia in M. cavernosa is location-specific, varying among and within geographic locations likely as a consequence of local hydrology. © 2014 John Wiley & Sons Ltd.
Diel changes in the near-surface biomass of zooplankton and the carbon content of vertical migrants
NASA Astrophysics Data System (ADS)
Hays, Graeme C.; Harris, Roger P.; Head, Robert N.
Zooplankton biomass and the carbon content of vertical migrants were measured in the NE Atlantic (36.5°N, 19.2°W) between 11 and 18 July 1996 as part of the Plankton Reactivity in the Marine Environment (PRIME) programme. The increase in zooplankton biomass near the surface (0-100 m) at night compared to during the day suggested that diel vertical migration was an important feature at this site. For three species of vertically migrant copepods, Pleuromamma pisekii, P. gracilis and P. abdominalis, the carbon content of individuals collected at dusk was significantly less than for individuals collected at dawn, with this reduction being 6.2, 7.3 and 14.8%, respectively. This dawn-dusk reduction in carbon content is consistent with the diel pattern of feeding and fasting exhibited by vertical migrants and supports the suggestion that migrating zooplankton will cause an active export of carbon from the surface layers.
Boogaard, Michael A; Rivera, Jane E; Gaikowski, Mark P
2008-01-01
Avoidance of juvenile lake sturgeons < 100 mm in length in response to application of the Bayluscide 3.2% Granular Sea Lamprey Larvicide was assessed. Clear plexiglas columns (107 cm in height, 30.5 cm in diameter) to evaluate the potential for the normally bottom-dwelling fishes to move vertically in the water column to avoid niclosamide dissolving from the Bayluscide granules. Vertical migration of lake sturgeons to > 15 cm off the bottom of the column was considered avoidance. Lake sturgeons began displaying avoidance behaviors within 4 to 8 min after the granules were applied and continued for up to 60 min. After 60 min, most or all of the sturgeons were near the surface in the treated columns. In contrast, little movement above the 15-cm mark was observed at any time in any of the control columns. The results of this study are similar to a previous study where juvenile lake sturgeons > 100 mm in length showed the ability to avoid granular Bayluscide. Taken together, we conclude that juvenile lake sturgeons of any size range can detect and avoid granular Bayluscide applications.
NASA Astrophysics Data System (ADS)
Maute, A.; Hagan, M. E.; Yudin, V.; Liu, H.-L.; Yizengaw, E.
2015-06-01
During stratospheric sudden warming (SSW) periods large changes in the low-latitude vertical drift have been observed at Jicamarca as well as in other longitudinal sectors. In general, a strengthening of the daytime maximum vertical drift with a shift from prenoon to the afternoon is observed. During the January 2013 stratospheric warming significant longitudinal differences in the equatorial vertical drift were observed. At Jicamarca the previously reported SSW behavior prevails; however, no shift of the daytime maximum drift was exhibited in the African sector. Using the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) the possible causes for the longitudinal difference are examined. The timing of the strong SSW effect in the vertical drift (15-20 January) coincides with moderate geomagnetic activity. The simulation indicates that approximately half of the daytime vertical drift increase in the American sector may be related to the moderate geophysical conditions (Kp = 4) with the effect being negligible in the African sector. The simulation suggests that the wind dynamo accounts for approximately 50% of the daytime vertical drift in the American sector and almost 100% in the African sector. The simulation agrees with previous findings that the migrating solar tides and the semidiurnal westward propagating tide with zonal wave number 1 (SW1) mainly contribute to the daytime wind dynamo and vertical drift. Numerical experiments suggest that the neutral wind and the geomagnetic main field contribute to the presence (absence) of a local time shift in the daytime maximum drift in the American (African) sector.
Solberg, Ingrid; Kaartvedt, Stein
2014-01-01
Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat ( Sprattus sprattus ) throughout an entire winter in a 150-m-deep Norwegian fjord. During ice-free conditions, the sprat surfaced and released gas bubbles at night with an estimated surfacing rate of 3.5 times per fish day -1 . The vertical swimming speeds during surfacing were considerably higher (~10 times) than during diel vertical migrations, especially when returning from the surface, and particularly when the fjord was not ice covered. The sprat released gas a few hours after surfacing, suggesting that the sprat gulped atmospheric air during its excursions to the surface. While the surface activity increased after the fjord became ice covered, the records of gas release decreased sharply. The under-ice fish then displayed a behavior interpreted as "searching for the surface" by repeatedly ascending toward the ice, apparently with limited success of filling the swim bladder. This interpretation was supported by lower acoustic target strength in ice-covered waters. The frequent surfacing behavior demonstrated in this study indicates that gulping of atmospheric air is an important element in the life of sprat. While at least part of the population endured overwintering in the ice-covered habitat, ice covering may constrain those physostome fishes that lack a gas-generating gland in ways that remain to be established.
Imaging tilted transversely isotropic media with a generalised screen propagator
NASA Astrophysics Data System (ADS)
Shin, Sung-Il; Byun, Joongmoo; Seol, Soon Jee
2015-01-01
One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers.
Control of Subsurface Contaminant Migration by Vertical Engineered Barriers
This Fact Sheet is intended to provide remedial project managers (RPMs), on-scene coordinators (OSCs), contractors, and other remediation stakeholders with a basic overview of hazardous waste containment systems constructed to prevent or limit the migration of contamination in gr...
Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis
Giometto, Andrea; Altermatt, Florian; Maritan, Amos; Stocker, Roman; Rinaldo, Andrea
2015-01-01
Phototaxis, the process through which motile organisms direct their swimming toward or away from light, is implicated in key ecological phenomena (including algal blooms and diel vertical migration) that shape the distribution, diversity, and productivity of phytoplankton and thus energy transfer to higher trophic levels in aquatic ecosystems. Phototaxis also finds important applications in biofuel reactors and microbiopropellers and is argued to serve as a benchmark for the study of biological invasions in heterogeneous environments owing to the ease of generating stochastic light fields. Despite its ecological and technological relevance, an experimentally tested, general theoretical model of phototaxis seems unavailable to date. Here, we present accurate measurements of the behavior of the alga Euglena gracilis when exposed to controlled light fields. Analysis of E. gracilis’ phototactic accumulation dynamics over a broad range of light intensities proves that the classic Keller–Segel mathematical framework for taxis provides an accurate description of both positive and negative phototaxis only when phototactic sensitivity is modeled by a generalized “receptor law,” a specific nonlinear response function to light intensity that drives algae toward beneficial light conditions and away from harmful ones. The proposed phototactic model captures the temporal dynamics of both cells’ accumulation toward light sources and their dispersion upon light cessation. The model could thus be of use in integrating models of vertical phytoplankton migrations in marine and freshwater ecosystems, and in the design of bioreactors. PMID:25964338
Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis.
Giometto, Andrea; Altermatt, Florian; Maritan, Amos; Stocker, Roman; Rinaldo, Andrea
2015-06-02
Phototaxis, the process through which motile organisms direct their swimming toward or away from light, is implicated in key ecological phenomena (including algal blooms and diel vertical migration) that shape the distribution, diversity, and productivity of phytoplankton and thus energy transfer to higher trophic levels in aquatic ecosystems. Phototaxis also finds important applications in biofuel reactors and microbiopropellers and is argued to serve as a benchmark for the study of biological invasions in heterogeneous environments owing to the ease of generating stochastic light fields. Despite its ecological and technological relevance, an experimentally tested, general theoretical model of phototaxis seems unavailable to date. Here, we present accurate measurements of the behavior of the alga Euglena gracilis when exposed to controlled light fields. Analysis of E. gracilis' phototactic accumulation dynamics over a broad range of light intensities proves that the classic Keller-Segel mathematical framework for taxis provides an accurate description of both positive and negative phototaxis only when phototactic sensitivity is modeled by a generalized "receptor law," a specific nonlinear response function to light intensity that drives algae toward beneficial light conditions and away from harmful ones. The proposed phototactic model captures the temporal dynamics of both cells' accumulation toward light sources and their dispersion upon light cessation. The model could thus be of use in integrating models of vertical phytoplankton migrations in marine and freshwater ecosystems, and in the design of bioreactors.
NASA Astrophysics Data System (ADS)
Korotenko, K. A.; Sentchev, A. V.
2008-10-01
Using a combined model that couples a three-dimensional ocean circulation model, a model for tidal currents, and a model for particle transport, the structure of the velocity field of the tidal current and the transport of particles migrating over the vertical were studied in the zone of the influence of the riverine runoff in the eastern part of the English Channel. It was found that the interaction between the tidal current and the baroclinic flow formed by the riverine runoff off the northeastern coast of France generates a steady-state intensive (˜0.3 m/s) residual current in the zone of the effect of the riverine runoff. In order to assess the influence of different types of particle migration (which simulate ichthyoplankton) on the processes of their transport in the region under consideration, we performed numerical experiments with particle clusters, for which parameterization of their migration was implemented on the basis of the field observations over the proper vertical movements of different types of ichthyoplankton. The experiments showed that the distribution of the fields of the particle concentrations and the velocities of their movements depend not only on the background hydrophysical conditions but also on the character of the vertical migration of the particles. In this paper, a comparison between the results of the modeling and those of the field observations in the region under consideration are presented.
Olondo, C; Legarda, F; Herranz, M; Idoeta, R
2017-04-01
This paper shows the procedure performed to validate the migration equation and the migration parameters' values presented in a previous paper (Legarda et al., 2011) regarding the migration of 137 Cs in Spanish mainland soils. In this paper, this model validation has been carried out checking experimentally obtained activity concentration values against those predicted by the model. This experimental data come from the measured vertical activity profiles of 8 new sampling points which are located in northern Spain. Before testing predicted values of the model, the uncertainty of those values has been assessed with the appropriate uncertainty analysis. Once establishing the uncertainty of the model, both activity concentration values, experimental versus model predicted ones, have been compared. Model validation has been performed analyzing its accuracy, studying it as a whole and also at different depth intervals. As a result, this model has been validated as a tool to predict 137 Cs behaviour in a Mediterranean environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Do predators influence the distribution of age-0 kokanee in a Colorado Reservoir?
Hardiman, J.M.; Johnson, B.M.; Martinez, P.J.
2004-01-01
Seasonal changes in reservoir conditions such as productivity, light, and temperature create spatiotemporal variation in habitat that may segregate or aggregate predators and prey, producing implications for the distribution, growth, and survival of fishes. We used hydroacoustics to document the diel vertical distribution of age-0 kokanee Oncorhynchus nerka relative to environmental gradients at Blue Mesa Reservoir, Colorado, during May-August of 2002. Temperature, light, and zooplankton density profiles were examined relative to foraging conditions for kokanee and their primary predator, lake trout Salvelinus namaycush. Age-0 kokanee displayed large diel vertical migrations in May despite the lack of an energetic advantage before reservoir stratification. Age-0 kokanee minimized near-surface foraging at this time, perhaps to avoid predation by visual predators, such as lake trout, in the well-lit surface waters. Strong reservoir stratification in midsummer appeared to provide a thermal refuge from lake trout that the kokanee exploited. By August vertical migrations were shallow and most kokanee remained in the epilimnion throughout the day. Although the energetic implications of the late-summer strategy are unclear, it appears that kokanee were responding to changes in their predator environment. A robust model for kokanee diel vertical migration across a range of systems should include a predator avoidance component.
Nonverbal behavior and the vertical dimension of social relations: a meta-analysis.
Hall, Judith A; Coats, Erik J; LeBeau, Lavonia Smith
2005-11-01
The vertical dimension of interpersonal relations (relating to dominance, power, and status) was examined in association with nonverbal behaviors that included facial behavior, gaze, interpersonal distance, body movement, touch, vocal behaviors, posed encoding skill, and others. Results were separately summarized for people's beliefs (perceptions) about the relation of verticality to nonverbal behavior and for actual relations between verticality and nonverbal behavior. Beliefs/perceptions were stronger and much more prevalent than were actual verticality effects. Perceived and actual relations were positively correlated across behaviors. Heterogeneity was great, suggesting that verticality is not a psychologically uniform construct in regard to nonverbal behavior. Finally, comparison of the verticality effects to those that have been documented for gender in relation to nonverbal behavior revealed only a limited degree of parallelism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedagiri, U.K.
1989-01-01
The purpose of this study was to investigate the behavior of lead in naturally acidic Sphagnum moss-dominated wetlands of the New Jersey Pinelands and to compare it to the behavior of lead in similar wetlands which had been impacted by storm-water runoff. Data from the field showed that the runoff-impacted sites were characterized by elevated pH, elimination of Spaghnum ground cover, erosion of peat substrate and high lead accumulations, contributing to an effective but decreasing sink capacity. Laboratory experiments explored differences in fractionation, mobility and bioavailability of lead between the two systems. The low pH and high dissolved organic mattermore » of the pristine waters led to higher solubilization and complexing of added lead compared to impacted waters. Lead added to runoff showed unexpectedly high solubility and lability, possibly due to low suspended solids. Lead added to runoff was also much more mobile vertically through peat columns than lead added to swampwater, possibly due to its high lability. The extremely high porosity of the peat substrate allows rapid vertical migration of solutes during events of sudden influx, such as storms. Sphagnum moss greatly decreased vertical transport by binding and flow retardation. The lead that is held in the moss layer was differentially available to different species. Red maple seedlings were better able to take up lead from the peat substrate in the absence of moss cover while cranberry plants showed the reverse pattern. This may be related to differences in rooting requirements and growth of the two species. Lead added in runoff was initially less available to the plants than in swampwater, but was ultimately taken up the red maple, which could tolerate conditions in the impacted substrates.« less
Busch, Susan; Kirillin, Georgiy; Mehner, Thomas
2012-09-01
We used a coupled lake physics and bioenergetics-based foraging model to evaluate how the plasticity in habitat use modifies the seasonal metabolic response of two sympatric cold-water fishes (vendace and Fontane cisco, Coregonus spp.) under a global warming scenario for the year 2100. In different simulations, the vertically migrating species performed either a plastic strategy (behavioral thermoregulation) by shifting their population depth at night to maintain the temperatures occupied at current in-situ observations, or a fixed strategy (no thermoregulation) by keeping their occupied depths at night but facing modified temperatures. The lake physics model predicted higher temperatures above 20 m and lower temperatures below 20 m in response to warming. Using temperature-zooplankton relationships, the density of zooplankton prey was predicted to increase at the surface, but to decrease in hypolimnetic waters. Simulating the fixed strategy, growth was enhanced only for the deeper-living cisco due to the shift in thermal regime at about 20 m. In contrast, simulating the plastic strategy, individual growth of cisco and young vendace was predicted to increase compared to growth currently observed in the lake. Only growth rates of older vendace are reduced under future global warming scenarios irrespective of the behavioral strategy. However, performing behavioral thermoregulation would drive both species into the same depth layers, and hence will erode vertical microhabitat segregation and intensify inter-specific competition between the coexisting coregonids.
Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2004-01-01
Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.
In this study, we used data from an OPC, and LOPC, and vertical net tows to estimate densities and describe the day/night vertical distribution of Mysis at a series of stations distributed throughout Lake Superior, and to evaluate the efficacy of using (L)OPC for examining DVM of...
NASA Astrophysics Data System (ADS)
Primo, Ana Lígia; Azeiteiro, Ulisses M.; Marques, Sónia C.; Ré, Pedro; Pardal, Miguel A.
2012-07-01
Vertical distribution and migration pattern of ichthyoplankton assemblage in the Mondego estuary were investigated in relation to diel and tidal cycle. Summer and winter communities were sampled, at surface and bottom, over a diel cycle during spring and neap tides at a fixed station at the mouth of the estuary. Summer presented higher larvae density mainly of Pomatoschistus spp., Gobius niger and Parablennius pilicornis. Main species in winter assemblages were Pomatoschistus spp. and Sardina pilchardus. There were no differences between depth stratums across diel or tide cycle. Nevertheless, main species larval densities showed significant periodic variation associated with tide (M2) and diel (K1) cycles presenting generally, higher density at night and around low tide. Conversely, vertical patterns observed could not be related with diel or tidal cycle. Tough, main species presented some extent of vertical migration. Vertical patterns observed appear to be related to seasonal stratification and river flow, increasing amplitude during periods of less stratification and lower water currents. Present study provides a better understanding of ichthyoplankton vertical movement patterns and of small scale dynamics at the interface of two coastal European systems.
INFLUENCE OF STRATIGRAPHY ON A DIVING MTBE PLUME AND ITS CHARACTERIZATION: A CASE STUDY
Conventional conceptual models applied at petroleum release sites are often based on assumptions of vertical contaminant migration through the vadose zone followed by horizontal, downgradient transport at the water table with limited, if any, additional downward migration. Howev...
The Application of Depth Migration for Processing GPR Data
NASA Astrophysics Data System (ADS)
Hoai Trung, Dang; Van Giang, Nguyen; Thanh Van, Nguyen
2018-03-01
Migration methods play a significant role in processing ground penetrating radar data. Beside recovering the true image of subsurface structures from the prior designed velocity model and the raw GPR data, the migration algorithm could be an effective tool in bulding real environmental velocity model. In this paper, we have proposed one technique using energy diagram extracted from migrated data as a criterion of looking for the correct velocity. Split Step Fourier migration, a depth migration, is chosen for facing the challenge where the velocity varies laterally and vertically. Some results verified on field data on Vietnam show that migrated sections with calculated velocity from energy diagram have the best quality.
Pulsed remineralisation in the northwestern Mediterranean Sea: a hypothesis
NASA Astrophysics Data System (ADS)
Denis, Michel; Martin, Valérie; Momzikoff, André; Gondry, Geneviève; Stemmann, Lars; Demers, Serge; Gorsky, Gaby; Andersen, Valérie
2003-02-01
A general study of biogeochemical processes (DYNAPROC cruise) was conducted in May 1995 at a time-series station in the open northwestern Mediterranean Sea where horizontal advection was weak. Short-term variations of the vertical distributions of pico- and nanophytoplankton were investigated over four 36-h cycles, along with parallel determinations of metabolic CO 2 production rates and amino acid-containing colloid (AACC) concentrations at the chlorophyll maximum depth. The vertical (0-1000-m depth) distributions of (i) AACC, (ii) suspended particles and (iii) metabolic CO 2 production rate were documented during the initial and final stages of these 36-h cycles. This study was concerned with diel vertical migration (DVM) of zooplankton, which provided periodic perturbations. Accordingly, the time scale of the experimental work varied from a few hours to a few days. Although all distributions exhibited a periodic behaviour, AACC distributions were generally not linked to diel vertical migrations. In the subsurface layer, Synechococcus made the most abundant population and large variations in concentration were observed both at day and at night. The corresponding integrated (over the upper 90 m) losses of Synechococcus during one night pointed to a potential source of exported organic matter amounting to 534 mg C m -2. This study stresses the potential importance of organic matter export from the euphotic zone through the daily grazing activity of vertically migrating organisms, which would not be accounted for by measurements at longer time scales. The metabolic CO 2 production exhibited a peak of activity below 500 m that was shifted downward, apparently in a recurrent way and independently of the vertical distributions of AACC or of suspended particulate material. To account for this phenomenon, a «sustained wave train» hypothesis is proposed that combines the effect of the diel superficial faecal pellet production by swarming migrators and the repackaging activity of the nonmigrating midwater populations. Our results confirm the recent finding that the particulate compartment is not the major source of the observed instantaneous remineralisation rate and shed a new light on the fate of organic matter in the aphotic zone.
Influence of local capillary trapping on containment system effectiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, Steven
2014-03-31
Immobilization of CO 2 injected into deep subsurface storage reservoirs is a critical component of risk assessment for geologic CO 2 storage (GCS). Local capillary trapping (LCT) is a recently established mode of immobilization that arises when CO 2 migrates due to buoyancy through heterogeneous storage reservoirs. This project sought to assess the amount and extent of LCT expected in storage formations under a range of injection conditions, and to confirm the persistence of LCT if the seal overlying the reservoir were to lose its integrity. Numerical simulation using commercial reservoir simulation software was conducted to assess the influence ofmore » injection. Laboratory experiments, modeling and numerical simulation were conducted to assess the effect of compromised seal integrity. Bench-scale (0.6 m by 0.6 m by 0.03 m) experiments with surrogate fluids provided the first empirical confirmation of the key concepts underlying LCT: accumulation of buoyant nonwetting phase at above residual saturations beneath capillary barriers in a variety of structures, which remains immobile under normal capillary pressure gradients. Immobilization of above-residual saturations is a critical distinction between LCT and the more familiar “residual saturation trapping.” To estimate the possible extent of LCT in a storage reservoir an algorithm was developed to identify all potential local traps, given the spatial distribution of capillary entry pressure in the reservoir. The algorithm assumes that the driving force for CO 2 migration can be represented as a single value of “critical capillary entry pressure” P c,entry crit, such that cells with capillary entry pressure greater/less than P c,entry crit act as barriers/potential traps during CO 2 migration. At intermediate values of P c,entry crit, the barrier regions become more laterally extensive in the reservoir, approaching a percolation threshold while non-barrier regions remain numerous. The maximum possible extent of LCT thus occurs at P c,entry crit near this threshold. Testing predictions of this simple algorithm against full-physics simulations of buoyancy-driven CO 2 migration support the concept of critical capillary entry pressure. However, further research is needed to determine whether a single value of critical capillary entry pressure always applies and how that value can be determined a priori. Simulations of injection into high-resolution (cells 0.3 m on a side) 2D and 3D heterogeneous domains show two characteristic behaviors. At small gravity numbers (vertical flow velocity much less than horizontal flow velocity) the CO 2 fills local traps as well as regions that would act as local barriers if CO 2 were moving only due to buoyancy. When injection ceases, the CO 2 migrates vertically to establish large saturations within local traps and residual saturation elsewhere. At large gravity numbers, the CO 2 invades a smaller portion of the perforated interval. Within this smaller swept zone the local barriers are not invaded, but local traps are filled to large saturation during injection and remain during post-injection gravity-driven migration. The small gravity number behavior is expected in the region within 100 m of a vertical injection well at anticipated rates of injection for commercial GCS. Simulations of leakage scenarios (through-going region of large permeability imposed in overlying seal) indicate that LCT persists (i.e. CO 2 remains held in a large fraction of the local iv traps) and the persistence is independent of injection rate during storage. Simulations of leakage for the limiting case of CO 2 migrating vertically from an areally extensive emplacement in the lower portion of a reservoir showed similar strong persistence of LCT. This research has two broad implications for GCS. The first is that LCT can retain a significant fraction of the CO 2 stored in a reservoir – above and beyond the residual saturation -- if the overlying seal were to fail. Thus frameworks for risk assessment should be extended to account for LCT. The second implication is that compared to pressure driven flow in reservoirs, CO 2 migration and trapping behave in a qualitatively different manner in heterogeneous reservoirs when buoyancy is the dominant driving force for flow. Thus simulations of GCS that neglect capillary heterogeneity will fail to capture important features of the CO 2 plume. While commercial reservoir simulation software can account for fine scale capillary heterogeneity, it has not been designed to work efficiently with such domains, and no simulators can handle fine-scale resolution throughout the reservoir. A possible way to upscale the migration and trapping is to apply an “effective residual saturation” to coarse-scale grids. While the extent of overall immobilization can be correlated in this way, all coarser grids failed to capture the distance traveled by the migrating CO 2 for large gravity number. Thus it remains unclear how best to account for LCT in the routine simulation work-flow that will be needed for large-scale GCS. Alternatives meriting investigation include streamline methods, reduced-physics proxies (e.g. particle tracking), and biased invasion percolation algorithms, which are based on precisely the capillary heterogeneity essential for LCT.« less
Rural–urban migration and mental and sexual health: a case study in Southwestern China
Yang, Xiushi
2014-01-01
Massive rural–urban temporary migration has taken place amid China's rapid economic growth and development. Much has been written about the economic causes and consequences of this massive migration; less studied are the potential health and behavioral impacts of migration on migrants. Using data from a population-based sample survey conducted in southwestern China, this paper examines the potential impact of rural–urban migration and post-migration urban living on migrants' mental health and sexual risk behavior. The results suggest that regardless of places of origin and destination temporary migrants had on average poorer mental health and riskier sexual behavior than non-migrants. Compared to living in rural areas, living in urban areas does not make statistical difference in residents' mental health; it is only marginally associated with riskier sexual behavior. Rural–urban temporary migrants' mental health and health risk sexual behavior deserve more immediate research attention. Both selectivity of temporary migrants and migration-induced psycho-socio-behavioral changes may have contributed to migrants' poorer mental health and riskier sexual behavior. However, more theory-driven research with longitudinal design is needed before firm conclusions can be drawn about the underlying mechanisms that mediate or moderate the impact of temporary migration on migrants' mental health and sexual risk behavior. PMID:25932350
Soil-to-plant halogens transfer studies 2. Root uptake of radiochlorine by plants.
Kashparov, V; Colle, C; Zvarich, S; Yoschenko, V; Levchuk, S; Lundin, S
2005-01-01
Long-term field experiments have been carried out in the Chernobyl exclusion zone in order to determine the parameters governing radiochlorine (36Cl) transfer to plants from four types of soil, namely, podzoluvisol, greyzem, and typical and meadow chernozem. Radiochlorine concentration ratios (CR) in radish roots (15+/-10), lettuce leaves (30+/-15), bean pods (15+/-11) and wheat seed (23+/-11) and straw (210+/-110) for fresh weight of plants were obtained. These values correlate well with stable chlorine values for the same plants. One year after injection, 36Cl reached a quasi-equilibrium with stable chlorine in the agricultural soils and its behavior in the soil-plant system mimicked the behavior of stable chlorine (this behavior was determined by soil moisture transport in the investigated soils). In the absence of intensive vertical migration, more than half of 36Cl activity in arable layer of soil passes into the radish, lettuce and the aboveground parts of wheat during a single vegetation period.
NASA Astrophysics Data System (ADS)
Zhang, Guotao; Zhang, Shangfeng; Li, Yuan
2015-04-01
The channels of deep-water submarine fan under Niger delta slope are characterized by large dimensions special deposition positions and complex formation processes, its geographical location and sedimentary environment also hinder the research and exploration development. According to the strata slicing, RMS amplitude attribute and other techniques, we exhibit the platforms patterns of channels at different period, and based on the analysis of internal architecture and deformation history of channel-leveed systems, migration and evolution process of channel systems could be understood accurately. A great quantity of isolated channels develop in middle Miocene and aggrading streams in late Miocene, which generating because of large scale of turbidity caused by the drop of second order sea-level, which characterized by vertical accretion at smooth channel, while vertical accretion and lateral migration at bend. Evolution of channel systems can be divided into three stages: the initial erosion, erosion and filling alternately, and abandoned stage. With these three stages, the sinuosity of channel change from moderate to high, then decrease. Incision and filling of channels, being during the three development phases, is the driving force of meander-loops migration, which promote three kinds of migration patterns: lateral, down-system and combination migration. The research provides theoretical basis for high-precision prediction and evaluation of deep-water reservoir.
Wrenching and oil migration, Mervine field, Kay County, Oklahoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, H.G.
1985-02-01
Since 1913, Mervine field (T27N, R3E) has produced oil from 11 Mississippian and Pennsylvanian zones, and gas from 2 Permian zones. The field exhibits an impressive asymmetric surface anticline, with the steeper flank dipping 30/sup 0/E maximum. A nearly vertical, basement-involved fault develops immediately beneath the steeper flank of the surface anticline. Three periods of left-lateral wrench faulting account for 93% of all structural growth: 24% in post-Mississippian-pre-Desmoinesian time, 21% in Virgilian time, and 48% in post-Wolfcampian time. In Mesozoic through early Cenozoic times, the Devonian Woodford Shale (and possibly the Desmoinesian Cherokee shales) locally generated oil, which should havemore » been structurally trapped in the Ordovician Bromide sandstone. This oil may have joined oil already trapped in the Bromide, which had migrated to the Mervine area in the Early Pennsylvanian from a distant source. Intense post-Wolfcampian movement(s) fractured the competent pre-Pennsylvanian rocks, allowing Bromide brine and entrained oil to migrate vertically up the master fault, finally accumulating in younger reservoirs. Pressure, temperature, and salinity anomalies attest to vertical fluid migration continuing at the present time at Mervine field. Consequently, pressure, temperature, and salinity mapping should be considered as valuable supplements to structural and lithologic mapping when prospecting for structural hydrocarbon accumulations in epicratonic provinces.« less
NASA Astrophysics Data System (ADS)
Garrido, Susana; Santos, A. Miguel P.; dos Santos, Antonina; Ré, Pedro
2009-10-01
The spatial distribution and diel vertical migration of fish larvae were studied in relation to the environmental conditions off NW Iberia during May 2002. Larvae from 23 families were identified, the most abundant were the Clupeidae, Gobiidae, Callionymidae, Blenniidae, Sparidae and Labridae. Sardina pilchardus was the most abundant species, mean concentrations 1 order of magnitude higher than the other fish larvae species. Larval horizontal distribution was mainly related to upwelling-driven circulation, resulting in an offshore increase of larval abundance while the vertical distribution was closely associated to the Western Iberia Buoyant Plume. Despite this general trend, taxon-specific relationships between the distribution of larvae and environmental variables were observed, and temperature was an important regressor explaining the distribution of most taxa. A comparison between ichthyoplankton samples collected alternatively with the LHPR and Bongo nets resulted in captures of larvae ≈1 order of magnitude higher for the LHPR, probably related to its higher towing speed. The spatial distribution and relative composition of larvae were also different for both nets, although the most frequent/abundant groups were the same. A fixed station sampled for 69-h showed diel vertical migrations performed by the larvae, with the highest larval concentrations occurring at surface layers during the night and most larvae being found in the neuston layer only during that period.
NASA Astrophysics Data System (ADS)
Maycas, Encarna Ribera; Bourdillon, André; Macquart-Moulin, Claude; Passelaigue, Françoise; Patriti, Gilbert
1999-10-01
The bathymetric distribution, abundance and diel vertical migrations (DVM) of zooplankton were investigated along the axis of the Cap-Ferret Canyon (Bay of Biscay, French Atlantic coast) by a consecutive series of synchronous net hauls that sampled the whole water column (0-2000 m in depth) during a diel cycle. The distribution of appendicularians (maximum 189 individuals m -3), cladocerans (maximum 287 individuals m -3), copepods (copepods<4 mm, maximum 773 individuals m -3, copepods>4 mm, maximum 13 individuals m -3), ostracods (maximum 8 individuals m -3), siphonophores (maximum >2 individuals m -3) and peracarids (maximum >600 individuals 1000 m -3) were analysed and represented by isoline diagrams. The biomass of total zooplankton (maximum 18419 μg C m -3, 3780 μg N m -3) and large copepods (>4 mm maximum 2256 μg C m -3, 425 μg N m -3) also were determined. Vertical migration was absent or affected only the epipelagic zone for appendicularians, cladocerans, small copepods and siphonophores. Average amplitude of vertical migration was about 400-500 m for ostracods, some hyperiids and mysids, and large copepods, which were often present in the epipelagic, mesopelagic, and bathypelagic zones. Large copepods can constitute more than 80% of the biomass corresponding to total zooplankton. They may play an important role in the active vertical transfer of carbon and nitrogen.
Bio-mixing due to Diel Vertical Migration of Daphnia spp. in a Small Lake
NASA Astrophysics Data System (ADS)
Simoncelli, Stefano; Wain, Danielle; Thackeray, Stephen
2016-04-01
Bio-turbulence or bio-mixing refers to the contribution of living organisms towards the mixing of waters in oceans and lakes. Experimental measurements in an unstratified tank by Wilhelmus & Dabiri (2014) show that zooplankton can trigger fluid instabilities through collective motions and that energy is imparted to scales bigger than organism's size of few mm. Length scales analysis, for low-Reynolds-number organisms in stratified water by Leshansky & Pismen (2010) and Kunze (2011), estimate eddy diffusivity up two orders of magnitude larger than the molecular thermal diffusivity. Very recently, Wand & Ardekani (2015) showed a maximum diffusivity of 10-5 m2/s for millimetre-sized organisms from numerical simulations in the intermediate Reynolds number regime. Here we focus our attention on turbulence generated by the vertical migration of zooplankton in a small lake, mostly populated by Daphnia spp. This very common species, belonging to Cladocera order, is engaged in a vertical migration (DVM) at sunset, with many organisms crossing the thermocline despite the density stratification. During the ascension they may create hydrodynamic disturbances in the lake interior where the stratification usually suppresses the vertical diffusion. We have conducted five turbulence experiments in Vobster Quay, a small (area ˜ 59,000 m2), deep (40m) man-made basin with small wind fetch and steep sides, located in the South West UK. Turbulence was measured with a temperature microstructure profiler. To asses the zooplankton vertical concentration we used a 100 μm mesh net, by collecting and analyzing samples in 8 layers of the lake. A bottom-mounted acoustic Doppler current profiler was also employed to track their concentration and migration with the measured backscatter strength. Measured dissipation rates ɛ during the day showed low turbulence level (<= 10-8 W/Kg) in the thermocline and in the zooplankton layer. Turbulence, during the DVM in two different days, is highest on the surface, likely due to surface processes. Peaks of 10-6.5 W/kg were measured within the migrating zooplankton layer with respect to profiles before sunset and estimated eddy diffusivity was as much as 10-5 m2/s. Before and after the time series there was no wind and penetrative convection associated with night-time cooling wasn't active during the experiments. Given the uncertainty in measuring the length scales of turbulence associated with small zooplankton and the presence of turbulence patches outside the migrating layer, further datasets are needed for definitive conclusions.
Light and lunar cycle as cues to diel migration of a sound-scattering layer
NASA Astrophysics Data System (ADS)
Benoit-Bird, Kelly J.; Au, Whitlow W. L.
2001-05-01
The Hawaiian mesopelagic boundary community is an island-associated midwater scattering layer comprised of small fishes, shrimps, and squids that undergoes diel vertical as well as horizontal migrations. It has been hypothesized that light levels are an important cue or trigger for vertical migration and presumably, horizontal migration. The migration pattern of the scattering layer was measured over complete lunar cycles while the incident light levels were recorded. Due to differences in the rise and set times of the moon and cloud cover, light and lunar cycle were not completely coupled, allowing separation of the light effects of moon phase and other cues associated with lunar cycle. Four calibrated echosounder moorings were deployed with approximately even spacing, perpendicular to the leeward coast of Oahu. Moorings were deployed for one complete lunar cycle at each of three locations, recording 10 echoes every 15 min. Light sensors measured the nocturnal light intensity at 30-s intervals. Statistical analysis revealed significant effects of both light and other lunar cycle cues. Overall, the effect size was very low considering the light transmission characteristics of the subtropical Pacific, making measurement from stationary acoustic platforms critical.
Migration and speciation of heavy metal in salinized mine tailings affected by iron mining.
Zhang, Xu; Yang, Huanhuan; Cui, Zhaojie
2017-10-01
The negative effects of heavy metals have aroused much attention due to their high toxicity to human beings. Migration and transformation trend of heavy metals have a close relationship with soil safety. Researching on migration and transformation of heavy metals in tailings can provide a reliable basis for pollution management and ecosystem restoration. Heavy metal speciation plays an important role in risk assessment. We chose Anshan tailings for our study, including field investigations and laboratory research. Four typical heavy metal elements of mine tailings {Fe (373.89 g/kg), Mn (2,303.80 mg/kg), Pb (40.99 mg/kg) and Cr (199.92 mg/kg)} were studied via Tessier test in vertical and horizontal direction. The main speciation of heavy metals in Anshan tailings was the residual. However, heavy metals have a strong ability for migration and transformation in vertical and horizontal directions. Its tendency to change from stable to unstable speciation results in increasing bioavailability and potential bioavailability. Fe, Mn, Pb and Cr showed different ability in the migration and transformation process (Mn > Pb > Fe > Cr) depending on the characteristics of heavy metals and physicochemical properties of the environment.
Tyminski, John P; de la Parra-Venegas, Rafael; González Cano, Jaime; Hueter, Robert E
2015-01-01
The whale shark (Rhincodon typus) is a wide-ranging, filter-feeding species typically observed at or near the surface. This shark's sub-surface habits and behaviors have only begun to be revealed in recent years through the use of archival and satellite tagging technology. We attached pop-up satellite archival transmitting tags to 35 whale sharks in the southeastern Gulf of Mexico off the Yucatan Peninsula from 2003-2012 and three tags to whale sharks in the northeastern Gulf off Florida in 2010, to examine these sharks' long-term movement patterns and gain insight into the underlying factors influencing their vertical habitat selection. Archived data were received from 31 tags deployed on sharks of both sexes with total lengths of 5.5-9 m. Nine of these tags were physically recovered facilitating a detailed long-term view into the sharks' vertical movements. Whale sharks feeding inshore on fish eggs off the northeast Yucatan Peninsula demonstrated reverse diel vertical migration, with extended periods of surface swimming beginning at sunrise followed by an abrupt change in the mid-afternoon to regular vertical oscillations, a pattern that continued overnight. When in oceanic waters, sharks spent about 95% of their time within epipelagic depths (<200 m) but regularly undertook very deep ("extreme") dives (>500 m) that largely occurred during daytime or twilight hours (max. depth recorded 1,928 m), had V-shaped depth-time profiles, and comprised more rapid descents (0.68 m sec-1) than ascents (0.50 m sec-1). Nearly half of these extreme dives had descent profiles with brief but conspicuous changes in vertical direction at a mean depth of 475 m. We hypothesize these stutter steps represent foraging events within the deep scattering layer, however, the extreme dives may have additional functions. Overall, our results demonstrate complex and dynamic patterns of habitat utilization for R. typus that appear to be in response to changing biotic and abiotic conditions influencing the distribution and abundance of their prey.
Tyminski, John P.; de la Parra-Venegas, Rafael; González Cano, Jaime; Hueter, Robert E.
2015-01-01
The whale shark (Rhincodon typus) is a wide-ranging, filter-feeding species typically observed at or near the surface. This shark’s sub-surface habits and behaviors have only begun to be revealed in recent years through the use of archival and satellite tagging technology. We attached pop-up satellite archival transmitting tags to 35 whale sharks in the southeastern Gulf of Mexico off the Yucatan Peninsula from 2003–2012 and three tags to whale sharks in the northeastern Gulf off Florida in 2010, to examine these sharks’ long-term movement patterns and gain insight into the underlying factors influencing their vertical habitat selection. Archived data were received from 31 tags deployed on sharks of both sexes with total lengths of 5.5–9 m. Nine of these tags were physically recovered facilitating a detailed long-term view into the sharks’ vertical movements. Whale sharks feeding inshore on fish eggs off the northeast Yucatan Peninsula demonstrated reverse diel vertical migration, with extended periods of surface swimming beginning at sunrise followed by an abrupt change in the mid-afternoon to regular vertical oscillations, a pattern that continued overnight. When in oceanic waters, sharks spent about 95% of their time within epipelagic depths (<200 m) but regularly undertook very deep (“extreme”) dives (>500 m) that largely occurred during daytime or twilight hours (max. depth recorded 1,928 m), had V-shaped depth-time profiles, and comprised more rapid descents (0.68 m sec-1) than ascents (0.50 m sec-1). Nearly half of these extreme dives had descent profiles with brief but conspicuous changes in vertical direction at a mean depth of 475 m. We hypothesize these stutter steps represent foraging events within the deep scattering layer, however, the extreme dives may have additional functions. Overall, our results demonstrate complex and dynamic patterns of habitat utilization for R. typus that appear to be in response to changing biotic and abiotic conditions influencing the distribution and abundance of their prey. PMID:26580405
Heavy metal migration in soils and rocks at historical smelting sites.
Maskall, J; Whitehead, K; Thornton, I
1995-09-01
The vertical migration of metals through soils and rocks was investigated at five historical lead smelting sites ranging in age between 220 and 1900 years. Core samples were taken through metal-contaminated soils and the underlying strata. Concentration profiles of lead and zinc are presented from which values for the distances and rates of migration have been derived. Slag-rich soil horizons contain highly elevated metal concentrations and some contamination of underlying strata has occurred at all sites. However, the amounts of lead and zinc that have migrated from soils and been retained at greater depths are comparatively low. This low metal mobility in contaminated soils is partly attributed to the elevation of soil pH by the presence of calcium and carbonate originating from slag wastes and perhaps gangue minerals. Distances and rates of vertical migration were higher at those sites with soils underlain by sandstone than at those with soils underlain by clay. For sites with the same parent material, metal mobility appears to be increased at lower soil pH. The mean migration rates for lead and zinc reach maxima of 0.75 and 0.46 cm yr(-1) respectively in sandstone at Bole A where the elements have moved mean distances of 4.3 and 2.6 m respectively. There is some evidence that metal transport in the sandstone underlying Bole A and Cupola B occurs preferentially along rock fractures. The migration of lead and zinc is attenuated by subsurface clays leading to relatively low mean migration rates which range from 0.03 to 0.31 cm yr(-1) with many values typical of migration solely by diffusion. However, enhanced metal migration in clays at Cupola A suggest a preferential transport mechanism possibly in cracks or biopores.
Quantification of water penetration into concrete through cracks by neutron radiography
NASA Astrophysics Data System (ADS)
Kanematsu, M.; Maruyama, I.; Noguchi, T.; Iikura, H.; Tsuchiya, N.
2009-06-01
Improving the durability of concrete structures is one of the ways to contribute to the sustainable development of society, and it has also become a crucial issue from an environmental viewpoint. It is well known that moisture behavior in reinforced concrete is linked to phenomena such as cement hydration, volume change and cracking caused by drying shrinkage, rebar corrosion and water leakage that affect the durability of concrete. In this research, neutron radiography was applied for visualization and quantification of water penetration into concrete through cracks. It is clearly confirmed that TNR can make visible the water behavior in/near horizontal/vertical cracks and can quantify the rate of diffusion and concentration distribution of moisture with high spatial and time resolution. On detailed analysis, it is observed that water penetrates through the crack immediately after pouring and its migration speed and distribution depend on the moisture condition in the concrete.
Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project.
White, Joshua A; Chiaramonte, Laura; Ezzedine, Souheil; Foxall, William; Hao, Yue; Ramirez, Abelardo; McNab, Walt
2014-06-17
Almost 4 million metric tons of CO2 were injected at the In Salah CO2 storage site between 2004 and 2011. Storage integrity at the site is provided by a 950-m-thick caprock that sits above the injection interval. This caprock consists of a number of low-permeability units that work together to limit vertical fluid migration. These are grouped into main caprock units, providing the primary seal, and lower caprock units, providing an additional buffer and some secondary storage capacity. Monitoring observations at the site indirectly suggest that pressure, and probably CO2, have migrated upward into the lower portion of the caprock. Although there are no indications that the overall storage integrity has been compromised, these observations raise interesting questions about the geomechanical behavior of the system. Several hypotheses have been put forward to explain the measured pressure, seismic, and surface deformation behavior. These include fault leakage, flow through preexisting fractures, and the possibility that injection pressures induced hydraulic fractures. This work evaluates these hypotheses in light of the available data. We suggest that the simplest and most likely explanation for the observations is that a portion of the lower caprock was hydrofractured, although interaction with preexisting fractures may have played a significant role. There are no indications, however, that the overall storage complex has been compromised, and several independent data sets demonstrate that CO2 is contained in the confinement zone.
Zhao, Muqiu; Chen, Xin; Shi, Yi; Zhou, Quanlai; Lu, Caiyan
2009-01-01
A soil column leaching experiment was conducted to study the vertical migration of phosphorus in aquic brown soil and light chernozem under different phosphorus fertilization rates. The results showed that total dissolved phosphorus concentration in the leachates from the two soils was nearly the same, but dissolved inorganic phosphorus concentration was obviously different. In all fertilization treatments, aquic brown soil had a higher content of phosphorus in calcium chloride extracts compared with light chernozem. But Olsen phosphorus content was higher at the soil depth beneath 0-20 cm, and increased with increasing phosphorus application rate.
Inventory and vertical migration of 90Sr fallout and 137Cs/90Sr ratio in Spanish mainland soils.
Herranz, M; Romero, L M; Idoeta, R; Olondo, C; Valiño, F; Legarda, F
2011-11-01
In this paper the inventory of (90)Sr in 34 points distributed along the Spanish peninsular territory is presented. Obtained values range between 173 Bq/m(2) and 2047 Bq/m(2). From these data set and those (137)Cs data obtained in a previous work the (137)Cs/(90)Sr activity ratio has been established, laying this value between 0.9 and 3.6. Also the migration depth of both radionuclides has been analysed obtaining for (137)Cs an average value 57% lower than that obtained for (90)Sr. Additionally, this paper presents the results obtained in 11 sampling points in which the activity vertical profile has been measured. These profiles have been analysed to state the behaviour of strontium in soils and after, by using a convective-diffusive model, the parameters of the model which governs the vertical migration of (90)Sr in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) have been evaluated. Mean values obtained are 0.20 cm/year and 3.67 cm(2)/year, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jackson, Melanie L.; Smith, Sharon L.
2016-01-01
A variety of ecological strategies for tolerance of low-oxygen conditions within the Costa Rica Dome (CRD) area of the Eastern Tropical Pacific are documented for the copepod family Eucalanidae. During the summer of 2010, we compared the ecological strategies used by the Eucalanidae inside and outside the central CRD region. We compared the vertical and horizontal distributions of five species, Eucalanus inermis, Subeucalanus subtenuis, Subeucalanus subcrassus, Subeucalanus pileatus and Pareucalanus attenuatus together with Rhincalanus species, in the epipelagic (upper 200 m) among four locations, which we grouped into a section roughly crossing the core CRD area (inside–outside core CRD). The coastal area outside the CRD supported the most diverse assemblage, whereas overall abundance of Eucalanidae in the central CRD was 2-fold greater than outside and dominated by E. inermis (>60%). Eucalanidae in the central CRD had a shallow depth distribution, closely associated with the shallow thermocline (10–20 m). There was no evidence of daily vertical migration in the central CRD, but E. inermis demonstrated vertical migration outside the CRD. The vertical abundance patterns of Eucalanidae in the CRD region reflect complex interactions between subtle physical–chemical differences and food resources. PMID:27275032
A critical time window for organismal interactions in a pelagic ecosystem.
Benoit-Bird, Kelly J; McManus, Margaret A
2014-01-01
To measure organismal coherence in a pelagic ecosystem, we used moored sensors to describe the vertical dynamics of each step in the food chain in shelf waters off the west shore of Oahu, Hawaii. Horizontally extensive, intense aggregations of phytoplankton, zooplankton, and micronekton exhibited strong diel patterns in abundance and vertical distribution, resulting in a highly variable potential for interaction amongst trophic levels. Only around dusk did zooplankton layers overlap with phytoplankton layers. Shortly after sunset, micronekton ascended from the deep, aggregating on the island's shelf. Short-lived departures in migration patterns were detected in depth, vertical distribution, density, and total abundance of micronekton when zooplankton layers were present with typical patterns resuming within one hour. Layers of zooplankton began to disappear within 20 minutes of the arrival of micronekton with no layers present after 50 minutes. The effects of zooplankton layers cascaded even further up the food chain, affecting many behaviors of dolphins observed at dusk including their depth, group size, and inter-individual spacing. As a result of these changes in behavior, during a 30-minute window just after dusk, the number of feeding events observed for each dolphin and consequently the feeding time for each individual more than doubled when zooplankton layers were present. Dusk is a critical period for interactions amongst species in this system from phytoplankton to top predators. Our observations that short time windows can drive the structure and function of a complex suite of organisms highlight the importance of explicitly adding a temporal dimension at a scale relevant to individual organisms to our descriptions of heterogeneity in ocean ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawas, M.F.; Takezaki, H.
1995-08-01
The distribution of hydrocarbons in the Lower Cretaceous Thamama Group and Upper Jurassic Arab Formation in Abu Dhabi is influenced by the development of the intervening Hith anhydrites. The geochemical analysis of Thamama and Arab hydrocarbons indicate that they were generated from a common source rock: the Upper Jurassic Diyab Formation. Studies carried out on the Miocene sabkha anhydrites in the coastal flat west of Abu Dhabi supported a model for vertical migration through the Hith anhydrites under certain conditions. The established model implies that the Diyab oil and gas had migrated essentially vertically and individually which means that themore » oil migrated prior to the gas and their distribution is controlled by the differential sealing potential of the anhydrites at each migration phase: a Hith anhydrite bed of more than 30 feet (ft.) thick was a perfect seal for hydrocarbon migration into the Arab reservoirs. In this case, oils could not break through to the overlying Thamama group. But where the anhydride bed thicknesses dropped below 30 ft. thick, this permitted oil migration through to the overlying Thamama reservoirs during the oil generation phase in the Turonian time. At a later stage, with additional depth of burial and progressive diagenesis anhydrite beds as thin as 8 ft. thick became effective seals. These controlled the distribution of the gas during the gas generation phase in the Eocene time.« less
NASA Astrophysics Data System (ADS)
Han, D.; Cao, G.; Currell, M. J.
2016-12-01
Understanding the mechanism of salt water transport in response to the exploitation of deep freshwater has long been one of the major regional environmental hydrogeological problems and scientific challenges in the North China Plain. It is also the key to a correct understanding of the sources of deep groundwater pumpage. This study will look at the Hengshui - Cangzhou region as a region with typical vertical salt water distribution, and high levels of groundwater exploitation, integrating a variety of techniques in geology, hydrogeology, geophysics, hydrodynamics, and hydrochemistry - stable isotopes. Information about the problem will be determined using multiple lines of evidence, including field surveys of drilling and water sampling, as well as laboratory experiments and physical and numerical simulations. The project will characterize and depict the migration characteristics of salt water bodies and their relationship with the geological structure and deep ground water resources. The work will reveal the freshwater-saltwater interface shape; determine the mode and mechanism of hydrodynamic transport and salt transport; estimate the vertical migration time of salt water in a thick aquitard; and develop accurate hydrogeological conceptual models. This work will utilize groundwater variable density flow- solute transport numerical models to simulate the water and salt transport processes in vertical one-dimensional (typical bore) and two-dimensional (typical cross-section) space. Both inversion of the downward movement of saltwater caused by groundwater exploitation through history, and examining future saltwater migration trends under groundwater exploitation scenarios will be conducted, to quantitatively evaluate the impact of salt water migration to the deep groundwater body in the North China Plain. The research results will provide a scientific basis for the sustainable utilization of deep groundwater resources in this area.
Bunzl, K; Kracke, W; Schimmack, W
1992-03-01
The vertical activity distributions of fallout 238Pu, 239+240Pu, 241Am, 134Cs and 137Cs in a forest soil (Hapludult) were determined at several locations in a spruce stand separately according to their origin (global fallout or Chernobyl fallout). To determine the rate of migration of these radionuclides in each soil horizon, the observed depth profiles of the radionuclides were evaluated with a compartment model. In the top organic horizons (LOf1 and Of2), the migration rates for all radionuclides from both sources were above 0.5 cm per year. In the Oh horizon the migration rates observed for global fallout Pu, Am and Cs were similar (0.2-0.4 cm per year). Compared with Pu, however, the mobility of Am is slightly, but statistically significantly, enhanced. The highest rate in this layer was found for Chernobyl-derived radiocaesium (2 cm per year). In the layers of the mineral horizon (depth 0-2, 2-5 and 5-10 cm) the observed migration rates were very similar for global fallout Pu (0.08-0.7 cm per year) and Am (0.1-2 cm per year). In comparison, the migration rate of global fallout radiocaesium was about half in each layer. The highest rate was observed again for Chernobyl-derived radiocaesium (0.5-3 cm per year).
NASA Astrophysics Data System (ADS)
Žibrat, U.; Brancelj, A.
2009-04-01
In populations with both males and females sex-ratio is one of the driving forces of population dynamics. It influences fecundity, inbreeding and social interactions. Sex-ratio is affected by several biotic and abiotic factors, either by selective killing of one sex or by inducing migrations. In alpine lakes of Triglav National Park, Slovenia, an extremely male biased sex-ratio in Arctodiaptomus alpinus (Imhof, 1885) was regularly observed since 1992. We analysed population dynamics and sex-ratio of A. alpinus in three alpine lakes (Jezero v Ledvicah, Rjavo jezero and Zgornje Kriško jezero) from Triglav National Park in Slovenia. In addition to seasonal dynamics we also researched long-term changes in sex-ratio (in a period of 11 years from autumn samples) as a result of increased air-temperature, and zooplankton diurnal vertical migrations. Adults of both sexes were found to appear at the same time in the water collumn with males prevailing throughout the season. A similar trend was found in copepodites CV. The percent of adult females began increasing in late summer, when there were no more copepodites and recrutation from copepodites CV to adults stopped, while male mortality increased. All cohorts of A. alpinus were found to perform diurnal vertical migrations. Both adult and CV females remained close to the bottom during the day and migrated vertically during the night. Results of the long-term study show no changes in sex-ratio in autumn.
NASA Astrophysics Data System (ADS)
Flanders, K. R.; Laurel, B.
2016-02-01
Early life stages of marine fishes must maximize growth while minimizing vulnerability to predators. Larval stages in particular are subject to ocean currents, but encounter favorable habitats by adjusting their vertical position in the water column. The investigation of environmental cues that change larval fish behavior is therefore crucial to understanding larval drift and dispersal modeling, and subsequently population structure and connectivity. In this study, the behavioral responses of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogramma) in a vertical water column were examined. Two prominent environmental variables, light and temperature, were manipulated over 3 h during observational trials. Light intensity was studied at two levels (1.484 x 101 μE m-2 s-1 ; 2.54 x102 μE m-2 s-1), and a diel effect was studied through the removal of light after 2 h. Light intensity did not significantly impact the position of either species in a vertical water column. However, a significant difference by species was apparent when all light levels were considered: the mean position of Arctic cod was closer to the surface of the water than that of walleye pollock. The effect of temperature through the introduction of a thermocline (range 5.6°C - 1.5°C) was limited to walleye pollock given the Arctic cod larvae were surface oriented across all light treatments. However, the thermocline did not significantly impact the relative change in position from light to dark in walleye pollock, likely because they were also surface oriented in control treatments. These results could be incorporated into future larval dispersal and survival models, particularly in Alaskan and Arctic waters, to investigate changes in species distributions resulting from global warming impacts. These results also indicate population structures of Arctic cod and walleye pollock could be affected, which may be reflected in ecosystem and trophic interactions. Because Arctic cod larvae were found to be significantly surface-oriented, rising sea surface temperatures pose a considerable threat while walleye pollock could continue territorial expansion northward.
Do larvae from deep-sea hydrothermal vents disperse in surface waters?
Yahagi, Takuya; Kayama Watanabe, Hiromi; Kojima, Shigeaki; Kano, Yasunori
2017-06-01
Larval dispersal significantly contributes to the geographic distribution, population dynamics, and evolutionary processes of animals endemic to deep-sea hydrothermal vents. Little is known as to the extent that their larvae migrate vertically to shallower waters and experience stronger currents and richer food supplies. Here, we first provide evidence from early life-history traits and population genetics for the surface dispersal of a vent species. Planktotrophic larvae of a red blood limpet, Shinkailepas myojinensis (Gastropoda: Neritimorpha: Phenacolepadidae), were cultured to observe their swimming behavior and to evaluate the effects of temperature on survival and growth. In addition, the population structure was analyzed based on 1.2-kbp mitochondrial DNA sequences from 77 specimens that cover the geographic and bathymetric distributions of the species (northwest Pacific, 442-1,227 m in depth). Hatched larvae constantly swam upward at 16.6-44.2 mm/min depending on temperature. Vertical migration from hydrothermal vents to the surface, calculated to take ~4-43 d, is attainable given their lengthy survival time without feeding. Fed larvae best survived and grew at 25°C (followed by 20°C), which approximates the sea surface temperature in the geographic range of the species. Little or no growth was observed at the temperature of the vent habitat where adult limpets occur (≤15°C). Population genetic analyses showed no differentiation among localities that are <1,350 km apart. The larvae of S. myojinensis most likely migrate to the surface water, where high phytoplankton biomass and strong currents enable their growth and long distance dispersal over many months. Sea surface temperature may represent a critical factor in determining the geographic distribution of many vent endemic species with a planktotrophic early development, and in turn the faunal composition of individual vent sites and regions. © 2017 by the Ecological Society of America.
Chang, Yu-Lin; Sheng, Jinyu; Ohashi, Kyoko; Béguer-Pon, Mélanie; Miyazawa, Yasumasa
2015-01-01
The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC), the Kuroshio, and the Subtropical Countercurrent (STCC) region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines-Taiwan Oscillation (PTO). This study examines the effect of the PTO on the Japanese eel larval migration routes using a three-dimensional (3D) particle tracking method, including vertical and horizontal swimming behavior. The 3D circulation and hydrography used for particle tracking are from the ocean circulation reanalysis produced by the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2). Our results demonstrate that bifurcation of the NEC and the strength and spatial variation of the Kuroshio affect the distribution and migration of eel larvae. During the positive phase of PTO, more virtual eels ("v-eels") can enter the Kuroshio to reach the south coast of Japan and more v-eels reach the South China Sea through the Luzon Strait; the stronger and more offshore swing of the Kuroshio in the East China Sea leads to fewer eels entering the East China Sea and the onshore movement of the Kuroshio to the south of Japan brings the eels closer to the Japanese coast. Significant differences in eel migration routes and distributions regulated by ocean circulation in different PTO phases can also affect the otolith increment. The estimated otolith increment suggests that eel age tends to be underestimated after six months of simulation due to the cooler lower layer temperature. Underestimation is more significant in the positive PTO years due to the wide distribution in higher latitudes than in the negative PTO years.
Can small zooplankton enhance turbulence in a lake during vertical migration?
NASA Astrophysics Data System (ADS)
Wain, D.; Simoncelli, S.; Thackeray, S.
2016-02-01
Recent research in both oceanic and freshwater systems suggests that the Diel Vertical Migration (DVM), a predator-avoidance mechanism adopted by many zooplankton, may be an underrepresented source of turbulence and mixing. In particular, the migration can play a crucial role when organisms cross the thermocline; this could be particularly important in enhancing the mixing in lakes, where the pelagic zone is often quiescent, with a consequent impact on lake ecosystem functioning. A field experiment was performed to directly measure the temperature fluctuations and kinetic energy dissipation rate generated by DVM of Daphnia spp., a 1 mm crustacean zooplankton genus. Profiles of turbulence were acquired with a temperature microstructure profiler in Vobster Quay (UK), a small quarry with small wind fetch, steep sides, and with a maximum depth of approximately 25 m. Sixteen profiles were measured over the course of two hours during sunset on 16 July 2015, during which there was no wind. Backscatter strength from bottom-mounted ADCP was used as a proxy to assess DVM. Zooplankton vertical distribution was also quantified by sampling with a 100 μm mesh net before and after the turbulence profiling in 8 layers to verify the distribution of Daphnia spp. before and after the migration. Zooplankton tows show higher abundance (450 ind./L) of Daphnia at 9m and near the bottom before sunset (8PM). Samples after dusk (11.20PM) showed an increase in the surface layer, from 0 up to 250 ind./L. However, migration also appears to happen horizontally. Ensemble-averaged profiles show a great variation of the dissipation rates over the course of the time series with a peak of 10-7 W/kg between 6m and 12m where the DVM is happening and with respect to profiles before sunset. Given the uncertainty in measuring the length scales of turbulence associated with small zooplankton, further analysis is required to determine if the observed turbulence during the time of migration was due the migration or due to other causes, such as the onset of penetrative convection associated with night-time cooling. Three further datasets were collected during sunset in August and September 2015 and will be used to determine if turbulence is always present during the migrations.
Howey, Lucy A.; Tolentino, Emily R.; Jordan, Lance K. B.; Ruppert, Jonathan L. W.; Brooks, Edward J.
2017-01-01
Despite the ecological and economic importance of the Caribbean reef shark (Carcharhinus perezi), little data exist regarding the movements and habitat use of this predator across its range. We deployed 11 pop-up satellite archival tags on Caribbean reef sharks captured in the northeast Exuma Sound, The Bahamas, to assess their horizontal and vertical movements throughout the water column. Sharks showed high site fidelity to The Bahamas suggesting Bahamian subpopulations remain protected within the Bahamian Shark Sanctuary. Depth data indicate that Caribbean reef sharks spent a significant proportion (72–91%) of their time above 50 m in narrow vertical depth bands, which varied considerably on an individual basis. This may be indicative of high site fidelity to specific bathymetric features. Animals exhibited three broadly categorized sporadic off-bank excursions (more than 50 m excursions) down to a depth of 436.1 m, which were more frequent during the night. These deeper excursions during night may be indicative of foraging in relation to prey on mesophotic reefs, as well as diel-vertically migrating prey from the deeper meso- and bathypelagic zones. These vertical movements suggest that Caribbean reef sharks can be significant vectors of ecosystem connectivity further warranting holistic multi-system management and conservation approaches. PMID:28386422
Three-dimensional modelling of leachate recirculation using vertical wells in bioreactor landfills.
Feng, Shi-Jin; Chen, Zheng-Wei; Cao, Ben-Yi
2016-12-01
Bioreactor landfills use leachate recirculation to enhance the biodegradation of municipal solid waste and accelerate landfill stabilisation, which can provide significant environmental and economic benefits. Vertical wells are operated as a major method for leachate recirculation systems. The objectives of this article are to analyse the leachate migration in bioreactor landfills using vertical wells and to offer theoretical basis for the design of leachate recirculation systems. A three-dimensional numerical model was built using FLAC-3D, and this model can consider the saturated and unsaturated flow of leachate within anisotropic waste to reflect the actual conditions. First, main influence factors of leachate migration were analysed, including the vertical well height, hydraulic conductivity, and anisotropic coefficient, in a single-well recirculation system. Then, the effects of different configurations of a group-well system were studied and the optimal well spacing was obtained. Some key design parameters (e.g. the recirculation flow rate, volume of impact zone, radius of impact zone and time to reach steady state) were also evaluated. The results show that the hydraulic conductivity has a great impact on the optimal height of vertical wells and uniform configuration is the best option in terms of both volume of impact zone and time to reach steady state. © The Author(s) 2016.
Shipley, Oliver N; Howey, Lucy A; Tolentino, Emily R; Jordan, Lance K B; Ruppert, Jonathan L W; Brooks, Edward J
2017-02-01
Despite the ecological and economic importance of the Caribbean reef shark ( Carcharhinus perezi ), little data exist regarding the movements and habitat use of this predator across its range. We deployed 11 pop-up satellite archival tags on Caribbean reef sharks captured in the northeast Exuma Sound, The Bahamas, to assess their horizontal and vertical movements throughout the water column. Sharks showed high site fidelity to The Bahamas suggesting Bahamian subpopulations remain protected within the Bahamian Shark Sanctuary. Depth data indicate that Caribbean reef sharks spent a significant proportion (72-91%) of their time above 50 m in narrow vertical depth bands, which varied considerably on an individual basis. This may be indicative of high site fidelity to specific bathymetric features. Animals exhibited three broadly categorized sporadic off-bank excursions (more than 50 m excursions) down to a depth of 436.1 m, which were more frequent during the night. These deeper excursions during night may be indicative of foraging in relation to prey on mesophotic reefs, as well as diel-vertically migrating prey from the deeper meso- and bathypelagic zones. These vertical movements suggest that Caribbean reef sharks can be significant vectors of ecosystem connectivity further warranting holistic multi-system management and conservation approaches.
NASA Astrophysics Data System (ADS)
Maples, S.; Andraski, B. J.; Stonestrom, D. A.; Cooper, C. A.; Pohll, G.
2011-12-01
Studies at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in southern Nevada have documented long-distance (>400-m) tritium (3H) transport adjacent to a commercial, low-level radioactive waste disposal facility. Transport at this scale is orders of magnitude greater than anticipated; however, lateral 3H fluxes through the shallow unsaturated zone (UZ) have not been investigated in detail. The objective of this study is to estimate and compare lateral and vertical tritiated water-vapor (3HHOg) fluxes in the shallow UZ and their relation to the observed plume migration. Previous studies have recognized two distinct plumes of 3H emanating from the facility. Shallow (0.5 and 1.5-m depth) soil-water vapor samples were collected yearly along 400-m long transects through both plumes from 2003-09. Within the south plume, 3H concentrations at 1.5-m depth have decreased by 44 ± 0.3% during this period, and plume advancement there has effectively ceased (i.e., rate of advance equals rate of decay). During the same period, the west plume showed a net decrease in concentration of 34 ± 0.9% within 100-m of the facility; however, plume advancement is observed at the leading edge of the plume, and concentrations 200-300-m from the facility show an increase in 3H concentration of 64 ± 28.4%. Lateral and vertical diffusive fluxes within both plumes were calculated using 3HHOg concentrations from 2006. Lateral 3HHOg diffusive fluxes within both plumes have been estimated 25-300-m from the facility at 1.5-m depth. Mean lateral 3HHOg diffusive fluxes are 10-14 g m-2 yr-1 within the south plume, and 10-13 g m-2 yr-1 within the west plume. Mean lateral fluxes in the south plume are an order of magnitude lower than in the west plume. This behavior corresponds with the observed relative immobility of the south plume, while the elevated west plume fluxes agree with the plume advancement seen there. Shallow, upward directed, mean vertical 3HHOg fluxes 25-300-m from the facility are estimated to be 10-12 g m-2 yr-1 in the south plume and 10-11 g m-2 yr-1 in the west plume. Within both plumes, mean vertical diffusive fluxes are two orders of magnitude greater than mean lateral diffusive fluxes. Lateral diffusive 3HHOg fluxes have been calculated similarly using 2001 south plume data and were compared to 2001 south plume vertical diffusive 3HHOg fluxes published by Andraski et al. (2005). Here, too, mean vertical fluxes dwarf mean lateral fluxes (10-11 g m-2 yr-1 vs. 10-14 g m-2 yr-1). This behavior highlights the importance of upward movement and release of 3H to the atmosphere. The potential role of advective lateral transport and its contribution to observed plume migration is also under investigation.
Vertical migrations of a deep-sea fish and its prey.
Afonso, Pedro; McGinty, Niall; Graça, Gonçalo; Fontes, Jorge; Inácio, Mónica; Totland, Atle; Menezes, Gui
2014-01-01
It has been speculated that some deep-sea fishes can display large vertical migrations and likely doing so to explore the full suite of benthopelagic food resources, especially the pelagic organisms of the deep scattering layer (DSL). This would help explain the success of fishes residing at seamounts and the increased biodiversity found in these features of the open ocean. We combined active plus passive acoustic telemetry of blackspot seabream with in situ environmental and biological (backscattering) data collection at a seamount to verify if its behaviour is dominated by vertical movements as a response to temporal changes in environmental conditions and pelagic prey availability. We found that seabream extensively migrate up and down the water column, that these patterns are cyclic both in short-term (tidal, diel) as well as long-term (seasonal) scales, and that they partially match the availability of potential DSL prey components. Furthermore, the emerging pattern points to a more complex spatial behaviour than previously anticipated, suggesting a seasonal switch in the diel behaviour mode (benthic vs. pelagic) of seabream, which may reflect an adaptation to differences in prey availability. This study is the first to document the fine scale three-dimensional behaviour of a deep-sea fish residing at seamounts.
High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance
Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969
High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.
Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.
Cross-correlation least-squares reverse time migration in the pseudo-time domain
NASA Astrophysics Data System (ADS)
Li, Qingyang; Huang, Jianping; Li, Zhenchun
2017-08-01
The least-squares reverse time migration (LSRTM) method with higher image resolution and amplitude is becoming increasingly popular. However, the LSRTM is not widely used in field land data processing because of its sensitivity to the initial migration velocity model, large computational cost and mismatch of amplitudes between the synthetic and observed data. To overcome the shortcomings of the conventional LSRTM, we propose a cross-correlation least-squares reverse time migration algorithm in pseudo-time domain (PTCLSRTM). Our algorithm not only reduces the depth/velocity ambiguities, but also reduces the effect of velocity error on the imaging results. It relieves the accuracy requirements on the migration velocity model of least-squares migration (LSM). The pseudo-time domain algorithm eliminates the irregular wavelength sampling in the vertical direction, thus it can reduce the vertical grid points and memory requirements used during computation, which makes our method more computationally efficient than the standard implementation. Besides, for field data applications, matching the recorded amplitudes is a very difficult task because of the viscoelastic nature of the Earth and inaccuracies in the estimation of the source wavelet. To relax the requirement for strong amplitude matching of LSM, we extend the normalized cross-correlation objective function to the pseudo-time domain. Our method is only sensitive to the similarity between the predicted and the observed data. Numerical tests on synthetic and land field data confirm the effectiveness of our method and its adaptability for complex models.
Deep scattering layer migration and composition: observations from a diving saucer.
Barham, E G
1966-03-18
The distribution of a myctophid fish and physonect siphonophores observed during dives in the Soucoupe off Baja California closely correlates with scattering layers recorded simultaneously with a 12-kcy/sec echo sounder. These organisms were observed while they were migrating vertically, and at their night and daytime levels. They are capable of rapid, extensive changes in depth.
Wood, Curtis R; Chapman, Jason W; Reynolds, Donald R; Barlow, Janet F; Smith, Alan D; Woiwod, Ian P
2006-03-01
Insects migrating at high altitude over southern Britain have been continuously monitored by automatically operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights that are favourable for long-range migration. We therefore investigated the factors influencing the formation of these insect layers by comparing radar measurements of the vertical distribution of insect density with meteorological profiles generated by the UK Meteorological Office's (UKMO) Unified Model (UM). Radar-derived measurements of mass and displacement speed, along with data from Rothamsted Insect Survey light traps, provided information on the identity of the migrants. We present here three case studies where noctuid and pyralid moths contributed substantially to the observed layers. The major meteorological factors influencing the layer concentrations appeared to be: (a) the altitude of the warmest air, (b) heights corresponding to temperature preferences or thresholds for sustained migration and (c) on nights when air temperatures are relatively high, wind-speed maxima associated with the nocturnal jet. Back-trajectories indicated that layer duration may have been determined by the distance to the coast. Overall, the unique combination of meteorological data from the UM and insect data from entomological radar described here show considerable promise for systematic studies of high-altitude insect layering.
NASA Astrophysics Data System (ADS)
Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas
2016-09-01
Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.
NASA Astrophysics Data System (ADS)
Harvey, Michel; Galbraith, Peter S.; Descroix, Aurélie
2009-01-01
Vertical distribution of various species and stages of macrozooplankton (euphausiacea, chaetognatha, cnidaria, mysidacea, amphipoda) were determined for different times of the day and related to the physical environment. Stratified sampling with the BIONESS was carried out during seven cruises in spring and fall 1998, 2000, and 2001, and fall 1999, in two different habitats in the St. Lawrence marine system: the lower St. Lawrence Estuary and the NW Gulf of St. Lawrence. Our results indicate that the various macrozooplankton species were distributed throughout the whole water column including the surface layer, the cold intermediate layer (CIL), and the deep layer at different times of day and night in both areas during all periods. Moreover, three types of migrational patterns were observed within this zooplanktonic community: (1) nocturnal ascent by the whole population, (2) segregation into two groups; one which performed nocturnal accent and another which remained in the deep, and (3) no detectable migration. We also observed that the diel vertical migration (DVM) amplitude in most of the macrozooplankton species varied as a function of physical factors, in particular the spatio-temporal variations of the CIL thermal properties, including the upper and the lower limits of the CIL and the depth of the CIL core temperature. Finally, the different DVM patterns coupled with estuarine circulation patterns and bottom topography could place animals in different flow regimes by night and by day and contribute to their retention (aggregation) and/or dispersion in different areas, time of the day, and seasons.
Migration of 137Cs in the soil of sloping semi-natural ecosystems in Northern Greece.
Arapis, G D; Karandinos, M G
2004-01-01
In the present study, the 137Cs concentration in the soil of sloping semi-natural ecosystems at four different regions of Western Macedonia in Greece was measured 10 years after the Chernobyl accident. These regions were highly polluted due to the deposition of radionuclides escaped during the accident. The concentrations of 137Cs measured were found to differ significantly among the four regions. The rates of both horizontal and vertical migration in the soil were also evaluated. The vertical migration velocity of 137Cs was found to range from 0.1 to 0.3 cm per year, in the most contaminated areas. Consequently, 10 years following the Chernobyl accident, the bulk of 137Cs deposited over the surface of the studied areas in Greece was found to be restricted in the upper 5 cm layer of soil. Regarding the horizontal migration, in most of the sampling sites, we did not detect any displacement or trend to movement of radiocaesium on the surface from the upper to the lower levels of the slopes. Instead, we recorded decreased concentrations of 137Cs with the decrease of altitude.
Pre-migration trauma and HIV-risk behavior.
Steel, Jennifer; Herlitz, Claes; Matthews, Jesse; Snyder, Wendy; Mazzaferro, Kathryn; Baum, Andy; Theorell, Töres
2003-03-01
This study examined the relationship between pre-migration trauma and HIV-risk behavior in refugees from sub-Saharan Africa. The sample comprised 122 persons who had emigrated from sub-Saharan Africa and were currently residing in Sweden. Qualitative methods including individual interviews, focus groups, and interviews with key informants addressed questions regarding trauma experience and HIV-risk behavior. A history of pre-migration trauma was found to be associated with HIV-risk behavior. According to the participants, symptoms associated with post-traumatic stress disorder, depression, adjustment disorder, and substance use mediated the relationship between pre-migration trauma and sexual risk behavior. In contrast, a minority of the participants who reported pre-migration trauma but not psychological sequelae, or experienced post-traumatic growth, reported safer sexual practices. It appears that for some individuals, pre-migration trauma resulted in psychiatric sequelae, which may increase an individual's risk to be infected with HIV. Interventions targeted at individuals at increased risk (i.e. pre-migration trauma with unresolved psychiatric symptomatology) may facilitate the prevention of HIV and other sexually transmitted diseases in this population. Integration of multiple psychosocial and health issues is recommended for comprehensive treatment and prevention programs.
NASA Astrophysics Data System (ADS)
Santos, A. M. P.; Nieblas, A.-E.; Verley, P.; Teles-Machado, A.; Bonhommeau, S.; Lett, C.; Garrido, S.; Peliz, A.
2018-03-01
The European sardine (Sardina pilchardus) is the most important small pelagic fishery of the Western Iberia Upwelling Ecosystem (WIUE). Recently, recruitment of this species has declined due to changing environmental conditions. Furthermore, controversies exist regarding its population structure with barriers thought to exist between the Atlantic-Iberian Peninsula, Northern Africa, and the Mediterranean. Few studies have investigated the transport and dispersal of sardine eggs and larvae off Iberia and the subsequent impact on larval recruitment variability. Here, we examine these issues using a Regional Ocean Modeling System climatology (1989-2008) coupled to the Lagrangian transport model, Ichthyop. Using biological parameters from the literature, we conduct simulations that investigate the effects of spawning patchiness, diel vertical migration behaviors, and egg buoyancy on the transport and recruitment of virtual sardine ichthyoplankton on the continental shelf. We find that release area, release depth, and month of release all significantly affect recruitment. Patchiness has no effect and diel vertical migration causes slightly lower recruitment. Egg buoyancy effects are significant and act similarly to depth of release. As with other studies, we find that recruitment peaks vary by latitude, explained here by the seasonal variability of offshore transport. We find weak, continuous alongshore transport between release areas, though a large proportion of simulated ichthyoplankton transport north to the Cantabrian coast (up to 27%). We also show low level transport into Morocco (up to 1%) and the Mediterranean (up to 8%). The high proportion of local retention and low but consistent alongshore transport supports the idea of a series of metapopulations along this coast.
Lewis, Ceri N.; Brown, Kristina A.; Edwards, Laura A.; Cooper, Glenn; Findlay, Helen S.
2013-01-01
The Arctic Ocean already experiences areas of low pH and high CO2, and it is expected to be most rapidly affected by future ocean acidification (OA). Copepods comprise the dominant Arctic zooplankton; hence, their responses to OA have important implications for Arctic ecosystems, yet there is little data on their current under-ice winter ecology on which to base future monitoring or make predictions about climate-induced change. Here, we report results from Arctic under-ice investigations of copepod natural distributions associated with late-winter carbonate chemistry environmental data and their response to manipulated pCO2 conditions (OA exposures). Our data reveal that species and life stage sensitivities to manipulated OA conditions were correlated with their vertical migration behavior and with their natural exposures to different pCO2 ranges. Vertically migrating adult Calanus spp. crossed a pCO2 range of >140 μatm daily and showed only minor responses to manipulated high CO2. Oithona similis, which remained in the surface waters and experienced a pCO2 range of <75 μatm, showed significantly reduced adult and nauplii survival in high CO2 experiments. These results support the relatively untested hypothesis that the natural range of pCO2 experienced by an organism determines its sensitivity to future OA and highlight that the globally important copepod species, Oithona spp., may be more sensitive to future high pCO2 conditions compared with the more widely studied larger copepods. PMID:24297880
Ludvigsen, Martin; Berge, Jørgen; Geoffroy, Maxime; Cohen, Jonathan H; De La Torre, Pedro R; Nornes, Stein M; Singh, Hanumant; Sørensen, Asgeir J; Daase, Malin; Johnsen, Geir
2018-01-01
Light is a major cue for nearly all life on Earth. However, most of our knowledge concerning the importance of light is based on organisms' response to light during daytime, including the dusk and dawn phase. When it is dark, light is most often considered as pollution, with increasing appreciation of its negative ecological effects. Using an Autonomous Surface Vehicle fitted with a hyperspectral irradiance sensor and an acoustic profiler, we detected and quantified the behavior of zooplankton in an unpolluted light environment in the high Arctic polar night and compared the results with that from a light-polluted environment close to our research vessels. First, in environments free of light pollution, the zooplankton community is intimately connected to the ambient light regime and performs synchronized diel vertical migrations in the upper 30 m despite the sun never rising above the horizon. Second, the vast majority of the pelagic community exhibits a strong light-escape response in the presence of artificial light, observed down to 100 m. We conclude that artificial light from traditional sampling platforms affects the zooplankton community to a degree where it is impossible to examine its abundance and natural rhythms within the upper 100 m. This study underscores the need to adjust sampling platforms, particularly in dim-light conditions, to capture relevant physical and biological data for ecological studies. It also highlights a previously unchartered susceptibility to light pollution in a region destined to see significant changes in light climate due to a reduced ice cover and an increased anthropogenic activity.
NASA Astrophysics Data System (ADS)
Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.
2017-11-01
Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.
Oliveira, Aruaque L F; Costa, Ciniro; Rodella, Roberto A; Silva, Bruna F; Amarante, Alessandro F T
2009-06-01
The influence of trichomes on vertical migration and survival of Haemonchus contortus infective larvae (L3) on different forages was investigated. Four different forages showing different distributions of trichomes (Brachiaria brizantha cv. Marandu, Brachiaria brizantha cv. Xaraes, Andropogon gayanus, and Stylosanthes spp.), and one forage species without trichomes (Panicum maximum cv. Tanzania), were used. Forages cut at the post-grazing height were contaminated with faeces containing L3. Samples of different grass strata (0-10, 10-20, >20 cm) and faeces were collected for L3 quantification once per week over four weeks. In all forages studied, the highest L3 recovery occurred seven days after contamination, with the lowest recovery on A. gayanus. In general, larvae were found on all forages' strata. However, most of the larvae were at the lower stratum. There was no influence of trichomes on migration and survival of H. contortus L3 on the forages.
Kynard, B.; Henyey, E.; Horgan, M.
2002-01-01
We conducted laboratory studies on the ontogenetic behavior of free embryos (first life interval after hatching) and larvae (first feeding interval) of pallid and shovelnose sturgeon. Migration styles of both species were similar for timing of migration (initiation by embryos on day 0 after hatching and cessation by larvae on days 12-13 at 236-243 cumulative temperature degree units), migration distance (about 13 km), life interval when most distance was moved (embryo), and diel behavior of embryos (diurnal). However, the species differed for two behaviors: movement characteristics of embryos (peak movement rate of pallid sturgeon was only one-half the peak rate of shovelnose sturgeon, but pallid sturgeon continued the lower rate for twice as long) and diel behavior of larvae (pallid sturgeon were diurnal and shovelnose sturgeon were nocturnal). Thus, the species used different methods to move the same distance. Migrating as poorly developed embryos suggests a migration style to avoid predation at the spawning site, but moving from spawning habitat to rearing habitat before first feeding could also be important. Migrants of both species preferred bright habitat (high illumination intensity and white substrate), a behavioral preference that may characterize the migrants of many species of sturgeon. Both species were remarkably similar for swimming height above the bottom by age, and day 7 and older migrants may swim far above the bottom and move far downstream. A migration of 12 or 13 days will probably not distribute larvae throughout the population's range, so an older life interval likely initiates a second longer downstream migration (2-step migration). By day 2, individuals of both species were a black-tail phenotype (light grey body with a black-tail that moved conspicuously during swimming). Aggregation behavior suggests that black-tail is a visual signal used for group cohesion.
Vertically migrating swimmers generate aggregation-scale eddies in a stratified column.
Houghton, Isabel A; Koseff, Jeffrey R; Monismith, Stephen G; Dabiri, John O
2018-04-01
Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing 1-3 . However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres 3,5,6 . This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .
NASA Astrophysics Data System (ADS)
Steinberg, Deborah K.; Cope, Joseph S.; Wilson, Stephanie E.; Kobari, T.
2008-07-01
Mesopelagic mesozooplankton communities of an oligotrophic (Hawaii Ocean Time series-HOT station ALOHA) and a mesotrophic (Japanese time-series station K2) environment in the North Pacific Ocean are compared as part of a research program investigating the factors that control the efficiency of particle export to the deep sea (VERtical Transport In the Global Ocean—VERTIGO). We analyzed zooplankton (>350 μm) collected from net tows taken between 0 and 1000 m at each site to investigate the biomass size structure and the abundance of the major taxonomic groups in discrete depth intervals throughout the water column. Biomass of zooplankton at K2 over all depths was approximately an order of a magnitude higher than at ALOHA, with a significantly higher proportion of the biomass at K2 in the larger (>2 mm) size classes. This difference was mostly due to the abundance at K2 of the large calanoid copepods Neocalanus spp. and Eucalanus bungii, which undergo ontogenetic (seasonal) vertical migration. The overall strength of diel vertical migration was higher at K2, with a mean night:day biomass ratio in the upper 150 m of 2.5, vs. a ratio of 1.7 at ALOHA. However, the amplitude of the diel migration (change in weighted mean depth between day and night) was higher at ALOHA for all biomass size classes, perhaps due to deeper light penetration causing deeper migration to avoid visual predators. A number of taxa known to feed on suspended or sinking detritus showed distinct peaks in the mesopelagic zone, which affects particle transport efficiency at both sites. These taxa include calanoid and poecilostomatoid (e.g., Oncaea spp.) copepods, salps, polychaetes, and phaeodarian radiolaria at K2, harpacticoid copepods at ALOHA, and ostracods at both sites. We found distinct layers of carnivores (mainly gelatinous zooplankton) in the mesopelagic at K2 including chaetognaths, hydrozoan medusae, polychaetes, and gymnosome pteropods, and, in the upper mesopelagic zone, of ctenophores and siphonophores; at both sites a mesopelagic layer of hyperiid amphipods was found. The large population of ontogenetically migrating calanoid copepods is likely supporting large carnivorous populations at depth at K2. The contrasting zooplankton taxonomic structure at the two sites helps explain the higher efficiency of the biological pump at K2. Factors responsible for increased transport efficiency at K2 include rapid transport of POC via larger fecal pellets produced by zooplankton at K2, and enhanced active carbon export at K2 vs. ALOHA, due to the greater strength of diel vertical migration and to additional ontogenetic migration at K2.
Supplemental feeding alters migration of a temperate ungulate.
Jones, Jennifer D; Kauffman, Matthew J; Monteith, Kevin L; Scurlock, Brandon M; Albeke, Shannon E; Cross, Paul C
Conservation of migration requires information on behavior and environmental determinants. The spatial distribution of forage resources, which migration exploits, often are altered and may have subtle, unintended consequences. Supplemental feeding is a common management practice, particularly for ungulates in North America and Europe, and carryover effects on behavior of this anthropogenic manipulation of forage are expected in theory, but have received limited empirical evaluation, particularly regarding effects on migration. We used global positioning system (GPS) data to evaluate the influence of winter feeding on migration behavior of 219 adult female elk (Cervus elaphus) from 18 fed ranges and 4 unfed ranges in western Wyoming. Principal component analysis revealed that the migratory behavior of fed and unfed elk differed in distance migrated, and the timing of arrival to, duration on, and departure from summer range. Fed elk migrated 19.2 km less, spent 11 more days on stopover sites, arrived to summer range 5 days later, resided on summer range 26 fewer days, and departed in the autumn 10 days earlier than unfed elk. Time-to-event models indicated that differences in migratory behavior between fed and unfed elk were caused by altered sensitivity to the environmental drivers of migration. In spring, unfed elk migrated following plant green-up closely, whereas fed elk departed the feedground but lingered on transitional range, thereby delaying their arrival to summer range. In autumn, fed elk were more responsive to low temperatures and precipitation events, causing earlier departure from summer range than unfed elk. Overall, supplemental feeding disconnected migration by fed elk from spring green-up and decreased time spent on summer range, thereby reducing access to quality forage. Our findings suggest that ungulate migration can be substantially altered by changes to the spatial distribution of resources, including those of anthropogenic origin, and that management practices applied in one season may have unintended behavioral consequences in subsequent seasons.
Supplemental feeding alters migration of a temperate ungulate
Jones, Jennifer D; Kauffman, Matthew J.; Monteith, Kevin L.; Scurlock, Brandon M.; Albeke, Shannon E.; Cross, Paul C.
2014-01-01
Conservation of migration requires information on behavior and environmental determinants. The spatial distribution of forage resources, which migration exploits, often are altered and may have subtle, unintended consequences. Supplemental feeding is a common management practice, particularly for ungulates in North America and Europe, and carryover effects on behavior of this anthropogenic manipulation of forage are expected in theory, but have received limited empirical evaluation, particularly regarding effects on migration. We used global positioning system (GPS) data to evaluate the influence of winter feeding on migration behavior of 219 adult female elk (Cervus elaphus) from 18 fed ranges and 4 unfed ranges in western Wyoming. Principal component analysis revealed that the migratory behavior of fed and unfed elk differed in distance migrated, and the timing of arrival to, duration on, and departure from summer range. Fed elk migrated 19.2 km less, spent 11 more days on stopover sites, arrived to summer range 5 days later, resided on summer range 26 fewer days, and departed in the autumn 10 days earlier than unfed elk. Time-to-event models indicated that differences in migratory behavior between fed and unfed elk were caused by altered sensitivity to the environmental drivers of migration. In spring, unfed elk migrated following plant green-up closely, whereas fed elk departed the feedground but lingered on transitional range, thereby delaying their arrival to summer range. In autumn, fed elk were more responsive to low temperatures and precipitation events, causing earlier departure from summer range than unfed elk. Overall, supplemental feeding disconnected migration by fed elk from spring green-up and decreased time spent on summer range, thereby reducing access to quality forage. Our findings suggest that ungulate migration can be substantially altered by changes to the spatial distribution of resources, including those of anthropogenic origin, and that management practices applied in one season may have unintended behavioral consequences in subsequent seasons.
Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers
NASA Astrophysics Data System (ADS)
Klevjer, T. A.; Irigoien, X.; Røstad, A.; Fraile-Nuez, E.; Benítez-Barrios, V. M.; Kaartvedt., S.
2016-01-01
Recent studies suggest that previous estimates of mesopelagic biomasses are severely biased, with the new, higher estimates underlining the need to unveil behaviourally mediated coupling between shallow and deep ocean habitats. We analysed vertical distribution and diel vertical migration (DVM) of mesopelagic acoustic scattering layers (SLs) recorded at 38 kHz across oceanographic regimes encountered during the circumglobal Malaspina expedition. Mesopelagic SLs were observed in all areas covered, but vertical distributions and DVM patterns varied markedly. The distribution of mesopelagic backscatter was deepest in the southern Indian Ocean (weighted mean daytime depth: WMD 590 m) and shallowest at the oxygen minimum zone in the eastern Pacific (WMD 350 m). DVM was evident in all areas covered, on average ~50% of mesopelagic backscatter made daily excursions from mesopelagic depths to shallow waters. There were marked differences in migrating proportions between the regions, ranging from ~20% in the Indian Ocean to ~90% in the Eastern Pacific. Overall the data suggest strong spatial gradients in mesopelagic DVM patterns, with implied ecological and biogeochemical consequences. Our results suggest that parts of this spatial variability can be explained by horizontal patterns in physical-chemical properties of water masses, such as oxygen, temperature and turbidity.
Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers.
Klevjer, T A; Irigoien, X; Røstad, A; Fraile-Nuez, E; Benítez-Barrios, V M; Kaartvedt, S
2016-01-27
Recent studies suggest that previous estimates of mesopelagic biomasses are severely biased, with the new, higher estimates underlining the need to unveil behaviourally mediated coupling between shallow and deep ocean habitats. We analysed vertical distribution and diel vertical migration (DVM) of mesopelagic acoustic scattering layers (SLs) recorded at 38 kHz across oceanographic regimes encountered during the circumglobal Malaspina expedition. Mesopelagic SLs were observed in all areas covered, but vertical distributions and DVM patterns varied markedly. The distribution of mesopelagic backscatter was deepest in the southern Indian Ocean (weighted mean daytime depth: WMD 590 m) and shallowest at the oxygen minimum zone in the eastern Pacific (WMD 350 m). DVM was evident in all areas covered, on average ~50% of mesopelagic backscatter made daily excursions from mesopelagic depths to shallow waters. There were marked differences in migrating proportions between the regions, ranging from ~20% in the Indian Ocean to ~90% in the Eastern Pacific. Overall the data suggest strong spatial gradients in mesopelagic DVM patterns, with implied ecological and biogeochemical consequences. Our results suggest that parts of this spatial variability can be explained by horizontal patterns in physical-chemical properties of water masses, such as oxygen, temperature and turbidity.
Kynard, B.; Horgan, M.
2002-01-01
Ontogenetic behavior of Hudson River Atlantic sturgeon and Connecticut River shortnose sturgeon early life intervals were similar during laboratory observations. After hatching, free embryos were photonegative and sought cover. When embryos developed into larvae, fish left cover, were photopositive, and initiated downstream migration. Free embryos may remain at the spawning site instead of migrating downstream because the risk of predation at spawning sites is low. The two species are sympatric, but not closely related, so the similarities in innate behaviors suggest common adaptations, not phylogenetlc relationship. Atlantic sturgeon migrated downstream for 12 days (peak, first 6 days), shortnose sturgeon migrated for 3 days, and year-0 juveniles of both species did not resume downstream migration. Short or long migrations of larvae may reflect different styles related to the total migratory distance from spawning sites to juvenile rearing areas. Atlantic sturgeon need to move a short distance to reach rearing areas and they had a long 1-step migration of 6-12 days. In contrast, shortnose sturgeon need to move a long distance to reach all rearing areas. This may be accomplished by a 2-step migration, of which the brief migration of larvae is only the first step. Early migrant Atlantic sturgeon were nocturnal, while late migrants were diurnal, and shortnose sturgeon were diurnal. These diel differences may also be adaptations for long (Atlantic sturgeon) or short (shortnose sturgeon) migrations. Cultured shortnose sturgeon, and possibly Atlantic sturgeon, have a dominance hierarchy with large fish dominant when competing for limited foraging space. Social behavior may be more important in the life history of wild sturgeons than is generally recognized.
Unrein, Julia R.; Billman, E.J.; Cogliati, Karen M.; Chitwood, Rob S.; Noakes, David L. G.; Schreck, Carl B.
2018-01-01
Life history variation is fundamental to the evolution of Pacific salmon and their persistence under variable conditions. We discovered that Chinook salmon sort themselves into surface- and bottom-oriented groups in tanks within days after exogenous feeding. We hypothesised that this behaviour is correlated with subsequent differences in body morphology and growth (as measured by final length and mass) observed later in life. We found consistent morphological differences between surface and bottom phenotypes. Furthermore, we found that surface and bottom orientation within each group is maintained for at least one year after the phenotypes were separated. These surface and bottom phenotypes are expressed across genetic stocks, brood years, and laboratories and we show that the proportion of surface- and bottom-oriented offspring also differed among families. Importantly, feed delivery location did not affect morphology or growth, and the surface fish were longer than bottom fish at the end of the rearing experiment. The body shape of the former correlates with wild individuals that rear in mainstem habitats and migrate in the fall as subyearlings and the latter resemble those that remain in the upper tributaries and migrate as yearling spring migrants. Our findings suggest that early self-sorting behaviour may have a genetic basis and be correlated with other phenotypic traits that are important indicators for juvenile migration timing.
NASA Astrophysics Data System (ADS)
Scheer, Dirk; Konrad, Wilfried; Class, Holger; Kissinger, Alexander; Knopf, Stefan; Noack, Vera
2017-06-01
Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the potential hazards associated with the geological storage of CO2. Thus, in a site selection process, models for predicting the fate of the displaced brine are required, for example, for a risk assessment or the optimization of pressure management concepts. From the very beginning, this research on brine migration aimed at involving expert and stakeholder knowledge and assessment in simulating the impacts of injecting CO2 into deep saline aquifers by means of a participatory modeling process. The involvement exercise made use of two approaches. First, guideline-based interviews were carried out, aiming at eliciting expert and stakeholder knowledge and assessments of geological structures and mechanisms affecting CO2-induced brine migration. Second, a stakeholder workshop including the World Café format yielded evaluations and judgments of the numerical modeling approach, scenario selection, and preliminary simulation results. The participatory modeling approach gained several results covering brine migration in general, the geological model sketch, scenario development, and the review of the preliminary simulation results. These results were included in revised versions of both the geological model and the numerical model, helping to improve the analysis of regional-scale brine migration along vertical pathways due to CO2 injection.
Lough, R. Gregory; Aretxabaleta, Alfredo L.
2014-01-01
Vertical profiles of the adult epibenthic shrimp Neomysis americana and Crangon septemspinosus obtained during June 1985 were used to simulate possible rates of ascent from bottom (40 to 50 m) to near surface at night and return by day, and the consequence of these rates on their horizontal distribution. Numerical particles were released at the sampling site using archived model current fields with specified vertical rates (from no swim behavior to 20 mm s(-1)) and tracked for up to 30 d. The best match between observed and modeled vertical profiles was with a vertical swimming speed of 10 mm s(-1) for N. americana and 2 mm s(-1) for C. septemspinosus. Whereas N. americana rapidly swims towards the surface at dusk and descends to bottom by dawn, C. septemspinosus tends to only swim up to the middle of the water column at night. After 16 d, the simulation with 10 mm s(-1) swim speed showed most particles were concentrated in an area centered around the 60 m isobath, where the tidal front was located. At 2 mm s(-1) swim speed particles were concentrated more shoalward onto the western end of Georges Bank. N. americana are expected to be more closely associated with the tidal front, since they spend more time near the front surface convergence, but are more likely to be transported off the bank due to the south-westward-flowing surface tidal jet, whereas C. septemspinosus would be retained primarily on the bank, since they are found deeper in the water column during both day and night.
Kim, Jin-Yong; Lee, Sanghun; Shin, Man-Seok; Lee, Chang-Hoon; Seo, Changwan; Eo, Soo Hyung
2018-01-01
Altitudinal patterns in the population ecology of mountain bird species are useful for predicting species occurrence and behavior. Numerous hypotheses about the complex interactions among environmental factors have been proposed; however, these still remain controversial. This study aimed to identify the altitudinal patterns in breeding bird species richness or density and to test the hypotheses that climate, habitat heterogeneity (horizontal and vertical), and heterospecific attraction in a temperate forest, South Korea. We conducted a field survey of 142 plots at altitudes between 200 and 1,400 m a.s.l in the breeding season. A total of 2,771 individuals from 53 breeding bird species were recorded. Altitudinal patterns of species richness and density showed a hump-shaped pattern, indicating that the highest richness and density could be observed at moderate altitudes. Models constructed with 13 combinations of six variables demonstrated that species richness was positively correlated with vertical and horizontal habitat heterogeneity. Density was positively correlated with vertical, but not horizontal habitat heterogeneity, and negatively correlated with migratory bird ratio. No significant relationships were found between spring temperature and species richness or density. Therefore, the observed patterns in species richness support the hypothesis that habitat heterogeneity, rather than climate, is the main driver of species richness. Also, neither habitat heterogeneity nor climate hypotheses fully explains the observed patterns in density. However, vertical habitat heterogeneity does likely help explain observed patterns in density. The heterospecific attraction hypothesis did not apply to the distribution of birds along the altitudinal gradient. Appropriate management of vertical habitat heterogeneity, such as vegetation cover, should be maintained for the conservation of bird diversity in this area.
Mills, P.C.
1993-01-01
The U.S. Geological Survey investigated contaminant migration in the Galena-Platteville aquifer at the Parson's Casket Hardware site in Belvidere, Ill. This report presents the results of the first phase of the investigation, from August through December 1990. A packer assembly was used to isolate various depth intervals in three 150-foot-deep boreholes in the dolomite aquifer. Aquifer-test data include vertical distributions of vertical hydraulic gradient, horizontal hydraulic conductivity (K), and response of water levels in observation wells to borehole pumping. Water-quality data include vertical distributions of field-measured properties and laboratory determinations of concentrations of volatile organic compounds (VOC's). vertical hydraulic gradients in the aquifer were downward. The downward gradients ranged from less than 0.01 to 0.37 foot/foot. The largest gradient was associated with an elevated-K interval at 115 to 125 feet below land surface. The hydraulic characteristics of strata within the aquifer seem to be generally consistent across the site. The strata can be subdivided into five hydraulic units with the following approximate depth ranges-and K's : (1) a 1- to 5-foot-thick weathered surface at about 35 feet below land surface, 1-200 ft/d (feet per day); (2) 35-80 feet, 0.05-0.5 ft/d; (3) 80-115 feet, 0.5 ft/d; (4) 115-125 feet, 0.5-10 ft/d; and (5) 125-150 feet, 0.5 ft/d. Water-level drawdowns were detected in one shallow bedrock observation well during pumping of some of the packed intervals in a nearby borehole, indicating that the degree of vertical connection between some intervals in the aquifer may be greater than that between others. During development pumping of one borehole, drawdowns were detected in a nearby well screened in the lower part of the overlying glacial-drift deposits, indicating hydraulic connection between the glacial drift aquifer and the bedrock aquifer. VOC's were detected throughout the upper half (about 150 feet ) of the bedrock aquifer beneath the site. The detected compounds were predominantly chlorinated ethenes and ethanes (maximum concentration was 570 ppb (parts per billion) of trichloroethylene. There was a positive correlation between concentrations of VOC's, specific conductance, and K. The distribution of VOC concentrations indicate that the low-K dolomite beds in the Galena-Platteville aquifer may impede the downward migration of the VOC's and that the high-K beds and fissures may provide pathways for the lateral migration of VOC's through the aquifer. Contaminant migration is possibly affected by ground-water flow through vertical fractures that connect shallow beds with deeper beds in the aquifer, thus explaining the detections of some VOC species at intermittent depths.
Wang, Yuliang; Jeong, Younkoo; Jhiang, Sissy M.; Yu, Lianbo; Menq, Chia-Hsiang
2014-01-01
Cell behaviors are reflections of intracellular tension dynamics and play important roles in many cellular processes. In this study, temporal variations in cell geometry and cell motion through cell cycle progression were quantitatively characterized via automated cell tracking for MCF-10A non-transformed breast cells, MCF-7 non-invasive breast cancer cells, and MDA-MB-231 highly metastatic breast cancer cells. A new cell segmentation method, which combines the threshold method and our modified edge based active contour method, was applied to optimize cell boundary detection for all cells in the field-of-view. An automated cell-tracking program was implemented to conduct live cell tracking over 40 hours for the three cell lines. The cell boundary and location information was measured and aligned with cell cycle progression with constructed cell lineage trees. Cell behaviors were studied in terms of cell geometry and cell motion. For cell geometry, cell area and cell axis ratio were investigated. For cell motion, instantaneous migration speed, cell motion type, as well as cell motion range were analyzed. We applied a cell-based approach that allows us to examine and compare temporal variations of cell behavior along with cell cycle progression at a single cell level. Cell body geometry along with distribution of peripheral protrusion structures appears to be associated with cell motion features. Migration speed together with motion type and motion ranges are required to distinguish the three cell-lines examined. We found that cells dividing or overlapping vertically are unique features of cell malignancy for both MCF-7 and MDA-MB-231 cells, whereas abrupt changes in cell body geometry and cell motion during mitosis are unique to highly metastatic MDA-MB-231 cells. Taken together, our live cell tracking system serves as an invaluable tool to identify cell behaviors that are unique to malignant and/or highly metastatic breast cancer cells. PMID:24911281
NASA Astrophysics Data System (ADS)
Dausman, A.; Langevin, C.; Sukop, M.; Walsh, V.
2006-12-01
The South District Wastewater Treatment Plant (SDWWTP), located in southeastern Miami-Dade County about 1 mi west of the Biscayne Bay coastline, is the largest capacity deep-well injection plant in the United States. Currently, about 100 Mgal/d of partially treated, essentially fresh (less than 1000 mg/L total dissolved solids) effluent is injected through 17 wells (each approximately 2500 ft below land surface) into the highly transmissive, lower-temperature, saline Boulder Zone composed of highly fractured dolomite. A thin confining unit called the Delray Dolomite, which is 8-16 ft thick, overlies the intended injection zone at the site. Although the Delray Dolomite has a vertical hydraulic conductivity estimated between 0.001 and 0.00001 ft/d, well casings for 10 of the 17 wells do not extend beneath the unit. A 700-ft-thick middle confining unit, with estimated vertical hydraulic conductivities between 0.1 and 28 ft/d, overlies the Delray Dolomite and separates it from the Upper Floridan aquifer. Protected by the Safe Drinking Water Act (SDWA), the Upper Floridan aquifer contains water that is less than 10,000 mg/L total dissolved solids. In southern Florida, this aquifer is used for reverse osmosis, blending with other waters, and as a reservoir for aquifer storage and recovery. At the SDWWTP, ammonia concentrations that exceed background conditions have been observed in monitoring wells open in and above the middle confining unit, indicating upward vertical migration of effluent, possibly toward the Upper Floridan aquifer. The U.S. Geological Survey currently is developing a variable-density groundwater flow and solute transport model for the Floridan aquifer system in Miami-Dade County. This model includes the injection of treated wastewater at the SDWWTP. The developed numerical model uses SEAWAT, a code that calculates variable- density flow as a function of salinity, to capture the buoyancy effects at the site and along the coast. Simulation efforts have been designed to determine likely mechanisms for vertical fluid migration as well as predict future movement of the effluent. Two alternative mechanisms for upward fluid migration are being tested with the model: (1) site-wide, diffuse upward movement through the Delray Dolomite and middle confining unit with all 17 injection wells; and (2) localized upward movement from the shallow casing depths at 10 of the 17 wells. The parameter estimation program, PEST, has estimated two different hydraulic conductivity configurations for the Delray Dolomite, middle confining unit, and other layers under these two possible conditions. The different parameter sets have yielded two satisfactory model calibrations. Results of these calibrations indicate that vertical effluent migration potentially is occurring either from (1) the 10 wells open above the Delray Dolomite, with virtually no effluent migration through the Delray Dolomite; or (2) all 17 wells open above and below the Delray Dolomite, with effluent migration through the Delray Dolomite.
NASA Astrophysics Data System (ADS)
Takam Takougang, E. M.; Bouzidi, Y.
2016-12-01
Multi-offset Vertical Seismic Profile (walkaway VSP) data were collected in an oil field located in a shallow water environment dominated by carbonate rocks, offshore the United Arab Emirates. The purpose of the survey was to provide structural information of the reservoir, around and away from the borehole. Five parallel lines were collected using an air gun at 25 m shot interval and 4 m source depth. A typical recording tool with 20 receivers spaced every 15.1 m, and located in a deviated borehole with an angle varying between 0 and 24 degree from the vertical direction, was used to record the data. The recording tool was deployed at different depths for each line, from 521 m to 2742 m depth. Smaller offsets were used for shallow receivers and larger offsets for deeper receivers. The lines merged to form the input dataset for waveform tomography. The total length of the combined lines was 9 km, containing 1344 shots and 100 receivers in the borehole located half-way down. Acoustic full waveform inversion was applied in the frequency domain to derive a high resolution velocity model. The final velocity model derived after the inversion using the frequencies 5-40 Hz, showed good correlation with velocities estimated from vertical incidence VSP and sonic log, confirming the success of the inversion. The velocity model showed anomalous low values in areas that correlate with known location of hydrocarbon reservoir. Pre-stack depth Reverse time migration was then applied using the final velocity model from waveform inversion and the up-going wavefield from the input data. The final estimated source signature from waveform inversion was used as input source for reverse time migration. To save computational memory and time, every 3 shots were used during reverse time migration and the data were low-pass filtered to 30 Hz. Migration artifacts were attenuated using a second order derivative filter. The final migration image shows a good correlation with the waveform tomography velocity model, and highlights a complex network of faults in the reservoir, that could be useful in understanding fluid and hydrocarbon movements. This study shows that the combination of full waveform tomography and reverse time migration can provide high resolution images that can enhance interpretation and characterization of oil reservoirs.
NASA Astrophysics Data System (ADS)
Jannik, G. T.; Ivanov, Y. A.; Kashparov, V. A.; Levchuk, S. E.; Bondarkov, M. D.; Maksymenko, A. M.; Farfan, E. B.; Marra, J. C.
2009-12-01
In 1986-1987, a set of experimental sites for studies of vertical migration of radionuclides released from the ChNPP was established in the ChNPP Exclusion Zone for various fallout plumes. The sites were selected considering local terrain and geo-chemical conditions, as well as physical and chemical characteristics of the fallout. The experimental sites included grasslands, and pre-Chernobyl cultivated meadows and croplands. Vertical migration of radionuclides in the ChNPP Exclusion Zone grasslands was evaluated. Parameters of 137Cs, 90Sr, and 239,240Pu transfer were calculated and the periods during which these radionuclides reach their ecological half-life in the upper 5 cm soil layer were estimated. Migration capabilities of these radionuclides in the grassland soils tend to decrease as follows: 90Sr >137Cs ≥ 239,240Pu. A significant retardation of the 137Cs vertical migration was shown in the grasslands long after the Chernobyl accident. During the 21st year after the fallout, average Tecol values for 137Cs (the period of time it takes in the environment for 137Cs to reach half the value of its original concentration in the upper 5 cm soil layer, regardless of physical decay) are as follows: 180 - 320 years for grassland containing automorphous mineral soils of a light granulometric composition; and 90 - 100 years for grassland containing hydromorphous organogenic soils. These values are significantly higher than those estimated for the period of 6-9 years after the fallout: 60 - 150 years and 11 - 20 years, respectively. The absolute 137Cs Tecol values are by factors of 3-7 higher than 137Cs radiological decay values long after the accident. Changes in the exposure dose resulting from the soil deposited 137Cs only depend on its radiological decay. This factor should necessarily be considered for development of predictive assessments, including dose exposures for the hypothetical population in case of their re-evacuation to the exclusion areas. The obtained results have to be considered for predictive assessments, including those for dose exposures for the hypothetical population in case of their re-evacuation to the exclusion areas if implementation and/or planning of remediation activities at the ChNPP Exclusion Zone are considered reasonable and appropriate.
Vertical distribution of 137Cs in grassland soils disturbed by moles (Talpa europaea L.).
Ramzaev, V; Barkovsky, A
2018-04-01
Activity of biota is one of the factors influencing vertical migration of radionuclides deposited from the atmosphere onto the ground surface. The goal of this work was to study the vertical distribution of 137 Cs in grassland soils disturbed by moles (Talpa europaea L.) in comparison with undisturbed grassland soils. Field observations and soil sampling were carried out in the areas of eight settlements in the Klintsovskiy, Krasnogorskiy and Novozybkovskiy districts of the Bryansk region, Russia in six years during the period 1999-2016. The study sites had been heavily contaminated by Chernobyl fallout in 1986. Activity of 137 Cs in soil samples was determined by γ-ray spectrometry. 137 Cs surface ground contamination levels at the studied plots (n = 17) ranged from 327 kBq m -2 to 2360 kBq m -2 with a mean of 1000 kBq m -2 and a median of 700 kBq m -2 . The position of the 137 Cs migration centre in the soil in 2010-2016 was significantly (the Mann-Whitney U test, P < .01) deeper at mole-disturbed plots (median = 5.99 cm or 6.64 g cm -2 , n = 6) compared to the undisturbed ones (median = 2.48 cm or 2.35 g cm -2 , n = 6). The 137 Cs migration rate at mole-disturbed plots (median = 0.26 g cm -2 y -1 , mean = 0.31 g cm -2 y -1 ) was significantly higher (by a factor of 3) than at undisturbed plots (median = 0.08 g cm -2 y -1 , mean = 0.10 g cm -2 y -1 ). The difference in the migration rates between the mole-disturbed and undisturbed plots (median = 0.18 g cm -2 y -1 , mean = 0.21 g cm -2 y -1 ) reasonably corresponded to the mass of soil that might be ejected by moles per unit area per year. The results of this study indicate that the burrowing activity of moles has increased vertical migration of Chernobyl-derived radiocaesium in the grassland soils. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, L.; Burton, A.; Lu, H.X.
Accurate velocity models are a necessity for reliable migration results. Velocity analysis generally involves the use of methods such as normal moveout analysis (NMO), seismic traveltime tomography, or iterative prestack migration. These techniques can be effective, and each has its own advantage or disadvantage. Conventional NMO methods are relatively inexpensive but basically require simplifying assumptions about geology. Tomography is a more general method but requires traveltime interpretation of prestack data. Iterative prestack depth migration is very general but is computationally expensive. In some cases, there is the opportunity to estimate vertical velocities by use of well information. The well informationmore » can be used to optimize poststack migrations, thereby eliminating some of the time and expense of iterative prestack migration. The optimized poststack migration procedure defined here computes the velocity model which minimizes the depth differences between seismic images and formation depths at the well by using a least squares inversion method. The optimization methods described in this paper will hopefully produce ``migrations without migraines.``« less
Konoplev, A; Golosov, V; Wakiyama, Y; Takase, T; Yoschenko, V; Yoshihara, T; Parenyuk, O; Cresswell, A; Ivanov, M; Carradine, M; Nanba, K; Onda, Y
2018-06-01
Processes of vertical and lateral migration lead to gradual reduction in contamination of catchment soil, particularly its top layer. The reduction can be considered as natural attenuation. This, in turn, results in a gradual decrease of radiocesium activity concentrations in the surface runoff and river water, in both dissolved and particulate forms. The purpose of this research is to study the dynamics of Fukushima-derived radiocesium in undisturbed soils and floodplain deposits exposed to erosion and sedimentation during floods. Combined observations of radiocesium vertical distribution in soil and sediment deposition on artificial lawn-grass mats on the Niida River floodplain allowed us to estimate both annual mean sediment accumulation rates and maximum sedimentation rates corresponding to an extreme flood event during Tropical Storm Etau, 6-11 September 2015. Dose rates were reduced considerably for floodplain sections with high sedimentation because the top soil layer with high radionuclide contamination was eroded and/or buried under cleaner fresh sediments produced mostly due to bank erosion and sediments movements. Rate constants of natural attenuation on the sites of the Takase River and floodplain of Niida River was found to be in range 0.2-0.4 year -1 . For the site in the lower reach of the Niida River, collimated shield dose readings from soil surfaces slightly increased during the period of observation from February to July 2016. Generally, due to more precipitation, steeper slopes, higher temperatures and increased biological activities in soils, self-purification of radioactive contamination in Fukushima associated with vertical and lateral radionuclide migration is faster than in Chernobyl. In many cases, monitored natural attenuation along with appropriate restrictions seems to be optimal option for water remediation in Fukushima contaminated areas. Copyright © 2017. Published by Elsevier Ltd.
Impacts of relative permeability on CO2 phase behavior, phase distribution, and trapping mechanisms
NASA Astrophysics Data System (ADS)
Moodie, N.; McPherson, B. J. O. L.; Pan, F.
2015-12-01
A critical aspect of geologic carbon storage, a carbon-emissions reduction method under extensive review and testing, is effective multiphase CO2 flow and transport simulation. Relative permeability is a flow parameter particularly critical for accurate forecasting of multiphase behavior of CO2 in the subsurface. The relative permeability relationship assumed and especially the irreducible saturation of the gas phase greatly impacts predicted CO2 trapping mechanisms and long-term plume migration behavior. A primary goal of this study was to evaluate the impact of relative permeability on efficacy of regional-scale CO2 sequestration models. To accomplish this we built a 2-D vertical cross-section of the San Rafael Swell area of East-central Utah. This model simulated injection of CO2 into a brine aquifer for 30 years. The well was then shut-in and the CO2 plume behavior monitored for another 970 years. We evaluated five different relative permeability relationships to quantify their relative impacts on forecasted flow results of the model, with all other parameters maintained uniform and constant. Results of this analysis suggest that CO2 plume movement and behavior are significantly dependent on the specific relative permeability formulation assigned, including the assumed irreducible saturation values of CO2 and brine. More specifically, different relative permeability relationships translate to significant differences in CO2 plume behavior and corresponding trapping mechanisms.
Investigation of water seepage through porous media using X-ray imaging technique
NASA Astrophysics Data System (ADS)
Jung, Sung Yong; Lim, Seungmin; Lee, Sang Joon
2012-07-01
SummaryDynamic movement of wetting front and variation of water contents through three different porous media were investigated using X-ray radiography. Water and natural sand particles were used as liquid and porous media in this study. To minimize the effects of minor X-ray attenuation and uneven illumination, the flat field correction (FFC) was applied before determining the position of wetting front. In addition, the thickness-averaged (in the direction of the X-ray penetration) water content was obtained by employing the Beer-Lambert law. The initial inertia of water droplet influences more strongly on the vertical migration, compared to the horizontal migration. The effect of initial inertia on the horizontal migration is enhanced as sand size decreases. The pattern of water transport is observed to be significantly affected by the initial water contents. As the initial water contents increases, the bulb-type transport pattern is shifted to a trapezoidal shape. With increasing surface temperature, water droplets are easily broken on the sand surface. This consequently decreases the length of the initial inertia region. Different from the wetting front migration, the water contents at the initial stage clearly exhibit a preferential flow along the vertical direction. The water transport becomes nearly uniform in all directions beyond the saturation state.
Methanesulfonic acid (MSA) migration in polar ice: data synthesis and theory
NASA Astrophysics Data System (ADS)
Osman, Matthew; Das, Sarah B.; Marchal, Olivier; Evans, Matthew J.
2017-11-01
Methanesulfonic acid (MSA; CH3SO3H) in polar ice is a unique proxy of marine primary productivity, synoptic atmospheric transport, and regional sea-ice behavior. However, MSA can be mobile within the firn and ice matrix, a post-depositional process that is well known but poorly understood and documented, leading to uncertainties in the integrity of the MSA paleoclimatic signal. Here, we use a compilation of 22 ice core MSA records from Greenland and Antarctica and a model of soluble impurity transport in order to comprehensively investigate the vertical migration of MSA from summer layers, where MSA is originally deposited, to adjacent winter layers in polar ice. We find that the shallowest depth of MSA migration in our compilation varies over a wide range (˜ 2 to 400 m) and is positively correlated with snow accumulation rate and negatively correlated with ice concentration of Na+ (typically the most abundant marine cation). Although the considered soluble impurity transport model provides a useful mechanistic framework for studying MSA migration, it remains limited by inadequate constraints on key physico-chemical parameters - most notably, the diffusion coefficient of MSA in cold ice (DMS). We derive a simplified version of the model, which includes DMS as the sole parameter, in order to illuminate aspects of the migration process. Using this model, we show that the progressive phase alignment of MSA and Na+ concentration peaks observed along a high-resolution West Antarctic core is most consistent with 10-12 m2 s-1 < DMS < 10-11 m2 s-1, which is 1 order of magnitude greater than the DMS values previously estimated from laboratory studies. More generally, our data synthesis and model results suggest that (i) MSA migration may be fairly ubiquitous, particularly at coastal and (or) high-accumulation regions across Greenland and Antarctica; and (ii) can significantly change annual and multiyear MSA concentration averages. Thus, in most cases, caution should be exercised when interpreting polar ice core MSA records, although records that have undergone severe migration could still be useful for inferring decadal and lower-frequency climate variability.
Intra-seasonal Scale Variability of Asian Summer Monsoon Anticyclone from Satellite Data
NASA Astrophysics Data System (ADS)
Luo, Jiali; Pan, Laura; Honomichl, Shawn; Bergman, John; Randel, William; Francis, Gene; George, Maya; Clerbaux, Cathy; Liu, Xiong
2017-04-01
Intra-seasonal variability of chemical species in the Upper Troposphere Lower Stratosphere (UTLS) associated with the Asian Summer Monsoon (ASM) is investigated using satellite observations. Day-to-day behavior of CO (a tropospheric tracer) and O3 (a stratospheric tracer) in the UTLS from both nadir viewing (IASI and OMI) and limb viewing (MLS) instruments are analyzed to: determine whether the intra-seasonal scale variability that is evident in dynamical fields is also evident in chemical species, analyze the response of chemical distributions to dynamical processes, and assess the capability of satellite data to resolve the characteristics of the ASM anticyclone in the UTLS. Both nadir and limb viewing instruments agree on the location of a CO maximum and an O3 minimum within the anticyclone, indicating the presence of tropospheric air. According to MLS, sub-seasonal anomalies of CO at 150 hPa and 100 hPa, as well as O3 at 100 hPa migrate westward from the eastern mode of the anticyclone, mimicking similar behavior found in anomalies of geopotential height. The enhanced CO within ASM anticyclone and eastern shedding of CO in UTLS is well captured in IASI data while the westward migration is weak. Both O3 data sets exhibit westward propagating anomalies at 100 hPa and neither exhibits the eastern shedding. Vertical profiles of CO from IASI indicate that the relatively high CO in the ASM anticyclone is associated with the upward transport in troposphere.
Preparative electrophoresis of cultured human cells: Effect of cell cycle phase
NASA Technical Reports Server (NTRS)
Kunze, M. E.; Todd, P. W.; Goolsby, C. L.; Walker, J. T.
1985-01-01
Human epithelioid T-1E cells were cultured in suspension and subjected to density gradient electrophoresis upward in a vertical column. It is indicated that the most rapidly migrating cells were at the beginning of the cell cycle and the most slowly migrating cells were at the end of the cell cycle. The fastest migrating cells divided 24 hr later than the slowest migrating cells. Colonies developing from slowly migrating cells had twice as many cells during exponential growth as did the most rapidly migrating cells, and the numbers of cells per colony at any time was inversely related to the electrophoretic migration rate. The DNA measurements by fluorescence flow cytometry indicates that the slowest migrating cell populations are enriched in cells that have twice as much DNA as the fastest migrating cells. It is concluded that electrophoretic mobility of these cultured human cells declines steadily through the cell cycle and that the mobility is lowest at the end of G sub 2 phase and highest at the beginning of G sub 1 phase.
Guiding out-migrating juvenile sea lamprey (Petromyzon marinus) with pulsed direct current
Johnson, Nicholas S.; Miehls, Scott M.
2014-01-01
Non-physical stimuli can deter or guide fish without affecting water flow or navigation and therefore have been investigated to improve fish passage at anthropogenic barriers and to control movement of invasive fish. Upstream fish migration can be blocked or guided without physical structure by electrifying the water, but directional downstream fish guidance with electricity has received little attention. We tested two non-uniform pulsed direct current electric systems, each having different electrode orientations (vertical versus horizontal), to determine their ability to guide out-migrating juvenile sea lamprey (Petromyzon marinus) and rainbow trout (Oncorhynchus mykiss). Both systems guided significantly more juvenile sea lamprey to a specific location in our experimental raceway when activated than when deactivated, but guidance efficiency decreased at the highest water velocities tested. At the electric field setting that effectively guided sea lamprey, rainbow trout were guided by the vertical electrode system, but most were blocked by the horizontal electrode system. Additional research should characterize the response of other species to non-uniform fields of pulsed DC and develop electrode configurations that guide fish over a range of water velocity.
Pinedo, Miguel; Campos, Yasmin; Leal, Daniela; Fregoso, Julio; Goldenberg, Shira M.
2014-01-01
The association between international and domestic migration and alcohol use among indigenous communities is poorly understood. We explored migration-related factors associated with alcohol use behaviors among an indigenous Mayan, binational population. From January to March 2012, 650 indigenous participants from the high-emigration town of Tunkás in the Mexican state of Yucatán (n = 650) residing in Mexico and California completed surveys. Multivariate logistic regression identified migration-related factors associated with alcohol use behaviors. US migration of shorter duration (<5 years) was independently associated with at-risk drinking (adjusted odds ratio (AOR) 2.34; 95 % confidence interval (CI) 1.09–5.03), as was longer-duration domestic migration (≥5 years) (AOR 2.34; 95 % CI 1.12–4.87). Ability to speak Maya (AOR 0.26; 95 % CI 0.13–0.48) was protective against at-risk drinking. Culturally appropriate alcohol use prevention interventions are needed for domestic and international indigenous Mexican migrants to address alcohol use behavior in the context of migration. PMID:24366542
Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers
Klevjer, T. A.; Irigoien, X.; Røstad, A.; Fraile-Nuez, E.; Benítez-Barrios, V. M.; Kaartvedt., S.
2016-01-01
Recent studies suggest that previous estimates of mesopelagic biomasses are severely biased, with the new, higher estimates underlining the need to unveil behaviourally mediated coupling between shallow and deep ocean habitats. We analysed vertical distribution and diel vertical migration (DVM) of mesopelagic acoustic scattering layers (SLs) recorded at 38 kHz across oceanographic regimes encountered during the circumglobal Malaspina expedition. Mesopelagic SLs were observed in all areas covered, but vertical distributions and DVM patterns varied markedly. The distribution of mesopelagic backscatter was deepest in the southern Indian Ocean (weighted mean daytime depth: WMD 590 m) and shallowest at the oxygen minimum zone in the eastern Pacific (WMD 350 m). DVM was evident in all areas covered, on average ~50% of mesopelagic backscatter made daily excursions from mesopelagic depths to shallow waters. There were marked differences in migrating proportions between the regions, ranging from ~20% in the Indian Ocean to ~90% in the Eastern Pacific. Overall the data suggest strong spatial gradients in mesopelagic DVM patterns, with implied ecological and biogeochemical consequences. Our results suggest that parts of this spatial variability can be explained by horizontal patterns in physical-chemical properties of water masses, such as oxygen, temperature and turbidity. PMID:26813333
Study on cyclic injection gas override in condensate gas reservoir
NASA Astrophysics Data System (ADS)
Sun, Yan; Zhu, Weiyao; Xia, Jing; Li, Baozhu
2018-02-01
Cyclic injection gas override in condensate gas reservoirs for the large density difference between injection gas and condensate gas has been studied, but no relevant mathematical models have been built. In this paper, a mathematical model of cyclic injection gas override in condensate gas reservoir is established, considering density difference between the injected gas and the remaining condensate gas in the formation. The vertical flow ratio and override degree are used to reflect the override law of injected dry gas. Combined with the actual data of Tarim gas condensate reservoir, the parameters of injected dry gas override are calculated and analysed. The results show that the radial pressure rises or falls rapidly and the pressure gradient varies greatly in the near wells. The radial pressure varies slowly and the pressure gradient changes little in the reservoir which is within a certain distance from the wells. In the near injection well, the injected dry gas mainly migrates along the radial direction, and the vertical migration is relatively not obvious. With the distance from the injection well, the vertical flow ratio and override degree of injected dry gas increases, and the vertical flow ratio reaches the maximum in the middle of the injection well and the production well.
Ludvigsen, Martin; Berge, Jørgen; Geoffroy, Maxime; Cohen, Jonathan H.; De La Torre, Pedro R.; Nornes, Stein M.; Singh, Hanumant; Sørensen, Asgeir J.; Daase, Malin; Johnsen, Geir
2018-01-01
Light is a major cue for nearly all life on Earth. However, most of our knowledge concerning the importance of light is based on organisms’ response to light during daytime, including the dusk and dawn phase. When it is dark, light is most often considered as pollution, with increasing appreciation of its negative ecological effects. Using an Autonomous Surface Vehicle fitted with a hyperspectral irradiance sensor and an acoustic profiler, we detected and quantified the behavior of zooplankton in an unpolluted light environment in the high Arctic polar night and compared the results with that from a light-polluted environment close to our research vessels. First, in environments free of light pollution, the zooplankton community is intimately connected to the ambient light regime and performs synchronized diel vertical migrations in the upper 30 m despite the sun never rising above the horizon. Second, the vast majority of the pelagic community exhibits a strong light-escape response in the presence of artificial light, observed down to 100 m. We conclude that artificial light from traditional sampling platforms affects the zooplankton community to a degree where it is impossible to examine its abundance and natural rhythms within the upper 100 m. This study underscores the need to adjust sampling platforms, particularly in dim-light conditions, to capture relevant physical and biological data for ecological studies. It also highlights a previously unchartered susceptibility to light pollution in a region destined to see significant changes in light climate due to a reduced ice cover and an increased anthropogenic activity. PMID:29326985
Integrated Hydrogeological Model of the General Separations Area, Vol. 2, Rev. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
FLACH, GREGORYK.
1999-04-01
The 15 mi2 General Separations Area (GSA) contains more than 35 RCRA and CERCLA waste units, and is the focus of numerous ongoing and anticipated contaminant migration and remedial alternatives studies. To meet the analysis needs of GSA remediation programs, a groundwater flow model of the area based on the FACT code was developed. The model is consistent with detailed characterization and monitoring data through 1996. Model preprocessing has been automated so that future updates and modifications can be performed quickly and efficiently. Most remedial action scenarios can be explicitly simulated, including vertical recirculation wells, vertical barriers, surface caps, pumpingmore » wells at arbitrary locations, specified drawdown within well casings (instead of flowrate), and wetland impacts of remedial actions. The model has a fine scale vertical mesh and heterogeneous conductivity field, and includes the vadose zone. Therefore, the model is well suited to support subsequent contaminant transport simulations. the model can provide a common framework for analyzing groundwater flow, contaminant migration, and remedial alternatives across Environmental Restoration programs within the GSA.« less
NASA Astrophysics Data System (ADS)
Kirwan, M. L.; Walters, D. C.; Reay, W.; Carr, J.
2016-12-01
Salt marsh ecosystem services depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here, we present a simple model of marsh migration into adjacent uplands, and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how connectivity between adjacent ecosystems influences marsh size and response to sea level rise. We find that ecogeomorphic feedbacks tend to stabilize soil elevations relative to sea level rise so that changes in marsh size are determined mostly by the competition between ecological transitions at the upland boundary, and physical erosion at the seaward boundary. Salt marsh loss and natural flood protection is nearly inevitable under rapid sea level rise rates where topographic and anthropogenic barriers limit marsh migration into uplands. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. Together, this behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise, and emphasizes the disparity between coastal response to climate change with and without human intervention. Analysis of 19th century maps and modern photographs from the Chesapeake Bay region confirm that migration rates are more sensitive to sea level rise than erosion rate, and indicate that transgression has thus far allowed marshes to survive the fastest rates of relative sea level rise on the Atlantic Coast. This work suggests that the flux of organisms and sediment across adjacent ecosystems leads to an increase in system resilience that could not be inferred from studies that consider individual components of landscape change.
A tidal explanation for the sunrise/sunset anomaly in HALOE low-latitude nitric oxide observations
NASA Astrophysics Data System (ADS)
Marsh, Daniel R.; Russell, James M., III
2000-10-01
The difference in sunrise and sunset low-latitude nitric oxide (NO) mixing ratios in the mesosphere and lower thermosphere (MLT) is shown to be consistent with a perturbation induced by the migrating diurnal tide. The vertical wind of the tide can induce factor of 2 changes over 12 hours at the equator. The vertical, latitudinal and temporal structure of NO perturbations closely matches the structure of vertical winds from a tidal model. In addition, previous observations of the seasonal and interannual variation in the tidal wind appear to correlate with NO variations.
Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River
NASA Astrophysics Data System (ADS)
Gran, K. B.
2015-12-01
Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a series of inset terraces within the valley. The importance of sand on channel behavior thus extends beyond transport rates, affecting the depth of incision and volume of material excavated during a rainy to dry season transition.
Stewart, Joshua D; Hoyos-Padilla, Edgar Mauricio; Kumli, Katherine R; Rubin, Robert D
2016-10-01
Foraging drives many fundamental aspects of ecology, and an understanding of foraging behavior aids in the conservation of threatened species by identifying critical habitats and spatial patterns relevant to management. The world's largest ray, the oceanic manta (Manta birostris) is poorly studied and threatened globally by targeted fisheries and incidental capture. Very little information is available on the natural history, ecology and behavior of the species, complicating management efforts. This study provides the first data on the diving behavior of the species based on data returned from six tagged individuals, and an opportunistic observation from a submersible of a manta foraging at depth. Pop-off archival satellite tags deployed on mantas at the Revillagigedo Archipelago, Mexico recorded seasonal shifts in diving behavior, likely related to changes in the location and availability of zooplankton prey. Across seasons, mantas spent a large proportion of their time centered around the upper limit of the thermocline, where zooplankton often aggregate. Tag data reveal a gradual activity shift from surface waters to 100-150m across the tagging period, possibly indicating a change in foraging behavior from targeting surface-associated zooplankton to vertical migrators. The depth ranges accessed by mantas in this study carry variable bycatch risks from different fishing gear types. Consequently, region-specific data on diving behavior can help inform local management strategies that reduce or mitigate bycatch of this vulnerable species. Copyright © 2016 Elsevier GmbH. All rights reserved.
Arroyo channel head evolution in a flash-flood-dominated discontinuous ephemeral stream system
DeLong, Stephen B.; Johnson, Joel P.L.; Whipple, Kelin X.
2014-01-01
We study whether arroyo channel head retreat in dryland discontinuous ephemeral streams is driven by surface runoff, seepage erosion, mass wasting, or some combination of these hydrogeomorphic processes. We monitored precipitation, overland flow, soil moisture, and headcut migration over several seasonal cycles at two adjacent rangeland channel heads in southern Arizona. Erosion occurred by headward retreat of vertical to overhanging faces, driven dominantly by surface runoff. No evidence exists for erosion caused by shallow-groundwater–related processes, even though similar theater-headed morphologies are sometimes attributed to seepage erosion by emerging groundwater. At our field site, vertical variation in soil shear strength influenced the persistence of the characteristic theater-head form. The dominant processes of erosion included removal of grains and soil aggregates during even very shallow (1–3 cm) overland flow events by runoff on vertical to overhanging channel headwalls, plunge-pool erosion during higher-discharge runoff events, immediate postrunoff wet mass wasting, and minor intra-event dry mass wasting on soil tension fractures developing subparallel to the headwall. Multiple stepwise linear regression indicates that the migration rate is most strongly correlated with flow duration and total precipitation and is poorly correlated with peak flow depth or time-integrated flow depth. The studied channel heads migrated upslope with a self-similar morphologic form under a wide range of hydrological conditions, and the most powerful flash floods were not always responsible for the largest changes in landscape form in this environment.
1999-09-30
Coupling Behavior and Vertical Distribution of Pteropods in Coastal Waters using Data from the Video Plankton Recorder Scott M. Gallager Woods Hole...gradients. OBJECTIVES My objective in this project is to test the hypothesis that the vertical distribution of the pteropod Limacina retroversa...the mini-VPR are being used to infer behavior of individual pteropods . Third, a random walk turbulence model with behavioral feed-back is providing
Repeat ridge jumps associated with plume-ridge interaction, melt transport, and ridge migration
NASA Astrophysics Data System (ADS)
Mittelstaedt, Eric; Ito, Garrett; van Hunen, Jeroen
2011-01-01
Repeated shifts, or jumps, of mid-ocean ridge segments toward nearby hot spots can produce large, long-term changes to the geometry and location of the tectonic plate boundaries. Ridge jumps associated with hot spot-ridge interaction are likely caused by several processes including shear on the base of the plate due to expanding plume material as well as reheating of lithosphere as magma passes through it to feed off-axis volcanism. To study how these processes influence ridge jumps, we use numerical models to simulate 2-D (in cross section) viscous flow of the mantle, viscoplastic deformation of the lithosphere, and melt migration upward from the asthenospheric melting zone, laterally along the base of the lithosphere, and vertically through the lithosphere. The locations and rates that magma penetrates and heats the lithosphere are controlled by the time-varying accumulation of melt beneath the plate and the depth-averaged lithospheric porosity. We examine the effect of four key parameters: magmatic heating rate of the lithosphere, plate spreading rate, age of the seafloor overlying the plume, and the plume-ridge migration rate. Results indicate that the minimum value of the magmatic heating rate needed to initiate a ridge jump increases with plate age and spreading rate. The time required to complete a ridge jump decreases with larger values of magmatic heating rate, younger plate age, and faster spreading rate. For cases with migrating ridges, models predict a range of behaviors including repeating ridge jumps, much like those exhibited on Earth. Repeating ridge jumps occur at moderate magmatic heating rates and are the result of changes in the hot spot magma flux in response to magma migration along the base of an evolving lithosphere. The tendency of slow spreading to promote ridge jumps could help explain the observed clustering of hot spots near the Mid-Atlantic Ridge. Model results also suggest that magmatic heating may significantly thin the lithosphere, as has been suggested at Hawaii and other hot spots.
Gorman, O.T.; Yule, D.L.; Stockwell, J.D.
2012-01-01
Diel patterns of distribution of fishes in nearshore (15–80 m depth) and offshore (>80 m) waters of the Apostle Islands region of Lake Superior were described using bottom trawls, mid-water trawls, and acoustic gear during day and night sampling. These data revealed three types of diel migration: diel vertical migration (DVM), diel bank migration (DBM), and no migration. DVM was expressed by fishes migrating from benthopelagic to pelagic strata and DBM was expressed by fishes migrating horizontally from deeper waters in the day to shallower waters at night while remaining within the benthopelagic stratum. Most fishes that did not exhibit diel migration showed increased nighttime densities as a result of increased activity and movement from benthic to benthopelagic strata. Rainbow Smelt (Osmerus mordax), Cisco (Coregonus artedi), Bloater (C. hoyi), Kiyi (C. kiyi), juvenile Trout-Perch (Percopsis omiscomaycus), and adult siscowet (Salvelinus namaycush siscowet) exhibited DVM. Lake Whitefish (C. clupeaformis), lean Lake Trout (Salvelinus namaycush namaycush), and juvenile siscowet exhibited DBM. Adult Trout-Perch and adult Pygmy Whitefish (Prosopium coulteri) exhibited a mixture of DBM and DVM. Burbot (Lota lota), Slimy Sculpin (Cottus cognatus), Spoonhead Sculpin (C. ricei), and Deepwater Sculpin (Myoxocephalus thompsonii) did not exhibit diel migration, but showed evidence of increased nocturnal activity. Ninespine Stickleback (Pungitius pungitius) exhibited a mixture of DVM and non-migration. Juvenile Pygmy Whitefish did not show a diel change in density or depth distribution. Species showing ontogenetic shifts in depth distribution with larger, adult life stages occupying deeper waters included, Rainbow Smelt, lean and siscowet Lake Trout, Lake Whitefish, Pygmy Whitefish, Ninespine Stickleback and Trout-Perch. Of these species, siscowet also showed an ontogenetic shift from primarily DBM as juveniles to primarily DVM as adults. Across all depths, fishes expressing DVM accounted for 73% of the total estimated community areal biomass (kg ha−1) while those expressing DBM accounted for 25% and non-migratory species represented 2% of the biomass. The proportion of total community biomass exhibiting DVM increased with depth, from 59% to 95% across ≤30 m to >90 m depth zones. Along the same depth gradient, the proportion of total community biomass exhibiting DBM declined from 40% to 1%, while non-migrators increased from 1% to 4%. These results indicate that DVM and DBM behaviors are pervasive in the Lake Superior fish community and potentially provide strong linkages that effect coupling of benthic and pelagic and nearshore and offshore habitats.
Rural-to-urban migration and sexual debut in Thailand.
Anglewicz, Philip; VanLandingham, Mark; Phuengsamran, Dusita
2014-10-01
Migration from one's parents' home and sexual debut are common features of the transition to adulthood. Although many studies have described both of these features independently, few have examined the relationship between migration and sexual debut in a systematic manner. In this study, we explore this link for young adults in Thailand. With relatively high rates of internal migration, rapid modernization, a moderate HIV epidemic, and a declining average age of sexual debut, Thailand presents an instructive environment in which to examine migration and sexual debut. We use two waves of a longitudinal data set (2005 and 2007) that includes a subsample of young adults who migrated to urban areas during that period. We identify characteristics and behaviors associated with sexual debut and examine the role of migration on debut. Our approach reduces several common sources of bias that hamper existing work on both migration and sexual debut: (1) the longitudinal nature of the data enables us to examine the effects of characteristics that predate both behaviors of interest; (2) the survey on sexual behavior employed a technique that reduces response bias; and (3) we examine differences in debut by marital status. We find that migrants have a higher likelihood of sexual debut than nonmigrants.
NASA Astrophysics Data System (ADS)
Guan, Fengyi; Lu, Jiaju; Wang, Xiumei
2017-03-01
A clear understanding on cell migration behaviors contributes to designing novel biomaterials in tissue engineering and elucidating related tissue regeneration processes. Many traditional evaluation methods on cell migration including scratch assay and transwell migration assay possess all kinds of limitations. In this study, a novel honeycomb cell assay kit was designed and made of photosensitive resin by 3D printing. This kit has seven hexagonal culture chambers so that it can evaluate the horizontal cell migration behavior in response to six surrounding environments simultaneously, eliminating the effect of gravity on cells. Here this cell assay kit was successfully applied to evaluate endothelial cell migration cultured on self-assembling peptide (SAP) RADA (AcN-RADARADARADARADA-CONH2) nanofiber hydrogel toward different functionalized SAP hydrogels. Our results indicated that the functionalized RADA hydrogels with different concentration of bioactive motifs of KLT or PRG could induce cell migration in a dose-dependent manner. The total number and migration distance of endothelial cells on functionalized SAP hydrogels significantly increased with increasing concentration of bioactive motif PRG or KLT. Therefore, the honeycomb cell assay kit provides a simple, efficient and convenient tool to investigate cell migration behavior in response to multi-environments simultaneously.
Examining Pre-migration Health Among Filipino Nurses
de Castro, A. B.; Gee, Gilbert; Fujishiro, Kaori; Rue, Tessa
2014-01-01
The healthy immigrant hypothesis asserts that immigrants arrive in the receiving country healthier than same race/ethnic counterparts born there. Contemporary research, however, has not evaluated pre-migration health among migrants, nor has explicitly considered comparisons with non-migrants in the country of origin. Pre-migration health was examined among 621 Filipino nurses, including self-reported physical health, mental health, health behaviors, and social stress. Measures were compared by intention to migrate and also tested as predictors of actual migration using time-to-event analysis. Nurses intending to migrate had higher proportion of depression and reported higher general perceived stress compared to those not. Predictors of actual migration included age, mentally unhealthy days, social strain, and social support. Physical health and health behavior measures had no association with migration intention or actual migration. Findings suggest that, relative to those not intending to migrate, nurses intending to migrate have worse mental health status and social stress; and, do not have a physical health advantage. Future research must span the pre- to post-migration continuum to better understand the impact of moving from one country to another on health and well-being. PMID:25385090
Examining Pre-migration Health Among Filipino Nurses.
de Castro, A B; Gee, Gilbert; Fujishiro, Kaori; Rue, Tessa
2015-12-01
The healthy immigrant hypothesis asserts that immigrants arrive in the receiving country healthier than same race/ethnic counterparts born there. Contemporary research, however, has not evaluated pre-migration health among migrants, nor has explicitly considered comparisons with non-migrants in the country of origin. Pre-migration health was examined among 621 Filipino nurses, including self-reported physical health, mental health, health behaviors, and social stress. Measures were compared by intention to migrate and also tested as predictors of actual migration using time-to-event analysis. Nurses intending to migrate had higher proportion of depression and reported higher general perceived stress compared to those not. Predictors of actual migration included age, mentally unhealthy days, social strain, and social support. Physical health and health behavior measures had no association with migration intention or actual migration. Findings suggest that, relative to those not intending to migrate, nurses intending to migrate have worse mental health status and social stress; and, do not have a physical health advantage. Future research must span the pre- to post-migration continuum to better understand the impact of moving from one country to another on health and well-being.
NASA Astrophysics Data System (ADS)
Chen, Weijin; Peng, Yuyi; Li, Xu'an; Chen, Kelang; Ma, Jun; Wei, Lingfeng; Wang, Biao; Zheng, Yue
2017-10-01
In this work, a phase-field model is established to capture the void migration behavior under a temperature gradient within a crystal matrix, with an appropriate consideration of the surface diffusion mechanism and the vapor transport mechanism. The interfacial energy and the coupling between the vacancy concentration field and the crystal order parameter field are carefully modeled. Simulations are performed on UO2. The result shows that for small voids (with an area ≤ πμm2), the well-known characteristics of void migration, in consistence with the analytical model, can be recovered. The migration is manifested by a constant velocity and a minor change of the void shape. In contrast, for large voids (with an area of ˜10 μm2) initially in circular shapes, significant deformation of the void from a circular to cashew-like shape is observed. After long-time migration, the deformed void would split into smaller voids. The size-dependent behavior of void migration is due to the combined effect of the interfacial energy (which tends to keep the void in circular shape) and the surface diffusion flow (which tends to deform the void due to the nonuniform diffusion along the surface). Moreover, the initial shape of the void modifies the migration velocity and the time point when splitting occurs (for large voids) at the beginning of migration due to the shape relaxation of the void. However, it has a minor effect on the long-time migration. Our work reveals novel void migration behaviors in conditions where the surface-diffusion mechanism is dominant over the vapor transport mechanism; meanwhile, the size of the void lies at a mediate size range.
Mechanics of wind ripple stratigraphy.
Forrest, S B; Haff, P K
1992-03-06
Stratigraphic patterns preserved under translating surface undulations or ripples in a depositional eolian environment are computed on a grain by grain basis using physically based cellular automata models. The spontaneous appearance, growth, and motion of the simulated ripples correspond in many respects to the behavior of natural ripples. The simulations show that climbing strata can be produced by impact alone; direct action of fluid shear is unnecessary. The model provides a means for evaluating the connection between mechanical processes occurring in the paleoenvironment during deposition and the resulting stratigraphy preserved in the geologic column: vertical compression of small laminae above a planar surface indicates nascent ripple growth; supercritical laminae are associated with unusually intense deposition episodes; and a plane erosion surface separating sets of well-developed laminae is consistent with continued migration of mature ripples during a hiatus in deposition.
Seibel, Brad A; Schneider, Jillian L; Kaartvedt, Stein; Wishner, Karen F; Daly, Kendra L
2016-10-01
The effects of regional variations in oxygen and temperature levels with depth were assessed for the metabolism and hypoxia tolerance of dominant euphausiid species. The physiological strategies employed by these species facilitate prediction of changing vertical distributions with expanding oxygen minimum zones and inform estimates of the contribution of vertically migrating species to biogeochemical cycles. The migrating species from the Eastern Tropical Pacific (ETP), Euphausia eximia and Nematoscelis gracilis, tolerate a Partial Pressure (PO2) of 0.8 kPa at 10 °C (∼15 µM O2) for at least 12 h without mortality, while the California Current species, Nematoscelis difficilis, is incapable of surviving even 2.4 kPa PO2 (∼32 µM O2) for more than 3 h at that temperature. Euphausia diomedeae from the Red Sea migrates into an intermediate oxygen minimum zone, but one in which the temperature at depth remains near 22 °C. Euphausia diomedeae survived 1.6 kPa PO2 (∼22 µM O2) at 22 °C for the duration of six hour respiration experiments. Critical oxygen partial pressures were estimated for each species, and, for E. eximia, measured via oxygen consumption (2.1 kPa, 10 °C, n = 2) and lactate accumulation (1.1 kPa, 10 °C). A primary mechanism facilitating low oxygen tolerance is an ability to dramatically reduce energy expenditure during daytime forays into low oxygen waters. The ETP and Red Sea species reduced aerobic metabolism by more than 50% during exposure to hypoxia. Anaerobic glycolytic energy production, as indicated by whole-animal lactate accumulation, contributed only modestly to the energy deficit. Thus, the total metabolic rate was suppressed by ∼49-64%. Metabolic suppression during diel migrations to depth reduces the metabolic contribution of these species to vertical carbon and nitrogen flux (i.e., the biological pump) by an equivalent amount. Growing evidence suggests that metabolic suppression is a widespread strategy among migrating zooplankton in oxygen minimum zones and may have important implications for the economy and ecology of the oceans. The interacting effects of oxygen and temperature on the metabolism of oceanic species facilitate predictions of changing vertical distribution with climate change. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
The influence of migration speed on cooperation in spatial games
NASA Astrophysics Data System (ADS)
Li, Wen-Jing; Jiang, Luo-Luo; Gu, Changgui; Yang, Huijie
2017-12-01
Migration is a common phenomenon in human society which provides a person an opportunity to search for a new life from one area to another. In the framework of game theory, people may migrate to escape from a current adverse environment (evading defection). Since people may migrate at different speeds, it is interesting to figure out the influence of migration speed on the evolution of cooperative behavior. In an attempt to discover the influence, we propose here a model based on an adaptive migration mechanism. In this model, an individual migrates or updates his/her strategy asynchronously, which is tuned by migration frequency. Firstly, it is found that an appropriate migration speed may evoke an effective mechanism, which enables cooperators dominate even in highly adverse conditions. Secondly, we check how migration speed alters the paradigm of cooperation quantitatively in the conditions of different migration frequency. When migration frequency is high, cooperation is promoted only at a small migration speed. However, when migration frequency is low, cooperation is always promoted at any migration speed. In addition, we also investigated the influence of temptation to defect on cooperation for the case of different migration speeds and migration frequencies. Our results may provide a fresh perspective on the understanding of how human behavior affects cooperation.
Vertically-integrated Approaches for Carbon Sequestration Modeling
NASA Astrophysics Data System (ADS)
Bandilla, K.; Celia, M. A.; Guo, B.
2015-12-01
Carbon capture and sequestration (CCS) is being considered as an approach to mitigate anthropogenic CO2 emissions from large stationary sources such as coal fired power plants and natural gas processing plants. Computer modeling is an essential tool for site design and operational planning as it allows prediction of the pressure response as well as the migration of both CO2 and brine in the subsurface. Many processes, such as buoyancy, hysteresis, geomechanics and geochemistry, can have important impacts on the system. While all of the processes can be taken into account simultaneously, the resulting models are computationally very expensive and require large numbers of parameters which are often uncertain or unknown. In many cases of practical interest, the computational and data requirements can be reduced by choosing a smaller domain and/or by neglecting or simplifying certain processes. This leads to a series of models with different complexity, ranging from coupled multi-physics, multi-phase three-dimensional models to semi-analytical single-phase models. Under certain conditions the three-dimensional equations can be integrated in the vertical direction, leading to a suite of two-dimensional multi-phase models, termed vertically-integrated models. These models are either solved numerically or simplified further (e.g., assumption of vertical equilibrium) to allow analytical or semi-analytical solutions. This presentation focuses on how different vertically-integrated models have been applied to the simulation of CO2 and brine migration during CCS projects. Several example sites, such as the Illinois Basin and the Wabamun Lake region of the Alberta Basin, are discussed to show how vertically-integrated models can be used to gain understanding of CCS operations.
NASA Astrophysics Data System (ADS)
Gailey, Robert M.
2017-11-01
Water supply wells can act as conduits for vertical flow and contaminant migration between water-bearing strata under common hydrogeologic and well construction conditions. While recognized by some for decades, there is little published data on the magnitude of flows and extent of resulting water quality impacts. Consequently, the issue may not be acknowledged widely enough and the need for better management persists. This is especially true for unconsolidated alluvial groundwater basins that are hydrologically stressed by agricultural activities. Theoretical and practical considerations indicate that significant water volumes can migrate vertically through wells. The flow is often downward, with shallow groundwater, usually poorer in quality, migrating through conduit wells to degrade deeper water quality. Field data from locations in California, USA, are presented in combination with modeling results to illustrate both the prevalence of conditions conducive to intraborehole flow and the resulting impacts to water quality. Suggestions for management of planned wells include better enforcement of current regulations and more detailed consideration of hydrogeologic conditions during design and installation. A potentially greater management challenge is presented by the large number of existing wells. Monitoring for evidence of conduit flow and solute transport in areas of high well density is recommended to identify wells that pose greater risks to water quality. Conduit wells that are discovered may be addressed through approaches that include structural modification and changes in operations.
Aquifer susceptibility to perchlorate contamination in a highly urbanized environment
Woolfenden, Linda R.; Trefly, Michael G.
2007-01-01
Perchlorate contamination from anthropogenic sources has been released into the Rialto-Colton, California, USA, groundwater flow system since the 1940s during its production, distribution, storage, and use. Preliminary analysis of lithological, geophysical, and water-chemistry data provided new understanding of the pathways of perchlorate migration that aid in assessing the susceptibility of drinking-water supplies to contamination within the Rialto-Colton basin. Vertical migration of perchlorate into the main water-producing aquifers is restricted by an areally extensive old soil surface; however, perchlorate data indicate contamination below this soil surface. Possible pathways for the downward migration of the contaminated water include wellbore flow and discontinuities in the old soil surface. Horizontal migration of perchlorate is influenced by lithology and faults within the basin. The basin fill is a heterogeneous mixture of boulders, gravel, sand, silt, and clay, and internal faults may restrict perchlorate migration in some areas.
Zhu, Guang Rong; Ji, Cheng Ye; Yang, Xing Hua
2015-06-01
To estimate the relationship between migration and HIV risky behavior when controlling for gender, age, and educational levels and to evaluate the gender differences in migration, HIV knowledge, and HIV risky behaviors among rural youth in China. A cross-sectional, anonymous, investigative questionnaire for 1710 unmarried, out-of-school rural youth, aged between 15 and 24 years, was handed out in Gongzhuling county of Jilin province, China. 58.5% of participants had a history of migration, irrespective of gender. There were gender differences observed in other factors such as drug abuse (4.3% for males and 5.5% for females, P<0.01), multiple sexual partners (24.1% for males and 44.1% for females, P<0.01), and HIV knowledge rate (35.2% for males and 25.5% for females, P<0.001). While controlling for gender, age, and educational levels, the relationships between migration and drug abuse, selling sex, and non usage of condoms during last instance of sexual activity were found to be significant. The cases of premarital sex and multiple sexual partners were both not found to be related to migration. Among rural youth, the HIV risky behavior such as drug abuse, selling sex, and lack of condom use, is significantly related to migration, while premarital sex and multiple sexual partners seem unrelated to migration. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Kang, Seongjoo; Yoneda, Minoru; Shimada, Yoko; Satta, Naoya; Fujita, Yasutaka; Shin, In Hwan
2017-08-01
We investigated the deposition and depth distributions of radiocesium in the Takizawa Research Forest, Iwate Prefecture, in order to understand the behavior of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant. The deposition distribution and vertical depth distribution of radiocesium in the soil were compared between topographically distinct parts of the forest where two different tree species grow. The results for all investigated locations show that almost 85% of the radiocesium has accumulated in the region of soil from the topmost organic layer to a soil depth of 0-4 cm. However, no activity was detected at depths greater than 20 cm. Analysis of the radiocesium deposition patterns in forest locations dominated by either coniferous or deciduous tree species suggests that radiocesium was sequestered and retained in higher concentrations in coniferous areas. The deposition data showed large spatial variability, reflecting the differences in tree species and topography. The variations in the measured 137 Cs concentrations reflected the variability in the characteristics of the forest floor environment and the heterogeneity of the initial ground-deposition of the Fukushima fallout. Sequential extraction experiments showed that most of the 137 Cs was present in an un-exchangeable form with weak mobility. Nevertheless, the post-vertical distribution of 137 Cs is expected to be governed by the percentage of exchangeable 137 Cs in the organic layer and the organic-rich upper soil horizons.
Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table.
Kim, Jeongkon; Corapcioglu, M Yavuz
2003-08-01
A vertically averaged two-dimensional model was developed to describe areal spreading and migration of light nonaqueous-phase liquids (LNAPLs) introduced into the subsurface by spills or leaks from underground storage tanks. The NAPL transport model was coupled with two-dimensional contaminant transport models to predict contamination of soil gas and groundwater resulting from a LNAPL migrating on the water table. Numerical solutions were obtained by using the finite-difference method. Simulations and sensitivity analyses were conducted with a LNAPL of pure benzene to study LNAPL migration and groundwater contamination. The model was applied to subsurface contamination by jet fuel. Results indicated that LNAPL migration were affected mostly by volatilization. The generation and movement of the dissolved plume was affected by the geology of the site and the free-product plume. Most of the spilled mass remained as a free LNAPL phase 20 years after the spill. The migration of LNAPL for such a long period resulted in the contamination of both groundwater and a large volume of soil.
NASA Astrophysics Data System (ADS)
Cook, April B.; Sutton, Tracey T.; Galbraith, John K.; Vecchione, Michael
2013-12-01
Only a miniscule fraction of the world’s largest volume of living space, the ocean’s midwater biome, has ever been sampled. As part of the International Census of Marine Life field project on Mid-Atlantic Ridge ecosystems (MAR-ECO), a discrete-depth trawling survey was conducted in 2009 aboard the NOAA FSV Henry B. Bigelow to examine the pelagic faunal assemblage structure and distribution over the Charlie-Gibbs Fracture Zone (CGFZ) of the northern Mid-Atlantic Ridge. Day/night sampling at closely spaced stations allowed the first characterization of diel vertical migration of pelagic nekton over the MAR-ECO study area. Discrete-depth sampling from 0-3000 m was conducted using a Norwegian “Krill” trawl with five codends that were opened and closed via a pre-programmed timer. Seventy-five species of fish were collected, with a maximum diversity and biomass observed between depths of 700-1900 m. A gradient in sea-surface temperature and underlying watermasses, from northwest to southeast, was mirrored by a similar gradient in ichthyofaunal diversity. Using multivariate analyses, eight deep-pelagic fish assemblages were identified, with depth as the primary discriminatory variable. Strong diel vertical migration (DVM) of the mesopelagic fauna was a prevalent feature of the study area, though the numerically dominant fish, Cyclothone microdon (Gonostomatidae), exhibited a broad (0-3000 m) vertical distribution and did not appear to migrate on a diel basis. Three patterns of vertical distribution were observed in the study area: (a) DVM of mesopelagic, and possibly bathypelagic, taxa; (b) broad vertical distribution spanning meso- and bathypelagic depths; and (c) discrete vertical distribution within a limited depth range. Overall species composition and rank order of abundance of fish species agreed with two previous expeditions to the CGFZ (1982-1983 and 2004), suggesting some long-term consistency in the ichthyofaunal composition of the study area, at least in the summer. Frequent captures of putative bathypelagic fishes, shrimps, and cephalopods in the epipelagic zone (0-200 m) were confirmed. The results of this expedition reveal distributional patterns unlike those previously reported for open-ocean ecosystems, with the implication of increased transfer efficiency of surface production to great depths in the mid-North Atlantic.
Envisioning migration: Mathematics in both experimental analysis and modeling of cell behavior
Zhang, Elizabeth R.; Wu, Lani F.; Altschuler, Steven J.
2013-01-01
The complex nature of cell migration highlights the power and challenges of applying mathematics to biological studies. Mathematics may be used to create model equations that recapitulate migration, which can predict phenomena not easily uncovered by experiments or intuition alone. Alternatively, mathematics may be applied to interpreting complex data sets with better resolution—potentially empowering scientists to discern subtle patterns amid the noise and heterogeneity typical of migrating cells. Iteration between these two methods is necessary in order to reveal connections within the cell migration signaling network, as well as to understand the behavior that arises from those connections. Here, we review recent quantitative analysis and mathematical modeling approaches to the cell migration problem. PMID:23660413
Envisioning migration: mathematics in both experimental analysis and modeling of cell behavior.
Zhang, Elizabeth R; Wu, Lani F; Altschuler, Steven J
2013-10-01
The complex nature of cell migration highlights the power and challenges of applying mathematics to biological studies. Mathematics may be used to create model equations that recapitulate migration, which can predict phenomena not easily uncovered by experiments or intuition alone. Alternatively, mathematics may be applied to interpreting complex data sets with better resolution--potentially empowering scientists to discern subtle patterns amid the noise and heterogeneity typical of migrating cells. Iteration between these two methods is necessary in order to reveal connections within the cell migration signaling network, as well as to understand the behavior that arises from those connections. Here, we review recent quantitative analysis and mathematical modeling approaches to the cell migration problem. Copyright © 2013 Elsevier Ltd. All rights reserved.
Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise
Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.
2016-01-01
In the 21st century, accelerated sea-level rise and continued coastal development are expected to greatly alter coastal landscapes across the globe. Historically, many coastal ecosystems have responded to sea-level fluctuations via horizontal and vertical movement on the landscape. However, anthropogenic activities, including urbanization and the construction of flood-prevention infrastructure, can produce barriers that impede ecosystem migration. Here we show where tidal saline wetlands have the potential to migrate landward along the northern Gulf of Mexico coast, one of the most sea-level rise sensitive and wetland-rich regions of the world. Our findings can be used to identify migration corridors and develop sea-level rise adaptation strategies to help ensure the continued availability of wetland-associated ecosystem goods and services.
Monnot, L.; Dunham, J.B.; Hoem, T.; Koetsier, P.
2008-01-01
Many fishes migrate extensively through stream networks, yet patterns are commonly described only in terms of the origin and destination of migration (e.g., between natal and feeding habitats). To better understand patterns of migration in bull trout,Salvelinus confluentus we studied the influences of body size (total length [TL]) and environmental factors (stream temperature and discharge) on migrations in the Boise River basin, Idaho. During the autumns of 2001-2003, we tracked the downstream migrations of 174 radio-tagged bull trout ranging in size from 21 to 73 cm TL. The results indicated that large bull trout (>30 cm) were more likely than small fish to migrate rapidly downstream after spawning in headwater streams in early autumn. Large bull trout also had a higher probability of arriving at the current terminus of migration in the system, Arrowrock Reservoir. The rate of migration by small bull trout was more variable and individuals were less likely to move into Arrowrock Reservoir. The rate of downstream migration by all fish was slower when stream discharge was greater. Temperature was not associated with the rate of migration. These findings indicate that fish size and environmentally related changes in behavior have important influences on patterns of migration. In a broader context, these results and other recent work suggest, at least in some cases, that commonly used classifications of migratory behavior may not accurately reflect the full range of behaviors and variability among individuals (or life stages) and environmental conditions. ?? Copyright by the American Fisheries Society 2008.
Saggurti, Niranjan; Mahapatra, Bidhubhusan; Swain, Suvakanta N; Jain, Anrudh K
2011-12-29
Recent studies of male migrants in India indicate that those who are infected with HIV are spreading the epidemic from high risk populations in high prevalence areas to populations in low prevalence areas. In this context, migrant men are believed to initiate and have risky sexual behaviors in places of destination and not in places of origin. The paucity of information on men's risky sexual behaviors in places of origin limits the decision to initiate HIV prevention interventions among populations in high out-migration areas in India. A cross-sectional behavioral survey was conducted among non-migrants, returned migrants (with a history of migration), and active (current) migrants in rural areas across two districts with high levels of male out-migration: Prakasam district in Andhra Pradesh and Azamgarh district in Uttar Pradesh. Surveys assessed participant demographics, migration status, migration history, and sexual behavior along the migration routes, place of initiation of sex. District-stratified regression models were used to understand the associations between migration and risky sexual behaviors (number of partners, condom use at last sex) and descriptive analyses of migrants' place of sexual initiation and continuation along migration routes. The average age at migration of our study sample was 19 years. Adjusted regression analyses revealed that active migrants were more likely to engage in sex with sex workers in the past 12 months (Prakasam: 15 percent vs. 8 percent; adjusted odds ratio (aOR)=2.1, 95% CI 1.2-3.4; Azamgarh: 19 percent vs.7 percent; aOR=4.0, 95% CI 2.4-6.6) as well as have multiple (3+) sex partners (Prakasam: 18 percent vs. 9 percent; aOR=2.0, 95% CI 1.3-3.2; Azamgarh: 28 percent vs. 21 percent; aOR=1.9, 95% CI 1.2-3.0) than non-migrants. Contrary to popular belief, a high proportion of active and returned migrants (almost 75 percent of those who had sex) initiated sex at the place of origin before migrating, which is equivalent to the proportion of non-migrants who engaged in sex with sex workers as well as with casual unpaid partners. Moreover, non-migrants were more likely than migrants to engage in unprotected sex. Findings of this study document that returned migrants and active migrants have higher sexual risk behaviors than the non-migrants. Most migrants initiate non-marital sex in the place of origin and many continue these behaviors in places of destination. Migrants' destination area behaviors are linked to sex with sex workers and they continue to practice such behaviors in the place of origin as well. Unprotected sex in places of destination with high HIV prevalence settings poses a risk of transmission from high risk population groups to migrants, and in turn to their married and other sexual partners in places of origin. These findings suggest the need for controlling the spread of HIV among both men and women resulting from unsafe sex in places of origin that have high vulnerability due to the frequent migratory nature of populations.
2011-01-01
Background Recent studies of male migrants in India indicate that those who are infected with HIV are spreading the epidemic from high risk populations in high prevalence areas to populations in low prevalence areas. In this context, migrant men are believed to initiate and have risky sexual behaviors in places of destination and not in places of origin. The paucity of information on men's risky sexual behaviors in places of origin limits the decision to initiate HIV prevention interventions among populations in high out-migration areas in India. Methods A cross-sectional behavioral survey was conducted among non-migrants, returned migrants (with a history of migration), and active (current) migrants in rural areas across two districts with high levels of male out-migration: Prakasam district in Andhra Pradesh and Azamgarh district in Uttar Pradesh. Surveys assessed participant demographics, migration status, migration history, and sexual behavior along the migration routes, place of initiation of sex. District-stratified regression models were used to understand the associations between migration and risky sexual behaviors (number of partners, condom use at last sex) and descriptive analyses of migrants' place of sexual initiation and continuation along migration routes. Results The average age at migration of our study sample was 19 years. Adjusted regression analyses revealed that active migrants were more likely to engage in sex with sex workers in the past 12 months (Prakasam: 15 percent vs. 8 percent; adjusted odds ratio (aOR)=2.1, 95% CI 1.2-3.4; Azamgarh: 19 percent vs.7 percent; aOR=4.0, 95% CI 2.4-6.6) as well as have multiple (3+) sex partners (Prakasam: 18 percent vs. 9 percent; aOR=2.0, 95% CI 1.3-3.2; Azamgarh: 28 percent vs. 21 percent; aOR=1.9, 95% CI 1.2-3.0) than non-migrants. Contrary to popular belief, a high proportion of active and returned migrants (almost 75 percent of those who had sex) initiated sex at the place of origin before migrating, which is equivalent to the proportion of non-migrants who engaged in sex with sex workers as well as with casual unpaid partners. Moreover, non-migrants were more likely than migrants to engage in unprotected sex. Conclusion Findings of this study document that returned migrants and active migrants have higher sexual risk behaviors than the non-migrants. Most migrants initiate non-marital sex in the place of origin and many continue these behaviors in places of destination. Migrants’ destination area behaviors are linked to sex with sex workers and they continue to practice such behaviors in the place of origin as well. Unprotected sex in places of destination with high HIV prevalence settings poses a risk of transmission from high risk population groups to migrants, and in turn to their married and other sexual partners in places of origin. These findings suggest the need for controlling the spread of HIV among both men and women resulting from unsafe sex in places of origin that have high vulnerability due to the frequent migratory nature of populations. PMID:22375813
Tornadic storm avoidance behavior in breeding songbirds
Streby, Henry M.; Kramer, Gunnar R.; Peterson, Sean M.; Lehman, Justin A.; Buehler, David A.; Andersen, David E.
2015-01-01
Migration is a common behavior used by animals of many taxa to occupy different habitats during different periods. Migrant birds are categorized as either facultative (i.e., those that are forced to migrate by some proximal cue, often weather) or obligate (i.e., those that migrate on a regular cycle). During migration, obligate migrants can curtail or delay flights in response to inclement weather or until favorable winds prevail, and they can temporarily reorient or reverse direction when ecological or meteorological obstacles are encountered. However, it is not known whether obligate migrants undertake facultative migrations and make large-scale movements in response to proximal cues outside of their regular migration periods. Here, we present the first documentation of obligate long-distance migrant birds undertaking a facultative migration, wherein breeding golden-winged warblers (Vermivora chrysoptera) carrying light-level geolocators performed a >1,500 km 5-day circumvention of a severe tornadic storm. The birds evacuated their breeding territories >24 hr before the arrival of the storm and atmospheric variation associated with it. The probable cue, radiating >1,000 km from tornadic storms, perceived by birds and influencing bird behavior and movements, is infrasound (i.e., sound below the range of human hearing). With the predicted increase in severity and frequency of similar storms as anthropogenic climate change progresses, understanding large-scale behavioral responses of animals to such events will be an important objective of future research.
Multiple Deltas Built Out Over Time
2014-12-08
This diagram depicts a vertical cross section through geological layers deposited by rivers, deltas and lakes. Deposits from a series of successive deltas build out increasingly high in elevation as they migrate toward the center of the basin.
Garavelli, Lysel; Colas, François; Verley, Philippe; Kaplan, David Michael; Yannicelli, Beatriz; Lett, Christophe
2016-01-01
In marine benthic ecosystems, larval connectivity is a major process influencing the maintenance and distribution of invertebrate populations. Larval connectivity is a complex process to study as it is determined by several interacting factors. Here we use an individual-based, biophysical model, to disentangle the effects of such factors, namely larval vertical migration, larval growth, larval mortality, adults fecundity, and habitat availability, for the marine gastropod Concholepas concholepas (loco) in Chile. Lower transport success and higher dispersal distances are observed including larval vertical migration in the model. We find an overall decrease in larval transport success to settlement areas from northern to southern Chile. This spatial gradient results from the combination of current direction and intensity, seawater temperature, and available habitat. From our simulated connectivity patterns we then identify subpopulations of loco along the Chilean coast, which could serve as a basis for spatial management of this resource in the future.
Influence of Biological Factors on Connectivity Patterns for Concholepas concholepas (loco) in Chile
Garavelli, Lysel; Colas, François; Verley, Philippe; Kaplan, David Michael; Yannicelli, Beatriz; Lett, Christophe
2016-01-01
In marine benthic ecosystems, larval connectivity is a major process influencing the maintenance and distribution of invertebrate populations. Larval connectivity is a complex process to study as it is determined by several interacting factors. Here we use an individual-based, biophysical model, to disentangle the effects of such factors, namely larval vertical migration, larval growth, larval mortality, adults fecundity, and habitat availability, for the marine gastropod Concholepas concholepas (loco) in Chile. Lower transport success and higher dispersal distances are observed including larval vertical migration in the model. We find an overall decrease in larval transport success to settlement areas from northern to southern Chile. This spatial gradient results from the combination of current direction and intensity, seawater temperature, and available habitat. From our simulated connectivity patterns we then identify subpopulations of loco along the Chilean coast, which could serve as a basis for spatial management of this resource in the future. PMID:26751574
[On the effect of partial flooding on 137Cs and 90Sr in forest biogeocenosis].
Perevolotskaia, T V; Bulavik, I M; Perevolotskiĭ, A N
2009-01-01
The analysis was made on 137Cs and 90Sr distribution oak, pine and hornbeam plantations depending on different under soil water levels. Intensity of 137Cs and of 90Sr migration along the vertical layers of soils is determined by under soil water level at a specific sampling site. The closer under soil water to the surface of the soil, the lowest radionuclide contamination is in the upper soil levels and the highest radionuclide contamination is in the deeper layers. The "fast" and "slow" quasi diffusion coefficients for 137Cs and for 90Sr and their contribution to the total migration of radionuclide through vertical soil levels were determined. A decrease in 137Cs and increase in 90Sr transfer factors to the elements of overground phytomass as a result of under soil water level lowering was established.
The innate origin of radial and vertical gradients in a simulated galaxy disc
NASA Astrophysics Data System (ADS)
Navarro, Julio F.; Yozin, Cameron; Loewen, Nic; Benítez-Llambay, Alejandro; Fattahi, Azadeh; Frenk, Carlos S.; Oman, Kyle A.; Schaye, Joop; Theuns, Tom
2018-05-01
We examine the origin of radial and vertical gradients in the age/metallicity of the stellar component of a galaxy disc formed in the APOSTLE cosmological hydrodynamical simulations. Some of these gradients resemble those in the Milky Way, where they have sometimes been interpreted as due to internal evolution, such as scattering off giant molecular clouds, radial migration driven by spiral patterns, or orbital resonances with a bar. Secular processes play a minor role in the simulated galaxy, which lacks strong spiral or bar patterns, and where such gradients arise as a result of the gradual enrichment of a gaseous disc that is born thick but thins as it turns into stars and settles into centrifugal equilibrium. The settling is controlled by the feedback of young stars; which links the star formation, enrichment, and equilibration time-scales, inducing radial and vertical gradients in the gaseous disc and its descendent stars. The kinematics of coeval stars evolve little after birth and provide a faithful snapshot of the gaseous disc structure at the time of their formation. In this interpretation, the age-velocity dispersion relation would reflect the gradual thinning of the disc rather than the importance of secular orbit scattering; the outward flaring of stars would result from the gas disc flare rather than from radial migration; and vertical gradients would arise because the gas disc gradually thinned as it enriched. Such radial and vertical trends might just reflect the evolving properties of the parent gaseous disc, and are not necessarily the result of secular evolutionary processes.
Tidally oriented vertical migration and position maintenance of zooplankton in a temperate estuary
Kimmerer, W.J.; Burau, J.R.; Bennett, W.A.
1998-01-01
In many estuaries, maxima in turbidity and abundance of several common species of zooplankton occur in the low salinity zone (LSZ) in the range of 0.5-6 practical salinity units (psu). Analysis of zooplankton abundance from monitoring in 1972-1987 revealed that historical maxima in abundance of the copepod Eurytemora affinis and the mysid Neomysis mercedis, and in turbidity as determined from Secchi disk data, were close to the estimated position of 2 psu bottom salinity. The copepod Sinocalanus doerrii had a maximum slightly landward of that of E. affinis. After 1987 these maxima decreased and shifted to a lower salinity, presumably because of the effects of grazing by the introduced clam Potamocorbula amurensis. At the same time, the copepod Pseudodiaptomus forbesi, the mysid Acanthomysis sp., and amphipods became abundant with peaks at salinity around 0.2-0.5 psu. Plausible mechanisms for maintenance of these persistent abundance peaks include interactions between variation in flow and abundance, either in the vertical or horizontal plane, or higher net population growth rate in the peaks than seaward of the peaks. In spring of 1994, a dry year, we sampled in and near the LSZ using a Lagrangian sampling scheme to follow selected isohalines while sampling over several complete tidal cycles. Acoustic Doppler current profilers were used to provide detailed velocity distributions to enable us to estimate longitudinal fluxes of organisms. Stratification was weak and gravitational circulation nearly absent in the LSZ. All of the common species of zooplankton migrated vertically in response to the tides, with abundance higher in the water column on the flood than on the ebb. Migration of mysids and amphipods was sufficient to override net seaward flow to produce a net landward flux of organisms. Migration of copepods, however, was insufficient to reverse or even greatly diminish the net seaward flux of organisms, implying alternative mechanisms of position maintenance.
Eckmann, Madeleine; Dunham, Jason B.; Connor, Edward J.; Welch, Carmen A.
2018-01-01
Many species living in deeper lentic ecosystems exhibit daily movements that cycle through the water column, generally referred to as diel vertical migration (DVM). In this study, we applied bioenergetics modelling to evaluate growth as a hypothesis to explain DVM by bull trout (Salvelinus confluentus) in a thermally stratified reservoir (Ross Lake, WA, USA) during the peak of thermal stratification in July and August. Bioenergetics model parameters were derived from observed vertical distributions of temperature, prey and bull trout. Field sampling confirmed that bull trout prey almost exclusively on recently introduced redside shiner (Richardsonius balteatus). Model predictions revealed that deeper (>25 m) DVMs commonly exhibited by bull trout during peak thermal stratification cannot be explained by maximising growth. Survival, another common explanation for DVM, may have influenced bull trout depth use, but observations suggest there may be additional drivers of DVM. We propose these deeper summertime excursions may be partly explained by an alternative hypothesis: the importance of colder water for gametogenesis. In Ross Lake, reliance of bull trout on warm water prey (redside shiner) for consumption and growth poses a potential trade-off with the need for colder water for gametogenesis.
NASA Astrophysics Data System (ADS)
Madin, L. P.; Kremer, P.; Wiebe, P. H.; Purcell, J. E.; Horgan, E. H.; Nemazie, D. A.
2006-05-01
Sampling during four summers over a twenty-seven year period has documented dense populations of Salpa aspera in the Slope Water south of New England, northeastern United States. The salps demonstrated a strong pattern of diel vertical migration, moving to depth (mostly 600-800 m) during the day and aggregating in the epipelagic (<100m) at night. Filtration rates determined from both gut pigment analysis and direct feeding experiments indicated that both the aggregate and solitary stages filtered water at rates ranging from 0.5 to 6lh-1ml-1 biovolume. Maximum displacement volumes of salps measured were 5.7lm-2 in 1986 and 1.6lm-2 in 1993. Depending on the year, the sampled salp populations were calculated to clear between 8 and 74% of the upper 50 m during each 8 h night. Total fecal output for the same populations was estimated to be between 5 and 91mgCm-2night-1. These results, and other observations, suggest this region is a salp "hot spot", with swarms of S. aspera developing seasonally on a frequent basis.
2013-01-01
We have previously demonstrated the unique migration behavior of Ge quantum dots (QDs) through Si3N4 layers during high-temperature oxidation. Penetration of these QDs into the underlying Si substrate however, leads to a completely different behavior: the Ge QDs ‘explode,’ regressing back almost to their origins as individual Ge nuclei as formed during the oxidation of the original nanopatterned SiGe structures used for their generation. A kinetics-based model is proposed to explain the anomalous migration behavior and morphology changes of the Ge QDs based on the Si flux generated during the oxidation of Si-containing layers. PMID:23618165
Reynolds, A.M; Reynolds, D.R; Riley, J.R
2008-01-01
Large migrating insects, such as noctuid moths and acridoid grasshoppers, flying within the stable nocturnal boundary layer commonly become concentrated into horizontal layers. These layers frequently occur near the top of the surface temperature inversion where warm fast-moving airflows provide good conditions for downwind migration. On some occasions, a layer may coincide with a higher altitude temperature maximum such as a subsidence inversion, while on others, it may seem unrelated to any obvious feature in the vertical profile of meteorological variables. Insects within the layers are frequently orientated, either downwind or at an angle to the wind, but the mechanisms involved in both layer formation and common orientation have remained elusive. Here, we show through the results of numerical simulations that if insects are treated as neutrally buoyant particles, they tend to be advected by vertical gusts (through the ‘turbophoretic’ mechanism) into layers in the atmosphere where the turbulent kinetic energy has local minima. These locations typically coincide with local maxima in the wind speed and/or air temperature, and they may also provide cues for orientation. However, the degree of layering predicted by this model is very much weaker than that observed in the field. We have therefore hypothesized that insects behave in a way that amplifies the turbophoretic effect by initiating climbs or descents in response to vertical gusts. New simulations incorporating this behaviour demonstrated the formation of layers that closely mimic field observations, both in the degree of concentration in layers and the rate at which they form. PMID:18611845
Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei
Nakamura, Itsumi; Meyer, Carl G.; Sato, Katsufumi
2015-01-01
We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200–300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200–300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats. PMID:26061525
Reynolds, A M; Reynolds, D R; Riley, J R
2009-01-06
Large migrating insects, such as noctuid moths and acridoid grasshoppers, flying within the stable nocturnal boundary layer commonly become concentrated into horizontal layers. These layers frequently occur near the top of the surface temperature inversion where warm fast-moving airflows provide good conditions for downwind migration. On some occasions, a layer may coincide with a higher altitude temperature maximum such as a subsidence inversion, while on others, it may seem unrelated to any obvious feature in the vertical profile of meteorological variables. Insects within the layers are frequently orientated, either downwind or at an angle to the wind, but the mechanisms involved in both layer formation and common orientation have remained elusive. Here, we show through the results of numerical simulations that if insects are treated as neutrally buoyant particles, they tend to be advected by vertical gusts (through the 'turbophoretic' mechanism) into layers in the atmosphere where the turbulent kinetic energy has local minima. These locations typically coincide with local maxima in the wind speed and/or air temperature, and they may also provide cues for orientation. However, the degree of layering predicted by this model is very much weaker than that observed in the field. We have therefore hypothesized that insects behave in a way that amplifies the turbophoretic effect by initiating climbs or descents in response to vertical gusts. New simulations incorporating this behaviour demonstrated the formation of layers that closely mimic field observations, both in the degree of concentration in layers and the rate at which they form.
Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.
Nakamura, Itsumi; Meyer, Carl G; Sato, Katsufumi
2015-01-01
We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.
Migration characteristics and early clinical results of the NANOS® short-stem hip arthroplasty.
Kaipel, Martin; Grabowiecki, Phillip; Sinz, Katrina; Farr, Sebastian; Sinz, Günter
2015-05-01
Femoral short stems promise essential advantages in total hip arthroplasty. Up to now, only short- and midterm clinical studies exist. Data on early stem migration that could predict later aseptic loosening at an early stage are rare. The purpose of this study was to assess migration patterns and clinical outcome 2 years after hip replacement by a metaphyseal anchored cementless short stem. Migration data and clinical results were prospectively assessed in 49 patients. Clinical outcome was measured using the Harris Hip Score (HHS). Migration analyses were performed using the computer-assisted Einzel-Bild-Roentgen-Analyse (EBRA) system. At 2 years after surgery, none of the implants needed revision, and HHS increased from 47.9 up to 98.1. Of 49 patients, 5 (10%) showed increased vertical stem migration (1.5 mm/2a) that might predict late aseptic loosening. Of 49 stems, 44 (90%) showed stable migration patterns indicating a beneficial long-term outcome. Results of this study confirm the excellent clinical data of previous works. Migration patterns strongly suggest that short-stem arthroplasty is not only an innovative but also a reliable strategy in total hip replacement.
Transoceanic migration, spatial dynamics, and population linkages of white sharks.
Bonfil, Ramón; Meÿer, Michael; Scholl, Michael C; Johnson, Ryan; O'Brien, Shannon; Oosthuizen, Herman; Swanson, Stephan; Kotze, Deon; Paterson, Michael
2005-10-07
The large-scale spatial dynamics and population structure of marine top predators are poorly known. We present electronic tag and photographic identification data showing a complex suite of behavioral patterns in white sharks. These include coastal return migrations and the fastest known transoceanic return migration among swimming fauna, which provide direct evidence of a link between widely separated populations in South Africa and Australia. Transoceanic return migration involved a return to the original capture location, dives to depths of 980 meters, and the tolerance of water temperatures as low as 3.4 degrees C. These findings contradict previous ideas that female white sharks do not make transoceanic migrations, and they suggest natal homing behavior.
Internal migration for recent immigrants to Canada.
Nogle, J M
1994-01-01
"This study examines the extent to which internal migration among recent immigrants to Canada is affected and constrained by characteristics related to admission. By examining measures of information and personal ties, it may be possible to establish that migration behavior is rational regardless of economic incentives." It is suggested that "internal migration in the first year after arrival is strongly affected by characteristics such as admission status, destination at arrival, reason for immigration, and area of origin. With increasing length of residence in Canada, though, the effect of these admission factors on internal migration behavior diminishes." This is a revised version of a paper originally presented at the 1992 Annual Meeting of the Population Association of America. excerpt
NASA Astrophysics Data System (ADS)
Magay, A. A.; Bulgakova, E. A.; Zabelina, S. A.
2018-03-01
The article highlights issues surrounding development of high rise buildings. With the rapid increase of the global population there has been a trend for people to migrate into megacities and has caused the expansion of big city territories. This trend, coupled with the desire for a comfortable living environment, has resulted in numerous problems plaguing the megacity. This article proposes that a viable solution to the problems facing megacities is to create vertical layout environments. Potential options for creating vertical layout environments are set out below including the construction of buildings with atriums. Further, the article puts forth suggested spatial organization of the environment as well as optimal landscaping of high-rise buildings and constructions for the creation of vertical layout environments. Finally, the persuasive reasons for the adoption of vertical layout environments is that it will decrease the amount of developed urban areas, decrease traffic and increase environmental sustainability.
Büchner, Vera Antonia; Hinz, Vera; Schreyögg, Jonas
2015-01-01
Several public policy initiatives, particularly those involving managed care, aim to enhance cooperation between partners in the health care sector because it is expected that such cooperation will reduce costs and generate additional revenue. However, empirical evidence regarding the effects of cooperation on hospital performance is scarce, particularly with respect to creating a comprehensive measure of cooperation behavior. The aim of this study is to investigate the impact of hospital cooperation behavior on organizational performance. We differentiate between horizontal and vertical cooperation using two alternative measures-cooperation depth and cooperation breadth-and include the interaction effects between both cooperation directions. Data are derived from a survey of German hospitals and combined with objective performance information from annual financial statements. Generalized linear regression models are used. The study findings provide insight into the nature of hospitals' cooperation behavior. In particular, we show that there are negative synergies between horizontal administrative cooperation behavior and vertical cooperation behavior. Whereas the depth and breadth of horizontal administrative cooperation positively affect financial performance (when there is no vertical cooperation), vertical cooperation positively affects financial performance (when there is no horizontal administrative cooperation) only when cooperation is broad (rather than deep). Horizontal cooperation is generally more effective than vertical cooperation at improving financial performance. Hospital managers should consider the negative interaction effect when making decisions about whether to recommend a cooperative relationship in a horizontal or vertical direction. In addition, managers should be aware of the limited financial benefit of cooperation behavior.
A Micro-Level Event-Centered Approach to Investigating Armed Conflict and Population Responses
Williams, Nathalie E.; Ghimire, Dirgha J.; Axinn, William G.; Jennings, Elyse A.; Pradhan, Meeta S.
2012-01-01
In this article, we construct and test a micro-level event-centered approach to the study of armed conflict and behavioral responses in the general population. Event-centered approaches have been successfully used in the macro-political study of armed conflict but have not yet been adopted in micro-behavioral studies. The micro-level event-centered approach that we advocate here includes decomposition of a conflict into discrete political and violent events, examination of the mechanisms through which they affect behavior, and consideration of differential risks within the population. We focus on two mechanisms: instability and threat of harm. We test this approach empirically in the context of the recent decade-long armed conflict in Nepal, using detailed measurements of conflict-related events and a longitudinal study of first migration, first marriage, and first contraceptive use. Results demonstrate that different conflict-related events independently shaped migration, marriage, and childbearing and that they can simultaneously influence behaviors in opposing directions. We find that violent events increased migration, but political events slowed migration. Both violent and political events increased marriage and contraceptive use net of migration. Overall, this micro-level event-centered approach yields a significant advance for the study of how armed conflict affects civilian behavioral responses. PMID:22911154
1997-09-30
COUPLING BEHAVIOR AND VERTICAL DISTRIBUTION OF PTEROPODS IN COASTAL WATERS USING DATA FROM THE VIDEO PLANKTON RECORDER Scott M. Gallager Woods Hole...OBJECTIVES The general hypothesis being tested is that the vertical distribution of the pteropod Limacina retroversa is predictable as a function of light...the plankton, to a dynamic description of its instantaneous swimming behavior. 3) To couple objectives 1 and 2 through numerical modeling of pteropod
Role of Vision and Mechanoreception in Bed Bug, Cimex lectularius L. Behavior
Singh, Narinderpal; Wang, Changlu; Cooper, Richard
2015-01-01
The role of olfactory cues such as carbon dioxide, pheromones, and kairomones in bed bug, Cimex lectularius L. behavior has been demonstrated. However, the role of vision and mechanoreception in bed bug behavior is poorly understood. We investigated bed bug vision by determining their responses to different colors, vertical objects, and their ability to detect colors and vertical objects under low and complete dark conditions. Results show black and red paper harborages are preferred compared to yellow, green, blue, and white harborages. A bed bug trapping device with a black or red exterior surface was significantly more attractive to bed bugs than that with a white exterior surface. Bed bugs exhibited strong orientation behavior toward vertical objects. The height (15 vs. 30 cm tall) and color (brown vs. black) of the vertical object had no significant effect on orientation behavior of bed bugs. Bed bugs could differentiate color and detect vertical objects at very low background light conditions, but not in complete darkness. Bed bug preference to different substrate textures (mechanoreception) was also explored. Bed bugs preferred dyed tape compared to painted tape, textured painted plastic, and felt. These results revealed that substrate color, presence of vertical objects, and substrate texture affect host-seeking and harborage-searching behavior of bed bugs. Bed bugs may use a combination of vision, mechanoreception, and chemoreception to locate hosts and seek harborages. PMID:25748041
Role of vision and mechanoreception in bed bug, Cimex lectularius L. behavior.
Singh, Narinderpal; Wang, Changlu; Cooper, Richard
2015-01-01
The role of olfactory cues such as carbon dioxide, pheromones, and kairomones in bed bug, Cimex lectularius L. behavior has been demonstrated. However, the role of vision and mechanoreception in bed bug behavior is poorly understood. We investigated bed bug vision by determining their responses to different colors, vertical objects, and their ability to detect colors and vertical objects under low and complete dark conditions. Results show black and red paper harborages are preferred compared to yellow, green, blue, and white harborages. A bed bug trapping device with a black or red exterior surface was significantly more attractive to bed bugs than that with a white exterior surface. Bed bugs exhibited strong orientation behavior toward vertical objects. The height (15 vs. 30 cm tall) and color (brown vs. black) of the vertical object had no significant effect on orientation behavior of bed bugs. Bed bugs could differentiate color and detect vertical objects at very low background light conditions, but not in complete darkness. Bed bug preference to different substrate textures (mechanoreception) was also explored. Bed bugs preferred dyed tape compared to painted tape, textured painted plastic, and felt. These results revealed that substrate color, presence of vertical objects, and substrate texture affect host-seeking and harborage-searching behavior of bed bugs. Bed bugs may use a combination of vision, mechanoreception, and chemoreception to locate hosts and seek harborages.
NASA Astrophysics Data System (ADS)
Gallagher, Brian K.; Piccoli, Philip M.; Secor, David H.
2018-01-01
Partial migration in complex life cycles allows environmental conditions experienced during one life-stage to interact with genetic thresholds and produce divergent spatial behaviors in the next stage. We evaluated partial migration over the entire life cycle of white perch, (Morone americana) within the Hudson River Estuary, combining otolith microchemistry, population demographics and environmental data analysis. Ecological carryover effects were used as a framework to test how environmental variation during the larval period influenced migration behaviors and growth characteristics in subsequent life-stages. Two annual cohorts of juveniles were classified based on whether they persisted in natal habitats (freshwater resident contingent) or dispersed into non-natal habitats (brackish water migratory contingent) as juveniles. The migratory contingent tended to hatch earlier and experience cooler temperatures as larvae, while the availability of zooplankton prey during the larval period appeared to influence growth dynamics before and after metamorphosis. Juvenile migration behaviors were reversible but usually persisted into adulthood. As juveniles, the consequences of partial migration on growth appeared to be modified by river flow, as demonstrated by the influence of a large storm event on feeding conditions in one of the study years. Migratory adults grew faster and attained larger maximum sizes, but may also experience higher rates of mortality. The interplay uncovered between life-stage transitions, conditional migration behaviors and habitat productivity throughout the life cycle shapes white perch population dynamics and will likely play an important role in responses to long-term environmental change.
Tornadic storm avoidance behavior in breeding songbirds.
Streby, Henry M; Kramer, Gunnar R; Peterson, Sean M; Lehman, Justin A; Buehler, David A; Andersen, David E
2015-01-05
Migration is a common behavior used by animals of many taxa to occupy different habitats during different periods. Migrant birds are categorized as either facultative (i.e., those that are forced to migrate by some proximal cue, often weather) or obligate (i.e., those that migrate on a regular cycle). During migration, obligate migrants can curtail or delay flights in response to inclement weather or until favorable winds prevail, and they can temporarily reorient or reverse direction when ecological or meteorological obstacles are encountered. However, it is not known whether obligate migrants undertake facultative migrations and make large-scale movements in response to proximal cues outside of their regular migration periods. Here, we present the first documentation of obligate long-distance migrant birds undertaking a facultative migration, wherein breeding golden-winged warblers (Vermivora chrysoptera) carrying light-level geolocators performed a >1,500 km 5-day circumvention of a severe tornadic storm. The birds evacuated their breeding territories >24 hr before the arrival of the storm and atmospheric variation associated with it. The probable cue, radiating >1,000 km from tornadic storms, perceived by birds and influencing bird behavior and movements, is infrasound (i.e., sound below the range of human hearing). With the predicted increase in severity and frequency of similar storms as anthropogenic climate change progresses, understanding large-scale behavioral responses of animals to such events will be an important objective of future research. Copyright © 2015 Elsevier Ltd. All rights reserved.
Social Network Analysis Reveals Potential Fission-Fusion Behavior in a Shark
NASA Astrophysics Data System (ADS)
Haulsee, Danielle E.; Fox, Dewayne A.; Breece, Matthew W.; Brown, Lori M.; Kneebone, Jeff; Skomal, Gregory B.; Oliver, Matthew J.
2016-09-01
Complex social networks and behaviors are difficult to observe for free-living marine species, especially those that move great distances. Using implanted acoustic transceivers to study the inter- and intraspecific interactions of sand tiger sharks Carcharias taurus, we observed group behavior that has historically been associated with higher order mammals. We found evidence strongly suggestive of fission-fusion behavior, or changes in group size and composition of sand tigers, related to five behavioral modes (summering, south migration, community bottleneck, dispersal, north migration). Our study shows sexually dimorphic behavior during migration, in addition to presenting evidence of a potential solitary phase for these typically gregarious sharks. Sand tigers spent up to 95 consecutive and 335 cumulative hours together, with the strongest relationships occurring between males. Species that exhibit fission-fusion group dynamics pose a particularly challenging issue for conservation and management because changes in group size and composition affect population estimates and amplify anthropogenic impacts.
Enhanced Seismic Imaging of Turbidite Deposits in Chicontepec Basin, Mexico
NASA Astrophysics Data System (ADS)
Chavez-Perez, S.; Vargas-Meleza, L.
2007-05-01
We test, as postprocessing tools, a combination of migration deconvolution and geometric attributes to attack the complex problems of reflector resolution and detection in migrated seismic volumes. Migration deconvolution has been empirically shown to be an effective approach for enhancing the illumination of migrated images, which are blurred versions of the subsurface reflectivity distribution, by decreasing imaging artifacts, improving spatial resolution, and alleviating acquisition footprint problems. We utilize migration deconvolution as a means to improve the quality and resolution of 3D prestack time migrated results from Chicontepec basin, Mexico, a very relevant portion of the producing onshore sector of Pemex, the Mexican petroleum company. Seismic data covers the Agua Fria, Coapechaca, and Tajin fields. It exhibits acquisition footprint problems, migration artifacts and a severe lack of resolution in the target area, where turbidite deposits need to be characterized between major erosional surfaces. Vertical resolution is about 35 m and the main hydrocarbon plays are turbidite beds no more than 60 m thick. We also employ geometric attributes (e.g., coherent energy and curvature), computed after migration deconvolution, to detect and map out depositional features, and help design development wells in the area. Results of this workflow show imaging enhancement and allow us to identify meandering channels and individual sand bodies, previously undistinguishable in the original seismic migrated images.
Singha, Kamini; Gorelick, Steven M.
2005-01-01
Cross-well electrical resistivity tomography (ERT) was used to monitor the migration of a saline tracer in a two-well pumping-injection experiment conducted at the Massachusetts Military Reservation in Cape Cod, Massachusetts. After injecting 2200 mg/L of sodium chloride for 9 hours, ERT data sets were collected from four wells every 6 hours for 20 days. More than 180,000 resistance measurements were collected during the tracer test. Each ERT data set was inverted to produce a sequence of 3-D snapshot maps that track the plume. In addition to the ERT experiment a pumping test and an infiltration test were conducted to estimate horizontal and vertical hydraulic conductivity values. Using modified moment analysis of the electrical conductivity tomograms, the mass, center of mass, and spatial variance of the imaged tracer plume were estimated. Although the tomograms provide valuable insights into field-scale tracer migration behavior and aquifer heterogeneity, standard tomographic inversion and application of Archie's law to convert electrical conductivities to solute concentration results in underestimation of tracer mass. Such underestimation is attributed to (1) reduced measurement sensitivity to electrical conductivity values with distance from the electrodes and (2) spatial smoothing (regularization) from tomographic inversion. The center of mass estimated from the ERT inversions coincided with that given by migration of the tracer plume using 3-D advective-dispersion simulation. The 3-D plumes seen using ERT exhibit greater apparent dispersion than the simulated plumes and greater temporal spreading than observed in field data of concentration breakthrough at the pumping well.
Li, Xiaoming; Zhang, Liying; Stanton, Bonita; Fang, Xiaoyi; Xiong, Qing; Lin, Danhua
2007-01-01
The relationship between rural-to-urban migration and the spread of HIV is well described, although most studies focus on sexual risk behaviors among rural-to-urban migrants at the urban destination areas. Few studies have examined the sexual risk behaviors of migrants who have returned from urban areas to their rural homes (“return migrants”) in comparison with those of local rural residents who have never migrated to cities (“non-migrants”). This study examines the potential association between rural-to-urban migration and sexual risk behaviors by comparing sexual risk behaviors between 553 return migrants and 441 non-migrants from same rural communities in China. Findings reveal that, after controlling for sociodemographic characteristics, return migrants in rural areas had higher levels of sexual risk, including unprotected sex, than non-migrants. Among return migrants, sexual risk behaviors were associated with age, gender, marital status, and number of different jobs they had previously held in the cities. These findings underscore the importance for HIV/AIDS education and prevention efforts targeting the migrant population in urban destinations as well as the return migrant population in rural areas. PMID:17967110
NASA Astrophysics Data System (ADS)
Stoeckl, Leonard; Stefan, Loeffler; Houben, Georg
2013-04-01
Freshwater lenses on islands and in inland areas are often the primary freshwater resource there. The fragile equilibrium between saline and fresh groundwater can be disrupted by excessive pumping, leading to an upward migration of the saline water underneath the well. Sand-box experiments were conducted to compare the upconing at vertical and horizontal wells pumping from a freshwater lens. Results were then compared to numerical simulations. To simulate the cross-section of an "infinite strip island", an acrylic box with a spacing of 5 cm was filled with coarse sand. After saturating the model with degassed saltwater from bottom to top, freshwater recharge was applied from above. By coloring the infiltrating freshwater with different tracer colors using uranine and indigotine we were able to visualize flow paths during pumping. A horizontal and a vertical well were placed at the left and right side of the symmetric island. Both had equal diameter, screen length, depth of placement, and distance to shore. Three increasing pumping rates were applied to each well successively and the electrical conductivity of the abstracted water was continuously measured using a through-flow cell. Results show that no saltwater entered the wells when pumping at the lowest rate. Still, slight saltwater upconing and a shift of the freshwater divide in the island were observed. At the second rate a clear saltwater breakthrough into the vertical well occurred, while the electrical conductivity remained nearly unchanged in the horizontal well. Applying the third (highest) abstraction rate to each of the wells saltwater entered both wells, exceeding drinking water standards in the vertical well. The described behavior indicates the advantage of horizontal over vertical wells on islands and in coastal zones prone to saltwater up-coning. Numerical simulations show similar patterns, even though deviations exist between the second and the third pumping rate, which are under and overestimated by the numerical simulation, respectively. Further investigations are necessary to investigate the dynamics of pumping from freshwater lenses under the influence of climate change (i.e. sea level rise).
A potential-energy scaling model to simulate the initial stages of thin-film growth
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Outlaw, R. A.; Walker, G. H.
1983-01-01
A solid on solid (SOS) Monte Carlo computer simulation employing a potential energy scaling technique was used to model the initial stages of thin film growth. The model monitors variations in the vertical interaction potential that occur due to the arrival or departure of selected adatoms or impurities at all sites in the 400 sq. ft. array. Boltzmann ordered statistics are used to simulate fluctuations in vibrational energy at each site in the array, and the resulting site energy is compared with threshold levels of possible atomic events. In addition to adsorption, desorption, and surface migration, adatom incorporation and diffusion of a substrate atom to the surface are also included. The lateral interaction of nearest, second nearest, and third nearest neighbors is also considered. A series of computer experiments are conducted to illustrate the behavior of the model.
Texture Development and Material Flow Behavior During Refill Friction Stir Spot Welding of AlMgSc
NASA Astrophysics Data System (ADS)
Shen, Junjun; Lage, Sara B. M.; Suhuddin, Uceu F. H.; Bolfarini, Claudemiro; dos Santos, Jorge F.
2018-01-01
The microstructural evolution during refill friction stir spot welding of an AlMgSc alloy was studied. The primary texture that developed in all regions, with the exception of the weld center, was determined to be 〈110〉 fibers and interpreted as a simple shear texture with the 〈110〉 direction aligned with the shear direction. The material flow is mainly driven by two components: the simple shear acting on the horizontal plane causing an inward-directed spiral flow and the extrusion acting on the vertical plane causing an upward-directed or downward-directed flow. Under such a complex material flow, the weld center, which is subjected to minimal local strain, is the least recrystallized. In addition to the geometric effects of strain and grain subdivision, thermally activated high-angle grain boundary migration, particularly continuous dynamic recrystallization, drives the formation of refined grains in the stirred zone.
A graphene integrated highly transparent resistive switching memory device
NASA Astrophysics Data System (ADS)
Dugu, Sita; Pavunny, Shojan P.; Limbu, Tej B.; Weiner, Brad R.; Morell, Gerardo; Katiyar, Ram S.
2018-05-01
We demonstrate the hybrid fabrication process of a graphene integrated highly transparent resistive random-access memory (TRRAM) device. The indium tin oxide (ITO)/Al2O3/graphene nonvolatile memory device possesses a high transmittance of >82% in the visible region (370-700 nm) and exhibits stable and non-symmetrical bipolar switching characteristics with considerably low set and reset voltages (<±1 V). The vertical two-terminal device shows an excellent resistive switching behavior with a high on-off ratio of ˜5 × 103. We also fabricated a ITO/Al2O3/Pt device and studied its switching characteristics for comparison and a better understanding of the ITO/Al2O3/graphene device characteristics. The conduction mechanisms in high and low resistance states were analyzed, and the observed polarity dependent resistive switching is explained based on electro-migration of oxygen ions.
NASA Astrophysics Data System (ADS)
Otaki, Takayoshi; Hamana, Masahiro; Tanoe, Hideaki; Miyazaki, Nobuyuki; Shibuno, Takuro; Komatsu, Teruhisa
2015-06-01
Most demersal fishes maintain strong relations with bottom substrates and bottom depths and/or topography during their lives. It is important to know these relations to for understand their lives. In Tokyo Bay, red stingray, Dasyatis akajei, classified as near-threatened species by IUCN, has increased since the 1980s. It is a top predator and engages in ecosystem engineer by mixing the sand bed surface through burring behavior, and greatly influences a coastal ecosystem. It is reported that this species invades in plage and tidal flats and has sometimes injured beachgoers and people gathering clams in Tokyo bay. Thus, it is necessary to know its behavior and habitat use to avoid accidents and to better conserve the biodiversity of ecosystems. However, previous studies have not examined its relationship with the bottom environment. This study aims to describe its behavior in relation to the bottom environment. We sounded three dimensional bottom topography of their habitat off Kaneda Cove in Tokyo Bay with interferometric sidescan sonar system and traced the movement of red stingrays by attaching a data logger system to survey their migration. The results revealed that red stingray repeated vertical movement between the surface and bottom, and used not only sand beds but also rocky beds.
Fayet, Annette L; Freeman, Robin; Anker-Nilssen, Tycho; Diamond, Antony; Erikstad, Kjell E; Fifield, Dave; Fitzsimmons, Michelle G; Hansen, Erpur S; Harris, Mike P; Jessopp, Mark; Kouwenberg, Amy-Lee; Kress, Steve; Mowat, Stephen; Perrins, Chris M; Petersen, Aevar; Petersen, Ib K; Reiertsen, Tone K; Robertson, Gregory J; Shannon, Paula; Sigurðsson, Ingvar A; Shoji, Akiko; Wanless, Sarah; Guilford, Tim
2017-12-18
Which factors shape animals' migration movements across large geographical scales, how different migratory strategies emerge between populations, and how these may affect population dynamics are central questions in the field of animal migration [1] that only large-scale studies of migration patterns across a species' range can answer [2]. To address these questions, we track the migration of 270 Atlantic puffins Fratercula arctica, a red-listed, declining seabird, across their entire breeding range. We investigate the role of demographic, geographical, and environmental variables in driving spatial and behavioral differences on an ocean-basin scale by measuring puffins' among-colony differences in migratory routes and day-to-day behavior (estimated with individual daily activity budgets and energy expenditure). We show that competition and local winter resource availability are important drivers of migratory movements, with birds from larger colonies or with poorer local winter conditions migrating further and visiting less-productive waters; this in turn led to differences in flight activity and energy expenditure. Other behavioral differences emerge with latitude, with foraging effort and energy expenditure increasing when birds winter further north in colder waters. Importantly, these ocean-wide migration patterns can ultimately be linked with breeding performance: colony productivity is negatively associated with wintering latitude, population size, and migration distance, which demonstrates the cost of competition and migration on future breeding and the link between non-breeding and breeding periods. Our results help us to understand the drivers of animal migration and have important implications for population dynamics and the conservation of migratory species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Linearized inversion of multiple scattering seismic energy
NASA Astrophysics Data System (ADS)
Aldawood, Ali; Hoteit, Ibrahim; Zuberi, Mohammad
2014-05-01
Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. So, imaging seismic data with the single-scattering assumption does not locate multiple bounces events in their actual subsurface positions. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single scattering energy such as nearly vertical faults. Standard migration of these multiples provides subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. The resultant image obtained by the adjoint operator is a smoothed depiction of the true subsurface reflectivity model and is heavily masked by migration artifacts and the source wavelet fingerprint that needs to be properly deconvolved. Hence, we proposed a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. The proposed algorithm uses the least-square image based on single-scattering assumption as a constraint to invert for the part of the image that is illuminated by internal scattering energy. Then, we posed the problem of imaging double-scattering energy as a least-square minimization problem that requires solving the normal equation of the following form: GTGv = GTd, (1) where G is a linearized forward modeling operator that predicts double-scattered seismic data. Also, GT is a linearized adjoint operator that image double-scattered seismic data. Gradient-based optimization algorithms solve this linear system. Hence, we used a quasi-Newton optimization technique to find the least-square minimizer. In this approach, an estimate of the Hessian matrix that contains curvature information is modified at every iteration by a low-rank update based on gradient changes at every step. At each iteration, the data residual is imaged using GT to determine the model update. Application of the linearized inversion to synthetic data to image a vertical fault plane demonstrate the effectiveness of this methodology to properly delineate the vertical fault plane and give better amplitude information than the standard migrated image using the adjoint operator that takes into account internal multiples. Thus, least-square imaging of multiple scattering enhances the spatial resolution of the events illuminated by internal scattering energy. It also deconvolves the source signature and helps remove the fingerprint of the acquisition geometry. The final image is obtained by the superposition of the least-square solution based on single scattering assumption and the least-square solution based on double scattering assumption.
Gorman, Owen T.; Yule, Daniel L.; Stockwell, Jason D.
2012-01-01
Diel migration patterns of fishes in nearshore (15–80 m depth) and offshore (>80 m) waters of Lake Superior were examined to assess the potential for diel migration to link benthic and pelagic, and nearshore and offshore habitats. In our companion article, we described three types of diel migration: diel vertical migration (DVM), diel bank migration (DBM), and no diel migration. DVM was expressed by fishes migrating from benthopelagic to pelagic positions and DBM was expressed by fishes migrating horizontally from deep to shallow waters at night. Fishes not exhibiting diel migration typically showed increased activity by moving from benthic to benthopelagic positions within demersal habitat. The distribution and biomass of fishes in Lake Superior was characterized by examining 704 bottom trawl samples collected between 2001 and 2008 from four depth zones: ≤40, 41–80, 81–160, and >160 m. Diel migration behaviors of fishes described in our companion article were applied to estimates of areal biomass (kg ha−1) for each species by depth zone. The relative strength of diel migrations were assessed by applying lake area to areal biomass estimates for each species by depth zone to yield estimates of lake-wide biomass (metric tonnes). Overall, species expressing DVM accounted for 83%, DBM 6%, and non-migration 11% of the total lake-wide community biomass. In nearshore waters, species expressing DVM represented 74% of the biomass, DBM 25%, and non-migration 1%. In offshore waters, species expressing DVM represented 85%, DBM 1%, and non-migration 14% of the biomass. Of species expressing DVM, 83% of total biomass occurred in offshore waters. Similarly, 97% of biomass of non-migrators occurred in offshore waters while 83% of biomass of species expressing DBM occurred in nearshore waters. A high correlation (R2 = 0.996) between lake area and community biomass by depth zone resulted in 81% of the lake-wide biomass occurring in offshore waters. Accentuating this nearshore-offshore trend was one of increasing estimated total areal biomass of the fish community with depth zone, which ranged from 13.71 kg ha−1 at depths ≤40 m to 18.81 kg ha−1 at depths >160 m, emphasizing the importance of the offshore fish community to the lake ecosystem. The prevalence of diel migration expressed by Lake Superior fishes increases the potential of fish to link benthic and pelagic and shallow and deepwater habitats. These linkages enhance the potential for habitat coupling, a condition where habitats become interconnected and interdependent through transfers of energy and nutrients. Habitat coupling facilitates energy and nutrient flow through a lake ecosystem, thereby increasing productivity, especially in large lakes where benthic and pelagic, and nearshore and offshore habitats are often well separated. We propose that the application of biomass estimates to patterns of diel migration in fishes can serve as a useful metric for assessing the potential for habitat linkages and habitat coupling in lake ecosystems, and provide an important indicator of ecosystem health and function. The decline of native Lake Trout and ciscoes and recent declines in exotic Alewife and Rainbow Smelt populations in other Great Lakes have likely reduced the capacity for benthic-pelagic coupling in these systems compared to Lake Superior. We recommend comparing the levels and temporal changes in diel migration in other Great Lakes as a means to assess changes in the relative health and function of these ecosystems.
Steep-dip seismic imaging of the shallow San Andreas Fault near Parkfield
Hole, J.A.; Catchings, R.D.; St. Clair, K.C.; Rymer, M.J.; Okaya, D.A.; Carney, B.J.
2001-01-01
Seismic reflection and refraction images illuminate the San Andreas Fault to a depth of 1 kilometer. The prestack depth-migrated reflection image contains near-vertical reflections aligned with the active fault trace. The fault is vertical in the upper 0.5 kilometer, then dips about 70° to the southwest to at least 1 kilometer subsurface. This dip reconciles the difference between the computed locations of earthquakes and the surface fault trace. The seismic velocity cross section shows strong lateral variations. Relatively low velocity (10 to 30%), high electrical conductivity, and low density indicate a 1-kilometer-wide vertical wedge of porous sediment or fractured rock immediately southwest of the active fault trace.
Gender and migration from Albania.
Stecklov, Guy; Carletto, Calogero; Azzarri, Carlo; Davis, Benjamin
2010-11-01
This article examines the dynamics and causes of the shift in the gender composition of migration, and more particularly, in women's access to migration opportunities and decision-making. Our analysis focuses on Albania, a natural laboratory for studying international migration where out-migration was essentially nonexistent from the end of World War II to the end of the 1980s. Interest in the Albanian case is heightened because of the complex layers of inequality existing at the time when migration began: relatively low levels of inequality within the labor market and educational system-a product of the Communist era-while household relations remained heavily steeped in tradition and patriarchy. We use micro-level data from the Albania 2005 Living Standards Measurement Study, including migration histories for family members since migration began. Based on discrete-time hazard models, the analysis shows a dramatic increase in male migration and a gradual and uneven expansion of the female proportion of this international migration. Female migration, which is shown to be strongly associated with education, wealth, and social capital, appears responsive to economic incentives and constraints. Using information on the dependency of female migration to the household demographic structure as well as the sensitivity of female migration to household-level shocks, we show how household-level constraints and incentives affect male and female migration differently. Throughout this period, however, women's migration behavior appears more directly aligned with household-level factors, and there is little evidence to suggest that increased female migration signals rising behavioral independence among Albanian women.
Gender and Migration from Albania
STECKLOV, GUY; CARLETTO, CALOGERO; AZZARRI, CARLO; DAVIS, BENJAMIN
2010-01-01
This article examines the dynamics and causes of the shift in the gender composition of migration, and more particularly, in women’s access to migration opportunities and decision-making. Our analysis focuses on Albania, a natural laboratory for studying international migration where out-migration was essentially nonexistent from the end of World War II to the end of the 1980s. Interest in the Albanian case is heightened because of the complex layers of inequality existing at the time when migration began: relatively low levels of inequality within the labor market and educational system—a product of the Communist era—while household relations remained heavily steeped in tradition and patriarchy. We use micro-level data from the Albania 2005 Living Standards Measurement Study, including migration histories for family members since migration began. Based on discrete-time hazard models, the analysis shows a dramatic increase in male migration and a gradual and uneven expansion of the female proportion of this international migration. Female migration, which is shown to be strongly associated with education, wealth, and social capital, appears responsive to economic incentives and constraints. Using information on the dependency of female migration to the household demographic structure as well as the sensitivity of female migration to household-level shocks, we show how household-level constraints and incentives affect male and female migration differently. Throughout this period, however, women’s migration behavior appears more directly aligned with household-level factors, and there is little evidence to suggest that increased female migration signals rising behavioral independence among Albanian women. PMID:21308565
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burckel, David Bruce; Adomanis, Bryan M.; Sinclair, Michael B.
2017-01-08
This paper investigates three-dimensional cut wire pair (CWP) behavior in vertically oriented meta-atoms. We first analyze CWP metamaterial inclusions using full-wave electromagnetic simulations. The scattering behavior of the vertical CWP differs substantially from that of the planar version of the same structure. In particular, we show that the vertical CWP supports a magnetic resonance that is solely excited by the incident magnetic field. This is in stark contrast to the bianisotropic resonant excitation of in-plane CWPs. We further show that this CWP behavior can occur in other vertical metamaterial resonators, such as back-to-back linear dipoles and back-to-back split ring resonatorsmore » (SRRs), due to the strong coupling between the closely spaced metallic elements in the back-to-back configuration. In the case of SRRs, the vertical CWP mode (unexplored in previous literature) can be excited with a magnetic field that is parallel to both SRR loops, and exists in addition to the familiar fundamental resonances of the individual SRRs. In order to fully describe the scattering behavior from such dense arrays of three-dimensional structures, coupling effects between the close-packed inclusions must be included. Here, the new flexibility afforded by using vertical resonators allows us to controllably create purely electric inclusions, purely magnetic inclusions, as well as bianisotropic inclusions, and vastly increases the degrees of freedom for the design of metafilms.« less
Embryonic cell-cell adhesion: a key player in collective neural crest migration.
Barriga, Elias H; Mayor, Roberto
2015-01-01
Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration. © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mincks, Sarah L.; Bollens, Stephen M.; Madin, Laurence P.; Horgan, Erich; Butler, Mari; Kremer, Patricia M.; Craddock, James E.
Macrozooplankton and micronekton samples were collected on two cruises in the Arabian Sea conducted during the Spring Intermonsoon period (May) and the SW Monsoon period (August) of 1995. Discrete depth samples were collected down to depths of 1000-1500 m. Quantitative gut content analyses were performed on four species of decapod shrimps, Gennadas sordidus, Sergia filictum, Sergia creber, and Eupasiphae gilesii, as well as on the pelagic crab Charybdis smithii. Of the shrimps, only S. filictum and S. creber increased significantly in abundance between the Spring Intermonsoon and SW Monsoon seasons. These four species were found at all depths sampled, and most did not appear to be strong vertical migrators. G. sordidus and S. filictum did appear to spread upward at night, especially during the SW Monsoon, but this movement did not include the entire population. S. creber showed signs of diel vertical migration only in some areas. All four shrimp species except, to some degree, S. creber lived almost exclusively within the oxygen minimum zone (150-1000 m), and are likely to have respiratory adaptations that allow them to persist under such conditions. Feeding occurred at all depths throughout these species' ranges, but only modest feeding occurred in the surface layer (0-150 m). G. sordidus appeared to feed continuously throughout the day and night. Estimated contribution of fecal material to vertical flux ranged from <0.01-2.1% of particulate flux at 1000 m for the shrimps and 1.8-3.0% for C. smithii.
Habitat Parameters for Oxygen Minimum Zone Copepods from the Eastern Tropical North Pacific
NASA Astrophysics Data System (ADS)
Wishner, K. F.; Outram, D.; Grassian, B.
2016-02-01
Oxygen minimum zones (OMZs) affect zooplankton distributions and may be expanding in worldwide spatial and vertical extent from climate change. We studied zooplankton (especially copepod) distributions in the Eastern Tropical North Pacific (ETNP) OMZ, using day-night vertically-stratified MOCNESS tows (0-1000m). Habitat parameters (temperature, oxygen, depth) were defined for abundant copepod species and groups. Zooplankton layers, with a unique suite of species, occurred at upper and lower OMZ oxyclines. At the mesopelagic lower oxycline, there was a layer with a characteristic species assemblage and a sharp 10X biomass increase compared to nearby depths. The lower oxycline layer occurred within a narrow very low oxygen concentration (2µM). At two stations with different OMZ vertical extents, the lower oxycline layer depth changed with OMZ thickness, remaining at the same oxygen concentration but different temperature. Life history habitat (diapause depth, temperature) of the copepod Eucalanus inermis was also affected. In the upper water column at the two stations, large diel vertical migrators (fish, euphausiids) descended to taxon-specific daytime depths in the mid OMZ, regardless of oxygen level, but copepod species distributions showed more variability and sensitivity to habitat parameters. We predict that, with moderate OMZ expansion, the lower oxycline community will likely shift depth, thus re-distributing midwater biomass, species, and processes. In the upper water column, large vertical migrator distributions may be less affected, while smaller taxa (copepods) will likely be sensitive to habitat changes. At some point, the ability to withstand these changes may be exceeded for particular taxa, with consequences for assemblages, trophic webs, and export. In keeping with the session theme, we hope to compare our oceanic findings with others' results from coastal hypoxic situations.
Forbes, W M; Ashton, F T; Boston, R; Zhu, X; Schad, G A
2004-03-25
Depending on its concentration, sodium chloride acts as either an attractant or a repellant to the infective larvae (L3i) of Strongyloides stercoralis. On a concentration gradient, L3i are attracted to 0.05 M NaCl, but repelled by 2.8M. To test the hypothesis that amphidial neurons ASE and ASH might mediate attraction and repulsion, respectively, these neurons, and control neurons as well, were ablated in hatchling larvae with a laser microbeam. After the larvae attained infectivity (L3i), they were tested on a NaCl gradient. When placed at low salinity, 73.5% of normal controls migrated "up" the gradient, while 26.4% crawled randomly. In contrast, only 20.6% of ASE-ablated L3i migrated "up" the gradient, while 79.4% migrated randomly. Ablation-control ASK-ablated L3i (58.8%) migrated "up" the gradient while 41.1% crawled randomly. When placed at a region of high salinity, 100% of normal control L3i migrated "down" the gradient, whereas 62.5% of ASH-ablated L3i migrated randomly, the remaining 37.5% migrating "down" the gradient. In sharp contrast with ASH-ablated L3i, 94.1% of ablation-control larvae, i.e. ASK-ablated L3i, migrated "down" the gradient. Migration behavior of ASE- and ASH-ablated L3i was significantly different (P < 0.001) from that of ASK-ablated L3i and normal controls. It is noteworthy that 87.5% of ASE-ablated L3i that failed to exhibit chemoattractive behavior were actively chemorepelled from high salinity. Also, 70.0% of ASH-ablated L3i that failed to be chemorepelled from high salinity were capable of chemoattractive behavior, indicating that the worms had retained their behavioral responses except for those associated with the targeted neurons.
Liu, Jian; Chen, Shan-Le; Wang, Hua-Jun; Li, Yu-Cheng; Geng, Xiaowei
2015-07-01
In a mine area, some environment geotechnics problems always occure, induced by mined-out region such as the subsidence and cracks at ground level, deformation and destruction of buildings, landslides destruction of water resources and the ecological environment. In order to research the migration of surrounding rock and coal in steeply inclined super high seams which used fully mechanized top coal caving, a working face of a certain mine was made as an example, analyzed the migration law of the overlay rock and coal under different caving ratio of fully mechanized top coal caving with numerical simulation analysis. The results suggest that the laws of overlay rock deformation caused by deeply inclined coal seam were different from horizontal coal seam. On the inclined direction, with an increase of dip angle and caving ratio, the vertical displacement of overlay rock and coal became greater, the asymmetric phenomenon of vertical displacement became obvious. On the trend direction, active region and transition region in goaf became smaller along with the increase of mining and caving ratio. On the contrary, the stable region area became greater. Therefore, there was an essential difference between the mechanism of surface movement deformation with deeply inclined coal seam and that with horizontal coal seam.
A PDMS Device Coupled with Culture Dish for In Vitro Cell Migration Assay.
Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Pei, WeiHua; Chen, Hongda
2018-04-30
Cell migration and invasion are important factors during tumor progression and metastasis. Wound-healing assay and the Boyden chamber assay are efficient tools to investigate tumor development because both of them could be applied to measure cell migration rate. Therefore, a simple and integrated polydimethylsiloxane (PDMS) device was developed for cell migration assay, which could perform quantitative evaluation of cell migration behaviors, especially for the wound-healing assay. The integrated device was composed of three units, which included cell culture dish, PDMS chamber, and wound generation mold. The PDMS chamber was integrated with cell culture chamber and could perform six experiments under different conditions of stimuli simultaneously. To verify the function of this device, it was utilized to explore the tumor cell migration behaviors under different concentrations of fetal bovine serum (FBS) and transforming growth factor (TGF-β) at different time points. This device has the unique capability to create the "wound" area in parallel during cell migration assay and provides a simple and efficient platform for investigating cell migration assay in biomedical application.
The Subjective Postural Vertical Determined in Patients with Pusher Behavior During Standing.
Bergmann, Jeannine; Krewer, Carmen; Selge, Charlotte; Müller, Friedemann; Jahn, Klaus
2016-06-01
The subjective postural vertical (SPV), i.e., the perceived upright orientation of the body in relation to gravity, is disturbed in patients with pusher behavior. So far, the SPV has been measured only when these patients were sitting, and the results were contradictory as regards the side of the SPV deviation. The objective was to investigate the SPV in patients with different degrees of severity of pusher behavior while standing. Eight stroke patients with pusher behavior, ten age-matched stroke patients without pusher behavior, and ten age-matched healthy control subjects were included. The SPV (SPV error, SPV range) was assessed in the pitch and the roll planes. Pusher behavior was classified with the Burke Lateropulsion Scale (BLS). In the pitch plane, the SPV range was significantly larger in pusher patients than in patients without pusher behavior or healthy controls. The SPV error was similar for groups. In the roll plane, the SPV error and the SPV range were significantly larger and more ipsilesionally tilted in the pusher group than in the other two groups. There was a significant correlation between the SPV error in the roll plane and the BLS score. The study revealed that patients with pusher behavior had an ipsilesional SPV tilt that decreased with decreasing severity of the behavior. The large uncertainty in verticality estimation in both planes indicates that their sensitivity for the perception of verticality in space is generally disturbed. These findings emphasize the importance of specific rehabilitation approaches to recalibrate the impaired inner model of verticality.
Apparatus for magnetic separation of paramagnetic and diamagnetic material
Doctor, Richard D.
1988-01-01
The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadropole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin.
Apparatus for magnetic separation of paramagnetic and diamagnetic material
Doctor, R.D.
1988-10-18
The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.
Apparatus for magnetic separation of paramagnetic and diamagnetic material
Doctor, R.D.
1986-07-24
The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic-particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.
Hoppe, Annekatrin; Fujishiro, Kaori
2015-01-01
This study aims to identify person-level factors, rather than economic situations, that influence migration decision-making and actual migration. Building on the theory of planned behavior, this study investigated potential migrants’ expectations and attitudes toward migration and career (i.e., anticipated job benefits of migration, career aspiration) as well as beliefs (i.e., generalized self-efficacy) as predictors of migration decision-making conceptualized in three phases: the pre-decisional, pre-actional, and actional phases. This was examined with cross-sectional pre-migration questionnaire data from 1163 potential migrants from Spain to Germany. We also examined whether the migration decision-making phases predicted actual migration with a subsample (n=249) which provided follow-up data within twelve months. For the cross-sectional sample, multinomial logistic regressions revealed that anticipated job benefits and career aspiration are predictive for all migration phases. Self-efficacy predicts the preactional (e.g., gathering information) and actional phases (e.g., making practical arrangements). Finally, for those with low self-efficacy, anticipated job benefits play a stronger role for taking action. For the longitudinal subsample, a logistic regression revealed that being in the preactional and actional phases at baseline is predictive of actual migration within twelve months. This study expands previous research on migration intentions and behaviors by focusing on expectations, values, and beliefs as person-level predictors for migration decision-making. With a longitudinal sample, it shows that international migration is a process that involves multiple phases. PMID:26379343
NASA Astrophysics Data System (ADS)
Sapkota, Birendra
Understanding the interactions and effects of biotic and abiotic factors on magnetic parameter measurements used to assess levels of pollutants requires experimental analysis of potential individual parameters. Using magnetic and chemical measurements, three separate experimental studies were conducted in order to evaluate the separate and combined effects of soil composition, atmospheric exposure, and contaminant levels on soil magnetic susceptibility (MS) measurements, plant growth and metal uptake by plants. Experiment 1 examined the effects of incorporating an artificial Fe-rich contaminant into a synthetic soil on surficial soil magnetic properties and plant growth inside a greenhouse. Periodic measurements of surficial soil MS showed significant decreases in MS values in the three treatments (two levels of Fe-contamination and controls), with the greatest reduction in soils with the most contamination, and the least in controls. Three potential causes were suggested: Fe uptake by plants, magnetic minerals transformation, and downward migration of Fe-particles. Some arguments for the first two causes were discussed; however, the third possibility was separately evaluated in the second and third experiments. In the follow-up study (Experiment 2) conducted to examine the effects of ambient atmospheric pollution on magnetic and chemical properties of soils and plant biomass, the overall surficial soil MS was found to be significantly higher in synthetic soils exposed to a natural atmosphere in comparison to controls placed in a greenhouse. Root biomass samples taken from the exposed soils had much higher trace/heavy metal concentrations. Such increases in soil MS and bioavailability of metals in the exposed soils indicate that atmospheric pollution affected the soil and plants grown in there. Microscopic observations of Fe-rich particles from the post-harvest exposed soil revealed morphologies similar to Fe-containing particulates from power plants and transportation and related sources. Experiment 3 examined the vertical migration behavior of Fe-particles in natural soils, and contaminated soil cores showed magnetic enhancement at depths of 2 to 9 cm, with the Fe-rich particles at that depth having very similar morphologies to the contaminant (magnetite powder) used, suggesting that the contaminant migrated vertically downward in soil at a observable rate, most likely due to infiltration of rainwater.
Ion migration in crystalline and amorphous HfOX
NASA Astrophysics Data System (ADS)
Schie, Marcel; Müller, Michael P.; Salinga, Martin; Waser, Rainer; De Souza, Roger A.
2017-03-01
The migration of ions in HfOx was investigated by means of large-scale, classical molecular-dynamics simulations over the temperature range 1000 ≤T /K ≤2000 . Amorphous HfOx was studied in both stoichiometric and oxygen-deficient forms (i.e., with x = 2 and x = 1.9875); oxygen-deficient cubic and monoclinic phases were also studied. The mean square displacement of oxygen ions was found to evolve linearly as a function of time for the crystalline phases, as expected, but displayed significant negative deviations from linear behavior for the amorphous phases, that is, the behavior was sub-diffusive. That oxygen-ion migration was observed for the stoichiometric amorphous phase argues strongly against applying the traditional model of vacancy-mediated migration in crystals to amorphous HfO2. In addition, cation migration, whilst not observed for the crystalline phases (as no cation defects were present), was observed for both amorphous phases. In order to obtain activation enthalpies of migration, the residence times of the migrating ions were analyzed. The analysis reveals four activation enthalpies for the two amorphous phases: 0.29 eV, 0.46 eV, and 0.66 eV (values very close to those obtained for the monoclinic structure) plus a higher enthalpy of at least 0.85 eV. In comparison, the cubic phase is characterized by a single value of 0.43 eV. Simple kinetic Monte Carlo simulations suggest that the sub-diffusive behavior arises from nanoscale confinement of the migrating ions.
Epitaxially grown collagen fibrils reveal diversity in contact guidance behavior among cancer cells.
Wang, Juan; Petefish, Joseph W; Hillier, Andrew C; Schneider, Ian C
2015-01-01
Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology and contact guidance behavior of two invasive breast cancer cell lines (MDA-MB-231 and MTLn3 cells). Others have shown that these cells randomly migrate in qualitatively different ways. MDA-MB-231 cells exert large traction forces, tightly adhere to the ECM, and migrate with spindle-shaped morphology and thus adopt a mesenchymal mode of migration. MTLn3 cells exert small traction forces, loosely adhere to the ECM, and migrate with a more rounded morphology and thus adopt an amoeboid mode of migration. As the degree of alignment of type I collagen fibrils increases, cells become more elongated and engage in more directed contact guidance. MDA-MB-231 cells perceive the directional signal of highly aligned type I collagen fibrils with high fidelity, elongating to large extents and migrating directionally. Interestingly, behavior in MTLn3 cells differs. While highly aligned type I collagen fibril patterns facilitate spreading and random migration of MTLn3 cells, they do not support elongation or directed migration. Thus, different contact guidance cues bias cell migration differently and the fidelity of contact guidance is cell type dependent, suggesting that ECM alignment is a permissive cue for contact guidance, but requires a cell to have certain properties to interpret that cue.
Global spatio-temporal patterns in human migration: a complex network perspective.
Davis, Kyle F; D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca
2013-01-01
Migration is a powerful adaptive strategy for humans to navigate hardship and pursue a better quality of life. As a universal vehicle facilitating exchanges of ideas, culture, money and goods, international migration is a major contributor to globalization. Consisting of countries linked by multiple connections of human movements, global migration constitutes a network. Despite the important role of human migration in connecting various communities in different parts of the world, the topology and behavior of the international migration network and its changes through time remain poorly understood. Here we show that the global human migration network became more interconnected during the latter half of the twentieth century and that migrant destination choice partly reflects colonial and postcolonial histories, language, religion, and distances. From 1960 to 2000 we found a steady increase in network transitivity (i.e. connectivity between nodes connected to the same node), a decrease in average path length and an upward shift in degree distribution, all of which strengthened the 'small-world' behavior of the migration network. Furthermore, we found that distinct groups of countries preferentially interact to form migration communities based largely on historical, cultural and economic factors.
Yang, Tingting; Li, Cuicui; Zhou, Chengchao; Jiang, Shan; Chu, Jie; Medina, Alexis; Rozelle, Scott
2016-08-05
Parental migration is most an important factor affecting children's behaviors. Few studies have addressed the association between parental migration and children's smoking behavior in China. This study aims to estimate the current smoking prevalence among children, evaluate the association of parental migration and the smoking behavior of children and identify factors associated with smoking behavior among left-behind children (LBC). A cross-sectional study was conducted in 6 cities in Anhui province during July and August, 2012. All participants were interviewed face-to-face using a standardized questionnaire. Only children 10 to 14 years old that live in rural villages for at least 6 months during the previous year were included in the study. A total of 1343 children met the sampling criteria and participated in the study. Of these, 56 % are LBC and 44 % live with both parents. The average rate of smoking is 3.4 %. The rate of smoking is statistically higher for LBC with both parents out (rate = 6.1 %; OR = 5.59, P < 0.001) than for children living with both parents (1.4 %). Similarly, the rate of LBC with father home only (rate = 5.0 %; OR = 5.60, P = 0.005) is also statistically higher than for children living with both parents when controlling other variables. Factors affecting the smoking behavior of LBC, include gender (i.e., boys), (perceived) school performance and primary caregiver. Parental migration is associated with a significant increase in smoking behavior among children. Intervention studies that target LBC would help to develop strategies to reduce smoking among rural children. Gender-specific strategies and anti-smoking education also appears to be needed to reduce tobacco use among rural LBC.
NASA Astrophysics Data System (ADS)
Sundal, A.; Skurtveit, E.; Midtkandal, I.; Hope, I.; Larsen, E.; Kristensen, R. S.; Braathen, A.
2016-12-01
The thick and laterally extensive Middle Jurassic Entrada Sandstone forms a regionally significant reservoir both in the subsurface and as outcrops in Utah. Individual layers of fluvial sandstone within otherwise fine-grained aeolian dunes and silty inter-dune deposits of the Entrada Earthy Member are of particular interest as CO2 reservoir analogs to study injectivity, reservoir-caprock interaction and bypass systems. Detailed mapping of facies and deformation structures, including petrographic studies and core plug tests, show significant rock property contrasts between layers of different sedimentary facies. Beds representing fluvial facies appear as white, medium-grained, well-sorted and cross-stratified sandstone, displaying high porosity, high micro-scale permeability, low tensile strength, and low seismic velocity. Subsequent to deposition, these beds were structurally deformed and contain a dense network of deformation bands, especially in proximity to faults and injectites. Over- and underlying low-permeability layers of inter-dune aeolian facies contain none or few deformation bands, display significantly higher rock strengths and high seismic velocities compared to the fluvial inter-beds. Permeable units between low-permeability layers are prone to become over-pressured during burial, and the establishment of fluid escape routes during regional tectonic events may have caused depressurization and selective collapse of weak layers. Through-cutting, vertical sand pipes display large clasts of stratified sandstone suspended in remobilized sand matrix, and may have served as permeable fluid conduits and pressure vents before becoming preferentially cemented and plugged. Bleached zones around faults and fractures throughout the succession indicate leakage and migration of reducing fluids. The fluvial beds are porous and would appear in wireline logs and seismic profiles as excellent reservoirs; whereas due to dense populations of deformation bands they may in fact display reduced horizontal and vertical permeability locally. Facies-related differences in geomechanical properties, pressure distribution and selective structural collapse have significant implications for injectivity and reservoir behavior.
Karenia brevis’ (Hansen and Moestrup) internal lipid, carotenoid, and toxin concentrations are influenced by its ability to use ambient light and nutrients for growth and reproduction. This project investigated changes of K. brevis toxicity, lipid class and carotenoid concentrat...
Do swimming animals mix the ocean?
NASA Astrophysics Data System (ADS)
Dabiri, John
2013-11-01
Perhaps. The oceans are teeming with billions of swimming organisms, from bacteria to blue whales. Current research efforts in biological oceanography typically focus on the impact of the marine environment on the organisms within. We ask the opposite question: can organisms in the ocean, especially those that migrate vertically every day and regionally every year, change the physical structure of the water column? The answer has potentially important implications for ecological models at local scale and climate modeling at global scales. This talk will introduce the still-controversial prospect of biogenic ocean mixing, beginning with evidence from measurements in the field. More recent laboratory-scale experiments, in which we create controlled vertical migrations of plankton aggregations using laser signaling, provide initial clues toward a mechanism to achieve efficient mixing at scales larger than the individual organisms. These results are compared and contrasted with theoretical models, and they highlight promising avenues for future research in this area. Funding from the Office of Naval Research and the National Science Foundation is gratefully acknowledged.
Milleron, N.
1963-03-12
An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)
Connecting single cell to collective cell behavior in a unified theoretical framework
NASA Astrophysics Data System (ADS)
George, Mishel; Bullo, Francesco; Campàs, Otger
Collective cell behavior is an essential part of tissue and organ morphogenesis during embryonic development, as well as of various disease processes, such as cancer. In contrast to many in vitro studies of collective cell migration, most cases of in vivo collective cell migration involve rather small groups of cells, with large sheets of migrating cells being less common. The vast majority of theoretical descriptions of collective cell behavior focus on large numbers of cells, but fail to accurately capture the dynamics of small groups of cells. Here we introduce a low-dimensional theoretical description that successfully captures single cell migration, cell collisions, collective dynamics in small groups of cells, and force propagation during sheet expansion, all within a common theoretical framework. Our description is derived from first principles and also includes key phenomenological aspects of cell migration that control the dynamics of traction forces. Among other results, we explain the counter-intuitive observations that pairs of cells repel each other upon collision while they behave in a coordinated manner within larger clusters.
Dechmann, Dina K. N.; Wikelski, Martin; Varga, Katarina; Yohannes, Elisabeth; Fiedler, Wolfgang; Safi, Kamran; Burkhard, Wolf-Dieter; O'Mara, M. Teague
2014-01-01
Long-distance migration is a rare phenomenon in European bats. Genetic analyses and banding studies show that females can cover distances of up to 1,600 km, whereas males are sedentary or migrate only short distances. The onset of this sex-biased migration is supposed to occur shortly after rousing from hibernation and when the females are already pregnant. We therefore predicted that the sexes are exposed to different energetic pressures in early spring, and this should be reflected in their behavior and physiology. We investigated this in one of the three Central European long-distance migrants, the common noctule (Nyctalus noctula) in Southern Germany recording the first individual partial migration tracks of this species. In contrast to our predictions, we found no difference between male and female home range size, activity, habitat use or diet. Males and females emerged from hibernation in similar body condition and mass increase rate was the same in males and females. We followed the first migration steps, up to 475 km, of radio-tagged individuals from an airplane. All females, as well as some of the males, migrated away from the wintering area in the same northeasterly direction. Sex differences in long-distance migratory behavior were confirmed through stable isotope analysis of hair, which showed greater variation in females than in males. We hypothesize that both sexes faced similarly good conditions after hibernation and fattened at maximum rates, thus showing no differences in their local behavior. Interesting results that warrant further investigation are the better initial condition of the females and the highly consistent direction of the first migratory step in this population as summering habitats of the common noctule occur at a broad range in Northern Europe. Only research focused on individual strategies will allow us to fully understand the migratory behavior of European bats. PMID:25517947
Righton, David; Westerberg, Håkan; Feunteun, Eric; Økland, Finn; Gargan, Patrick; Amilhat, Elsa; Metcalfe, Julian; Lobon-Cervia, Javier; Sjöberg, Niklas; Simon, Janek; Acou, Anthony; Vedor, Marisa; Walker, Alan; Trancart, Thomas; Brämick, Uwe; Aarestrup, Kim
2016-10-01
The spawning migration of the European eel ( Anguilla anguilla L.) to the Sargasso Sea is one of the greatest animal migrations. However, the duration and route of the migration remain uncertain. Using fishery data from 20 rivers across Europe, we show that most eels begin their oceanic migration between August and December. We used electronic tagging techniques to map the oceanic migration from eels released from four regions in Europe. Of 707 eels tagged, we received 206 data sets. Many migrations ended soon after release because of predation events, but we were able to reconstruct in detail the migration routes of >80 eels. The route extended from western mainland Europe to the Azores region, more than 5000 km toward the Sargasso Sea. All eels exhibited diel vertical migrations, moving from deeper water during the day into shallower water at night. The range of migration speeds was 3 to 47 km day -1 . Using data from larval surveys in the Sargasso Sea, we show that spawning likely begins in December and peaks in February. Synthesizing these results, we show that the timing of autumn escapement and the rate of migration are inconsistent with the century-long held assumption that eels spawn as a single reproductive cohort in the springtime following their escapement. Instead, we suggest that European eels adopt a mixed migratory strategy, with some individuals able to achieve a rapid migration, whereas others arrive only in time for the following spawning season. Our results have consequences for eel management.
Campana, Steven E.; Dorey, Anna; Fowler, Mark; Joyce, Warren; Wang, Zeliang; Yashayaev, Igor
2011-01-01
The blue shark Prionace glauca is the most abundant large pelagic shark in the Atlantic Ocean. Although recaptures of tagged sharks have shown that the species is highly migratory, migration pathways towards the overwintering grounds remain poorly understood. We used archival satellite pop-up tags to track 23 blue sharks over a mean period of 88 days as they departed the coastal waters of North America in the autumn. Within 1–2 days of entering the Gulf Stream (median date of 21 Oct), all sharks initiated a striking diel vertical migration, taking them from a mean nighttime depth of 74 m to a mean depth of 412 m during the day as they appeared to pursue vertically migrating squid and fish prey. Although functionally blind at depth, calculations suggest that there would be a ∼2.5-fold thermoregulatory advantage to swimming and feeding in the markedly cooler deep waters, even if there was any reduced foraging success associated with the extreme depth. Noting that the Gulf Stream current speeds are reduced at depth, we used a detailed circulation model of the North Atlantic to examine the influence of the diving behaviour on the advection experienced by the sharks. However, there was no indication that the shark diving resulted in a significant modification of their net migratory pathway. The relative abundance of deep-diving sharks, swordfish, and sperm whales in the Gulf Stream and adjacent waters suggests that it may serve as a key winter feeding ground for large pelagic predators in the North Atlantic. PMID:21373198
Migratory behavior of eastern North Pacific gray whales tracked using a hydrophone array
Helble, Tyler A.; D’Spain, Gerald L.; Weller, David W.; Wiggins, Sean M.; Hildebrand, John A.
2017-01-01
Eastern North Pacific gray whales make one of the longest annual migrations of any mammal, traveling from their summer feeding areas in the Bering and Chukchi Seas to their wintering areas in the lagoons of Baja California, Mexico. Although a significant body of knowledge on gray whale biology and behavior exists, little is known about their vocal behavior while migrating. In this study, we used a sparse hydrophone array deployed offshore of central California to investigate how gray whales behave and use sound while migrating. We detected, localized, and tracked whales for one full migration season, a first for gray whales. We verified and localized 10,644 gray whale M3 calls and grouped them into 280 tracks. Results confirm that gray whales are acoustically active while migrating and their swimming and acoustic behavior changes on daily and seasonal time scales. The seasonal timing of the calls verifies the gray whale migration timing determined using other methods such as counts conducted by visual observers. The total number of calls and the percentage of calls that were part of a track changed significantly over both seasonal and daily time scales. An average calling rate of 5.7 calls/whale/day was observed, which is significantly greater than previously reported migration calling rates. We measured a mean speed of 1.6 m/s and quantified heading, direction, and water depth where tracks were located. Mean speed and water depth remained constant between night and day, but these quantities had greater variation at night. Gray whales produce M3 calls with a root mean square source level of 156.9 dB re 1 μPa at 1 m. Quantities describing call characteristics were variable and dependent on site-specific propagation characteristics. PMID:29084266
Migratory behavior of eastern North Pacific gray whales tracked using a hydrophone array.
Guazzo, Regina A; Helble, Tyler A; D'Spain, Gerald L; Weller, David W; Wiggins, Sean M; Hildebrand, John A
2017-01-01
Eastern North Pacific gray whales make one of the longest annual migrations of any mammal, traveling from their summer feeding areas in the Bering and Chukchi Seas to their wintering areas in the lagoons of Baja California, Mexico. Although a significant body of knowledge on gray whale biology and behavior exists, little is known about their vocal behavior while migrating. In this study, we used a sparse hydrophone array deployed offshore of central California to investigate how gray whales behave and use sound while migrating. We detected, localized, and tracked whales for one full migration season, a first for gray whales. We verified and localized 10,644 gray whale M3 calls and grouped them into 280 tracks. Results confirm that gray whales are acoustically active while migrating and their swimming and acoustic behavior changes on daily and seasonal time scales. The seasonal timing of the calls verifies the gray whale migration timing determined using other methods such as counts conducted by visual observers. The total number of calls and the percentage of calls that were part of a track changed significantly over both seasonal and daily time scales. An average calling rate of 5.7 calls/whale/day was observed, which is significantly greater than previously reported migration calling rates. We measured a mean speed of 1.6 m/s and quantified heading, direction, and water depth where tracks were located. Mean speed and water depth remained constant between night and day, but these quantities had greater variation at night. Gray whales produce M3 calls with a root mean square source level of 156.9 dB re 1 μPa at 1 m. Quantities describing call characteristics were variable and dependent on site-specific propagation characteristics.
A Pseudo-Vertical Equilibrium Model for Slow Gravity Drainage Dynamics
NASA Astrophysics Data System (ADS)
Becker, Beatrix; Guo, Bo; Bandilla, Karl; Celia, Michael A.; Flemisch, Bernd; Helmig, Rainer
2017-12-01
Vertical equilibrium (VE) models are computationally efficient and have been widely used for modeling fluid migration in the subsurface. However, they rely on the assumption of instant gravity segregation of the two fluid phases which may not be valid especially for systems that have very slow drainage at low wetting phase saturations. In these cases, the time scale for the wetting phase to reach vertical equilibrium can be several orders of magnitude larger than the time scale of interest, rendering conventional VE models unsuitable. Here we present a pseudo-VE model that relaxes the assumption of instant segregation of the two fluid phases by applying a pseudo-residual saturation inside the plume of the injected fluid that declines over time due to slow vertical drainage. This pseudo-VE model is cast in a multiscale framework for vertically integrated models with the vertical drainage solved as a fine-scale problem. Two types of fine-scale models are developed for the vertical drainage, which lead to two pseudo-VE models. Comparisons with a conventional VE model and a full multidimensional model show that the pseudo-VE models have much wider applicability than the conventional VE model while maintaining the computational benefit of the conventional VE model.
This case study defines well integrity by the prevention of vertical migration of fluids to protect drinking water resources. A generic shale development well is presented, including design, construction, operational phase, and its plug and abandonment.
DOT National Transportation Integrated Search
2014-06-01
Rivers and streams evolve all the time. As a result, no stream channel is absolutely stable. Channels evolve at various speeds both vertically (degradation/aggradation) and horizontally (meander : migration). They also respond to man-made changes ran...
Clemens, Benjamin J.; Wyss, Lance A.; McCoun, Rebecca; Courter, Ian; Schwabe, Lawrence; Peery, Christopher; Schreck, Carl B.; Spice, Erin K.; Docker, Margaret F.
2017-01-01
Studies using neutral loci suggest that Pacific lamprey, Entosphenus tridentatus, lack strong spatial genetic population structure. However, it is unknown whether temporal genetic population structure exists. We tested whether adult Pacific lamprey: (1) show temporal genetic population structure; and (2) migrate different distances between years. We non-lethally sampled lamprey for DNA in 2009 and 2010 and used eight microsatellite loci to test for genetic population structure. We used telemetry to record the migration behaviors of these fish. Lamprey were assignable to three moderately differentiated genetic clusters (FST = 0.16–0.24 for all pairwise comparisons): one cluster was composed of individuals from 2009, and the other two contained individuals from 2010. The FST value between years was 0.13 and between genetic clusters within 2010 was 0.20. A total of 372 (72.5%) fish were detected multiple times during their migrations. Most fish (69.9%) remained in the mainstem Willamette River; the remaining 30.1% migrated into tributaries. Eighty-two lamprey exhibited multiple back-and-forth movements among tributaries and the mainstem, which may indicate searching behaviors. All migration distances were significantly greater in 2010, when the amplitude of river discharge was greater. Our data suggest genetic structuring between and within years that may reflect different cohorts.
NASA Astrophysics Data System (ADS)
Liu, H.; Richmond, A. D.
2013-12-01
In this study we quantify the contribution of individual large-scale waves to ionospheric electrodynamics, and examine the dependence of the ionospheric perturbations on solar activity. We focus on migrating diurnal tide (DW1) plus mean winds, migrating semidiurnal tide (SW2), quasi-stationary planetary wave 1 (QSPW1), and nonmigrating semidiurnal westward wave 1 (SW1) under northern winter conditions, when QSPW1 and SW1 are climatologically strong. From TIME-GCM simulations under solar minimum conditions, we calculate equatorial vertical ExB drifts due to mean winds and DW1, SW2, SW1 and QSPW1. In particular, wind components of both SW2 and SW1 become large at mid to high latitudes in the E-region, and kernel functions obtained from numerical experiments reveal that they can significantly affect the equatorial ion drift, likely through modulating the E-region wind dynamo. The most evident changes of total ionospheric vertical drift when solar activity is increased are seen around dawn and dusk, reflecting the more dominant role of large F-region Pedersen conductivity and of the F-region dynamo under high solar activity. Therefore, the lower atmosphere driving of the ionospheric variability is more evident under solar minimum conditions, not only because variability is more identifiable in a quieter background, but also because the E-region wind dynamo is more significant. These numerical experiments also demonstrate that the amplitudes, phases and latitudinal and vertical structures of large-scale waves are important in quantifying the ionospheric responses.
Zhang, Xiao; Rhoads, Natalie; Rangel, Maria Gudelia; Hovell, Melbourne F; Magis-Rodriguez, Carlos; Sipan, Carol L; Gonzalez-Fagoaga, J Eduardo; Martínez-Donate, Ana P
2017-03-01
HIV risk among Mexican migrants varies across migration phases (pre-departure, transit, destination, interception, and return), but there is limited knowledge about specific sexual behaviors, characteristics of sexual partners, and sexual contexts at different migration stages. To fill the gap, we used data from a cross-sectional population-based survey conducted in Tijuana, Mexico. Information on migration phase and last sexual encounter was collected from 1219 male migrants. Our findings suggest that compared to pre-departure migrants, repeat migrants returning from communities of origin were more likely to have sex with male partners, use substances before sex, and not use condoms; migrants in the transit phase in the Mexican border were more likely to have sex with casual partners and sex workers; and migrants in the interception phase were more likely to engage in anal sex and use substances before sex. Sexual behaviors, partners, and contexts vary significantly among migrants at different migration phases. Tailored HIV prevention programs targeting Mexican migrants need to be developed and implemented at all migration phases.
Zhang, Xiao; Rhoads, Natalie; Rangel, Maria Gudelia; Hovell, Melbourne F.; Magis-Rodriguez, Carlos; Sipan, Carol L.; Gonzalez-Fagoaga, J. Eduardo; Martínez-Donate, Ana P.
2018-01-01
HIV risk among Mexican migrants varies across migration phases (pre-departure, transit, destination, interception, and return), but there is limited knowledge about specific sexual behaviors, characteristics of sexual partners, and sexual contexts at different migration stages. To fill the gap, we used data from a cross-sectional population-based survey conducted in Tijuana, Mexico. Information on migration phase and last sexual encounter was collected from 1,219 male migrants. Our findings suggested that compared to pre-departure migrants, repeat migrants returning from communities of origin were more likely to have sex with male partners, use substances before sex, and not use condoms; migrants with a recent stay in the Mexican border were more likely to have sex with casual partners and sex workers; and migrants in the interception phase were more likely to engage in anal sex and use substances before sex. Sexual behaviors, partners, and contexts vary significantly among migrants at different migration phases. Tailored HIV prevention programs targeting Mexican migrants need to be developed and implemented at all migration phases. PMID:27888370
Spatial distribution of filament elasticity determines the migratory behaviors of a cell
Harn, Hans I-Chen; Hsu, Chao-Kai; Wang, Yang-Kao; Huang, Yi-Wei; Chiu, Wen-Tai; Lin, Hsi-Hui; Cheng, Chao-Min; Tang, Ming-Jer
2016-01-01
ABSTRACT Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease. PMID:26919488
Evolution of cooperation driven by social-welfare-based migration
NASA Astrophysics Data System (ADS)
Li, Yan; Ye, Hang; Zhang, Hong
2016-03-01
Individuals' migration behavior may play a significant role in the evolution of cooperation. In reality, individuals' migration behavior may depend on their perceptions of social welfare. To study the relationship between social-welfare-based migration and the evolution of cooperation, we consider an evolutionary prisoner's dilemma game (PDG) in which an individual's migration depends on social welfare but not on the individual's own payoff. By introducing three important social welfare functions (SWFs) that are commonly studied in social science, we find that social-welfare-based migration can promote cooperation under a wide range of parameter values. In addition, these three SWFs have different effects on cooperation, especially through the different spatial patterns formed by migration. Because the relative efficiency of the three SWFs will change if the parameter values are changed, we cannot determine which SWF is optimal for supporting cooperation. We also show that memory capacity, which is needed to evaluate individual welfare, may affect cooperation levels in opposite directions under different SWFs. Our work should be helpful for understanding the evolution of human cooperation and bridging the chasm between studies of social preferences and studies of social cooperation.
Partial diel migration: A facultative migration underpinned by long-term inter-individual variation.
Harrison, Philip M; Gutowsky, Lee F G; Martins, Eduardo G; Patterson, David A; Cooke, Steven J; Power, Michael
2017-09-01
The variations in migration that comprise partial diel migrations, putatively occur entirely as a consequence of behavioural flexibility. However, seasonal partial migrations are increasingly recognised to be mediated by a combination of reversible plasticity in response to environmental variation and individual variation due to genetic and environmental effects. Here, we test the hypothesis that while partial diel migration heterogeneity occurs primarily due to short-term within-individual flexibility in behaviour, long-term individual differences in migratory behaviour also underpin this migration variation. Specifically, we use a hierarchical behavioural reaction norm approach to partition within- and among-individual variation in depth use and diel plasticity in depth use, across short- and long-term time-scales, in a group of 47 burbot (Lota lota) tagged with depth-sensing acoustic telemetry transmitters. We found that within-individual variation at the among-dates-within-seasons and among-seasons scale, explained the dominant proportion of phenotypic variation. However, individuals also repeatedly differed in their expression of migration behaviour over the 2 year study duration. These results reveal that diel migration variation occurs primarily due to short-term within-individual flexibility in depth use and diel migration behaviour. However, repeatable individual differences also played a key role in mediating partial diel migration. These findings represent a significant advancement of our understanding of the mechanisms generating the important, yet poorly understood phenomena of partial diel migration. Moreover, given the pervasive occurrence of diel migrations across aquatic taxa, these findings indicate that individual differences have an important, yet previously unacknowledged role in structuring the temporal and vertical dynamics of aquatic ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Integrative Mechanisms of Oriented Neuronal Migration in the Developing Brain
Evsyukova, Irina; Plestant, Charlotte; Anton, E.S.
2014-01-01
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization. PMID:23937349
Collective behavior of brain tumor cells: The role of hypoxia
NASA Astrophysics Data System (ADS)
Khain, Evgeniy; Katakowski, Mark; Hopkins, Scott; Szalad, Alexandra; Zheng, Xuguang; Jiang, Feng; Chopp, Michael
2011-03-01
We consider emergent collective behavior of a multicellular biological system. Specifically, we investigate the role of hypoxia (lack of oxygen) in migration of brain tumor cells. We performed two series of cell migration experiments. In the first set of experiments, cell migration away from a tumor spheroid was investigated. The second set of experiments was performed in a typical wound-healing geometry: Cells were placed on a substrate, a scratch was made, and cell migration into the gap was investigated. Experiments show a surprising result: Cells under normal and hypoxic conditions have migrated the same distance in the “spheroid” experiment, while in the “scratch” experiment cells under normal conditions migrated much faster than under hypoxic conditions. To explain this paradox, we formulate a discrete stochastic model for cell dynamics. The theoretical model explains our experimental observations and suggests that hypoxia decreases both the motility of cells and the strength of cell-cell adhesion. The theoretical predictions were further verified in independent experiments.
Bauer, Klaus; Ryberg, Trond; Fuis, Gary S.; Lüth, Stefan
2013-01-01
Near‐vertical faults can be imaged using reflected refractions identified in controlled‐source seismic data. Often theses phases are observed on a few neighboring shot or receiver gathers, resulting in a low‐fold data set. Imaging can be carried out with Kirchhoff prestack depth migration in which migration noise is suppressed by constructive stacking of large amounts of multifold data. Fresnel volume migration can be used for low‐fold data without severe migration noise, as the smearing along isochrones is limited to the first Fresnel zone around the reflection point. We developed a modified Fresnel volume migration technique to enhance imaging of steep faults and to suppress noise and undesired coherent phases. The modifications include target‐oriented filters to separate reflected refractions from steep‐dipping faults and reflections with hyperbolic moveout. Undesired phases like multiple reflections, mode conversions, direct P and S waves, and surface waves are suppressed by these filters. As an alternative approach, we developed a new prestack line‐drawing migration method, which can be considered as a proxy to an infinite frequency approximation of the Fresnel volume migration. The line‐drawing migration is not considering waveform information but requires significantly shorter computational time. Target‐oriented filters were extended by dip filters in the line‐drawing migration method. The migration methods were tested with synthetic data and applied to real data from the Waltham Canyon fault, California. The two techniques are applied best in combination, to design filters and to generate complementary images of steep faults.
Neuron-like differentiation of mesenchymal stem cells on silicon nanowires
NASA Astrophysics Data System (ADS)
Kim, Hyunju; Kim, Ilsoo; Choi, Heon-Jin; Kim, So Yeon; Yang, Eun Gyeong
2015-10-01
The behavior of mammalian cells on vertical nanowire (NW) arrays, including cell spreading and the dynamic distribution of focal adhesions and cytoskeletal proteins, has been intensively studied to extend the implications for cellular manipulations in vitro. Prompted by the result that cells on silicon (Si) NWs showed morphological changes and reduced migration rates, we have explored the transition of mesenchymal stem cells into a neuronal lineage by using SiNWs with varying lengths. When human mesenchymal stem cells (hMSCs) were cultured on the longest SiNWs for 3 days, most of the cells exhibited elongated shapes with neurite-like extensions and dot-like focal adhesions that were prominently observed along with actin filaments. Under these circumstances, the cell motility analyzed by live cell imaging was found to decrease due to the presence of SiNWs. In addition, the slowed growth rate, as well as the reduced population of S phase cells, suggested that the cell cycle was likely arrested in response to the differentiation process. Furthermore, we measured the mRNA levels of several lineage-specific markers to confirm that the SiNWs actually induced neuron-like differentiation of the hMSCs while hampering their osteogenic differentiation. Taken together, our results implied that SiNWs were capable of inducing active reorganization of cellular behaviors, collectively guiding the fate of hMSCs into the neural lineage even in the absence of any inducing reagent.The behavior of mammalian cells on vertical nanowire (NW) arrays, including cell spreading and the dynamic distribution of focal adhesions and cytoskeletal proteins, has been intensively studied to extend the implications for cellular manipulations in vitro. Prompted by the result that cells on silicon (Si) NWs showed morphological changes and reduced migration rates, we have explored the transition of mesenchymal stem cells into a neuronal lineage by using SiNWs with varying lengths. When human mesenchymal stem cells (hMSCs) were cultured on the longest SiNWs for 3 days, most of the cells exhibited elongated shapes with neurite-like extensions and dot-like focal adhesions that were prominently observed along with actin filaments. Under these circumstances, the cell motility analyzed by live cell imaging was found to decrease due to the presence of SiNWs. In addition, the slowed growth rate, as well as the reduced population of S phase cells, suggested that the cell cycle was likely arrested in response to the differentiation process. Furthermore, we measured the mRNA levels of several lineage-specific markers to confirm that the SiNWs actually induced neuron-like differentiation of the hMSCs while hampering their osteogenic differentiation. Taken together, our results implied that SiNWs were capable of inducing active reorganization of cellular behaviors, collectively guiding the fate of hMSCs into the neural lineage even in the absence of any inducing reagent. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05787f
NASA Astrophysics Data System (ADS)
Zhang, Shuoting; Duan, Li; Kang, Qi
2018-05-01
The migration and interaction of axisymmetric two drops in a vertical temperature gradient is investigated experimentally on the ground. A silicon oil is used as the continuous phase, and a water-ethanol mixture is used as the drop phase, respectively. The migration and interaction of two drops, under the combined effects of buoyancy and thermocapillary, is recorded by a digital holographic interferometry measurement in the experiment to analyse the velocities and temperature distribution of the drops. As a result, when two drops migrate together, the drop affects the other drop by perturbing the temperature field around itself. For the leading drop, the velocity is faster than the one of the isolated drop, and the maximum of the interfacial temperature distribution is larger than the one of the isolated drop. For the trailing drop, the velocity is slower than the one of the isolated drop, and the maximum of the interfacial temperature distribution is less than the one of the isolated drop. The influence of the dimensionless initial distance between the drop centres to the drop migration is discussed in detail in this study.
NASA Astrophysics Data System (ADS)
Avouac, J.; Ayoub, F.; Bridges, N. T.; Leprince, S.; Lucas, A.
2012-12-01
The High Resolution Imaging Science Experiment (HiRISE) in orbit around Mars provides images with a nominal ground resolution of 25cm. Its agility allows imaging a same scene with stereo view angles thus allowing for for Digital elevation Model (DEM) extraction through stereo-photogrammetry. This dataset thus offers an exceptional opportunity to measure the topography with high precision and track its eventual evolution with time. In this presentation, we will discuss how multi-temporal acquisitions of HiRISE images of the Nili Patera dune field allow tracking ripples migration, assess sand fluxes and dunes activity. We investigated in particular the use of multi-temporal DEMs to monitor the migration and morphologic evolution of the dune field. We present here the methodology used and the various challenges that must be overcome to best exploit the multi-temporal images. Two DEMs were extracted from two stereo images pairs acquired 390 earth days apart in 2010-2011 using SOCET SET photogrammetry software, with a 1m post-spacing and a vertical accuracy of few tens of centimeters. Prior to comparison the DEMs registration, which was not precise enough out of SOCET-SET, was improved by wrapping the second DEM onto the first one using the bedrock only as a support for registration. The vertical registration residual was estimated at around 40cm RMSE and is mostly due to CCD misalignment and uncorrected spacecraft attitudes. Changes of elevation over time are usually determined from DEMs differentiation: provided that DEMs are perfectly registered and sampled on the same grid, this approach readily quantifies erosion and deposition processes. As the dunes have moved horizontally, they are not physically aligned anymore in the DEMs, and their morphologic evolution cannot be recovered easily from differentiating the DEMs. In this particular setting the topographic evolution is best recovered from correlation of the DEMs. We measure that the fastest dunes have migrated by up to 1meter per Earth year as a result of lee front deposition and stoss slope erosion. DEMs differentiation, after correction for horizontal migration, provides and additional information on dune morphology evolution. Some dunes show a vertical growth over the 390 days spanning the 2 DEMs, but we cannot exclude a bias due to the acquisition parameters. Indeed, the images of the two stereo pairs were acquired 22 and 5 days apart, respectively. During that time, the ripples laying on the dune surface have probably migrated. As the DEMs extraction is based on feature tracking and parallax, this difference in DEMs elevation may be only, or in part, due to the ripple migration between the acquisition times that biased the actual dune elevations.
Sub-slab vs. Near-slab Soil Vapor Profiles at a Chlorinated Solvent Site
A critical issue in assessing the vapor intrusion pathway is the distribution and migration of VOCs from the subsurface source to the near surface environment. Therefore, EPA/ORD funded a research project with the primary goal of comparing vertical profiles of soil gas concentrat...
Boundary shear stress along rigid trapezoidal bends
Christopher I. Thornton; Kyung-Seop Sin; Paul Sclafani; Steven R. Abt
2012-01-01
The migration of alluvial channels through the geologic landform is an outcome of the natural erosive processes. Mankind continually attempts to stabilize channel meandering processes, both vertically and horizontally, to reduce sediment discharge, provide boundary definition, and enable economic development along the river's edge. A critical component in the...
Bird migration patterns in the arid southwest-Final report
Ruth, Janet M.; Felix, Rodney K.; Dieh, Robert H.
2010-01-01
To ensure full life-cycle conservation, we need to understand migrant behavior en route and how migrating species use stopover and migration aerohabitats. In the Southwest, birds traverse arid and mountainous landscapes in migration. Migrants are known to use riparian stopover habitats; we know less about how migrant density varies across the Southwest seasonally and annually, and how migrants use other habitat types during migratory stopover. Furthermore, we lack information about migrant flight altitudes, speeds, and directions of travel, and how these patterns vary seasonally and annually across the Southwest. Using weather surveillance radar data, we identified targets likely dominated by nocturnally migrating birds and determined their flight altitudes, speeds, directions over ground, and variations in abundance. Migrating or foraging bats likely are present across the region in some of these data, particularly in central Texas. We found that migrants flew at significantly lower altitudes and significantly higher speeds in spring than in fall. In all seasons migrants maintained seasonally appropriate directions of movement. We detected significant differences in vertical structure of migrant densities that varied both geographically within seasons and seasonally within sites. We also found that in fall there was a greater and more variable passage of migrants through the central part of the borderlands (New Mexico and west Texas); in spring there was some suggestion of greater and more variable passage of migrants in the eastern borderlands (central and south Texas). Such patterns are consistent with the existence of at least two migration systems through western North America and the use of different migration routes in spring and fall for at least some species. Using radar data and satellite land cover data, we determined the habitats with which migrants are associated during migration stopover. There were significant differences in bird densities among habitat types at all sites in at least one season. Upland forest habitat in parts of Arizona and New Mexico supported high migrant densities, especially in fall. Developed habitats in areas with little upland forest habitat also supported high migrant densities. Scrub/shrub and grassland habitats supported low to intermediate migrant densities, but because these habitat types dominate the region, they may support large numbers of migratory birds. This may be especially true for species that do not use forested habitats during migration. Target identity remains a challenge for radar-based studies. Presence of bats in the data complicates interpretation of some observations, particularly from central Texas. Based on our results it is simplistic to: (1) consider the arid west as a largely inhospitable landscape in which there are only relatively small oases of habitat that provide the resources needed by all migrants; (2) think of western riparian and upland forest habitat as supporting the majority of migrants in all cases; or (3) consider a particular habitat type unimportant migrant stopover habitat based solely on migrant densities.
Mao, Guannan; Wang, Yingying; Hammes, Frederik
2018-02-01
Polymeric materials are widely used in drinking water distribution systems. These materials could release organic carbon that supports bacterial growth. To date, the available migration assays for polymeric materials have not included the potential influence of chlorination on organic carbon migration behavior. Hence, we established a migration and growth potential protocol specifically for analysis of carbon migration from materials in contact with chlorinated drinking water. Four different materials were tested, including ethylene propylene dienemethylene (EPDM), poly-ethylene (PEX b and PEX c) and poly-butylene (PB). Chlorine consumption rates decreased gradually over time for EPDM, PEXc and PB. In contrast, no free chlorine was detected for PEXb at any time during the 7 migration cycles. Total organic carbon (TOC) and assimilable organic carbon (AOC) was evaluated in both chlorinated and non-chlorinated migrations. TOC concentrations for EPDM and PEXb in chlorinated migrations were significantly higher than non-chlorinated migrations. The AOC results showed pronounced differences among tested materials. AOC concentrations from chlorinated migration waters of EPDM and PB were higher compared to non-chlorinated migrations, whereas the opposite trend was observed for PEXb and PEXc. There was also a considerable difference between tested materials with regards to bacterial growth potential. The results revealed that the materials exposed to chlorine-influenced migration still exhibited a strong biofilm formation potential. The overall results suggested that the choice in material would make a considerable difference in chlorine consumption and carbon migration behavior in drinking water distribution systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Rolli, Claudio G.; Seufferlein, Thomas; Kemkemer, Ralf; Spatz, Joachim P.
2010-01-01
Cell migration is a fundamental feature of the interaction of cells with their surrounding. The cell's stiffness and ability to deform itself are two major characteristics that rule migration behavior especially in three-dimensional tissue. We simulate this situation making use of a micro-fabricated migration chip to test the active invasive behavior of pancreatic cancer cells (Panc-1) into narrow channels. At a channel width of 7 µm cell migration through the channels was significantly impeded due to size exclusion. A striking increase in cell invasiveness was observed once the cells were treated with the bioactive lipid sphingosylphosphorylcholine (SPC) that leads to a reorganization of the cell's keratin network, an enhancement of the cell's deformability, and also an increase in the cell's migration speed on flat surfaces. The migration speed of the highly deformed cells inside the channels was three times higher than of cells on flat substrates but was not affected upon SPC treatment. Cells inside the channels migrated predominantly by smooth sliding while maintaining constant cell length. In contrast, cells on adhesion mediating narrow lines moved in a stepwise way, characterized by fluctuations in cell length. Taken together, with our migration chip we demonstrate that the dimensionality of the environment strongly affects the migration phenotype and we suggest that the spatial cytoskeletal keratin organization correlates with the tumor cell's invasive potential. PMID:20090950
Systematic Analysis of the Transcriptional Switch Inducing Migration of Border Cells
Borghese, Lodovica; Fletcher, Georgina; Mathieu, Juliette; Atzberger, Ann; Eades, William C.; Cagan, Ross L.; Rørth, Pernille
2010-01-01
Summary Cell migration within a natural context is tightly controlled, often by specific transcription factors. However, the switch from stationary to migratory behavior is poorly understood. Border cells perform a spatially and temporally controlled invasive migration during Drosophila oogenesis. Slbo, a C/EBP family transcriptional activator, is required for them to become migratory. We purified wild-type and slbo mutant border cells as well as nonmigratory follicle cells and performed comparative whole-genome expression profiling, followed by functional tests of the contributions of identified targets to migration. About 300 genes were significantly upregulated in border cells, many dependent on Slbo. Among these, the microtubule regulator Stathmin was strongly upregulated and was required for normal migration. Actin cytoskeleton regulators were also induced, including, surprisingly, a large cluster of “muscle-specific” genes. We conclude that Slbo induces multiple cytoskeletal effectors, and that each contributes to the behavioral changes in border cells. PMID:16580994
Collective Behavior of Brain Tumor Cells: the Role of Hypoxia
NASA Astrophysics Data System (ADS)
Khain, Evgeniy; Katakowski, Mark; Hopkins, Scott; Szalad, Alexandra; Zheng, Xuguang; Jiang, Feng; Chopp, Michael
2013-03-01
We consider emergent collective behavior of a multicellular biological system. Specifically we investigate the role of hypoxia (lack of oxygen) in migration of brain tumor cells. We performed two series of cell migration experiments. The first set of experiments was performed in a typical wound healing geometry: cells were placed on a substrate, and a scratch was done. In the second set of experiments, cell migration away from a tumor spheroid was investigated. Experiments show a controversy: cells under normal and hypoxic conditions have migrated the same distance in the ``spheroid'' experiment, while in the ``scratch'' experiment cells under normal conditions migrated much faster than under hypoxic conditions. To explain this paradox, we formulate a discrete stochastic model for cell dynamics. The theoretical model explains our experimental observations and suggests that hypoxia decreases both the motility of cells and the strength of cell-cell adhesion. The theoretical predictions were further verified in independent experiments.
Lateral and vertical distribution of downstream migrating juvenile sea lamprey
Sotola, V. Alex; Miehls, Scott M.; Simard, Lee G.; Marsden, J. Ellen
2018-01-01
Sea lamprey is considered an invasive and nuisance species in the Laurentian Great Lakes, Lake Champlain, and the Finger Lakes of New York and is a major focus of control efforts. Currently, management practices focus on limiting the area of infestation using barriers to block migratory adults, and lampricides to kill ammocoetes in infested tributaries. No control efforts currently target the downstream-migrating post-metamorphic life stage which could provide another management opportunity. In order to apply control methods to this life stage, a better understanding of their downstream movement patterns is needed. To quantify spatial distribution of downstream migrants, we deployed fyke and drift nets laterally and vertically across the stream channel in two tributaries of Lake Champlain. Sea lamprey was not randomly distributed across the stream width and lateral distribution showed a significant association with discharge. Results indicated that juvenile sea lamprey is most likely to be present in the thalweg and at midwater depths of the stream channel. Further, a majority of the catch occurred during high flow events, suggesting an increase in downstream movement activity when water levels are higher than base flow. Discharge and flow are strong predictors of the distribution of out-migrating sea lamprey, thus managers will need to either target capture efforts in high discharge areas of streams or develop means to guide sea lamprey away from these areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Bin; Li, Huiying; Du, Xiaoming
2016-02-01
During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significantmore » positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.« less
Gender, migration, risky sex, and HIV infection in China.
Yang, Xiushi; Xia, Guomei
2006-12-01
Gender differences in sexual behavior as a consequence of migration have been ignored in both the migration and the HIV literature in China. This study examines differences among temporary migrants in terms of sexual behavior and factors that make female migrants more vulnerable to the risk of acquiring HIV infection. Results suggest that the interplay of migration and gender renders female temporary migrants particularly vulnerable to engaging in casual and commercial sex. Although male temporary migrants do not differ from male nonmigrants in prevalence of casual and commercial sex, the prevalence rates of casual and commercial sex for female temporary migrants are found to be 14 and 80 times those for female nonmigrants, respectively. Female temporary migrants' higher unemployment rate and concentration in the service and entertainment sectors are keys to understanding differences in the prevalence of casual and commercial sex among temporary migrants according to sex. Policy measures to promote female temporary migrants' equal access to employment are urgently needed to improve their economic well-being and to reduce their risky sexual behavior.
NASA Astrophysics Data System (ADS)
Livers, A. J.; Burnison, S. A.; Salako, O.; Barajas-Olalde, C.; Hamling, J. A.; Gorecki, C. D.
2016-12-01
The feasibility of monitoring potential carbon dioxide (CO2) migration in a reservoir using a sparse seismic array is being evaluated by the Energy & Environmental Research Center (EERC) at the Denbury Onshore LLC-operated Bell Creek oil field in Montana, which is undergoing commercial CO2 enhanced oil recovery (EOR). This new method may provide an economical means of continuously monitoring the CO2 plume edge and the CO2 reservoir boundaries and/or to interpret vertical or lateral out-of-reservoir CO2 migration. A 96-station scalable, automated, semipermanent seismic array (SASSA) was deployed in October 2015 to detect and track CO2 plume migration not by imaging, but by monitoring discrete source-receiver midpoints. Midpoints were strategically located within and around four injector-producer patterns covering approximately one square mile. Three-dimensional (3-D) geophysical ray tracing was used to determine surface receiver locations. Receivers used were FairfieldNodal Zland three-component, autonomous, battery-powered nodes. A GISCO ESS850 accelerated weight drop source located in a secure structure was remotely fired on a weekly basis for one calendar year, including a two-month period prior to initiation of CO2 injection to establish a baseline. Fifty shots were fired one day each week to facilitate increased signal-to-noise through novel receiver domain processing and vertical stacking. Receiver domain processing allowed for individualization of processing parameters to maximize signal enhancement and noise attenuation. Reflection events in the processed SASSA data correlate well to 3-D surface survey data collected in the field. Preliminary time-lapse data results for several individual SASSA receivers show a phase shift in the reflection events below the reservoir after injection, suggesting possible migration of the CO2 in the reservoir to the corresponding midpoint locations. This work is supported by the U.S. Department of Energy National Energy Technology Laboratory under Award No. FE0012665.
The Comparison Study of gas source between two hydrate expeditions in ShenHu area, SCS
NASA Astrophysics Data System (ADS)
Cong, X. R.
2016-12-01
Two gas hydrate expeditions (GMGS 01&03) were conducted in the Pearl River Mouth Basin, SCS, which were organized by Guangzhou Marine Geological Survey in 2007 and 2015, respectively. Compared with the drilling results of "mixed bio-thermogenic gas and generally dominated by biogenic gas" in 2007, hydrocarbon component measurements revealed a higher content of ethane and propane in 2015 drilling, providing direct evidence that deep thermogenic gas was the source for shallow hydrate formation. According to the geochemical analyses of the results obtained from the industrial boreholes in Baiyun sag, the deep hydrocarbon gas obviously leaked from the reservoir as escape caused by Dongsha movement in the late Miocene, as a result thermogenic gas from Wenchang, Enping and Zhuhai hydrocarbon source rocks migrated to late Miocene shallow strata through faults, diapirs and gas chimney vertically migration. In this paper we report the differences in fluid migration channel types and discuss their effect in fluid vertical migration efficiency in the two Shenhu hydrate drilling areas. For the drilling area in 2007,when the limited deep thermogenic gas experienced long distance migration process from bottom to up along inefficient energy channel, the gas composition might have changed and the carbon isotope fractionation might have happened, which were reflected in the results of higher C1/C2 ratios and lighter carbon isotope in gas hydrate bearing sediments. As a result the gas is with more "biogenic gas" features. It means thermogenic gases in the deep to contributed the formation of shallow gas hydrate indirectly in 2007 Shenhu drill area. On another hand, the gases were transported to the shallow sediment layers efficiently, where gas hydrate formed, through faults and fractures from deep hydrocarbon reservoirs, and as the result they experienced less changes in both components and isotopes in 2015 drilling site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E
2009-11-19
The radioactive fallout from the Chernobyl Nuclear Power Plant (ChNPP) accident consisted of fuel and condensation components. An important radioecological task associated with the late phase of the accident is to evaluate the dynamics of radionuclide mobility in soils. Identification of the variability (or invariability) in the radionuclide transfer parameters makes it possible to (1) accurately predict migration patterns and biological availability of radionuclides and (2) evaluate long-term exposure trends for the population who may reoccupy the remediated abandoned areas. In 1986-1987, a number of experimental plots were established within various tracts of the fallout plume to assist with themore » determination of the long-term dynamics of radionuclide vertical migration in the soils. The transfer parameters for {sup 137}Cs, {sup 90}Sr, and {sup 239,240}Pu in the soil profile, as well as their ecological half-time of the radionuclide residence (T{sub 1/2}{sup ecol}) values in the upper 5-cm thick soil layers of different grasslands were estimated at various times since the accident. Migration characteristics in the grassland soils tend to decrease as follows: {sup 90}Sr > {sup 137}Cs {ge} {sup 239,240}Pu. It was found that the {sup 137}Cs absolute T{sub 1/2}{sup ecol} values are 3-7 times higher than its radioactive decay half-life value. Therefore, changes in the exposure dose resulting from the soil deposited {sup 137}Cs now depend only on its radioactive decay. The {sup 90}Sr T{sub 1/2}{sup ecol} values for the 21st year after the fallout tend to decrease, indicating an intensification of its migration capabilities. This trend appears consistent with a pool of mobile {sup 90}Sr forms that grows over time due to destruction of the fuel particles.« less
NASA Astrophysics Data System (ADS)
Powell, Jesse R.; Ohman, Mark D.
2015-05-01
We report cross-frontal changes in the characteristics of plankton proxy variables measured by autonomous Spray ocean gliders operating within the Southern California Current System (SCCS). A comparison of conditions across the 154 positive frontal gradients (i.e., where density of the surface layer decreased in the offshore direction) identified from six years of continuous measurements showed that waters on the denser side of the fronts typically showed higher Chl-a fluorescence, shallower euphotic zones, and higher acoustic backscatter than waters on the less dense side. Transitions between these regions were relatively abrupt. For positive fronts the amplitude of Diel Vertical Migration (DVM), inferred from a 3-beam 750 kHz acoustic Doppler profiler, increased offshore of fronts and covaried with optical transparency of the water column. Average interbeam variability in acoustic backscatter also changed across many positive fronts within 3 depth strata (0-150 m, 150-400 m, and 400-500 m), revealing a front-related change in the acoustic scattering characteristics of the assemblages. The extent of vertical stratification of distinct scattering assemblages was also more pronounced offshore of positive fronts. Depth-stratified zooplankton samples collected by Mocness nets corroborated the autonomous measurements, showing copepod-dominated assemblages and decreased zooplankton body sizes offshore and euphausiid-dominated assemblages with larger median body sizes inshore of major frontal features.
Modelling larval transport in a axial convergence front
NASA Astrophysics Data System (ADS)
Robins, P.
2010-12-01
Marine larvae exhibit different vertical swimming behaviours, synchronised by factors such as tidal currents and daylight, in order to aid retention near the parent populations and hence promote production, avoid predation, or to stimulate digestion. This paper explores two types of larval migration in an estuarine axial convergent front which is an important circulatory mechanism in many coastal regions where larvae are concentrated. A parallelised, three-dimensional, ocean model was applied to an idealised estuarine channel which was parameterised from observations of an axial convergent front which occurs in the Conwy Estuary, U.K. (Nunes and Simpson, 1985). The model successfully simulates the bilateral cross-sectional recirculation of an axial convergent front, which has been attributed to lateral density gradients established by the interaction of the lateral shear of the longitudinal currents with the axial salinity gradients. On the flood tide, there is surface axial convergence whereas on the ebb tide, there is (weaker) surface divergence. Further simulations with increased/decreased tidal velocities and with stronger/weaker axial salinity gradients are planned so that the effects of a changing climate on the secondary flow can be understood. Three-dimensional Lagrangian Particle Tracking Models (PTMs) have been developed which use the simulated velocity fields to track larvae in the estuarine channel. The PTMs take into account the vertical migrations of two shellfish species that are commonly found in the Conwy Estuary: (i) tidal migration of the common shore crab (Carcinus maenas) and (ii), diel (daily) migration of the Great scallop (Pecten maximus). These migration behaviours are perhaps the most widespread amongst shellfish larvae and have been compared with passive (drifting) particles in order to assess their relative importance in terms of larval transport. Preliminary results suggest that the net along-estuary dispersal over a typical larval period of 28 days of both passive and daily synchronised larvae will follow the asymmetry of the tide (i.e. for a symmetrical tide, the net dispersal is likely to be zero). For tidally synchronised larvae, there is an up-estuary migration as the larvae swim upwards to the stronger surface currents during the flood tide.
Fate and transport of radionuclides in soil-water environment. Review.
NASA Astrophysics Data System (ADS)
Konoplev, Aleksei
2017-04-01
The ease in which radionuclides move through the environment and are taken up by plants and animals is governed by their chemical forms and by site-specific environmental characteristics. The objective of this paper is to review basic mechanisms of the behavior of radiocesium and radiostrontium in the environment after the nuclear accident. Our understanding of radionuclide's speciation and migration processes seems to be adequate and explains similarities and differences of radiocesium (r-Cs) behavior in the environment after Fukushima and Chernobyl accidents. Climate and geographical conditions in Fukushima Prefecture of Japan and Chernobyl's near-field zone are obviously different. In particular, precipitation differs substantially, with the annual average for Fukushima being about 3 times higher than at Chernobyl. The landscapes and soils also differ significantly. What is more, the speciation of r-Cs in the releases was distinct (large fraction of radionuclides was deposited as fuel particles in 30-km zone around Chernobyl NPP, while in Fukushima radiocesium is mostly part of condensation particles including glassy hot particles). Radiocesium (r-Cs) in the environment is strongly bound to soil and sediment particles containing micaceous clay minerals (illite, vermiculite, etc.), which is associated with two basic processes - high selective reversible sorption and fixation. The r-Cs distribution coefficient Kd in Fukushima rivers was found to be 1-2 orders of magnitude higher than corresponding values for rivers and surface runoff of Chernobyl area. This is indicative of higher ability of Fukushima soils and sediments to bind r-Cs. Dissolved r-Cs wash-off for Fukushima river watersheds is essentially slower than those for Chernobyl. However, steeper slopes and higher precipitation in Fukushima area cause higher erosion and higher particulate r-Cs wash-off. For a comparable time after the accident the total r-Cs wash-off from contaminated catchments in Fukushima is up to one order of magnitude higher than in Chernobyl. Long-term dynamics of radionuclide concentrations in rivers is approached from the standpoint of basic mechanisms of radionuclide sorption-desorption, fixation, vertical migration in catchment soils. Corresponding semi-empirical models are presented and discussed. For the Chernobyl case, radiostrontium (r-Sr) was shown to be more mobile and moving faster in dissolved state with surface runoff and river water in comparison with r-Cs. Similar pattern was observed for Mayak area in South Ural (Russia), where r-Sr was traced up to 1500 km away from the release point migrating through Techa-Iset'-Tobol-Irtysh-Ob' river system. On the other hand, r-Cs bound to clay particles settles down in Techa river reservoirs and is transported with river water only insignificantly. For the first 3 years after the accident vertical migration of r-Cs in soils of Fukushima catchments was found to be faster than in Chernobyl due to higher air temperature, higher precipitation and higher biological activity in top soil. However, with time this process slows down because of higher r-Cs retardation in Fukushima soils. In Fukushima case, extreme floods during typhoons lead to substantial reduction in dose rate on floodplain areas due to sedimentation of relatively clean material and burial of contaminated top soil layer. In general, due to higher precipitation, higher temperatures and higher biological activities in soils, self-purification of the environment and natural attenuation in Fukushima is essentially faster than in Chernobyl area.
Multi-parameter Full-waveform Inversion for Acoustic VTI Medium with Surface Seismic Data
NASA Astrophysics Data System (ADS)
Cheng, X.; Jiao, K.; Sun, D.; Huang, W.; Vigh, D.
2013-12-01
Full-waveform Inversion (FWI) attracts wide attention recently in oil and gas industry as a new promising tool for high resolution subsurface velocity model building. While the traditional common image point gather based tomography method aims to focus post-migrated data in depth domain, FWI aims to directly fit the observed seismic waveform in either time or frequency domain. The inversion is performed iteratively by updating the velocity fields to reduce the difference between the observed and the simulated data. It has been shown the inversion is very sensitive to the starting velocity fields, and data with long offsets and low frequencies is crucial for the success of FWI to overcome this sensitivity. Considering the importance of data with long offsets and low frequencies, in most geologic environment, anisotropy is an unavoidable topic for FWI especially at long offsets, since anisotropy tends to have more pronounced effects on waves traveled for a great distance. In VTI medium, this means more horizontal velocity will be registered in middle-to-long offset data, while more vertical velocity will be registered in near-to-middle offset data. Up to date, most of real world applications of FWI still remain in isotropic medium, and only a few studies have been shown to account for anisotropy. And most of those studies only account for anisotropy in waveform simulation, but not invert for those anisotropy fields. Multi-parameter inversion for anisotropy fields, even in VTI medium, remains as a hot topic in the field. In this study, we develop a strategy for multi-parameter FWI for acoustic VTI medium with surface seismic data. Because surface seismic data is insensitivity to the delta fields, we decide to hold the delta fields unchanged during our inversion, and invert only for vertical velocity and epsilon fields. Through parameterization analysis and synthetic tests, we find that it is more feasible to invert for the parameterization as vertical and horizontal velocities instead of inverting for the parameterization as vertical velocity and epsilon fields. We develop a hierarchical approach to invert for vertical velocity first but hold epsilon unchanged and only switch to simultaneous inversion when vertical velocity inversion are approaching convergence. During simultaneous inversion, we observe significant acceleration in the convergence when incorporates second order information and preconditioning into inversion. We demonstrate the success of our strategy for VTI FWI using synthetic and real data examples from the Gulf of Mexico. Our results show that incorporation of VTI FWI improves migration of large offset acquisition data, and produces better focused migration images to be used in exploration, production and development of oil fields.
NASA Astrophysics Data System (ADS)
Cornet, Carme; Gili, Josep-Maria
1993-11-01
The vertical distribution and migratory behaviour of hyperiid amphipods were studied in a series of tows carried out during a 48-h sampling period at an oceanic station at the northern edge of the Benguela System during a major penetration by Angola Current waters. A total of 49 species of hyperiid amphipods were collected; of these, Tetrathyrus forcipatus was the most abundant, with densities greater than two individuals per 10 m 3. Vibilia armata, Lestrigonus latissimus, L. bengalensis and Paratyphis promontorii were also highly abundant. During the sampling period most species were concentrated in the uppermost 40 m of the water column, though in other regions the vertical distribution of these same species has been reported to be broader. Only a few species were able to migrate through the thermocline. We hypothesize that both the non-migratory behaviour and the aggregation of individuals and species were caused by two primary factors: the existence of a strong thermocline, which hindered the transit of species to deeper layers, and abundant concentrations of gelatinous zooplankton above the thermocline. Hyperiids and the gelatinous zooplankton, particularly medusae and siphonophores, exhibited a close association during the sampling period, suggesting that hyperiids are able to partition their habitat by using the different medusan and siphonophoran species as specific substrates, thereby reducing interspecific competition.
Planar cell polarity in moving cells: think globally, act locally
Davey, Crystal F.
2017-01-01
ABSTRACT The planar cell polarity (PCP) pathway is best known for its role in polarizing epithelial cells within the plane of a tissue but it also plays a role in a range of cell migration events during development. The mechanism by which the PCP pathway polarizes stationary epithelial cells is well characterized, but how PCP signaling functions to regulate more dynamic cell behaviors during directed cell migration is much less understood. Here, we review recent discoveries regarding the localization of PCP proteins in migrating cells and their impact on the cell biology of collective and individual cell migratory behaviors. PMID:28096212
Gas-controlled seafloor doming on Opouawe Bank, offshore New Zealand
NASA Astrophysics Data System (ADS)
Koch, Stephanie; Berndt, Christian; Bialas, Joerg; Haeckel, Matthias; Crutchley, Gareth; Papenberg, Cord; Klaeschen, Dirk; Greinert, Jens
2015-04-01
The process of gas accumulation and subsequent sediment doming appears to be a precursory process in the development of methane seep sites on Opouawe Bank and might be a common characteristic for gas seeps in general. Seabed domes appear as unimpressive topographic highs with diameters ranging from 10-1000 m and exhibit small vertical displacements and layer thickness in comparison to their width. The dome-like uplift of the sediments results from an increase in pore pressure caused by gas accumulation in near-seabed sediments. In this context sediment doming is widely discussed to be a precursor of pockmark formation. Our results suggest that by breaching of domed seafloor sediments a new seep site can develop and contrary to ongoing discussion does not necessarily lead to the formation of pockmarks. There are clear differences in individual gas migration structures that indicate a progression through different evolutionary stages, which range from channeled gas flow and associated seismic blanking, to gas trapping beneath relatively low-permeability horizons, and finally overpressure accumulation and doming. We present high resolution sub-bottom profiler (Parasound) and 2D multichannel seismic data from Opouawe Bank, an accretionary ridge at the Hikurangi Margin, offshore New Zealand's North Island. Beneath this bank, methane migrates along stratigraphic pathways from a maximum source depth of 1500-2100 mbsf (meter below seafloor) towards active cold seeps at the seafloor. We show that, in the shallow sediment of the upper 100 mbsf, this primary migration mechanism changes into a process of gas accumulation leading to sediment doming. Modeling the height of the gas column necessary to create different dome geometries, shows that doming due to gas accumulation is feasible and consistent with field observations. The well-stratified, sub-horizontal strata that exist beneath Opouawe Bank provide favorable conditions for this type of seep development because shallow sub-vertical gas migration is forced to traverse sedimentary layering in the absence of faults that might otherwise have provided more efficient gas migration pathways. Thus, gas has to generate its own migration pathways through the progressive process of doming and breaking through the strata. The data from offshore New Zealand document that shallow sediment doming does not have to be associated with seafloor pockmarks and that models in which fluid migration through soft sediments necessarily culminates in pockmark formations are not applicable everywhere.
Favrot, Scott D.; Kwak, Thomas J.
2018-01-01
Many nongame fishes are poorly understood but are essential to maintaining healthy aquatic ecosystems globally. The undescribed Sicklefin Redhorse Moxostoma sp. is a rare, imperiled, nongame fish endemic to two southern Appalachian Mountain river basins. Little is known of its behavior and ecology, but this information is urgently needed for conservation planning. We assessed the spatial and temporal bounds of spawning migration, quantified seasonal weekly movement patterns, and characterized seasonal and spawning behavior using radiotelemetry and weir sampling in the Hiwassee River basin, North Carolina–Georgia, during 2006 and 2007. Hiwassee River tributaries were occupied predominantly during the fish's spawning season, lower reaches of the tributaries and the Hiwassee River were primarily occupied during the postspawning season (i.e., summer and fall), and lower lotic reaches of Hiwassee River (upstream from Hiwassee Lake) were occupied during winter. Adults occupied Hiwassee Lake only as a movement corridor during spawning migrations. Both sexes conducted upstream spawning migrations simultaneously, but males occupied spawning tributaries longer than females. Sicklefin Redhorse exhibited interannual spawning‐area and tributary fidelity. Cold water temperatures associated with hypolimnetic releases from reservoirs and meteorological conditions influenced spawning migration distance and timing. During 2007, decreased discharges during the spawning season were associated with decreases in migration distance and spawning tributary occupancy duration. Foraging was the dominant behavior observed annually, followed by reproductive behaviors (courting and spawning) during the spawning season. No agonistic reproductive behavior was observed, but females exhibited a repetitious postspawning digging behavior that may be unique in the family Catostomidae. Our findings suggest that protection and restoration of river continuity, natural flow regimes, seasonally appropriate water temperatures, and geographic range expansion are critical components to include in Sicklefin Redhorse conservation planning. Fisheries and ecosystem managers can use our findings to justify sensitive management decisions that conserve and restore critical streams and rivers occupied by this imperiled species.
Maternal migration and child health: An analysis of disruption and adaptation processes in Benin.
Smith-Greenaway, Emily; Madhavan, Sangeetha
2015-11-01
Children of migrant mothers have lower vaccination rates compared to their peers with non-migrant mothers in low-income countries. Explanations for this finding are typically grounded in the disruption and adaptation perspectives of migration. Researchers argue that migration is a disruptive process that interferes with women's economic well-being and social networks, and ultimately their health-seeking behaviors. With time, however, migrant women adapt to their new settings, and their health behaviors improve. Despite prominence in the literature, no research tests the salience of these perspectives to the relationship between maternal migration and child vaccination. We innovatively leverage Demographic and Health Survey data to test the extent to which disruption and adaptation processes underlie the relationship between maternal migration and child vaccination in the context of Benin-a West African country where migration is common and child vaccination rates have declined in recent years. By disaggregating children of migrants according to whether they were born before or after their mother's migration, we confirm that migration does not lower children's vaccination rates in Benin. In fact, children born after migration enjoy a higher likelihood of vaccination, whereas their peers born in the community from which their mother eventually migrates are less likely to be vaccinated. Although we find no support for the disruption perspective of migration, we do find evidence of adaptation: children born after migration have an increased likelihood of vaccination the longer their mother resides in the destination community prior to their birth. Copyright © 2015 Elsevier Inc. All rights reserved.
Maternal migration and child health: An analysis of disruption and adaptation processes in Benin
Smith-Greenaway, Emily; Madhavan, Sangeetha
2016-01-01
Children of migrant mothers have lower vaccination rates compared to their peers with non-migrant mothers in low-income countries. Explanations for this finding are typically grounded in the disruption and adaptation perspectives of migration. Researchers argue that migration is a disruptive process that interferes with women’s economic well-being and social networks, and ultimately their health-seeking behaviors. With time, however, migrant women adapt to their new settings, and their health behaviors improve. Despite prominence in the literature, no research tests the salience of these perspectives to the relationship between maternal migration and child vaccination. We innovatively leverage Demographic and Health Survey data to test the extent to which disruption and adaptation processes underlie the relationship between maternal migration and child vaccination in the context of Benin—a West African country where migration is common and child vaccination rates have declined in recent years. By disaggregating children of migrants according to whether they were born before or after their mother’s migration, we confirm that migration does not lower children’s vaccination rates in Benin. In fact, children born after migration enjoy a higher likelihood of vaccination, whereas their peers born in the community from which their mother eventually migrates are less likely to be vaccinated. Although we find no support for the disruption perspective of migration, we do find evidence of adaptation: children born after migration have an increased likelihood of vaccination the longer their mother resides in the destination community prior to their birth. PMID:26463540
Assessment of ground-water contamination near Lantana landfill, Southeast Florida
Russell, G.M.; Higer, A.L.
1988-01-01
The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah
The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; ...
2016-12-27
The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less
NASA Astrophysics Data System (ADS)
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin; González-Nicolás, Ana; Illangasekare, Tissa H.
2017-01-01
The role of capillary forces during buoyant migration of CO2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44 m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO2-surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. While these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1-10 m).
12 CFR 217.208 - Incremental risk.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... (2) Recognize the impact of correlations between default and migration events among obligors. (3... options and other positions with material nonlinear behavior with respect to default and migration changes...
Quantitative Analysis of Cell Migration Using Optical Flow
Boric, Katica; Orio, Patricio; Viéville, Thierry; Whitlock, Kathleen
2013-01-01
Neural crest cells exhibit dramatic migration behaviors as they populate their distant targets. Using a line of zebrafish expressing green fluorescent protein (sox10:EGFP) in neural crest cells we developed an assay to analyze and quantify cell migration as a population, and use it here to characterize in detail the subtle defects in cell migration caused by ethanol exposure during early development. The challenge was to quantify changes in the in vivo migration of all Sox10:EGFP expressing cells in the visual field of time-lapse movies. To perform this analysis we used an Optical Flow algorithm for motion detection and combined the analysis with a fit to an affine transformation. Through this analysis we detected and quantified significant differences in the cell migrations of Sox10:EGFP positive cranial neural crest populations in ethanol treated versus untreated embryos. Specifically, treatment affected migration by increasing the left-right asymmetry of the migrating cells and by altering the direction of cell movements. Thus, by applying this novel computational analysis, we were able to quantify the movements of populations of cells, allowing us to detect subtle changes in cell behaviors. Because cranial neural crest cells contribute to the formation of the frontal mass these subtle differences may underlie commonly observed facial asymmetries in normal human populations. PMID:23936049
Empirical research on international environmental migration: a systematic review.
Obokata, Reiko; Veronis, Luisa; McLeman, Robert
2014-01-01
This paper presents the findings of a systematic review of scholarly publications that report empirical findings from studies of environmentally-related international migration. There exists a small, but growing accumulation of empirical studies that consider environmentally-linked migration that spans international borders. These studies provide useful evidence for scholars and policymakers in understanding how environmental factors interact with political, economic and social factors to influence migration behavior and outcomes that are specific to international movements of people, in highlighting promising future research directions, and in raising important considerations for international policymaking. Our review identifies countries of migrant origin and destination that have so far been the subject of empirical research, the environmental factors believed to have influenced these migrations, the interactions of environmental and non-environmental factors as well as the role of context in influencing migration behavior, and the types of methods used by researchers. In reporting our findings, we identify the strengths and challenges associated with the main empirical approaches, highlight significant gaps and future opportunities for empirical work, and contribute to advancing understanding of environmental influences on international migration more generally. Specifically, we propose an exploratory framework to take into account the role of context in shaping environmental migration across borders, including the dynamic and complex interactions between environmental and non-environmental factors at a range of scales.
12 CFR 324.208 - Incremental risk.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the impact of correlations between default and migration events among obligors. (3) Reflect the effect... options and other positions with material nonlinear behavior with respect to default and migration changes...
Vertical Motion Changes Related to North-East Brazil Rainfall Variability: a GCM Simulation
NASA Astrophysics Data System (ADS)
Roucou, Pascal; Oribe Rocha de Aragão, José; Harzallah, Ali; Fontaine, Bernard; Janicot, Serge
1996-08-01
The atmospheric structure over north-east Brazil during anomalous rainfall years is studied in the 11 levels of the outputs of the Laboratoire de Météorologie Dynamique atmospheric general circulation model (LMD AGCM). Seven 19-year simulations were performed using observed sea-surface temperature (SST) corresponding to the period 1970- 1988. The ensemble mean is calculated for each month of the period, leading to an ensemble-averaged simulation. The simulated March-April rainfall is in good agreement with observations. Correlations of simulated rainfall and three SST indices relative to the equatorial Pacific and northern and southern parts of the Atlantic Ocean exhibit stronger relationships in the simulation than in the observations. This is particularly true with the SST gradient in the Atlantic (Atlantic dipole). Analyses on 200 ;hPa velocity potential, vertical velocity, and vertical integral of the zonal component of mass flux are performed for years of abnormal rainfall and positive/negative SST anomalies in the Pacific and Atlantic oceans in March-April during the rainy season over the Nordeste region. The results at 200 hPa show a convergence anomaly over Nordeste and a divergence anomaly over the Pacific concomitant with dry seasons associated with warm SST anomalies in the Pacific and warm (cold) waters in the North (South) Atlantic. During drought years convection inside the ITCZ indicated by the vertical velocity exhibits a displacement of the convection zone corresponding to a northward migration of the ITCZ. The east-west circulation depicted by the zonal divergent mass flux shows subsiding motion over Nordeste and ascending motion over the Pacific in drought years, accompanied by warm waters in the eastern Pacific and warm/cold waters in northern/southern Atlantic. Rainfall variability of the Nordeste rainfall is linked mainly to vertical motion and SST variability through the migration of the ITCZ and the east-west circulation.
Oxygen Impurities Link Bistability and Magnetoresistance in Organic Spin Valves.
Bergenti, Ilaria; Borgatti, Francesco; Calbucci, Marco; Riminucci, Alberto; Cecchini, Raimondo; Graziosi, Patrizio; MacLaren, Donald A; Giglia, Angelo; Rueff, Jean Pascal; Céolin, Denis; Pasquali, Luca; Dediu, Valentin
2018-03-07
Vertical crossbar devices based on manganite and cobalt injecting electrodes and a metal-quinoline molecular transport layer are known to manifest both magnetoresistance (MR) and electrical bistability. The two effects are strongly interwoven, inspiring new device applications such as electrical control of the MR and magnetic modulation of bistability. To explain the device functionality, we identify the mechanism responsible for electrical switching by associating the electrical conductivity and the impedance behavior with the chemical states of buried layers obtained by in operando photoelectron spectroscopy. These measurements revealed that a significant fraction of oxygen ions migrate under voltage application, resulting in a modification of the electronic properties of the organic material and of the oxidation state of the interfacial layer with the ferromagnetic contacts. Variable oxygen doping of the organic molecules represents the key element for correlating bistability and MR, and our measurements provide the first experimental evidence in favor of the impurity-driven model describing the spin transport in organic semiconductors in similar devices.
Behavior of sea urchin primary mesenchyme cells in artificial extracellular matrices.
Katow, H
1986-02-01
The primary mesenchyme cells (PMCs) were separated from the mesenchyme blastulae of Pseudocentrotus depressus using differential adhesiveness of these cells to plastic Petri dishes. These cells were incubated in various artificial extracellular matrices (ECMs) including horse serum plasma fibronectin, mouse EHS sarcoma laminin, mouse EHS sarcoma type IV collagen, and porcine skin dermatan sulfate. The cell behavior was monitored by a time-lapse videomicrograph and analysed with a microcomputer. The ultrastructure of the artificial ECM was examined by transmission electron microscopy (TEM), while the ultrastructure of the PMCs was examined by scanning electron microscopy (SEM). The PMCs did not migrate in type IV collagen gel, laminin or dermatan sulfate matrix either with or without collagen gel, whereas PMCs in the matrix which was composed of fibronectin and collagen gel migrated considerably. However, the most active and extensive PMC migration was seen in the matrix which contained dermatan sulfate in addition to fibronectin and collagen gel. This PMC migration involved an increase not only of migration speed but also of proportion of migration-promoted cells. These results support the hypothesis that the mechanism of PMC migration involves fibronectin, collagen and sulfated proteoglycans which contain dermatan sulfate.
Culture and Consumer Behavior: The Role of Horizontal and Vertical Cultural Factors
Shavitt, Sharon; Cho, Hyewon
2016-01-01
We examine the influence of culture on consumer behavior with a particular focus on horizontal and vertical individualism and collectivism. Cultures vary in their propensity to emphasize hierarchy, a distinction captured by examining horizontal/vertical cultural orientations or contexts. These cultural factors pattern personal values and goals, power concepts, and normative expectations applied to the exercise of power. We review implications for how consumers respond to brands in the marketplace, service providers, and each others' needs. PMID:28083559
Culture and Consumer Behavior: The Role of Horizontal and Vertical Cultural Factors.
Shavitt, Sharon; Cho, Hyewon
2016-04-01
We examine the influence of culture on consumer behavior with a particular focus on horizontal and vertical individualism and collectivism. Cultures vary in their propensity to emphasize hierarchy, a distinction captured by examining horizontal/vertical cultural orientations or contexts. These cultural factors pattern personal values and goals, power concepts, and normative expectations applied to the exercise of power. We review implications for how consumers respond to brands in the marketplace, service providers, and each others' needs.
Koeck, Barbara; Pastor, Jérémy; Saragoni, Gilles; Dalias, Nicolas; Payrot, Jérôme; Lenfant, Philippe
2014-03-01
Temporal movement patterns and spawning behaviour of the dusky grouper Epinephelus marginatus were investigated using depth and temperature sensors combined to acoustic telemetry. Results showed that these fish are year-round resident, remaining inside the fully protected area of the marine reserve of Cerbère-Banyuls (65 ha) and display a diurnal activity pattern. Records from depth sensors revealed that groupers range inside small, distinct, and individual territories. Individual variations in habitat depth are only visible on a seasonal scale, i.e., between the spawning season and the rest of the year. In fact, during summer months when the seawater temperature exceeded 20 °C, tagged groupers made vertical spawning migrations of 4-8 m in amplitude. These vertical migrations are characteristic of the reproductive behaviour of dusky groupers, during which they release their gametes. The results are notable for the implementation of management rules in marine protected areas, such as reduced navigation speed, boating or attendance during spawning season. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
O'Sullivan, Thomas D.; No, Keunsik; Matlock, Alex; Warren, Robert V.; Hill, Brian; Cerussi, Albert E.; Tromberg, Bruce J.
2017-10-01
Frequency-domain photon migration (FDPM) uses modulated laser light to measure the bulk optical properties of turbid media and is increasingly applied for noninvasive functional medical imaging in the near-infrared. Although semiconductor edge-emitting laser diodes have been traditionally used as miniature light sources for this application, we show that vertical-cavity surface-emitting lasers (VCSELs) exhibit output power and modulation performance characteristics suitable for FDPM measurements of tissue optical properties at modulation frequencies exceeding 1 GHz. We also show that an array of multiple VCSEL devices can be coherently modulated at frequencies suitable for FDPM and can improve optical power. In addition, their small size and simple packaging make them an attractive choice as components in wearable sensors and clinical FDPM-based optical spectroscopy systems. We demonstrate the benefits of VCSEL technology by fabricating and testing a unique, compact VCSEL-based optical probe with an integrated avalanche photodiode. We demonstrate sensitivity of the VCSEL-based probe to subcutaneous tissue hemodynamics that was induced during an arterial cuff occlusion of the upper arm in a human subject.
Vertical nitrogen flux from the oceanic photic zone by diel migrant zooplankton and nekton
NASA Astrophysics Data System (ADS)
Longhurst, Alan R.; Glen Harrison, W.
1988-06-01
Where the photic zone is a biological steady-state, the downward flux of organic material across the pycnocline to the interior of the ocean is thought to be balanced by upward turbulent flux of inorganic nitrogen across the nutricline. This model ignores a significant downward dissolved nitrogen flux caused by the diel vertical migration of interzonal zooplankton and nekton that feed in the photic zone at night and excrete nitrogenous compounds at depth by day. In the oligotrophic ocean this flux can be equivalent to the flux of particulate organic nitrogen from the photic zone in the form of faecal pellets and organic flocculates. Where nitrogen is the limiting plant nutrient, and the flux by diel migration of interzonal plankton is significant compared to other nitrogen exports from the photic zone, there must be an upward revision of previous estimates for the ratio of new to total primary production in the photic zone if a nutrient balance is to be maintained. This upward revision is of the order 5-100% depending on the oceanographic regime.
NASA Astrophysics Data System (ADS)
Wyman, M. T.; Kavet, R.; Klimley, A. P.
2016-02-01
There is an increasingly strong interest on a global scale in offshore renewable energy production and transportation. However, there is concern that the electromagnetic fields (EMF) produced by these underwater cables may alter the behavior and physiology of marine species. Despite this concern, few studies have investigated these effects in free-living species. In 2009, a 85 km long high-voltage DC (HVDC) power cable was placed within the San Francisco Bay, running parallel, then perpendicular to, the migration route of anadromous species moving from the inland river system to the oceans. In this study, we assess the impacts of this HVDC cable on the migration behaviors of EMF-sensitive fish, including juvenile salmonids (Chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, Oncorhynchus mykiss) and adult green sturgeon, Acipenser medirostris. Acoustic telemetry techniques were used to track fish migration movements through the San Francisco Bay both before and after the cable was activated; individuals implanted with acoustic transmitters were detected on cross-channel hydrophone arrays at key locations in the system. Magnetic fields were surveyed and mapped at these locations using a transverse gradiometer, and models of the cable's magnetic field were developed that closely matched the empirically measured values. Here, we present our analyses on the relationships between migration-related behavioral metrics (e.g., percent of successful migrations, duration of migration, time spent near vs. far from cable location, etc.) and environmental parameters, such as cable activation and load level, local magnetic field levels, depth, and currents.
Kang, Kyungmo; Chang, Yoonjee; Choi, Jae Chun; Park, Se-Jong; Han, Jaejoon
2018-04-01
Safety concerns have emerged over the increased use of polypropylene (PP) in food-packaging markets. Some antioxidants in PP can migrate to foods and cause undesirable effects in humans. In this study, migration behaviors of butylated hydroxytoluene (BHT) and Irganox 1010 (I-1010) in PP sheets were determined according to the US FDA migration test conditions. In particular, we tested the effects of severe conditions of food processing and storage, such as autoclave heating (sterilization at about 121 °C), microwave radiation (700 W), and deep freezing (-30 °C) on migration of antioxidants. Migrant concentrations were higher in 95% ethanol as lipid food simulant, because of the hydrophobic nature of both PP and antioxidants. Autoclave heating treatment increased migrant concentrations compared with other processing conditions. Moreover, increased migrant concentrations by deep freezing condition were attributed to the brittleness of PP at freezing temperature. Regardless of processing conditions, BHT which has a lower molecular weight, migrated faster than I-1010. The antioxidants with hydrophobic nature such as butylated hydroxytoluene (BHT) and Irganox 1010 (I-1010) in polypropylene sheets would be migrated to foods, which is an important issue for industrial production food packaging materials. Migration behavior was promoted by severe processing conditions such as autoclave heating, microwave radiation, freezing, and especially autoclave heating treatment led the highest migration among them. Therefore, control of chemical additive migration from polypropylene food packaging is needed for safe food processing. © 2018 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Qin, G.; Li, C.; Lin, Q.
2017-12-01
Marine fish species escape from harmful environment by migration. Seahorses, with upright posture and low mobility, could migrate from unfavorable environment by rafting with their prehensile tail. The present study was designed to examine the tolerance of lined seahorse Hippocampus erectus to thermal stress and evaluate the effects of temperature on seahorse migration. The results figured that seahorses' tolerance to thermal stress was time dependent. Acute thermal stress (30°C) increased breathing rate and HSP genes expression significantly, but didn't affect seahorse feeding behavior. Chronic thermal treatment lead to persistent high expression of HSP genes, higher breathing rate, and decreasing feeding, and final higher mortality, suggesting that seahorse cannot adapt to thermal stress by acclimation. No significant negative effects were found in seahorse reproduction in response to chronic thermal stress. Given that seahorses make much slower migration by rafting on sea surface compared to other fishes, we suggest that thermal stress might limit seahorse migration range. and the influence might be magnified by global warming in future.
Martinez-Donate, Ana P.; Rangel, M. Gudelia; Zhang, Xiao; Simon, Norma-Jean; Rhoads, Natalie; Gonzalez-Fagoaga, J. Eduardo; Gonzalez, Ahmed Asadi
2016-01-01
Mobile populations are at increased risk for HIV infection. Exposure to HIV prevention messages at all phases of the migration process may help decrease im/migrants’ HIV risk. We investigated levels of exposure to HIV prevention messages, factors associated with message exposure, and the association between exposure to prevention messages and HIV testing behavior among Mexican im/migrants at different phases of the migration process. We conducted a cross-sectional, probability survey of Mexican im/migrants (N=3,149) traveling through the border city of Tijuana, Mexico. The results indicate limited exposure to prevention messages (57%–75%) and suboptimal last 12-month HIV testing rates (14%–25%) across five migration phases. Compared to pre-departure levels (75%), exposure to messages decreases at all post-departure migration phases (57%–63%, p<.001). In general, exposure to prevention messages is positively associated with greater odds of HIV testing at the pre-departure, destination, and interception phases. Binational efforts need to be intensified to reach and deliver HIV prevention to Mexican im/migrants across the migration continuum. PMID:26595267
Characteristics of trajectory in the migration of Amoeba proteus.
Miyoshi, Hiromi; Masaki, Noritaka; Tsuchiya, Yoshimi
2003-01-01
We investigated the behavior of migration of Amoeba proteus in an isotropic environment. We found that the trajectory in the migration of A. proteus is smooth in the observation time of 500-1000 s, but its migration every second (the cell velocity) on the trajectory randomly changes. Stochastic analysis of the cell velocity and the turn angle of the trajectory has shown that the histograms of the both variables well fit to Gaussian curves. Supposing a simple model equation for the cell motion, we have estimated the motive force of the migrating cell, which is of the order of piconewton. Furthermore, we have found that the cell velocity and the turn angle have a negative cross-correlation coefficient, which suggests that the amoeba explores better environment by changing frequently its migrating direction at a low speed and it moves rectilinearly to the best environment at a high speed. On the other hand, the model equation has simulated the negative correlation between the cell velocity and the turn angle. This indicates that the apparently rational behavior comes from intrinsic characteristics in the dynamical system where the motive force is not torquelike.
Zhang, Ming-kui; Ahmed Elgodah; Bao, Chen-yan
2014-12-01
Although a series of process techniques for treating wastewater from livestock and poultry breeding have been developed in China and overseas, it is still common in China's rural areas for utilization of the untreated wastewater to irrigate farmland directly because of economic reasons. The impact of untreated wastewater irrigation on accumulation and vertical migration of nitrogen and phosphorus in paddy soil is concerned. Consequently, four representative paddy fields with different histories of livestock farm wastewater irrigation (0, 4, 7, 13 years) were selected for collecting profile soil samples to study the effects of long-term irrigation of untreated livestock farm wastewater on various forms of nitrogen and phosphorus in the soils at different vertical depths. As compared with control field without any irrigation of wastewater, long-term irrigation of untreated livestock farm wastewater significantly increased the accumulation of N and P in the soils with increasing the irrigation year, and the increment of total P in the soil was greater than that of total N. Total P content in surface soil from fields with 4, 7, and 13 years irrigation was increased by 43.6%, 95.2%, and 148.4%, while total N increased by 7.6%, 16.9%, and 28.4%, respectively. Different forms of soil N were increased in order of NH4+ -N, NO3- -N > acid hydrolyzable N > non-acid hydrolyzable N, and soil available P changed much more than total P. Long-term irrigation of untreated livestock farm wastewater could promote vertical migration of soil nitrogen and phosphorus, and increase the pollution risk for groundwater.
NASA Astrophysics Data System (ADS)
Caudron, Corentin; Taisne, Benoit; Kugaenko, Yulia; Saltykov, Vadim
2015-12-01
In contrast of the 1975-76 Tolbachik eruption, the 2012-13 Tolbachik eruption was not preceded by any striking change in seismic activity. By processing the Klyuchevskoy volcano group seismic data with the Seismic Amplitude Ratio Analysis (SARA) method, we gain insights into the dynamics of magma movement prior to this important eruption. A clear seismic migration within the seismic swarm, started 20 hours before the reported eruption onset (05:15 UTC, 26 November 2012). This migration proceeded in different phases and ended when eruptive tremor, corresponding to lava flows, was recorded (at 11:00 UTC, 27 November 2012). In order to get a first order approximation of the magma location, we compare the calculated seismic intensity ratios with the theoretical ones. As expected, the observations suggest that the seismicity migrated toward the eruption location. However, we explain the pre-eruptive observed ratios by a vertical migration under the northern slope of Plosky Tolbachik volcano followed by a lateral migration toward the eruptive vents. Another migration is also captured by this technique and coincides with a seismic swarm that started 16-20 km to the south of Plosky Tolbachik at 20:31 UTC on November 28 and lasted for more than 2 days. This seismic swarm is very similar to the seismicity preceding the 1975-76 Tolbachik eruption and can be considered as a possible aborted eruption.
Pelland, Noel A; Sterling, Jeremy T; Lea, Mary-Anne; Bond, Nicholas A; Ream, Rolf R; Lee, Craig M; Eriksen, Charles C
2014-01-01
Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. In this study, migratory movements and, in some cases, diving behavior of 40 adult female northern fur seals (NFS; Callorhinus ursinus) were quantified across their range and compared to remotely-sensed environmental data in the Gulf of Alaska and California Current ecosystems, with a particular focus off the coast of Washington State (USA)--a known foraging ground for adult female NFS and where autonomous glider sampling allowed opportunistic comparison of seal behavior to subsurface biophysical measurements. The results show that in these ecosystems, adult female habitat utilization was concentrated near prominent coastal topographic, riverine, or inlet features and within 200 km of the continental shelf break. Seal dive depths, in most ecosystems, were moderated by surface light level (solar or lunar), mirroring known behaviors of diel vertically-migrating prey. However, seal dives differed in the California Current ecosystem due to a shift to more daytime diving concentrated at or below the surface mixed layer base. Seal movement models indicate behavioral responses to season, ecosystem, and surface wind speeds; individuals also responded to mesoscale eddies, jets, and the Columbia River plume. Foraging within small scale surface features is consistent with utilization of the inner coastal transition zone and habitats near coastal capes, which are known eddy and filament generation sites. These results contribute to our knowledge of NFS migratory patterns by demonstrating surface and subsurface behavioral responses to a spatially and temporally dynamic ocean environment, thus reflecting its influence on associated NFS prey species.
Pelland, Noel A.; Sterling, Jeremy T.; Lea, Mary-Anne; Bond, Nicholas A.; Ream, Rolf R.; Lee, Craig M.; Eriksen, Charles C.
2014-01-01
Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. In this study, migratory movements and, in some cases, diving behavior of 40 adult female northern fur seals (NFS; Callorhinus ursinus) were quantified across their range and compared to remotely-sensed environmental data in the Gulf of Alaska and California Current ecosystems, with a particular focus off the coast of Washington State (USA) – a known foraging ground for adult female NFS and where autonomous glider sampling allowed opportunistic comparison of seal behavior to subsurface biophysical measurements. The results show that in these ecosystems, adult female habitat utilization was concentrated near prominent coastal topographic, riverine, or inlet features and within 200 km of the continental shelf break. Seal dive depths, in most ecosystems, were moderated by surface light level (solar or lunar), mirroring known behaviors of diel vertically-migrating prey. However, seal dives differed in the California Current ecosystem due to a shift to more daytime diving concentrated at or below the surface mixed layer base. Seal movement models indicate behavioral responses to season, ecosystem, and surface wind speeds; individuals also responded to mesoscale eddies, jets, and the Columbia River plume. Foraging within small scale surface features is consistent with utilization of the inner coastal transition zone and habitats near coastal capes, which are known eddy and filament generation sites. These results contribute to our knowledge of NFS migratory patterns by demonstrating surface and subsurface behavioral responses to a spatially and temporally dynamic ocean environment, thus reflecting its influence on associated NFS prey species. PMID:25153524
Belhadj Kouider, Esmahan; Koglin, Ute; Petermann, Franz
2014-06-01
Based on findings of Stevens and Vollebergh [69], who analyzed cross-cultural topics, this review considers the current prevalence of emotional and behavioral problems of native children and adolescents in comparison with children with a migration background in European countries. 36 studies published from 2007 up to 2013 chosen from a systematic literature research were included and analyzed in their perspective design in detail. Previous studies showed great differences in their results: Especially in Germany, many studies compare the heterogeneous group of immigrant children with native children to analyze an ethnic minority or migration process effect. Only a British and Turkish study demonstrates the selection effect in migration. Most Dutch or British studies examined different ethnic groups, e.g. Turkish, Moroccan, Surinamese, Pakistani, Indian or Black migrant children and adolescents. Migrant childhood in Europe could be declared a risk in increasing internalizing problem behavior while the prevalent rate in externalizing problem behavior was comparable between native and migrant children. A migration status itself can often be postulated as a risk factor for children's mental condition, in particular migration in first generation. Furthermore, several major influence factors in migrant children's mental health could be pointed out, such as a low socio-economic status, a Non-European origin, an uncertain cultural identity of the parents, maternal harsh parenting or inadequate parental occupation, a minority status, the younger age, gender effects or a specific culture declaration in diseases.
High-intensity urban light installation dramatically alters nocturnal bird migration
Horton, Kyle G.; Dokter, Adriaan M.; Klinck, Holger; Elbin, Susan B.
2017-01-01
Billions of nocturnally migrating birds move through increasingly photopolluted skies, relying on cues for navigation and orientation that artificial light at night (ALAN) can impair. However, no studies have quantified avian responses to powerful ground-based light sources in urban areas. We studied effects of ALAN on migrating birds by monitoring the beams of the National September 11 Memorial & Museum's “Tribute in Light” in New York, quantifying behavioral responses with radar and acoustic sensors and modeling disorientation and attraction with simulations. This single light source induced significant behavioral alterations in birds, even in good visibility conditions, in this heavily photopolluted environment, and to altitudes up to 4 km. We estimate that the installation influenced ≈1.1 million birds during our study period of 7 d over 7 y. When the installation was illuminated, birds aggregated in high densities, decreased flight speeds, followed circular flight paths, and vocalized frequently. Simulations revealed a high probability of disorientation and subsequent attraction for nearby birds, and bird densities near the installation exceeded magnitudes 20 times greater than surrounding baseline densities during each year’s observations. However, behavioral disruptions disappeared when lights were extinguished, suggesting that selective removal of light during nights with substantial bird migration is a viable strategy for minimizing potentially fatal interactions among ALAN, structures, and birds. Our results also highlight the value of additional studies describing behavioral patterns of nocturnally migrating birds in powerful lights in urban areas as well as conservation implications for such lighting installations. PMID:28973942
NASA Astrophysics Data System (ADS)
Daloz, Anne Sophie; Camargo, Suzana J.
2018-01-01
A recent study showed that the global average latitude where tropical cyclones achieve their lifetime-maximum intensity has been migrating poleward at a rate of about one-half degree of latitude per decade over the last 30 years in each hemisphere. However, it does not answer a critical question: is the poleward migration of tropical cyclone lifetime-maximum intensity associated with a poleward migration of tropical cyclone genesis? In this study we will examine this question. First we analyze changes in the environmental variables associated with tropical cyclone genesis, namely entropy deficit, potential intensity, vertical wind shear, vorticity, skin temperature and specific humidity at 500 hPa in reanalysis datasets between 1980 and 2013. Then, a selection of these variables is combined into two tropical cyclone genesis indices that empirically relate tropical cyclone genesis to large-scale variables. We find a shift toward greater (smaller) average potential number of genesis at higher (lower) latitudes over most regions of the Pacific Ocean, which is consistent with a migration of tropical cyclone genesis towards higher latitudes. We then examine the global best track archive and find coherent and significant poleward shifts in mean genesis position over the Pacific Ocean basins.
NASA Astrophysics Data System (ADS)
Isla, Alejandro; Scharek, Renate; Latasa, Mikel
2015-03-01
The diel vertical migration (DVM) of zooplankton contributes to the biological pump transporting material from surface to deep waters. We examined the DVM of the zooplankton community in different size fractions (53-200 μm, 200-500 μm, 500-1000 μm, 1000-2000 μm and > 2000 μm) during three cruises carried out in the open NW Mediterranean Sea. We assessed their metabolic rates from empirical published relationships and estimated the active fluxes of dissolved carbon to the mesopelagic zone driven by migrant zooplankton. Within the predominantly oligotrophic Mediterranean Sea, the NW region is one of the most productive ones, with a seasonal cycle characterized by a prominent spring bloom. The study area was visited at three different phases of the seasonal cycle: during the spring bloom, the post-bloom, and strongly stratified oligotrophic conditions. We found seasonal differences in DVM, less evident during the bloom. Changes in DVM intensity were related to the composition of the zooplanktonic assemblage, which also varied between cruises. Euphausiids appeared as the most active migrants in all seasons, and their life cycle conditioned the observed pattern. Immature stages, which are unable to perform large diel vertical movements, dominated during the bloom, in contrast to the higher relative importance of migrating adults in the other two sampling periods. The amount of dissolved carbon exported was determined by the migrant zooplankton biomass, being highest during the post-bloom (2.2 mmol C respired m- 2 d- 1, and up to 3.1 mmol C exported m- 2 d- 1 when DOC release estimations are added). The active transport by diel migrants represented a substantial contribution to total carbon export to deep waters, especially under stratified oligotrophic conditions, revealing the importance of zooplankton in the biological pump operating in the study area.
NASA Astrophysics Data System (ADS)
Teixeira, C. A. S.; Sawakuchi, A. O.; Bello, R. M. S.; Nomura, S. F.; Bertassoli, D. J.; Chamani, M. A. C.
2018-07-01
The thermal and diagenetic evolution of shale units has received renewed focus because of their emergence as unconventional hydrocarbon reservoirs. The Serra Alta Formation (SAF) is a Permian shale unit of the Paraná Basin, which is the largest South American cratonic basin. The SAF stands out as a pathway for aqueous fluids and hydrocarbon migration from the Irati organic-rich shales to the Pirambóia fluvial-eolian sandstone reservoirs. Vertical NNW and NNE opening fractures would be the main pathways for the migration of buried pore waters and aqueous fluids, besides the input of meteoric water. These fractures would be associated to the reactivation of basement discontinuities such as the Jacutinga (NE) and Guapiara (NW) faults. Thus, vertical NNE and NNW associated fractures would represent the main pathways for fluid migration in the studied area. The vertical calcite filled opening fractures from SAF record moderately low salinity (0-4.5 wt % of NaCl eq.) aqueous fluids, suggesting the input of meteoric water in the buried fracture system. Eutectic melting temperatures at -52±5 °C indicate an H2O + NaCl + CaCl2 system with CaCl2 or MgCl2 in solution. Homogenization temperatures recorded in fluid inclusion assemblages (FIAs) of calcite filled opening fractures indicate that the SAF in the studied area reached temperatures above 200 °C, suitable for generation of gaseous hydrocarbons. The recorded paleotemperatures point to a thermal peak associated with Serra Geral volcanic event during the Early Cretaceous, with the thermal effect of volcanic rock cap possibly overcoming the effect of intrusive igneous bodies. The detection of methane in SAF shale pores indicates conditions for hydrocarbon generation. However, additionally studies are necessary to confirm the thermogenic and/or biogenic origin of the methane within the SAF.
Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone
NASA Astrophysics Data System (ADS)
Engelhardt, I.; Piepenbrink, M.; Trauth, N.; Stadler, S.; Kludt, C.; Schulz, M.; Schüth, C.; Ternes, T. A.
2011-03-01
SummaryHydrodynamic exchange between surface-water and groundwater was studied at a river located within the Rhine Valley in Germany. Piezometric pressure heads and environmental tracers such as temperature, stable isotopes, chloride, X-ray contrast media, and artificial sweetener were investigated within the hyporheic zone and river water plume. Vertical profiles of environmental tracers were collected using multi-level wells within the neutral up-gradient zone, beneath the river bed, and within the horizontal proximal and distal down-gradient zone. Infiltration velocities were calculated from pressure heads, temperature fluctuations and gradients. The amount of river water within groundwater was estimated from vertical profiles of chloride, stable isotopes, and persistent pharmaceuticals. Profiles of stable isotopes and chloride reveal the existence of down-welling within the shallow hyporheic zone that is generated by river bed irregularities. Due to down-welling an above-average migration of river water into the hyporheic zone establishes even under upward hydraulic pressure gradients. The investigated environmental tracers could not distinctively display short-time-infiltration velocities representative for flood waves, while average infiltration velocities calculated over several months are uniform displayed. Based on vertical temperature profiles the down-gradient migration of the river water plume could be observed even after long periods of effluent conditions and over a distance of 200 m from the river bank. X-ray contrast media and artificial sweeteners were observed in high concentrations within the proximal zone, but were not detected at a distance of 200 m from the river bank. Using temperature as environmental tracer within the hyporheic zone may result in overestimating the migration of pollutants within the river water plume as the process of natural attenuation will be neglected. Furthermore, temperature was not able to display the effect of down-welling. Stable isotopes and chloride were found to be suitable environmental tracers to forecast the release and fate of organic contaminants within the hyporheic zone.
1998-09-30
Coupling Behavior and Vertical Distribution of Pteropods in Coastal Waters using Data from the Video Plankton Recorder Scott M. Gallager Biology...the pteropod Limacina retroversa (Pteropoda, Thecosomata) over its ontogeny is predictable as a function of light, temperature, salinity, food...images from the mesocosms using the mini-VPR are being used to infer behavior of individual pteropods . Third, a random walk turbulence model with
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malme, C.I.; Miles, P.R.; Clark, C.W.
1984-08-01
The study supplements work performed during 1983 in the Monterey, California region in determining the degree of behavioral response of migrating gray whales to acoustic stimuli associated with oil and gas exploration and development activities. A computer-implemented trackline program analyzed the theodolite data for any possible changes in distance from shore, speed, linearity of track, orientation toward the sound source, and course heading of the whale group. A history of marine seismic exploration off California was compiled that showed no long-term relationship with growth rates in the gray whale population.
NASA Astrophysics Data System (ADS)
Li, Jingling; Gao, Peng; Zhang, Shuguang; Wen, Lei; Gao, Fangliang; Li, Guoqiang
2018-03-01
We have investigated the structural properties and the growth mode of GaInNAs films prepared at different growth rates (Rg) by molecular beam epitaxy. The crystalline structure is studied by high resolution X-ray diffraction, and the evolution of GaInNAs film surface morphologies is studied by atomic force microscopy. It is found that both the crystallinity and the surface roughness are improved by increasing Rg, and the change in the growth mode is attributed to the adatom migration behaviors particularly for In atoms, which is verified by elemental analysis. In addition, we have presented some theoretical calculation results related to the N adsorption energy to show the unique N migration behavior, which is instructive to interpret the growth mechanism of GaInNAs films.
EGL-20/Wnt and MAB-5/Hox Act Sequentially to Inhibit Anterior Migration of Neuroblasts in C. elegans
Josephson, Matthew P.; Chai, Yongping; Ou, Guangshuo; Lundquist, Erik A.
2016-01-01
Directed neuroblast and neuronal migration is important in the proper development of nervous systems. In C. elegans the bilateral Q neuroblasts QR (on the right) and QL (on the left) undergo an identical pattern of cell division and differentiation but migrate in opposite directions (QR and descendants anteriorly and QL and descendants posteriorly). EGL-20/Wnt, via canonical Wnt signaling, drives the expression of MAB-5/Hox in QL but not QR. MAB-5 acts as a determinant of posterior migration, and mab-5 and egl-20 mutants display anterior QL descendant migrations. Here we analyze the behaviors of QR and QL descendants as they begin their anterior and posterior migrations, and the effects of EGL-20 and MAB-5 on these behaviors. The anterior and posterior daughters of QR (QR.a/p) after the first division immediately polarize and begin anterior migration, whereas QL.a/p remain rounded and non-migratory. After ~1 hour, QL.a migrates posteriorly over QL.p. We find that in egl-20/Wnt, bar-1/β-catenin, and mab-5/Hox mutants, QL.a/p polarize and migrate anteriorly, indicating that these molecules normally inhibit anterior migration of QL.a/p. In egl-20/Wnt mutants, QL.a/p immediately polarize and begin migration, whereas in bar-1/β-catenin and mab-5/Hox, the cells transiently retain a rounded, non-migratory morphology before anterior migration. Thus, EGL-20/Wnt mediates an acute inhibition of anterior migration independently of BAR-1/β-catenin and MAB-5/Hox, and a later, possible transcriptional response mediated by BAR-1/β-catenin and MAB-5/Hox. In addition to inhibiting anterior migration, MAB-5/Hox also cell-autonomously promotes posterior migration of QL.a (and QR.a in a mab-5 gain-of-function). PMID:26863303
Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior
Li, Suyan; Kumar T, Peeyush; Joshee, Sampada; Kirschstein, Timo; Subburaju, Sivan; Khalili, Jahan S; Kloepper, Jonas; Du, Chuang; Elkhal, Abdallah; Szabó, Gábor; Jain, Rakesh K; Köhling, Rüdiger; Vasudevan, Anju
2018-01-01
The cerebral cortex is essential for integration and processing of information that is required for most behaviors. The exquisitely precise laminar organization of the cerebral cortex arises during embryonic development when neurons migrate successively from ventricular zones to coalesce into specific cortical layers. While radial glia act as guide rails for projection neuron migration, pre-formed vascular networks provide support and guidance cues for GABAergic interneuron migration. This study provides novel conceptual and mechanistic insights into this paradigm of vascular-neuronal interactions, revealing new mechanisms of GABA and its receptor-mediated signaling via embryonic forebrain endothelial cells. With the use of two new endothelial cell specific conditional mouse models of the GABA pathway (Gabrb3ΔTie2-Cre and VgatΔTie2-Cre), we show that partial or complete loss of GABA release from endothelial cells during embryogenesis results in vascular defects and impairs long-distance migration and positioning of cortical interneurons. The downstream effects of perturbed endothelial cell-derived GABA signaling are critical, leading to lasting changes to cortical circuits and persistent behavioral deficits. Furthermore, we illustrate new mechanisms of activation of GABA signaling in forebrain endothelial cells that promotes their migration, angiogenesis and acquisition of blood-brain barrier properties. Our findings uncover and elucidate a novel endothelial GABA signaling pathway in the CNS that is distinct from the classical neuronal GABA signaling pathway and shed new light on the etiology and pathophysiology of neuropsychiatric diseases, such as autism spectrum disorders, epilepsy, anxiety, depression and schizophrenia. PMID:29086765
ERIC Educational Resources Information Center
Arar, Khalid; Masry-Harzalla, Asmahan; Haj-Yehia, Kussai
2013-01-01
The article investigates the migration of Palestinian Muslim women, citizens of Israel, to the Hebrew University in Jerusalem or to Jordanian universities for academic studies, and the influence of this migration on their norms, behavior and identity. Narrative interviews were conducted with Palestinian Muslim women graduates: eight from the…
NASA Astrophysics Data System (ADS)
Van Dolah, Frances M.; Leighfield, Tod A.; Kamykowski, Daniel; Kirkpatrick, Gary J.
2008-01-01
As a component of the ECOHAB Florida Regional Field Program, this study addresses cell cycle behavior and its importance to bloom formation of the Florida red tide dinoflagellate, Karenia brevis. The cell cycle of K. brevis was first studied by flow cytometry in laboratory batch cultures, and a laboratory mesocosm column, followed by field populations over the 5-year course of the ECOHAB program. Under all conditions studied, K. brevis displayed diel phased cell division with S-phase beginning a minimum of 6 h after the onset of light and continuing for 12-14 h. Mitosis occurred during the dark, and was generally completed by the start of the next day. The timing of cell cycle phases relative to the diel cycle did not differ substantially in bloom populations displaying radically different growth rates ( μmin 0.17-0.55) under different day lengths and temperature conditions. The rhythm of cell cycle progression is independent from the rhythm controlling vertical migration, as similar cell cycle distributions are found at all depths of the water column in field samples. The implications of these findings are discussed in light of our current understanding of the dinoflagellate cell cycle and the development of improved models for K. brevis bloom growth.
Rigid two-axis MEMS force plate for measuring cellular traction force
NASA Astrophysics Data System (ADS)
Takahashi, Hidetoshi; Jung, Uijin G.; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi; Shimoyama, Isao
2016-10-01
Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µm × 15 µm × 5 µm base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m-1 and less than 0.05 µN, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µN over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement.
Cermeño, Pablo; Quílez-Badia, Gemma; Ospina-Alvarez, Andrés; Sainz-Trápaga, Susana; Boustany, Andre M.; Seitz, Andy C.; Tudela, Sergi; Block, Barbara A.
2015-01-01
We analyzed the movements of Atlantic tuna (Thunnus thynnus L.) in the Mediterranean Sea using data from 2 archival tags and 37 pop-up satellite archival tags (PAT). Bluefin tuna ranging in size from 12 to 248 kg were tagged on board recreational boats in the western Mediterranean and the Adriatic Sea between May and September during two different periods (2000 to 2001 and 2008 to 2012). Although tuna migrations between the Mediterranean Sea and the Atlantic Ocean have been well reported, our results indicate that part of the bluefin tuna population remains in the Mediterranean basin for much of the year, revealing a more complex population structure. In this study we demonstrate links between the western Mediterranean, the Adriatic and the Gulf of Sidra (Libya) using over 4336 recorded days of location and behavior data from tagged bluefin tuna with a maximum track length of 394 days. We described the oceanographic preferences and horizontal behaviors during the spawning season for 4 adult bluefin tuna. We also analyzed the time series data that reveals the vertical behavior of one pop-up satellite tag recovered, which was attached to a 43.9 kg tuna. This fish displayed a unique diving pattern within 16 days of the spawning season, suggesting a use of the thermocline as a thermoregulatory mechanism compatible with spawning. The results obtained hereby confirm that the Mediterranean is clearly an important habitat for this species, not only as spawning ground, but also as an overwintering foraging ground. PMID:25671316
U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise
Thorne, Karen M.; MacDonald, Glen M.; Guntenspergen, Glenn R.; Ambrose, Richard F.; Buffington, Kevin J.; Dugger, Bruce D.; Freeman, Chase; Janousek, Christopher; Brown, Lauren N.; Rosencranz, Jordan A.; Homquist, James; Smol, John P.; Hargan, Kathryn; Takekawa, John Y.
2018-01-01
We used a first-of-its-kind comprehensive scenario approach to evaluate both the vertical and horizontal response of tidal wetlands to projected changes in the rate of sea-level rise (SLR) across 14 estuaries along the Pacific coast of the continental United States. Throughout the U.S. Pacific region, we found that tidal wetlands are highly vulnerable to end-of-century submergence, with resulting extensive loss of habitat. Using higher-range SLR scenarios, all high and middle marsh habitats were lost, with 83% of current tidal wetlands transitioning to unvegetated habitats by 2110. The wetland area lost was greater in California and Oregon (100%) but still severe in Washington, with 68% submerged by the end of the century. The only wetland habitat remaining at the end of the century was low marsh under higher-range SLR rates. Tidal wetland loss was also likely under more conservative SLR scenarios, including loss of 95% of high marsh and 60% of middle marsh habitats by the end of the century. Horizontal migration of most wetlands was constrained by coastal development or steep topography, with just two wetland sites having sufficient upland space for migration and the possibility for nearly 1:1 replacement, making SLR threats particularly high in this region and generally undocumented. With low vertical accretion rates and little upland migration space, Pacific coast tidal wetlands are at imminent risk of submergence with projected rates of rapid SLR.
Wang, Na; Guo, Xinyan; Xu, Jing; Kong, Xiangji; Gao, Shixiang; Shan, Zhengjun
2014-01-01
Scientific interest in pollution from antibiotics in animal husbandry has increased during recent years. However, there have been few studies on the vertical exposure characteristics of typical veterinary antibiotics in different exposure matrices from different livestock farms. This study explores the distribution and migration of antibiotics from feed to manure, from manure to soil, and from soil to vegetables, by investigating the exposure level of typical antibiotics in feed, manure, soil, vegetables, water, fish, and pork in livestock farms. A screening environmental risk assessment was conducted to identify the hazardous potential of veterinary antibiotics from livestock farms in southeast China. The results show that adding antibiotics to drinking water as well as the excessive use of antibiotic feed additives may become the major source of antibiotics pollution in livestock farms. Physical and chemical properties significantly affect the distribution and migration of various antibiotics from manure to soil and from soil to plant. Simple migration models can predict the accumulation of antibiotics in soil and plants. The environmental risk assessment results show that more attention should be paid to the terrestrial eco-risk of sulfadiazine, sulfamethazine, sulfamethoxazole, tetracycline, oxytetracycline, chlorotetracycline, ciprofloxacin, and enrofloxacin, and to the aquatic eco-risk of chlorotetracycline, ciprofloxacin, and enrofloxacin. This is the first systematic analysis of the vertical pollution characteristics of typical veterinary antibiotics in livestock farms in southeast China. It also identifies the ecological and human health risk of veterinary antibiotics.
U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise
Thorne, Karen; MacDonald, Glen; Guntenspergen, Glenn; Ambrose, Richard; Buffington, Kevin; Dugger, Bruce; Freeman, Chase; Janousek, Christopher; Brown, Lauren; Rosencranz, Jordan; Holmquist, James; Smol, John; Hargan, Kathryn; Takekawa, John
2018-01-01
We used a first-of-its-kind comprehensive scenario approach to evaluate both the vertical and horizontal response of tidal wetlands to projected changes in the rate of sea-level rise (SLR) across 14 estuaries along the Pacific coast of the continental United States. Throughout the U.S. Pacific region, we found that tidal wetlands are highly vulnerable to end-of-century submergence, with resulting extensive loss of habitat. Using higher-range SLR scenarios, all high and middle marsh habitats were lost, with 83% of current tidal wetlands transitioning to unvegetated habitats by 2110. The wetland area lost was greater in California and Oregon (100%) but still severe in Washington, with 68% submerged by the end of the century. The only wetland habitat remaining at the end of the century was low marsh under higher-range SLR rates. Tidal wetland loss was also likely under more conservative SLR scenarios, including loss of 95% of high marsh and 60% of middle marsh habitats by the end of the century. Horizontal migration of most wetlands was constrained by coastal development or steep topography, with just two wetland sites having sufficient upland space for migration and the possibility for nearly 1:1 replacement, making SLR threats particularly high in this region and generally undocumented. With low vertical accretion rates and little upland migration space, Pacific coast tidal wetlands are at imminent risk of submergence with projected rates of rapid SLR. PMID:29507876
NASA Astrophysics Data System (ADS)
Gan, Quan; Oberheide, Jens; Yue, Jia; Wang, Wenbin
2017-08-01
Using the thermosphere-ionosphere-mesosphere electrodynamics general circulation model simulations, we investigate the short-term ionospheric variability due to the child waves and altered tides produced by the nonlinear interaction between the 6 day wave and migrating tides. Via the Fourier spectral diagnostics and least squares fittings, the [21 h, W2] and [13 h, W1] child waves, generated by the interaction of the 6 day wave with the DW1 and SW2, respectively, are found to play the leading roles on the subdiurnal variability (e.g., ±10 m/s in the ion drift and 50% in the NmF2) in the F region vertical ion drift changes through the dynamo modulation induced by the low-latitude zonal wind and the meridional wind at higher latitudes. The relatively minor contribution of the [11 h, W3] child wave is explicit as well. Although the [29 h, W0] child wave has the largest magnitude in the E region, its effect is totally absent in the vertical ion drift due to the zonally uniform structure. But the [29 h, W0] child wave shows up in the NmF2. It is found that the NmF2 short-term variability is attributed to the wave modulations on both E region dynamo and in situ F region composition. Also, the altered migrating tides due to the interaction will not contribute to the ionospheric changes significantly.
Carlson, Amy E; Hoffmayer, Eric R; Tribuzio, Cindy A; Sulikowski, James A
2014-01-01
Spiny dogfish (Squalus acanthias) are assumed to be a highly migratory species, making habitual north-south migrations throughout their northwestern Atlantic United States (U.S.) range. Also assumed to be a benthic species, spiny dogfish stock structure is estimated through Northeast Fisheries Science Center (NEFSC) bottom-trawl surveys. Recent anomalies in population trends, including a recent four-fold increase in estimated spawning stock biomass, suggest alternative movement patterns could exist for this shark species. To obtain a better understanding of the horizontal and vertical movement dynamics of this species, Microwave Telemetry pop-up satellite archival X-Tags were attached to forty adult spiny dogfish at the northern (Gulf of Maine) and southern (North Carolina) extents of their core U.S. geographic range. Reconstructed geolocation tracks ranging in lengths from two to 12 months suggest that the seasonal migration patterns appear to be local in nature to each respective northern and southern deployment site, differing from previously published migration paradigms. Differences in distance and direction traveled between seasonal geolocations possibly indicate separate migratory patterns between groups. Kernel utilization distribution models also suggest strong separate core home ranges. Significant differences in seasonal temperature and depths between the two regions further substantiate the possibility of separate regional movement patterns between the two groups. Vertical utilization also suggests distinct diel patterns and that this species may not utilize the benthos as previously thought, potentially decreasing availability to benthic gear.
Carlson, Amy E.; Hoffmayer, Eric R.; Tribuzio, Cindy A.; Sulikowski, James A.
2014-01-01
Spiny dogfish (Squalus acanthias) are assumed to be a highly migratory species, making habitual north-south migrations throughout their northwestern Atlantic United States (U.S.) range. Also assumed to be a benthic species, spiny dogfish stock structure is estimated through Northeast Fisheries Science Center (NEFSC) bottom-trawl surveys. Recent anomalies in population trends, including a recent four-fold increase in estimated spawning stock biomass, suggest alternative movement patterns could exist for this shark species. To obtain a better understanding of the horizontal and vertical movement dynamics of this species, Microwave Telemetry pop-up satellite archival X-Tags were attached to forty adult spiny dogfish at the northern (Gulf of Maine) and southern (North Carolina) extents of their core U.S. geographic range. Reconstructed geolocation tracks ranging in lengths from two to 12 months suggest that the seasonal migration patterns appear to be local in nature to each respective northern and southern deployment site, differing from previously published migration paradigms. Differences in distance and direction traveled between seasonal geolocations possibly indicate separate migratory patterns between groups. Kernel utilization distribution models also suggest strong separate core home ranges. Significant differences in seasonal temperature and depths between the two regions further substantiate the possibility of separate regional movement patterns between the two groups. Vertical utilization also suggests distinct diel patterns and that this species may not utilize the benthos as previously thought, potentially decreasing availability to benthic gear. PMID:25068584
NASA Astrophysics Data System (ADS)
Wynn, Michelle L.; Rupp, Paul; Trainor, Paul A.; Schnell, Santiago; Kulesa, Paul M.
2013-06-01
Directed cell migration often involves at least two types of cell motility that include multicellular streaming and chain migration. However, what is unclear is how cell contact dynamics and the distinct microenvironments through which cells travel influence the selection of one migratory mode or the other. The embryonic and highly invasive neural crest (NC) are an excellent model system to study this question since NC cells have been observed in vivo to display both of these types of cell motility. Here, we present data from tissue transplantation experiments in chick and in silico modeling that test our hypothesis that cell contact dynamics with each other and the microenvironment promote and sustain either multicellular stream or chain migration. We show that when premigratory cranial NC cells (at the pre-otic level) are transplanted into a more caudal region in the head (at the post-otic level), cells alter their characteristic stream behavior and migrate in chains. Similarly, post-otic NC cells migrate in streams after transplantation into the pre-otic hindbrain, suggesting that local microenvironmental signals dictate the mode of NC cell migration. Simulations of an agent-based model (ABM) that integrates the NC cell behavioral data predict that chain migration critically depends on the interplay of biased cell-cell contact and local microenvironment signals. Together, this integrated modeling and experimental approach suggests new experiments and offers a powerful tool to examine mechanisms that underlie complex cell migration patterns.
1998-03-01
halloysite on lead concentration in solution 57 Figure 41. Solubility of lead carbonate as a function of pH for a total activity aH2C03...Effects of adsorption by halloysite (a clay) on lead concentration in solution. Contours are equilibrium lead concentrations at different clay
Engineered Models of Confined Cell Migration
Paul, Colin D.; Hung, Wei-Chien; Wirtz, Denis; Konstantopoulos, Konstantinos
2017-01-01
Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell–substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact. PMID:27420571
Continental-scale, seasonal movements of a heterothermic migratory tree bat
Cryan, Paul M.; Stricker, Craig A.; Wunder, Michael B.
2014-01-01
Long-distance migration evolved independently in bats and unique migration behaviors are likely, but because of their cryptic lifestyles, many details remain unknown. North American hoary bats (Lasiurus cinereus cinereus) roost in trees year-round and probably migrate farther than any other bats, yet we still lack basic information about their migration patterns and wintering locations or strategies. This information is needed to better understand unprecedented fatality of hoary bats at wind turbines during autumn migration and to determine whether the species could be susceptible to an emerging disease affecting hibernating bats. Our aim was to infer probable seasonal movements of individual hoary bats to better understand their migration and seasonal distribution in North America. We analyzed the stable isotope values of non-exchangeable hydrogen in the keratin of bat hair and combined isotopic results with prior distributional information to derive relative probability density surfaces for the geographic origins of individuals. We then mapped probable directions and distances of seasonal movement. Results indicate that hoary bats summer across broad areas. In addition to assumed latitudinal migration, we uncovered evidence of longitudinal movement by hoary bats from inland summering grounds to coastal regions during autumn and winter. Coastal regions with nonfreezing temperatures may be important wintering areas for hoary bats. Hoary bats migrating through any particular area, such as a wind turbine facility in autumn, are likely to have originated from a broad expanse of summering grounds from which they have traveled in no recognizable order. Better characterizing migration patterns and wintering behaviors of hoary bats sheds light on the evolution of migration and provides context for conserving these migrants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M.J.; Muller, S.J.
1996-12-31
The use of highly elastic polymer solutions has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. Here, we present the results of an extensive experimental study into the shear behavior of an athermal, dilute, binary polymer solution that is believed to be free of many of these effects. Under extended shearing, we observe the migration of polymer species: after shearing for several hundred hours, concentrations that are more than double the initial uniform value can be achieved. Although the solutions are well-described by dumbbell models in shear flows on short-time scales, theoretical predictions substantially underestimatemore » the rate of migration. Flow visualization and rheometric experiments suggest that the origin of this discrepancy could be the anomalous long-time rheology of these solutions. While these fluids display the well-known elastic instability in cone and plate flow above a critical Deborah number, extended shearing reveals that the toroidal secondary flow is eventually replaced by a purely azimuthal shearing flow. In addition, when sheared below the critical condition for the instability, the solutions exhibit a slow but reversible decay in normal stresses. The shear-induced migration of polymer species has been predicted by numerous theoretical studies. However, observations on the highly elastic polymer solutions that are most likely to show polymer migration, are complicated by a number of different physical processes that occur as a result of shearing. These phenomena, which include shear-induced phase separation, elastically-induced hydrodynamic instabilities, mixed solvent effects, shear-induced aggregation, and anomalous transient shear and normal stress behavior are often observed at times earlier than and at shear rates less than those where migration is predicted to occur; hence, the experimental detection of polymer migration has been thwarted by these other physical processes.« less
Yu, Hongchi; Gao, Min; Ma, Yunlong; Wang, Lijuan; Shen, Yang; Liu, Xiaoheng
2018-05-01
angiogenesis plays an important role in the development and progression of tumors, and it involves a series of signaling pathways contributing to the migration of endothelial cells for vascularization and to the invasion of cancer cells for secondary tumor formation. Among these pathways, the focal adhesion kinase (FAK) signaling cascade has been implicated in a variety of human cancers in connection with cell adhesion and migration events leading to tumor angiogenesis, metastasis and invasion. Therefore, the inhibition of FAK in endothelial and/or cancer cells is a potential target for anti‑angiogenic therapy. In the present study, a small‑molecule FAK inhibitor, 1,2,4,5-benzenetetramine tetrahydrochloride (Y15), was used to study the effects of FAK inhibition on the adhesion and migration behaviors of vascular endothelial cells (VECs) and human hepatoblastoma cells. Furthermore, the time-dependent differences in proteins associated with the integrin-mediated FAK/Rho GTPases signaling pathway within 2 h were examined. The results indicated that the inhibition of FAK significantly decreased the migration ability of VECs and human hepatoblastoma cells in a dose-dependent manner. Inhibition of FAK promoted cell detachment by decreasing the expression of focal adhesion components, and blocked cell motility by reducing the level of Rho GTPases. However, the expression of crucial proteins involved in integrin-induced signaling in two cell lines exhibited a time-dependent difference with increased duration of FAK inhibitor treatment, suggesting different mechanisms of FAK-mediated cell migration behavior. These results suggest that the mechanism underlying FAK-mediated adhesion and migration behavior differs among various cells, which is expected to provide evidence for future FAK therapy targeted against tumor angiogenesis.
NASA Astrophysics Data System (ADS)
Langston, Abigail L.; Tucker, Gregory E.
2018-01-01
Understanding how a bedrock river erodes its banks laterally is a frontier in geomorphology. Theories for the vertical incision of bedrock channels are widely implemented in the current generation of landscape evolution models. However, in general existing models do not seek to implement the lateral migration of bedrock channel walls. This is problematic, as modeling geomorphic processes such as terrace formation and hillslope-channel coupling depends on the accurate simulation of valley widening. We have developed and implemented a theory for the lateral migration of bedrock channel walls in a catchment-scale landscape evolution model. Two model formulations are presented, one representing the slow process of widening a bedrock canyon and the other representing undercutting, slumping, and rapid downstream sediment transport that occurs in softer bedrock. Model experiments were run with a range of values for bedrock erodibility and tendency towards transport- or detachment-limited behavior and varying magnitudes of sediment flux and water discharge in order to determine the role that each plays in the development of wide bedrock valleys. The results show that this simple, physics-based theory for the lateral erosion of bedrock channels produces bedrock valleys that are many times wider than the grid discretization scale. This theory for the lateral erosion of bedrock channel walls and the numerical implementation of the theory in a catchment-scale landscape evolution model is a significant first step towards understanding the factors that control the rates and spatial extent of wide bedrock valleys.
Wilkinson, John T; Songy, Chad E; Bumpass, David B; McCullough, Francis L; McCarthy, Richard E
2017-04-03
The Shilla procedure was designed to correct and control early-onset spinal deformity while harnessing a child's remaining spinal growth. It allows for controlled axial skeletal growth within the construct, avoiding the need for frequent surgeries to lengthen implants. We hypothesized that curve characteristics evolve over time after initial apex fusion and placement of the Shilla implants. The purpose of this study was to identify trends in curve evolution after Shilla implantation and understand how these changes influence ultimate outcome. A single-center, retrospective review of all patients with Shilla implants in place for ≥5 years yielded 21 patients. Charts and radiographs were reviewed to compare coronal curve characteristics preoperatively, postoperatively, and at last follow-up to note changes in the apex of the primary curve. Also noted were the development of adjacent compensatory curves, the overall vertical spinal growth, and the need for definitive spinal fusion once skeletal maturity was reached. Of the 21 patients, the curve apex migrated caudally in 12 patients (57%) and cephalad in 1 patient (5%), with a mean migration of 2.7 vertebral levels. Two patients (10%) developed new, significant compensatory curves (1 caudal and 1 cephalad). All patients demonstrated spinal growth in T1-S1 length following index surgery (mean, 45 mm). At skeletal maturity, 10 patients underwent definitive posterior spinal fusion and instrumentation, and 3 underwent implant removal alone. This study constitutes the longest follow-up of Shilla patients evaluating curve and implant behavior. Results of this review suggest that the apex of the fused primary curve shifts in approximately 62% of patients, with nearly all of these (92%) involving a distal migration. Compensatory curves did develop after Shilla placement as well. Overall, these findings represent adding-on distal to the apex after Shilla instrumentation rather than a crankshaft phenomenon about the apex. A better understanding of spinal growth mechanics and outcomes after Shilla placement may improve our ability to appropriately select patients and instrumentation levels. Level III.
Modeling the Buildup of Annular Pressure in Cased and Uncased Annuli of Faulty Wellbores
NASA Astrophysics Data System (ADS)
Lackey, G.; Rajaram, H.
2017-12-01
Structurally sound wellbores are essential to oil and gas production, natural gas storage, and carbon dioxide sequestration operations. Wellbore integrity is easily assessed at the wellhead by the presence of pressure or gas flow in the outer annuli of a well, as it indicates the uncontrolled vertical migration of fluids outside the production casing. This phenomenon is typically referred to as sustained casing pressure (SCP), sustained annular pressure, or surface casing vent flow. Of particular concern is the buildup of pressure in the surface casing annulus. If the surface casing is sealed at the wellhead and cement is not brought into the bottom of the casing, annular pressure that builds induces gas migration when the fluid and entry pressure of the formation at the bottom of the surface casing is exceeded. Multiple incidents of stray gas migration from oil and gas operations have contaminated water wells in Colorado, Pennsylvania, and Ohio through this mechanism. Natural gas escaping the #25 Standard Senson well at the Aliso Gas storage facility in California, the largest accidental release of greenhouse gases in US history, also followed this pathway. Previous studies have modeled the buildup of SCP in faulty wells with fully-cased annuli that are isolated from the surrounding formation. However, the majority of onshore oil and gas wells in the US are constructed with uncased outermost annuli that are hydraulically connected to the surrounding subsurface. In this study, we adapt current approaches of modeling SCP to include the regulation of annular liquid level by formation fluid pressure, dissolution of gas into the annular liquids, the transport of aqueous gas by crossflow into deep formations, and gas migration away from the well, when the entry pressure of the formations or fractures along the uncased annulus is exceeded, to compare the buildup behavior of SCP in both uncased and fully-cased annuli. We consider well construction and subsurface geology representative of the Wattenberg Field in Colorado and interpret observations of sustained casing pressure collected by the Colorado Oil and Gas Conservation Commission. We demonstrate that the potential negative consequences of integrity loss are much greater for an uncased well than for fully-cased well.
NASA Astrophysics Data System (ADS)
Lemay, M.; Cojan, I.; Rivoirard, J.; Grimaud, J. L.; Ors, F.
2017-12-01
Channelized turbidite systems are among the most important hydrocarbon reservoirs. Yet building realistic turbidite reservoir models is still a challenge. Flumy has been firstly developed to simulate the long-term evolution of aggrading meandering fluvial systems in order to build facies reservoir models. In this study, Flumy has been transposed to channelized turbidite systems. The channel migration linear model of Imran et al. (1999) dedicated to subaqueous flows has been implemented. The whole model has been calibrated taking into account the differences on channel morphology, avulsion frequency, and aggradation and migration rates. This calibration and the comparison of the model to natural systems rely on: i) the channel planform morphology characterized by the meander wavelength, amplitude, and sinuosity; ii) the channel trajectory and the resulting stratigraphic architecture described using Jobe et al. (2016) indexes. Flumy succeeds in reproducing turbidite channel planform morphology as shown by the mean sinuosity of 1.7, the wavelength to width and amplitude to width ratios around 4 and 1 respectively. First-order meander architecture, characterized by the ratios meander belt width versus channel width, meander belt thickness versus channel depth, and the deduced stratigraphic mobility number (the ratio between lateral versus vertical channel displacements), is also well reproduced: 2.5, 3.8, and 0.6 respectively. Both lateral and downstream channel normalized migrations are around 3.5 times lower than in fluvial systems. All these values are absolutely coherent with the observations. In the other hand, the channel trajectory observed on seismic cross sections (hockey stick geometry) is not fully reproduced: the local stratigraphic mobility number is divided upward by 3 whereas up to 10 is expected. This behavior is generally explained in the literature by an increasing aggradation rate through time and/or flow stripping at outer bend that decreases lateral migration rate (Peakall et al., 2000). These processes are not currently simulated in Flumy, and need to be implemented. This study shows that Flumy model reproduces quite well the first order characteristics observed in the nature and can be used to simulate channelized turbidite reservoirs.
Lavoie, Michel; Raven, John A; Levasseur, Maurice
2016-04-01
Little information is available on the energetics of buoyancy modulation in aflagellate phytoplankton, which comprises the majority of autotrophic cells found in the ocean. Here, we computed for three aflagellate species of marine phytoplankton (Emiliania huxleyi, Thalassiosira pseudonana, and Ethmodiscus rex) the theoretical minimum energy cost as photons absorbed and nitrogen resource required of the key physiological mechanisms (i.e., replacement of quaternary ammonium by dimethyl-sulfoniopropionate, storage of polysaccharides, and cell wall biosynthesis) affecting the cell's vertical movement as a function of nitrogen (N) availability. These energy costs were also normalized to the capacity of each buoyancy mechanism to modulate sinking or rising rates based on Stokes' law. The three physiological mechanisms could act as ballast in the three species tested in conditions of low N availability at a low fraction (<12%) of the total photon energy cost for growth. Cell wall formation in E. huxleyi was the least costly ballast strategy, whereas in T. pseudonana, the photon energy cost of the three ballast strategies was similar. In E. rex, carbohydrate storage and mobilization appear to be energetically cheaper than modulations in organic solute synthesis to achieve vertical migration. This supports the carbohydrate-ballast strategy for vertical migration for this species, but argues against the theory of replacement of low- or high-density organic solutes. This study brings new insights into the energy cost and potential selective advantages of several strategies modulating the buoyancy of aflagellate marine phytoplankton. © 2016 Phycological Society of America.
Miller, Mark P.; Mullins, Thomas D.; Parrish, John G.; Walters, Jeffrey R.; Haig, Susan M.
2012-01-01
Birds employ numerous strategies to cope with seasonal fluctuations in high-quality habitat availability. Long distance migration is a common tactic; however, partial migration is especially common among broadly distributed species. Under partial migration systems, a portion of a species migrates, whereas the remainder inhabits breeding grounds year round. In this study, we identified effects of migratory behavior variation on genetic structure and diversity of American Kestrels (Falco sparverius), a widespread partial migrant in North America. American Kestrels generally migrate; however, a resident group inhabits the southeastern United States year round. The southeastern group is designated as a separate subspecies (F. s. paulus) from the migratory group (F. s. sparverius). Using mitochondrial DNA and microsatellites from 183 and 211 individuals, respectively, we illustrate that genetic structure is stronger among nonmigratory populations, with differentiation measures ranging from 0.060 to 0.189 depending on genetic marker and analysis approach. In contrast, measures from western North American populations ranged from 0 to 0.032. These findings suggest that seasonal migratory behavior is also associated with natal and breeding dispersal tendencies. We likewise detected significantly lower genetic diversity within nonmigratory populations, reflecting the greater influence of genetic drift in small populations. We identified the signal of population expansion among nonmigratory populations, consistent with the recent establishment of higher latitude breeding locations following Pleistocene glacial retreat. Differentiation of F. s. paulus and F. s. sparverius reflected subtle differences in allele frequencies. Because migratory behavior can evolve quickly, our analyses suggest recent origins of migratory American Kestrel populations in North America.
Perry, R.W.; Kock, Tobias J.; Kritter , M.A; Rondorf, Dennis W.
2007-01-01
During 2005, we conducted a radio-telemetry study to answer a number of basic questions about the migration behavior of adult Spring Chinook salmon (Oncorhynchus tshawytscha) released into the upper Cowlitz River watershed. We also conducted a pilot study of adult Coho salmon (Oncorhynchus kisutch) using radio-tags recovered from adult spring Chinook salmon. This data is included as an Appendix. Our study was designed to evaluate the dispersal of adult spring Chinook salmon to determine the proportion of the run 1) spawning in the Cispus River, 2) spawning in the Cowlitz River, 3) passing downstream through Cowlitz Falls Dam into Riffe Lake, and 4) remaining in Lake Scanewa. We also examined spatial patterns of movement in the study area and temporal patterns of fish movements. Last, we examined differences in migration behavior between hatchery and wild fish and male and female fish.
Huang, Hua-Jun; Yuan, Xing-Zhong
2016-01-01
Various hydrothermal treatment methods, including hydrothermal carbonization, liquefaction and sub/super-critical water gasification, have been applied to the disposal of sewage sludge for producing bio-materials or bio-fuels. It has become a research hotspot whether the heavy metals contained in sewage sludge can be well treated/stabilized after the hydrothermal treatments. This review firstly summarized the methods of assessing heavy metals' contamination level/risk and then discussed the migration and transformation behaviors of heavy metals from the following aspects: the effect of reaction temperature, the effect of additives (catalysts and other biomass), the effect of the type of solvent and the effect of reaction time. This review can provide an important reference for the further study of the migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
3D printing of biomimetic microstructures for cancer cell migration.
Huang, Tina Qing; Qu, Xin; Liu, Justin; Chen, Shaochen
2014-02-01
To understand the physical behavior and migration of cancer cells, a 3D in vitro micro-chip in hydrogel was created using 3D projection printing. The micro-chip has a honeycomb branched structure, aiming to mimic 3D vascular morphology to test, monitor, and analyze differences in the behavior of cancer cells (i.e. HeLa) vs. non-cancerous cell lines (i.e. 10 T1/2). The 3D Projection Printing system can fabricate complex structures in seconds from user-created designs. The fabricated microstructures have three different channel widths of 25, 45, and 120 microns wide to reflect a range of blood vessel diameters. HeLa and 10 T1/2 cells seeded within the micro-chip were then analyzed for morphology and cell migration speed. 10 T1/2 cells exhibited greater changes in morphology due to channel size width than HeLa cells; however, channel width had a limited effect on 10 T1/2 cell migration while HeLa cancer cell migration increased as channel width decreased. This physiologically relevant 3D cancer tissue model has the potential to be a powerful tool for future drug discoveries and cancer migration studies.
An avoidance behavior model for migrating whale populations
NASA Astrophysics Data System (ADS)
Buck, John R.; Tyack, Peter L.
2003-04-01
A new model is presented for the avoidance behavior of migrating marine mammals in the presence of a noise stimulus. This model assumes that each whale will adjust its movement pattern near a sound source to maintain its exposure below its own individually specific maximum received sound-pressure level, called its avoidance threshold. The probability distribution function (PDF) of this avoidance threshold across individuals characterizes the migrating population. The avoidance threshold PDF may be estimated by comparing the distribution of migrating whales during playback and control conditions at their closest point of approach to the sound source. The proposed model was applied to the January 1998 experiment which placed a single acoustic source from the U.S. Navy SURTASS-LFA system in the migration corridor of grey whales off the California coast. This analysis found that the median avoidance threshold for this migrating grey whale population was 135 dB, with 90% confidence that the median threshold was within +/-3 dB of this value. This value is less than the 141 dB value for 50% avoidance obtained when the 1984 ``Probability of Avoidance'' model of Malme et al.'s was applied to the same data. [Work supported by ONR.
Collective cell migration in development
Scarpa, Elena
2016-01-01
During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective. PMID:26783298
Intravital characterization of tumor cell migration in pancreatic cancer
Beerling, Evelyne; Oosterom, Ilse; Voest, Emile; Lolkema, Martijn; van Rheenen, Jacco
2016-01-01
ABSTRACT Curing pancreatic cancer is difficult as metastases often determine the poor clinical outcome. To gain more insight into the metastatic behavior of pancreatic cancer cells, we characterized migratory cells in primary pancreatic tumors using intravital microscopy. We visualized the migratory behavior of primary tumor cells of a genetically engineered pancreatic cancer mouse model and found that pancreatic tumor cells migrate with a mesenchymal morphology as single individual cells or collectively as a stream of non-cohesive single motile cells. These findings may improve our ability to conceive treatments that block metastatic behavior. PMID:28243522
NASA Astrophysics Data System (ADS)
Santos, A. M. P. A.; Nieblas, A. E.; Verley, P.; Teles-Machado, A.; Bonhommeau, S.; Lett, C.; Garrido, S.; Peliz, A.
2017-12-01
The European sardine (Sardina pilchardus) is the most important small pelagic fishery of the Western Iberia Upwelling Ecosystem (WIUE). Recently, recruitment of this species has declined due to changing environmental conditions. Furthermore, controversies exist regarding its population structure with barriers thought to exist between the Atlantic-Iberian Peninsula, Northern Africa, and the Mediterranean. Few studies have investigated the transport and dispersal of sardine eggs and larvae off Iberia and the subsequent impact on larval recruitment variability. Here, we examine these issues using a Regional Ocean Modeling System climatology (1989-2008) coupled to the Lagrangian transport model, Ichthyop. Using biological parameters from the literature, we conduct simulations that investigate the effects of spawning patchiness, diel vertical migration behaviors, and egg buoyancy on the transport and recruitment of virtual sardine ichthyoplankton on the continental shelf. We find that release area, release depth, and month of release all significantly affect recruitment. Patchiness has no effect and diel vertical migration causes slightly lower recruitment. Egg buoyancy effects are significant and act similarly to depth of release. As with other studies, we find that recruitment peaks vary by latitude, explained here by the seasonal variability of offshore transport. We find weak, continuous alongshore transport between release areas, though a large proportion of simulated ichthyoplankton transport north to the Cantabrian coast (up to 27%). We also show low level transport into Morocco (up to 1%) and the Mediterranean (up to 8%). The high proportion of local retention and low but consistent alongshore transport supports the idea of a series of metapopulations along this coast. This study was supported by the Portuguese Science and Technology Foundation (FCT) through the research project MODELA (PTDC/MAR/098643/2008) and MedEx (MARIN-ERA/MAR/0002/2008). MedEx is also a project of the EC FP6 ERA-NET Program. This study also contributes to the FCT funded Strategic Project Pest-OE/MAR/UI0199/2011 and UID/Multi/04326/2013. SG was supported by FCT throughout research contract IF/01546/2015. ATM was supported by FCT throughout the PhD grant SFRH/BD/40142/2007.
Field, Christopher R; Dayer, Ashley A; Elphick, Chris S
2017-08-22
The human aspects of conservation are often overlooked but will be critical for identifying strategies for biological conservation in the face of climate change. We surveyed the behavioral intentions of coastal landowners with respect to various conservation strategies aimed at facilitating ecosystem migration for tidal marshes. We found that several popular strategies, including conservation easements and increasing awareness of ecosystem services, may not interest enough landowners to allow marsh migration at the spatial scales needed to mitigate losses from sea-level rise. We identified less common conservation strategies that have more support but that are unproven in practice and may be more expensive. Our results show that failure to incorporate human dimensions into ecosystem modeling and conservation planning could lead to the use of ineffective strategies and an overly optimistic view of the potential for ecosystem migration into human dominated areas.
Field, Christopher R.; Dayer, Ashley A.; Elphick, Chris S.
2017-01-01
The human aspects of conservation are often overlooked but will be critical for identifying strategies for biological conservation in the face of climate change. We surveyed the behavioral intentions of coastal landowners with respect to various conservation strategies aimed at facilitating ecosystem migration for tidal marshes. We found that several popular strategies, including conservation easements and increasing awareness of ecosystem services, may not interest enough landowners to allow marsh migration at the spatial scales needed to mitigate losses from sea-level rise. We identified less common conservation strategies that have more support but that are unproven in practice and may be more expensive. Our results show that failure to incorporate human dimensions into ecosystem modeling and conservation planning could lead to the use of ineffective strategies and an overly optimistic view of the potential for ecosystem migration into human dominated areas. PMID:28790190
Broders-Bondon, Florence; Paul-Gilloteaux, Perrine; Gazquez, Elodie; Heysch, Julie; Piel, Matthieu; Mayor, Roberto; Lambris, John D.; Dufour, Sylvie
2016-01-01
We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cad-herin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cad-herin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders. PMID:27041467
NASA Astrophysics Data System (ADS)
Taisne, B.; Caudron, C.; Kugaenko, Y.; Saltykov, V.
2015-12-01
In contrast of the 1975-76 Tolbachik eruption, the 2012-2013 Tolbachik eruption was not preceded by any striking change in seismic activity. By processing the Klyuchevskoy volcano group seismic data with the Seismic Amplitude Ratio Analysis (SARA) method, we gain insights into the dynamics of magma transfer prior to this important eruption. We highlighted a clear migration of the source of the microseismicity within the seismic swarm, starting 20 hours before the reported eruption onset (05:15 UTC, 26 November 2012). This migration proceeded in different phases and ended when eruptive tremor, corresponding to lava extrusion, was recorded (at ~11:00 UTC, 27 November 2012). In order to get a first order approximation of the location of the magma, we compare the calculated seismic intensity ratios with the theoretical ones. As expected, the observations suggest a migration toward the eruptive vent. However, we explain the pre-eruptive observed ratios by a vertical migration under the northern slope of Plosky Tolbachik volcano that would interact at shallower depth with an intermediate storage region and initiate the lateral migration toward the eruptive vents. Another migration is also captured by this technique and coincides with a seismic swarm that started 16-20 km to the south of Plosky Tolbachik at 20:31 UTC on November 28 and lasted for more than 2 days. This seismic swarm is very similar to the seismicity preceding the 1975-76 Tolbachik eruption and can be considered as a possible aborted eruption.
Seasonal effects of wind conditions on migration patterns of soaring American white pelican.
Gutierrez Illan, Javier; Wang, Guiming; Cunningham, Fred L; King, D Tommy
2017-01-01
Energy and time expenditures are determinants of bird migration strategies. Soaring birds have developed migration strategies to minimize these costs, optimizing the use of all the available resources to facilitate their displacement. We analysed the effects of different wind factors (tailwind, turbulence, vertical updrafts) on the migratory flying strategies adopted by 24 satellite-tracked American white pelicans (Pelecanus erythrorhynchos) throughout spring and autumn in North America. We hypothesize that different wind conditions encountered along migration routes between spring and autumn induce pelicans to adopt different flying strategies and use of these wind resources. Using quantile regression and fine-scale atmospheric data, we found that the pelicans optimized the use of available wind resources, flying faster and more direct routes in spring than in autumn. They actively selected tailwinds in both spring and autumn displacements but relied on available updrafts predominantly in their spring migration, when they needed to arrive at the breeding regions. These effects varied depending on the flying speed of the pelicans. We found significant directional correlations between the pelican migration flights and wind direction. In light of our results, we suggest plasticity of migratory flight strategies by pelicans is likely to enhance their ability to cope with the effects of ongoing climate change and the alteration of wind regimes. Here, we also demonstrate the usefulness and applicability of quantile regression techniques to investigate complex ecological processes such as variable effects of atmospheric conditions on soaring migration.
Seasonal effects of wind conditions on migration patterns of soaring American white pelican
Wang, Guiming; Cunningham, Fred L.; King, D. Tommy
2017-01-01
Energy and time expenditures are determinants of bird migration strategies. Soaring birds have developed migration strategies to minimize these costs, optimizing the use of all the available resources to facilitate their displacement. We analysed the effects of different wind factors (tailwind, turbulence, vertical updrafts) on the migratory flying strategies adopted by 24 satellite-tracked American white pelicans (Pelecanus erythrorhynchos) throughout spring and autumn in North America. We hypothesize that different wind conditions encountered along migration routes between spring and autumn induce pelicans to adopt different flying strategies and use of these wind resources. Using quantile regression and fine-scale atmospheric data, we found that the pelicans optimized the use of available wind resources, flying faster and more direct routes in spring than in autumn. They actively selected tailwinds in both spring and autumn displacements but relied on available updrafts predominantly in their spring migration, when they needed to arrive at the breeding regions. These effects varied depending on the flying speed of the pelicans. We found significant directional correlations between the pelican migration flights and wind direction. In light of our results, we suggest plasticity of migratory flight strategies by pelicans is likely to enhance their ability to cope with the effects of ongoing climate change and the alteration of wind regimes. Here, we also demonstrate the usefulness and applicability of quantile regression techniques to investigate complex ecological processes such as variable effects of atmospheric conditions on soaring migration. PMID:29065188
NASA Astrophysics Data System (ADS)
Dittkrist, K.-M.; Mordasini, C.; Klahr, H.; Alibert, Y.; Henning, T.
2014-07-01
Context. Several recent studies have found that planet migration in adiabatic disks differs significantly from migration in isothermal disks. Depending on the thermodynamic conditions, that is, the effectiveness of radiative cooling, and on the radial surface density profile, planets migrate inward or outward. Clearly, this will influence the semimajor-axis-to-mass distribution of planets predicted by population-synthesis simulations. Aims: Our goal is to study the global effects of radiative cooling, viscous torque desaturation, gap opening, and stellar irradiation on the tidal migration of a synthetic planet population. Methods: We combined results from several analytical studies and 3D hydrodynamic simulations in a new semi-analytical migration model for the application in our planet population synthesis calculations. Results: We find a good agreement of our model with torques obtained in 3D radiative hydrodynamic simulations. A typical disk has three convergence zones to which migrating planets move from the in- and outside. This strongly affects the migration behavior of low-mass planets. Interestingly, this leads to a slow type II like migration behavior for low-mass planets captured in these zones even without an ad hoc migration rate reduction factor or a yet-to-be-defined halting mechanism. This means that the new prescription of migration that includes nonisothermal effects makes the previously widely used artificial migration rate reduction factor obsolete. Conclusions: Outward migration in parts of a disk helps some planets to survive long enough to become massive. The convergence zones lead to potentially observable accumulations of low-mass planets at certain semimajor axes. Our results indicate that more studies of the mass at which the corotation torque saturates are needed since its value has a main impact on the properties of planet populations. Appendices A and B are available in electronic form at http://www.aanda.org
Miehls, Scott M.; Johnson, Nicholas; Haro, Alexander
2017-01-01
We tested the efficacy of a vertically oriented field of pulsed direct current (VEPDC) created by an array of vertical electrodes for guiding downstream-moving juvenile Sea Lampreys Petromyzon marinus to a bypass channel in an artificial flume at water velocities of 10–50 cm/s. Sea Lampreys were more likely to be captured in the bypass channel than in other sections of the flume regardless of electric field status (on or off) or water velocity. Additionally, Sea Lampreys were more likely to be captured in the bypass channel when the VEPDC was active; however, an interaction between the effects of VEPDC and water velocity was observed, as the likelihood of capture decreased with increases in water velocity. The distribution of Sea Lampreys shifted from right to left across the width of the flume toward the bypass channel when the VEPDC was active at water velocities less than 25 cm/s. The VEPDC appeared to have no effect on Sea Lamprey distribution in the flume at water velocities greater than 25 cm/s. We also conducted separate tests to determine the threshold at which Sea Lampreys would become paralyzed. Individuals were paralyzed at a mean power density of 37.0 µW/cm3. Future research should investigate the ability of juvenile Sea Lampreys to detect electric fields and their specific behavioral responses to electric field characteristics so as to optimize the use of this technology as a nonphysical guidance tool across variable water velocities.
Liu, Jia; Zhang, Wenyan; Du, Haijian; Leng, Xiaoyun; Li, Jin-Hua; Pan, Hongmiao; Xu, Jianhong; Wu, Long-Fei; Xiao, Tian
2018-04-24
There are two genetically distinct morphological types of multicellular magnetotactic prokaryotes (MMPs) in the intertidal zone of Lake Yuehu (China): ellipsoidal MMPs (eMMPs) and spherical MMPs (sMMPs). We studied the vertical distribution of both types of MMPs in the sediment at Lake Yuehu during 1 year. Both types of MMPs were observed at sediment depths ranging from 1 to 34 cm, depending on the seasons. The eMMPs distributed at depths of 2-34 cm during spring, 1-11 cm during summer, 2-21 cm during autumn and 9-32 cm during winter. The eMMP species Candidatus Magnetananas rongchenensis, with magnetite magnetosomes, dominated at all distribution depths. These results suggested that Ca. M. rongchenensis migrated vertically during four seasons. The vertical profiles of oxidation-reduction potential (ORP) in Lake Yuehu changed seasonally, and these changes coincided with the seasonal distribution of MMPs, suggesting that the ORP affected the vertical distribution of MMPs. In addition, high concentrations of ammonium and silicate were associated with low abundances of MMPs. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules
Lysko, Daniel E.; Putt, Mary
2014-01-01
Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713
Development of migratory behavior in northern white-tailed deer
Nelson, M.E.
1998-01-01
I examined the development of migratory behavior in northern white-tailed deer (Odocoileus virginianus) from 1975 to 1996 by radio-tracking adult females and their fawns. Of 40 migratory fawns with radio-collared mothers, all returned from winter ranges to their mothers' summer ranges, as did 36 fawns with unknown mothers. Of 1.5- to 3.0-year-old daughters with radio-collared mothers, 67-80% continued migrating with mothers to their traditional summer ranges. Eighty-four percent (16/19) of yearling dispersers continued migratory behavior after replacing their natal summer ranges with their dispersal ranges, and 88% (14/16) of these continued migrating to their natal winter ranges, some through at least 6.5 years of age. Twenty percent (4/20) of nonmigratory fawns dispersed as yearlings, and two became migratory between their dispersal summer ranges and new winter ranges, one through 4.9 years of age and another through 6.5 years. Seven fawns changed their movement behavior from migratory to nonmigratory or vice versa as yearlings or when older, indicating that migratory behavior is not under rigid genetic control. Thus, the adaptiveness of migration must depend upon natural selection operating upon varying capacities and propensities to learn and mimic long-distance movements and not upon migratory behavior directly.
Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells
Hanson, Lindsey; Zhao, Wenting; Lou, Hsin-Ya; Lin, Ziliang Carter; Lee, Seok Woo; Chowdary, Praveen; Cui, Yi; Cui, Bianxiao
2016-01-01
The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells. PMID:25984833
Theories of transporting processes of Cu in Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Su, Chunhua; Zhu, Sixi; Wu, Yunjie; Zhou, Wei
2018-02-01
Many marine bays have been polluted along with the rapid development of industry and population size, and understanding the transporting progresses of pollutants is essential to pollution control. In order to better understanding the transporting progresses of pollutants in marine, this paper carried on a comprehensive research of the theories of transporting processes of Cu in Jiaozhou Bay. Results showed that the transporting processes of Cu in this bay could be summarized into seven key theories including homogeneous theory, environmental dynamic theory, horizontal loss theory, source to waters transporting theory, sedimentation transporting theory, migration trend theory and vertical transporting theory, respectively. These theories helpful to better understand the migration progress of pollutants in marine bay.
NASA Astrophysics Data System (ADS)
Pugh, P. R.
Siphonophores are by far the dominant macroplanktonic-micronektonic taxon of animals present in the 48 hr series of samples as a whole. A total of 35 species were identified, with four of these making up over 90% of the total numbers. Details of how the siphonophore population was estimated are discussed, but few species underwent clear cut diel vertical migration although there was considerable variability in their distributions over the sampling periods. The hydrography of the sampling area was investigated in relation to its possible effects on the faunal assemblages, and the important role of siphonophores as carnivores in the planktonic food chain was discussed.
Naito, Yasuhiko; Costa, Daniel P; Adachi, Taiki; Robinson, Patrick W; Peterson, Sarah H; Mitani, Yoko; Takahashi, Akinori
2017-08-01
Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota-poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal-mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish ( Icosteus aenigmaticus ) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals.
NASA Astrophysics Data System (ADS)
Tyler, R.
2017-12-01
Resonant tidal excitation of an atmosphere will arrive in predictable situations where there is a match in form and frequency between tidal forces and the atmosphere's eigenmodes of oscillation. The resonant response is typically several orders of magnitude more energetic than in non-resonant configurations involving only slight differences in parameters, and the behavior can be quite different because different oscillation modes are favored in each. The work presented provides first a generic description of these resonant states by demonstrating the behavior of solutions within the very large parameter space of potential scenarios. This generic description of the range of atmospheric tidal response scenarios is further used to create a taxonomy for organizing and understanding various tidally driven dynamic regimes. The resonances are easily identified by associated peaks in the power. But because these peaks may be relatively narrow, millions of solutions can be required to complete the description of the solution's dependence over the range of parameter values. (Construction of these large solution spaces is performed using a fast, semi-analytical method that solves the forced, dissipative, Laplace Tidal Equations subject to the constraint of dynamical consistency (through a separation constant) with solutions describing the vertical structure.) Filling in the solution space in this way is used not only to locate the parameter coordinates of resonant scenarios but also to study allowed migration paths through this space. It is suggested that resonant scenarios do not arrive through happenstance but rather because secular variations in parameters make the configuration move into the resonant scenario, with associated feedbacks either accelerating or halting the configuration migration. These results are then used to show strong support for the hypothesis by R. Lindzen that the regular banding (belts/zones/jets) on Jupiter and Saturn are driven by tides. The results also provide important, though less specific, support for a second hypothesis that inflated atmospheres inferred for a number of giant extra-solar planets are due to thermal or gravitational tides.
Kolambkar, Yash M.; Bajin, Mehmet; Wojtowicz, Abigail; Hutmacher, Dietmar W.; García, Andrés J.
2014-01-01
Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration. PMID:24020454
Takahashi, Junko; Wakabayashi, Shokichi; Tamura, Kenji; Onda, Yuichi
2018-02-01
After the Fukushima Dai-ichi Nuclear Power Plant accident on March 2011, continuous monitoring of the detailed vertical distribution of radiocesium in soil is required to evaluate the fate of radiocesium and establish strategies for remediation and management of the contaminated land. It is especially important to investigate paddy soil because little knowledge has been accumulated for paddy soil and wetland rice is a major staple in Japan. Therefore, we monitored the vertical distribution of 137 Cs in abandoned paddy soil in a planned evacuation zone from June 2011 to March 2016. The decontamination works (i.e., 5 cm of surface soil removal and re-covering with uncontaminated soil) were conducted by the government in 2015. As a result of monitoring, the 137 Cs gradually migrated downward with time and the 137 Cs concentration in the 0-10 cm soil was almost homogenous in October 2014, although it was non-cultivated. The liner relationship was obtained between the median depth, which is the thickness of a soil layer containing half of the total 137 Cs inventory, and the time after the accident, indicating the migration rate was constant (1.3 cm y -1 ) before the decontamination works. After the decontamination works, the 137 Cs concentration in the uppermost surface layer was reduced by 90%, however the total 137 Cs inventory was reduced by only 50-70%. It was shown that the efficiency of 137 Cs removal by the decontamination works decrease linearly over time in fields like the studied paddy, in which the homogenization of 137 Cs concentration occurred. Conversely, the downward migration of 137 Cs to subsurface layers deeper than 10 cm (i.e., plowpan layer) with low permeability rarely occurred. It is expected that these unique trends in distribution and migration of 137 Cs would be found in abandoned paddy soils with properties similar to the studied soil, sandy loam but poorly drained because of the low permeable plowpan layer, although further validation is necessary. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pérez, Jonathan H; Furlow, J David; Wingfield, John C; Ramenofsky, Marilyn
2016-08-01
Appropriate timing of migratory behavior is critical for migrant species. For many temperate zone birds in the spring, lengthening photoperiod is the initial cue leading to morphological, physiological and behavior changes that are necessary for vernal migration and breeding. Strong evidence has emerged in recent years linking thyroid hormone signaling to the photoinduction of breeding in birds while more limited information suggest a potential role in the regulation of vernal migration in photoperiodic songbirds. Here we investigate the development and expression of the vernal migratory life history stage in captive Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) in a hypothyroidic state, induced by chemical inhibition of thyroid hormone production. To explore possible variations in the effects of the two thyroid hormones, triiodothyronine and thyroxine, we subsequently performed a thyroid inhibition coupled with replacement therapy. We found that chemical inhibition of thyroid hormones resulted in complete abolishment of mass gain, fattening, and muscle hypertrophy associated with migratory preparation as well as resulting in failure to display nocturnal restlessness behavior. Replacement of thyroxine rescued all of these elements to near control levels while triiodothyronine replacement displayed partial or delayed rescue. Our findings support thyroid hormones as being necessary for the expression of changes in morphology and physiology associated with migration as well as migratory behavior itself. Copyright © 2016 Elsevier Inc. All rights reserved.
Lexical Processes in the Recognition of Japanese Horizontal and Vertical Compounds
ERIC Educational Resources Information Center
Miwa, Koji; Dijkstra, Ton
2017-01-01
This lexical decision eye-tracking study investigated whether horizontal and vertical readings elicit comparable behavioral patterns and whether reading directions modulate lexical processes. Response times and eye movements were recorded during a lexical decision task with Japanese bimorphemic compound words presented vertically. The data were…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, M.A.
1989-01-01
Use of migration stopovers by radio-marked whooping cranes (Grus americana) between Aransas National Wildlife Refuge, Texas, and central Saskatchewan was studied in fall 1981-83 and spring 1983-84 as part of a cooperative program with the Canadian Wildlife Service. Twenty-seven cranes were monitored for one or several seasons, including nine radio-marked birds and others that associated with them. Whooping cranes showed variations in their use of migration habitats, feeding primarily in a variety of croplands and roosting primarily in palustrine wetlands. More than 40% of the roosting wetlands were smaller than 0.5 ha. Although heavily vegetated wetlands were generally not used,more » family groups appeared to select more heavily vegetated wetlands than nonfamilies. Juveniles allocated 25% more time to foraging than did parents. Parents increased their foraging rate and showed less alert behavior in spring migration. Dissociation of parents and young occurred late in spring migration and after arrival on the breeding grounds.« less
Yi, Pan; Xiao, Kui; Ding, Kangkang; Dong, Chaofang; Li, Xiaogang
2017-01-01
The electrochemical migration (ECM) behavior of copper-clad laminate (PCB-Cu) and electroless nickel/immersion gold printed circuit boards (PCB-ENIG) under thin electrolyte layers of different thicknesses containing 0.1 M Na2SO4 was studied. Results showed that, under the bias voltage of 12 V, the reverse migration of ions occurred. For PCB-Cu, both copper dendrites and sulfate precipitates were found on the surface of FR-4 (board material) between two plates. Moreover, the Cu dendrite was produced between the two plates and migrated toward cathode. Compared to PCB-Cu, PCB-ENIG exhibited a higher tendency of ECM failure and suffered from seriously short circuit failure under high relative humidity (RH) environment. SKP results demonstrated that surface potentials of the anode plates were greater than those of the cathode plates, and those potentials of the two plates exhibited a descending trend as the RH increased. At the end of the paper, an electrochemical migration corrosion failure model of PCB was proposed. PMID:28772497
Phoenix, D.A.
1952-01-01
Whatever mode of origin is used to explain the deposits, geologists almost without exception, agree that the metals were transported by solutions that have migrated through the sediments for considerable distances. For this reason, a study of the horizontal and vertical transmissibility characteristics of all exposed sedimentary formations on the Colorado Plateau is planned.
VERTICAL MIGRATION OF RADIONUCLIDES IN THE VICINITY OF THE CHERNOBYL CONFINEMENT SHELTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.; Marra, J.
2011-10-01
Studies on vertical migration of Chernobyl-origin radionuclides in the 5-km zone of the Chernobyl Nuclear Power Plant (ChNPP) in the area of the Red Forest experimental site were completed. Measurements were made by gamma spectrometric methods using high purity germanium (HPGe) detectors with beryllium windows. Alpha-emitting isotopes of plutonium were determined by the measurement of the x-rays from their uranium progeny. The presence of {sup 60}Co, {sup 134,137}Cs, {sup 154,155}Eu, and {sup 241}Am in all soil layers down to a depth of 30 cm was observed. The presence of {sup 137}Cs and {sup 241}Am were noted in the area containingmore » automorphous soils to a depth of 60 cm. In addition, the upper soil layers at the test site were found to contain {sup 243}Am and {sup 243}Cm. Over the past ten years, the {sup 241}Am/{sup 137}Cs ratio in soil at the experimental site has increased by a factor of 3.4, nearly twice as much as would be predicted based solely on radioactive decay. This may be due to 'fresh' fallout emanating from the ChNPP Confinement Shelter.« less
Kim, Young Sug; Jeong, Chang Su; Seong, Gi Tak; Han, In Sung; Lee, Young Sik
2010-09-01
The diurnal vertical migration of Cochlodinium polykrikoides (C. polykrikoides), which caused a red tide in the Korean coastal waters of the East Sea/Sea of Japan in September 2003, was examined by determining the time-dependent changes in the density of living cells in relation to the depth of the water column. The ascent of this species into the surface layer (depth of water 2 m) occurred during 1400-1500. The descent started at 1600 and a high distribution rate (86%) at 15-20 m was observed at 0300. During the ascent, the cells were widely distributed at each depth level from 0600 hr and at 0800-1100, the cells were primarily distributed in the middle layer (0-6 m). The concentration of dissolved inorganic nitrogen was generally < or = 2.86 micromol l(-1), but at 1400-1500, the concentration in the surface layer reduced to < or = 0.14 micromol l(-1). Moreover, the concentration gradually increased as the depth increased to > or = 5 m. These results showed that the nutrient-consumption rate associated with the proliferation of C. polykrikoides during a red tide is more influenced by the inorganic-nitrogen resources ratherthan the inorganic-phosphorus compounds.
Empirical evaluation of predator-driven diel vertical migration in Lake Superior
Stockwell, J.D.; Hrabik, T.R.; Jensen, O.P.; Yule, D.L.; Balge, M.
2010-01-01
Recent studies on Lake Superior suggest that diel vertical migration (DVM) of prey (generalized Coregonus spp.) may be influenced by the density of predatory siscowet (Salvelinus namaycush). We empirically evaluated this hypothesis using data from acoustic, midwater trawl, and bottom trawl sampling at eight Lake Superior sites during three seasons in 2005 and a subset of sites in 2006. We expected the larger-bodied cisco (Coregonus artedi) to exhibit a shallower DVM compared with the smaller-bodied kiyi (Coregonus kiyi). Although DVM of kiyi and cisco were consistent with expectations of DVM as a size-dependent, predator-mediated process, we found no relationship between siscowet density and the magnitude of DVM of either coregonid. Cisco appear to have a size refuge from siscowet predation. Kiyi and siscowet co-occur in demersal habitat > 150 m during the day, where visual predation is unlikely, suggesting predator avoidance is not a factor in the daytime distribution of kiyi. Seasonal patterns of kiyi DVM were consistent with reported DVM of their primary prey Mysis relicta. Our results suggest that consideration of nonvisual foraging, rather than lightbased foraging theory (i.e., the antipredation window), is necessary to understand the processes driving DVM in deepwater systems.
Ecology of an estuarine mysid shrimp in the Columbia River (USA)
Haskell, C.A.; Stanford, J.A.
2006-01-01
The estuarine mysid, Neomysis mercedis, has colonized John Day and other run-of-the-river Reservoirs of the Columbia River, over 400 km from the estuary. In John Day Reservoir N. mercedis numbers peaked (2 m-3) in August in areas near the dam in association with lower water velocity and softer bottom than at the upstream sampling sites. Neomysis broods were primarily released in late spring and early fall. Gut content analysis showed that Neomysis feeds mostly on cladoceran zooplankton and rotifers in John Day Reservoir. Diel vertical migration was documented, with daytime distribution restricted to the bottom and preferentially to the soft-textured sediments in the deepest areas. Common pelagic fishes in the reservoir, especially juvenile American shad (Alosa sapidissima) and chinook salmon (Oncorhynchus tshawytscha), are daytime zooplankton feeders that cannot prey on Neomysis owing to mysid diel vertical migration. Thus, Neomysis has become an important food web component in John Day Reservoir. We also collected N. mercedis further upstream in Lower Granite Reservoir, where another estuarine crustacean, Corophium salmonis, also is reported, underscoring the need to better understand the role of these estuarine invertebrates in the trophic ecology of the Columbia River. Copyright ?? 2006 John Wiley & Sons, Ltd.
Whiting, Scott D; Murray, Wendy; Macrae, Ismail; Thorn, Robert; Chongkin, Mohammad; Koch, Andrea U
2008-04-01
Green sea turtles (Chelonia mydas) are renowned for their long-distance migrations but have less fame for short-distance migrations or non-migratory behavior. We present satellite telemetric evidence from Cocos (Keeling) Islands, Indian Ocean for the first predominantly non-migratory green sea turtle (C. mydas) population. The mean migration distance from the nesting beach to the foraging grounds was 35.5 km with a maximum mean transit time of 3.4 days. The behavior of this population has major implications for our general understanding of green turtle behavior and their life cycle and for conservation. Firstly, these results indicate a level of juvenile or adult non-breeding homing behavior from the open ocean to foraging grounds adjacent to their natal nesting beach. Secondly, a non-migratory breeding phase reduces the consumption of reproductive energy utilized, potentially resulting in higher fecundity for this population. Thirdly, the close proximity of the nesting and foraging habitats allows for uniformity in management and conservation strategies rarely possible for wide-ranging green turtle populations.
NASA Astrophysics Data System (ADS)
Whiting, Scott D.; Murray, Wendy; Macrae, Ismail; Thorn, Robert; Chongkin, Mohammad; Koch, Andrea U.
2008-04-01
Green sea turtles ( Chelonia mydas) are renowned for their long-distance migrations but have less fame for short-distance migrations or non-migratory behavior. We present satellite telemetric evidence from Cocos (Keeling) Islands, Indian Ocean for the first predominantly non-migratory green sea turtle ( C. mydas) population. The mean migration distance from the nesting beach to the foraging grounds was 35.5 km with a maximum mean transit time of 3.4 days. The behavior of this population has major implications for our general understanding of green turtle behavior and their life cycle and for conservation. Firstly, these results indicate a level of juvenile or adult non-breeding homing behavior from the open ocean to foraging grounds adjacent to their natal nesting beach. Secondly, a non-migratory breeding phase reduces the consumption of reproductive energy utilized, potentially resulting in higher fecundity for this population. Thirdly, the close proximity of the nesting and foraging habitats allows for uniformity in management and conservation strategies rarely possible for wide-ranging green turtle populations.
Borchert, Sinéad M.; Osland, Michael J.; Enwright, Nicholas M.; Griffith, Kereen
2018-01-01
Coastal wetland ecosystems are expected to migrate landwards in response to rising seas. However, due to differences in topography and coastal urbanization, estuaries vary in their ability to accommodate migration. Low‐lying urban areas can constrain migration and lead to wetland loss (i.e. coastal squeeze), especially where existing wetlands cannot keep pace with rising seas via vertical adjustments. In many estuaries, there is a pressing need to identify landward migration corridors and better quantify the potential for landward migration and coastal squeeze.We quantified and compared the area available for landward migration of tidal saline wetlands and the area where urban development is expected to prevent migration for 39 estuaries along the wetland‐rich USA Gulf of Mexico coast. We did so under three sea level rise scenarios (0.5, 1.0, and 1.5 m by 2100).Within the region, the potential for wetland migration is highest within certain estuaries in Louisiana and southern Florida (e.g. Atchafalaya/Vermilion Bays, Mermentau River, Barataria Bay, and the North and South Ten Thousand Islands estuaries).The potential for coastal squeeze is highest in estuaries containing major metropolitan areas that extend into low‐lying lands. The Charlotte Harbor, Tampa Bay, and Crystal‐Pithlachascotee estuaries (Florida) have the highest amounts of urban land expected to constrain wetland migration. Urban barriers to migration are also high in the Galveston Bay (Texas) and Atchafalaya/Vermilion Bays (Louisiana) estuaries.Synthesis and applications. Coastal wetlands provide many ecosystem services that benefit human health and well‐being, including shoreline protection and fish and wildlife habitat. As the rate of sea level rise accelerates in response to climate change, coastal wetland resources could be lost in areas that lack space for landward migration. Migration corridors are particularly important in highly urbanized estuaries where, due to low‐lying coastal development, there is not space for wetlands to move and adapt to sea level rise. Future‐focused landscape conservation plans that incorporate the protection of wetland migration corridors can increase the adaptive capacity of these valuable ecosystems and simultaneously decrease the vulnerability of coastal human communities to the harmful effects of rising seas.
Esthetic evaluation of dental and gingival asymmetries.
Fernandes, Liliana; Pinho, Teresa
2015-06-01
The aim of this study was to determine which smile asymmetries were less esthetic, dental or gingival. Laypeople (297), generalists (223), prosthodontists (50) and orthodontists (49), evaluated the esthetics of digitally-modified images taken from the same frontal intra-oral photograph, using the same lips, simulating upper maxillary midline shift, occlusal plane inclination, asymmetric incisal edge and asymmetric gingival migration. The images were later paired into 3 groups. The only ones considered esthetic were the asymmetric incisal edge of the 0.5 mm shorter upper central incisor and the asymmetric gingival migration (2 mm) of the upper central incisor. In the paired images, upper maxillary midline shift vs. occlusal plane inclination, the former was rated less esthetic, while in the asymmetric incisal edge vs. asymmetric gingival migration pair, the latter was considered to be less esthetic. Laypeople and generalists consider smiles more attractive. The only images considered esthetic were the asymmetric incisal edge of the central incisor shorter by 0.5 mm and the 2 mm asymmetric gingival migration of the upper central incisor. In the horizontal plane (maxillary midline shift vs. occlusal plane cant), the dental asymmetries were considered less esthetic than the gingival asymmetries. However, in the vertical plane (asymmetric incisal edge vs. asymmetric gingival migration) the opposite was recorded. Copyright © 2015 CEO. Published by Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanchani, J.; Berg, R.R.; Lee, C.I.
1996-09-01
The Upper Cretaceous Austin Chalk is a well known source rock and fractured reservoir in the Gulf Coast. Production is mainly from tectonic fractures, and the mechanism by which oil migrated from the matrix into the fractures is poorly understood. Microfracturing due to oil generation offers a possible explanation for the mechanism of the primary migration of oil in the Austin Chalk. Petrographic study shows that the major components of the primary migration system are the solution seams and the associated microfractures. Pressure solution is manifest as centimeter to millimeter-scale solution seams and smaller microseams. The solution seams are compositesmore » formed by the superposition of the smaller microseams. A significant amount of organic matter was concentrated in the seams along with other insoluble residue. Swarms of horizontal microfractures, many of them filled with calcite and other residue, are associated with the seams. Vertical, tectonic fractures that constitute the reservoir porosity, intersect the solution seams. Pressure solution concentrated organic matter within the solution seams and oil was generated there. It is postulated that the accompanying increase in fluid volume raised the pore pressures and fractured the rock. The newly created microfractures were avenues for migration of fluids from the seams, perhaps by microfracture propagation.« less
Disruption of vertical motility by shear triggers formation of thin phytoplankton layers.
Durham, William M; Kessler, John O; Stocker, Roman
2009-02-20
Thin layers of phytoplankton are important hotspots of ecological activity that are found in the coastal ocean, meters beneath the surface, and contain cell concentrations up to two orders of magnitude above ambient concentrations. Current interpretations of their formation favor abiotic processes, yet many phytoplankton species found in these layers are motile. We demonstrated that layers formed when the vertical migration of phytoplankton was disrupted by hydrodynamic shear. This mechanism, which we call gyrotactic trapping, can be responsible for the thin layers of phytoplankton commonly observed in the ocean. These results reveal that the coupling between active microorganism motility and ambient fluid motion can shape the macroscopic features of the marine ecological landscape.
NASA Astrophysics Data System (ADS)
Okuno, Yae L.; Geske, Jon; Gan, Kian-Giap; Chiu, Yi-Jen; DenBaars, Steven P.; Bowers, John E.
2003-04-01
We propose and demonstrate a long-wavelength vertical cavity surface emitting laser (VCSEL) which consists of a (311)B InP-based active region and (100) GaAs-based distributed Bragg reflectors (DBRs), with an aim to control the in-plane polarization of output power. Crystal growth on (311)B InP substrates was performed under low-migration conditions to achieve good crystalline quality. The VCSEL was fabricated by wafer bonding, which enables us to combine different materials regardless of their lattice and orientation mismatch without degrading their quality. The VCSEL was polarized with a power extinction ratio of 31 dB.
NASA Astrophysics Data System (ADS)
Mountrakis, L.; Lorenz, E.; Hoekstra, A. G.
2017-07-01
The immersed-boundary lattice-Boltzmann method (IB-LBM) is increasingly being used in simulations of dense suspensions. These systems are computationally very expensive and can strongly benefit from lower resolutions that still maintain the desired accuracy for the quantities of interest. IB-LBM has a number of free parameters that have to be defined, often without exact knowledge of the tradeoffs, since their behavior in low resolutions is not well understood. Such parameters are the lattice constant Δ x , the number of vertices Nv, the interpolation kernel ϕ , and the LBM relaxation time τ . We investigate the effect of these IB-LBM parameters on a number of straightforward but challenging benchmarks. The systems considered are (a) the flow of a single sphere in shear flow, (b) the collision of two spheres in shear flow, and (c) the lubrication interaction of two spheres. All benchmarks are performed in three dimensions. The first two systems are used for determining two effective radii: the hydrodynamic radius rhyd and the particle interaction radius rinter. The last system is used to establish the numerical robustness of the lubrication forces, used to probe the hydrodynamic interactions in the limit of small gaps. Our results show that lower spatial resolutions result in larger hydrodynamic and interaction radii, while surface densities should be chosen above two vertices per LU2 result to prevent fluid penetration in underresolved meshes. Underresolved meshes also failed to produce the migration of particles toward the center of the domain due to lift forces in Couette flow, mostly noticeable for IBM-kernel ϕ2. Kernel ϕ4, despite being more robust toward mesh resolution, produces a notable membrane thickness, leading to the breakdown of the lubrication forces in larger gaps, and its use in dense suspensions where the mean particle distances are small can result in undesired behavior. rhyd is measured to be different from rinter, suggesting that there is no consistent measure to recalibrate the radius of the suspended particle.
A Test of Maxwell's Z Model Using Inverse Modeling
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, T.
2003-01-01
In modeling impact craters a small region of energy and momentum deposition, commonly called a "point source", is often assumed. This assumption implies that an impact is the same as an explosion at some depth below the surface. Maxwell's Z Model, an empirical point-source model derived from explosion cratering, has previously been compared with numerical impact craters with vertical incidence angles, leading to two main inferences. First, the flowfield center of the Z Model must be placed below the target surface in order to replicate numerical impact craters. Second, for vertical impacts, the flow-field center cannot be stationary if the value of Z is held constant; rather, the flow-field center migrates downward as the crater grows. The work presented here evaluates the utility of the Z Model for reproducing both vertical and oblique experimental impact data obtained at the NASA Ames Vertical Gun Range (AVGR). Specifically, ejection angle data obtained through Three-Dimensional Particle Image Velocimetry (3D PIV) are used to constrain the parameters of Maxwell's Z Model, including the value of Z and the depth and position of the flow-field center via inverse modeling.
Cheng, Zhineng; Wang, Yan; Wang, Shaorui; Luo, Chunling; Li, Jun; Chaemfa, Chakra; Jiang, Haoyu; Zhang, Gan
2014-08-01
The vertical distribution of polybrominated diphenyl ethers (PBDEs) in soil at four sites within an e-waste recycling region of South China was investigated. PBDE concentrations in soil ranged from 1.38 to 765 ng/g. There was a trend of decreasing PBDE concentration with soil depth, especially in the paddy field. However, high concentrations of BDE-209 were found in deeper soils indicating a highly preferential migration. There was a stronger correlation between PBDEs and total organic carbon (TOC), compared to dissolved organic carbon (DOC), which suggests that the association between non-dissolved organic carbon (NDOC) and PBDEs is stronger than for DOC. Different land use types, in particular differences in farming activities, significantly influenced the vertical distribution of PBDEs in soils. PBDEs displayed a higher leaching tendency in moist paddy soil than in drier soils. The frequent flooding condition in paddy field may facilitate the vertical transfer of PBDEs to the deeper soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Teranishi, Y.; Inamori, T.; Kobayashi, T.; Fujii, T.; Saeki, T.; Takahashi, H.; Kobayashi, F.
2017-12-01
JOGMEC carries out seismic monitoring surveys before and after the 2nd offshore methane hydrate (MH) production test in the Eastern Nankai Trough and evaluates MH dissociation behavior from the time-lapse seismic response. In 2016, JOGMEC deployed Ocean Bottom Cable (OBC) system provided by OCC in the Daini Atsumi Knoll with water depths of 900-1100 m. The main challenge of the seismic survey was to optimize the cable layout for ensuring an effective time-lapse seismic detectability while overcoming the following two issues: 1. OBC receiver lines were limited to only two lines. It was predicted that the imaging of shallow reflectors would suffer from lack of continuity and resolution due to this limitation of receiver lines. 2. The seafloor and shallow sedimentary layers including monitoring target are dipping to the Northwest direction. It was predicted that the refection points would laterally shift to up-dip direction (Southeast direction). In order to understand the impact of the issues above, the seismic survey was designed with elastic wave field simulation. The reflection seismic survey for baseline data was conducted in August 2016. A total of 70 receiver stations distributed along one cable were deployed successfully and a total of 9952 shots were fired. After the baseline seismic survey, the hydrophone and geophone vertical component datasets were processed as outlined below: designaturing, denoising, surface consistent deconvolution and surface consistent amplitude correction. High-frequency imaging with Reverse Time Migration (RTM) was introduced to these data sets. Improvements in imaging from the RTM are remarkable compared to the Kirchhoff migration and the existing Pre-stack time migration with 3D marine surface seismic data obtained and processed in 2002, especially in the following parts. The MH concentrated zone which has complex structures. Below the Bottom Simulating Reflector (BSR) which is present as a impedance-contrast boundary
Leachate migration from an in-situ oil-shale retort near Rock Springs, Wyoming
Glover, Kent C.
1988-01-01
Hydrogeologic factors influencing leachate movement from an in-situ oil-shale retort near Rock Springs, Wyoming, were investigated through models of ground-water flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed ? mile downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-foot sandstone at the top of the aquifer. Ground-water flow in the study area is complexly three dimensional and is characterized by large vertical variations in hydraulic head. The solute-transport model was used to predict the concentration of thiocyanate at a point where ground water discharges to the land surface. Leachate with peak concentrations of thiocyanate--45 milligrams per liter or approximately one-half the initial concentration of retort water--was estimated to reach the discharge area during January 1985. This report describes many of th3 advantages, as well as the problems, of site-specific studies. Data such as the distribution of thin, permeable beds or fractures might introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily into site-specific models. Solute migration in the study area occurs primarily in thin, permeable beds rather than in oil-shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site-specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site-specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and ground-water velocity will be poorly estimated.
Leachate migration from an in situ oil-shale retort near Rock Springs, Wyoming
Glover, K.C.
1986-01-01
Geohydrologic factors influencing leachate movement from an in situ oil shale retort near Rock Springs, Wyoming, were investigated by developing models of groundwater flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed 1/2 mi downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-ft sandstone at the top of the aquifer. Groundwater flow in the study area is complexly 3-D and is characterized by large vertical variations in hydraulic head. The solute transport model was used to predict the concentration of thiocyanate at a point where groundwater discharges to the land surface. Leachates with peak concentrations of thiocyanate--45 mg/L or approximately one-half the initial concentration of retort water--were estimated to reach the discharge area during January 1985. Advantages as well as the problems of site specific studies are described. Data such as the distribution of thin permeable beds or fractures may introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily in site specific models. Solute migration in the study area primarily occurs in thin permeable beds rather than in oil shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and groundwater velocity will be estimated poorly. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Amaral, Valter; Cabral, Henrique N.; Bishop, Melanie J.
2014-01-01
Phenotypic plasticity may be critical to the maintenance of viable populations under future environmental change. Here we examined the role of behavioural avoidance of sub-optimal conditions in enabling the intertidal gastropod, Bembicium auratum, to persist in mangrove forests affected by the low pH runoff from acid sulphate soils (ASS). Behaviourally, the gastropod may be able to avoid periods of particularly high acidity by using pneumatophores and/or mangrove trunks to vertically migrate above the water line or by retreating into its shell. We hypothesised that (1) B. auratum would display greater and more rapid vertical migration out of acidified than reference estuarine waters, and (2) responses would be more pronounced in gastropods collected from acidified than reference sites. Gastropods from acidified sites showed significantly higher activity in and more rapid migration out of acidified waters of pH 6.2-7.0, than reference waters or waters of pH < 5.0. Gastropods from reference locations showed a significantly weaker response to acidified water than those from acidified waters, and which did not significantly differ from their response to reference water. At extremely low pHs, <5.0, a higher proportion of both acidified and reference gastropods retreated into their shell than at higher pHs. Both the migration of gastropods out of acidified waters and retraction into their shells serves to reduce exposure time to acidified waters and may reduce the impact of this stressor on their populations. The stronger response to acidification of gastropods from populations previously exposed to this stressor suggests that the response may be learned, inherited or induced over multiple exposures. Our study adds to growing evidence that estuarine organisms may exhibit considerable physiological and behaviour adaptive capacity to acidification. The potential for such adaptive capacity should be incorporated into studies seeking to forecast impacts to marine organisms of environmental change.
The Genesis of the Milky Way's Thick Disk via Stellar Migration
NASA Astrophysics Data System (ADS)
Loebman, Sarah; Roskar, R.; Debattista, V. P.; Ivezic, Z.; Quinn, T. R.; Wadsley, J.
2011-01-01
The separation of the Milky Way disk into a thin and thick component is supported by differences in kinematics and metallicity. These differences have lead to the predominant view that the thick disk formed early via a cataclysmic event and constitutes fossil evidence of the hierarchical growth of the Milky Way. We show here, using N-body simulations, how a double vertical structure, with stellar populations displaying similar dichotomies can arise purely through internal evolution. Stars migrate radially, while retaining nearly circular orbits, as described by Sellwood & Binney (2002). As stars move outwards their vertical motions carry them to larger heights above the mid-plane, populating a thickened component. Such stars found at present time in the solar neighborhood formed early in the disk’s history at smaller radii where stars are more metal-poor and α-enhanced, leading to exactly the properties observed for thick disk stars. Classifying stars as members of the thin or thick disk by either velocity or metallicity leads to an apparent separation in the other property as observed. This scenario is supported by the SDSS observation that stars in the transition region do not show any correlation between rotation and metallicity. Such a correlation is present in young stars and arises because of epicyclic motions but migration radially mixes stars, washing out the correlation. Using the Geneva Copenhagen Survey, we indeed find a velocity-metallicity correlation in the younger stars and none in the older stars. We predict a similar result when separating stars by [α/Fe]. The good qualitative agreement between our simulation and observations are remarkable because the simulation was not tuned to reproduce the Milky Way, hinting that the thick disk may be dominated by stellar migration. Nonetheless, we cannot exclude that some fraction of the thick disk is a fossil of a past more violent history.
Wrinkling Phenomena to Explain Vertical Fold Defects in DC-Cast Al-Mg4.5
NASA Astrophysics Data System (ADS)
Davis, J. Lee; Mendez, Patricio F.
Some aluminum ingots cast by the direct chill method are subject to surface defects on the molten ingot head during casting while others are not. These defects -commonly called "vertical folds" -are frozen into the casting and must be removed prior to rolling. Vertical folds are found on top of the molten ingot surface where areas of thin oxide are (a) bounded by physical constraints and (b) stretched. Physical constraints include (1) substantially thicker oxide or (2) a refractory skim ring adjacent to the thin oxide. The mechanism of wrinkling is suggested for the formation of vertical folds. Wrinkling behavior is described by physical expressions for an elastic sheet in tension whose behavior depends upon thickness h, length L, Young's modulus E, and Poisson's ratio v. The depth and frequency of folds in the thin, elastic sheet parallel to the tensile axis between the two "constraints" can be calculated from these parameters. The observed frequency (and amplitude) of vertical folds in DC-cast aluminum has been found to obey similar wrinkling laws. The frequency-dependence (λ) is examined and found to be related to classic wrinkling parameters but with significant scaling deviations. These deviations may be related to the pseudo-plasticity (self-healing behavior) of the oxide film on the molten surface. A wrinkling model coupled with pseudo-plasticity predicts subtle behaviors in DC casting of Al-Mg4.5 that are not explained by other theories.
NASA Astrophysics Data System (ADS)
Ekau, W.; Auel, H.; Pörtner, H.-O.; Gilbert, D.
2009-05-01
Dissolved oxygen (DO) concentration in the water column is an environmental parameter that is crucial for the successful development of many pelagic organisms. Hypoxia tolerance and threshold values are species- and stage-specific and can vary enormously. While some fish species may suffer from oxygen values of less than 3 ml L-1 and show impact on growth, development and behaviour, other organisms such as euphausiids may survive DO levels as low as 0.1 ml L-1. A change in the average or the minimum or maximum DO in an area may have significant impacts on the survival of certain species and hence on the species composition in the ecosystem with consequent changes in trophic pathways and productivity. Evidence of the deleterious effects of oxygen depletion on species of the pelagic realm is scarce, particularly in terms of the effect of low oxygen on development, recruitment and patterns of migration and distribution. While planktonic organisms have to cope with different DOs and find adaptive mechanisms, nektonic species may avoid areas of inconvenient DO and develop adapted migrational strategies. Planktonic organisms may only be able to escape vertically, above or beneath the Oxygen Minimum Zone (OMZ). In shallow areas only the surface layer can serve as a refuge, in deep waters many organisms have developed vertical migration strategies to use, pass and cope with the OMZ. This paper elucidates the role of DO for different taxa in the pelagic realm and the consequences of low oxygen for foodweb structure and system productivity.
NASA Astrophysics Data System (ADS)
Zhang, Shaotong; Jia, Yonggang; Wen, Mingzheng; Wang, Zhenhao; Zhang, Yaqi; Zhu, Chaoqi; Li, Bowen; Liu, Xiaolei
2017-02-01
A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as `sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that `sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of `sediment pump' are determined as hydrodynamics (wave energy), degree of consolidation, index of bioturbation (permeability) and content of fine-grained materials (sedimentary age). This new perspective of `sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.
NASA Astrophysics Data System (ADS)
Sogawa, Sayaka; Sugisaki, Hiroya; Saito, Hiroaki; Okazaki, Yuji; Ono, Tsuneo; Shimode, Shinji; Kikuchi, Tomohiko
2016-03-01
We studied seasonal and regional change in vertical distribution and DVM patterns of four euphausiid species (Euphausia pacifica, Thysanoessa inspinata, Thysanoessa longipes, and Tessarabrachion oculatum) from two years of surveys using MOCNESS above 1500 m depth across a transect in 3 regions of the northwestern (NW) Pacific, off east of Japan; Oyashio, Kuroshio, and Oyashio-Kuroshio Mixed Water Regions (MWR). The four euphausiid species exhibited a regional change in vertical distribution, i.e., slightly deeper in the MWR and much deeper in the Kuroshio region than in the Oyashio region. They found in higher and wider temperature ranges in the MWR than in the Oyashio region, which demonstrated that the four species were able to adapt to different temperatures in different regions. In the MWR and Oyashio regions, E. pacifica is a surface migrant (differences between day and night mean median depths, D-N, were ca. 300 m) and T. oculatum is a moderate subsurface migrant that performs short DVM in the upper mesopelagic zone (D-N ca. 100 m). The other two morphologically similar Thysanoessa species (T. inspinata and T. longipes) segregated vertically between E. pacifica and T. oculatum at night in the Oyashio region, suggesting vertical habitat partitioning with the former two species but not with themselves. However, a seasonal pattern was observed in the vertical distribution and DVM of T. longipes in the Oyashio region. It behaves as a surface migrant in May, whereas most of individuals were found in the mesopelagic layer in September. In contrast, T. inspinata did not exhibit a clear DVM throughout the year (i.e., a moderate subsurface migrant). This seasonal difference might be a strategy to minimize competition between related species. Among the four species, only E. pacifica was found in higher temperatures at night than during the daytime, and the highest temperatures at the median depth varied among species (from 7.5 °C to 13.7 °C) although the lowest temperature did not vary greatly (from 1.0 °C to 1.8 °C), which indicates high temperatures act as a limiting factor as opposed to low temperatures. Furthermore, the integrated chlorophyll a values exhibited significant negative correlation with median depths of only E. pacifica at night. These results indicate a strategy which makes E. pacifica the dominant species in the area, that is, it has a trade-off of long migrations and a warmer environment that accelerates metabolism, in return for obtaining a food-rich environment.
NASA Astrophysics Data System (ADS)
Jung, Jeki; Oak, Jeong-Jung; Kim, Yong-Hwan; Cho, Yi Je; Park, Yong Ho
2017-11-01
The aim of this study was to investigate the transition of wear behavior for pure aluminum and extruded aluminum alloy 2024-T4 (AA2024-T4). The wear test was carried using a ball-on-disc wear testing machine at various vertical loads and linear speeds. The transition of wear behaviors was analyzed based on the microstructure, wear tracks, wear cross-section, and wear debris. The critical wear rates for each material are occurred at lower linear speed for each vertical load. The transition of wear behavior was observed in which abrasion wears with the generation of an oxide layer, fracture of oxide layer, adhesion wear, severe adhesion wear, and the generation of seizure occurred in sequence. In case of the pure aluminum, the change of wear debris occurred in the order of blocky, flake, and needle-like debris. Cutting chip, flake-like, and coarse flake-like debris was occurred in sequence for the extruded AA2024-T4. The transition in the wear behavior of extruded AA2024-T4 occurred slower than in pure aluminum.
Overseas migration and the well-being of those left behind in rural communities of Bangladesh.
Hadi, A
1999-03-01
The role of the economic and social aspects of overseas migration in improving the well-being of household members left behind in rural communities of Bangladesh is examined in the study presented in this article. Sample households were categorized according to three migration perspectives: 1) duration of migration, 2) intensity of migration, and 3) nature of exposure to migration. Findings indicated that there were positive changes standard of living as a result of the inflow of remittances. Migrants who earned money and stayed abroad longer were better able to save money and invest the remittances in less productive sectors than were nonmigrants. The economic well-being of those left behind, as well as the ability of the migrant family worker to send money to their dependents at home depended on the intensity and duration of exposure experienced by the migrant family member. The improvement in well-being was observable for all indicators. Additionally, the diffusion of secular values may have played a role in modifying the health-seeking behavior of migrant household members left behind as they kept in touch with migrant family members. In view of the increasing globalization of economies, governments and private foundations should provide appropriate structures for the spending of remittances and should modify the livelihood and behavior of migrant communities.
PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells
Jilg, Cordula A.; Ketscher, Anett; Metzger, Eric; Hummel, Barbara; Willmann, Dominica; Rüsseler, Vanessa; Drendel, Vanessa; Imhof, Axel; Jung, Manfred; Franz, Henriette; Hölz, Stefanie; Krönig, Malte; Müller, Judith M.; Schüle, Roland
2014-01-01
The major threat in prostate cancer is the occurrence of metastases in androgen-independent tumor stage, for which no causative cure is available. Here we show that metastatic behavior of androgen-independent prostate tumor cells requires the protein-kinase-C-related kinase (PRK1/PKN1) in vitro and in vivo. PRK1 regulates cell migration and gene expression through its kinase activity, but does not affect cell proliferation. Transcriptome and interactome analyses uncover that PRK1 regulates expression of migration-relevant genes by interacting with the scaffold protein sperm-associated antigen 9 (SPAG9/JIP4). SPAG9 and PRK1 colocalize in human cancer tissue and are required for p38-phosphorylation and cell migration. Accordingly, depletion of either ETS domain-containing protein Elk-1 (ELK1), an effector of p38-signalling or p38 depletion hinders cell migration and changes expression of migration-relevant genes as observed upon PRK1-depletion. Importantly, a PRK1 inhibitor prevents metastases in mice, showing that the PRK1-pathway is a promising target to hamper prostate cancer metastases in vivo. Statement of significance Here we describe a novel mechanism controlling the metastatic behavior of PCa cells and identify PRK1 as a promising therapeutic target to treat androgen-independent metastatic prostate cancer. PMID:25504435
Very high elevation water ice clouds on Mars: Their morphology and temporal behavior
NASA Technical Reports Server (NTRS)
Jaquin, Fred
1988-01-01
Quantitative analysis of Viking images of the martian planetary limb has uncovered the existence and temporal behavior of water ice clouds that form between 50 and 90 km elevation. These clouds show a seasonal behavior that may be correlated with lower atmosphere dynamics. Enhanced vertical mixing of the atmosphere as Mars nears perihelion is hypothesized as the cause of the seasonal dependence, and the diurnal dependence is explained by the temporal behavior of the martian diurnal thermal tide. Viking images also provide a data set of the vertical distribution of aerosols in the martian atmosphere. The temporal and spatial distribution of aerosols are characterized.
Dynamics of unforced and vertically forced rocking elliptical and semi-elliptical disks
NASA Astrophysics Data System (ADS)
Wang, Xue-She; Mazzoleni, Michael J.; Mann, Brian P.
2018-03-01
This paper presents the results of an investigation on the dynamics of unforced and vertically forced rocking elliptical and semi-elliptical disks. The full equation of motion for both rocking disks is derived from first principles. For unforced behavior, Lamb's method is used to derive the linear natural frequency of both disks, and harmonic balance is used to determine their amplitude-dependent rocking frequencies. A stability analysis then reveals that the equilibria and stability of the two disks are considerably different, as the semi-elliptical disk has a super-critical pitchfork bifurcation that enables it to exhibit bistable rocking behavior. Experimental studies were conducted to verify the trends. For vertically forced behavior, numerical investigations show the disk's responses to forward and reverse frequency sweeps. Three modes of periodicity were observed for the steady state behavior. Experiments were performed to verify the frequency responses and the presence of the three rocking modes. Comparisons between the experiments and numerical investigations show good agreement.
NASA Astrophysics Data System (ADS)
Denda, Anneke; Stefanowitsch, Benjamin; Christiansen, Bernd
2017-12-01
Specific mechanisms, driving trophic interactions between seamount associated fishes and the pelagic community may be highly variable in different seamount systems. This study investigated the trophic structure and the main prey of benthopelagic fishes from the summit and slope regions of Ampère and Senghor, two shallow seamounts in the subtropical and tropical NE Atlantic, and the adjacent deep-sea plains. For the identification of food sources and nutritional links to the pelagic realm a combination of stomach content and stable isotope ratio (δ13C and δ15N) analyses was used. δ13C ranged from -22.2‰ to -15.4‰ and δ15N covered a total range of 8.0-15.9‰. Feeding types of fish species comprised mainly zooplanktivores and mixed feeders, but also benthivores, piscivores, and predator-scavengers. Based on epipelagic particulate organic matter, they occupied trophic positions between the 2nd and 4th trophic level. Differences in stomach contents and stable isotope signatures indicate a resource partitioning among the benthopelagic fish fauna through distinct habitat choice, vertical feeding positions and prey selection. Topographic trapping of vertically migrating zooplankton on the summit seemed to be of minor importance for food supply of the resident near-bottom fishes, rather horizontal current-driven advection of the planktonic prey was assumed as major factor. Vertically migrating micronekton and mesopelagic fishes show up as key players within the food webs at Ampère and Senghor Seamounts and the adjacent deep-sea plains.
Effects of seasonal operation on the quality of water produced by public-supply wells
Bexfield, Laura M.; Jurgens, Bryant C.
2014-01-01
Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin.
Effects of Seasonal Operation on the Quality of Water Produced by Public-Supply Wells
Bexfield, Laura M; Jurgens, Bryant C
2014-01-01
Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin. PMID:24593780
Behavior and potential threats to survival of migrating lamprey ammocoetes and macrophthalmia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Mary L.; Jackson, Aaron D.; Lucas, Martyn C.
2015-03-01
Upon metamorphosis, anadromous juvenile lamprey (macrophthalmia) exhibit distinct migration behaviors that take them from larval rearing habitats in streams to the open ocean. While poorly studied, lamprey larvae (ammocoetes) also engage in downstream movement to some degree. Like migrating salmon smolts, lamprey macrophthalmia undergo behavioral changes associated with a highly synchronized metamorphosis. Unlike salmon smolts, the timing of juvenile migration in lamprey is protracted and poorly documented. Lamprey macrophthalmia and ammocoetes are not strong swimmers, attaining maximum individual speeds of less than 1 m s-1, and sustained speeds of less than 0.5 m s-1. They are chiefly nocturnal and distributemore » throughout the water column, but appear to concentrate near the bottom in the thalweg of deep rivers. At dams and irrigation diversions, macrophthalmia can become impinged on screens or entrained in irrigation canals, suffer increased predation, and experience physical injury that may result in direct or delayed mortality. The very structures designed to protect migrating juvenile salmonids can be harmful to juvenile lamprey. Yet at turbine intakes and spillways, lampreys, which have no swim bladder, can withstand changes in pressure and shear stress large enough to injure or kill most teleosts. Lamprey populations are in decline in many parts of the world, with some species designated as species of concern for conservation that merit legally mandated protections. Hence, provisions for safe passage of juvenile lamprey are being considered at dams and water diversions in North America and Europe.« less
NASA Astrophysics Data System (ADS)
Rajaram, H.; Birdsell, D.; Lackey, G.; Karra, S.; Viswanathan, H. S.; Dempsey, D.
2015-12-01
The dramatic increase in the extraction of unconventional oil and gas resources using horizontal wells and hydraulic fracturing (fracking) technologies has raised concerns about potential environmental impacts. Large volumes of hydraulic fracturing fluids are injected during fracking. Incidents of stray gas occurrence in shallow aquifers overlying shale gas reservoirs have been reported; whether these are in any way related to fracking continues to be debated. Computational models serve as useful tools for evaluating potential environmental impacts. We present modeling studies of hydraulic fracturing fluid and gas migration during the various stages of well operation, production, and subsequent plugging. The fluid migration models account for overpressure in the gas reservoir, density contrast between injected fluids and brine, imbibition into partially saturated shale, and well operations. Our results highlight the importance of representing the different stages of well operation consistently. Most importantly, well suction and imbibition both play a significant role in limiting upward migration of injected fluids, even in the presence of permeable connecting pathways. In an overall assessment, our fluid migration simulations suggest very low risk to groundwater aquifers when the vertical separation from a shale gas reservoir is of the order of 1000' or more. Multi-phase models of gas migration were developed to couple flow and transport in compromised wellbores and subsurface formations. These models are useful for evaluating both short-term and long-term scenarios of stray methane release. We present simulation results to evaluate mechanisms controlling stray gas migration, and explore relationships between bradenhead pressures and the likelihood of methane release and transport.
Tidal influences on vertical diffusion and diurnal variability of ozone in the mesosphere
NASA Technical Reports Server (NTRS)
Bjarnason, Gudmundur G.; Solomon, Susan; Garcia, Rolando R.
1987-01-01
Possible dynamical influences on the diurnal behavior of ozone are investigated. A time dependent one-dimensional photochemical model is developed for this purpose; all model calculations are made at 70 deg N during summer. It is shown that the vertical diffusion can vary as much as 1 order of magnitude within a day as a result of large changes in the zonal wind induced by atmospheric thermal tides. It is found that by introducing a dissipation time scale for turbulence produced by breaking gravity waves, the agreement with Poker Flat echo data is improved. Comparisons of results from photochemical model calculations, where the vertical diffusion is a function of height only, with those in which the vertical diffusion coefficient is changing in time show large differences in the diurnal behavior of ozone between 70 and 90 km. By including the dynamical effect, much better agreement with the Solar Mesosphere Explorers data is obtained. The results are, however, sensitive to the background zonally averaged wind. The influence of including time-varying vertical diffusion coefficient on the OH densities is also large, especially between 80 and 90 km. This suggests that dynamical effects are important in determining the diurnal behavior of the airglow emission from the Meinel bands.
Multiscale Cues Drive Collective Cell Migration
NASA Astrophysics Data System (ADS)
Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho
2016-07-01
To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.
Downstream Migration of Masu Salmon Smolt at a Diversion Facility of Dam
NASA Astrophysics Data System (ADS)
Hayashida, K.; Nii, H.; Kasuga, K.; Watanabe, K.
2014-12-01
A diversion facility was installed on the upstream of Pirika Dam in Northern Japan that produced a downstream flow into the fishway, thus allowing the fish to migrate to the sea. On the other hand, if the flow rate in the river was more than 7.00 m 3/s (design flow rate of diversion facility), masu salmon smolt were concerned about accessing the dam reservoir, because the smolt can't migrate to the sea through the diversion facility unfortunately. Therefore, the downstream migration of smolt was investigated around the diversion facility. The PIT tag system and radio transmitters as the biotelemetry were used to determine 1) whether masu salmon smolt were able to migrate downstream through the diversion facility and fishway at Pirika Dam, 2) when the smolt started to migrate downstream, 3) whether the downstream migration of smolt were affected by the flow increase in the river. It was clarified that 88% of the smolt were able to enter the diversion facility, and then 81% of the smolt were able to access the fishway. It was also clarified that smolt downstream migration had two peaks in a day (5:00 and 18:00). During the study period, although the flow rate was in the 2.21 m3/s to 30.44 m3/s range (average 6.70 m3/s), it was revealed that the diversion facility has a satisfactory function for the downstream migration of smolt as presented above. The survey clarified the downstream migration behavior of masu salmon by using two types of biotelemetry equipment. PIT tag and radio transmitter were found to be very effective in tracking the behavior of small fish such as smolt. PIT tags, in particular, require very little operating cost, because once they are inserted in the fish, they do not need human labor for tracking. It is desirable to actively introduce the biotelemetry as tracking equipment when surveying the fish migration in the river.
Camlin, Carol S; Kwena, Zachary A; Dworkin, Shari L; Cohen, Craig R; Bukusi, Elizabeth A
2014-02-01
Migration and HIV research in sub-Saharan Africa has focused on HIV risks to male migrants, yet women's levels of participation in internal migration have met or exceeded those of men in the region. Moreover, studies that have examined HIV risks to female migrants found higher risk behavior and HIV prevalence among migrant compared to non-migrant women. However, little is known about the pathways through which participation in migration leads to higher risk behavior in women. This study aimed to characterize the contexts and processes that may facilitate HIV acquisition and transmission among migrant women in the Kisumu area of Nyanza Province, Kenya. We used qualitative methods, including 6 months of participant observation in women's common migration destinations and in-depth semi-structured interviews conducted with 15 male and 40 female migrants selected from these destinations. Gendered aspects of the migration process may be linked to the high risks of HIV observed in female migrants - in the circumstances that trigger migration, livelihood strategies available to female migrants, and social features of migration destinations. Migrations were often precipitated by household shocks due to changes in marital status (as when widowhood resulted in disinheritance) and gender-based violence. Many migrants engaged in transactional sex, of varying regularity, from clandestine to overt, to supplement earnings from informal sector trading. Migrant women are at high risk of HIV transmission and acquisition: the circumstances that drove migration may have also increased HIV infection risk at origin; and social contexts in destinations facilitate having multiple sexual partners and engaging in transactional sex. We propose a model for understanding the pathways through which migration contributes to HIV risks in women in high HIV prevalence areas in Africa, highlighting potential opportunities for primary and secondary HIV prevention at origins and destinations, and at key 'moments of vulnerability' in the migration process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Camlin, Carol S.; Kwena, Zachary A.; Dworkin, Shari L.; Cohen, Craig R.; Bukusi, Elizabeth A.
2014-01-01
Migration and HIV research in sub-Saharan Africa has focused on HIV risks to male migrants, yet women’s levels of participation in internal migration have met or exceeded those of men in the region. Moreover, studies that have examined HIV risks to female migrants found higher risk behavior and HIV prevalence among migrant compared to non-migrant women. However, little is known about the pathways through which participation in migration leads to higher risk behavior in women. This study aimed to characterize the contexts and processes that may facilitate HIV acquisition and transmission among migrant women in the Kisumu area of Nyanza Province, Kenya. We used qualitative methods, including 6 months of participant observation in women’s common migration destinations and in-depth semi-structured interviews conducted with 15 male and 40 female migrants selected from these destinations. Gendered aspects of the migration process may be linked to the high risks of HIV observed in female migrants— in the circumstances that trigger migration, livelihood strategies available to female migrants, and social features of migration destinations. Migrations were often precipitated by household shocks due to changes in marital status (as when widowhood resulted in disinheritance) and gender-based violence. Many migrants engaged in transactional sex, of varying regularity, from clandestine to overt, to supplement earnings from informal sector trading. Migrant women are at high risk of HIV transmission and acquisition: the circumstances that drove migration may have also increased HIV infection risk at origin; and social contexts in destinations facilitate having multiple sexual partners and engaging in transactional sex. We propose a model for understanding the pathways through which migration contributes to HIV risks in women in high HIV prevalence areas in Africa, highlighting potential opportunities for primary and secondary HIV prevention at origins and destinations, and at key ‘moments of vulnerability’ in the migration process. PMID:24565152
NASA Astrophysics Data System (ADS)
Min, Xiaobo; Zhou, Bosheng; Ke, Yong; Chai, Liyuan; Xue, Ke; Zhang, Chun; Zhao, Zongwen; Shen, Chen
2016-05-01
The sulfidation roasting behavior was analyzed in detail to reveal the reaction mechanism. Information about the sulfidation reaction, including phase transformation, ionic migration behavior and morphological change, were obtained by XRD, 57Fe Mossbauer spectroscopy, XPS and SEM analysis. The results showed that the sulfidation of zinc ferrite is a process of sulfur inducing and sulfur-oxygen interface exchange. This process can be divided into six stages: decomposition of FeS2, formation of the oxygen-deficient environment, migration of O2- induced by S2(g), formation of ZnFe2O4-δ, migration of Fe2+ accompanied by the precipitation of ZnO, and the sulfur-oxygen interface exchange reaction. The sulfidation products were zinc blende, wurtzite, magnetite and a fraction of zinc-bearing magnetite. These findings can provide theoretical support for controlling the process during which the recovery of Zn and Fe is achieved through the combined flotation-magnetic separation process.
Grieb, Suzanne M Dolwick; Nielsen-Bobbit, Jaughna
2013-04-01
In New York City, HIV is increasingly concentrated in the foreign-born population, necessitating a greater exploration of the mechanisms through which changes in behavior and risk for HIV occur within migrant populations. Interviews were conducted with 22 Honduran-born Garifuna women to explore partnerships, sexual behaviors, and HIV risk in the context of migration, and transcripts were coded by thematic analysis procedures. Five themes emerged: (1) migration ends relationships, (2) new relationships in the U.S. form because of material and psychological needs, (3) secondary sexual partnerships are a man's issue, (4) female secondary sexual partnership participation as a marker of equality, and (5) monogamy due to a lack of time. These findings suggest that greater attention be paid to women's participation in secondary sexual partnerships for purposes other than economic need, and demonstrate a need for HIV interventions that are based in an understanding of how the social context of migration affects sexual behaviors.
Lezama-Ochoa, Ainhoa; Irigoien, Xabier; Chaigneau, Alexis; Quiroz, Zaida; Lebourges-Dhaussy, Anne; Bertrand, Arnaud
2014-01-01
Bifrequency acoustic data, hydrological measurements and satellite data were used to study the vertical distribution of macrozooplankton in the Bay of Biscay in relation to the hydrological conditions and fish distribution during spring 2009. The most noticeable result was the observation of a ‘biocline’ during the day i.e., the interface where zooplankton biomass changes more rapidly with depth than it does in the layers above or below. The biocline separated the surface layer, almost devoid of macrozooplankton, from the macrozooplankton-rich deeper layers. It is a specific vertical feature which ties in with the classic diel vertical migration pattern. Spatiotemporal correlations between macrozooplankton and environmental variables (photic depth, thermohaline vertical structure, stratification index and chlorophyll-a) indicate that no single factor explains the macrozooplankton vertical distribution. Rather a set of factors, the respective influence of which varies from region to region depending on the habitat characteristics and the progress of the spring stratification, jointly influence the distribution. In this context, the macrozooplankton biocline is potentially a biophysical response to the search for a particular depth range where light attenuation, thermohaline vertical structure and stratification conditions together provide a suitable alternative to the need for expending energy in reaching deeper water without the risk of being eaten. PMID:24505374
[Environmental behavior and ecological effect of polydimethylsiloxane: a review].
Yang, Shang-Yuan; Li, Xin; Yang, Jia; Shen, Chao-Feng; Yu, Hua-Dong; Lu, Kang
2012-08-01
Polydimethylsiloxane (PDMS) is widely used in industrial products, medical and health care products, and personal care products. In the treatment process of sewage, PDMS can be hardly biodegraded but enter the environment mainly through the discharge of excess sludge, and only a small amount of PDMS adsorbed on the suspended solids or sludge particle surface is discharged into water body and sediment with treated sewage. There is no enough evidence to verify that PDMS can vertically migrate in sediment. The degradation of PDMS in sediment is very slow, but PDMS can be degraded in different types of soils. PDMS has less risk to aquatic ecosystem, and no apparent acute toxicity to benthos. In soil environment, PDMS and its degradation products have no significant effects on the soil microorganisms, soil animals, and crops. Though a few studies indicated that PDMS and its degradation products have relatively low ecological toxicity in various environments, it is still very important to clarify the potential threat of PDMS to the environment because of the increasingly large number of PDMS being produced and used.
NASA Astrophysics Data System (ADS)
Herbert, E. R.; Walters, D.; Windham-Myers, L.; Kirwan, M. L.
2016-12-01
Evaluating the strength and long-term stability of the coastal carbon sink requires a consideration of the spatial evolution of coastal landscapes in both the horizontal and vertical dimensions. We present a model of the transformation and burial of carbon along a bay-marsh-upland forest complex to explore the response of the coastal carbon sink to sea level rise (SLR) and anthropogenic activity. We establish a carbon mass-balance by coupling dynamic biogeochemically-based models of soil carbon burial in aquatic, intertidal, and upland environments with a physically-based model of marsh edge erosion, vertical growth and migration into adjacent uplands. The modeled increase in marsh vertical growth and carbon burial at moderate rates of sea level rise (3-10 mm/yr) is consistent with a synthesis of 219 field measurements of marsh carbon accumulation that show a significant (p<0.0001) positive correlation with local SLR rates. The model suggests that at moderate SLR rates in low topographic relief landscapes, net marsh expansion into upland forest concomitant with increased carbon burial rates are sufficient to mitigate the associated loss of forest carbon stocks. Coastlines with high relief or barriers to wetland migration can become sources of carbon through the erosion of buried carbon stocks, but we show that the recapture of eroded carbon through vertical growth can be an important mechanism for reducing carbon loss. Overall, we show that the coastal carbon balance must be evaluated in a landscape context to account for changes in the size and magnitude of both the stocks and sinks of marsh carbon and for the transfers of carbon between coastal habitats. These results may help inform current efforts to appraise coastal carbon sinks that are beset by issues of landscape heterogeneity and the provenance of buried carbon.
NASA Astrophysics Data System (ADS)
Lee, S.; Allen, J.; Han, W.; Lu, C.; McPherson, B. J.
2011-12-01
Jurassic aeolian sandstones (e.g. Navajo and White Rim Sandstones) on the Colorado Plateau of Utah have been considered potential sinks for geologic CO2 sequestration due to their regional lateral continuity, thickness, high porosity and permeability, presence of seal strata and proximity to large point sources of anthropogenic CO2. However, aeolian deposits usually exhibit inherent internal complexities induced by migrating bedforms of different sizes and their resulting bounding surfaces. Therefore, CO2 plume migration in such complex media should be well defined and successively linked in models for better characterization of the plume behavior. Based on an outcrop analog of the upper Navajo Sandstone in the western flank of the San Rafael Swell, Utah, we identified five different bedform types with dune and interdune facies to represent the spatial continuity of lithofacies units. Using generated 3D geometrical facies patterns of cross-bedded structures in the Navajo Sandstone, we performed numerical simulations to understand the detailed behavior of CO2 plume migration under the different cross-bedded bedforms. Our numerical simulation results indicate that cross-bedded structures (bedform types) play an important role on governing the rate and directionality of CO2 migration, resulting in changes of imbibition processes of CO2. CO2 migration tends to follow wind ripple laminations and reactivation surfaces updip. Our results suggest that geologically-based upscaling of CO2 migration is crucial in cross-bedded formations as part of reservoir or basin scale models. Furthermore, comparative modeling studies between 3D models and 2D cross-sections extracted from 3D models showed the significant three-dimensional interplay in a cross-bedded structure and the need to correctly capture the geologic heterogeneity to predict realistic CO2 plume behavior. Our outcrop analog approach presented in this study also demonstrates an alternative method for assessing geologic CO2 storage in deep formations when scarce data is available.
Vidal-Mateo, Javier; Mellone, Ugo; López-López, Pascual; La Puente, Javier De; García-Ripollés, Clara; Bermejo, Ana; Urios, Vicente
2016-01-01
Abstract Wind is among the most important environmental factors shaping birds’ migration patterns. Birds must deal with the displacement caused by crosswinds and their behavior can vary according to different factors such as flight mode, migratory season, experience, and distance to goal areas. Here we analyze the relationship between wind and migratory movements of three raptor species which migrate by soaring–gliding flight: Egyptian vulture Neophron percnopterus, booted eagle Aquila pennata, and short-toed snake eagle Circaetus gallicus. We analyzed daily migratory segments (i.e., the path joining consecutive roosting locations) using data recorded by GPS satellite telemetry. Daily movements of Egyptian vultures and booted eagles were significantly affected by tailwinds during both autumn and spring migrations. In contrast, daily movements of short-toed eagles were only significantly affected by tailwinds during autumn migration. The effect of crosswinds was significant in all cases. Interestingly, Egyptian vultures and booted eagles showed latitudinal differences in their behavior: both species compensated more frequently at the onset of autumn migration and, at the end of the season when reaching their wintering areas, the proportion of drift segments was higher. In contrast, there was a higher drift at the onset of spring migration and a higher compensation at the end. Our results highlight the effect of wind patterns on the migratory routes of soaring raptors, with different outcomes in relation to species, season, and latitude, ultimately shaping the loop migration patterns that current tracking techniques are showing to be widespread in many long distance migrants. PMID:29491895
Li, Ha; Hua, Er; Zhang, Zhi-Nan
2012-12-01
An investigation was conducted on the abundance, group composition, and distribution of meiofauna at the Second Beach of Taiping Bay and the Shilaoren Beach in Qingdao in January, April, July, and October 2008, aimed to analyze the distribution and seasonal dynamics of meiofauna in the intertidal zone of Qingdao sandy beaches. The measurements of environmental factors, including sediment grain size, interstitial water salinity, interstitial water temperature, organic matter content (TOC), and chlorophyll a (Chl a) content, were made simultaneously. There existed obvious seasonal differences in the environment factors, which could be clustered into two groups, i. e. , spring-winter group (January and April) and summer-autumn group (July and October). At the Second Beach of Taiping Bay, the mean annual abundance of meiofauna was (1167.3 +/- 768.3) ind x 10 cm(-2), and the most dominant group was Nematoda, accounting for 91% of the total. The meiofaunal group composition and abundance at the Second Beach differed horizontally, with the abundance ranked as high tide zone < middle tide zone < low tide zone. The meiofaunal group composition and abundance also varied seasonally, with high values in spring/winter and low values in summer/autumn (spring > winter > autumn > summer). The vertical distribution of the meiofauna in the high and middle tide zones of the Second Beach varied seasonally too. The meiofauna migrated downward with increasing temperature, concentrated in surface layer in winter and migrated downward in summer. At the Shilaoren Beach, the mean annual abundance of meiofauna was (1130.2 +/- 1419.1) ind x 10 cm(-2), and Nematoda accounted for 85% of the total. There was a great similarity of the environmental factors in the middle tide zone of the Second Beach and Shilaoren Beach, which led to no differences in the meiofaunal group composition and abundance. However, the vertical distribution of the meiofauna differed between the two beaches. When the temperature decreased, the meiofauna at Shilaoren Beach migrated downward. The ANOVA and BIOENV analyses showed that the TOC and MD phi were most responsible for the distribution of meiofauna among the tidal zones, the interstitial water temperature, MD phi, and TOC were the main causes of the seasonal variation of meiofaunal group composition and abundance, whereas the sediment Chl a affected the vertical migration of meiofauna. Tourism-induced sediment variation was another factor affecting the meiofaunal abundance, group composition, and distribution.
Kinetics of a Migration-Driven Aggregation-Fragmentation Process
NASA Astrophysics Data System (ADS)
Zhuang, You-Yi; Lin, Zhen-Quan; Ke, Jian-Hong
2003-08-01
We propose a reversible model of the migration-driven aggregation-fragmentation process with the symmetric migration rate kernels K(k;j)=K^'(k;j)=λ kj^v and the constant aggregation rates I1, I2 and fragmentation rates J1, J2. Based on the mean-field theory, we investigate the evolution behavior of the aggregate size distributions in several cases with different values of index υ. We find that the fragmentation reaction plays a more important role in the kinetic behaviors of the system than the aggregation and migration. When J1=0 and J2 =0, the aggregate size distributions ak(t) and bk(t) obey the conventional scaling law, while when J1>0 and J2>0, they obey the modified scaling law with an exponential scaling function. The total mass of either species remains conserved. The project supported by National Natural Science Foundation of China under Grant Nos. 10275048 and 10175008, and Natural Science Foundation of Zhejiang Province of China under Grant No. 102067
Age at migration, family instability, and timing of sexual onset.
Goldberg, Rachel E; Tienda, Marta; Adserà, Alícia
2017-03-01
This study builds on and extends previous research on nativity variations in adolescent health and risk behavior by addressing three questions: (1) whether and how generational status and age at migration are associated with timing of sexual onset among U.S. adolescents; (2) whether and how family instability mediates associations between nativity and sexual debut; and (3) whether and how these associations vary by gender. We find that first- and second-generation immigrant youth initiate sexual activity later than native youth. Foreign-born youth who migrate after the start of adolescence exhibit the latest sexual onset; boys' sexual behavior is particularly sensitive to age at migration. Parental union stability is protective for first- and second-generation youth, especially boys; however, instability in co-residence with parents accelerates sexual debut for foreign-born girls, and dilutes protections from parental marital stability. Use of a non-English language at home delays sexual onset for immigrant girls, but not boys. Copyright © 2016 Elsevier Inc. All rights reserved.
Drosophila hemocyte migration: an in vivo assay for directional cell migration.
Moreira, Carolina G A; Regan, Jennifer C; Zaidman-Rémy, Anna; Jacinto, Antonio; Prag, Soren
2011-01-01
This protocol describes an in vivo assay for random and directed hemocyte migration in Drosophila. Drosophila is becoming an increasingly powerful model system for in vivo cell migration analysis, combining unique genetic tools with translucency of the embryo and pupa, which allows direct imaging and traceability of different cell types. In the assay we present here, we make use of the hemocyte response to epithelium wounding to experimentally induce a transition from random to directed migration. Time-lapse confocal microscopy of hemocyte migration in untreated conditions provides a random cell migration assay that allows identification of molecular mechanisms involved in this complex process. Upon laser-induced wounding of the thorax epithelium, a rapid chemotactic response changes hemocyte migratory behavior into a directed migration toward the wound site. This protocol provides a direct comparison of cells during both types of migration in vivo, and combined with recently developed resources such as transgenic RNAi, is ideal for forward genetic screens.
Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration.
Somogyi, Kálmán; Rørth, Pernille
2004-07-01
Cells migrating through a tissue exert force via their cytoskeleton and are themselves subject to tension, but the effects of physical forces on cell behavior in vivo are poorly understood. Border cell migration during Drosophila oogenesis is a useful model for invasive cell movement. We report that this migration requires the activity of the transcriptional factor serum response factor (SRF) and its cofactor MAL-D and present evidence that nuclear accumulation of MAL-D is induced by cell stretching. Border cells that cannot migrate lack nuclear MAL-D but can accumulate it if they are pulled by other migrating cells. Like mammalian MAL, MAL-D also responds to activated Diaphanous, which affects actin dynamics. MAL-D/SRF activity is required to build a robust actin cytoskeleton in the migrating cells; mutant cells break apart when initiating migration. Thus, tension-induced MAL-D activity may provide a feedback mechanism for enhancing cytoskeletal strength during invasive migration.
Bolliet, Valérie; Claveau, Julie; Jarry, Marc; Gonzalez, Patrice; Baudrimont, Magalie; Monperrus, Mathilde
2017-02-01
The relationships between the migratory behavior, methylmercury (MeHg) concentrations, oxidative stress response and detoxification processes were investigated in glass eels collected in marine (Molliets) and estuarine (Urt) waters (Adour estuary, South West France) at the end of the fishing season (April). Glass eel migratory behavior was investigated in an experimental flume according to their response to dusk. Fish responding to the decrease in light intensity by ascending in the water column and moving with or against the flow were considered as having a high propensity to migrate (migrant). Glass eels still sheltering at the end of the 24h catching period were considered as having a low propensity to migrate and were called non-migrant. Our results provide some evidence that estuarine glass eels were bigger, presented a higher propensity to migrate and a lower oxidative stress response than marine glass eels. This might reflect a selection process, some marine glass eels progressively settling or dying before reaching Urt and/or a change in feeding behavior. In April, glass eels restart feeding in the Adour estuary which might decrease the oxidative stress possibly related to starvation, and enhance migration. MeHg concentrations was significantly higher in non-migrant than in migrant glass eels and it is suggested that non-migrant glass eels might present a higher vulnerability to stress (at least contamination and/or starvation), although the underlying mechanisms remain to be elucidated. Copyright © 2016 Elsevier Inc. All rights reserved.
Sex differences in the response to apomorphine in rats.
Masur, J; Boerngen, R; Tufik, S
1980-01-01
The response of male and female rats to the hypothermic and verticalization effect (climbing behavior) induced by different doses of apomorphine was studied. A clear sex difference was observed, males showing more verticalization than females. Conversely the females showed a greater decrease in body temperature than males. The verticalization response was also studied in rats of both sexes at seven different ages, varying from 15 to 100 days. At the earlier ages, both groups presented low levels of verticalization. Mature males (60-100 days of age) increased the verticalization response to apomorphine.
2009-11-01
The Influence of Physical Forces on Progenitor Cell Migration, Proliferation and Differentiation in Fracture Repair PRINCIPAL INVESTIGATOR...REPORT TYPE Final 3. DATES COVERED (From - To) 11/1/05 – 10/31/09 4. TITLE AND SUBTITLE The Influence of Physical Forces on Progenitor Cell Migration...SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this program is to investigate the influence of controlled mechanical stimulation on the behavior of
Geochemical study of the organic matter from Querecual formation, Anzoategui State, Venezuela
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garban, G.; Lopez, L.; Lo Monaco, S.
1996-08-01
Kerogen and bitumen fractions extracted from twenty-one limestone samples from kind section of Querecual formation (Querecual River, Anzoategui State, Venezuela) were analyzed for their content of Co, Cr, Fe, Mn, Mo, Ni, S, Sr, V and Zn. S and trace-metals content from the kerogen fraction were used to obtain information about paleoenvironmental sedimentation conditions of the Querecual formation. Based on these data, and especially on the V and S content variations plus V/Ni, VIV+Ni and Mo/Mo+Cr ratios, we confirm an ancient-reducer condition on this region according with a sulfur-reducer environment. Trace-metals content variations from the bitumen fraction along the studymore » section were used as possible primary migration indicators. V and Ni were the only elements showing a clear tendency to be used as primary migration indicators. The observed tendency allows us to postulate a vertical migration of the bitumen, from center to the extremes of the section.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrero-Faz, M.; Hernandezperez, G.
The Cuban Archipelago is an Early Tertiary thrust belt derived from the Collision of the Cretaceous volcanic arc from the South with the North American continental margin (Jurassic- Cretaceous). The main characteristics of the hydrocarbon potential of Cuba are: (1) Widespread existence of Jurassic-Cretaceous source rocks and active process of generation of different types of oils; (2) Hydrocarbons are reservoired in a wide range of rock types most commonly in thrusted, fractured carbonates of Jurassic to Cretaceous age. This kind of reservoir is the most important in Cuba; (3) High density in area of different types of traps, being themore » most important hinterland dipping thrust sheet play; and (4) Migration and trapping of hydrocarbons mainly in Eocene. Migration is supposed to be mostly lateral. Vertical migration is not excluded in the South and also in some part of the North Province. There still remains a significant number of untested, apparently valid exploration plays in both on- and offshore areas of Cuba.« less
By the Light of the Moon: North Pacific Dolphins Optimize Foraging with the Lunar Cycle
NASA Astrophysics Data System (ADS)
Simonis, Anne Elizabeth
The influence of the lunar cycle on dolphin foraging behavior was investigated in the productive, southern California Current Ecosystem and the oligotrophic Hawaiian Archipelago. Passive acoustic recordings from 2009 to 2015 were analyzed to document the presence of echolocation from four dolphin species that demonstrate distinct foraging preferences and diving abilities. Visual observations of dolphins, cloud coverage, commercial landings of market squid (Doryteuthis opalescens) and acoustic backscatter of fish were also considered in the Southern California Bight. The temporal variability of echolocation is described from daily to annual timescales, with emphasis on the lunar cycle as an established behavioral driver for potential dolphin prey. For dolphins that foraged at night, the presence of echolocation was reduced during nights of the full moon and during times of night that the moon was present in the night sky. In the Southern California Bight, echolocation activity was reduced for both shallow- diving common dolphins (Delphinus delphis) and deeper-diving Risso's dolphins (Grampus griseus) during times of increased illumination. Seasonal differences in acoustic behavior for both species suggest a geographic shift in dolphin populations, shoaling scattering layers or prey switching behavior during warm months, whereby dolphins target prey that do not vertically migrate. In the Hawaiian Archipelago, deep-diving short-finned pilot whales (Globicephala macrorhynchus) and shallow-diving false killer whales (Pseudorca crassidens) also showed reduced echolocation behavior during periods of increased lunar illumination. In contrast to nocturnal foraging in the northwestern Hawaiian Islands, false killer whales in the main Hawaiian Islands mainly foraged during the day and the lunar cycle showed little influence on their nocturnal acoustic behavior. Different temporal patterns in false killer whale acoustic behavior between the main and northwestern Hawaiian Islands can likely be attributed to the presence of distinct populations or social clusters with dissimilar foraging strategies. Consistent observations of reduced acoustic activity during times of increased lunar illumination show that the lunar cycle is an important predictor for nocturnal dolphin foraging behavior. The result of this research advances the scientific understanding of how dolphins optimize their foraging behavior in response to the changing distribution and abundance of their prey.
Inherent interfacial mechanical gradients in 3D hydrogels influence tumor cell behaviors.
Rao, Shreyas S; Bentil, Sarah; DeJesus, Jessica; Larison, John; Hissong, Alex; Dupaix, Rebecca; Sarkar, Atom; Winter, Jessica O
2012-01-01
Cells sense and respond to the rigidity of their microenvironment by altering their morphology and migration behavior. To examine this response, hydrogels with a range of moduli or mechanical gradients have been developed. Here, we show that edge effects inherent in hydrogels supported on rigid substrates also influence cell behavior. A Matrigel hydrogel was supported on a rigid glass substrate, an interface which computational techniques revealed to yield relative stiffening close to the rigid substrate support. To explore the influence of these gradients in 3D, hydrogels of varying Matrigel content were synthesized and the morphology, spreading, actin organization, and migration of glioblastoma multiforme (GBM) tumor cells were examined at the lowest (<50 µm) and highest (>500 µm) gel positions. GBMs adopted bipolar morphologies, displayed actin stress fiber formation, and evidenced fast, mesenchymal migration close to the substrate, whereas away from the interface, they adopted more rounded or ellipsoid morphologies, displayed poor actin architecture, and evidenced slow migration with some amoeboid characteristics. Mechanical gradients produced via edge effects could be observed with other hydrogels and substrates and permit observation of responses to multiple mechanical environments in a single hydrogel. Thus, hydrogel-support edge effects could be used to explore mechanosensitivity in a single 3D hydrogel system and should be considered in 3D hydrogel cell culture systems.
Seitz, Andrew C.; Wilson, Derek; Nielsen, Jennifer L.
2002-01-01
To maintain healthy commercial and sport fisheries for Pacific halibut (Hippoglossus stenolepis), critical habitat must be defined by determining life history patterns on a daily and seasonal basis. Pop-up satellite archival transmitting (PSAT) tags provide a fisheries-independent method of collecting environmental preference data (depth and ambient water temperature) as well as daily geolocation estimates based on ambient light conditions. In this study, 14 adult halibut (107-165 cm FL) were tagged and released with PSAT tags in and around Resurrection Bay, Alaska. Commercial fishermen recovered two tags, while five tags transmitted data to ARGOS satellites. Horizontal migration was not consistent among fish as three halibut remained in the vicinity of release while four traveled up to 358 km from the release site. Vertical migration was not consistent among fish and over time, but they spent most their time between 150-350 m. The minimum and maximum depths reached by any of the halibut were 2m and 502m, respectively. The fish preferred water temperatures of roughly 6 °C while experiencing ambient temperatures between 4.3 °C and 12.2 °C. Light attenuation with depth prevented existing geolocation software and light sensing hardware from accurately estimating geoposition, however, information from temperature, depth, ocean bathymetry, and pop-off locations provided inference on fish movement in the study area. PSAT tags were a viable tool for determining daily and seasonal behavior and identifying critical halibut habitat, which will aid fisheries managers in future decisions regarding commercial and sport fishing regulations.
Brosnahan, Michael L; Ralston, David K; Fischer, Alexis D; Solow, Andrew R; Anderson, Donald M
2017-11-01
New resting cyst production is crucial for the survival of many microbial eukaryotes including phytoplankton that cause harmful algal blooms. Production in situ has previously been estimated through sediment trap deployments, but here was instead assessed through estimation of the total number of planktonic cells and new resting cysts produced by a localized, inshore bloom of Alexandrium catenella , a dinoflagellate that is a globally important cause of paralytic shellfish poisoning. Our approach utilizes high frequency, automated water monitoring, weekly observation of new cyst production, and pre- and post-bloom spatial surveys of total resting cyst abundance. Through this approach, new cyst recruitment within the study area was shown to account for at least 10.9% ± 2.6% (SE) of the bloom's decline, ∼ 5× greater than reported from comparable, sediment trap based studies. The observed distribution and timing of new cyst recruitment indicate that: (1) planozygotes, the immediate precursor to cysts in the life cycle, migrate nearer to the water surface than other planktonic stages and (2) encystment occurs after planozygote settlement on bottom sediments. Near surface localization by planozygotes explains the ephemerality of red surface water discoloration by A. catenella blooms, and also enhances the dispersal of new cysts. Following settlement, bioturbation and perhaps active swimming promote sediment infiltration by planozygotes, reducing the extent of cyst redistribution between blooms. The concerted nature of bloom sexual induction, especially in the context of an observed upper limit to A. catenella bloom intensities and heightened susceptibility of planozygotes to the parasite Amoebophrya , is also discussed.
Du, Jinlong; Wu, Zaoming; Fu, Engang; Liang, Yanxiang; Wang, Xingjun; Wang, Peipei; Yu, Kaiyuan; Ding, Xiangdong; Li, Meimei; Kirk, Marquis
2018-01-01
Abstract The mechanism of radiation-induced detwinning is different from that of deformation detwinning as the former is dominated by supersaturated radiation-induced defects while the latter is usually triggered by global stress. In situ Kr ion irradiation was performed to study the detwinning mechanism of nanotwinned Cu films with various twin thicknesses. Two types of incoherent twin boundaries (ITBs), so-called fixed ITBs and free ITBs, are characterized based on their structural features, and the difference in their migration behavior is investigated. It is observed that detwinning during radiation is attributed to the frequent migration of free ITBs, while the migration of fixed ITBs is absent. Statistics shows that the migration distance of free ITBs is thickness and dose dependent. Potential migration mechanisms are discussed. PMID:29535796
Du, Jinlong; Wu, Zaoming; Fu, Engang; Liang, Yanxiang; Wang, Xingjun; Wang, Peipei; Yu, Kaiyuan; Ding, Xiangdong; Li, Meimei; Kirk, Marquis
2018-01-01
The mechanism of radiation-induced detwinning is different from that of deformation detwinning as the former is dominated by supersaturated radiation-induced defects while the latter is usually triggered by global stress. In situ Kr ion irradiation was performed to study the detwinning mechanism of nanotwinned Cu films with various twin thicknesses. Two types of incoherent twin boundaries (ITBs), so-called fixed ITBs and free ITBs, are characterized based on their structural features, and the difference in their migration behavior is investigated. It is observed that detwinning during radiation is attributed to the frequent migration of free ITBs, while the migration of fixed ITBs is absent. Statistics shows that the migration distance of free ITBs is thickness and dose dependent. Potential migration mechanisms are discussed.
Devís-Devís, José; Lizandra, Jorge; Valencia-Peris, Alexandra; Pérez-Gimeno, Esther; García-Massò, Xavier; Peiró-Velert, Carmen
2017-01-01
This study examined longitudinal changes in physical activity, sedentary behavior and body mass index in adolescents, specifically their migrations towards a different weight cluster. A cohort of 755 adolescents participated in a three-year study. A clustering Self-Organized Maps Analysis was performed to visualize changes in subjects' characteristics between the first and second assessment, and how adolescents were grouped. Also a classification tree was used to identify the behavioral characteristics of the groups that changed their weight cluster. Results indicated that boys were more active and less sedentary than girls. Boys were especially keen to technological-based activities while girls preferred social-based activities. A moderate competing effect between sedentary behaviors and physical activities was observed, especially in girls. Overweight and obesity were negatively associated with physical activity, although a small group of overweight/obese adolescents showed a positive relationship with vigorous physical activity. Cluster migrations indicated that 22.66% of adolescents changed their weight cluster to a lower category and none of them moved in the opposite direction. The behavioral characteristics of these adolescents did not support the hypothesis that the change to a lower weight cluster was a consequence of an increase in time devoted to physical activity or a decrease in time spent on sedentary behavior. Physical activity and sedentary behavior does not exert a substantial effect on overweight and obesity. Therefore, there are other ways of changing to a lower-weight status in adolescents apart from those in which physical activity and sedentary behavior are involved.
Lizandra, Jorge; Valencia-Peris, Alexandra; Pérez-Gimeno, Esther; García-Massò, Xavier; Peiró-Velert, Carmen
2017-01-01
This study examined longitudinal changes in physical activity, sedentary behavior and body mass index in adolescents, specifically their migrations towards a different weight cluster. A cohort of 755 adolescents participated in a three-year study. A clustering Self-Organized Maps Analysis was performed to visualize changes in subjects’ characteristics between the first and second assessment, and how adolescents were grouped. Also a classification tree was used to identify the behavioral characteristics of the groups that changed their weight cluster. Results indicated that boys were more active and less sedentary than girls. Boys were especially keen to technological-based activities while girls preferred social-based activities. A moderate competing effect between sedentary behaviors and physical activities was observed, especially in girls. Overweight and obesity were negatively associated with physical activity, although a small group of overweight/obese adolescents showed a positive relationship with vigorous physical activity. Cluster migrations indicated that 22.66% of adolescents changed their weight cluster to a lower category and none of them moved in the opposite direction. The behavioral characteristics of these adolescents did not support the hypothesis that the change to a lower weight cluster was a consequence of an increase in time devoted to physical activity or a decrease in time spent on sedentary behavior. Physical activity and sedentary behavior does not exert a substantial effect on overweight and obesity. Therefore, there are other ways of changing to a lower-weight status in adolescents apart from those in which physical activity and sedentary behavior are involved. PMID:28636644
Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; ...
2016-11-15
A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, andmore » mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.« less
Variability in Migration Routes Influences Early Marine Survival of Juvenile Salmon Smolts
Furey, Nathan B.; Vincent, Stephen P.; Hinch, Scott G.; Welch, David W.
2015-01-01
Variability in animal migratory behavior is expected to influence fitness, but few empirical examples demonstrating this relationship exist. The initial marine phase in the migration of juvenile salmon smolts has been identified as a potentially critical life history stage to overall population productivity, yet how fine-scale migration routes may influence survival are unknown. Large-scale acoustic telemetry studies have estimated survival rates of outmigrant Pacific salmon smolts through the Strait of Georgia (SOG) along the British Columbian coastline to the Pacific Ocean, but these data have not been used to identify and characterize fine-scale movements. Data collected on over 850 sockeye salmon (Oncorhynchus nerka) and steelhead (Oncorhynchus mykiss) smolts detected at an array in the Strait of Georgia in 2004–2008 and 2010–2013 were analyzed to characterize migration routes and link movements to subsequent survival at an array 250 km further along the marine migration pathway. Both species exhibited disproportionate use of the most eastern route in the Strait of Georgia (Malaspina Strait). While many smolts moved across the northern Strait of Georgia acoustic array with no indication of long-term milling or large-scale east-to-west movements, large proportions (20–40% of sockeye and 30–50% of steelhead) exhibited a different behavior, apparently moving in a westward or counterclockwise pattern. Variability in migratory behavior for both species was linked to subsequent survival through the Strait of Georgia. Survival for both species was influenced by initial east-to-west location, and sockeye were further influenced by migration timing and duration of time spent near the northern Strait of Georgia array. Westward movements result in a net transport of smolts from Malaspina Strait to the Strait of Georgia, particularly for steelhead. Counterclockwise movements may be due to the currents in this area during the time of outmigration, and the higher proportion of steelhead smolts exhibiting this counterclockwise behavior may reflect a greater exposure to wind-altered currents for the more surface-oriented steelhead. Our results provide an empirical example of how movements can affect migration survival, for which examples remain rare in movement ecology, confirming that variability in movements themselves are an important part of the migratory process. PMID:26451837
A pilgrim's progress: Seeking meaning in primordial germ cell migration.
Cantú, Andrea V; Laird, Diana J
2017-10-01
Comparative studies of primordial germ cell (PGC) development across organisms in many phyla reveal surprising diversity in the route of migration, timing and underlying molecular mechanisms, suggesting that the process of migration itself is conserved. However, beyond the perfunctory transport of cellular precursors to their later arising home of the gonads, does PGC migration serve a function? Here we propose that the process of migration plays an additional role in quality control, by eliminating PGCs incapable of completing migration as well as through mechanisms that favor PGCs capable of responding appropriately to migration cues. Focusing on PGCs in mice, we explore evidence for a selective capacity of migration, considering the tandem regulation of proliferation and migration, cell-intrinsic and extrinsic control, the potential for tumors derived from failed PGC migrants, the potential mechanisms by which migratory PGCs vary in their cellular behaviors, and corresponding effects on development. We discuss the implications of a selective role of PGC migration for in vitro gametogenesis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Climate Shocks and Migration: An Agent-Based Modeling Approach.
Entwisle, Barbara; Williams, Nathalie E; Verdery, Ashton M; Rindfuss, Ronald R; Walsh, Stephen J; Malanson, George P; Mucha, Peter J; Frizzelle, Brian G; McDaniel, Philip M; Yao, Xiaozheng; Heumann, Benjamin W; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree
2016-09-01
This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, 'normal' scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response.
Climate Shocks and Migration: An Agent-Based Modeling Approach
Entwisle, Barbara; Williams, Nathalie E.; Verdery, Ashton M.; Rindfuss, Ronald R.; Walsh, Stephen J.; Malanson, George P.; Mucha, Peter J.; Frizzelle, Brian G.; McDaniel, Philip M.; Yao, Xiaozheng; Heumann, Benjamin W.; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree
2016-01-01
This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, ‘normal’ scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response. PMID:27594725
Effects of human and mosquito migrations on the dynamical behavior of the spread of malaria
NASA Astrophysics Data System (ADS)
Beay, Lazarus Kalvein; Kasbawati, Toaha, Syamsuddin
2017-03-01
Malaria is one of infectious diseases which become the main public health problem especially in Indonesia. Mathematically, the spread of malaria can be modeled to predict the outbreak of the disease. This research studies about mathematical model of the spread of malaria which takes into consideration the migration of human and mosquito populations. By determining basic reproduction number of the model, we analyze effects of migration parameter with respect to the reduction of malaria outbreak. Sensitivity analysis of basic reproduction number shows that mosquito migration has greater effect in reducing the outbreak of malaria compared with human migration. Basic reproduction number of the model is monotonically decreasing as mosquito migration increasing. We then confirm the analytic result by doing numerical simulation. The results show that migrations in human and mosquito populations have big influences in eliminating and eradicating the disease from the system.
2012-09-30
migration routes and on sperm whales in 2010 and 2011 (funded by BP and NOAA-NRDA) to follow-up on the consequences of the Deepwater Horizon (DWH...dive behavior to especially examine sperm whale foraging behavior. The data will be downloaded from recovered tags to evaluate complex foraging...with the WC Location-only tags off Sakhalin Island, Russia to determine migration routes and tag a small number of sperm whales in the Gulf of Mexico
Migration monitoring with automated technology
Rhonda L. Millikin
2005-01-01
Automated technology can supplement ground-based methods of migration monitoring by providing: (1) unbiased and automated sampling; (2) independent validation of current methods; (3) a larger sample area for landscape-level analysis of habitat selection for stopover, and (4) an opportunity to study flight behavior. In particular, radar-acoustic sensor fusion can...
The poleward migration of the location of tropical cyclone maximum intensity.
Kossin, James P; Emanuel, Kerry A; Vecchi, Gabriel A
2014-05-15
Temporally inconsistent and potentially unreliable global historical data hinder the detection of trends in tropical cyclone activity. This limits our confidence in evaluating proposed linkages between observed trends in tropical cyclones and in the environment. Here we mitigate this difficulty by focusing on a metric that is comparatively insensitive to past data uncertainty, and identify a pronounced poleward migration in the average latitude at which tropical cyclones have achieved their lifetime-maximum intensity over the past 30 years. The poleward trends are evident in the global historical data in both the Northern and the Southern hemispheres, with rates of 53 and 62 kilometres per decade, respectively, and are statistically significant. When considered together, the trends in each hemisphere depict a global-average migration of tropical cyclone activity away from the tropics at a rate of about one degree of latitude per decade, which lies within the range of estimates of the observed expansion of the tropics over the same period. The global migration remains evident and statistically significant under a formal data homogenization procedure, and is unlikely to be a data artefact. The migration away from the tropics is apparently linked to marked changes in the mean meridional structure of environmental vertical wind shear and potential intensity, and can plausibly be linked to tropical expansion, which is thought to have anthropogenic contributions.
Fine-scale pathways used by adult sea lampreys during riverine spawning migrations
Holbrook, Christopher; Bergstedt, Roger A.; Adams, Noah S.; Hatton, Tyson; McLaughlin, Robert L.
2015-01-01
Better knowledge of upstream migratory patterns of spawning Sea Lampreys Petromyzon marinus, an invasive species in the Great Lakes, is needed to improve trapping for population control and assessment. Although trapping of adult Sea Lampreys provides the basis for estimates of lake-wide abundance that are used to evaluate the Sea Lamprey control program, traps have only been operated at dams due to insufficient knowledge of Sea Lamprey behavior in unobstructed channels. Acoustic telemetry and radiotelemetry were used to obtain movement tracks for 23 Sea Lampreys in 2008 and 18 Sea Lampreys in 2009 at two locations in the Mississagi River, Ontario. Cabled hydrophone arrays provided two-dimensional geographic positions from acoustic transmitters at 3-s intervals; depth-encoded radio tag detections provided depths. Upstream movements occurred at dusk or during the night (2015–0318 hours). Sea Lampreys were closely associated with the river bottom and showed some preference to move near banks in shallow glide habitats, suggesting that bottom-oriented gears could selectively target adult Sea Lampreys in some habitats. However, Sea Lampreys were broadly distributed across the river channel, suggesting that the capture efficiency of nets and traps in open channels would depend heavily on the proportion of the channel width covered. Lack of vertical movements into the water column may have reflected lamprey preference for low water velocities, suggesting that energy conservation was more beneficial for lampreys than was vertical searching in rivers. Improved understanding of Sea Lamprey movement will assist in the development of improved capture strategies for their assessment and control in the Great Lakes.
NASA Astrophysics Data System (ADS)
Zhao, Zhong-Xun; Ma, Xiao; Cao, Shan-Shan; Ke, Chang-Bo; Zhang, Xin-Ping
2017-12-01
The present study focuses on the anisotropic negative thermal expansion (NTE) behaviors of Ti-rich (Ti54Ni46) and equiatomic Ti-Ni (Ti50Ni50) alloys fabricated by vacuum arc melting and without subsequent plastic deformation. Both alloys exhibit NTE responses in vertical and horizontal directions, and the total strains and CTEs of the NTE stage along the two mutually perpendicular measuring directions are obviously different, indicating obvious anisotropic NTE behavior of the alloys. Besides, the numerical differences between the starting temperature of NTE and austenitic transformation and between the finishing temperature of NTE and austenitic transformation are very small, which indicates that an apparent relationship exists between the NTE behavior and the phase transformation. The microstructure in the vertical cross sections shows obviously preferential orientation characteristics: Ti2Ni phases of both alloys grow along the vertical direction, and B19' martensite of Ti50Ni50 alloy has distinct preferential orientation, which results from a large temperature gradient between the top and the bottom of the button ingots during solidification. The microstructure with preferential orientation induces the anisotropic NTE behavior of the samples.
NASA Astrophysics Data System (ADS)
Zhao, Zhong-Xun; Ma, Xiao; Cao, Shan-Shan; Ke, Chang-Bo; Zhang, Xin-Ping
2018-03-01
The present study focuses on the anisotropic negative thermal expansion (NTE) behaviors of Ti-rich (Ti54Ni46) and equiatomic Ti-Ni (Ti50Ni50) alloys fabricated by vacuum arc melting and without subsequent plastic deformation. Both alloys exhibit NTE responses in vertical and horizontal directions, and the total strains and CTEs of the NTE stage along the two mutually perpendicular measuring directions are obviously different, indicating obvious anisotropic NTE behavior of the alloys. Besides, the numerical differences between the starting temperature of NTE and austenitic transformation and between the finishing temperature of NTE and austenitic transformation are very small, which indicates that an apparent relationship exists between the NTE behavior and the phase transformation. The microstructure in the vertical cross sections shows obviously preferential orientation characteristics: Ti2Ni phases of both alloys grow along the vertical direction, and B19' martensite of Ti50Ni50 alloy has distinct preferential orientation, which results from a large temperature gradient between the top and the bottom of the button ingots during solidification. The microstructure with preferential orientation induces the anisotropic NTE behavior of the samples.
NASA Astrophysics Data System (ADS)
Sample, J. C.
2006-12-01
Deformation bands occur in an outcrop of a petroleum-bearing, sandstone-rich unit of the Monterey Formation along the active Newport-Inglewood fault zone (NIFZ), near Corona del Mar, California. The deformation bands likely developed in a damage zone associated with a strand of the NIFZ. The bands appear to have formed in poorly lithified sandstone. They are relatively oil-free whereas the matrix sandstone contains oil in pore space. The deformation bands acted as baffles to flow, but continuing deformation likely breached permeability barriers over time. Thus the bands did not completely isolate compartments from oil migration, but similar structures in the subsurface would likely slow the rate of production in reservoirs. The network of bands at Corona del Mar forms a mesh with band intersection lines lying parallel to the trend of the NIFZ (northwest). This geometry formed as continuing deformation in the NIFZ rotated early bands into unfavorable orientations for continuing deformation, and new bands formed at high angles to the first set. Permeability in this setting is likely to have been anisotropic, higher parallel to strike of the NIFZ and lower vertically and perpendicular to the strike of the fault zone. One unique type of deformation band found here formed by dilation and early oil migration along fractures, and consequent carbonate cementation along fracture margins. These are thin, planar zones of oil 1 - 2 mm thick sandwiched between parallel, carbonate-cemented, positively weathering ribs. These bands appear to represent early oil migration by hydrofracture. Based on crosscutting relationships between structures and cements, there are three distinct phases of oil migration: early migration along discrete hydrofractures; dominant pore migration associated with periodic breaching of deformation bands; and late migration along open fractures, some several centimeters in width. This sequence may be representative of migration histories along the NIFZ in the Los Angeles basin.
Hydraulic induced instability on a vertical service
NASA Technical Reports Server (NTRS)
Bosmans, R. F.
1985-01-01
The case history contained provides insight toward the mechanical and hydraulic behavior of a vertical pump. It clearly demonstrates the need for measurements on the rotor at or near the impeller area. The results are reported of an analysis on a service water pump. This pump is typical of the water pumps used throughout the power generation industry. Although little is known of the mechanical behavior of vertical pumps because of difficulty in modeling the rotor system, recent developments in the application of submersible proximity transducers have made possible the measurement of pump dynamics under operating conditions. The purpose of this study was to determine the proper selection and installation of vibration-monitoring transducers as well as to measure the effects of imbalance, misalignment, and hydraulics on the performance and reliability of vertical pumps. In addition, the cause of shaft failures on this pump was to be determined.
Flow induced migration in polymer melts – Theory and simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorgan, John Robert, E-mail: jdorgan@mines.edu; Rorrer, Nicholas Andrew, E-mail: nrorrer@mines.edu
2015-04-28
Flow induced migration, whereby polymer melts are fractionated by molecular weight across a flow field, represents a significant complication in the processing of polymer melts. Despite its long history, such phenomena remain relatively poorly understood. Here a simple analytical theory is presented which predicts the phenomena based on well-established principles of non-equilibrium thermodynamics. It is unambiguously shown that for purely viscous materials, a gradient in shear rate is needed to drive migration; for purely viscometric flows no migration is expected. Molecular scale simulations of flow migration effects in dense polymer melts are also presented. In shear flow the melts exhibitmore » similar behavior as the quiescent case; a constant shear rate across the gap does not induce chain length based migration. In comparison, parabolic flow causes profound migration for both unentangled and entangled melts. These findings are consistent with the analytical theory. The picture that emerges is consistent with flow induced migration mechanisms predominating over competing chain degradation mechanisms.« less
LOCO: Characterization of Phytoplankton in Thin Optical Layers
2010-09-30
NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) University of Rhode Island,Graduate School of Oceanography,South Ferry Road,Narragansett,RI,02882-1197 8. PERFORMING ORGANIZATION REPORT...population was superimposed on a diverse background of other planktonic organisms , some of which also underwent vertical migration, and others (e.g
2012-01-25
concentration of their population , physical con- ditions (currents, temperature, strength of stratification , mixed layer depth etc.), light...REPORT DOCUMENTATION PAGE Form Approved OMB No. 07040188 The public reporting burden for this collection of information is estimated to average 1...completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
2012-01-01
14 Figure 7. The column study used to test treatment options and longevity by tracking pH in the leachate from the APG OD soil...during baseline characterization of the APG OD site. ............................................................. 39 Table 8. Runoff water and leachate ...et al. 2006). Off-site migration of explosives from OBOD area soils is possible through horizon- tal transport in surface water and vertical leachate
NASA Astrophysics Data System (ADS)
Urmy, Samuel S.; Williamson, Craig E.; Leach, Taylor H.; Schladow, S. Geoffrey; Overholt, Erin P.; Warren, Joseph D.
2016-04-01
We used a natural experiment to test whether wildfire smoke induced changes in the vertical distribution of zooplankton in Lake Tahoe by decreasing incident ultraviolet radiation (UV). Fires have a variety of effects on aquatic ecosystems, but these impacts are poorly understood and have rarely been observed directly. UV is an important driver of zooplankton vertical migration, and wildfires may alter it over large spatial scales. We measured UV irradiance and the distribution of zooplankton on two successive days. On one day, smoke haze from a nearby wildfire reduced incident UV radiation by up to 9%, but not irradiance in the visible spectrum. Zooplankton responded by positioning themselves, on average, 4.1 m shallower in the lake. While a limited data set such as this requires cautious interpretation, our results suggest that smoke from wildfires can change the UV environment and distribution of zooplankton. This process may be important in drought-prone regions with increasingly frequent wildfires, and globally due to widespread biomass burning.
Apparatus for electrophoresis separation
Anderson, Norman L.
1978-01-01
An apparatus is disclosed for simultaneously performing electrophoresis separations on a plurality of slab gels containing samples of protein, protein subunits or nucleic acids. A reservoir of buffer solution is divided into three compartments by two parallel partitions having vertical slots spaced along their length. A sheet of flexible, electrically insulative material is attached to each partition and is provided with vertical slits aligned with the slots. Slab-gel holders are received within the slots with the flexible material folded outwardly as flaps from the slits to overlay portions of the holder surfaces and thereby act as electrical and liquid seals. An elongated, spaghetti-like gel containing a sample of specimen that was previously separated by isoelectric focusing techniques is vertically positioned along a marginal edge portion of the slab gel. On application of an electrical potential between the two outer chambers of buffer solution, a second dimensional electrophoresis separation in accordance with molecular weight occurs as the specimen molecules migrate across the slab gel.
Hydraulic properties of three types of glacial deposits in Ohio
Strobel, M.L.
1993-01-01
The effects of thickness, grain size, fractures, weathering, and atmosphericconditions on vertical ground-water flow in glacial deposits were studied at three sites that represent ground moraine, end moraine, and lacustrine depositional environments. Vertical hydraulic conductivities computed from pumped-well tests were 3.24 x 10-1 to 6.47 x 10-1 ft/d (feet per day) at the site representing end moraine and 1.17 ft/d at the site representing lacustrine deposits. Analysis of test data for the ground moraine site did not yield estimates of hydraulic conductivities, but did indicate that ground water flows through the total thickness of deposits in response to discharge from a lower gravel unit. Vertical hydraulic conductivities computed from pumped-well tests of nested wells and data from drill-core analyses indicate that fractures affect the migration of ground water downward through the glacial deposits at these sites. Flow through glacial deposits is complex; it is controlled by fractures, gram-size distribution, clay content, thickness, and degree of weathering, and atmospheric conditions.
NASA Astrophysics Data System (ADS)
Bense, V. F.; Kurylyk, B. L.
2017-12-01
Sustained ground surface warming on a decadal time scale leads to an inversion of thermal gradients in the upper tens of meters. The magnitude and direction of vertical groundwater flow should influence the propagation of this warming signal, but direct field observations of this phenomenon are rare. Comparison of temperature-depth profiles in boreholes in the Veluwe area, Netherlands, collected in 1978-1982 and 2016 provided such direct measurement. We used these repeated profiles to track the downward propagation rate of the depth at which the thermal gradient is zero. Numerical modeling of the migration of this thermal gradient "inflection point" yielded estimates of downward groundwater flow rates (0-0.24 m a-1) that generally concurred with known hydrogeological conditions in the area. We conclude that analysis of inflection point depths in temperature-depth profiles impacted by surface warming provides a largely untapped opportunity to inform sustainable groundwater management plans that rely on accurate estimates of long-term vertical groundwater fluxes.
Project VeSElkA: results of abundance analysis for HD 53929 and HD 63975
NASA Astrophysics Data System (ADS)
Ndiaye, M. L.; LeBlanc, F.; Khalack, V.
2018-03-01
Project VeSElkA (Vertical Stratification of Element Abundances) has been initiated with the aim to detect and study the vertical stratification of element abundances in the atmosphere of chemically peculiar stars. Abundance stratification occurs in hydrodynamically stable stellar atmospheres due to the migration of the elements caused by atomic diffusion. Two HgMn stars, HD 53929 and HD 63975 were selected from the VeSElkA sample and analysed with the aim to detect some abundance peculiarities employing the ZEEMAN2 code. We present the results of abundance analysis of HD 53929 and HD 63975 observed recently with the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope. Evidence of phosphorus vertical stratification was detected in the atmosphere of these two stars. In both cases, phosphorus abundance increases strongly towards the superficial layers. The strong overabundance of Mn found in stellar atmosphere of both stars confirms that they are HgMn type stars.
NASA Technical Reports Server (NTRS)
Kharuk, Viatcheslav I.; Im, Sergey T.; Ranson, K. Jon
2007-01-01
observations of temperatures Siberia has shown a several degree warming over the past 30 years. It is expected that forest will respond to warming at high latitudes through increased tree growth and northward or upward slope migration. migration. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. Making repeated satellite observations over several decades provides an opportunity to track vegetation response to climate change. Based on Landsat data of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure and an upward tree-line shift in the of the forest-tundra ecotone during the last quarter of the 2oth century,. On-ground observations, supporting these results, also showed regeneration of Siberian pine in the alpine tundra, and the transformation of prostrate Siberian pine and fir into arboreal (upright) forms. During this time period sparse stands transformed into closed stands, with existing closed stands increasing in area at a rate of approx. 1 %/yr, and advancing their upper border at a vertical rate of approx. 1.0 m/yr. In addition, the vertical rate of regeneration propagation is approx. 5 m/yr. It was also found that these changes correlated positively with temperature trends
Control of Diapause by Acidic pH and Ammonium Accumulation in the Hemolymph of Antarctic Copepods
Schründer, Sabine; Schnack-Schiel, Sigrid B.; Auel, Holger; Sartoris, Franz Josef
2013-01-01
Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4 +) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4 +). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause. PMID:24143238